

Report No. 4927 Bolt Beranek and Newman Inc.

I
I
I
' DEVELOPMENT OF A VOICE FUNNEL SYSTEM

QUARTERLY TECHNICAL REPORT NO. 133 1 August 1981 to 31 October 1981

I March 1982

This research was sponsored by the
Defense Advanced Research Projects

I Agency under ARPA Order No.: 3653
Contract No.: MDA903-78-C-0356
Monitored by DARPA/IPTO

I Effective date of contract: 1 September 1978
Contract expiration date: 31 December 1981
Principal investigator: R. D. Rettberg

I

I Prepared for:

Dr. Robert E. Kahn, Director
Defense Advanced Research Projects Agency
Information Processing Techniques Office
1400 Wilson Boulevard
Arlington, VA 22209

[The views and conclusions contained in this document are those of
the author and should not be interpreted as necessarily
representing the official policies, either express or implied, of
the Defense Advanced Research Projects Agency or the United
States Government.E i

...I I 1 1[...-...r _ ..- " , -. .

Report No. 4927 Bolt Beranek and Newman Inc.

1. Introduction

This Quarterly Technical Report, Number 13, describes

aspects of our work performed under Contract No. NDA903-78-C-035b

I during the period from 1 August 1981 to 31 October 1981. This is

I the thirteenth in a series of Quarterly Technical Reports on the

design of a packet speech concentrator, the Voice Funnel.

This report describes the exception handling conventions

j that are supported in the programming environment of the Voice

Funnel.

Io
i
° s
11.

1| - 1 -

Report No. 4927 Bolt Beranek and Newman Inc.

2. Exception Handling Mechanisms

This section discusses an important unifying concept in the

Chrysalis operating environment, a mechanism for uniform

reporting and handling of exceptional conditions. The mechanism

resembles the exception handling mechanism in Ada, but has been

modified to be compatible with C, and to meet the needs of the

Voice Funnel project.

The software for the Voice Funnel is being written in the

language C which was developed and used for the UNIX ' Operating

System. This has led us to provide a programming environment

that is in many ways similar to UNIX. In UNIX, when programs

need operating system services they simply call the appropriate

function as a subroutine from C, using normal argument passing

conventions. In our view, this is an effective approach, and we

have included special hardware features in the Butterfly to

improve its efficiency. Chrysalis is simply a large subroutine

package, resident in each Processor Node, which is mapped into

and shared among all processes on that node. Subroutines in

Chrysalis can enter Kernel Mode to manipulate protected

resources, but are otherwise identical to ordinary subroutines.

However, there are several areas in the UNIX architecture in

which we felt compelled to make significant changes. One of

these was the mechanism which allows a process to wait for one or

" UNIX is a trademark of Bell Laboratories.

2i
-2-

I

I Report No. 4927 Bolt Beranek and Newman Inc.

3 more external events to occur. This will be discussed in more

detail in a subsequent report. Often our concerns have centered

on issues which are particularly important in a real-time

I multiprocessor, such as inter-process communications, scheduling

efficiency, and graceful recovery from exceptional conditions.

It has been our goal to write as much of our code as possible

using a standard, unmodified C compiler. However, it is

sometimes difficult to separate issues of operating system design

I from those of language design; the standard C macro preprocessor

has enabled us to extend the C language itself in a few selected
areas and provide solutions to some of the problems we have

[
identified.

In our view, one of the principal weaknesses of the C

language is its inability to handle exceptions gracefully. This

was particularly a problem in the design of Chrysalis, since

operating system functions frequently detqct errors of various

I sorts, which must be reported to the application program. In

UNIX, at least three different techniques have been used to

I" report exceptional conditions:

1. Many UNIX functions return a special value in case of
error, such as zero or minus one. Sometimes the only
purpose of the value returned is to indicate success
versus failure; in other cases this error indication is
multiplexed with an ordinary value. For example, many
UNIX functions return either a pointer to their result,
if successful, or zero in case of error. To use these
functions one must test the result, and take special
action in case of error. Many UNIX functions record an
error code in a special static variable to allow the
application to determine the nature of the error.

Report No. 4927 Bolt Beranek and Newman Inc.

2. UNIX also provides a "signaling" mechanism for
reporting certain conditions (usually more serious
errors, such as invalid memory references). When such
a condition is signaled, the application program state
is pushed, and control is passed either to a system-
default signal handler (which would normally terminate
the application process), or to a subroutine explicitly
designated by the application program. This subroutine
can take any action it sees fit, including cleanup,
problem correction, etc., and can (sometimes) pop the
saved program state and continue, terminate the
application process, etc.

3. The C library includes a "setjmp, longjmp" package,
which allows a subroutine to save its stack
environment, then call lower-level routines. In case
of error these routines can call "longjmp" to restore
the stack environment and return directly to the
higher-level subroutine without going through any
intermediate levels. UNIX does not use this package
directly to report errors, and the package as
implemented in the C library is too simple to be very
useful. A number of other languages such as Ada
provide more sophisticated features of this type.

In the course of designing Chrysalis we gave the problem of error

reporting considerable thought. We concluded, for reasons

discussed below, that the methods used by UNIX are frequently

inappropriate and tend to encourage poor programming practices,

such as failing to test for error conditions which are reported

by the operating system but which the programmer did not expect

to occur.

As an example, in UNIX, the system call that writes to the

disk returns an error code if the disk is full and the write

failed to happen. Many application programs do not bother to

handle this return code and as a result the operation of the

system is unreliable when the disk is nearly full. The mistake

i

-4

I Report No. 4927 Bolt Beranek and Newman Inc.

was to require a special test in every program for a failure that

should rarely if ever happen. A simple default handler should

I have been provided instead.

I We have chosen to adopt instead a mechanism which is a

generalization of the "setjmp" package, and provides features

somewhat like the exception handling features in Ada. Using

terminology taken in part from MACLISP, we call this the

"catch/throw" facility.

2.1 Catch and Throw

In Chrysalis, when an exceptional condition is detected, the
.1

low-level routine which detects it calls the function "throw"

1. with arguments which describe the nature of the problem. "Throw"

* scans up the stack until it either locates a "handler" for the

condition, or until it reaches the top of the stack. If it

reaches the top of the stack, it invokes a default handler which

records the nature of the problem for the programmer and

I. terminates the process. For example:

?et.number(string)

if (error)
throw(CONSISTENCY, "get-number: syntax error", string);

0oo

return number;

I, If the error flag is set, this throw "raises" the CONSISTENCY

1.i
, -5-

.... -

Report No. 4927 Bolt Beranek and Newman Inc.

exception, which indicates that its input arguments were

inconsistent or invalid. In addition, it returns both an error

message and a pointer to the faulty argument.

When a handler is invoked, the applications progidm has the

ability to analyze the nature of the problem which caused the

throw, and to deal with it in one of three ways:

1. It can decide to correct, report, or ignore the
problem, and continue processing at the level at which
the handler is running.

2. It can abort the specific task it was attempting to do,
for example by returning the resources it was using,
unlocking locks, etc., and then call "rethrow" to passthe problem up to a still higher level.

3. It can abort, and "throw" a different, more appropriate

error, or even terminate the process.

This mechanism solves the problems involved in checking

every function call for the special value which would indicate a

problem, and then passing a special value back in turn. It also

provides a uniform mechanism for passing back messages which

describe the problem. The mechanism can be used equally well to

report problems detected by Chrysalis, by ordinary library

routines, or by application programs. The fact that this

mechanism does not save the program state is an advantage over

the UNIX signalling mechanism in those cases where it is

inappropriate to return to the interrupted program.

-6-

IReport No. 4927 Bolt Beranek and Newman Inc.

E 2.2 Impact on UNIX Compatibility

I Although this mechanism is new in Chrysalis, it is not as
incompatible with standard UNIX as one might at first suppose.

I There are several reasons for this. First, UNIX programs written

to return and check for special codes could be imported to

Chrysalis without being modified to use catch and throw. Second,

j although the signalling mechanism is not available in Chrysalis

in a compatible form, most UNIX programs do not make extensive

I use of it anyway. Third, the setjmp package is even less used,

and in any event, programs which use it can either continue to do

so, or be easily converted to use the catch/throw package

1 instead.

IThe signa lling mechanism in UNIX is used for a number of
quite different purposes. It appears that the UNIX designers

I thought Of signals as a mechanism which would provide solutions

to a wide range of operating system problems. We feel that this

was an error, and that UNIX-like signalling mechanisms should

rarely if ever be relied upon. Perhaps fortunately, the UNIX

implementation of signals had a number of serious bugs and

shortcomings which have only recently been corrected. Because of

these, most existing programs avoid the use of signals whenever

1. Possible. UNIX signals can be divided into classes as follows:

[- Machine exceptions.

These vary from machine to machine, but generally
include illegal instructions, illegal memory accesses,

and divide by zero. Generally it is impossible to

IiT

Report No. 4927 Bolt Beranek and Newman Inc.

return from such an exception, and would be bad
programming practice even if possible. In Chrysalis
these conditions trigger standard system-originated
throws, which include location and error code
information. The catch/throw mechanism is ideal for
handling such conditions.

- Serious errors in calls to UNIX functions.

Some errors, such as "bad argument to system call" and
"write on a pipe with no one to read it", cause
signals, since ignoring them is not a reasonable thing
to do. The catch/throw mechanism is ideal for handling
errors of this type.

- External requests.

These include signals which are normally triggered by
the timer ("alarm clock"), the tty input handler
("dataset has hung up", "user typed the 'interrupt'
key", "user typed the 'quit' key"), or by some other
process ("kill this process immediately", "associated
process has terminated"). This group of signals seems
quite natural at first glance, but can cause serious
technical problems. Chrysalis generally handles this
sort of occurrence as an Event; in addition, a special
mechanism is available to immediately kill an errant
process.

Unfortunately, the obvious handlers for most external

request signals have not-so-obvious bugs which are hard to fix or

even to avoid at all. The underlying problem, is that the state

of the main program is arbitrary and unknown at the time the

signal handler is entered. Data structures may be in the process

of being updated; key variables may be momentarally invalid;

inter-process locks may be held; formatted tty output may be in

progress. If these concerns are not to be ignored, there is

little the typical signal handler can validly do but to set a

flag which the main program can test at a convenient time when

-8.

k. -~

I Report No. 4&927 Bolt Beranek and Newman Inc.

3 its state is clearcut. This is exactly what the Event mechanism

is designed to do, without the need to invoke a signal handler at

U all. Even if the goal of the signal is to terminate the

3 signalled process as quickly as Possible, it may be important

that Outstanding shared resources such as locks be released

cleanly, and perhaps that other related processes be informed in

turn.

In an environment with catch and throw it might seem natural

I to have a signal handler initiate a throw to trigger the

appropriate cleanup mechanisms. This approach, which is

specified in Ada, is extremely difficult to implement correctly.

J The difficulty arises when an external signal attempts a throw

Just as the main program is acquiring or releasing some shared

resource. At all such points the main program Must be coded in

such a way that its catch handler can tell exactly what has been

done so far and how to abort or complete the critical operation.

In many cases the only practical approach would be to disable all

signals in such critical regions; but this is expensive, clumsy,

and error-prone.

I. In Chrysalis we have avoided such problems by outlawing

signals. The application program establishes an Event to be

I. posted, instead of establishing a signal handler. Then it checks

j that Event at an appropriate point or points in the main program,

and calls throw "voluntarily" if the Event has been Posted.

Report No. 4927 Bolt Beranek and Newman Inc.

2.3 Comparison with Ada

Chapter 11 of the Ada reference manual (July 1980) specifies

the Ada exception handling mechanism. While we have serious

reservations about Ada's primitives for intertask communications,

we basically like Ada's exception handling mechanism, and the

catch/throw package can be viewed as our attempt to implement

this idea in a reasonable way. We have avoided using similar

notation to minimize confusion for those familar with Ada, since

our mechanism is by no means identical. Most of the differences

are cosmetic, but some are more fundamental and deserve further

discussion.

- Data passed when an exception is raised.

Ada passes no data, beyond the simple fact that a
certain named exception has occurred. In our
experience, many exceptions are unexpected and reflect
bugs of some sort. Thus it is important to pass back
all the information available at the time the exception
was raised for debugging purposes. Even if an exception
is expected occasionally, it is sometimes valuable to
pass back a result or error code.

- Debugging exceptions.

It can be valuable to treat certain classes of
exception as breakpoints in interactive environments.
A backtrace at the time of an unexpected exception can
be extremely useful. On the other hand, certain kinds
of exception are "normal" and must not be handled this
way. Exceptions which remained unhandled in the main
procedure should go to a "default" handler to capture
debugging information before the task is terminated.

- The Ada FAILURE exception.

Handling this exception may easily lead to the type of
problem described above for external request signals,
since there is no guarantee that the receiving task is

- 10 -

Report No. 4927 Bolt Beranek and Newman Inc.

3 in a state which can be interrupted.

2.~4 Using Catch and Throw

One must think of the catch/throw facility in terms of C's

stack-based model of program execution. A "catch" is a special

marker which is placed onto the run-time stack by a procedure, so

that when that procedure returns, the catch is popped off of the

stack along with the rest Of the procedure's stack frame.

"Throw" is a special procedure which will pop frames off of the

stack until it finds a catch, and then hand control over to the

procedure which installed the catch. One can think of throw as

sort of a "super-return" statement, which allows one to return to

a procedure which is an arbitrary distance back up the stack.

The throw call takes three arguments: an exception code, an

arbitrary text string, and an optional arbitrary value (a long).

Exception codes have two parts, an exception Class and an

exception number. Exception classes are defined by the system,

but some classes are reserved for application program use. There

are at most 2~4 exception classes, which are bit-encoded in the

high-order 2~4 bits of a long integer. The low order 8 bits

specify the exception number within a specific Class. System-

defined exceptions always have numbers greater than 128, while

user-defined exceptions have numbers from 0 to 127. The text

string is used to identify the particular exception being thrown;

Report No. 4927 Bolt Beranek and Newman Inc.

the arbitrary long can be used to return a number or pointer,

either as a result or as a debugging aid.

The syntax for using a catch is as follows:

catch
maincode;

onthrow
when (throwcode == CODEt)

codel;
when ((throwoode & CLASS2) 1= 0)

code2;
rethrow;

when (strcmp(throwtext, "Exception 3"))
code3;

endcatch

If any exception occurs during the execution of "maincode", the

"onthrow" clause is evaluated. Then, if none of the "when"

clauses is true, or if the "rethrow" statement is executed,

control will pass through the catch (presumably to be caught

further up the stack). This example will catch a throw of either

CODE1, CLASS2, or "Exception 3" and pass any other throws.

Because the catch/throw package is implemented using

preprocessor macros, certain restrictions were unavoidable. This

approach was much simpler than modifying the C compiler, and more

flexible as well. Generally, the restrictions do not impose much

of a burden on the programmer. Unfortunately, however, violation

of these restrictions is generally not detected by the compiler,

and simply produces erroneous code. These are the restrictions:

- "maincode" may not contain any "gotos", "breaks", or
"continues" which branch out of "maincode", and nothing
may branch into "maincode".

- 12 -

I
I Report No. 4927 Bolt Beranek and Newman Inc.

"return expr;" statements must be written as "RETURN

expr;", which will properly adjust the catch/throw
stack BEFORE the expr, if any, is evaluated. RETURN
expands into more than one C statement, so use brackets
where appropriate. For example, brackets are required
in the statement "if (conditional) { RETURN 6; 1".

- When an onthrow clause is entered, all register
variables are restored to their values at the time the
catch block was entered. If a local variable is
modified inside of a "catch" and its value needs to be
maintained after a throw, it must not be declared as a
register variable.

Within an "onthrow" clause, the exception code being

Iprocessed is available as "throwcode". A pointer to the text

string which was passed to throw is available as "throwtext", and

the value is available as "throwvalue"; a pointer to the call to

1 "throw" is available as "throwlocation". Specifying "when

(TRUE)" in an "onthrow" clause will catch any and all throws not

already caught by earlier "when" clauses. After performing

various cleanup actions, the catching routine can propagate the

same exception with the "rethrow" command.

This mechanism does not allow throws from other processes or

from asynchronous operating system functions such as timers. To

handle such cases, the user should establish an Event, and poll

J or explicitly wait for it to be posted. This mechanism could be

used to handle fatal errors such as protection violations, as

Ii long as they cannot occur asynchronously. For example, if you

wait for a lock, then enter a catch block which unlocks the lock,

a protection violation between the time you obtained the lock and

Ithe time the catch was established would cause trouble. However,

I3
- 13 -

- ----

Report No. 4927 Bolt Beranek and Newman Inc.

since these should both be well-debugged system procedures, they

can be counted on not to produce protection violations.

The catch/throw mechanism is relatively efficient. As

currently implemented, the biggest cost is that each time a

"catch" is entered, a copy is made of all the MC68000 registers.

When a throw is caught, all registers are reloaded from this copy

before entering the onthrow clause. An alternative

implementation would be to restore all temporary registers used

by each nested subroutine as we proceed up the stack. This would

avoid the overhead of explicitly saving the registers in the

"catch" code, and would have the nice feature of preserving

changes to register mariables made inside the catch block.

Unfortunately, it seems that this approach would be impossible

without making significant changes to the C compiler itself.

A flaw in current implementation of the throw mechanism is

that it provides an obscure hole in the protection mechanism.

Closing the hole would involve the extra run-time expense of

dynamically allocating catch control blocks in segment F8 instead

of on the application's pushdown list. We do not consider this

expense worthwhile for the Voice Funnel.

- 14 -

I
Report No. 4927 Bolt Beranek and Newman Inc.

DISTRIBUTION OF THIS REPORT

Defense Advace Resarch Prjet AgencyDr. Robert E. Kahn (2)Dr. Vinton Cerf (1)

I Defense A aj Sr.vice -- Washinon
Jane D. Hensley (1)

Defense Documentation enter (12)

j Dr. Danny Cohen (2)

1IT/Lnaln Ij-&&
Clifford J. Weinstein (3)

SRI International
Earl Craighill (1)

&Qm Air Dovolopment Center/2=
Neil Marples (1)

Defense Communications
Gino Coviello (1)

Dalt Beranek And Newman j=.
Library
Library, Canoga Park Office
R. Bressler
R. Brooks
P. Carvey
P.Castleman

- - G. Falk
F. Heart
H. Hoffman
M. Kraley
W. Mann
J. Pershing
SRettberg
E. Starr
E. Wolf

Ii

