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GLR ALGORITHMS FOR DETECTING AND ESTIMATING ABRUPT

MANEUVERS IN ASMD SCENARIOS USING A DECOMPOSITION

OF TEE MANEUVER SIGNATURE MATRIX

BY

HAROLD L. STALFORD

ABSTRACT

Two GLR algorithms are developed for detecting and estimating

abrupt maneuvers (i.e., jumps in control values) in discrete

linear stochastic systems. A jump error state variable concept

is used to derive a decomposition of the conventional maneuvez

signature matrix into a new maneuver signature matrix which

is independent of the jump time and another matrix which depends

only on the jump time. The product of the latter matrix with

the jump vector is shown to provide a constant jump error state

variable. The nondependency of the new maneuver signature

matrix on the jump time and the transformation of the jump

error state to a con.. rovides for the development of GLR

algorithms with considerab.y reduced computational and storage

requirements. The new algorithms avoid much of the updating

jJ and storage of large matrices for past observation times.

it President, Practical Sciences,Inc., 40 Long Ridge Road,

Carlisle, MA 01741A
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In particular, the multiplications requirement is reduced to

the order of n3 + 3Mn2m for general linear stochastic systems

and Mn 2m for such systems without process noise. Here, n is

-.1 the dimension of the state, m the dimension of the measurement

vector and M is number of candidate jump times in the past.

The two algorithms have practical application to the engage-

ment problem between an anti-ship cruise missile and a ship

defense interceptor. The output of the algorithms provides

information on which the players in a differential game of

partial information and noisy observation may base and design

optimal strategies for maximizing payoff functions such as

survivability and kill.
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1. BACKGROUND AND INTRODUCTION

The engagement between an anti-ship cruise missile (ASK)

and a ship defense interceptor is a differential game of

partial information and noisy observations. The ASM represents

the offense (the evader) and the interceptor represents the

defense (the pursuer). The ASK desiring to optimize its

survivability while enroute to its ship target employs endgame

maneuvers for the purpose of evading the ship's defense interceptors

guided by active and/or passive radar. The ASMs are highly

sophisticated and maneuvering missiles that have speeds ranging

from subsonic to supersonic, altitudes ranging from sea skimmer

to upper limits of winged aircraft, and guidance systems

ranging from simple line-of-sight to more complex combinations

of passive and active electronic systems. Their maneuvering

characteristics are governed by airframe, propulsion and

guidance parameters -- drag, lift, thrust and four guidance

parameters, [1] and [2]. The thrust and guidance parameters

are like step fucntions in time (i.e., piecewise constant

controls). They take on one value during one portion of

the ASK's trjectory and jump to other values during other

portions of the trajectory. For example, the guidance parameters

jump in value at the start of pop-ups, dives,pull-outs, turn-downs

and turn-on of seeker homing. The thrust parameter of some

ASMs jumps (i.e., drops) in value during high altitude dives.

Consequently, the dynamics of an ASM are representable as

a stochastic system governed by piecewise constant controls.

5 IIn linear discrete form the dynamics are modeled as:



System Dynamics of ASM*

X(k+l) = A(k+l,k) X(k) + B(k+l,k) (u(k) + AUq 6qk) + r(k)w(k)

u(k+l) - u(k) + Au 6qk (2)

where X is the state vector, u is the control, AUq is the

jump in control at time q, 61k is the Kronecker delta, and r

is the system noise coefficient matrix. The matrix A is

the state transition matrix and B is the input

matrix for the control. The jump time q and the jump magnitude

AUq are unknown to the defense interceptor. Using active

and/or passive radar sensors the defense interceptor measures

a partial state of the ASM. These observations are modeled

as:

Sensor Equation of Interceptor

z(k) = h(k) X(k) + vik) (3)

where z is the measurement vector and h is the measurement

matrix. The noise sequences w and v are zero-mean, independent,

white Gaussian sequences with covariances defined by

*Actually, there are multiple jumps Auqiat Limes qi; this
is easily indicated by the substitution of E AUqi 6qik

i
into (1) and (2). Equations (1) and (2) represent each

jump in turn. [1

2 1



E {w(k) wT (j)) Q (k) 6 kj

E {%3 W vT(j)} R W 6kj

where Ef{} denotes the expectation and the matrix R(k) is

bounded positive definite. The inital state X(o) is normally

distibuted with mean X(o) and covariance P(O); we make a

similar assumption for u(O).

The system dynamics of the interceptor is of a form

similar to (1) and (2). In general, the sensor equation

of an ASM may be considered to be of the form (3) but currently,

in practice, the ASM has no sensor with which to observe

the location or presence of an interceptor (i.e., it is blind

to approaching interceptors) even though it has the sensors

for acquiring and homing in on its ship target. In such

a case the measurement matrix of the ASM is zero. There

are other engagement scenarios in which the offense (e.g.,

bomber) is not blind to approaching interceptors. Therefore,

in general, we are interested in the class of differential

games of partial information and noisy observations in which

the dynamics of a player's system are modeled by (1) and

(2) and the observation equation of its. opponent is modeled

by (3).

S'lI3



In the above engagement the ASM desires to maximize

its survivability using evasive maneuvers while enroute to

its ship target. The interceptor desires to maximize its

probability of kill. In its pursuit of optimality the interceptor

is faced with two tasks. The first is the development of

an estimator for obtaining the optimal estimates X and u

of the state X and the control u. Secondly, it has the task

of deriving optimal strategies based on the optimal estimates.

In this paper we address the first task and present a filtering

algorithm for obtaining the optimal estimates of X and u.

This estimation problem is that of detecting and estimating

abrupt changes in stochastic dynamical systems. A survey

of estimation methods is given in Willsky [3].

One of the most attractive and promising methods for

detecting and estimating jumps in linear stochastic systems

is the generalized likelihood ratio (GLR) method, [41-[6].

The GLR method processes the residuals from a Kalman filter

and computes the maximum likelihood estimates of the jump

time and the jump magnitude. Using these estimates it evaluates

the log-likelihood ratio for jump versus no jump. A jump

is declared if the evaluated ratio is larger than a set

threshold. The implementation of the GLR requires a linearly

growing bank of matched filters in order to compute the maximum

likelihood estimate of the jump time, [31 and [7]. A recursive

GLR algorithm, 18] and [9), has been developed that reduces

4I
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the computational burden by reducing or avoiding the requirement

for matrix inversion (in computing the jump magnitude and

evaluating the log-likelihood ratio) at each possible jump

time in the past. This reduction was obtained by modifying

the GLR algorithm so that the covariance of the predicted

measurement residual is to be inverted rather than the information

matrix of the jump variable. The largest dimension of the

matrix to be inverted is at most equal to the dimension of

the correlated components of the predicted measurement residual,

[10] and [111].

In its latest stage of development the GLR method still

requires at each new observation time the computation and

storage of several matrices for each observation time in

the past. Herein, we derive two GLR algorithms I and II which

are based on a decomposition of the failure signature

matrix of [5] which we term herein the maneuver signature matrix.

The decomposition provides a new maneuver signature matzix

which is independent of the jump time (maneuver start time).

This nondependency reduces considerably the storage and computational

requirements of the GLR method by reducing the requirement

to update and restore large matrices at each current observation

time for past observation times. The computational burden

of previous GLR algorithms is to a great extent the direct

LI 5



dependency of the maneuver signature matrix on the jump time.

Our algorithms I and II avoid much of the updating and storage
of large matrices for past observation times.

The GLR algorithms I and II are developed using the concept

of a jump error A-state variable Ax. It is introduced as the

difference between a "jump is known" filter estimate and a

"jump free" filter estimate of the state. The evolution of

Ax, after a jump, is governed by a linear state equation. The

residuals of the "jump free" filter provides the noisy linear

measurements of Ax. The variable Ax is non-singularly transformed

into a new A-state variable Ay which is constant. It is that

transformation which provides the new maneuver signature matrix

which is independent of the jump time.

Our work is built on that of -Friedland's bias filtering

technique [20], Willsky and Jones' GLR technique [6] and Chang

and Dunn's recursive GLR algorithm [9].

6
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2. DISCRETE LINEAR STOCHASTIC MODEL WITH STATE JUMP:

A POSTERIORI JUMP

For ease of presentation and generality we augment the

state X(k) with the control u(k) of (1) and (2) and define

the variable x(k) as the augmented state vector composed

of X(k) and u(k). In this case Equations (1), (2), and (3)

become

x(k+l) = 0 (k+l,k) (x(k) + Asq 6 qk) + r (k)w(k) (4)

z(k) = H(k) x.(k) + V (k) (5)

where
A(k+l,k) B(k+l,k)

I(k+l,k) = [ (6)
0 1

AXq = D AUq (7)

0
D [ ] (8)

I

H(k) [h(k) 01 (9)

and where r(k) is redefined as the augmented matrix

r (k)
[ ] (10)

0

A description of the variables and their dimensions are given

in Table 1. We assume that the linear system (4) and (5)

is observable.

!7
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The a posteriori jump is used in the formulation of

(1), (2), and (3). The jump A Xq occurs at time q but it

does not appear in the measurement until time q+l; that is,

the jump occurs right after the measurement z(q).

The optimal state estimator for a discrete linear stochastic

system without jump (AXq = 0) is given by the discrete Kalman-Bucy

filter, (12]-[15]. The equations of the filter, 116], are

given in Table 2 for reference purposes. The filter variables

are described in Table 3.

In this report we treat the general problem as defined by

Eqs. (4) and (5) in which the unknowns to be estimated and detected

are AXq and q. That is, we take the quantities 0, Axq, H

and r to be arbitrary, not necessarily satisfying (6), (7), (9)

and (10).

8



TABLE 1

SYSTEM VARIABLES FOR THE AUGMENTED SYSTEM

VARIABLE DEFINITION DIMENSION

x(k) State vector nxi

0(k+l,k) State transition matrix from nxn
k to k+1

r(k) System noise coefficient matrix nxr
Q(k) System noise covariance matrix rxr
AXq Jump in state at time q nxl

z(k) Measurement at time k mxl

H(k) Measurement matrix mxn

R(k) Measurement noise covariance mxm
matrix

w(k) Gaussian white system noise rxl

V(k) Gaussian white measurement noise mxl

D Jump coefficient matrix nxp

AUq Jump in control at time q pxl

u.(k) Control vector px1

Ie

1



TABLE 2

DISCRETE KALMAN-BUCY FILTER EQUATIONS*

x(k+llk) = 0(k+1,k) x(k) Wi

P(k+llk) = 0(k+1,k) P(k) OT(k+l,k) + r(k) Q(k)rT(k) (i

y(k) = z(k) - H(k) x(klk-1)(i)

V(k) - H(k)P(k 1k-i) HT(k) + R(k) (iv)

K(k) - P(k 1k-i) HT(k) V1 l(k) (v)

X(k) = X.(klk-1) + K(k) y(k) (vi)

P(k) = (I - K(k) H(k)] P(k 1k-i) (vii)

*The usual notation~s x (kik) and P(klk) have been shortened

to x(k) and P(k). The random variable x(klj) is the optimal

estimate of x(k) based on all the measurements Z(j) ={z(1),

z(2),..., z(j)} The superscript "T" denotes transpose

and "-1" denotes inverse. The identity matrix is denoted

by I.

100



TABLE 3

FILTER VARIABLES

VARIABLE DEFINITION DIMENS ION

Ix'(k) State estimate at k given Z(k) nxl

P(k) Covoriance matrix of the error nxn
in x (k)

2 tit+1 Ik) State estimate at k+1 given ZWk nxl

P(k+ltk) Coviriance matrix of the error nxn
in x(k+llk)

y(k) Predicted measurement residual mx1

V(k) Covariance of y (k) mxm

K(k) Filter (Kalman) gain matrix at k nxm,



3. FORMULATION OF THE A-SYSTEM: JUMP ERROR STATE EQUATION

Consider the following filtering conditions for the Kalman-

Bucy filter:

H1: There is no jump in state and no jump in assumed by

the filter.

H1: There is a jump in state but the filter is unaware

that a jump has taken place and it operates as if

the jump is zero. The filter is referred to as the

"jump free" filter.

H2: There is a jump in state, the jump is known to the

filter and the jump information (time and magnitude)

is made use of in the filter. The filter is called

the "jump is known" filter.

The Kalman-Bucy filter is optimal for Conditions H1
and H2 and nonoptimal for H1. Condition H2 is ideal but

does not occur in practice. Condition H1 is the real world

condition. We are faced with the problem of accounting for

the jump after it has occurred and has been detected. On

the one hand we do not wish to degrade the optimal performance

of the Kalman-Bucy filter byoperatingit in an "after-jump"

mode when no jump has occurred. On the other hand we desire

optimal estimates of the state after the jump has occurred.

Because of the delay bctween the occurrence of the jump and

its detection the output of the H1 filter is nonoptimal during

this delay. Since we have in practice this sequence of nonoptimal

estimates we would like to compensate it with an additional

estimate and obtain an optimal estimate. This is precisely

the property of the A-system. The optimal estimate of the

12":
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A-state added to the Kalman-Bucy filter estimate under condition

H1 is an optimal estimate of the state beyond the jump.

Let x1 (k) represent the state for the case that the

jump magnitude Ax is zero (i.e., there is no jump). Let

x2 (k) represent the state for the case that there is a jump

AXq and its magnitude may be nonzero. Let x1 , N1 , and N2"

denote the Kalman-Bucy filter estimates of the state for

the ConditionP H1, ' and H2, respectively. The relationships

between these estimates are depicted in Figure 1 for an anti-

ship missile defense scenario in which the ASM employs an

endgame pop-up maneuver. Under Condition H1 the Kalman-

Bucy filter estimate x1 optimally tracks x:I. Under Condition

H the Kalman-Bucy filter estimate x.2 optimally tracks x2.

But under condition H1 the nonoptimal estimate tracks

a trajectory between x and x2. Since the covariance of

state estimate and the Kalman gain are independent of the

j measurements it follows that the gains K1 (k), K1 (k) and K2 (k)

are identical and that the covariances P1, P1 and P2 are

I identical for the three filtering Conditions HI, H1 and H2

We define the following errors of xI (k):

A w(k) -X2(k) - xl (k),all k (10)
Aw(k) M (k A (11)

-i Xi(k), all

SI The sum of the two errors satisfy

I Ax(k) +Aw(k) - o(k,q) aq, k>_q (12)

13
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t KALMAN-BUCY FILTER ESTIMATES
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FIGURE 1. ASM DEFENSE SCENARIO: JUMP ERROR STATE Ax SATISFIES
LINEAR EQUATION

Ax(k+l) = [I-Kl(k+l) H(k+l)] 0(k+l,k) Ax(k)

14



I | JWe call the random variable Ax the jump error state or

A-state variable. It is the difference between the Kalman-

Bucy filter estimates under the conditions of known jump

and unknown jump. Since the addition of Ax(k) and xl (k) give
A A

x2 (k) we would expect that the optimal estimate Ax(k) added

to x1 (k) gives the optimal estimate x(k) of (4) and (5):

x(k) - x 1 (k) + Ax(k) (13)

It is easy to show that AX satisfies a linear state

equation [8]. The initial condition for Ax is at time q:

Ax(q) - AXq (14)

Axq = x 2 (q) - x 1 (q) (15)

Let k >q. From Equations (i), (iii), and (vi) of Table 2

we observe that the estimates x1 (k) and x2 (k) satisfy

x1 (k) = At (k,k-l) x1 (k-l) + Kl (k) z(k) (16)
AA

x 2 (k) =A0 (k,k-1) x 2 (k-.l) + K1 (k) z (k) (17)

where

At(k,k-1) = [I-K1 (k) H(k)] (k,k-l) (18)

Consequently, subtracting (16) from (17) gives the linear

equation

Ax (k) - At(k,k-1) Ax(k-1) (19)

15
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with initial Condition (14). The measurement equation for

&x is also easily derived. Under ConditionHI , the a posterior

measurement residual Az(k) is given by

Az(k) = z(k) - H(k) x (k) (20)

Adding and subtracting the term H(k) x2 (k) we obtain the

measurement equation for Ax

Az(k) = AH(k) Ax(k) + Av (k) (21)

where

AH(k) = H(k) (22)

AV(k) = z(k) - H(k) x2 (k) (23)

is theia-psteriori measurement residual under Condition H2 *

Consequently, Av(k) is a zero-mean white Gaussian sequence

with covariance defined by

E{Av(k)AvT (j}} = AR (k) 6 kj (24)

where

AR(k) R(k) V1  (k) R(k)

recalling that V1 , V1 and V2 are identical.

Equations (19) and (21) constitute the linear equations

that govern the error Ax. If the jump time q wer! known

and the initial state Ax(q) were normally distributed with

mean Ax(q) and covariance AP(q) then a Kalman-Bucy filter

could be employed to estimate Ax(k). The filtering equations

are as given in Table 4 for such a case. For this case define

16



TABLE 4

FILTERING EQUATIONS FOR THE A-SYSTEM

1A Ax(k+1l k) - Af (k+.1,k) A x(k) , k >q(i

AP(k+llk) = AQ(k+1,k) AP(k) AIDT (k+1,k), kj q (i

Ay (k) = A z(k) - AH (k) Ax (kl k-1) , k > q(i)

AV(k) = AH(k) AP(klk-1) AH T(k) + ARMk), k >q (iv)

AKXW = AP(klk-1) AHT (k) AV 1 (k), k>q (V)

Ax(k) = Ax(klk-1)+ AK(k) Ay(k), k> q (vi)

APWk = [I -AK(k) AHWkI1 AP(kjk-1), k> q (Vii)

where

A.(k,k-1) =[I K K1 (k) H (k)] * (k, k- 1) (Viii)

AH(k) = H(k) (ix)

AR(k) = R(k) V1  (k) R(k)(x-

Az(k) = z(k) -H(k) x 1 (k) (xi)

1 -7



x(q) = xl(q) + &x(q) (26)

P(q) = Pl(q) + AP(q) (27)

and employ a Kalman-Bucy filter to estimate x(k), k>q, governed

by (4) and (5). We know that the resulting estimates x(k) and

P(k) and the gain K(k) are optimal. On the other hand, we can

employ the filter under Condition H1 to generate the estimates

xl(k) and Pl(k), k>q and we can employ the filter of Table 4

to generate the estimates ax(k) and AP(k). The two approaches

are equivalent. That is, (this is shown in Appendices C and D),

x(k) = x(k) + A(28)

P(k) = Pl(k) + AP(k) (29)

For such a case the optimal estimate of x(k) is obtained

by summing the two estimates x 1 (k) and Ax(k). The gains

are related by the expression (this is shown in Appendix A).

K(k) = Kl(k) + AK(k) [I -'H'(k)Kl(k)] (30)

one can show that

E{A e(k) eiT (k)} = 0, k> q, i = 1,2 (31)

where, for k> q,

el(k) - xi(k) - xi(k), i=1,2 (32)

Ae(k) - Ax(k) - Ax(k) (33)

ii
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Note that

e (k) e e(k), x (k) =x(k) and

e(k) e e 2 (k) + Ae(k), k > q (34)

4 wherea

e(k) =x(k) - x(k) (35)

4 From (28) we note that

x(k) = x 2 (k) + Ax (k) -x (k) , k > q (36)

which shows that the optimal estimate x(k) is as close to

the ideal estimate x (k) (i.e., jump is known) as the optimal

estimate Ax(k) is to Ax(k).

It is shown in Appendix B that the Predicted Measurement

Residual covariances are related by the expression

V(k) (k) R-1k AV(k) R-1 (k) V (k)

11



ii 4. TRANSFORMATION OF A -STATE: CONSTANT k -STATEj

Define the nxn matrix 1p(k), all k, as

(0) (37)

*,(k) =A0 (k,k-1) *~(k-1), k> 0 (38)

The matrix *p(k) is positive definite for all k; it has inverse

W (k). The &-state equation (19) can be rewritten asj

Ax (k) =,(k) *(k- 1) Ax (k-1) , k > q (39)

we define a new A-state variable Ay as

Ax (k) = J) (k) Ay W), k > q (40)

This transformation of the A-state from Ax to Ay results

in the constant state equation:

Ay(k) = y(k-1) k> q (41)

The A-measurement matrix AH(k) in (22) car. Iic rer44fined as

AH (k) = H (k) V1 (k) (42)

so that the Equation(21) in terms of the new A-state Ay becomes

Az(k) =AH(k) Ay(k) +Av (k) (43)

20



Equations (41) and(43) define the linear A-system for the

state &y. Equation (40) gives the transformation back to

the Ax state.

For the case that the process noise Q(k) = 0, for all

k, we can take *lk) to be defined by

P 1 (0)

(k}= Pl(k) 0T ( o,k)

21



5. DETECTION AND ESTIMATION OF JUMP USING THE GLR APPROACH:
ALGORITHM I

From (41) we see that Ay(k) takes on only the values of zero

and Ay(q) where

Ay(q) =  (q A xq (44)

It is zero before the jump and &y(q) after the jump. The

residual to be minimized after the jump is

AV (k) =A z(k) - AH(k) AY (45)

which has covariance AR(k) as defined by (25). Here, we use

Ay to denote the unknown constant. For each.k, we desire

to obtain the estimates q(k) and Ay (q(k),k) that render

a minimum to the function

J~, Y~) q T -1 [Az(i)]
J (q, A y; k) Z I Az (i) IT[ AR (i} -) A i

i=1

k T . 1
+ Z [ z(i) - AH (i) AyI [AR(i)]-[ z(i) - AH(i) Ay] (46)

i=q+l

or, equivalently, a maximum to the function
k T-

jdq, Ay;k) = Z [ Rz(i)] [R(i)] [Az(i)] - J(q, Ay;k) (47)
i=1

This latter fucntion is the logarithm of the generalized

likelihood ratio (GLR), [5]. Note that the argument q appears

only in the limits of the sum in (46). In the approach of

[5] the jump time appears in the terms of the sum as well

as in the limits of the sum. For each possible jump time

q the optimum value y (q,k) satisfies
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C(q; k) Ay(q,k) - d(q;k) (48)

where
k T -1

C(q;k) Z [A H(i) [AR(i)] [AH(i)] (49)
i=q+l

k kT -1
d(q;k) = [AH(i)] [AR(i)] [Az(i)] (50)

i-q+l

In view of the solution (48), the log likelihood ratio (47)

simplifies to
A

£(q, Ay(q,k);k) = Ay (q,k) C(q;k) Ay(q,k) = dT(q;k)Ay(q,k) (51)

or, equivalently,
ATt(q, Ay(q,k};k) = dT (q;kC C-1 (q;k q;k (52)

The maximum likelihood estimate of the jump time is

A A

q(k) = arg max Z(q, Ay(q,k);k) (53)
q

and the maximum likelihood estimate of the jump magnitude

is

A A-1A

&y q(k),k) = C (q(k);k) d(q(k);k) (54)

A jump is detected at time k if a threshold is exceeded,

[51:

A1 A A

( q, Ay(q(k),k)) > 2 in (I) (55)

where the value n is chosen to provide a reasonable tradeoff

between false and missed alarms.
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A difference between our approach and that of [5] is

that the failure signature matrix G(j;e) depends on the jump

time and our corresponding matrix eH(j) does not.* As a result

of this advantage the computation of updating several sequences

of matrices is avoided. For the purpose of estimating the

jump time and the jump magnitude at time k it suffices to

have the following matrices in storage:

C(Oi), i = 1,2 ... , k

d(Oi), i = 1,2, ... ,k

The matrices C(0;k) and d(0,k) are computed recursively

C(0,k) = C(0;k-l) + -HT(k) &R(k)-1  (k) (56)

d( (hk) = d (0,;k-1) + A HT (k)) AR(k) -  Az(k) (57)

The matrices C(q;k) and d(q;k) are obtained by subtraction

C(q;k) = C(0,k) - C(0;q), Q< q <k (58)

d(q;k) =d(,k)- d (0;q), O< q <k (59)

It is unnecessary to evaluate (52) for all q, 0<q <k. A

simple search procedure can be employed to locate the maximizing
A A

q(k) of (53)1 After obtaining Ay we use (40) to estimate

& x(k) - (k) &y (60)

*This is discussed in the next section.
tin the search procedure one may~use the Gaussian elimination
method to compute the solution Ay(q,k) of (48) at some ocq<k.
Therefore, the log likelihood ratio (51) may be evaluated
without inverting Q(q;k). This matrix need only be inverted
at the maximizing q,(kl, provided (55) is satisfied, to obtain
the covariance of Ay(q(k),k).
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Its covariance is given by

AP(k) = E{A& e(k)A e(k)T -1)C (q()k ()(1

A 1)C (~)k 4 T()(1

where ae(k) = &x(k) - &x(k). The covariance of the estimate

Ay is given by

I{ A e 1(k) Ae I(k) (q(k);k) (62)

where Ae 1 (k) = &y(k) - &y (q(k),k). This covariance is based

on the assmption that the a priori covariance for Ay 4t time

q(k) is infinite, (16, p. 206]. The estimates given by (60)

and (61) *are used as starting values in the A-filter. Eqs. (28) and

(29) are used to reinitialize the f ilter of H1f or the case of multiple juni~s.

If the a pr ior i covariance f or &~x(q) is not inf inite

but is given by AP(qJ with inverse AP1 (q) the a priori

covariance AP 1 (q) for Ay(q) has inverse

AP 1 (q) = 41 (q) AP- 1 (q) *j(q) (3

if Ax(q) is the mean of Ax(q),the mean of &y(q) is

Ay(q) -* (q) Ax(q) (64)

With the modifications

C* (q;k) = C(q;k) + &P 1 (q) (65)

d* (q;k) - d(q;k) + &P 1  (q) &y (q) (66)

The method of solution is as outlined above.

25



If we know that the jump is caused by a lower dimensional

vector such as &uq where

AXq = D A (67)

q Uq

we proceed as follows. From (44) and (67) we have

Ay(q) = (q) D U (68)

we define

C(q;k) = DT -T (q) C(q;k)* -l(q)D (69)

d(q;k) = DT * -T(q) d (q;k) (70)

and use the method of solution as described above.

The GLR technique described in 19] requires the implementation

of a Kalman-Bucy A-filter (employing the computational savings

techniques discussed thereir4 for each observation time in

the past. Several matrices have to be stored and updated

for each observation time in the past. The attractive feature

of that technique is that it requires neither the inverse

of C(q;k).nor the-solution to (48). Instead it requires at most

the inverse of a matrix having the dimensions of the largest

correlation block of the measurement noise covariance matrix;

sequential updating of the components .of the measurement vector -

is used. No matrix inversion is required by the Kalman-Bucy filter

for uncorrelated measurement noise. We use the sequentially updated

Kalman filtering technique together with the decomposition of the

maneuver signature matrix to develop our algorithm II in Section 7.

26



6. COMPARISON WITH PREVIOUS GLR TECHNIQUES

The a posteriori jump formulation is used in (4) and (5).

It has the following relationship with the a priori jump formulation.

Define:

p = q+ (71)

Axp = 0(q+lq) AXq (72)

Equation (4) can be rewritten as:

x(k+l) = 0(k+l,k) x(k) + AXp 6p,k+l +r(k) w(k) (73)

where p is the jump time and AXp is the jump magnitude. The

effect of the jump appears in the state x(p) and in the measurement

z(p) at the jump time; that isit occurs right before the measurement

z(p). This formulation is used in [3] - [9]. Therein, the

effect of the jump on the innovations is analyzed. The general

form is given by, [3] and [5],

Yl(k) = G(k;p) AXp + Ti(k) (74)

I -
where Yl(k) and Y1(k) are the predicted measurement residuals

under Conditions Hi and H1 , respectively. The matrix G(k;p)

is called the failure signature matrix+and it is computed by

the following recursive algorithm, [5] and [6]. At each observation

time k the following matrices, having been computed previously

at time k-l, are held in storage:

Ii *Herein, we refer to it as the maneuver signature matrix.
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G(k-i:), k-i-K <j <k-1 (75)

F(k-i;j) , k-i-K <j <k-1 (76)

where it is assumed that a sliding window of length M is being

used to detect and estimate the jump. For each k the matrix

G(k;k) satisfies

G(k;k) = H(k), all k (77)

The following matrices are computed at the time k:

0(k;j) = 0(k~k-i) O(k-I,j), k-M<jck (78)

G(k;j) =H(k)[O(k,j) - S(k;j)], k-M<jck (79)

S(k;j) = o(k,k-l)F(k-l;j), k-Mj<k (80)

F(k;k) =Kl(k) H(k) (81)

F(k;j) = Kl(k) G(k;j) + S(k;j), k-M<jck (82)

The following matrices have also been computed and stored at

the previous observation time k-i:

Cw (k-11 j), k-K<j<k-l (83)

dw (k-i;j), k-Mcj<k-1 (84)
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At the new observation time k they are updated using the equations

Cw (k;k) - HT(k) Vlf1 (k) H(k) (85)

dw (k;k) = HT(k) Vl71 (k) 71 (k) (86)

Cw (k;j) = GT(k;j) Vf 2k) G(k;j) + Cw(k-l;j), k-M<j<k (87)

dw(kj) -GT(k;j) Vlf1 (k) Yl(k) + dw(k-1;j), k-M<j<k (88)

The log-likelihood ratio to be maximized, [5] and [6], is

iw(k;j) - dwT (k;j) Cw-1 (k;j) dw(k;j), k-M~jck (89)

which is evaluated at past observation times j in order to determine

its maximum value and compare it to a set threshold for jump

detection.

In our approach Eq. (74) is given by

Yl(k) =H(k) O(k,k-l) &x(k-1) + Yl(k) (90)

since

Yl(k) =z(k) - H(k) O(k,k-l) x1 (k-l) (91)

2(k z(k) - H(k) O(k,k-1) x2(k-1) (92)

=lk Y2(k) (93)

From Eqs. (18) and (19) we have

-*Ax (k-1) - AO (k-l,p) Ax (p) (94)

&x(p) - [I-Kl(p) H(p)]&xp (95)
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Comparing (74) and (90) we see that

G(k;p) &xp = H(k) 0(k,k-1) 60(k-1,p) [IIKl(p)H(p)),'xp (96)

Using (38) we rewrite (96) as

4G(k;p) Axp = H(k) 0(k,k-1) 4j(k-1) *ri(p) [I-Kl(p) Hp]x

(97)

Consequently,-in our approach G(k;p) &xp is decomposed as

G(k;p) Axp = Gl(k) G2 (p) Axp (98)

where

Gi(k) = H(k) §(k,k-1) *(k-1) (99)

G2 (p) = *p1 (p) [I-Kljp) H(p)] (100)

Using (18), (71), and (72) we have

G2 (p) Axp = *-l(q) Axq (101)

Using (44), Eq. (101) becomes

G2 (p) Axp = AY(q)

Consequently, Eq. (98) can be written as

G(k;p) Axp =Gl(k) &y(p-1) (102)
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The decomposition given in Eq. (102) results in the matrix

Gl(k) which does not depend on the jump time and in the vector

Ay(p-l) which satisfies the constant state equation (41).

The Lomputational burden of the GLR technique of [5] and [6]

is directly related to the dependency of G(k;p) on the jump

time. Because of this dependency the matrix G(k;j) must be

computed and stored for each candidate jump time j in the

past. This requires at each new time k the computation and

storage of the matrices given in (75) - (88) for all j in

a sliding window k-M<jd5 of candidate jump times.

In our approach we are actually using AH(k) as given in

(42) rather than Gj(k) as given by (99). This is because

we are using the a posteriori measurement residuals Az(k)

given in (20) rather than the a priori measurement residuals

Yl(k) given in (91). That is, &H(k) is the resulting decomposition

matrix for the a posteriori measurement residual approach.

An analysis of the GLR algorithm requirements for storage

and multiplications per storage update is given in Table 5

for the approach of [5] and [61 and in Table 6 for our approach.*

Let the storage requirements be denoted by Msw for that of

[5] and [6] and by Ms for our approach. The storage requirements

are

*The measurement matrix R(k) is assumed to be diagonal and

all elements of the matrices H(k) and O(k,k-l) are multiplied
in matrix products.
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TABLE 5

WILLSKY AND JONES' GLR ALGORITHM REQUIREMENTS:

STORAGE AND MULTIPLICATIONS PER STORAGE UPDATE

k = CURRENT OBSERVATION TIME

n = DIMENSION OF STATE VECTOR x

m = DIMENSION OF MEASUREMENT VECTOR z

M = LENGTH OF SLIDING WINDOW

I. STORAGE REQUIREMENTS

MATRICES DIMENSION STORAGE REQUIREMENTS

1. {G(k;j):k-M<j<k} mxn (M-1)nm

2. {F(k;j):.k-M<j k} nxn Mn2

3. {Cw(k; j ) "k-M<jk} nx(n+l) Mn(n+l){k2 2

4. {dw(k;j):k-M<j<k} nxl Mn

5. {$(k;j):k-M<j<k} nxn (M-1)n 2

TOTAL STORAGE = (M-1)Mlw + M2w wher

5n 2  3n
MIw = 2 + nm

M2w = 32 +~
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Table 5 (continued)

II. MULTIPLICATIONS NEEDED TO UPDATE STORED MATRICES

NUMBER OF

EQUATIONS MULTIPLICATIONS

1. Eqs. (79) and (80) for G(k;j), k-M<j<k (M-I) [n3 + n2m]

2. Eqs. (81) and (82) for F(k;j); k-m<j<k M[n 2m]
n (n+l)m +n 2

3. Eqs. (85) and (87) for Cw(k,j), k-m<j<k M [ + nm2

4. Eqs. (86) and (88) for dw(k,j), k-M<j_<k M[nm + m2 ]

5. Eq. (78) for 0(k,j), k-M<j<k (M-l) [n3]

TOTAL MULTIPLICATIONS = (M-2) Nlw + N2w where

NIw = [2n 3 + n 2m + nm 2 + - nm + m2 ]2 2

N2w = [2n 3 + 4n2m + 2nm 2 +3nm + 2m2 ]
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TABLE 6

NEW GLR ALGORITHM I REQUIREMENTS

STORAGE AND MULTIPLICATIONS PER STORAGE UPDATE

k = CURRENT OBSERVATION TIME

n= DIMENSION OF STATE VECTOR x

mn = DIMENSION OF MEASUREMENT VECTOR z

M = LENGTH OF SLIDING WINDOW

I. STORAGE REQUIREMENTS

MATRICES DIMENSION STORAGE REQUIREMENTS

1. *k nxn n

2. AH(k) mxn rim

3. Az(k) mxl in

m (m+i)
4. AR(k)-l inxm 2

5. {C (O;j) :k-M<j <k} nxn2

6. {d (.0;j) :k-M<j <k I nxl Mn

TOTAL STORAGE = (M-i) Ml + M2 where

n2 3n
Ml = +r

3n~2  M2 3nf:+3
M2 -2- + rim. + -i- +2 +
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Table 6 (continued)

II. MULTIPLICATIONS NEEDED TO UPDATE STORED MATRICES

NUMBER OF

EQUAT IONS MULTIPLICATIONS*

1. Eq. (38) for 0k),(n3

2.E.(4)frAHk 1
2. Eq. (20) for AH(k) nm

4. Eq. (25) for AR(k)- 3 2

5. Eq. (56) for C(0;k) n2m +rim 2 + 2m
2 +

6. Eq. (57) for d(0~k) nm + m

TOTAL MULTIPLICATIONS (M-2)Ni + N2 where

N1 = 0

N2 = [n3 +3n 2m + nm2 + 5nm + T2 +
2 2 2 2

*For the case that the process noise is zero it is not necessary
to compute 4,(k) unless a jump is Tdetected. It suffices to compute
AHWk where AHWk = H(k) P Wk 0T(O,k). This product is performqd
with at most 2n2m muitipli~ations which replaces the sum n3 + nm
.;,f*&jump;,i6'detectea werieed VIM) for computing ftxk)fo
Ay(k).
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Msw = (M-1) MIw + M2w

where
5n2 3

Mlw =  + nm +  (103)

3n2  3n2w = -2- + - (104)

and are

Ms = (M-1) M1 + M2  (105)

where
n2  + (106)

3n2  m2  3n 3mM + nm+ 7- + 2 (107)

Consider the differences

AM1 = Mlw - M1 = 2n
2 + nm (108)

__m 3m

AM 2 = M2w - M2 = -m 2 2 (109)

Define

AMs = Msw - Ms (110)

as the difference in storage requirements. The dimension

m of the measurement vector is usually much less than the

dimension n of the state vector. For sliding windows with

M >1 we have the inequality
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I 2!
b s>(M-2) (n 2 + nm)(1)

Let the number of multiplications be denoted by Nw for

I the approach of [5] and 16] and by N for our approach.

The number of multiplications needed to update the stored

matrices are

Nw - (M-2) Nlw + N2w (112)

- where

Nlw 2n 3 + m +nm2 + nm + m2 (113)

N2w = 2n3 + 4n2m + 2nm 2 + 3nm + 2m2  (114)

and

N = (M-2) Ni + N2 (115)

where

N1 = 0 (116)

3N2 = n + 2m + nm2 + T +  +2  (117)12 2 2 2

1 Eq. (116) shows that our GLR algorithm requires no multiplications

to update stored matrices at past observation times j,

j<k.
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Consider the differences

AN1 = Nlw -N1 = Nw (118)

AN 2 = N2w - N2

= n3 + 5n2m +nm2 + nm m? m2 2 2 2 (119)

Define

AN = Nw - N (120)

as the difference in the number of multiplications.

For sliding windows with M>2 we have the inequality

AN >(M-2) (n3 + 2n2m) (121)

The inequality (111) demonstrates the savings in

storage provided by our GLR technique. The inequality

(121) demonstrates the savings in multiplications. These

savings are a direct result of the decomposition discussed

above and given in Eq. (102) for the a priori measurement

residual approach and given by

H(k) *(k) Ay(q) (122)

for the a posteriori measurement residual approach.
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Both of the above GLR techniques require the inverse of

1an nxn matrix in order to evaluate the log-likelihood ratio

(52) or (89). Since our approach requires no updating

1of matrices at past observation times it suggests using

an innovations based scheme to determine the current observation

times k at which one should look for a jump in the past.

- If the innovations appear to be "normal" no jump in the

past is to be searched for by evaluating (52); consequently,

no inverse is taken. It is when the innovations appear

to be less than "normal" that a search is to be made for

the optimizing jump time q of (52). We now discuss the

GLR technique of [8] and [9] which requires no inverse

of an nxn matrix. We treat the impuise input version of [8] and

[9] rather than the step input case; see Appendix E.

The GLR technique [9] requires a Kalman-Bucy A-filter

for each observation time j, k-M<j<k where k is the current

time and M is the length of the sliding window. In our notation

and for the jump system (73) and (5) that algorithm utilizes

the maneuver signature matrix G(k,j) in the form

G(k,j) = H(k) 0(k,k-l) Aj(k-l), k-M<j<k (123)

where Aj(k) is given by

Aj(j) = [I- Kl(j) H(j)] (124)

+It suffices to solve (48) for Ay(q,k). The inverse C-l(q;k)

needs only to be computed at the maximizing argument of (53)

when (55) is satisfied. Since jumps are infrequent (55) will

1 be satisfied only infrequently. Consequently, inverses

are seldom required.



We make thfi definitions

AHk(k) = H(k) (126)

tAHj (k) = H(k) 0(k,k-1) Aj (k-i), j<k (127)

At each observation time k the following matrices, having

been computed previously at time k-1, are held in storage:

Aj(k-1), k-l-M<j<k-1 (128)

Avj (k-i) , k-l-M<j~k-1 (129)

&Pj (k-i), k-1-M<j5,k-1 (130)

dj (k-I1) , k- I-M<j:Sk- 1 (131)

where it is assumed that a sliding window of length M is being

used to detect and estimated the jump. At the current time k

the following matrices are computed:

Ak(k) = [I - Kl(k) H(k) (132)

Aj Wk = At (k, k-1) Aj (k-1) , k-M <j <k (133)

AHj(k) = H(k) O(k,k-1) Aj(k-l), k-M<j<k (134)

AVj(k) - AHj(k) APj(k-1) AHjT(k) + Vl(k), k-M<jsk (135)

AKj(k) = APj(k-1) AHjT(k) AVj-l(k), k-14cJsk (136)
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A vj(k) - vj(k-1) + AKj(k) [Yi(k) -AHj(k) Avj(k-1)J,

1k-M<jlk (137)

1APj(k) =[I - AKj(k) AHj(k)) APj(k-1), k-M-jl5k (138)

dj(k) =dj(k-1) + AHljT(k) Vf-1 (k) yl(k), k-Mj.k (139)

j (k) d -'(k)Avj(k), k-M<j~k (140)

where

dk (k-1) =0 all k (141)

tvk (k-1) = 0 all k (142)

APk 1 l(k-1) = 0 all k (143)~

The above equations constitute a Kalman-Bucy &-filter

for each candidate jump time j in the window k-M~jjk. The

estimate Avj(k) is the optimal estimate at time k of Axp when

the jump time p coincides with the candidate jump time j.

If the jump threshold is exceeded at the maximizing j = p

1 of (140) the optimal estimate of x(k) is given by, [9],

x(k) = xl(k) + A^(k) Av^,(k) (144)

and its covariance by

'IP(k) =P1(k) + A^(k) APp^(k) A-T(k) (145)

+The initial covariance,&Pk(kl1) is defined as the identity

matrix I times a very large number.I 41



The sequentially updated Kalman filtering technique, [10]

and [lJ, is used in [8] and [9] to avoid the matrix inverses

in (136) and (139) for the case when some of or all the components of

the measurement vector are uncorrelated. Note that the maximizing

jump time j is easily obtained from (140), requiring only

Mn multiplications.

An analysis of the GLR algorithm requirements for storage

and multiplications per storage update is given in Table 7

for the approach of [8] and [9]. Let the storage requirements

be denoted by Msc. The storage requirements are

Msc = (M-1)Mlc + M2c (146)

where

M nc = 2 +5n (147)

3n2  5n
M2c = + 2nm + m2 + - (148)

The differences in storage requirements between the above

approach and our approach are:

AMic = Mlc -.M1 = n2 + n (149)

,&M2c = M2c M1 = nm + E- + n 3m (150)
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Define

AMsc = Msc -Ms (151)

as the difference in storage requirements for the two approaches.

For sliding windows with M>1 we have the inequality

&Msc > (M-l) [n2 + n] (152)

Let the number of multiplications be denoted by Nc for

the approach of [9]. The number of multiplications needed

to update the stored matrices are

Nc (M-2) Nlc+ N2c (153)

Where

Nlc = n3 + 5 n2m + n2 + 4nm + n+m (154)

N2c = n3 + 9n 2m + 2n2 + 8nm + 2n + 2m (155)

Define

AN2c = N2c - N2  (156)

We have the inequality

AN2c > 6 n2m + 2n2 + 3nm (157)
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It is not fair to make a direct comparison between

Nlc and N1 since the approach of [9] provides the estimate

Avj(k) for each j in the sliding window and ours does not.

* In order to make a fair comparison we must add in the number

of multiplications needed to solve (48) for Ay(q,k). Since

C(q;k) is a symmetric matrix, the Cholesky method, [18],

4 may be employed to solve (48); the number of multiplications

required are

_ 3 3n 2  nN3 -= +- T + (158)

Since we employ a search procedure to maximize (53)

it is not necessary to solve (48) at each q in the sliding

window. Let us assume at the very worst that we will need

to evaluate (51) at M-2 observation times in the sliding

window; that is, we need not solve (48) at two points. Define

ANIc = N lc - N 3  (159)

We have the inequality

ANlc . n3 + 4n2  (160)

Define

ANc = (M-2 )A Nlc + A N2c (161)
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For sliding windows with M>2 we have the inequality

Sn 3

ANc >(M-2) I-n-- + 4n2 ]  (162)

The inequalities (152) and (162) demonstrate the savings

in storage and in multiplications provided by our GLR technique

as compared to that in [9].
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TABLE 7

CHANG AND DUNN'S GLR ALGORITHM REQUIREMENTS:*

STORAGE AND MULTIPLICATIONS PER STORAGE UPDATE

k = CURRENT OBSERVATION TIME

n = DIMENSION OF STATE VECTOR x

m = DIMENSION OF MEASURMENT VECTOR z

M = LENGTH OF SLIDING WINDOW

I. STORAGE REQUIREMENTS

MATRICES DIMENSION STORAGE REQUIREMENTS

1. {Aj(k) : k-M<j<k} nxn Mn 2

A

2. {Avj (k) : k-M<j<k} nxl Mn

3. {APj(k): k-M<j_<k} nxn Mn ( n + l )2

4. {dj (k): k-M <j<.k nxl Mn

5. AHj(k) - DUMMY MATRIX mxn nm

6. AVj(k) - DUMMY MATRIX mxm m2

7. AKj(k) - DUMMY MATRIX nxm nm

TOTAL STORAGE = (M-1) Mic + M2c where

M1 3n2  I-5n
Mic 2

3n2 5
M2c = - + 2nm + m 2 + 5n

2 +2

*Impulse input case.
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1 TABLE 7 (continued)

II. MULTIPLICATIONS TO UPDATE STORED MATRICES

EQUAT IONS NUMBER OF MULTIPLICATIONS*

1. Eqs. (132) and (133) for Aj(k), (M-1) n3 + n2m

k-Mcj <k

2. Eq. (137) for Avj(k), k-M<j<k M2nm

3. Eq. (138) forAPj(k), k-M<j<k M2n2m

4. Eq. (139) for dj(k)I k-M<j.:k M[nm + ml

5. Eq. (134) for AHj(k), k-Mcj<k (M-1)2n2m

6. Eq. (135) for AVj(k), k-M<j<k M[n2m + nml

7. Eq. (136) for AKj(k), k-M<j<k M[n 2 + n)

TOTAL MULTIPLICATIONS = (M-2) Nic + N2c where

Nic = n3 + 5n2m + n2 + 4nm + n+m

N2c = n3 + 9n2m + 2n2 + 8nm + 2n + 2m

*The sequentially updated Kalman filtering tec'iniqua, [101 and

[11], is used.
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7. BANK OF A-FILTERS USING DECOMPOSITION OF THE MANEUVER

SIGNATURE MATRIX: ALGORITHM II

The GLR technique [9] which uses the maneuver signature

matrix defined by (123) - (125) requires the computation and

storage of the matrix Aj(k) for each observation time j in

the past. From Table 7 we see that this requires the following

number of multiplications:

N = (M-1) n 3 + n2m (163)a

for sliding windows of length M. From Table 7 we note that

this matrix is the only one which requires multiplications

proportional to the third power of n. It follows that Na

is proportional to n4 when M>n.

The dependence of Na on M can be removed by using our

decomposition (42) or (122) of the maneuver signature matrix.

We develop this idea next.

Consider the employment of a bank of Kalman-Bucy constant

A-state filters for a moving window of length M. That is,

at each j, k-M~j<k, we employ the constant A-state filter

defined by (41) - (43). The filtering equations are given

in Table 8. The GLR algorithm is as follows.
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TABLE 8

FILTERING EQUATIONS FOR THE CONSTANT A-STATE SYSTEM

(j = CANDIDATE JUMP TIME)

A A

AY (k+l k) = AYj(k), k>:-1 (i)

A Pj(k+llk) =APj(k), k>j-(

7(k) = Az(k) - AH(k) &yj(klk-1), k>j(i i

jT

AVj(k) =AH(k) APj(kik-1) AHT(k) +AR(k), k>j (iv)

A Kj Wk =APj (klk-l)AHT(k) AVj-(k) , k.? (v)

A A

A yj(k) = Ayj(kjk-1) +A Kj(k) AYj (k), k>j (vi)

AP(k) = [I -AK(k) AH(k)] APj(klk-l), k>j (vii)

where k = current observation time and

j H(k) = H(k) ' (k), all k (viii)

A R(k) = R(k) V1- 1 (k) R(k), all k (ix)

1 Az(k) = z(k) - H(k) x 1 (k), all k (x)

APj(j-1) = c I, c a very large number (xi)

A Yjy(j-1) = 0 (xii)

I 'f (0) = I (xiii)

I y (k) = A0 (k,k-l) y (k-1), k> 0 (xiv)

A I0 (k,k-i) [ [I - KI(k) H(k)] (k,k-l), k> 0 (xv)
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At each observation time k the following matrices, having

-been computed previously at time k-l,are held in storage:

'(k-1) (164)

ayj(k-1), k-l-M<j<k-1 (165)

APj (k-i), k-l-M<j<k-1 (166)

dj (k-i), k-l-M<j_<k-l (167)

At the current time k the following matrices are computed:

T (k) = 0 (k,k-1) T (k-i) (168)

AH(k) = H(k) '(k) (169)

AVj(k) = H(k) &Pj(kIk-1) A HT(k) + hR(k), k-M<j<_k (170)

AKs(k) APj(k k-1) AHT(k) AVj-(k), k-M<j<k (171)

AYj(k) =Ayj(k Tk-l) +AKj(k) Yj(k), k-M.<j<k (172)

APj(k) = [I-AKj(k) AH(k)J APj(k-1), k-M<j<k (173)

-1
dj(k) = dj(k-1) + AHT(k) AR (k) Az(k),k-M<jik (174)

L (k) = djT(k) Ayj(k), k-M<j<k (175)

AYk(k-i) =0 (176)

APk(k-1) = c I, c a very large number (177a)

dk(k-1) = 0 (177b)
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The estimate Ayj(k) is the optimal estimate at time k

ofr-l(q)Axq when the candidate jump time j coincides with

the observation time q+l. Note that the filter for Ayj is

initiated by assuming that the a posteriori jump AXq occurs

at time j-1. If the maximizing j of (175) satisfies (55)

the optimal estimate ax(k) is computed as

Ax(k) = '(k)Ay (k) (178)

and its covariance as

&P(k) =  If(k) AP (k) TT(k) (179)

An analysis of the above GLR algorithm requirements for

storage and multiplications per storage update is given in

Table 9. The analysis assumes the sequentially updated Kalman

filtering technique, [i0] and 111], is used. Let the storage

requirements be denoted by Md. The storage requirements are

Md (M-1) Mld + M2d (180)

where

Sld n2 + 5n (181)

M2d n- + 2nm + m2 + I n. d- (182)
2 2

I
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TABLE 9

REQUIREMENTS OF NEW GLR ALGORITHM II -BANK OF CONSTANT A-STATE

FILTERS USING DECOMPOSITION OF MANEUVER SIGNATURE MATRIX:

STORAGE AND MULTIPLICATIONS PER STORAGE UPDATE

k = CURRENT OBSERVATION TIME

n = DIMENSION OF STATE VECTOR x

m = DIMENSION OF MEASUREMENT VECTOR z

M = LENGTH OF SLIDING WINDOW

I. STORAGE REQUIREMENTS

MATRICES DIMENSION STORAGE REQUIREMENTS

1. y(k) nxn n2

2. {&yj(k)-:k-M<j<k} nil Mn
.n(n4-i)

3. {AP (k): k-M<jzk} nxn 4( 2

4. {d (k): k-M<j<k} nxl Mn

5. AH(k) mxn nm
2

6. AV (k) nu= m

7. AK. (k) nm nm

TOTAL STORAGE (M-l) Mid + M2d where
2

n 2  5n
Mild Y +

n2 2 5n
M2  -- + 2nm+ +

52 I



TABLE 9 (continued)

II. MULTIPLICATIONS TO UPDATE STORED MATRICES

EQATONS NUMBER OF MULTIPLICATIONS*

1. Eq. (168) for 'V(k)n3

I2. Eq. (172) for Ay.(k), k-M<j.<k M 2nm

3. Eq. (173) for AP.i(k) , k-M <j c M 2n2 m

4. Eq. (174) for d.i(k) , k- <j It Mjnm + m]

5. Eq. (169) for AH(k) n2

6. Eq. (170) for AV.(k), k-McjcSk M~n 2m + nm]

7. Eq. (171) for AK.(W, k-M<jc M[n 2 + n]

TOTAL MULTIPLICATIONS = (M-2) Nild + N 2d where

N ,3nm +n 2+ 4nm +n+ m

N 2d n3+ 7n2m +2n 2+ Brnm+2n +2m

*The sequentially updated Kalman filtering technique is used.
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Note the differences

Mlc - Mld = n
2  (183)

M2c - M2d = n2 (184)

Therefore, the decomposition (42) or (122) provides a savings

in storage of (M-l)n2 .

Let the number of multiplications be denoted by Nd for

the new GLR algorithm composed of a bank of constant A-state

filters using the decomposition of the maneuver signature

matrix. The number of multiplications needed to update the

stored matrices are

Nd = (M-2) Nld + N2d (185)

where

Nld = 3n2m + n2 + 4nm + n + m (186)

N2d = n3 + 7n2m + 2n2 + 8nm + 2n'+ 2m (187)

where we have assumed that all elements of the measurement

vector are uncorrelated and the sequentially updated Kalman

filtering technique is used.

54



I

Note that Nld is not a function of the third power of

I n and that

SNlc -Nld =n 3 + 2n2 m (188)

N2c - N2d 2n2m (189)

1Consequently, the decomposition provides a savings of
(M-2) [n3 + 2n2m] + 2n2m (190)

for the approach of using a bank of constant A-state filters.

Additional savings in multiplications are realized if

the process noise Q(k) = 0, for all k, and if Y(k) is defined by

-(k) = Pl(k) OT(O,k) (191)

Note that '(k) appears only in the defintion of AH(k), Eq.

(169), in the equations of the constant A-state filter. It

. suffices, therefore, to compute AH(k) without computing T(k):

AH(k) = H(k) Pl(k) OT(0,k) (192)

The number of multiplications is, in general,

I 2n2m (193)
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If O(k,o) is triangular that number is

n(3n+l)m (194)
2

* IIn the above we are assuming that no additional multiplications

are needed to compute 0( Ok). The matrix f(k) is only needed

in (178) to obtain Ax(k) when a jump has been detected. Since

jumps occur infrequently, the matrix '(k) needs computed infrequently

for thecaseof no process noise. Consequently, for the case

of no process noise, the highest power of n appearing in Table

9 is two. The total number of multiplications required is

at most

5Mn 2m + 2n2m (195)

In this noiseless case the matrix T(k) does not need to be stored

2which results in an additional storage savings of n
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18. THE A-STATE FORMULATION FOR A PRIORI JUMPS

Define the fr-state Ax(k,k-1) as

- x(k,k-l) -x2(k,k-l) - xl(k,k-1), lop (1.96)

This random variable satisfies

&x(k,k-1) *(k,k-l) Ax(k-1), k>p (197)

and, in particular

A x(p, p-l1) = A xp 0(q+1, q) A xq (198)

Using (18) and (19) we see that the state equation for Ax(k,k-1)

is given by

Ax(k+l,k) = A~ (k4-1,k) Ax(k,k-1), lop (199)

with initial condition (198) where

&Ow(k+l,k) =O(k+1,k) LI - Kl(k) HWk) (200)

The measurement equation for Ax(k,k-1) satisfies

Yl(k) = H(k) Ax(k,k-1) + Yl(k), lop (201)

since

Yl(k) - Y2(k), all k (202)
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The sequence Yi(k) is Gaussian white noise, L17], with zero

mean and covariance

E {yl(k) YT(j)} Vl(k) 6 kj all k (203)

Note that

Ax(k) = [I - K 1 (k) H(k)] Ax(k,k-1) (204)

Consequently, if we have the optimal estimate Ax(k,k-ltk)

the optimal estimate Ax(k) = Ax(klk) is given by

Ax(k) [ I - I(1(k) 11(k)] Ax(k,k-llk) (205)

Define the nxn matrix T'w(k) as

If w( 1 ) 1 (206)

Yw(k) =A40w(k,k-1) Tiw(k-l) , k>1 (207)

The matrix 'Vw(k) is positive definite for all k; it has inverse

lfw l~).We define a new constant A-state variable Ay(k,k-1)

as

Ax(k,k-1) = 'Pw(k) Ay (k,kt-l) (208)

It satisfies the constant A-state equation.

Ay(k+1,k) =Ay(k,k-1), Ic~p (209)
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Its measurement equation is given by

l(k) AHw(k) Ay(k,k-1) + l(k) (210)

where

AHw(k) =AH(k) w(k) (211)

Comparing (201) with (74) we find that the maneuver

signature matrix G(k;p) satisfies

G(k;p) Axp = H(k) Tw(k) Tw-l(p) Axp (212)

or, equivently,

G(k;p) Axp = Gl(k) G2 (k) Ax (213)

where

Gl(k) = H(k) 'w(k) (214)

G2 (P) = T w- (P) (215)

Note that

G2(P) Ax = Ay(p,p-l) (216)
p

Consequently, Eq. (213) may be written as

G(k;p) Ax = AHw(k) Ay(k,k-1) (217)
p
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Equations (214) and (215) constitute a decomposition of the

maneuver signature matrix into a matrix Gl(k) which does not

depend on the jump time p and a matrix G2(P) which does.

The product of the matrix G2(P) with Axp is a constant as

shown by Eq. (216).

For the case that the process noise Q(k) = 0 for all

k, we can take Vw(k) to be defined by

Yw(k) = Pl(klk-l) tT(,O,k), k>0 (218)

We rewrite (210) in the form

Azw(k) = AHw(k) Ay(k,k-1) + Au(k) (219)

where

AZw(k) = Yl(k) (220)

E {Au(k) AuT(j)} = ARw(k) 6kj (221)

ARw(k) = Vl(k) (222)

The filters of the two formualtions (the a posteriori and

the a priori) differ only in the defintion of the inputs

At , Y, Az and AR. Both formulations are equivalent and

their corresponding A-filters provide optimal estimates that

satisfy the identify (205). The optimal estimate Ax(k,k-1)

is obtained from Ay(k,k-1) by using (208).
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9. NORMALIZED A-MEASUREMENT NOISE COVARIANCE

The A-measurement noise covariance matrix AR(k) (given

by (25) for the a posteriori jump formulation and by (222)

for the a priori jump formation) can be normalized to R(k)

by premultiplying Eq. (21) or Eq. (201) by the normalizing

* matrix. For this purpose we need a matrix square root.

Since Vl(k) is a symmetric positive definite matrix it

may be written in a square root factored form (Kaminski, et. al.

[19]):

V(k) = V ( ik). V T  (k) (223)

where V"  is a lower triangular matrix (zeros above the diagonal).

Square roots are not necessarily unique but a unique square

root may be defined using the Cholesky decomposition. We

assume the Cholesky decomposition is used and denote the square

root of a matrix with the superscript and its transpose

by T. The square root of the inverse of V(k) is denoted by

v- (k).

Premultiplying (21) by the factor R (k)V T(k) R-l(k)

and redefining Az(k), AH(k) and Au(k) as

Az(k) = R (k)V T(k) R-l(k) [z(k) - H(k) xl(k)] (224)
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AH(k) = R (k)vT(k) R-1 (k) [H(k)] (225)

Au(k) = R (k)vhT(k) R-1 (k) [z(k) -H(k) x2 (k)] (226)

we obtain the form (21) where the new Au(k) is a Gaussian

white noise sequence with zero mean and covariance

E {Au(k) AUT(j)} = AR(k) 6kj (227)

where

AR(k) = R(k) (228)

which is the covariance of the measurement noise v(k) of (5).

The normalizing factor for the a priori jump formulation

(201) is

R-Nk) Vl - (k) (229)

The normalization is particularly useful for the case

that R(k) is a constant. If there is no jump, Az(k) is zero

mean with covariance R(k). If there is a jump, Az(k) has

mean AH(k) Ax(k) and covariance R(k). Looking for a jump

may be avoided if the residuals Az(k) appear to be zero mean

with covariance. R(c).
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10. EXTENSION OF APPROACH TO CONTINUOUS LINEAR STOCHASTIC

SYSTEMS

Consider the continuous linear discrete stochastic system

described by the vector (Ito) stochastic differential equation

dx(t) = F(t) x(t) dt + r (t) dw(t), t> 0 (230)

and the vector (Ito) observation equation

dZ(t) = H(t) x(t) dt + du(t), t>0 (231)

where x(t) is the n-vector state, F(t) and r (t) are, respectively,

nxn and nxr nonrandom, continuous matrix time-function, and

(w(t), t>O} is an r-vector Brownian motion (Wiener) process

with

E{dw(t) dw(t)T } = Q(t) dt (232)

The observed process {Z(t), t>0 is an m-vector process, H(t)

is an mxn, nonrandom, continuous matrix time-function, and

{u(t), t>0} is an m-vector Brownian motion (Wiener) process

with

E{du)(t) du(t) T } = R(t) dt (2 3 3)'

where R(t)>O. We assume that the system (230) and (231) is

observable.
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The well-known continuous Kalman-Bucy filter [14,15]

is given by, [16],
A A A

x(t) = F(t) x(t) + K(t) [z(t) - H(t) x(t)], t>O (234)

P(t) = F(t) P(t) + P(t) FT(t) + r(t) Q(t) rTt)

-K(t) H(t) P(t), t> 0 (235)

where

K(t) = P(t) HT(t) R-l(t) (236)

and where the formalized dZ(t)/dt is written as z(t). We

have made the identifications x(t) = x(tlt) and P(t) = P(tit).

A jump in state with magnitude AXq occurs at time q:

x(t+ ) = x(t) + AXq for t = q (237)

Consider the three Conditions H1 , H1 and H2. Let both x(t)

and x2 (t) represent the state for the system described by

(230), (231) and (237). Let xl(t) represent the state for

the case that the jump magnitude AXq is zero (i.e., there

is no jump). Let x1 (t), xj(t) and x2 (t) denote the Kalman-Bucy

filter estimates of the state (i.e., Eqs. (234) - (236)) for

the Conditions HI, H1 and H2, respectively. The relationship

between these estimates are similar to those given in Figure 1

for the discrete system. The gains for the three Conditions

are equal as well as the covariances.
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The estimate x1 (t) can be interpreted as follows. It

is identified with x2(t) up to time q

* xl(t) = X2(t) tcq

At time q+ the amount Axq is subtracted from the filtered

estimate x2(t) and the result is defined as

xl(t) - x2 (t) - tixq, t =q

For t>q the quantity satisfies Eq. (234).

We are interested in the difference between x2(t) and

xj(t) for t>q. We define this difference as

&x(t) = x 2(M - x:j(t) , t> q

It has the initial condition

Ax(t) = txq, t q+

Since both x2(t) and xl(t) satisfy (234), the difference

&x(t) satisfies

d~x(t) [ F(t) - Kl(t) H(t)] AX(t), tqq4  (238)
dt

where we have used the identity

z 2 (t) azl(t) (239)
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Define the nxn nonrandom, continuous matrix time-function

T(t) as the solution to the differential equation

y(t) = [F(t) - K1 (t) H(t)] y(t), all t (240)

y (0) = 1 (241)

The matrix time-function 'y(t) is positive definite and has

j inverse y-l(t). Define the new A-state variable ay(t) as

&x(t) = Ty(t) Ay(t), t>q4  (242)

The substitution of (242) into (238) gives

d X t 0 , t~q+ (243)

We note that Ay(t) is a constant and satisfies

Ay(t) = '1F1(q) AxCq, t>q+ (244)

The measurement equations for Ax and Ay are given by

Az (t) = H (t) Ax (t) + Au (t) , t~q+ (245)

Az(t) - AH(t) A y(t) + Au(t), t>q+ (246)

where

AH(t) = H(t) T(t), all t (247)

Az (t) - z (t) - H (t) x 1 (t) ,al11 t (248)

u 2 (t) -z 2 (t) - H(t) x2(t), all t (249)



, I

Eqs. (247) and (244) constitute the decomposition of the maneuver

: 1 signature matrix. The residual Yl(t) is the measurement noise

for the A-process. It is zero mean and it has the same covariance

as u(t), 117]:

E {Au (t) AuT(s) } = A R(t) 6 (t-s) (250)

where 6(t-s) is the Dirac delta function and

SAR(t) = R(t) (251)

If the jump time q were known and if the initial state

hy(q) were normally distributed with mean Ay(q) and covariance

AP(q) then the Kalman-Bucy filter applied to (243) and (246)

would provide the solution:

Ay(t) = A K(t) [Az(t) - AH(t) Ay(t)] (252)

AP(t) = -AK(t) AH(t) AP(t) (253)

where

A K (t) = A P(t) & HT (t) R- I(t) (254)

A

Using (242) the optimal estimate x(t) of x(t) is

x(t) a x 1 (t) + t(t) Ay(t) (255)

with covariance

P(t) - Pl(t) + (t) A P(t) T (t) (256)
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The jump time q is unknown and, therefore, must be est.imated

along with Ay. For each t>q, we desire to obtain the estimates

q(t) and Ay (q(t),t) that render a minimum to the function

J(q, y; t) $q ) AR() -  Az(T) dT

0

I t
+ t [Az(T) - AH(T) Ay]T AR(t) - l [Az( ) - AH(T)Ay] dT

(257)

or, equivalently, a maximum to the log likelihood ratio

t
I(q,y ;t) 0 Az(T)T AR(T) -' AZ(T) dT - J(q,Ay;t)

0

(258)

The above integrals are Ito integrals. For a fixed q, the

optimizing Ay(q,t) satisfies

C(q;t) Ay(q,t) = D(q;t) (259)

where

t
C(q;t) - f AH(')T AR(t)-I AH(t) d'r (260)

q

t

D(q;t) = f AH() T AR(T)-I Az(U) dt (261)

q
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We make the definitions

c(t) =AH(t)T AR(t)-1 &H(t) (262)

d(t) =AH(t)T a R(t)-1 & z(t) (263)

we note that d(t) is an nxl-vector Brownian motion process.

j In view of (259), Eq.- (258) becomes

jiq,,Ay(q,t);t) =DT(q;t) C1l(q;t) D (q;t) (264)

t t
= ~ dT~t dTIi C-1 (q; t) Id(T) dT

q q
(265)

The maximizing argument of (265) is denoted by q(t).

Returning to Eqs. (255) and (2-.6) the Kalman gain K(t)

satisfies

K(t) = K 1 (t) + 'y (t) A K(t)

The continuous case addressed in this section is being

* - treated in more detail in another report.
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11. THE SIMILARITY OF JUMP ESTIMATION AND BIAS ESTIMATION

The bias estimation problem can be expressed as follows,

f[20],

State Dynamics

x Ax + Bb + w (266)

Bias Dynamics

=0 (267)

Observation Equation

z - Hx + Cb + v (268)

where the state x is an n-vector, the bias b is a p-vector,

the observation vector y is an m-vector, w is the process

noise vector with

E[w(t) wT(s)] = Q(t) 6(t-s)

and u is the observation noise vector with

E(u(t) uT(s)] = R(t) 6(t-s)

The vectors w and u are assumed to be independent. The matrices

A and B are time varying.

7i
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Friedland [201 was the first to show that the optimal

estimate x(t) of the state x(t) could he expressed as

x(t) = xl(t) + S(t) b(t) (269)

where xl(t) is the bias-free estimate i.e., the filter assumes

b is zero even though it is nonzero), h'(t) is the bias estimate

which is computed using the bias-free residuals z(t) - H(t) xl(t)

and S(t) satisfies the differential equation

S(t) = [A(t) - Kl(t) H(t)] S(t) + B(t) -Kl(t) C(t) (270)

with initial condition

S(O) = 0 (270)

The matrix Kl(t) is the Kalman gain for the bias-free estimate.

The covariance P(t) of x(t) is shown in [201 to satisfy

P(t) = Pl(t) + S(t) Pb(t) ST(t) (271)

*where Pl(t) is the covariance of xl(t) and Pb(t) is the covariance

of b.

Eqs. (255) and (256) have the same form as (269) and

(271). The bias estimation problem is equivalent to the jump

estimation problem of estimating the jump b(0) which occurs

at time 0; that is, the value of the Jump state b is zero

before the jump and b(0) afterwards. The jump time 0 is known.

I The bias estimation problem for discrete systems is also treated

in [20]. An extension to the problem of indirect observations

I is given in [24]. 71



Friedland's bias filtering technique is extended in [21]

to the case of estimating a time varying bias

b = F(t)b (272)

The solutions have the forms (269) and (271).

Mendel and Washburn [22] show that the estimation of

the bias vector b can be interpreted as being equivalent to

the estimation of a constant that is observed through white

noise. That result compares with Eqs. (43) and (246). That

interpretation is reviewed in [23].

The structure (269) is shown in [25] to hold for the

optimal state estimate under the uncertainty of different

failure modes.

The problems of jump estimation and bias estimation differ

in the following way. The bias estimation is that of estimating

a parameter which undergoes a single jump from a zero value.

The jump estimation problem is that of estimating a parameter

that undergoes multiple jumps from nonzero values. Once a

jump has been detected and estimated it is necessary for the

jump estimator to pass this information on to the original

state estimator and to reinitialize for the next jump. The

estimator described by (269) is for single jump systems.

The estimator described by (255) is for multiple jump systems.

L
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1 A nonlinear algorithm is given in [26] - [28] for detecting

and estimating sudden changes of biases in linear stochastic

systems. The method is based on maximum-likelihood estimation

[291.

An extension of Friedland's bias filtering technique

to a class of nonlinear systems is given in [30].

I 7
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12. CONCLUSION

We have presented two recursive GLR algorithms for detecting

and estimating maneuver states and parameters in the engagement

between an anti-ship cruise missile and a ship defense interceptor.

A decomposition of the maneuver signature matrix is used to

derive the algorithms. The computational and storage requirements

are substantially less than those of other GLR algorithms. The

decomposition divides the maneuver signature matrix into the

product of two matrices. One matrix depends only on the current

observation time while the other depends only on the jump time.

The product of the latter matrix and the jump magnitude vector

provides a jump error state vector which is constant. This

constancy facilitates using the GLR approach. The other matrix

of the decomposition represents the new maneuver signature matrix

for the new constant jump error state vector. The nondependency

of the maneuver signature matrix on the jump time avoids storing

large matrices and computing large matrix products for each

past observation time. f,

Previously the most efficient GLR algorithm for the detection

and the estimation of jumps required (at each current observation

time) multiplications on the order of

3 2Mn + 5Mn m

74
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where n is the dimension of the state vector, m is the dimension

of the measurement vector and M is the number of candidate jump

times in the past. As a consequence of the decomposition the

GLR algorithm II presented herein requires multiplications on

the order of

n3 + 3Mn2m

for general discrete linear stochastic systems and

5Mn2 n

for such systems without process noise. This is a substantial

savings in computation. The corresponding savings in storage

2
is on the order of Mn

Algorithm II is a bank of Kalman-Bucy constant A-state

filters that use the decomposition of the maneuver signature

matrix. There is a filter for each candidate jump time in the

past. As a result, the required computations for jump detection

and estimation are performed at each observation time. In contrast,

algorithm I, using minimal computations, computes and stores

at the current observation time an information matrix for later

processing. The appropriate information matrix for any candidate

jump time is obtained simply by taking the difference between

the information matrix of the current time and that of the candidate
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jump time. The required computations for jump detection and

estimation are performed in the vacinity of a jump or false

alarm. While algorithm I requires more computations at an observat

time than algorithm II to detect and estimate jumps: it is not

necessary that the calculations be performed at each observation

time. Consequently, algorithm II is more applicable for systems

4 with frequent jumps and algorithm I more applicable for systems

with infrequent jumps or maneuvers.

The GLR algorithms I and II are a computation improvement

over existing techniques, algorithms and methods [1,2], [4-6],

[8], [9], and [20-38] for adaptively estimating the state of

a linear stochastic system undergoing abrupt changes (e.g.,

maneuvers) in state.
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AP!RDfCA

RELATION BETWEEN KALM4AN GAINS

The argument of the following variables is kc: H, R, V,

VAV, K, K, and AK. The argument of AP is k-i and the argument

of 0 is (k,k-1). The argument of P and P 1 is (Jclk-1).

we have from Eq. (B-7)

V=-V 1+ H,0AP0THT (A-i)

Postmultiplying (A-i) by V- gives

HO A PT H T V-1 = I V V (A-2)

Premultiplying (A-2) by K1 gives

K 1 H 0 WTHTVi 1 = IV1V (A-3)

The matrix AK satisfies

a KAV - [I-K 1 H]A P#THTV R (A-4)

Postmultiplying (A-4) by AV RV1  gives

a iRV 1 -#APOTH TV-1K HOAP#TH* - A5

A-i1L



Substitution of (A-3) into (A-5) gives, in view of (B-9),

A K[I-HK] -,fPTHTVl + F.-VV 1 -K1  (A-6)1
Since

K =PHTV-i (A-7)

and since, from (B-6),

PHTVl = PH JVl "AptTH7V- (A-8)

it follows that

K =K V V- +OAP7HrVl (A-9)1 1

Substituting (A-9) into (A-6) gives

K-K 1 + AK[I-HK 1  (A-10)

I A-2



APPENDIX B

RELATION BETWEEN PREDICTED MEASUREMENT RESIDUAL COVARIANCES

The matrices V(k), V 1 (k), P(kik-1) and P 1 (klk-i) are given by

V~k) ~k) ~klk1) HT ()+R B1

Vl(k) H(k) P (kk-) H (k) + R(k) (B-i)

P(kjk-i)=4b(k,k-1) P(k-i) 0 T(k,k-i) +1r (k-i1) Q (k- 1) r T(k-i)

(B-3)

P (klk-i) =4D(k,k-i) P (k-1) 0 (k,k-i) + r(k-i) Q(k-i) r (k-i)

(B-4)

Substituting

P(k-i) = Pi1(k-i) + AP(k-i) (B-5)

into (B-3) gives, in view of (B-4),

P(klk-i) - Pi1(klk-i) + *O(},k-i) AP(k-i) 0 (k,k-i) (B-6)

Substituting (B-6) into (B-i) gives, in view of (B-2),

V(k) - Vi1(k) + H(k)0(k,k-i) AP(k-i) OT (k,k-i) HT(k) (B-7)

The matrix AP(klk-i) is given by

A&P(klki1) -[I-Ki1(k)H(k)]o(k,k-i)AP(k-i)f T (kki1)

-K (k) H(k) 1T (B-8)

B-i1
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Recall the identity

R (k)V k) [I-H(k) k)] (B-9)

I
Premultiplying (B-8) by H(k) and postmultiplying that product by

SHT (k) gives, in view of (B-9),

H(k) AP(klk-1) HT(k) = R(k)V-1 (k) F(k,k-l)V1 (k) R(k) (B-10)

where

F(k,k-1) = H(k)t (K,k-1) AP(k-1) T(k,k-1) HT(k) (B-l1)

The matrix AV(k) is given by

AV(k) = H(k) AP(kjk-l) HT(k) + R(k)V 1-(k) R(k) (B-12)"

Using (B-12) to -nlve for F(k,k-1) in (B-10) gives

F(k,k-1) = V 1 (k)R-l(k) AV(k) R-l(k) V1 (k) - V1 (k) (B-13)

1Equating (B-i) and (B-13) and substituting the result into

(B-7) gives

V(k) V1 (k) R-(k) AV(k) R- (k) V1 (k) (B-14)

I

I
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APPENDIX C

RELATION BETWEEN STATE ESTIMATES

We desire to show that the state estimates satisfy

A A

x(k) x 1 (k) + Ax(k) (C-1)

We assume that

x(k-1) -x-1 (k-1) + Ax(k-l) (C-2)

The individual estimates satisfy the following equations

x(k) = (I-K(k)H(k)] o(k,k-1) x(k-l) = K(k)z(k) (C-3)

x 1 (k) = [I-Kl(k)H(k)] o(k,k-l) x1 (k-l) + Kl(k)z(k) (C-4)
A A

Ax(k) = [I-AK(k)H(k)]a (k,k-1) Ax(k-1) +&K(k)

[z(k) - H(k) x1 (k)] (C-5)

Using (C-2) - (C-5) it follows that (C-1) is satisfied provided

K(k) = K1 (k) + AK(k) [I-H(k) K1 (k)] (C-6)

(I-K(k)H(k)] (k,k-1) = [I- AK(k)H(k)] A (k,k-l) (C-7)

Substituting the definition of AO (k,k-1) into (C-7) results in an

equation which holds provided (C-6) holds. The validity of (C-6)

follows from Appendix A.

C.



APPENDIX D

RELATION BETWEEN CO VARIANCES

We wish to show that

P (k) = P Mk + A P(k) (D-1)

given that

P(k-1) = P 1 (k-1) + AP(k-1) (D-2)

The argument of the matrices H, K, Kj, AK and AR is k. The

argument of 0 and A0 is (k,k-1).

The covariance P(k) satisfies

P(k) = [I-KH] P(klk-1) (D-3)

From Eq. (C-7) we have

[I-KH] = [I-AKH] [I-K 1HJ (D-4)

From Eq. (B-6) we have

P(klk-1) P P1 (klk-1) + OAP(k-1),& (D- 5)

D- 1
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The covarian~ce P (k) satisfies

P (k) -(I-K H] P1 (klk-1) (D-6)

Substitution of (D-4) -(D-6) into (D-3) and making use of the

definition

AO = [I-K H] 4 (D-7)

results in

P(k) = [I -AKH] [P (k) + AOAP(k-l )0 T] (D-8)

or, equivalently,

P(k) = P1()- AKP()+ [I-AKH] AOAP(k-1) 0 (D-9)

The covariance APWk satisfies

AP(k) = [I-AKH] AOAP(k-l)AO (D-10)

Making use of (D-7), Eq. (D-10) can be written as

[I-AKS] AOAP(k-l), A AP(k) + A P(k) HTR 1; KT (D-11)

D-23



since

-1 T - (D- 12)

it follows from (D-12) and

H P I(k) - R K T (D-13)

That

(k) K -'7 T (-4
A KHP1 (k &A R R V 1 K1  (-

where

AR -R V 1 -1 R (D-1 5)

Substitution of (D-11) and (D-14) into (D-9) gives

P(=P 1 ( k)+AP()+ [A P(k) HT A ,R -f7 T (D-16)

Eq. (D-1) now follows since

,&P(k)H = AX AR (D-17)

5 D- 3



APPENDIX E

CHANG AND DUNN' S SYSTEM FORMULATION:
DISCUSSION OF IMPULSE INPUT VERSION

The following system step input case is considered in [8

and [9):

X(k+l) = A(k+l,k) X(k) + B(k+l,k)u(k,q) + r(k)w(k) (E-1)

u(k+l,q) = F(k+l,k) u(k,q) (E-2)

u(k,q) = 0 for k<q (E-3)

u(q,q) # 0 (E-4)

where F is the state transition matrix for the control variable

u and the other variables are as defined in Eqs. (1) and (3) of

Section 1. The unknowns to be estimated and detected are u(k,q)

and q.

We note two differences between the dynamics defined by

(1) and (2) and that defined by (E-l) - (E-4). First, the matrix

F is taken as the identity matrix in Eq. (2). Secondly, the value

of u is zero before the jump in the above formulation but may be

nonzero in Eq. (1).

Eqs. (E-1) - (E-4) and Eq. (3) is the "step input to the

System" case. It is described in [3) as the "dynamic step" case

in which the input matrix B and the matrix F are identity matrices. iJ

-- - I = - . • " I I III-
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The step input case can be transformed into the "impulse

input to the system" case by augmenting the state vector X with

the control vector u. Tvt x denote the augmented state vector.

The augmented system's dynamics are given by

x(k+l) = f(k+l,k) [x(k) + AXq 6 qk] + r(k) w(k) (E-5)

where

A(k+l,k) B(k+l,k)
0 (k+l,k) = [ ] (E-6)

0 F(k+l,k)

Axq = [0] u(q,q) (E-7)

and where r (k) is redefined as the augmented matrix as in

Eq. (10).

In this report we are interested in the general formulation

of (E-5) in which 0, Axq and r are arbitrary, not necessarily

._ satisfying Eqs. (E-6), (E-7) and (10). We desire to apply

-- Chang and Dunn's GLR algorithm in our context. Their algorithm

consists of a bank of Kalman-Bucy filters to estimate the jump

AX . The filters are defined by Eqs. (123) - (127), (132) - (138)

and (142) - (143) in Section 6. The estimate Avq (k) represents

the optimal estimate of &x q given the measurements up to time k.

Consequently, Chang and Dunn's GLR algorithm as made use of in

3 this report is the impulse input version of their technique as

described in [8] and [9] for the "step input" case.

WI
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I For a particular problem in the form of (E-1) - (E-4) it

is more efficient to use the "step input" case filters as

described in [8] and [9] than it is to use the filters of the

augmented "impulse input" case. In this report, however, we

are interested in the "impulse input" case when it is not

necessarily reducible to the "step input" case.
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