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Abstract. It isshown that CA(±) + do(D(A)) + ir(D(A)) == (K + Q) Iog(K + Q) and

CA(: + do(D(A)) = Q(K + Q) log(K + Q) in the cases of DFT, vector convolution, and
matrix mutliplication. Here CA(j) is the additive complexity of a (bi)linear algorithm
A for the given problem, D(A) and b(A) are the two acyclic digraphs that represent A,
each of them is obtained from another one by reversing directions of all edges, ir(D) and

do(D) are two numbers that are introduced to measure the structural deficiencies of an
acyclic digraph D. K and Q are the numbers of outputs and input-variables. do(b(A)),

do(D(A)), and ir(D(A)) characterize the logical complexity of A. Also lower bounds on
CA(I) + do(D(A)) and on CA(± are expressed in terms of algebraic quantities such as
the ranks of matrices and of multidimensional tensors associated with the problems. .
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1. Introduction.

The design and analysis of arithmetic algorithms for Discrete Fourier Transform, DFT,

convolution of vectors, CV, cyclic convolution of vectors, CCV, and matrix multiplication,

MM, are among the central problems of algebraic complexity theory, cf. [1--]. In this

paper we analyze the arithmetic and logical complexity of such algorithms. We focus on

the classes of linear and bilinear arithmetic algorithms (see the definitions in Sections 2, 3

where we basically follow [1-41). There are three reasons for that choice. First, the linear

and bilinear algorithms are natural ones. It is easier to analyze and to implement them.

Secondly, the fastest known arithmetic algorithms for DFT, CV, CCV, and MM are linear
and bilinear ones. Thirdly, it is known that all arithmetic algorithms for a linear or bilinear

arithmetic computational problems such as DIFT, CV, CCV, and MM can be turned into

linear or respectively bilinear algorithms for the same problem and the total number of

arithmetic operations in the algorithm remains the same up to a constant factor, cf. [3,
pp. 34-38, 1171.

For the analysis of the arithmetic complexity of linear and bilinear algorithms, it is
technically convenient to estimate separately C(±), C(*), and Cc, the total numbers of

additions/subtractions, nonscalar multiplications, and scalar multiplications respectively

involved in the algorithm. This can be considered the first step of the study followed by

the estimates for the bit-complexity of the algorithms, cf. 15]. So far the further progress
in the area has been blocked by the two following problems. Estimate

i) Cnin(*) for MM (cf. [6,71),

and

ii) Cmin(±) for DFT, CV, and CCV (cf. [4, 8-11]).

In this paper we seek for lower bounds on Cmin(±), the additive complexity of a given

(bi)linear problem, that is on the minimum CA(±) over all (bi)linear algorithms A for that

problem. (This also had led us to the study of logical complexity of algorithms.) We focus

on the cases of DFT, CV, CCV, and MM.

Despite the long and intensive study of the problem (cf. [1-4]), all known lower

bounds on Cn,i(±) still rely on the methods of substitution due to [12--141]; cf. also [15],

consequently the lower bounds range between K and K -- Q. Here Q and K are the

total numbers of input variables and respectively of (linearly independent) outputs of the

algorithm. Ilowever, those methods themselves by their nature cannot give even the bound

K + Q + 1. For comparison rc t the best known upper bounds on C(±) have the

asymptotic order (K + Q) log(R -, in the cases of DFT, CV, and CCV, cf. [8,9], and

(K + Q)a, a ;z 5/4, in the case of MM, cf. [6,7] (a in [71 is less than [6] by ; 0.01

but the approach of [71 substantially uses the earlier designs whose origin is surveyed in

detail in [6] while in the otherwise successful paper [71 the confusing name, "Sch6nhage's

construction", does not help the reader).
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So far the lower bound K + Q + 1 on the C(±) has been obtained for neither of the
problems (DFT, CV, CCV, MM) unless the model of computation is seriously restricted as
in [16] where the bound fl(K + Q) log(K + Q) was established by an ingenious method
but only under quite a strong requirement that the constants of the algorithms be bounded
by 1.

In this paper we do not impose any restrictions on our (bi)linear model of computation.
In Section 5.1-5.3 we associate (bi)linear algorithms A with acyclic digraphs D = D(A).

Their vertices have outdegrees 2 and 0 and represent the ± operations of A and the
input-variables of A respectively. Then CA(±) equals the number of vertices of D that
have outdegree 2. In order to estimate that number, we try to partition all vertices of D
into p(D) levels (p(D), the profundity of D, is defined in Section 5.2) whose cardinalities
are bounded from below by -, the number of linearly independent outputs of the problem.
Then

p(D)r <_ CA(±).

However, the desirable partition might not exist. In that case we show that D must have
some defects in its structure. To be more precise, we formally define ir(D) + do(D), a
measure for structural deficiency of an arbitrary acyclic digraph, D = (V,E). We fix
Lo(D), a basi, set of vertices of D. (Lo(D) could be the set. of all vertices of D of indegree
0 but for D = D(A) we always choose Lo(D) as the set of outputs of A.) Then we say
that regularly all vertices of outdegree 0 (inputs of A) are equally (and hence maximally)
removed from Lo(D) (in ternis of the longest paths from Lo(D) to the vertices of outdegree
0). In the general case D can be irregular. Then we estimate ir(D), the total deviation of
vertices of outdegree 0 from those farthest from Lo(!)) positions. The ir(D) measures the
irregularity of D and will be called the irregularity number of D.

The disorder generated by an edge (u, v) from u to v, u 3 v, is defined as the
difference between the positive lengths of the longest and the shortest directed paths from
u to v. The disorder around v is the maximum (for all u) disorder generated by the edges
(u,v) with the head v. The disorder number of D is the total disorder around all its

vertices.

Both numbers, ir(D) and do(D) measure the deficiencies of the logical structure of
the algorithm A represented by the digraph D(A). (Their study might also be of interest
itself.)

In Section 5.3 we show that both deficiencies can be corrected by a simple transfor-
mation of D. This transformation relies on joining some appropriate paths to D. In the
result of the transformation all new vertices have outdegree I and other vertices do not
change their outdegrees. If D = D(A), such transformation basically consists in arrang-
ing ir(D) + do(D) additional units to store sonic inputs and intermediate results of the
algorithm A. We prove that totally ir(D) + do(D) new vertices of outdegree I suffice
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to define a transformation of that kind that turns D into a new digraph D such that

ir(D) = do(-) = 0 and p(D) = p(D). Then the desired partition of D into levels exists

and defines the lower bound, p(D)r, on the number of vertices of the resulting digraph D

that have nonzero outdegrees. Yet the latter number equals CA(±) + do(A) + ir(D(A))

and can be considered the sum of additive and logical complexities of A. (The terms do(A)

and ir(A) can be alternatively interpreted as the measures for additional storage.) In the

cases of DFT, CV, CCV, and MM, p(D)r = fl(K + Q) log(K + Q) (see Theorem 5.3.1

and Equations (5.3.6)-(5.3.8) in Section 5.3). This defines nonlinear lower bounds on the

CA(±) + do(D(A)) + ir(D(A)) which are sharp up to a constant factor in the cases of

DFT, CV, and CCV.
This narrows the class of possible choices for the designs of fast algorithms for the

latter problems and also measures the sacrifices in the logical structure of such algorithms

which are necessary if the algorithms exist.
In the remaining sections (5.4 and 6) we study the lower bounds on the CA(±) +

do(D(A)) and CA(±). In Section 5.4 we prove that CA(±))+do(D(A)) h - ra(h)()

where s(h) equals 2 or 2k -- 1, 4 is the matrix of the coefficients of the given (bi)linear

problem, and r,(,4) is the p-rank of u. (The p-rank of a matrix y is defined in Section

4 as a generalization of the conventional rank, r = ro(#I).) We conjecture (Proposition
4.1) that for some constant a, 0 < a < 1, we have that rp(A) = f(K+Q) for p =

(K + Q)a in the cases where u is the matrix associated with DFT, CV, CCV, and MM.
We do not really attack that hard and interesting problem. Instead we establish other

bounds on rp(y) and hence linear lower bounds on CA(W) + do(A) that exceed K + Q

(see Theorem 5.4.2 in Section 5). Also we prove (see Corollary 5.4.2 in Section 5.4) that

at the very least any design of an algorithm A for DFT, CV, CCV, or MM such that

CA(±) + do(A) - o(K + 0) log(K + Q) must be a counterexample to our conjecture (that

is to Proposition 4.1).
Finally we observe that we can reverse the directions of edges of D(A) and choose the

set of input-variables of A as the basic set Lo(D) of the new digraph, D(A). Then our

construction give the lower bound CA(±) + do(D(A)) = fl(K + Q) log(K + Q) in the

cases of DFT, CV, CCV, and MM.

In Section 6 we estimate CA(±) from below. (Assume that the increase of the disorder

number of algorithms is not prohibitive.) We combine the approach of [161 with our

extension of the concept of tensor ranks (cf. [1, p. 4881 or [171, see also [18, 19]). We define
r(P(X)), the rank of an arbitrary polynomial P(X), and in particular, r(m), the rank of

any minor m of the matrix A(X), that defines a bilinear computational problem. Then

we show that

CA(±) > log2 r(m)

for any bilinear algorithm A for such a problem and for any minor of /i(X). This leads
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to open problems of estimating max,, log 2 r(m) or other related algebraic quantities. The

material of Sections 2, 3, 5.1, 6 is self-contained.

2. Linear and bilinear arithmetic computational problems.

Hereafter we assume that all linear and bilinear forms that we consider are homoge-
neous, unless otherwise stated and that all logarithms are to the base 2. We use the

following notation.

Notation. I, J, K, i, j, k are nonnegative integers, V is a vector, p is a matrix, r is
a (3-dimensional) tensor. detp is the determinant of p. (p)j 3 is the entry of p lying in

row i and column j, ( ), is the entry i of vector p. Similarly, the entries (r),jk of tensor
r are defined. t(p), b(po) is a linear, respectively bilinear form of indeterminates (K)i for

all ' with the coefficients from F. F is a field of constants. rxi and LxJ are the two

nearest integers such that Ix] x < [x. X(v) is o(O(v)) if X(v)/O(v) --. 0 for v --+ co.
X(v) is 0(0(v)), respectively fQ(0(v)) if there exist two constants co > 0, cl > 0, such
that X(v) < coO(v) for lvi > cl, respectively X(v) > coO(v) for lvj > c,. X(v) --- 0(v) if
simultaneously X(v) is 0(0(v)) and O(v) is O(X(v)). X, _, Z are vectors of indeterminates,
Xi = (X),, y, = (Y), Zk = (Z)k. x, = Yj z = 0 unless 0 < i < 1, 0 < i < J,

0 < k < K. fLk E F, f,3 k E F for all i, j, k. If S is a set then ISI is the cardinality of

S.

Definition 2.1. A linear (arithmetic computational) problem is a set of linear forms,

J-1
lk(Yf)-- E fjkYj for k = 0, 1, ... , K - I1. (2.1)

j=0

A bilinear (arithmetic computational) problem is a set of bilinear forms,

-1 J-1

bk(X,Y)= Z F ZftiAxty, fork=0,...,K- 1. (2.2)
i=0 j=0

Also a linear problem can be equivalently represented by the bilinear form, b(Y,Z), or by

the matrix, p such that

K-i

b(r, Z) = t ko(f_)zk, (P)jk = fik for all j,k. (2.3)
k =0

A bilinear problem can be equivalently represented by the trilinear form, t(X,Y,Z),

by the 3-dimensional tensor, r, and by the matrices i.X_), p(Y), (Z), such that for all
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i, j, k
K-1

t(X_, Z) = y bk(X,Y)zk, (),jk = fk, (2.4)
k=O

I-1

(_).= ifijxi,
i=0

J-!

(UYki= Ffj~ (2.5)
j O

K-I(Y(Z))jj = E,,,,,,,,,
k O

Here are some examples of linear and bilinear problems where m, n are given non-

negative integers. We represent a linear problem by b(:K, if) and M and bilinear problems

by t(X,Y,_Z) and Ms(X). The transiton to the representations (2.1), (2.2) can be easily

done with formulas (2.3)-(2.5).

Problem 2.1. (DFT, Discrete Fourier Transform in n + 1 points).

b(X, Z) = Zk '=0 WjkY,. (/A)j - wj k, w is a primitive (n + 1)-root of unity.

Problem 2.2. (CV, convolution of two vectors, or polynomial multiplication.
tCX__, r, Z) ='"n+n E

--K --- Z k=o zk j=0 Xk-jYj . (/M(X))jk Xk-j, where

x =0ifi<0ori > m, yj-0ifj >n. (2.6)

Remark 2.1. The matrix p(X) of CV is a particular case of a general (n + 1) X (m + n- -1)

Teplitz matrix, T(X); (T(X))jk = xk-j, j = 0, 1, ... ,n, k = 0, 1, .. . ,m + n. That

particular case is defined by the following relations.

x 0 for s <0 and for s > m.

CV is the problem of the evaluation of the coefficients of the polynomial in X, q(X)r(X)

where the coefficients of q(X) = Emo xiX' and r(X) = -- =o yj1 X are given.

Problem 2.3. (CCV, Cyclic convolution of vectors or multiplication of two n-the degree

polynomials modulo X" + ' - 1).

= xjYYj + E jcO

(U(X))k --Xk-I if _ k, (x(')).k - _. otherwise. (2.7)
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Here 3,k = 0, 1, ... ,n, =k + n + 1. (2.7) defines p(X) as the general (n + 1) X (n + 1)
circulant matrix that is the general (n + 1) X (n + 1) Teplitz matrix (cf. Remark 2.1),

where z, = xi+,, for i < 0.

Problem 2.4. (MM, matrix multiplication. (I = J = K - n2.)

For this problem we represent the vectors X, Y, Z as the matrices X, Y, Z, so that

(x), = (X).O, (i)j = (Y)f-y, (Z)k = (Z)., i an + , =, k + +, ka,
COO, = 0, 1, .,n- 1.

n-1

t(X,Y,Z) = E x.yo'z.,, - Tr(XYZ),

(i(X))= (X). if 3= l+vn,k --n+a for some a, /, '(,2

(O()) = 0 otherwise. J
Here Tr(XYZ) is the trace of the matrix XYZ.

Remark 2.2. (2.8) defines (X_) as the block-diagonal n2 X n 2 matrix where each of n
diagonal blocks is the matrix X.

3. Linear and bilinear arithmetic algorithms.

Given a vector of input-variables (indeterminates), V = (vi, ... ,vQ), and a field

of constapts, F, then an arithmetic algorithm A is defined as a sequence of arithmetic
operations, (a1, ... , ac) such that

a, a.(a.(,), ah()), g(s) < s, h(s) < s, s = 1, ... ,C, (3.1)

each a.(u, w) is either u + w, or u- w, or uw, or u/w, g(s), h(s) are integers, aI- = vi
for i = 1, ... ,Q, ai E F for i < -Q. Given a*, a subset of the set {a,, ... ,ac}, then

A is said to evaluate a* over F and to have the complexity C.

We will study arithmetic algorithms that evaluate given sets of linear forms, {tk(Y)},

then V = Y, Q = J, cf. (2.1), or of bilinear forms, {bk(XY)}, then V = (XI,Y),
Q = I + J, cf. (2.2). In those cases we consider the natural classes of linear and bilinear
algorithms. An arithmetic algorithm (3.1) is called linear if for all s either

a,(u, w) = uw and ag(.) E F, (3.2)

or

a.(u, w)= u + w or a,(u, w) u - w. (3.3)

7



Operations (3.2) and (3.3) are called scalar multiplications and additions/subtractions (or

operations ±) respectively. Notice that for all s the a, are linear forms in V in the case
of linear algorithms.

An arithmetic algorithm (3.1) is called bilinear if it consists of the following four
successive steps.

Step 1. Linear algorithm, A, where the set of input-variables is X.
Step 2. Linear algorithm, A 2 where the set of input-variables is Y.

Step 3. Multiplication algorithm, A 3 - (a,, ... ,af), where a., 3 - ag(s)ah(s), s 
1, ... ,M, all ag(,) are outputs of Step 1, and all ah(s) are outputs of Step

2. The operations of Step 3 are called nonscalar multiplications.
Step 4. Linear algorithm, A 4 where the set of input-variables is the set of outputs of

Step 3. (If it is allowed to extend the sets of input-variables of each of Steps
I and 2 to (X, if), then Steps 1-4 are said to define a quadratic algorithm.
Quadratic algorithms are not considered in this paper.)

4. The height of a linear form and the p-rank of a matrix.
In this section we define two auxiliary concepts (height and p-rank).

Definition 4.1. H(t), the height of t(Y), a linear form of Y (respectively of b(X, Y), a
bilinear form of X, Y), with the coefficients from F, is the number of nonzero coefficients

of the given form. H and H, the height and respectively the lower height of a (bi)linear
problem are the maximum and respectively the minimum heights of the (bi)linear forms
to be evaluated.

Notation. CA(±) is the number of ± operations involved in an algorithm A. Ct(±) is
the minimum CA(±) for all linear algorithms A that evaluate a linear form 1(r).

The next obvious lemma enables us to estimate Cl(±).

Lemma 4.1. Let 11(Y), t2(Y) be linear forms of Y over F. Let 1(r_) = fl~Y_) + f2 2 (Yr),
where 11, 12 E F. Then H(t) < H(1,) + 11(t2).

Corollary 4.1, cf. [121. Cl(±) = 11(t) - 1.

The next three definitions will introduce another auxiliary concept, the p-rank of a

matrix.

Definition 4.2. Two linear forms arc p-neighbors if the height of their difference is at most

p.
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Definition 4.3. Given two sets of linear forms, {tk(Y_)} and {f'(Y)}, and the two associated

matrices of their coefficients, p and p', then p and p' are p-neighbors iff for each k the

two linear forms tk(Y) and t' (Y) are p-neighbors, or equivalently ifl the matrix /' - /s

has at most p nonzero entries in each column.

Definition 4.4. rp(p), the p-rank of a matrix, p, is the minimum rank of its p-neighbors.

rp(j(X)), the p-rank of a matrix /(X), is maxxo rp(p(K°)).

Remark 4.1. Similar but different definitions could be obtained if "row" substitutes for
"column". ro(p) is the conventional rank of u.

As is obvious, an arbitrary rn X in matrix, M, has a p-neighbor with at least p zero-

rows, so that rp(j) <_ m - p. On the other hand, for a given r, the testing *f rp(p) < r

can be reduced to the solution of a finite number of systems, each of (m - r)n algebraic

equations for (m - r)r + np variables. (Fix r candidates for r basic rows among the finite

number of possible choices and try to express other m - r rows as linear combinations

of basic ones.) This suggests that (m - r)n < (m - r)r + np and hence (m + n - r)r >

(m - p)n. If m n, p = -yn, r =/n, then (2-/3),3 1 - -y.

However, we do not see any way to turn the above preliminary estimates into the lower

bounds on rp(m) and rp(AX)) in the specific cases where y and p(X)) are the matrices

of Problems 2.1-2.4. Those who look for hard and interesting problems are encouraged to

try to prove or disprove the following proposition.

Proposition 4.1. There exists a constant ct, 0 < c < I such that p n' implies that

rp(p) =£(n), r-(--(-)) = fl(n)

if p is the matrix of Problem 2.1 and p(X) is the matrix of Problem 2.2 (where m - n)

or 2.3. If p < n' and p(X) is the matrix of Problem 2.4 then

=

In Section 5.4 we show how to use Proposition 4.1 (if it is true) in our study of linear

and bilinear algorithms, and how even weaker lower estimates for rp(m) and rp(,)(X) can

be helpful.

5. Algorithms as digraphs and the lower bounds on the sum of the additive and logical

complexities.

We partition this long section into four subsections.
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5.1. (Bi)linear algorithm as a sequence of ± operations. Assume that the indeterminants

(X), for all i are replaced by their instances taken from F. Then, of course, each bilinear
algorithm turns into a linear one and CA(±) does not increase. (We can assume that the
instances, (X)i, are always chosen such that CA(±) takes its maximum value.) Hence the
lower bounds on the C1,in((±) over the class of such linear algorithms are also the lower
bounds on the C..(-(±) over all bilinear algorithms for Problems 2.2-2.4. In this and in
the next sections, the words "Problems 2.2-2.4" will be freely used as a shorthand for "the

linear instances of Problems 2.2-2.4" where this does not cause confusion.
We will count only ± operations. Thus we rewrite an arbitrary linear algorithm, cf.

(3.1)-(3.3), in amore convenientway for our analysis, that is, as (a+  ... , a+

a sequence of linear forms in the input-variables, Y, where

a+ =fa + j + ' a+

jc, + rbc), v()) < I, 1 (7) < J,
fj E F , f' E F I j =1, 2, ..,c (± ), (5.1. 1)

a+, yy, for j--=0, 1,..., J - I, (5.1.2)

a.+ :-fa+ for all fCF, s#q. (5.1.3)

Notice that CA(±) equals the number of all a+ in (5.1.1) where j > 1.
Hereafter, we assume that the a+ is defined up to a constant nonzero factor f C F,

so that in fact each at is the set {f aj , f E F} of proportional linear forms in Y where

II(a + ) > 1 iff > 1I H(af) K I(a~j)) - !t(aD) for all > > 1.

5.2. Algorithms as digraphs partitioned into levels. Irregularity numbers. We associate A,
an algorithm (5.1.1) (5.1.3), with D(A)= (V(A), E(A)), an acyclic directed graph, where

V(A) = {a+, I = 1- J,2 - J, ... ,CA(), E(A) = {(a+ , a+3 )), (a , aj)), j =

1,2, ... ,CA(±)}. A vertex a+ has outdegree 2 if j > 0 and outdegree 0 if j < 0. The
CA(±) is equal to the number of vertices of V(A) of outdegree 2. This motivaLs our
upcoming study of acyclic digraphs.

Definition 5.2.1. Given an acyclic digraph D = (V, E) then a (directed) path in D of
length s > 0 is a pair of chains of edges ((Vo, v1 ), (Vt, V2), ... , (vs- , v)) and of vertices

(vO, V, . .. ,v.) where (Vh, Vh+) E E for all h. (All paths are directed and have positive
lengths.) A set V" C V circles v E V iff any directed path from v either enters V, or can
be continued to '. The subset V~q of V" C V consists of all vertices of V* of outdegree
q. Let Lo(D) be a hxed (basic) subset of V. The shortest path level, Lq(D) and the longest

path level, LLq(D) are the two subsets of V such that v E [Lq(D) (resp. v C L.,q(D)) iff each
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shortest (resp. each longest) path from L(D) to v consists of q edges. In this case q d(v)
(resp. q = r(v)) is the distance (resp. the remove) from Lo(D) to v. d(D) :nax,cv d(v)
is the depth of D. p(D) = naxVcv r(v) is the profundity of D. I'Lq(D) = Lq(D) \ V °

and PLLq(D) = LLq(D) \ V° are the subsets of Lq(D) and LLq(D) resp. They consist
of the vertices of positive outdegrees. The set Lq(D) = Lq(D) Us<q (L,(D))° is the level
Lq(D) extended by joining the vertices of outdegree 0 from the previous levels of D.

Now we can write the following basic relation,

d(D) - I P(D) -A
= Z l'q(D) l IPLLq(D)J (5.2.1)

q=O0 q=:0

if D = D(A) represents a linear algorithm A.

Remark 5.2.1. We always choose the set of outputs of A as the basic subset Lo(D) if
D = D(A).

We start with lower estimates for !Lq(D)I. Such estimates will follow as a corollary
from the next two lemmas.

Lemma 5.2.1. Given an acclic digraph D = (V, E) with a basic subset Lo(D) C V, a
positive integer q, and a vertex v G Lo(D). Then the set LQ(D) circles v.

Remark 5.2.2. If Lq(l)) had been defined as L[,(I)) U,< q (L. (D)) ° then Lemma 5.2.1
would not have held. (For some digraphs D, (Lo(D)) and LI(D) are empty, 1,1, 2(D) is
not.)

Lemma 5.2.2. Let a digraph D = D(A) = (V(A), I(A)) represent a linear algorithm
A; cf. (5.1.1)-(5.1.3). For an integer J and for a set of integers S, all from the closed
interval (I- J,CA(±)), let the subset {a+,s E S} of V(A) circle a,4- E V(A). Then
a) -  scs f. a + , f, E F for all s.

Corollary 5.2.1. Let a digraph D = D(A) = (V(A), E(A)) represent a linear algorithm A
for a linear problem with natrix p, cf. Remark 5.2.1. Then

IL, (D)> ro(p) for q = 0, 1,..., d(D(A)) - 1.

Here ro(p) is the rank of p.

Proof. ro(p) is the number of linearly independent outputs. That number is not less
than ItQ(D)J by Lemmas 5.2.1 and 5.2.2. I

II



Next we estimate CA(±) using (5.2.1) and the following definition.

Definition 5.2.2. An acyclic digraph, D = (V, E) is shortest (res. longest) path regular one

iff all its vertices of outdegree 0 belong to the level Ld(D)(D) (resp. LLp(D)(D)). The two
numbers, ir(D) = VE vo ir'(v), ir(D) = E,,Cvo ir(v), are the shortest and resp. the

longest path irregu'drity numbers of D. Here ir*(v)= d(D) - d(v), ir(v)= p(D) - p(v).

Remark 5.2.3. D can always be transformed into a shortest (resp. longest) path regular
acyclic digraph by joining the path defined by the chain of vertices (vh(v), h = 0, 1, 2, ... , s)

to each v E V0 . Here vo(v) --v and s is the length of the chain, s- ir*(v) (resp. s--

ir(v)). Totally ir*(D) (resp. ir(D)) new vertices and as many new edges are to be joined
to D during the regularization process.

Combining Definition 5.2.2, Corollary 5.2.1, and Equation (5.2.1), we obtain the
following estimate.

Corollary 5.2.2. Under the conditions of Corollary 5.2.1, CA(±) + ir*(D(A))
ro(,I)d(D(A)).

The latter estimate itself gives little guidance to the designers of the fast linear
algorithms. Indeed, CA(±) = O(ro(pt)) implies that ro(t)d(D(A))-ir'(D(A)) = 0(rq(y))
but in general d(D(A)) can be as small as 2 for any linear problem. (Indeed, given an
algorithm A (cf. (5.1.1)) then for a E Lo(D(A)), f E F, j > 0, fj #=0 , substitute the next
three ± steps for (5.1.1): =(j) = a+ fja, h., fja.(j) + f a -, a a.V(j) + j ( 1 ,: V)(j a+ =- ai - fj-fii

Choose a, fj such that a, fa+ for all q and for s -j, s = v(i).)

In the next subsection we present a more meaningful lower estimate.

5.3. Ordered levels, disorder numbers and lower bounds.

Definition 5.3.1. The levels of D = (V, E) arc ordered up to the level LLq(D) if r(v)

r(u) + 1 for any edge (u,v) E E such that r(v) !_ q. The levels of D are ordered if they
are ordered up to the level LLq(D) where q = p(D). doq(D) is the disorder number of
{LL. (D) , s = 0, 1, .,q) if

doq(D) = Edo(v), do(v) = maxdo(u,v), do(u,v) =r(v)- r(u)-1. (5.3.1)
U

Here the maximization is for all u such that

(u'v)E E, (5.3.2)
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and the summation is for all v such that r(v) _ q. do(D) = dop(D)(D) is the disorder
number of D. do(u, v) is the disorder generated by the edge (u, v) and do(v) is the disorder
around v.

The next two simple lemmas and corollary indicate the way to apply the digraphs
with the ordered levels to our main problem.

Lemma 5.3.1. L,(D) = LL,(D) for s = 0,1, ... ,q if the levels of D are ordered up to

the level LLq(D). In particular, if q = p(D) then p(D) = d(D), ir(D) = ir'(D).

Lemma 5.3.2. Under the conditions of Corollary 5.2.1, p(D(A)) > log H where H is the
height of the linear problem solved by A. (To prove, apply Lemma 4.1.)

Corollary 5.3.1. Let a digraph D = D(A) with ordered levels represent a linear algorithm

A for a linear problem with matrix y. Let H designate the height of the problem (cf.
Definition 4.1). Then

d(D(A)) log H, CA(±) + ir(D(A)) _ ro(p) log H.

(Corollary 5.3.1 follows from Lemmas 5.3.1, 5.3.2, and Corollary 5.2.2.)
Next we will show how to order the levels of an arbitrary acyclic digraph and will

estimate the cost of such ordering.

Lemma 5.3.3. For any q _> 0 an acyclic digraph D = (V, E) can be transformed into a
digraph Dq = (r, Eq) whose levels are ordered up to the level LLq(Oq) and such that

V' for i # 1, V D V' , IVql = IV' + do(D). (5.3.3)

In particular, bp(D) = D = (kE) has ordered levels and

V =1v' for i # 1, V _V', IVli = IV' + do(D). (5.3.4)

Proof. Let r(v) q. Let U(v) designate the set of all vertices u E V such that (5.3.2)
holds and E(v) designate the set of edges (u,v) of E with the head v. Then substitute

the following subdigraph b(v) - ('(v), k(v)) for the E(v); cf. (5.3.1).

V(v) = {Vh(V), h = 1,2, ... ,do(v)}.

k(v) = {(Q(v), i-(v)) fors = 1,2, ... ,do(v), (u, vdo(u,v)(v)) for all U E U(v)}

13



where io(v) = v.

The desired digraph -- (Vq, Eq) results if such substitutions are done for all v E V
such that r(v) K q. Indeed, (5.3.3) is easily verified, as well as the following property: for
each edge (u, v) E E such that r(v) q in D, the shortest directed path in Dq from u
to v has the length do(u,v) + 1 and has only the vertices of outdegree 1 except u and v.
This implies that r(i) = r(ii) + 1 for all (ii, ) E. such that r( ) q. I

Remark 5.3.1. The remove of a common vertex v of V and V is the same in D and b.
By the virtue of Lemma 5.3.1, it equals d(v) in V. In particular, it follows that

p(D) = p(D) = d(b) _ d(D), ir(D) = ir() = ir'(D) _ ir*(D).

Combining the transformations of D of Remark 5.2.3 and of the proof of Lemma
5.3.3, we turn D into D, a longest path regular digraph with ordered levels. By the
virtue of Lemma 5.3.1 and Remark 5.3.1, D is also a shortest path regular digraph.
Combining Remarks 5.2.3 and 5.3.1, Corollary 5.3.1, and Lemma 5.3.3 we obtain the
following estimate.

Theorem 5.3.1. Let a digraph D = D(A) represent a linear algorithm A associated with
matrix u. Let H be the height of the problem. Then

CA(±) + do(D(A)) + ir(D(A)) > ro(p) log H. (5.3.5)

As is easily verified,

ro(y)logH - (n + 1)log(n + 1) for Problems 2.1, 2.3, (5.3.6)

ro(*) log H = (m + n + 1) log max(m + 1, n + 1) for Problem 2.2, (5.3.7)

ro(/A) log 11 = 2n2 log n for Problem 2.4. (5.3.8)

On the one hand, relations (5.3.5)-(5.3.7) enable us to narrow the search of new faster
algorithms for DFT, CV, CCV. On the other hand, even if such algorithms exist, they
must have some deficiencies in their logical structure that are quantitatively represented
by the sum do(D(A)) + ir(D(A)). The increase of ir(D(A)) might seem a lesser evil. This
motivates our next study of the lower bounds on CA(±) + do(D(A)) based on the two
simple lemmas presented in the beginning of the next subsection.
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5.4. Lower bounds on CA(±) + do(D(A)) in terms of the p-ranks of the matrix of the

problem.

Lemma 5.4.1. Let all vertices of an acyclic digraph D have outdegrees 0, 1, or 2. Let
v E Lo(D) and let q > 0 be an integer. Then for some s < 2 q there exist s vertices from
Lq(D) (cf. Definition 5.2.1) that circle v.

Proof. Apply Lemma 5.2.1. The bound 2 on the outdegrees implies that at most 2 q

paths from v to Lq(D) exists. I

Lemma 5.4.2. Let q be a nonnegative integer and D = D(A) represent a linear algorithm,

A. Let v E Lo(D) be an output of A (which is a linear form in Y). Then there exists an
h-neighbor of v (cf. Definition 4.2) that can be represented as a linear combination of g
vertices of positive outdegrees in D which are elements of Lq(D) and linear forms in Y,

such that log(g + h) < q. If the height of v (cf. Definition 4.1) is greater than 2 q then

g i.

Proof. Apply Lemmas 5.2.2 and 5.4.1. Represent v as -, fV where (cf. Definition
5.2.1) v ,. 0 (L,(D))o for i= 1, ... ,h, v C PLq(D) for i= h--1, ... ,h-+g.

Recall that all vi and v are linear forms in Y with coefficients from F and notice
that the height of vi equals 1 for i = 1,..., h. Hence v - Eh1 fivi = 'h-gI fivi is
an h-neighbor of v. If g = 0 the height of v equals h < 2q. a

Corollary 5.4.1. Let a digraph D = D(A) represent a linear algorithm for a problem with
matrix p (cf. Remark 5.2.1). Then for any integer s > 0,

IPL(D)l _> rh(s)(M),(541

h(s) = 2' - 1 if the heights of all outputs of A are greater than 2', (5.4.2)

h(s) = 2' otherwise. (5.4.3)

Remark 5.4.1. For s = 0 the estimate (5.4.1) can be improved as follows,

IPLo(D)I >_ c(p). (5.4.4)

Here and hereafter c(p) designates the number of non proportional outputs of the heights
greater than 1 or equivalently the number of nonproportional columns of p with more

than 1 nonzero entries. If m > 1, n > 1 then c(p) = n + 1 for Problems 2.1, 2.3,
c(p) = m + n - 1 for Problem 2.2, and c(p) = n2 for Problem 2.4. Bound (5.4.1) can
also be strengthened for s > 0. We leave this possibility as a challenge to the reader.
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Let a digraph D(A) represent a linear algorithm A; cf. (5.1.1)-(5.1.3). We can apply
the transformation of D(A) from Lemma 5.3.3 to order the levels of D(A). Then combining

Equation (5.2.1), Lemma 5.3.3, Corollary 5 4.1, and the bound (5.4.4) gives the following
estimate.

Theorem 5.4.1. Let a digraph D = D(A) represent a linear algorithm A for the problem

with a matrix A (cf. Remarks 5.2.1, 5.4.1). Then (cf. (5.4.2), (5.4.3)) for all q

9 p(D)-1

CA(±) + doq(D(A)) c() + rh(.)(/) + E jPLL.(D)I. (5.4.5)
s=1 a=q+

In particular, for q = p(D) - 1,
~p(D)-I

CA(±) + do(D(A)) _ c(p) + rh(.)(,). (5.4.6)

Those readers who believe that Proposition 4.1 is true (why not?) will probably be

happy with the following result (cf. (5.4.6).

Corollary 5.4.2. If Proposition 4.1 holds then for any linear algorithm A for Problems 2.1-

2.3, CA(±) + do(D(A)) - fl(n log n) (assuming that m - n in the case of Problem 2.2)
and for any linear algorithm A for MM (Problem 2.4), CA(±) + do(D(A)) = fl(n2 log n).

Here D(A) is the digraph that represents A.

Thus a designer of an algorithm for Problems 2.1-2.3 where m = n, CA(±) +
do(D(A)) = o(n log n) must at least disprove Proposition 4.1.

In fact, some linear lower bounds on CA(±) + do(D(A)) that exceed K + Q can be
established immediately. For instance, the following results can be proven, see [201.

Theorem 5.4.2. Let A be an arbitrary linear algorithm for one of the Problems 2.1-2.4.

Then the following lower bounds on CA(±) + do(A) hold: 2n + 1.lq(n + 1) - 2s for DFT,
m + 2.33n + 0.3 min(m, n) - 28 for CV (where m > 2, n > 2), 3.1(n + 1) - 2s for CCV,
3.5n2 - 10.5n + 8 for MM (n >_ 2). Here q(s) designates the maximum prime that divides A

an integer s.

In the next section we reconsider the problem of lower bounds on CA(±).

As follows from (5.3.5)-(5.3.8),

CA(±) = fl(K + Q) log(K + Q)
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in the case of algorithms for DFT, CV, CCV and MM whose digraphs are regular and have

ordered levels. When the paper had been written, Thomas Spencer, a graduate student

at Stanford University, Stanford, California, noticed that the latter bound holds even if

the regularity requirement is deleted. He also raised the questions if the term ir(D(A)) in
(5.3.5) can be deleted or at least if in the cases of DFT, CV, CCV and MM,

K + Q = o(CA(±) + do(D(A)).

These questions remain open. Unsuccessfully trying to answer them, the present

author noticed however that for an arbitrary linear algorithm A for a problem of the

height H associated with the matrix M the next estimate immediately follows from our

construction of Sections 5.1-5.3.

CA(±) + do(b(A)) >_ ro(,) log H. (5.4.7)

(Consequently CA(±)-+do(D(a)) >_ Q log Q for DFT, CV, where m =.n, CCV and MM.)

Here b = D[(A) is the acyclic digraph obtained from D(A) by reversing the directions of
all edges of D(A) and the basic set LO(D) is the set of all vertices of b associated with the

input-variables of A or equivalently having indegree 0 in D. In this case the basic relation,

d(D) p(b)

CA() I Lq (b) = F, ILLQb)j,
q=1 q=1

is simpler than (5.2.1) and also we can substitute Lq(D) for Lq(D) in Lemma 5.2.1. This
allows us to dispense with the regularization of D. The meanings of the numbers do(D(A))

and do(D(A)) are similar although those numbers can be different.

6. Lower bounds on C(±) in terms of the rank of determinant.

Hereafter L(X, F) designate the set of all linear forms in X with coefficients from a

field F. (The set L(K, F) includes the elements of F.)

Definition 6.1. If P,(X) = P,(X, .. is an n-lincar form in n vectors of indeter-

minants, X1, ... ,X then R(Pn(X)), the polylinear rank of Pn(X), equals (cf. [1, p. 488]
or [171) the minimum integer R such that

R n

= IJ Lgh(Xh), Lh(Xh) E L(Kh, F). (6.1)
g==1 h1=

17



If, more generally, P (X) is any polynomial of degree n in X_ then r(P (X)), the rank of

Pn(X), is the minimum integer r such that

P(X) Lgh(), Lh(X) E L(X, F). (6.2)
g=1 h=1

For a matrix p(X) with the entries from L(X, F),

r(p) = max r(m) (6.3)
rnD

(where D = D(pu(X)) is the set of all minors of u(X)) is the rank of the bilinear problem

associated with P(X).
Equations (6.1) and (6.2) imply that

r(P.(X)) <5 R(PC)). (6.4)

The R(P 2(X 1IX 2)) is equal to the rank of the matrix associated with a bilinear form

P2 (XIX 2 ). R(P3 (X,X 2 , K 3)) is equal to the multiplicative complexity of the three

bilinear computational problems associated with P3 (Xi, X 2 , X 3 ) (cf. 118, 191).

Next we will modify the construction of [161 to show how the additive complexity of
the bilinear problem associated with a matrix, /, is related to the rank r(p) (cf. (6.3)).

In Section 2 we associated linear forms in Y (whose coefficients are from L(F, X))
with the column-vectors of their coefficients. An s-tuple of such vectors forms a J X s

matrix. In particular, the sequence of linear forms a+, j = I - J, 2 - J, . . .,CA(±)

(cf. (5.1.1)), as well as the associated column-vectors of their coefficients, represents an

arbitrary bilinear algorithm. The matrix p(q) that consists of the first J + q columns

represents the algorithm up to its qth ± operation.

The set of the matrices {p(q), q 1 - J, ... , CA(±)1 must satisfy the following

properties.
i) u(0) is the J X J identity matrix.

ii) M(q + 1) = (IA(q) I Y(q + 1)) for q = 0, 1, ... ,CA(±) - 1 where V(j) =

fY_(v(j))+ fjY(7(j)), fI E F, fP E F, v(j) < j, v?(j) < j, Y(s) is the (J +s)th
column-vector of j(s); cf. (5.1.1). 2

iii) The matrix of the given bilinear problem p(X) is a submatrix of p(CA(±)).

Now we observe (cf. 116]) that the property ii) implies the next identities in X for all

q 2! 0, m(q + 1) = f m(q) + f' m'(q). Here m(q + 1) is an arbitrary minor of u(q + 1),

f E F, f' E F, and m(q), m'(q) are some minors of p(q). Hence (cf. (6.3))

r(,(q + I)) < 2r(p(q)) for q 0,1, ... , CA(+) - 1. (6.5)

18



As is obvious,
r((0))= 1. (6.6)

='- (IA(cC ))) > (p(xK)). (6.7)
Equations (6.5)- (6.7) imply the following result.

Theorem 6.1. Given a bilinear algorithm, A, for the bilinear problem defined by a matrix

p = A(K). Then CA(±) log r((X__)).

Remark 6.1. If one proved that

I = o(log r((2x))) (6.8)

for some A(X), a fixed I X I matrix with the entries from L(F, X) (K = (x0 , ... ,-))

(for instance, for the I X I general Toeplitz matrix; cf. Remark 2.1) then Theorem
6.1 would imply a nonlinear lower bound on CA(±) for any algorithm A for the bilinear
problem defined by that matrix u(X). However inequality (6.4) and the bound
log R(per u(X)) I known for an arbitrary I X I matrix 14(2) (H. J. Ryser, cf. [1, p.

4971) convince that it is very hard to prove (6.8) if possible at all. Nevertheless we conclude
with the following challenging problem: find an appropriate modification of the definition
of r((X)) such that Equations (6.5)-(6.8) hold.
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