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1.0 Introduction

In recent years, there has been much interest in exploring the
impact of learning and changes in production rate on program costs.
Most researchers agree that learning is an important determinant of cost,
but agreement on the cost impact of production rate changes has been
less certain. Still, common sense and economic theory suggest that
production rate should be an important determinant of cost. This
importance is also suggested by the fact that cost penalties for produc-
tion rate changes now occur in some department of defense contracts (3).

This paper does not present a theoretical justification for the
integration of learning curves with traditional neoclassical economic
theory. The general theoretical framework for this paper is published
in previous research (14, 15). The purpose of this paper is to extend
the range of applicability of the general framework by considering a
previously unexplored specification. In particular, this paper explores
the joint production situation, where learning and output are simul-
taneously produced, and a model is presented that has potential
application in the airframe industry. The theoretical properties of the
model are explored, and a cost minimizing solution is presented.
Finally, a strategy is proposed for adapting the model to a particular

airframe program.

2.0 Background4
The production characteristics of the airframe industry place

unusual demands on cost estimators. The situation is characterized by a
small number of units produced, frequent design changes, and consider-
able political uncertainty. Both learning curves and neoclassical cost
functions have been used to model this unique production situation, but
it has only been in recent years that the two approaches have been
combined. Much of the early work that acknolwedged a need to combine
the two modeling situations was lacking in terms of theoretical rigor
(1, 4, 5). Also, many early application oriented studies were empirical
in lieu of being firmly grounded in economic theory (2, 6). Most
recently, significant advances have been made in modeling the made to
order production situation. The first dynamic optimization models were
presented by Rosen (7) and Washburn (9), but neither of these models was
definitive enough for empirical application. Recently a more definitive
model has appeared (14), and the result has been a series of applica-
tions to airframe production programs (10, 12).

The basic modeling framework was developed for a firm producing
to an order which specifies a quantity anA it ,elivery date for output.
A neoclassical production function is augii, with a learning hypoth-
esis, and the cost of production is minim;.. to yield optimal time
paths of both production and cost. The model presented in this paper
adheres to the same general theoretical framework.
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3.0 The Model

Consider the situation where learning and output are produced by
two separate production technologies. The time path of output, or
production rate, is presented as a function of a single variable com-
posite resource and the cumulative stock of knowledge. Also, the time
path of experience rate, a decision variable, is presented as a function
of the same composite resources and the cumulative stock of knowledge.
The assumption is that the relative prices of the resources in the
composite resource do not change, and cost is measured in the units of
the variable resource. The variables of the model are defined below:

q(t) = output rate of the program at time t,

I(t) = rate of experience at time t.

t
Q(t) = f q(T)dT = cumulative output at time t,

0

t
L(t) = f 2(r)di = cumulative stock of knowledge at time t,

0

= a returns to scale parameter,

= a returns to scale parameter, AccSslCn F or

a a learning parameter, t C,

6 = a learning parameter, , -"

C = variable program cost, By

T = time horizon for the production program, .- -

V = volume of output to be produced by T,

M = initial stock of knowledge,

a = constant term, LA, ,
a2 = constant term. cop

2 VECTO

One possible specification is two Cobb-Douglas production functions,
that is,

q(t) = aI X ql/(t)L(t), (I)

and

I(t) = a2x 1/0(t)L (t). (2)



3

With this specification the use rate of the composite resource is
segregated into two parts, that allocated to output x (t) and that
allocated to learning X (t). These inputs, combined with Ihe cumulative
stock of knowledge L(t?, are used to produce two products, output q(t)
and learning I(t). The following assumptions define the admissible
ranges for the parameters: 0 < a <, 0 < 6 <, y 1 1, and 0 > 1.

The objective of the firm is to minimize its cost of production
subject to the production function constraints. This may be stated as

T
Min C f x q(t) + xk(t)ldt (3)

0 q

subject to:

q(t) = a x ql/Y(t)La(t), (4)

I(t) = a2 x -a (t)L (t), (5)

Q(O) = 0, (6)

Q(T) = V, (7)

L(O) = M, (8)

and

L(T) = free. (9)

The solution of (4) and (5) for x (t) and x (t) yields the following
resource requirement functions: q

* 9(t) = qy(t)a l-¥L-ay(t). (10)

and

xP(t) = 2(t)a 2 rLF(t). (11)

Substituting the resource requirement functions into the objective
functional eliminates the production function constraints. The objec-
tive functional is now stated as

Min C = 0f (qy(t)a1 YL'Y(t) + 10(t)a2 "A-L'6(tJdt. (12)
0

A transformation of the objective functional simplifies the solution
procedure. Let

Z(t) = L1-6 (t)/(-6). (13)

This implies that
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L(t) = Z1/(l 6 )(t)(l-6)i/(1 6 3, (14)

and

z(t) = dZ/dt = L'6(t) (t). (15)

After making the appropriate substitutions the tranformed problem is

T

min C f [q"(t)a I (Z1a/(6)6)(1-6)"Oy/ (1- 6 )
0 (161

+ zOCt)a2" ldt

subject to:

Q(O) = 0, (17)

Q(T) = V, (18)

Z(O) = N16/(1-6), (19)

and

Z(T) = free. (20)

An equivalent way to present the above problem is as a problem in
optimal control theory. The objective is stated as

Min C =f fT uI¥(t)al1'ZY'a/(1-6) (1-6 )-y/ (1-6)

+ U2 A(t)a 2 . ]dt (21)

subject to:

q(t) = ul(t), (22)

z(t) = u2 (t), (23)

Q(O) = 0, (24)

Q(T) = V, (25)

Z(O) = MI 16/(1-6), (26)

and

Z(T) = free. (27)

The control variables for the problem, u1 (t) and u (t), are the time
rates of change of the state variables, iCe., u1 (t)- q(t) and u2(t)
z(t). The Hamiltonian function for the problem is

.2 . -



H = U1¥(t)al - Zayly/6)(t)C1-)'/(l-6) +

uq6 (t)a2 '+X 1 (t)ul(t)+x 2 t)u2 (t). (28)

The necessary conditions for defining an extremal require that the
equations of motion, the adjoint conditions, and the Hamiltonian condi-
tions hold simultaneously. The equations of motion are

8H/8A1 = q(t) = u1 (t), (29)

a x/ A2 = z(t) = u2 (t). (30)

The adjoint conditions are

dX1/dt = -BH/aQ = 0, (31)

dX2/dt = -H/Z = (a /(l-6)]U 1  (t)aI Y (32)

Z(6-ay-l)

The Hamiltonian conditions are

H/ u 1 = 'Yul (t)alI¥Z 'ay/(l&6)(t)

(-a(l-6) = 0,

l/au 2  = Ou2 (t)a2 " + 2 (t) 0. (34)

The simultaneous solution of these conditions requires solving two
second order nonlinear differential equations. This implies that there
are four constants to be determined by the boundary conditions. Three
of the constants are determined by the given boundary conditions, and
the fourth is given by the natural boundary condition, that is, since
Z(T) is free, the condition z(T)=O determines the fourth constant.

The differential equations that follow from the necessary con-
ditions are the Euler-Lagrange equations of the calculus of variations,
i.e., i

(A-l)z-2 (t)a2 ' A(d
2Z/dt 2) + [ay/(l-6)JqY(t)

a -YZ(6 -ay-l)/(l'6)(t)(l 6) aY/(l"6)-0, (35)
a1-_

and

-yq Yl(t)a'1 YZ-aY/( 1 "6 )(t) (1-8) "a (l68) = ki, (360

where ki is a constant of integration.

The simultaneous solution of the Euler-Lagrange equations yields
the optimal time paths of both production and experience rates. The
solution proceeds as follows. Solve (36) for q(t) and state the result
in compact notation as
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q k IZ" (t) (37)

where rfiy/(1-6)(y-l)]. This expression for q(t) may be substituted
into (35), and the number of equations is reduced by one. The single
necessary condition is stated as

2 2 -1 -1l2-0
i ~~~~~ dZ/dt2 = 0'l(0-1) lz2-Wta 2  /(-)

i~~ ~~ Z~~ 6..)[ l(_)(t)k Y(1.6)"a . (8

This is a second order nonlinear differential equation which may be
stated in compact notation as

2 2 2- n1d Z/dt = Az2 "(t)zn '(t) (39)

where the constant term is

A =-0- (0-1)- a 2 Pioy/(l-6)Ik 1 Y(l-8 ) ayl(
1-6 )a l-Y(4

and

rj-i = (l+ry+dy-y-6)/!(y-l)(1-8)1. (41)

After the series of transformations to achieve a reduction in order, the
following differential equation is obtained:

dZ/dt = [APZ'(t)/n + k2
1  . (42)

This function may be inverted, leaving t as the following function ofZ(t):

1-6 f Z(t)[AOZ'/r + k 2 ) ' / Od Z + k 3

t = M 6 /(1-6) (43)

An expression is needed that gives Z as a function of t. This allows
you to apply the boundary conditions on Z(t), determine the constants,
and define one of the extremals. Since (37) relates Z(t) to q(t), you
should be able to apply the boundary conditions on Q(t) and define the

second extremal. Unfortunately this procedure is easily stated but not
easily executed.

The next step in the solution procedure is just a restatement of
(43) in a slightly different form. After some algebraic manipulation
(43) may be written as

t = k 2I/PmI6/(0-6) 2 3 (44)

The value of k 2 is determined by returning to (40), which allows you to
apply the natural boundary condition z(t) = 0. The resulting expression
for k 2 is

k 2 = .AOZn(T)/n, (45)

and (44) may be written as
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t = M1-61(-6) [APZ(T)/r) '
1 P fZ(t)(l 'Zn(T)Zn]_l/P dZ+k 3' (46)

This integral appears uninviting, but a change of variables leads to a
solution. Let

y = z'T) .  (47)

The integral may now be restated as

t = [-APZ1(T)/nl'/ftZ(T)n 1

z'n (T)/Z"(t)

Zn(T)[MI-6 /(1-6)],X f(48)

(ly) (li/0)lyl/j-l dy + k 3

which is a form of the incomplete beta function.

The solution is complete except for the determination of the
constants of integration. At this point the value of k is unknown, and
there is also an unknown constant, k , in the A teA1. To determine
these constants, first notice that (26) implies that k,=0. The deter-
mination of the second constant requires m little more effort. The
strategy is to find an expression for [-A~z (T)/n] that is in terms of
known constants. The solution is as follows. Equation (42) may be
written as

dt = I-ApZ'n(T)/n "d1 / jl-Z'n(T)Zn(t)1)1 /0dZ. (49)

It also follows from the Euler-Lagrange equations that

Q() = k, ftz(T)dT. (50)

After evaluating (49) at t and changing variables in (50), it is pos-
sible to write Q as a function of Z, i.e.,

Q(Z) k I (-APZ1(T)/nJ_
1/ 0

yZ(t)z

1-6 / f Z(l-Z'q(T)Z]'l/dZ. (51)
I11 -6)

This integral results in an expression that is suitable for applying the
boundary conditions on Q(t). In other words, (50) is transformed into
an expression that is integrated with respect to Z in lieu of t. Con-
tinuing with the solution, let

R = k1 [-APZ"(T)/lJ'/, (52)

and
y f Z'n(T)Z'. (53)
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Equation (51) may now be stated as a form of the incomplete Beta
function. The appropriate integral is

Q(y) = Rz9+I(T)n "I

Z-Q(T)ZQ(t)

Z()[ 1(1 -6 ) +l)(l-y)(l/P)dy + k4  (54)

It is now possible to apply the boundary conditions on Q. The initial
condition, Q(O), = 0, implies that k4 = 0. The final condition, Q(T) =
V, implies

R = VZ 'l-(T){ I f Y(/+l)l(l-y)(li/0)Idy} l

Zn(T)[M1-6 /(1-6)]0

which is another form of the incomplete Beta function.

Since all of the integration constants are known, it is possible
to write an expression that links optimal Z with T. The expression is

Z'q(T)Z'(t)

i= c, f yl/nl(l-y)(l'i/P)'Idy (56)

1-8Z-n(T)[MI'/(1-6)),

where c is comprised completely of constants. By using the inverse
incomplete Beta function in (56), it is possible to determine Z(t) for
any t. Optimal Z(t) determines optimal L(t) via (13), and optimal Z(t)
determines optimal Q(t) via (37). The theoretical solution is now
complete, but unfortunately the model is not in a form that is suitable
for application to most airframe programs.

4.0 Strategy for Application

The theoretical model requires some adjustment before it is in
the proper form for application on most airframe programs. The problem
is that the model is not stated in terms of variables that are observ-
able or even measurable. There is no convenient way to measure the
current stock of knowledge, and there is even some doubt about the
proper way to measure production rate (8). However, there are two
quantities that are usually reported with a degree of regularity.
Direct labor hours, either by airframe or unit time, is usually avail-
able, and there is usually some information on delivery schedules and

perhaps lot sizes. The latter information is useful for assigning cost
to time periods to develop a data series suitable to estimate the model
parameters. The following procedure provides a method for transforming
the model so that it may be used in applications where the only avail-
able data is cost per unit time.
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The objective to rewrite the optimal inverse function (48) so
that t is a function of x, a quantity that is observable in the data.
The total resource requirement function is the sum of the individual
resource requirement functions, i.e.,

x(t) = x q(t) + x 2t) (57)

After substituting (10) and (11) into (57) and using (15), the combined
resource requirement function may be rewritten as

x(t) = qT(t)alI Z-ay/(l6)(t) + zP(t)a2  . (58)

The strategy is to eliminate q(t) and z(t) from the above expression.
This leaves an expression which may be solved for Z(t) as a function of
x(t).

The following procedure is used to eliminate z(t). Equation
(42) implies that

zO(t) = APZ'(t)/ + k2. (59)

If this result is substituted into the resource requirement function,
z(t) is eliminated. The resources required may now be written as

x(t) = qT(t)al Y/-y(l6) (t) + a2"AZ'(t)/n + k2a2 ". (60)

To eliminate q(t), use the Euler-Lagrange equation (37). Solve the
Euler-Lagrange equation for q(t), and substitute into (60) to obtain the
desired result. After solving for Z(t), the optimal expression is

Z(t) = (D+E)-i/[x(t) - k2a 2 - 1/n (61)

where D and E are functions of known constants. If (61) is substituted
as the upper limit of integration in the optimal inverse function (48),
the result is an expression that gives t as a function of x(t) at any
point in time, i.e.,

t =z

Y/ ( - Y) (-li(p-y)a-0/0p-Y)Y/(P-Y)

262[ay/(l-)'P -6) ( 6 )i(Y1)/(
p °Y) (62)

Z'n(T)(D+E)' l x(t)-k 2a2
"

Z'q(T) jMl 6/1-6)]rif

(1.y- lll'y l dy.

Although the transformation is complete, the function is still not

appropriate for estimation since the quantity that is observable is not
ti1

x(t), but cumulative x(t) over some interval, i.e., C f x(t)dt. As
to
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a final adjustment, (61) is solved for x(t) and integrated over an
interval of time. The required integration is

C=X(tI)-X(t0) ft1 f(D+E)Zn(t) + k2a2 - ]dt. (63)
to

If the Euler-Lagrange equation (37), is used to eliminate Z(t) from
(63), the integral becomes

C= f1 [(D+E)k 1-
1 q(t) + k2a2 ]dt. (64)

t0

After performing the integration and applying the boundary condition on
Q(t), the final result is

C = (D E)k I [Q(tl)-Q(to)1+k 2a2 " (t1-t0 ). (65)

This result is the basic estimable relationship of this paper. Since
Q(t) is known for any value of Z(t) by equation (51), and Z(t) is known
for any value of t by equation (48), X(t) is known for any value of t.

Previous experience with estimating parameters in this type of
model suggests that in many cases, the model is over parameterized (12).
Our future papers will explore the economic implications of a simpler
reparameterized version of (65). The specification is

C = Cl1 Q(tl)-Q(t0 )1 + c2(tI-t0) (66)

The complex expressions for Q(t.) provide the necessary functions for
estimating the model parameters.

Simulations with (66) indicate that this model generates total
cost curves whose shape are very similar to those encountered in prac-
tice. Figure 1 shows various simulated cost curves using apriori para-
meter estimates and the volume/delivery schedule values (V and T) from
the F102 airframe program. Notice that the model is very responsive to
changes in the returns to knowledge parameter 0. Also, Figure 2 gives
simulations of the cumulative stock of knowledge using these same values
of f. This curve is extremely hypothetical since arbitrary values were
assigned to the terminal stock of knowledge. Our current research
includes the estimation of the parameters in this model using nonlinear
least squares.

5.0 Conclusion

This paper examines a theoretical model of the "made-to-order"
production situation. The model is unique in that it examines the case
where output and knowledge are produced by two separate production
technologies. The solution for the model yields an optimal estimable
relationships which has potential for application in the airframe



industry. The usefulness of the model will be tested in a later paper

where the model is applied to the F102 airframe program.
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