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INTRODUCTION

The year 1980 marks the centenary of the discovery of piezoelectricity
by the brothers Curie, and the fifty-ninth year of the quartz oscillator.!*~
The past thirty years or so have seen the development of cultured quartz
from coin-sized pieces, shown in Fig. 1, to large, multi-kilogram crystals
that constitute the bulk of the usage today (Fig. 2). Since the introduc-
tion of the quartz crystal-controlled oscillator by Cady, each decade of
time has seen approximately one order of magnitude frequency stability
improvement. Surrounding the development of high-stability oscillators in-
corporating crystal vibrator control has been the on-going interplay between
improvements in resonator technology and causes of ever-smaller perturba-
tions; in resonator frequency and equivalent circuit parameters.]-1'2*Progress
in timekeeping is shown on a broad time scale in Fig. 3, and a comparison
of crystal resonator performance with atomic and molecular frequency stan-
dards is shown in Fig. 4; both Figures are adapted from Reference 2.*
Further improvements will depend upon less-obvious. factors than have been
considered to date. This technical report treats a number of such topics.

MAGNETIC FIELDS

Quartz, and other high purity dielectric crystals, can be considered
to be nonmagnetic for our purposes here. A vibraling crystal with metallic,
nonmagnetic electrodes is, however, affected by external magnetic fields.
Eddy currents are produced in the electrodes by their motions in the fields;
these change the critical frequencies of the vibrator, and lower its Q. The
situation considered is that of a resonatot vibrating in a pure shear mode
with applied static magnetic field parallel to plate thickness as depicted
in Fig. 5. The resonator leads are attached to an active network comprising
the remainder of the oscillator, and the combination adjusted in frequency
so that the vibrator operates at zero reactance at; all times.

For a pure shear mode, the retarding force density at the plate sur-
faces is

j 2 u ,(1

with a the electrical conductivity of the electrode, and u the mechanical
displacement at the surfaces. Electrodes of thickness h' will produce
resistances of

R = A B~ h' (2)
3*

for areas of value A. Using conventional notation ,this leads to an ex-
pression for the imput admitt4ince of the single mode vibrator, including the
effects of electrode inertia4

*See list of references beginning on page 72.
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Yin j C , + j C0. (3)
iX/(k' tan X) - I - X' ,/k') + (jXRY, /k )-.

Resonance and antiresonance frequencies are determined from the zeros of
the susceptance function as the roots of

(X-(k" + X_') tan X) - (I- X tan X)

+ X (R Yo)2  tan 2 X = 0. (4)

When R=O, the first expression in brackets yields the condition for
resonance, and the second that for antiresonance. From the expression for
Yin the network in Fig. 6 is obtained, with the electrode inertia represent-
ed by the inductances

L, = L2 = L = p h p A. (5)

The network components are labeled with their physihally corresponding ef-
fects. When R is not zero, the inductances are replaced by series R-L
combinations, and when electrode mass-loading is ne(ilected, the circuit
appears as given in Fig. 7. Figure 8 is the bisected version of Fig. 7 with
massless electrodes (=O).

Departures from the resonance frequency as function of R are found by
oerturbation, with RYO the small parameter. The expression for frequency
shift is

2 2
Af/f - (2/Tr) (RYo) , (6)

2
with RYo  cihB / (pv), (7)

the quartz mass density, and v the acoustic velocity of the mode in ques-
tion. It is seen from (6) and (7) that the frequency shift is quartic in
the magnetic field strength. Figure 9 gives frequency shift values for an
AT cut having 10,000 A copper electrodes only for fields about ten thousand
times larger than that of the earth's (the first entry) is the effect per-
ceptible.

This analysis has been extended to the multimode case, and to the sit-
uation of a lateral magnetic field, with corresponding network representa-tions. 4

RESONATOR ASYMMETRIES

In treatments of resonator electroding, it is usually tacitly assumed
that both electrodes are of equal size and thickness. The practical real-
ity is usually just the opposite. It is very difficult to guarantee that
the thicknesses are equal in the first place; to make matters worse, final
frequency adustment is usually made with a burst of material applied to a

7 >! ' I
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single side. Add to this situation the facts that registration of both
electrodes is never perfect, that the electrode tabs are asymmetrically
disposed, and that sometimes a larger electrode is used on one side to im-
prove statistical unil rrity of the motional capacitance by compensating
for misregistration, ten it is seen that symmetry of the plate resonator
about the mid-plane is seldom, if ever, achieved.

The single-mode case is treated, by way of example, for a simple elec-
trode mass imbalance in -he one-dimensional approximation. The equivalent
network is that of Fig. 6 with the mechanical transmission line ports
attached to unequal transmission lines representing the thick electrodes.
When the electrodes are thin enough for propagation of the acoustic waves
within the electrodes to be neglected, the transmission lines are replaced
with lumped inductances; the mass imbalance results in unequal inductance
values Li and L2, as shown, and prevents the network from being bisected,
as in Fig. 8. When bisection can take place, the transmission line repre-
senting the crystal plate of thickness 2h is replaced by one of half this
value and the construction for the critical frequencies is that given in
Fig. 10; the formulas are those of the bracketed terms in (4) separately
set to zero. Figure 11 gives the normalized frequency variable

XR M) =f ( I){M)/f (I))
"RO AO

versus piezoelectric coupling k for the first three harmonics M=1, 3,and 5.
An AT-cut resonator with symmetrical electrodes of equal thickness pro-
duced the mode spectrograph at the top of Fig. 12. Strong responses are
found at the odd harmoni(s, and nothing is visible at the even harmonics.

It is appropriate now to quote from Cady l, p. 308:

"There are circumstances under which a plate may conceivably
vibrate in a thickness mode at or close to an even harmonic
frequency. Tte shape, size and location of the electrodes
may be such a. to produce a driving field in the plate that
varies in the direction of the thickness. Or the plate may
be twinned or have other defects such that the excitation
is not uniform. Finally, the plate may be in contact with
an electrode of considerable mass, so that in effect one
has a composite resonator."

When the electrodes are of unequal mass, and circuit bisection is not
possible, the construction becomes that of Fig. 13, where the critical
frequencies are determined by intersection with a tangent function of
argument 2X instead of X. The expression for input impedance is

k2 (tan X/X)

A
2
X
2

((1-aX tanX) + )
(1+2X cotX)

12
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where 7 (j,. + ,)/2 and A J - )/2. EqLation (8) has been written
in teriws of argument X for the tangent and cotngent functions. The Inli-
resonant frequencies (denoted fA(M for M odd, and f,.(M) for M even) are
found from the vanishing of the bracketed term in (8)' as roots of

tan 2X = 9 "

These are shown in Fig. 13 along with the high and low frequency asymptotes
of the right hand side of (9). The roots for the resonant frequencies are
found from the zeros of (8).

The even-harmonic resonances produced by the unequal mass-loadings
on the crystal plate surfaces (,, A u) are very sharp compared to the odc
harmonics as may be seen from Fig. 14, which i'. drawn for a case with large
piezo-coupling and large mass asymmetry in order to widen the resonance
regions of both the even and odd harmonics. It; is thus possible to use
such resonances for stabilizing the frequency of an oscillator - at least
in principle. Figure 15 shows a blow-up of the second harmonic of the case
of Fig. 14; Fig. 16 shows the fourth harmonic, and Fig. 17 shows the four-
teenth harmonic. Compare the width of the resonance in Fig. 17 with that
of Fig. 18 showing the fifteenth harmonic. In ,ieneral, for large M, the
normalized frequency of response approaches (M-1).

When the resonator shown in the top of Fii. 12 was overcoated with
electrode material on one side only, the mode pectrum shown in the bottom
of the figure was produced. The second harmon c becomes present due to
the imbalance, and it is sharp; however, it is also very weak. Figure 19
shows a photograph of the spectrograph given is the top of Fig. 12; Fig. 20
is a photograph of the spectrograph for the ca.e of mass imbalance to the
same scale as Fig. 20; Fig. 21 shows a magnified view of the photograph of
Fig. 20; it corresponds to the lower drawing in Fig. 12.

Another unsymmetrical structure that lead, to even harmonics is the
composite resonator; (see Reference 5 for additional references). This
structure is shown in Fig. 22, with the equivalent network given in Fig.
23. Here the quartz substrate must be represented by a transmission line
because of its thickness; as it shrinks in size the situation of Fig. 6
with inductors is approached.

Apart from producing even harmonics, the presence of asymmetry in
resonators (due to unequal electrodes, bevelling, contouring, etc.) is
very probably a major cause of "activity dips,' or "bandbreaks." 6-8  These
are illustrated in Fig. 24, which is taken froii Reference 8. Both the fre-
quency versus temperature and the conductance fersus temperature curves
suffer anomalous dips as the interfering mode'-; influence is manifest at a

particular temperature. The second harmonic mode "divided by two" via the
nonlinear elastic constants 9 can produce dips at the fundamental.

17
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ELECTRODE INFLUENCES

It is well-known that the frequency-temperature (f-T) curve tjF an AT
plate resonator measured sufficiently slowly assumes a cubic shape, as
depicted in Fig. 25. Small changes in orientation angle ,, for roL>4.tion
about the crystallographic X, axis, produce slope changes at the in"'ec-
tion point of -5.08 x 10-',/K,* o. A variety of other influences lead to
nonnegligible slope variations as well. Figure 25 shows the effect of
placing a load capacitor in series with the vibrator to produce frequency
f., as is often done for frequency trimming. The slope shift reduces the
peak-to-peak frequency deviation and must be taken into account in design
of temperature compensated crystal oscillators (TCXOs); it comes about
because of the temperature coefficient of the piezoelectric coupling fac-
tor.10 A similar effect occurs when a resonator is operated at different
harmonics, and for the same reason.

The mass of, and intrinsic stress in electrode coatings also affects
the f-T curve. Some time ago the effect of equal electrode coatings was
demonstrated in regard to frequency shift and rotation of the static fre-
quency-temperature curve of a resonator. 11- 13 The calculations dealt only
with the influence of inertial mass; no elastic properties were assumed
for the electrodes, nor were they presumed to apply any stresses to the
crystal. This was done so that the inertial influence of the electrode
could be subtracted from elastic and stress effects. Results from the one
dimensional theory for the change in apparent orientation angle are given
in Fig. 26 and Fig. 27 as function of harmonic number M and mass loading

A comparison of apparent orientation angle shifts as function of mass
loading and harmonic number is given in Fig. 2.3 for AT plates of 5MHz fun-
damental frequency, and plate/electrode diameters of 14 and 6 mm, respec-
tively, coated with evaporated aluminum, sputtered chromium, and sputtered
indium. The electrodes are of equal thickness, s. It is seen that Al and
In have slopes that agree with inertial mass theory, but are displaced; the
curves for Cr are consistent among themselves, but differ in sign from the
theory. The results in Fig. 28 indicate the importance of electrode ma-
terial, deposition method, and conditions of deposition on the behavior of
the finished resonator. Figure 29 gives the experimental data for alumin-
um evaporated electrodes as function of p and M. Figure 30 shows the
decrease in inflection temperature with increasing mass of evaporated alu-
minum, for resonators with the parameters described above.

It should be borne in mind that stresses in the electrodes can also
produce activity dips, even when the electrodes are of equal mass. Conse-
quently, the practice of furnishing AT quartz plates with a thin layer of
Ni or Cr to insure adhesion of gold, e.g., ought to be re-examined in view
of the stress levels produced hy these metals, both intrinsically, and as
a function of temperature.

29
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ANGULAR MISORIENTATION

Subtle influences on the static frequency-temperature curve were
briefly discussed in the previous section in terms of apparent orientation
angle changes in e, for AT resonators. The most general class of thickness
mode plate resonators is the family of doubly rotated cuts.1 4 These are
compared in Fig. 31 with singly rotated cuts, of which the AT cut is the
most often used. Also shown in the figure are the loci of zero temperature
coefficient, and the angular coordinates of popular quartz cuts. The line
= 0 is a line of symmetry, so that singly rotated cuts are only quadrat-

ically sensitive to misorientations in €. For the AT cut, misorientations
-t may be compensated for by changes Ae, obtained from

Ae = -1.77 x 10- 3 
(A )

2
,

with A¢ in minutes of arc, and Ae in seconds of arc; this relationship is
portrayed in Fig. 32.

X-RAY ANGLE CHANGES'

The angles locating the X-ray planes in a crystal are functions of
temperature and external stress. For example, the plane at 380 13' used
for orienting AT cuts is only found at this angle at a certain temperature.
For high precision applications the angle shift with temperature is not
negligible. We give an approximate calculation to establish the order of
magnitude of the angle change.

Consider a rotated-Y-cut plate of crystal in the rhombic, tetragonal,
trigonal, hexagonal, or (ubic systems. (These have no off-diagonal thermo-
elastic coefficients.) At temperature T the plate angle will be determined
from

tan E = (X2/X3). (10)

With a change in temperature to T+AT, the axes become, in the linear
approximation

X = = X2  (1 + 22 AT) (11)

Xj = X3 (1 + a 3 3 AT)

We are thus led to a relation between Ae and AT:

tan Ae {(A-1) tan o / (1 + A tan 2 o ) (12)

where

A ( )/( + t133 AT). (13)
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As a consequence of (12) and (13) we have

AO = 12 (cI - 133)' AT sin 26. (14)

Figure 33 gives the X-ray angle chanqe with temperature; beyond
about 10 kelvins the linear approximation is not accurate except as to
order of magnitude. For the tetragonal, trigonel and hexagonal systems,
since U22 = 1l, the result is independent of angle p. In particular, for
the upper zero temperature locus for thickness mode plates .; is approxi-
mately constant and the result holds therefore for the AT, FC, IT, and SC
cuts (cf. Fig. 31). Relation (14) shows that Ae depends on the difference
between all and u for rotated-Y-cuts (or doubly rotated cuts when =L' -

I). For the cubic system this difference is zero, so A( is always zero
in this system. For quartz, the effective value of a in the thickness
direction of rotated-Y-cut plates is shown in Fig. 34; it is given by

a = -"1 COS 2 e + a33 sin 2 e; (15)

for the Y cut, a =A,, = al = 13.72 x 10-6/K, while for the Z cut (' = ±90),
'X =(X33 = 7.48 x 10-6/K. I

TWINNING

The types of twinning that may occur in quartz are shown in Fig. 35
along with the changes in axes and handedness.16 '' We briefly explore the
effects of twinning on the piezoelectric constants of crystals in Class 18,
which includes quartz. For the three types of twinning considered, the
operations involved are

(a) Dauphin6: Xl--XI; X2--X2; X -+X3.

ell-e11; e 14 -+e1

(b) Brazil: X -.-X1; X2++X2; X ++X .

el l---el I; el 4-'el,, •

(c) Combined: X1-).+X1; X2 -X2; X++X 3.

ell "ell; e 14 - el,,.

Consider e'26, the piezoelectric constant driving the pure shear mode
in rotated-Y-cuts of quartz:

Untwinned: e'26 = (ell cos e + e14 sine) (-cose).

(a) Dauphine: e'26 : (-ell cose + e,4 sine) (-cose).

(b) Brazil: e'26 = ( ell cose + e14 sine) (+cose).

(c) Combined: e'26 = ( ell cose - e14 sine) (-cose).
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Consider further a plate of unity area, with a fraction "a" of this
area twinned. For simplicity, assume the twinning is complete throughout
the thickness, and that the distribution of motion is uniform even though
twinned (although we keep in mind Cady's remark, above). Then the compos-
ite e 26should be:

(a) Dauphine:

e 2 6 = ((l-2a) ell cose + e sine) (-cose).

(b) Brazil:

e",6 = (1-2a) e11  cose + (1-2a) sine) (-cose).

(c) Combined:

e-26 = (el] coso + (1-2a) e14 sine) (-cose).

In the case of Brazil twinning:

e'2 6 (twinned) = (1-2a) e 26(untwinned). (16)

Equation (16), when written in terms of the resonator capacitance ratio
becomes:

r (twinned) = r (untwinned) / (1-2a) 2. (17)

DYNAMIC THERMAL EFFECTS

It has been known for many years that abrupt temperature changes
produce frequency changes in quartz vibrators that are unpredicted by stat-
ic f-T characteristics such as those of Fig. 25. The dynamic thermal ef-
fect has been given a phenomenological explanation by a modification of the
cubic curve to include time-dependent terms that take into account thermal
gradients in the resonator and support structure.1" The classical f-T
equation

Af = a AT + b AT + c AT3  (18)
f

is augmented by the addition of the term

( AT + ) dT/dt (19)

A temperature ramp (dT/dt = constant) applied to the resonator both ro-
tates the f-T curve, through W, and translates it, by means of a. Figure
36 defines the desired reference temperature (which may be at either zero-
slope point) at which the oven ought to be set, along with the actual oven
setting point achieved, and the oven cycling range. The cycling range is
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a measure of the quality of the crystal oven. The result of sinusoidal
temperature variations of magnitude :.T 60K about the inflection temper-
ature of the static AT cut f-T curve is shown in Fiq. 37. Temperature var-
ies as sin ,t; virious , values are shown. In Fig. 38 is given the re-
sult of variations for A^T = 10K about the upper turning point. Figure 39
gives the result when the temperature magnitude is reduced to 5iiK. In Fic.
40 the effects of AT = both and I mK on the orbit shapes is seen. Fig-
ure 41 shows the result of sinusoidal variations in temperature of magni-
tude !;2 mK about the turning point of the static f-T curve of Fig. 25.
With a period of 8 hours, the frequency change is about 3 x .0-, ; when the
period is lengthened to I week, the change is still about I x 10- l', where-
as the static f-T curve would predict a change of only a few parts in 10--,
irrespective of cycling rate. Since thermal transients, temperature cy-
clings, and fluctuations cannot be entirely avoided, the dynamic tempera-
ture effect is a very important consideration for high precision resonators.
The magnitude of the effect can fortunately be reduced by recourse to
doubly rotated quartz cuts, specifically the SC-cut.Y,'

AMBIENT VIBRATIONS

Insensitivity to acceleration is one of the most prominent criteria
by which to judge high stability resonators. At present, the rule-of-
thumb number relating frequency shift to applied acceleration is 2 x 10-

per q, although efforts are underway to reduce this value. (See references
given in Reference 20.) It appears that a sensitivity of I x 10- 1 /g is
a reasonable goal for the next few years. These two sensitivity figures
hdve been used in conjunction with published values for acceleration levels
in various environments-'I -: to produce the frequency shift entries shown
in Fiq. 42 and Fig. 43.

From Fig. 42 and Fig. 43 it is seen that the decrease in acceleration
sensitivity to parts in 1011 per g and beyond is highly desirable. The
smalle,-: entry in the figures is due to microseisms.2 2-2 6 Figure 44, ta-
ken from Reference 24, shows the very interesting spectrum of microseisms
observed at the earth's surface. It appears that the spectrum of displace-
ment versus period plotted on equal log-log scales consists of portions of
+2 and -2 slope peaking rather sharply at a period of about 7 seconds. The
maximum amplitude of acceleration is approximately 4 micro-g's, and is con-
stant along the +2 slope line. For oscillators with high acceleration
sensitivity this source of disturbance would have to be eliminated by mourt-
ing supports even for isolated, underground installations. Building vibra-
tions are far greater than microseisms, and their noise spectra must be
considered in the installation of precision oscillators. In certain loca-
tions, the accelerations due to earthquakes must be allowed for, although
the vibrations found in urban environments produce accelerations associated
with earthquakes of magnitude 3-4 on the Richter scale. 23 This scale is
defined, for shallow shocks, as the log,, of the maximum trace amplitud, in
micrometers with which the standard short-period torsion seismometer would
register that earthquake at an epicentral distance of 100km.

Two crystal resonator structures having decreased acceleration sensi-
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tivity for accelerations in the thickness direction are the ring-supported
and grooved configurations. 20 ,2 7 Several varieties of these are displayed
in Fig. 45 and Fig. 46; Fig. 45 gives the underlying rationale for using
ring-supported resonators when the acceleration is applied in the thick-
ness direction. The frequency shift is proportional to displacement of the
central membrane, and because of the double cantilever edge conditions
this displacement is smaller than in conventional simply supported resona-
tors. Figure 47 defines the parameters pertinent to the geometry of the
plano-convex ring-supported resonator. These parameters are listed below
for resonator B-4: (in mm)

00 = 7.950; i = 6.020; oe = 4.064;

t = 1.000; ti = 0.662; tc = 0.700;
0

R = 120.

The measured frequency constant was N = 1.770 MHz - mm. In Fig. 48 is
shown the experimental frequency shift versus acceleration for resonator
r-4, an AT-cut, plano-convex, ring-supported resonator with acceleration
applied along the X axis. The frequency shifts are seen to saturate at
high g levels, leading to the conclusion that the acceleration-frequency
sensitivity coefficient i; nonlinear. Figure 49 gives the corresponding
curves for resonator B-4. The concavo-convex ring-supported geometry in
Fig. 46 is a preferred st'ucture for unidirectional acceleration loads
directed toward the radii of curvature. The resonator center is thicker
than the junction to the ring to permit energy trapping.

ACOUSTIC VISCOSITY

One of the foremost reasons for using quartz as a vibrator material is
its extremely low acoustic attenuation, as manifested in the large values
of quality factor (Q) measured, typically as much as>'8

Q =I07 / fo, (20)

at room temperature, where f is the operating frequency in MHz. This is
shown in Fig. 50. The values in (20) are met, and exceeded, only by very
careful design of the mounting structure at frequencies below a few tens
of MHz 281; above these frequencies the intrinsic internal friction of the
material predominates. Calculation of the intrinsic loss follows from the
measurement of the elements '1ij of the acoustic viscosity tensor.

29

For the rotated-Y-cuts of quartz, the piezoelectrically driven shear
mode has an effective viscosity of

n' =n66 co!,2e +944 sin 2e + 2n1 4 sine cosf". (21)

Substituting the elastic stiffness cij for the viscosities in (21) yields
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the corresponding effective stiffness c' for this pure mode. Then tne

motional time constant representing the intrinsic losses is 0,.I

; - /C. (22)

Since is also equal to

C / = /(,. Q), 23;

both the intrinsic f) at an operating frequency f -. /2-. and the motional
resistance R. of the equivalent electrical network may be computed, as the
motional capacitance is separately calculated.

Wnen mountinq losses cannot be neglected, it is found that these loss-
es depend upon the plate diameter-to-thickness ratio r in the following
manner:

) =  (I + (/)?) , (24)

where is the intrinsic value of ,i, and depends on the material used,
beinq LO to 15 femtosaconds for room temperature quartz, and r, is a func-
tion o, the resonator design, with , = 60 a good average. This is demon-
strated by Fig. 51 and Fig. 52, where the data of Fig. 50 and additional
data are plotted against . It is seen that for ¢ - ¢ the loss, as
reflected in i, is governed by a curve with -2 slope; 'beyond , the curve
is constant, with zero slope. The calculation of ,, has been extended to
the general doubly rotated thickness mode case.

14

COSMIC RAYS

Cosmic rays, and other unshieldable radiation sources, produce cumu-
lativc contributions to long-term aging. Knowing the radiation sensitivity
of natural and cultured quartz under a variety of treatments permits an
evaluatiun of resonator performance due to this source.

The raw data are contained in Fig. 53, Fig. 54 and Fig 55. Using the
values for the photon flux given and a number of simplifying assumptions,
the frequency shift due to this source is given in Fig. 56 for two values
of quartz sensitivity. The unit "rad" is defined as "The standard unit of
absorbed dose, equal to energy absorption of 100 ergs per gram (0.01 joules
per kilogram)."' 0 The assumptions used are (a) unprotected crystal, (b)
total incident energy is absorbed, and (c) sea level flux. p is the photon
flux in photons / cm2 - sec. The fractional frequency shift Af/f is spec-
ified as 10-s; the time i(s) for this shift to occur is

C(s) - 5 x 10 12-S years. (25)

Similarly for neutrons, assumptions (a) and (b) listed above, plus
the sensitivity value Af/f -10 - 21 cm2/n. lead to the order-of magnitude
figures given in Fig. 57 for three values of altitude. J- n is the neutron
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FIGURE 53. Cosmic Ray Flux versus Particle Energy at Sea Level
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flux in neutron-sec/cm 2. The fractional frequency shift is specified as
10-s, and the time T(S) to reach this shift is

(s) 1014-S/ 47n years. (26)

CONCLUSION

Over the years, the stabilities of precision quartz oscillators have
improved according to a simple law. With frequency stability written as
Af/f = i0-S , s is given by s = 6 + O.1(Y-X); Y is the year date and x =
1920 for large-scale producticn models; this is seen in Fig. 58. Labora-
tory oscillators, therefore, can be projected to have stabilities in the
10- 14 range in the time frame 2000 if the current rate of improvement is
maintained. There do not appear to be intrinsic impediments to achieving
10- 14 stabilities with quartz elements by 2000, but in order to do so the
various "subtle" effects affecting stability will have to be subjected to
increasingly fine scrutiny. Figure 59 gives a broad view of technology
progression for crystal resonators from 1945 onward.42 The most interest-
ing developments are yet to come.
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