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ABSTRACT

Two GLR algorithms are developed for detecting and estimating

abrupt maneuvers (i.e., jumps in control values) in discrete
linear stochastic systems. A jump error state variable concept
is used to derive a decomposition of the conventional maneuver
signature matrix into a new maneuver signature matrix which

is independent of the jump time and another matrix which depends
only on the jump time. The product of the latter matrix with
the jump vector is shown to provide a constant jump error state
variable. The nondependency of the new maneuver signature
matrix on the jump time and the transformatioq of the jump
error state to a con:. wrovides for the development of GLR
algorithms with consideracv.y reduced computational and storage
requirements. The new algorithms avoid much of the updating

and storage of large matrices for past observation fimes.

“President, Practical Sciences,Inc., 40 Long Ridge Road,
Carlisle, MA 01741




In particular, the multiplications requirement is reduced to

3 + 3Mn2m for general linear stochastic systems

the order of n
and anm for such systems without process noise. Here, n is
the dimension of the state, m the dimension of the measurement

vector and M is number of candidate jump times in the past.

The two algorithms have practical application to the engage-
ment problem between an anti-ship cruise missile and a ship
defense interceptor. The output of the algorithms provides
information on which the players in a differential game of
partial information and noisy observation may base and design
optimal strategies for maximizing payoff functions such as

survivability and kill.
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1. BACKGROUND AND INTRODUCTION

The engagement between an anti-ship cruise missile (ASM)
and a ship defense interceptor is a differential game of
partial information and noisy observations. The ASM represents
the offense (the evader) and the interceptor represents the
defense (the pursuer). The ASM desiring to optimize ‘its
survivability while enroute to its ship target employs endgame
maneuvers for the purpose of evading the ship's defense interceptors
guided by active and/or passive radar. The ASMs are highly
sophisticated and maneuvering missiles that have speeds ranging
from subsonic to supersonic, altitudes ranging from sea skimmer
to upper limits of winged aircraft, and guidance systems
ranging from simple line-of-sight to more complex combinations
of passive and active electronic systems. Their maneuvering
characteristics are governed by airframe, propulsion and
guidance parameters -- drag, 1lift, thrust and four guidance
parameters, [l] and (2]. The thrust and guidance parameters
are like step fucntions in time (i.e., piecewise constant
controls). They take on one value during one portion of
the ASM's trjectory and jump to other values during other
portions of the trajectory. For example, the guidance parameters
jump in value at the start of pop-ups, dives,pull-outs, turn-downs
and turn-on of seeker homing. The thrust parameter of some
ASMs jumps (i.e., drops) in value during high altitude dives.
Consequently, the dynamics of an ASM are representable as
a stochastic system governed by piecewise constant controls.

In linear discrete form the dynamics are modeled as:

_ Se—




System Dynamics of ASM*

X(k+l) = A(k+l,k) X(k) + B(k+l,k) (u(k) + Aug 8qk) + T (k)w(k)

(1)
u(k+l) = u(k) + Auq 5qk (2)

where X is the state vector, uis the control, Alu;is the
jump in control at time q, &gk is the Kronecker delta, and T

is the system noise coefficient matrix. The matrix A is

the state transition matrix and B is the input

matrix for the control. The jump time g and the jump magnitude

Auq are unknown to the defense interceptor. Using active

and/or passive radar sensors the defense interceptor measures

a partial state of the ASM. These observations are modeled

as:

Sensor Equation of Interceptor

z(k) = h(k) X(k) + v(k) (3)

where z is the measurement vector and h is the measurement ]

matrix. The noise sequences w and v are zero-mean, independent,

white Gaussian sequences with covariances defined by

Setelh it

*Actually, there are multiple jumps Aug.at times gj; this
is easily indicated by the substitution”of i 8ug; Sqik

; into (1) and (2). Equations (1) and (2) represent each

jump in turn.




E {w(k) wT ()} = Q (k) 8kj

E {v (k) vT(3)} = R (k) §kj

where E{°} denotes the expectation and the matrix R(k) is
bounded positive definite. The inital state X(0) is normally

distibuted with-mean i(o) and covariance P(0); we make a

similar assumption for u(0).

The system dynamics of the interceptor is of a form

PRSI A

similar to (1) and (2). In general, the sensor eguation
of an ASM may be considered to be of the form (3) but currently,

in practice, the ASM has no sensor with which to observe

A UB N 2

the location or presence of an interceptor (i.e., it is blind
to approaching interceptors) even though it has the sensors
for acquiring and homing in on its ship target. In such

a case the measurement matrix of the ASM is zero. There

are other engagement scenarios in which the offense (e.qg.,
bomber) is not blind to approaching interceptors. Therefore,
in general, we are interested in the class of differential

games of partial information and noisy observations in which

the dynamics of a player's system are modeled by (1) and

(2) and the observation equation of its opponent is modeled

by (3).




In the above engagement the ASM desires to maximize

its survivability using evasive maneuvers while enroute to

its ship target. The interceptor desires to maximize its
probability of kill. In its pursuit of optimality the interceptor
is faced with two tasks. The first is the development of

an estimator for obtaining the optimal estimates ; and ;

of the state X and the control u. Secondly, it has the task

of deriving optimal strategies based on the optimal estimates.
In this paper we address the first task and present a filtering
algorithm for obtaining the optimal estimates of X and u.

This estimation problem is that of detecting and estimating

abrupt changes in stochastic dynamical systems. A survey

of estimation methods is given in Willsky [3].

One of the most attractive and promising methods for
detecting and estimating jumps in linear stochastic systems
is the generalized likelihood ratio (GLR) method, [4]-[6].
The GLR method processes the residuals from a Kalman filter
and computes the maximum likelihood estimates of the jump
time and the jump magnitude. Using these estimates it evaluates
the log-likelihood ratio for jump versus no jump. A jump
is declared if the evaluated ratio is larger than a set
threshold. The implementation of the GLR requires a linearly
growing bank of mat;hed filters in order to compute the maximum
likelihood estimate of the jump time, [3] and [7]. A recursive

GLR algorithm, [8)] and [9], has been developed that reduces




the computational burden by reducing or avoiding the requirement
for matrix inversion (in computing the jump magnitude and
evaluating the log-likelihood ratio) at each possible jump

time in the past. This reduction was obtained by modifying

the GLR algorithm so that the covariance of the predicted
measurement residual is to be inverted rather than the information
matrix of the jump variable. The largest dimension of the

matrix to be inverted is at most equal to the dimension of

the correlated components of the predicted measurement residual,

[10] and [11].

In its latest stage of development the GLR method still
requires at each new observation time the computation and

storage of several matrices for each observation time in

the past. Herein, we derive two GLR algorithms I and II which

are based on a decomposition of the failure signature

matrix of [5] which we term herein the maneuver signature matrix.

The decompcsition provides a new maneuver signature matrix

which is independent of the jump time (maneuver start time).

This nondependency reduces considerably the storage and computational
requirements of the GLR method by reducing the requirement

to update and restore large matrices at each current observation

time for past observation times. The computational burden

of previous GLR algorithms is to a great extent the direct

L - . ”“""“‘"“‘V‘"‘”"~'-‘"*“"*““*"-“""*M‘»*'“
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dependency of the maneuver signature matrix on the jump time.

Our algorithms I and II avoid much of the updating and storage

. of large matrices for past observation times.

The GLR algorithms I and II are developed using the concept
of a jump error A-state variable Ax. It is introduced as the
difference between a "jump is known" filter estimate and a
"jump free" filter estimate of the state. The evolution of
Ax, after a jump, is governed by a linear state equation. The
residuals of the "jump free" filter provides the noisy linear
measurements of Ax. The variable Ax is non-singularly transformed
into a new A-state variable Ay which is constant. It is that
transformation which provides the new maneuver signature matrix

which is independent of the jump time.

Our work is built on that of Friedland's bias filtering
technique [20], Willsky and Jones' GLR technique [6] and Chang

and Dunn's recursive GLR algorithm [9].
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2. DISCRETE LINEAR STOCHASTIC MODEL WITH STATE JUMP:

A POSTERIORI JUMP

e kL
.

For ease of presentation and generality we augment the

state X(k) with the control u(k) of (1) and (2) and define

the variable x(k) as the augmented state vector composed

of X(k) and u{k). In this case Equations (1), (2), and (3)

become

x (k+1) = @& (k+1,k) (x (k) *+ Axq qu) + T (K)w(k) (4)

z(k) = H(K) x (k) + v (k) (5)
where
A(k+l,k) B(k+1,k)
®(k+1,k) = | ] (6)
o 1
qu=D A ug (7
o]
D=[] ~ (8)
I
H(k) = [h(k) 0] (9)
and where T (k) is redefined as the augmented matrix

T (k)
( ] (10)
0 .

A description of the variables and their dimensions are given

in Table 1. We assume that the linear system (4) and (5)

is observable.




The a posteriori juﬁp is used in the formulation of
(1), (2), and (3). The jump A_xq occurs at time q but it
does not appear in the measurement until time g+l; that is,

the jump occuts'right after the measurement z(q).

The optimal state estimator for a discrete linear stochastic
system without jump Bbxgq = 0) is given by the discrete Kalman-Bucy
filter, (12]1-({151. The equations of the filter, [16]), are
given in Table 2 for reference purposes. The filter variables

are described in Table 3.

In this report we treat the general problem as defined by
Egs. (4) and (5) in which the unknowns to be estimated and detected
are Ax_ and g. That is, we take the quantities ¢, Ax_, H

q g9
and T to be arbitrary, not necessarily satisfying (6), (7), (9)

and (10).




TABLE 1

SYSTEM VARIABLES FOR THE AUGMENTED SYSTEM

‘VARIABLE DEFINITION DIMENSION X
x (k) State vector nxl
o(k+1,k) State transition matrix from nxn
k to k+l
T (k) System noise coefficient matrix nxr -
Q(k) System noise covariance matrix rxr P
8 xq Jump in state at time g nxl L
z (k) Measurement at time k mxl
H(Kk) Measurement matrix mxn
R(Kk) Measurement noise covariance | mxm 9
matrix ;
w(k) Gaussian white system noise rxl :
v(k) Gaussian white measurement noise mxl :
D Jump coefficient matrix ‘NXp i
AYq Jump in control at time g px1 ‘;

w(k) Control vector pxl




DISCRETE KALMAN-~BUCY FILTER EQUATIONS*

TABLE 2

® (k+1,k) P(k) ¢T(k+1l,k) + I (k) Q(k)rT(k)

X(k+11K) = 0 (k+1,k) x (K)

P(k+1llk) =

y(k) = z(k) - H(k) % (klk-1)

v(k) = H(k)P(klk-1) HT (k) + R(k)

K(k) = P(klk-1) HT (k) Vv-1(k)

X (k) = x(klk-1) + K(k) y (k)

P(k) = [I - K(k) H(K)] P(klk-1)
*The

to % (k) and P (k).

(i)
(ii)
(iii)
(iv)
(v)
(vi)

(vii)

usual notations x (klk) and P(klk) have been shortened

The random variable ;(klj) is the optimal

estimate of x (k) based on all the measurements Z(j) ={z(1l),

z(2),..., 2{(j)} . The superscript "T" denotes transpose

and "-1" denotes inverse.

by I.

10

The identity matrix is denoted




TABLE 3

FILTER VARIABLES

VARIABLE DEFINITION DIMENSION
;t‘(k) State estimate at k given 2(k) nx1l
P (k) Covariance matrix of the error nxn
in x (k) ‘
Rk+1llk) State estimate at k+l1l given Z (k) nxl
P(k+1llk) Covariance matrix of the error nxn
in x (k+11ik)
v{k) Predicted measurement residual mx1
V(k) Covariance of y (k) rxm
K(k) Filter (Kalman) gain matrix at k nxm




3. FORMULATION OF THE A-SYSTEM: JUMP ERROR STATE EQUATION J

Consider the following filtering conditions for the Kalman-
Bucy filter:

H,: There is no jump in state and no jump in assumed by

the filter.

1

H There is a jump in state but the filter is unaware

that a jump has taken place and it operates as if

1:

the jump is zero. The filter is referred to as the
"jump free" filter.

There is a jump in state, the jump is known to the

filter and the jump information (time and magnitude)
is made use of in the filter. The filter is called
the "jump is known" filter.

The Kalman-Bucy filter is optimal for Conditions H

~

1
and Hz and nonoptimal for Hl. Condition H2 is ideal but

does not occur in practice. Condition H, is the real world

condition. We are faced with the problem of accounting for
the jump after it has occurred and has been detected. On :
the one hand we do not wish to degrade the optimal performance

of the Kalman-Bucy filter by operatingit in an "after-jump"

ot s it At e

mode when no jump has occurred. On the other hand we desire
optimal estimates of the state after the jump has occurred.

Because of the delay bctween the occurrence of the jump and .-

its detection the output of the H, filter is nonoptimai during

1
this delay. Since we have in practice this sequence of nonoptimal

estimates we would like to compensate it with an additional

[
Y o T

estimate and obtain an optimal estimate. This is precisely

Pmasane y
——

the property of the p-system. The optimal estimate of the

12
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A-state added to the Kalman-Bucy filter estimate under condition

H1 is an optimal estimate of the state beyond the jump.

Let xl(k) represent the state for the case that the
jump magnitude A*q is zero (i.e., there is no jump). Let
x2 (k) represent the state for the case that there is a jump
qu and its magnitude may be nonzero. Let ;1, ;1, and ;2.
denote the Kalman-Bucy filter estimates of the state for

the Conditions g ﬁl, and H,, respectively. The felationships

ll
between these estimates are depicted in Figure 1 for an anti-

ship missile defense scenario in which the ASM employs an
endgame pop-up maneuver. Under Condition H1 the Kalman-
Bucy filter estimate %q optimally tracks *1' Under Condition

H., the Kalman-Bucy filter estimate ;2 optimally tracks X9*

2

But under condition H, the nonoptimal estimate ;1 tracks

1
a trajectory between 3 and Xye Since the covariance of
state estimate and the Kalman gain are independent of the
measurements it follows that the gains Kl(k), El(k) and Kz(k)
are identical and that the covariances Pl’ 51 and P2 are

identical for the three filtering Condiéions Hl' ﬁl and H2'

We define the following errors of ;i(k):

Ax(k) = x,(k) - x, (k),all k (10)

Aw(k) = .,'cl(k) - %y (k), all k (11)

The sum of the two errors satisfy

ax (k) +aw(k) = o(k,q) Mm_, k2q (12)

ql
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KALMAN-BUCY FILTER ESTIMATES

il - NO MANEUVER K, = KALMAN GAIN

- MANEUVER IS KNOWN H = MEASUREMENT MATRIX

%)
~

§1 ~ MANEUVER IS UNKNOWN ¢ = STATE TRANSITION MATRIX

900
- §
B oo 4
& !
3
2 1m0 CRUISE FLIGHT 1 X

(SEA SKIMMER)

JUMP TIME = g (MANEUVER)
0 4—&—
r T T Y

4 3 2 1 0
RANGE TO GQ. (NMI)

FIGURE 1. ASM DEFENSE SCENARIO: JUMP ERROR STATE Ax SATISFIES
: LINEAR EQUATION

Ax (k+1) = [I-K)(k+1l) H(k+1l)] @(k+l,k) ax(k)

14
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We call the random variable Ax the jump error state or

A-state variable. It is the difference between the Kalman-

Bucy filter estimates under the conditions of known jump
and unknown jump. Since the addition of Ax(k) and ;l(k) give

;2(k) we would expect that the optimal estimate &Q(k) added

to‘;l(k) gives the optimal estimate ﬁ(k) of (4) and (5):

x(k) = %, (k) + AX(K) (13)

It is easy to show that Ax satisfies a linear state

equation [8]. The initial condition for px is at time q:

§ aAx(q) = A%y (14)
Ax, = x,(q) - x,(a) A (15)
: Let k >q. From Equations (i), (iii), and (vi) of Table 2
we observe that the estimates x, (k) and ;z(k) satisfy
x, (k) = A0 (k,k-1) x,(k-1) + K, (k) z (k) (16)
x,(k) =80 (k,k-1) x,(k-1) + K, (K)z (k) (17)
where
A9 (k,k-1) = [I-Kl(k) H(k)] ¢ (k,k-1) (18)
Consequently, subtracting (16) from (17) gives the linear
equation
Ax(k) = A¢(k,k-1) Ax(k-1) (19)
|
¥

15
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with initial Condition (14). The measurement equation for
AX is also easily derived. Under Conditionﬂl. the a posterior

measurement residual apz(k) is given by

Az(k) = z(k) - B(k) 11 (k)

Adding and subtracting the term H({k) Qz(k) we obtain the

measurement equation for ax

Az(k) = pAH(k) Ax(k) + Av (K)
where
AH(k) = H(k)

av(k) = z(k) = H(k) %, (k)
is the.a posteriori measurement residual under Condition Hz.
Consequently, av(k) is a zero-mean white Gaussian sequence

with covariance defined by

EQav(08 ()} = BR(K) &
where

AR(K) = R(k) V, 1(k) R(k)

1

recalling that Vl' V1 and V2 are identical.

Equations (19) and (21) constitute the linear equations
that govern the error Ax. If the juﬁp time g wer~ known
and the initial state Ax(q) were normally distributed with
mean A;(q) and covariance AP(gq) then a Kalman-Bucy filter
could be employed to estimate Ax(k). The filtering equations

are as given in Table 4 for such a case. For this case define

16

(20)

(21)

(22)
(23)

(24)

(25)




L TABLE 4
FILTERING EQUATIONS FOR THE A-SYSTEM

8 x(k+1| k) = A® (k+1,k) Ax(k), k> g (i)
AP (k+1|k) = A® (k+1,k) AP (k) 80T (k+1,k), k> q (ii)
AY(K) = Az(k) - AH(k) Ax(klk-1), k> q (1ii)
AV(k) = AH(k) AP(k|k-1) AHT(k) + AR(K), k >q (iv)
_, AK(k) = AP(k|k-1) AHT (k) &V i(k), k>gq (v)
§ ax(k) = Ax(k|k-1)+ AK(k) Ay(k), k> q (vi)
AP(k) = [I - AK(k) AH(k)] AP(k|k-1), k> q (vii)
! ' where
A®(k,k-1) = [T - K, (k) H(K)]® (k,k-1) (viii)
AH(k) = H(k) (ix)
aR(K) = R(k) Vv, (k) R(K) (x) - -
pz(k) = z(k) - H(K) x, (k) : (xi)
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x(q) = x1(q) + ax(q) (26)

P(q) = P1(q) + AP(Q) (27) I

and employ a Kalman-Bucy filter to estimate x(k), k>g, governed

by (4) and (5). We know that the resulting estimates ;(k) and

P(k) and the gain K(k) are optimal. On the other hand, we can

P——

employ the filter under Condition H) to generate the estimates

x31(k) and Pj(k), k>g and we can employ the filter of Table 4

to generate the estimates Ax(k) and AP(k). The two approaches

;
% are equivalent. That is, (this is shown in Appendices C and D), a
d A ~ ~
; x(k) = x, (k) + mx(k) (28)

P(k) = Pl(k) + AP (k) (29)

For such a case the optimal estimate of x(k) is obtained

by summing the two estimates xl(k) and iﬁ(k). The gains 1

are related by the expression (this is shown in Appendix A).

K(k) = K, (k) + AK(k) [I -"H(k)K]{k)] (30)
one can show that

E{delk) e,T(K)} =0, k2 q, i = 1,2 (31)

where, for k2> q,
ei(k) = xi(k) - f}(k). i=1,2
Ae(k) = Ax(k) - Bx(k)

18
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Note that

el(k) = ez(k), xz(k) = x(k) and

e(k) = e, (k) + de(k), k > q
where
e(k) = x(k) - ;(k)

From (28) we note that

x(k) = x, (k) +8x(k) -4%x(kK), k> g

which shows that the optimal estimate x(k) is as close to
the ideal estimate Qz(k) (i.e., jump is known) as the optimal

estimate pAx(k) is to Ax (k).

It is shown in Appendix B that the Predicted Measurement

Residual covariances are related by the expression

V(k) = "\'rl(k) r™1

(k) AV(k) RTE(k) ¥, (k)

(34)

(35)

(36)




4. TRANSFORMATION OF 4 ~-STATE: CONSTANT A -STATE

Define the nxn matrix y(k), all k, as
o) =1 ' (37)

vik) =a0 (k,k-1) p(k-1), k> O (38)

The matrix y(k) is positive definite for all k; it has inverse

w-l(k). The j-state equation (19) can be rewritten as

ax(k) = p(k) v lk-1) ax(k-1), k> g (39)
we define a new pA-state variable py as

ax(k) = w(k) av(k), k> q (40)

This transformation of the p-state from jx to py results

in the constant state egquation:

ay (k) = Av(k-1) k> q (41)

The p-measurement matrix pH(K) in (22) car Lo recifined as

AH(k) = H(k) ¢ (k) (42)

so that the Equation(21) in terms of the new p-state Ay becomes

Az (k) = AH(k) Ay(k) +Av (k) (43)
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Equations (41) and(43) define the linear p-system for the

state Ay. Equation (40) gives the transformation back to

the Ax state.

For the case that the process noise Q(k) =0, for all

k, we can take Wk) to be defined by -

w0 =P, (0)
k) =P (k) ¢ (0,k)
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5. DETECTION AND ESTIMATION OF JUMP USING THE GLR APPROACH:
ALGORITHM I
From (41) we see that Ay(k) takes on only the values of zero
and Ay{q) where
-1
ayla) =y “(q) ax, (44)
It is zero before the jump and py(q) after the jump. The
residual to be minimized after the jump is
Av (k) =p2z(k) - pH(K) Ay (45)
which has covariance pR(k) as defined by (25). Here, we use
AY to denote the unknown constant. For each.k, we desire
to obtain the estimates ?q(k) and [y (a(k) k) that render
a minimum to the function
_ 9 AT . | .
J(g, Ay:k) = '21 [az (1) 17 [AR(1)] “[pz(i)]
l=
k T -1
+ 7 Az(i) - aH(i1) Ayl " AR(i)] “{az(i) - pH(i) Ayl (46)
i=qg+l
or, equivalently, a maximum to the function
k K SO S
gd, Ay:k) = _zl [Aaz(D)]1 " [AR(1)] "[az2(i)] - J(g, pAY:k) (47)
l=
This latter fucntion is the logarithm of the generalized
likelihood ratio (GLR), [5]. Note that the argument q appears
only in the limits of the sum in (46). 1In the approach of
[5] the jump time appears in the terms of the sum as well
as in the limits of the sum. For each possible jump time J
q the optimum value [y (g,k) satisfies [
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C{q:k) Ay(q,k) = d(q:k)

where ,
k T -1 !
; Clg;k) = {A H(1)]1 [AR(1)] ~[AH(i)] (49) !
5 i=q+l !
| k T 1
- d(q:k) = ¢ [AH(L) 17 [AR(i)]) " [az (1)) (50)
i=q+l

In view of the solution (48), the log likelihood ratio (47)

simplifies to

(g, ay(q,k)ik) = AyT(a,k) Cla;k) Ay(q,k) = dT(q;k)Ay(q, k)  (51)

kA i e b i v b s e

or, equivalently,

2(q, AY(Q.k)ik) = dT(q:k) € L(q:k) d(qik) (52) |

The maximum likelihood estimate of the jump time is

! : g(k) = arg max &(q, Ay(q,k):k) (53)
1 q
; and the maximum likelihood estimate of the jump magnitude
is
ay(a(k) k) = ¢t (q(k)sk) dlgk);k) (54)

A jump is detected at time k if a threshold is exceeded,

{5):

2(q, by(d(k),k)) > 28%n (n) (55)

where the value p is chosen to provide a reasonable tradeoff

l between false and missed alarms.




A difference between our approach and that of [5] is
that the failure signature matrix G(j; ¢) depends on the jump
time and our corresponding matrix pH(j) does not.* As a result
of this advantage the computation of ﬁpdating several sequences
of matrices is avoided. For the purpose of estimating the
jump time and the jump magnitude at time k it suffices to

have the following matrices in storage:

C(Gi), i 1,2 ..., k

a(6i), i

1'2, '.o'k

The matrices C(0;k) and d(0;k) are computed recursively

C(0;k-1) + M (k) R(k)7?

a (0;k-1) + AHT(kK) AR(K)™

C(Gk)

M (k) - (56)

a(ok) 1 azx) (57)

The matrices C(q;k) and d(q;k) are obtained by subtraction

C(Gk) - c(0;q), O<g<k (58)

C(q:k)
d(q;:k)

d(Gk) - a(6g), O<qgc<k (59)

It is unnecessary to evaluate (52) for all q, O<g<k. A

simple search procedure can be employed to locate the maximizing

g(k) of (53)! After obtaining Ay we use (40) to estimate

ax(k) =y (k) by : (60)

*This 1s discussed in the next section.

TIn the search procedure one may ., use the Gaussian elimination

method to compute the solution py(q,k) of (48) at some ocqgck.

1 Therefore, the log likelihood ratio (51) may be evaluated

without inverting C(g;k). 'This matrix need only be inverted

at the maximizing q(k), provided (55) is satisfied, to obtain

the covariance of Ay(q(k),k). []
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Its covariance is given by

AP(k) = E(A e(k)a e()T} = y(k) €1 @k kg7 (k) (61)
where pe(k) = Ax(k) - &k(k). The covariance of the estimate
A} is given by
T _ ~1 - ’
E{ o e, (k) ae;(k)7} =C (g (k) :k) (62)

where Ael(k) = Ay(k) - &} (a(k),k). This covariance is based

on the assmption that the a priori covariance for py at time

q?k) is infinite, [16, p. 206]. The estimates given by (60)

and (6l1) are used as'starting values in the p-filter. Egs. (28) and

(29) are used to reinitialize the filter of H1 for the case of multiple jumps.
If the a priori covariance for Ax(g) is not infinite

1

but is given by AP(q) with inverse AP ~ (q) the a priori

covariance AP. (g) for Ay(g) has inverse

1

Apl'l(q) =y (@ ap7 @ via) (63)

If &;(q) is the mean of Ax(q),the mean of Ay(q) is

py(@) = v @ ax(q) (64)
With the modifications

c* (q:k) = Clask) + aP; "' (q) (65)

a* (q:k) = dl@sk) + AP, T (@) ay(a) (66)

The method of solution is as outlined above.
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If we know that the jump is caused by a lower dimensional

vector such as Aug where
=D
qu Auq . (67)
we proceed as follows. From (44) and (67) we have
_ =1
AY(Q) =y “(q) DAuq (68)
we define

pTy “T(q) clak)y ~tiq)D (69)

C(q;k)

T

d(q;k) = DTy “T(q) dl(qik) (70)

and use the method of solution as described above.

The GLR technique described in [9] requires the implementation
of a Kalman-Bucy A-filter (employing the computational savings

techniques discussed therein) for each observation time in

the past. Several matrices have to be stored and updated
for each observation time in the past. The attractive feature
of that technique is that it requires neither the inverse . I
of C(qg;k).nor the-solution to (48). Instead it requires at most
the inverse of a matrix having the dimensions of the largest

correlation block of the measurement noise covariance matrix;

sequential updating of the components of the measurement vector -

is used. No matrix inversion is required by the Kalman-Bucy filter
for uncorrelated measurement noise. We use the seguentially updated
Kalman filtering technique together with the decomposition of the

maneuver signature matrix to develop our algorithm II in Section 7.
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6. COMPARISON WITH PREVIOUS GLR TECHNIQUES

The a posteriori jump formulation is used in (4) and (5).

It has the following relationship with the a priori jump formulation.

Define:
P = g+l {71)
Axp = 0(Q+l:Q) qu (72)

Equation (4) can be rewritten as:

x(k+l) = ¢(k+l,k) x(K) + pXp §p,k+1 +T(k) w(k) (73)

" where p is the jump time and Axp is the jump magnitude. The

effect of the jump appears in the state x(p) and in the measurement
z(p) at the jump time; that is,it occﬁrs right before the measurement
z(p). This formulation is used in [3] - [9]. Therein, the

effect of the jump on the innovations is analyzed. The general

form is given by, [3] and [5],

7l(k) = G(k;p) axp + Y1(k) (74)
where ;1(k) and Y31 (k) are the predicted measurement residuals
under Conditions ﬁl and H), respectively. The matrix G(k;p)
is called the failure signature matrix and it is computed by
the following recursive algorithm, [5] and [{6]. At each observation
time k the following matrices, having been computed previously

at time k-1, are held in storage:

¥Herein, we refer to it as the maneuver signature matrix.
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G(k-1;3), k-1-M <j <k-1 (75)
F(k-1;3), k-1-M <j <k-1 (76)
where it is assumed that a sliding window of length M is being

used to detect and estimate the jump. For each k the matrix

G(k;k) satisfies

G(k;k) = H(k), all k (77)

The following matrices are computed at the time k:

e(k;j) = @(k,k-1) &(k-1,3), k-M<j<k (78)
G(k:j) = H(k) [o(k,3) - S(k;3)}, k-M<i<k (79)
S(k:j) = ¢(k,k-1)F(k-1;3), k-M<j<k (80)
F(k;k) = Ky (k) H(k) (81)
F(k;j) = K3(k) G(k;j) + S(k;j), k-M<j<k (82)

The following matrices have also been computed and stored at

the previous observation time k-1:

Cw (k=1;3), k-M<j<k-1

dy (k=1;3), k-M<j<k-1
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At the new observation time k they are updated using the equations

Cw (k:;k) = HT(k) Vvy3~1(k) H(k) (85)
a, (k;k) = HT(k) v1~-1(k) Y1(k) (86)
Cy (k:3) = GT(k;3) Vi~ (k) G(k;j) + Cy(k-1;3), k-Mcick (87}

dy(k:j) = GT(k;j) vi~1(k) Yy(k) + dy(k=1;3), k-Mcjck  (88)

The log-likelihood ratio to be maximized, [5] and (6], is

twi(kid) = duT (k3;3) Cu™l(kid) dy(kij), k-Mcjck (89)

which is evaluated at past observation times j in order to determine

its maximum value and compare it to a set threshold for jump

detection.

In our approach Eq. (74) is given by

~

Yy(k) = H(k) &(k,k-1) ax(k-1) + Yy(k)
since
Y1(k) = z(k) - H(k) ¢(k,k-1) x](k-1)
Ya(k) = z(k) - H(k) g(k,k-1) X2(k=1)
= Yz(k)

Y1 (k)
From Egqs. (18) and (19) we have

ax(k-1) = A9 (k-1,p) ax(p)

ax(p) = [I-K1(p) H(P)]Axp

29




Comparing (74) and (90) we see that

G(k;p) bxp = H(k) o(k,k-1) A®(k-1,p) [I-K)1(p)H(p)]axp

Using (38) we rewrite (96) as

(96)

G(k;p) Axp = H(k) &(k,k-1) ¥(k-1) v~l(p) [I-Ky(p) H(p) ] axp

Consequently, in our approach G(k;p) aXp is decomposed as

G(k;p) axp = G1(k) G2(p) aXp

where
Gy1(k) = H{(kK) ¢(k,k-1) w(k-l)
G2(p) =

p~1(p) [I-K1(p) H(P)]

Using (18), (71), and (72) we have

G2(p) axp = ¢ 1(q) axq

Using (44), Eg. (101l) becomes

G2(p) axp = Ay (Q)

Consequently, Eq. (98) can be written as

G(k;p) axp = G1(k) ay(p-1)
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The decomposition given in Eg. (102) results in the matrix
G1 (k) which does not depend on the jump time and in the vector
Av(p-1) which satisfies the constant state equation (41).
The computational burden of the GLR technique of [5] and [6]
is directly related to the dependency of G(k;p) on the jump
time. Because of this dependency the matrix G(k;j) must be
computed and stored for each candidate jump time j in the
past. This requires at each new time k the computation and
storage of the matrices given in (75) - (88) for all j in

a sliding window k-M qj <« of candidate jump times.

In our approach we are actually using pH(k) as given in
(42) rather than Gy (k) as given by (99). This is because
we are using the a posteriori measurement residuals pz (k)
g}ven in (20) rather than the a priori measurement residuals
Y1(k) given in (91). That is, pH(k) is the resulting decomposition

matrix for the a posteriori measurement residual approach.

An analysis c¢f the GLR algorithm requirements for storage
and multiplications per stofage update is given in Table 5

for the approach of [5] and [6] and in Table 6 for our approach.*

Let the storage requirements be denoted by Mgy for that of

(5] and [6] and by Mg for our approach. The storage requirements

are

*The measurement matrix R(k) is assumed to be diagonal and

i all elements of the matrices H(k) and ¢(k,k-1) are multiplied
! . in matrix products.
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TABLE 5
WILLSKY AND JONES' GLR ALGORITHM REQUIREMENTS:

STORAGE AND MULTIPLICATIONS PER STORAGE UPDATE

k = CURRENT OBSERVATION TIME

n = DIMENSION OF STATE VECTOR x

m = DIMENSION OF MEASUREMENT VECTOR 2z
M = LENGTH OF SLIDING WINDOW

I. STORAGE REQUIREMENTS

MATRICES DIMENS ION STORAGE REQUIREMENTS
1. {G(k;j):k-M<j<k} mxn (M=1)nm
2. {F(k;j):k-Mcj<k} nxn Mn?
3. {Cwlk;j)sk-Mcjgk) Dx{ntl) Hnin+l)
4., {dy(k;j):k-M<j<k} nxl Mn
5. {¢(k;j):k=M<j<k} nxn (M-1)n2

TOTAL STORAGE = (M-1)M1y + M3y, wheré

2
My = 5% + nm . +_g_n ]
3n2 3
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Table 5 (continued)

EQUATIONS
1. Egs. (79) and
2. Egs. (8l1) and
3. Egs. (85) and

4. Egs. (86) and

Niyw

Now

E ¥ TryeeT———T - T
¢

(80)
(82)
(87)
(88)

5. Eq. (78) for ¢(k,3),

II. MULTIPLICATIONS NEEDED

for

for

for

for

TOTAL MULTIPLICATIONS

TO UPDATE STORED MATRICES
NUMBER OF
MULTIPLICATIONS
G(k;j), k-Mcj<k (M-1) [n3 + nZ2m)
F(k;j); k-mcj<k  M[n2m)
Cw(k,J), k-m<j<k M [Ei%illm + nm2)
d,(k,3), k-Mcjck Minm + m?]

k-M<3j<k (M-1) [n3)

(M=2) Njy + Npy where

[2n3 + % n2m + nm2 + % nm + m2]

[2n3 + 4n2m + 2nm2 +3nm + 2m2)




TABLE 6

NEW GLR ALGORITHM I REQUIREMENTS

STORAGE AND MULTIPLICATIONS PER STORAGE UPDATE

k = CURRENT OBSERVATION TIME

n = DIMENSION OF STATE VECTOR x

m = DIMENSION OF MEASUREMENT VECTOR 2z
M = LENGTH OF SLIDING WINDOW

STORAGE REQUIREMENTS

STORAGE REQUIREMENTS

MATRICES DIMENSION
1. (k) nxn
2, pH(k) mxn
3. Az (k) mx1
4. AR(k)"L mxm
5. {C(O;j):k-M<j£k} nxn
6. {d(0:]):k-Mcj<k} nxl
TOTAL STORAGE = (M-1) M) + M2 where
n2 3n
S
3n2 m2 3n
M2 = —2— + nm. + 2— -2—-

34

n2
nm

m

m{m+1l)

n(n+l)

Mn




v e e e e Y e e

Table 6 (continued)

II. MULTIPLICATIONS NEEDED TO UPDATE STORED MATRICES

NUMBER OF
EQUATIONS . MULTIPLICATIONS*
1. Eq. (38) for y(k) n3
2. Eq. (42) for AH(K) nZm
3. Eq. (20) for Az (k) nm
4. Eq. (25) for AR(x)"1 3m2+3
2
5. Eq. (56) for C(0;k) EEE + nm2 + %E
6. Eq. (57) for d(0;k) nm + m2

TOTAL MULTIPLICATIONS = (M-2)N] + N2 where

N3y 0

5nm , 5m2

3n2m 2 m
5 + nmé + ==+ = + 3 ]

N [n3 +

*For the case that the process noise is zero it is not necessary

to compute y(k) unless a jump isTdetected. It suffices to compute
AH(k) where AH(k) = H(k) P, (k) ¢ (0,k). This product is performed
with at most 2nm mu;tipliéations which replaces the sum n3 + ZnSm.
%ﬁ‘a'jumpaiévdétected we_need ylk) for computing px(k) from

y(k).




where

Miw = —3— + nmm + %2

Mg = (M-1) M; + My
where
n2 3n
Ml=-2— +T

Consider the differences

AMl = le - M = 2n2+ nm
m2
AMy3 = My - M2 = -nm -~ 7 -
Define
AMg = Mgy, - Mg

dimension n of the state vector.

M>1 we have the inequality
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as the difference in storage requirements. The dimension

m of the measurement vector is usually much less than the

For sliding windows with

(103)

(104)

(105)

(106)

(107)

(108)

(109)

(110)
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bMg >(M=2) (n2 + nm) (111)

Let the number of multiplications be denoted by Ny for
the approach of [5] and [6] and by N for our approach.
The number of multiplications needed to update the stored

matrices are

where
2

Ny = 2n3 + Sg‘m + nm2 + % nm + m2 (113)

Ny = 2n3 + 4n2m + 2nm2 + 3nm + 2m2 (114)
and

N = (M-2) N} + N2 (115)
where

N1 =0 (116)

N=n3+M +nm2+5_ﬂE +§1‘_2.+E (117)

2 2 2 2 2

Eq. (116) shows that our GLR algorithm requires no multiplications
to update stored matrices at past observation times j,

j(kc
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Consider the differences

AN] = N1y - N1 = N1y (118)
0Nz = Npy - N2
2 2
= p3 + 20°m 2 ,om _m m
no + 5 + nm< + 2 2 -3 (119)
Define
as the difference in the number of multiplications.

For sliding windows with M>2 we have the inequality

AN >(M=-2) (n3 + 2n2m) (121)

The inequality (111l) demonstrates the savings in
storage provided by our GLR teéhnique. The inequality
(121) demonstrates the savings in multiplications. These
savings are a direct result of the decomposition discussed
above and given in Eg. (102) for the a priori measurement

residual approach and given by

H(k) ¢(k) aAy(q) (122)

for the a posteriori measurement residual approach.
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Both of the above GLR techniques require the inverse’ of
an nxn matrix in order to evaluate the log-~-likelihood ratio
(52) or (89). 8Since our approach requires no updating
of matrices at past observation times it suggests using
an innovations based scheme to determine the current observation
times k at which one should look for a jump in the past.
If the innovations appear to be "normal" no jump in the
past is to be searched for by evaluating (52); consequently,
no inverse is taken. It is when the innovations appear
to be less than "normal" ﬁhat a search is to be made for
the optimizing jump time & of (52). We now discuss the
GLR technique of [8] and [9] which requires no inverse
of an nxn matrix. We treat the impuise input version of [8) and ;

{9) rather than the step input case; see Appendix E.

The GLR technique [9] requires a Kalman-Bucy A-filter
for each observation time j, k-M<j<k where k is the current
time and M is the length of the sliding window. 1In our notation
and for the jump system (73) and (5) that algorithm utilizes

the maneuver signature matrix G(k,j) in the form

G(k,j) = H(k) o(k,k=-1) Aj(k-1), k-M<j<k (123)

where Aj(k) is given by

Aj(3) = [I - K3(3) H(])] (124)

+It suffices to solve (48) for Ay(q,k). The inverse C'l(q;k)
needs only to be computed at the maximizing argument of (53)

when (55) is satisfied. Since jumps are infrequent (55) will

be satisfied only infrequently. Consequently, inverses

are seldom required.




Aj(k) = 490 (k,k-1) Aj(k-1) (125)

We make the definitions

AHg (k)

H(k) (126)

AHj (k) = H(k) ®(k,k-1) Aj(k-1), j<k (127)

At each observation time k the following matrices, having

been computed previously at time k-1, are held in storage:

Aj(k-1), k-1-M<jgk-1 (128)
&;j(k-l), k-1-M<j<k-1 (129)
P4 (k-1), k-1-M<j<k-1 (130)
dj(k-1), k-1-M<j<k-1 (131)

where it is assumed that a sliding window of length M is being
used to detect and estimated the jump. At the current time k

the following matrices are computed:

Ag (k) = [I - Ky(k) H(K)] (132)
Rj(k) =40 (k,k=1) A4(k=-1), k-M<j<k (133)
AH4(K) = H(K) & (k,k-1) Aj(k-1), k-M<j<k (134)
AV4 (k) = AH4(k) AP4(k-1) AH3T(k) + Vi(k), k-M<j<k (135)
BKj (k) = 8P4 (k-1) AH§T(k) AVy~l(k), k-M<j<k (136)
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Svs (k) = Avj(k-1) + ARy(k) [Y1(k) - BHj(K) Bvj(k-1)],

k-M<j <k (137)
AP (k) = [I - AKj(k) BHj(k)] AP§(k-1), k-M<j<k (138)
dj(k) = dj(k-1) + aB3T(k) V171 (k) ;l(k). k-M<j<k (139)
£3(k) =a,T (k) Av3 (KD, k-M<3<k (140)

where
dk(k-1) = 0 all k (141)
Avk(k-1) = O all k (142)
aPx~l(k-1) = 0 all k (143)"

The above equations constitute a Kalman-Bucy pA-filter
for each candidate jump time j in the window k-M<j<k. The
estimate &bj(k) is the optimal estimate at time k of Axp when
the jump time p coincides with the candidate jump time j.

If the jump threshold is exceeded at the maximizing j = p

of (140) the optimal estimate of x(k) is given by, (9],
x(k) = x3(k) + Ag(k) Avp(k) (144)
and its covariance by

P(k) = P1(k) + Ap(k) APH(k) AT (k) (145)

+The initial covariance APk (k-1) jg defined as the identity

matrix I times a very large number.
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The sequentially updated Kalman filtering technique, [10]

and [ll], is used in [8) and [9] to avoid the matrix inverses

in (136) and (139) for the case when some of or ail the components of
the measurement vector are uncorrelated. Note that the maximizing
jump time j is easily obtained from (140), requiring only

Mn multiplications.

An analysis of the GLR algorithm requirements for storage
and multiplications per storage update is given in Table 7
for the approach of [8) and [9]. Let the storage requirements

be denoted by Mg.. The storage requirements are

Msc = (M'l)Mlc + M2C (146)
where
2
Mic = 3%— + %ﬂ (147)
2
Mac = 38° + 2nm + m2 + %E (148)

The differences in storage requirements between the above

approach and our approach are:

nZ + n (149)

MM)c = Mic -:M1

2
MMac = Mac - M} = nm + 53— +n - 3F (150)
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Define
AMge = Mge - Mg (151)
as the difference in storage requirements for the two approaches.
For sliding windows with M>1 we have the inequality
AMge > (M-1) [n2 + n) (152)
Let the number of multiplications be denoted by N for

the approach of [9]. The number of multiplications needed

to update the stored matrices are

Ne = (M-2) Njg + Nog (153)
Where

Nic = n3 + 5 n2m + n2 + 4nm + n+m (154)

Nac = n3 + 9n2m + 2n2 + 8nm + 2n + 2m (155)
Define

AN2c = N2¢ - N2 (156)

We have the inequality

AN2c > 6 n2m + 2n2 + 3nm (157)
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It is not fair to make a direct comparison between
Njc and Nj since the approach of [9] provides the estimate
&;j(k) for each j in the sliding window and ours does not.
In order to make a fair comparison we must add in the number
of multiplications needed to solve (48) for Ky(q,k). Since
C(q;k) is a symmetric matrix, the Cholesky method, [18],
may be employed to solve (48); the'number of multiplications

required are
=n- 2n< n
N3-6 + = + 3 (158)
Since we employ a search procedure to maximize (53)
it is not necessary to solve (48) at each q in the sliding
window. Let us assume at the very worst that we will need

to evaluate (51) at M-2 observation times in the sliding

window; that is, we need not solve (48) at two points. Define

ANjc = N1c - N3 (159)

We have the inequality

AN1c >3 n3 + 4n2 (160)
Define
ANg = (M=2) A Njc + A Noc (161)
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For sliding windows with M>2 we have the inequality

3
ANG > (M-2) [23° + 4n2) (162)

The inequalities (152) and (162) demonstrate the savings
in storage and in multiplications provided by our GLR technique

as compared to that in [9].




TABLE 7
CHANG AND DUNN'S GLR ALGORITHM REQUIREMENTS :*

STORAGE AND MULTIPLICATIONS PER STORAGE UPDATE

' k = CURRENT OBSERVATION TIME
3 n = DIMENSION OF STATE VECTOR x
] m = DIMENSION OF MEASURMENT VECTOR z
M = LENGTH OF SLIDING WINDOW

I. STORAGE REQUIREMENTS

MATRICES DIMENS ION STORAGE REQUIREMENTS
1. {Aj(k): k-M<j<k} nxn Mn2
2. {A;j(k): k-M<j<k} nxl Mn
3. (aP5(k): k-M<j<k) nxn w2 oth)
4. {d(k): k-M<j<k} nx1l Mn
] 5. AHj(k) - DUMMY MATRIX ° mxn nm
: 6. AV4(k) - DUMMY MATRIX mXm m2
; 7. BMKj(k) - DUMMY MATRIX nxm nm

TOTAL STORAGE = (M-1) M]lc + M2¢ where

3n2 5n
Mle =53~ *+ 2
3n2
M2c = —— + 2nm + m2 + %ﬂ

*Impulse input case.




2. Eq.
¥ 3. Eq.
4. Eq.
5. Eq.
6. Eq.

7. Eq.

Nic

Noc

EQUATIONS _

(137)
(138)
(139)
(134)
(135)
(136)

TABLE 7 (continued)

! | | 1. Egs. (132) and (133) for Aj(k),

k-M<j <k

for Kﬁj(k), k-M<j<k
forpP5(k), k-M<j5k
for d5(k), k-M<j<k
for o Hj(k), k-Mcj<k
for aAV5(k), k-Mcick

for AKj(k), k-Mcick

n3 + 5n?m + n2 + 4nm + n+m

II. MULTIPLICATIONS TO UPDATE STORED MATRICES

NUMBER OF MULTIPLICATIONS*

esne WOE) GEE ol eend
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(M-1) n3 + nZm

M2nm

M2n2m

Minm + m]
(M-1) 2n2m
M[n2m + nm]

M[n2 + n)

'POTAL MULTIPLICATIONS = (M-2) Njc + Npc where

n3 + 9n2m + 2n2 + 8nm + 2n + 2m

*The sequentially updated Kalman filtering tec’inique, [10] and
[11], is used.




7. BANK OF A-FILTERS USING DECOMPOSITION OF THE MANEUVER

SIGNATURE MATRIX: ALGORITHM II

The GLR technique [9] which uses the maneuver signature
matrix defined by (123) - (125) requires the computation and
storage of the matrix Aj(k) for each observation time j in
the past. From Table 7 we see that this requires the following

number of multiplications:

N_ = (M-1) n3 + n2m (163)

for sliding windows of length M. From Table 7 we note that
this matrix is the only one which requires multiplications
proportional to the third power of n. It follows that Na'

is proportional to n4 when M>n.

The dependence of N, on M can be removed by using our

decomposition (42) or (122) of the maneuver siynature matrix.

We develop this idea next.

Consider the employment of a bank of Kalman-Bucy constant
A-state filters for a moving window of length M. That is,
at each j, k-M<j<k, we employ the constant A-state filter
defined by (41) - (43). The fjltering equations are given

in Table 8. The GLR algorithm is as follows.
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TABLE 8

FILTERING EQUATIONS FOR THE CONSTANT A -STATE SYSTEM
{(j = CANDIDATE JUMP TIME)

8 Y4 (k+1]k) = Ay (k) , kyi-1

A Py (k+1]|k) =aP; (), kyj-1

ayy (k) = az(k) = pH(K) AY;0k|k-1), k>3
AV (k) = AH(K) 8B (k|k-1) AHT (k) + AR(K), >3
A (k) =8B, (k|k-1)aH" (k) 2V ), kS

Y N = $ N - K. k N k ’ j

Ay tk) ij(klk 1) +8K5tk) AGK), dej
AP (k) = [T 0K (k) 8H()] AR, (kIk-1), k23

where k = current observation time and

A H(k) = H(K) ¥ (k), all k

AR(K) = R(k) V,"1(k) R(k), all k
Az(k) = z(k) - H(k) ;l(k). all k
APj(j-l) = ¢ I, ¢ a very large number
Eyj(j-l) =0

y(0) =1I

y (k) =20 (k,k-1) y (k-1), k>0

a¢ (k,k-1) = [I - K, (k) H(k)] o(k,k-1), k>0

(1)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

(x)

(xi)

(xii)

(xiii)

(xiv)

(xv)




At each observation time k the following matrices, having

‘been computed previously at time k-1, 6are held in storage:

¥(k-1) (164)
A}j(k-l), k-1-M<j<k-1 (165)
AP (k-1), k-1-M<j<k-1 (166) :
a4 (k-1), k-1-M<j<k-1 (167)

At the current time k the following matrices are computed:

¥ (k) = & (k,k=1) ¥ (k-1) (168)
AH(K) = H(k) ¥(K) (169)
AV3(k) =b8H(k) BPj(kik-1) A BT (k) + AR(K), k-M<jck (170)
AKj(k) =APj(klk-1) AHT(k) AV3~1(k), k-M<jz<k (171)
ayj(k) =8y;(kik=-1) +aK§(K) Yy(k), k-M<j<k (172)
aPj(k) = [I -aKj(k) AH(K)] AP§(k-1), k-M<jck (173) |
dj(k) = dj(k-1) + ABT(k) AR “(k) Az (k) k-M<jgk (174) !
Lyk) = dy3T(k) AAYj(k), k-M<j<k (175)

Ayk(k-1) =0 (176)

APg(k-1) = c I, c a very large number (177a) 1
dg (k-1) = © (177b)

!
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The estimate Ayj(k) is the optimal estimate at time k
ofV'l(q)qu when the candidate jump time j coincides with
the observation time g+l. Note that the filter for &}j is
initiated by assumiﬁg that the a posteriori jump Axgq occurs
at time j-1. If the maximizing 3 of (175) satisfies (55)

~

the optimal estimate Ax(k) is computed as

Ax(K) = ¥(k) & y3 (k) (178)

and its covariance as

AP(K) = ¥ (k) APg(k) vT (k) (179)

An analysis of the above GLR algorithm requirements for
storage and multiplications per storage update is given in
Table 9. The analysis assumes the sequéntially updated Kalman
filtering technique, {10} and [11l], is used. Let the storage

requirements be denoted by Mg. The storage requirements are

Mg = (M-1) Mj1g + M2g (180)
where
2
Mg = 3= + 32" (181)
n2 2 5 n
M2g = > + 2nm + m< + 3 (182)
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TABLE 9
REQUIREMENTS OF NEW GLR ALGORITHM II -~ BANK OF CONSTANT A-STATE
FILTERS USING DECOMPOSITION OF MANEUVER SIGNATURE MATRIZX:

STORAGE AND MULTIPLICATIONS PER STORAGE UPDATE

k = CURRENT OBSERVATION TIME

DIMENSION OF STATE VECTOR x

o]
n

DIMENSION OF MEASUREMENT VECTOR 2z

LENGTH OF SLIDING WINDOW

I. STORAGE REQUIREMENTS

MATRICES DIMENSION STORAGE REQUIREMENTS
1. g ' 2
. y(k) : nxn n
2. {,&j(k):k-udik} nx1 Mn
3. {4 0): k-Mcjgk) nxn welntl)
4. {dj (k) : k-M<j<k} nxl Mn i
5. AH(k) mxn nm
6. AV, (k) moxm m2
7. AKj (k) ) nxm nm
TOTAL STORAGE = (M-1) M,, + M,, where
2
n 5n
Ma=3 *3
2 ¥
“2&’%‘ +__2nm+mz+%-xl
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TABLE 9 (continued)

II. MULTIPLICATIONS TO UPDATE STORED MATRICES

L |
g
|

EQUATIONS NUMBER OF MULTIPLICATIONS®*
1. Eq. (168) for ¥(k) n3
2. Eq. (172) for A“y).(k), k-Mj &k M 2nm
3. Eq. (173) for 4P, (k), k-M<j<k M 2n%m
4. Eq. (174) for dj(k), k-M<j &k M{nm + m]
5. Eq. (169) for Mi(k) n’m
6. Eq. (170) for aV,(k), k-Mcjck Min’m + nm]
7. Eq. (171) for AK,(k), k-Mcj<k M(n + n]

TOTAL MULTIPLICATIONS = (M-2) N + N where

14 2d

2

N = 3n2m + n“ +4nm +n + m

12

Nzd = n3 + 7n2m + 2n2 + 8nm + 2n + 2m

*The sequentially updated Kalman filtering technique is used.




Note the differences

nd

Mic - Mig
Mpc - M2q = n?

Therefore, the decomposition (42) or (122) provides a savings

in storage of (M-1)nZ2.

Let the number of multiplications be denoted by Ng for
the new GLR algorithm composed of a bank of constant A-state
filters using the decomposition of the maneuver signature
matrix. The number of multiplications needed to update the

stored matrices are

Ng = (M-2) Njg + N2g

where

3n2m + n2 + 4nm + n + Mm

Ni14

n3 + 7n2m + 2n2 + 8nm + 2n‘+ 2m

Nag

where we have assumed that all elements of the measurement
vector are uncorrelated and the sequentially updated Kalman

filtering technique is used.

54

(183)

(184)

(185)

(186)

(187)
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I
I
I
I
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Note that Njg is not a function of the third power of

n and that
Njc - Njg = n3 + 2n2m _ (188)
Nyc - N2g = 2n2m (189)

Consequently, the decomposition provides a savings of

(M=-2) [n3 + 2n2m) + 2n2m (190)

for the approach of using a bank of constant A-state filters.

Additional savings in multiplications are realized if
the process noise Q(k) =0, for all k, and if ¥(k) is defined by
¥(k) = P1(k) &¢T(0,k) (191)
Note that Y¥(k) appears only in the defintion of AH(k), Eq.

(169), in the equations of the constant A-state filter. It

suffices, therefore, to compute AH(k) without computing ¥(k):

AH(k) = H(k) Py(k) ¢T(0,k) (192)

The number of multiplications is, in general,

2n2m (193)
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If ¢(k,0) is triangular that number is

ng3g+l)m (194)

In the above we are assuming that no additional multiplications

are needed to compute ¢( o k). The matrix ¥(k) is only needed

in (178) to obtain &;(k) when a jump has been detected. Since

jumps occur infrequently, the matrix ¥(k) needs computed infrequently
for the case of no process noise. Consequently, for the case

of no process noise, the highest power of n appearing in Table

9 is two. The total number of multiplications required is

at most

5Mn2m + 2n2m : (195)

In this noiseless case the matrix v(k) does not need to be stored

which results in an additional storage savings of nz.
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8. THE A-STATE FORMULATION FOR A PRIORI JUMPS

Define the A-state Ax(k,k-1l) as

ax(k,k-1) = X2(k,k-1) - x3(k,k-1), k>p (196)

This random variable satisfies

Ax(k,k-1) = ¢(k,k-1) Ax(k-1), k>p (197)

and, in particular

Ax(p,p-1) = Axp = 0 (q+1,q) AXq (198)

Using (18) and (19) we see that the state equation for ax(k,k-1)

is given by

Ax(k+1l,k) = Ady (k+l,k) Ax(k,k-1), k>p (199)

with initial condition (198) where

Ady (k+1,k) =¢(k+1,k) [I - Kyj(k) H(k)] (200)

The measurement equation for Ax(k,k-1) satisfies

Y1(Kk)

H(k) Ax(k,k-1) + Y3(k), k>p

since

Yi(k) = Ya(k), all k
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The sequence Y1(k) is Gaussian white noise, |17], with zero

mean and covariance

; E {Yy(k) Y1T(3)} = vi(k) 6§ all k (203)
Note that
Ax(k) = [1 - Kl(k) H(k)] Ax(k,k=-1) (204)

Consequently, if we have the optimal estimate Ax(k,k-1ik)

the optimal estimate Ax(k) = Ax(klk) is given by

&%(k) = [I - Kj(k) H(k)] &;(k,k—lik) (205)

Define the nxn matrix y,(k) as

¥y(1)

]
-

(206)

Yy (k) = Aby(k,k=1) ¥, (k-1), k>1 (207)

The matrix Yyw(k) is positive definite for all k; it has inverse
¥Yw l(k). We define a new constant A-state variable Ay (k,k-1)

as

Ax(k,k-1) = ¥, (k) By (k,k-1) (208)

It satisfies the constant A -state equation.

Ay (k+1,k)

by (k,k-1), k2p (209)
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Its measurement equation is given by

~

Y1(k) = aHy(k) By(k,k-1) + Y1(k)

where

AHy(K) =AH(K) Y¥y(Kk)

Comparing (201) with (74) we find that the maneuver

signature matrix G(k;p) satisfies

G(k;p) Axp = H(k) ¥y(k) ¥y 1(p) Axp

or, equivently,

. A =
G(k;p) xp Gy (k) Ga(k) Axp
where
C1(k) = H(k) ¥y (k)
-1
G2(p) =¥y (p)
Ncte that

Ga2(p) Ax-p = Ay(p,p-1)

Consequently, Eg. (213) may be written as

G(k;p) ax_ = ABHy(k) Ay(k,k-1)

p

(210)

(211)

(212)

(213)

(214)

(215)

(216)

(217)




Equations (214) and (215) constitute a decomposition of the
maneuver signature matrix into a matrix Gj(k) which does not
depend on the jump time p and a matrix G2(p) which does.

The product of the matrix G2(p) with Axp is a constant as

shown by Egq. (216).

For the case that the process noise Q(k) = 0 for all

k, we can take V¥y,(k) to be defined by

Yo (k) = Py(kik-1) ¢T(0,k), k>0 (218)

We rewrite (210) in the form

bzy (k) = AHy(k) Ay(k,k-1) + Av(k) (219)

where
Az, (k) = Yy(k) (220) 1
E {au(k) AuT(3)} = ARy (k) &kj (221)
ARy (k) = V1 (k) (222)

The filters of the two formualtions (the a posteriori and

the a priori) differ only in the defintion of the inputs

A% , ¥, Az and AR. Both formulations are equivalent and
their corresponding A-filters provide optimal estimates that
satisfy the identify (205). The optimal estimate Ax(k,k-1l)

is obtained from Ay(k,k-1) by using (208).
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9. NORMALIZED A-MEASUREMENT NOISE COVARIANCE

The A-measurement noise covariance matrix AR(k) (given
by (25) for the a posteriori jump formulation and by (222)
for the a priori jump formation) can be normalized to R(k)
by premultiplying Eq. (21) or Egq. (201) by the normalizing

matrix. PFor this purpose we need a matrix square root.

Since Vi(k) is a symmetric positive definite matrix it
may be written in a square root factored form (Kaminski, et. al.

[19]):

vik) = v¥ k), VT (k) (223)

where V¥ is a lower triangular matrix (zeros above the diagonal).
Square roots are not necessarily unique but a unique square

root may be defined using the Cholesky decomposition. We

assume the Cholesky decomposition is used and denote the square
root of a matrix with the superscript i and its transpose

by %T. The square root of the inverse of V(k) is denoted by

v (k).

Premultiplying (21) by the factor R%(kyV%T(k) rR™1 (k)

and redefining Az(k), AH(k) and Av (k) as

~

Az (k) = RAK)VIT(k) R-1(k) [z (k) - H(K) x1(k)] (224)




AH (k) = R¥k)v%T (k) R-1(k) ([H(K)]

AU(k) R%(k)V!’T(k) R—l (k) [z(k) - H (k) x2(k)]

we obtain the form (21) where the new Au(k) is a Gaussian

white noise sequence with zero mean and covariance

E {Av(k) 8uT(3)} = AR(k) Sk3

where

AR(k) = R(k)
which is the covariance of the measurement noise y (k) of (5).

The normalizing factor for the a priori jump formulation

(201) is

R¥x) v ';’(k)

The normalization is particularly useful for the case
that R(k) is a constant. 1If there is no jump, az(k) is zero
mean with covariance R(k). 1If there is a jump, apz(k) has
mean AH(k) Ax(k) and covariance R(k). Looking for a jump
may be avoided if the residuals pz (k) appear to be zero mean

with covariance R(k).
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10. EXTENSION OF APPROACH TO CONTINUOUS LINEAR STOCHASTIC

SYSTEMS
Consider the continuous linear discrete stochastic system
described by the vector (Ito) stochastic differential equation

di(t) = F(t) x(t) dt + T (t) dw(t), t> 0 (230)

and the vector (Ito) observation egquation

dz(t) = H(t) x(t) 4t + du(t), t>0 (231)

where x(t) is the n-vector state, F(t) and T (t) are, respectively,
nxn and nXr nonrandom, continuous matrix time-function, and
{(w(t), t>0} is an r-vector Brownian motion (Wiener) process

with

E{dw(t) dw(t)T} = Q(t) at : (232)
The observed process {Z(t), t 0} is an m-vector process, H(t)
is an mxn, nonrandom, continuous matrix time-function, and

{u(t), t>0} is an m-vector Brownian motion (Wiener) process

with

E{du(t) du(t)T} = R(t) 4t (233

where R(t)>0 . We assume that the system (230) and (231) is

observable.




The well-known continuous Kalman-Bucy filter [14,15]

is given by, [16],

X(t) = F(t) x(t) + K(t) [z(t) - H(t) x(t)], &0 (234)
P(t) = F(t) P(t) + P(t) FT(t) + r(t) Q(t) rT(¢t)
- K(t) H(t) P(t), t> 0 (235)
where ]
R(t) = p(t) HT(t) R-1(t) (236)

and where the formalized dZ(t)/dt is written as z(t). We i

have made the identifications Q(t) = ;(tlt) and P(t) = P(tit).

A jump in state with magnitude pxq occurs at time g

x(t*) = x(t) + axg for t = g (237)

Consider the three Conditions Hj, El and Hz. Let both x(t)

and x2(t) represent the state for the system described by
(230), (231) and (237). Let x)(t) represent the state for

the case that the jump magnitude Axq is zero (i.e., there

is no jump). Let £1(t), ;i(t) and £2(t) denote the Kalman-Bucy
filter estimates of the state (i.e., Egs. (234) - (236)) for {
the Conditions H), 51 énd H2, respectively. The relationship é'
between these estimates are similar to those given in Figure 1 |

for the discrete system. The gains for the three Conditions

are equal as well as the covariances.

64

S et i i it - Lo (A




~

The estimate x)(t) can be interpreted as follows. It

is identified with §2(t) up to time q

x1(t) = X2(t) teqg
At time gt the amount AXq is subtracted from the filtered
estimate x32(t) and the result is defined as

x1(t) = x2(t) - Axq, t = qt
For t>q the quantity satisfies Eq. (234).

We are interested in the difference between 22(t) and

x1(t) for t5q. We define this difference as

AX(E) = X2(t) - x1(t), tq

It has the initial condition
Ax(t) = pxgq, t =gt

Since both ;z(t) and x3(t) satisfy (234), the difference

AX(t) satisfies

dgtgt) = [F(t) - K1(t) H(t)) Ax(t), t>q*

where we have used the identity

~

za(t) = z3(t)

(238)

(239)




Define the nxn nonrandom, continuous matrix time-function
¥(t) as the solution to the differential equation

y(t) = [F(t) - Kj(t) H(t)] vy(t), all t

,_: ¥(0) =1

The matrix time-function wy(t) is positive definite and has

inverse w‘l(t). Define the new A-state variable aAy(t) as

ax(t) = y(t) Aay(t), txq*

The substitution of (242) into (238) gives

g%g = 0,t_>_q*

We note that Ay(t) is a constant and satisfies

ay (t) = v1(q) axq, t>q*

The measurement equations for jAx and Ay are given by

az(t) = H(t) ax(t) + av(t), txq*

az(t) = pH(t) A y(t) + Av(t), t>qt

H(t) y(t), all ¢t

z(t) - H(t) X1 (t),all t

Y1(t) = z1(t) - H(t) x3(t), all t

=Yo(t) = z3(t) - H(t) £2(t), all t

fh

(240)

(241)

(242)

(243)

(244)

(245)

(246)

(247)

(248)




Egs. (247) and (244) constitute the decomposition of the maneuver
signature matrix. The residual Yj(t) is the measurement noise
for the A-process. It is zero mean and it has the same covariance

as ylt), (17):

E{Aav (t) AUT(S)} = AR(t)S (t-s) (250)

where §(t-s) is the Dirac delta function and

MR(t) = R(t) (251)

If the jump time g were known and if the initial state
A7 (q) were normally distributed with mean &}(q) and covariance
AP(g) then the Kalman-Bucy filter applied to (243) and (246)

would provide the solution:

AY(t) = AK(t) [az(t) - AH(t) Ay(t)]
AP(t) = -AK(t) AH(t) AP(t)

where
AK(t) =aP(t) aHT(t) R™1(t)

Using (242) the optimal estimate ;(t) of x(t) is

X(t) = x1(t) + w(t) ay(t)

with covariance

P(t) = P1(t) +. w(t) aAP(t)yT(t)
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The jump time q is unknown and, therefore, must be estimated
along with Ay. For each t>q, we desire to obtain the estimates

&(t) and Ay (q(t),t) that render a minimum to the function

J(qg, Ay;t) = Iq Az(t)T AR(1)-1 az(1) dn
0

t
+ s laz(t) - aH(1) AylT AR(1)-1 [Az(1) - AH(1)Ay) dt

9
(257)

or, equivalently, a maximum to the log likelihood ratio

t
2(q.ay;st) = s Az(t)T AR(1)"1 Az(r) ar - J(q,ay;t)
0
(258)
The above integrals are Ito»integrals. For a fixed q, the
optimizing Ay(q,t) satisfies
C(q:t) B8y(q.,t) = D(q;t) (259)
where
t
C(q;t) =quH(r)T AR(T)"1 AH(T) dn (260 )
¢ .
D(q:t) = s AH(MT AR(-D az(1) an (261)

q
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We make the definitions
c(t) = AH(t)T AR(t)-1 AH(t)

d(t) = A H(t)T a R(t)-1 A z(t)

we note that d(t) is an nxl-vector Brownian motion process.

In view of (259), Eq. (258) becomes

pT(q;t) C~l(g:t) D (q;t) (264)

L(g,ay(g,t);t)

[}
—

t t
S dT(x) dr) cl(g;t) [ s d(1) dt )
q q

(265)

The maximizing argument of (265) is denoted by q(t).

et

Returning to Egs. (255) and (2-6) the Kalman gain K(t)

satisfies

K(t) = Kl(t) + ¥y (t) AK(t)

The continuous case addressed in this section is being

treated in more detail in another report.

B T ——_—
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:! 1l1. THE SIMILARITY OF JUMP ESTIMATION AND BIAS ESTIMATION

[20],

State Dynamics

X = AX + Bb + w

Bias Dynamics

b=o

Observation Equation

z = HX + Cb +y

The bias estimation problem can be expressed as follows,

(266)

(267)

(268)

where the state x is an n-vector, the bias b is a p-vector,

the observation vector y is an m-vector, w is the process

noise vector with

E[lw(t) wT(s)] = Q(t) § (t-s)

and vy is the observation noise vector with

Elu(t) vuT(s)] = R(t) & (t-s)

The vectors w and y are assumed to be independent.

A and B are time varying.
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Friedland [20] was the first to show that the optimal

estimate x(t) of the state x(t) could bhe expressed as

t— e o

X(t) = x1(t) + S(t) b(t) (269)

L d

where xj(t) is the bias-free estimate (i.e., the filter assumes
b is zero even though it is nonzero), h(t) is the bias estimate
which is computed using the bias-free residuals z(t) - H(t) x3(t)

and S(t) satisfies the differential equation

S(t) = [A(t) - K1(t) H(t)] S(t) + B(t) - Kj(t) C(t) (270)

»

with initial condition

S(0) = 0 (270)

The matrix Kj(t) is the Kalman gain for the bias-free estimate.

The covariance P(t) of x(t) is shown in [20] to satisfy

P(t) = P1(t) + S(t) Pp(t) sT(t) (271)

where Pj(t) is the covariance of xj(t) and Pp(t) is the covariance 1

of b.

Egs. (255) and (256) have the same form as (269) and
(271) . The bias estimation problem is equivalent to the jump
.- estimation problem of estimating the jump b(0) which occurs f
at time 0; that is, the value of the jump state b is zero |
before the jump apd b(0) afterwards. The jump time 0 is known.

The bias estimation problem for discrete systems is also treated

X SR

amm =

in [20]. An extension to the problem of indirect observations

is given in [24]. n




Friedland's bias filtering technique is extended in [21]

to the case of estimating a time varying bias

b = F(t)b (272) i
The solutions have the forms (269) and (271).

Mendel and Washburn [22] show that the estimation of

the bias vector b can be interpreted as being equivalent to

the estimation of a constant that is observed through white
noise. That result compares with Egs. (43) and (246). That

interpretation is reviewed in [23].

The structure (269) is shown in [25] to hold for the
optimal state estimate under the uncertainty of different

failure modes.

The problems of jump estimation and bias estimation differ
in the following way. The bias estimation is that of estimating
a parameter which undergoes a single jump from a zero value.

The jump estimation problem is that of estimating a parameter
that undergoes multiple jumps from nonzero values. Once a
jump has been detected and estimated it is necessary for the

jump estimator to pass this information on to the original

state estimator and to reinitialize for the next jump. The
estimator described by (269) is for single jump systems.

The estimator described by (255) is for multiple jump systems.




A nonlinear algorithm is given in [26]) - [28] for detecting
and estimating sudden changes of biases in linear stochastic
systems. The method is based on maximum-likelihood estimation

[29]).

An extension of Friedland's bias filtering technique

to a class of nonlinear systems is given in [30].

A




12.\ CONCLUSION
\

We have presented two recursive GLR algorithms for detecting
and estimating maneuver states and parameters in the engagement
between an anti-ship cruise missile and a ship defense interceptor.
A decomposition of the maneuver signature matrix is used to
derive the algorithms. The computational and storage requirements
are substantially less than those of other GLR algorithms. The
decomposition divides the maneuver signature matrix into the
product of two matrices. One matrix depends only on the current
observation time while the other depends only on the jump time.
The product of the latter matrix and the jump magnitude vector
provides a jump error state vector which is constant. This
constancy facilitates using the GLR approach. The other matrix
of the decomposition represents the new maneuver signature matrix
for the new constant jump error state vector. The nondependency
of the maneuver signature matrix on the jump time avoids storing
large matrices and computing large matrix products for each

past observation time.ﬁi\

Previously the most efficient GLR algorithm for the detection
and the estimation of jumps required (at each current observation

time) multiplications on the order of

Mn3 + 5Mn2m
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where n is the dimension of the state vector, m is the dimension
of the measurement vector and M is the number of candidate jump
times in the past. As a consequence of the decomposition the
GLR algorithm II presented herein requires multiplications on

the order of

n3 + 3Mn2m

for general discrete linear stochastic systems and

5Mn2n

for such systems without process noise. This is a substantial
savings in computation. The corresponding savings in storage

is on the order of an.

Algorithm II is a bank of Kalman-Bucy constant A-state
filters that use the decomposition of the maneuver signature
matrix. There is a filter for each candidate jump time in the
past. As a result, the reguired computations for jump detection
and estimation are performed at each observation time. In contrast,
algorithm I, using minimal computations, computes and stores
at the current observation time an information matrix for later
processing. The appropriate information matrix for any candidate
jump time is obtained simply by taking the difference between

the information matrix of the current time and that of the candidate
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jump time. The required computations for jump detection and
estimation are performed in the vacinity of a jump or false

alarm. While algorithm I requires more computations at an observat
time than algorithm II to detect and estimate jumps. it is not
necessary that the calculations be performed at each observation
time. Consequently, algorithm II is more applicable for’systems
with frequent jumps and algorithm I more applicable for systems

with infrequent jumps or maneuvers.

The GLR algorithms I and II are a computation improvement
over existing techniques, algorithms and methods [1,2), [4-6],
(81, [9], and [20-38] for adaptively estimating the state of
a linear stochastic system undergoing abrupt changes (e.gq.,

maneuvers) in state.
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APPENDIX A
RELATION BETWEEN KALMAN GAINS

The argument of the following variables is k: H, R, V,

V1, AV, K, K; and AK. The argument of AP is k-1 and the argument

1
of ¢ is (k,k-1). The argument of P and P1 is (klk-l).

we have from Eq. (B-7)

v=\71+noAPoTHT

Postmultiplying (A-1) by V 1 gives

HoAPOT T v! =1 - vlv“1

Premultiplying (A-2) by Kl gives

K. HONW O HV 1 = K, [1-V v

1 1

The matrix AK satisfies

AKAV = [I-K,Hoa po'ruTvl“lR

Postmultiplying (A-4) by AV'IRVJ"1 gives

1

1

Axnvl'l =0APo THIV™ -xlnoApoTnTv'




Substitution of (A-3) into (A-5) gives, in view of (B-9),

AK[I-HK,] =¢aPo HV ! + K, v.v 1k (A-6)
1 11 1

Since

K = PHYV ! (a-7)
and since, from (B-6),

PHV L = 1>lnTv"1 +6APoTHIV L (A-8)
it follows that

K = K1V1V-1 +0AP® THIV L (a-9)
Substituting (A-9) into (A-6) gives

K = K, + AK[I-HK,] (a-10)




APPENDIX B
RELATION BETWEEN PREDICTED MEASUREMENT RESIDUAL COVARIANCES

The matrices V(k), V,(k), P(k|k-1) and Pl(kl k-1) are given by

V(k) = H(k) P(k|k-1) HT (k) + R(k) (B-1)
v, (k) = H(k) P (k|k-1) H' (k) + R(k) (B-2)
P(k|k-1)= & (k,k-1) P(k-1)0 T (k,k-1) +T (k-1) Q(k-1) T T (k-1)

| (B-3)
P, (k|k-1) =¢(k,k-1) P (k-1)¢ " (k,k-1) + T(k-1) Q(k-1) T" (k-1)

(B-4)
Substituting
P(k-1) = Pl(k-l) + AP (k-1) (B-5)
into (B-3) gives, in view of (B-4),
P(k|k-1) = Pl(klk-l) + ®(k,k-1) AP(k-1) OT(k,k-l) (B-6)

Substituting (B-6) into (B-1) gives, in view of (B-2),

Vik) =V, (k) + H(K)® (k,k-1) AP (k-1) oT (k,k-1) HY (k) (B-7)

The matrix AP(k|k-1) is given by

AP(k|k-1) = [I-K; (k)H(k)1 (k,k=1)aP (k=1)8 T (k,k-1)
' [7 K, (K)H(K) 1T




1
1
1
N
.

|

Recall the identity
R(K)V," (k) = [I-H(K) K, (k)] (B-9)
Premultiplying (B-8) by H(k) and postmultiplying that product by
HT(k) gives, in view of (B-9),
H(k) AP(k|k-1) HT(k) = R(k)vl-l(k) F(k,k-l)vl(k) R(k) (B-10)
where
F(k,k-1) = H(k)0 (K,k-1) AP(k-1) T (k,k-1) HT (k) (B-11)
The matrix AV(k) is given by

AV(K) = H(k) aP(k|k-1) H' (k) + R(k)gl-l(k) R (k) (B-12) -

Using (B-12) to --~lve for F(k,k-1) in (B-10) gives

~

F(k,k-1) = V, (IR (k) AV(K) R1() V00 - V(0 (B-13)

Equating (B-11) and (B-13) and substituting the result into

(B-7) gives

V(k) =V, (k) R 1(x) av(x) R (k) v, (k)
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APPENDIX C

RELATION BETWEEN STATE ESTIMATES

We desire to show that the state estimates satisfy

x(k) =%, (k) + 8x(k) (c-1)

We assume that

~

x(k-1) = ;1(k—1) + &k(k-l) (C-2)

The individual estimates satisfy the following egquations

x(k) = [I-K(K)H(K)] o (k,k=1) x(k-1) = K(k)z (k) (C-3)
%, (k) = [I-K (K)H(K)] o (k,k-1) ::l(k-l) + Ry (k)2 (k) (C-4)
Ax(k) = [I-AK(k)H(K)1a® (k,k-1) ax(k-1) +pK(k)

[z(k) - H(K) x;(k)] - (c-5)

Using (C-2) - (C-5) it follows that (C-1l) is satisfied provided

K(k) = K; (k) + aK(k) [I-H(k) Kl(k)] (C-6)
[I-K(k)H(k)] ¢ (k,k-1) = [I- pAK(k)}H(k)] a9 (k,k-1) (C-7)

Substituting the definition of A% (k,k-1) into (C-7) results in an
equation which holds provided (C-6) holds. The validity of (C-6)

follows from Appendix A.
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APPENDIX D

RELATION BETWEEN COVARIANCES

We wish to show that

P(k) = Pl(k) + AP (k) (D-1)
given that
P(k-1) = Pl(k-l) + AP (k-1) (D-2)

The argument of zhe matrices H, K, Kl’ AK and AR is k. The

argument of § and A$ is (k,k-1).

The covariance P (k) satisfies

P(k) = [I-KH] P(k|k-1) (D-3)

From Eq. (C-7) we have

[I-KH] = [I-AKH] [I—KlH] (D-4)

From Egq. (B-6) we have

. P(k|k-1) = P, (k|k-1) + 0aB(k-1)¢" (D-5)
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The covariarv.ce Pl(k) satisfies

oo P, (k) = [I-K,H] P, (k|k-1)

Subsgtitution of (D-4) - (D-6) into (D-3) and making use of the

definition

4% = [I—KIHIQ

results in

P(k) = [I - AKH] [Pl(k) + A®AP (k-1)¢ T]

or, equivalently,

P(k) = P, (k) - SKHP, (k) + [I-AKH] AGAP(k-1)® T

The covariance AP(k) satisfies

AP (k) = [I-AKH] A®AP(k-1)40 T

Making use of (D-7), Eq. (D-10) can be written as

[I-AKH] A0AP(k-1)0T = AP (k) + AP(k)HTR-llelT

(D-6)

(D=7)

(D-8)

(D-9)

(D-10)

(D-11)




since

-1

v T
vV, ° R = [I-HK;]

It follows from (D-12) and

T
H Pl(k) = R Kl

That

1

-17 T
AKHPl(k) AK AR R V1K1

where

-~

AR = R V, 1

1 R

Substitution of (D-11) and (D-14) into (D-9) gives

1

P(k) = Py (k) +8B(k) + BRPOOE" - AKARIR LV K, T

Eq. (D-1) now follows since

AP (k)HT = AK AR

e e RN A
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APPENDIX E

CHANG AND DUNN'S SYSTEM FORMULATION:
DISCUSSION OF IMPULSE INPUT VERSION

The following system step input case is considered in [8]

and [9]):
X(k+1l) = A(k+1,k) X(k) + B(k+1,¥)u(k,q) + T'(k)w(k) (E-1)
u(k+l,q) = F(k+l,k) u(k,q) (E-2)
u{k,q) = 0 for k<gq (E-3)
-ulq,q) #0 (E-4)

where F is the state transition matrix for the control variable
u and the other variables are as defined in Egs. (1) and (3) of

Section 1. The unknowns to be estimated and detected are u(k,q)

and q.

We note two differences between the dynamics defined by

(1) and (2) and that defined by (E-1) - (E-4). First, the matrix
F is taken as the identity matrix in Eg. (2). Secondly, the value

of u is zero before the jump in the above formulation but may be

nonzero in Eq. (1l).

Eqs. (E-1) - (E-4) and Eq. (3) is the "step input to the i
system" case. It is described in [3] as the "dynamic step” case )

in which the input matrix B and the matrix F are identity matrices. il

Ancny
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The step input case can be transformed into the "impulse
input to the system" case by augmenting the state vector X with
the control vector u. Lot x denote the augmented state vector. ;

The augmented system's dynamics are given by <

x(k+1) = ¢ (k+1,k) [x(k) + qu qul + T(k) w(k) (E-5)
i
where :
|
A(k+1,k) B(k+1,k)
¢ (k+1,k) = [ ] (E-6)
0 F(k+1,k)
|
ax_ = 121 uiq,@ (E-7)
q I !

and where T (k) is redefined as the augmented matrix as in

Eq. (10).

In this report we are interested in the general formulation

of (E-5) in which ¢, qu and ' are arbitrary, not necessarily

satisfying Egs., (E-6), (E-7) and (10). We desire to apply
Chang and Dunn's GLR algorithm in our context. Their algorithm

consists of a bank of Kalman-Bucy filters to estimate the jump

qu. The filters are defined by Egs. (123) - (127), (132) ~ (138)

and (142) - (143) in Section 6. The estimate Avq(k) represents

the optimal estimate of qu given the measurements up to time k.

Consequently, Chang and Dunn's GLR algorithm as made use of in

this report is the impuise input version of their technique as

described in [8] and [9] for the "step input" case.




ot A A

For a particular problem in the form of (E-1) - (E-4) it
is more efficient to use the "step input" case filters as
described in (8] and [9] than it is to use the filters of the
augmented "impulse input" case. In this report, however, we
are interested in the "impulse input" case when it is not

necessarily reducible to the "step input" case.
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