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<V ABSTRACT ' 1

Let x (Xl...Xk) be a random vector whose distribution depends on

an unknown vector parameter _ = (61""..k). The marginal distribution of

Xi depends on e1 only , i = l,...,k. This paper deals with the problem of

selecting the largest component of e and the analogous problem of selecting

a subset of the components of e which includes the largest component. We

consider the selection problem in a general decision theoretic framework

- and derive Bayes rules for selecting the largest component. The Bayes rules

are shown to have certain optimal properties. The ordinary selection rules are

shown to be Bayes rules, with respect to a special loss function.,,-,
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1. Introduction. Let X = (X1,... ,Xk) be a random vector whose distribu-

tion depends on an unknown vector parameter 9 = (Ol,...,*k . The marginal

distribution of Xi depends on 0. only, for each i = l,...,k. We consider

the problem of selecting the largest component of _ given x, an observed value

of X.

There are two formulations of the selection problem which have been gener-

ally considered in the literature. In one the goal is to select the largest

component with a "high" probability. In the other the goal is to select a

subset of the k components which includes the largest component with a high

probability and includes any of the remaining components with a "low" probabil-

ity. In the second case, the selection would be correct if the largest component

is included in the selected subset.

In the standard formulation of the selection problem a minimum probability

is pre-assigned, equal to P*, say, such that the probability of a correct

selection (PCS) should be at least as large as P*. This is called the P*-

condition. To meet the P*-condition it needs to find a "least favorable"

configuration (Ifc) of the parameter space for which the PCS is minimized. The

lfc is found easily in some special cases which have been considered in the

literature for the underlying distribution of X. In other cases the minimi-

zation of the PCS is not so straightforward. Consider, for example, the case

where X is distributed according to a multivariate normal distribution with

mean 0 and covariance matrix Z; where Z is known. A simple rule can be given

for selecting the largest component of 9 in the special case when the compo-

nents of 'X have a common variance and are equi-correlated (see Gibbons, Olkin

and Sobel (1977), §15.2.1). It is not simple to find an optimal selection

rule when E is defined more generally. The difficulty arises even in the

case where the components of X are uncorrelated but they have unequal variances.
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For this case various rules have been proposed in the literature for selecting

a subset which includes the largest component of e. Berger and Gupta (1980)

have examined these rules and compared them, applying certain criterion of

optimality.

In this paper we consider the selection problem in a Bayesian framework.

The Bayes formulation involves tile specification of a loss function and the

assumption of a prior distribution for the parameter 0. Given the loss function

and the prior distribution of 6, it is fairly easy to find an optimal selection

rule. The optimal rule is called a Bayes rule. The Bayes solution does not

involve the minimization problem of finding the least favorable configuration.

Therefore, at least from the point of view of mathematical simplicity, a Bayes

solution of the selection problem should be more attractive than the standard

method, discussed above.

In the following section we give a decision theoretic formulation of

the selection problem and derive the Bayes solution for a general loss function.

We illustrate our result with an example from the multivariate normal distribution.

Berger and Gupta (1980) have considered a monotonicity property for an

optimal selection rule. A rule is said to be just if it has that property.

In Section 3 we show that our Bayes rules are just if certain conditions

with regard to the distribution of X and the loss function.are met.

I:
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2. Bayes selection rules. We formulate the selection problem in a

decision theoretic framework, as follows: A rule for selecting the largest

component of e (selecting a subset of the k components, which includes the

largest component) is given by a vector 0 (x) = ( 1(-J)""',k(X)), where

Oi(x) denotes the probability that the ith component is selected (included

in the selected subset) when x is the observed value of X. For the problem

of selecting the largest component we have

k
(2.1) Z. y.x) - I V x

First, consider the subset selection problem. We call it Problem I. Let

Li(a) denote. The loss incurred due to including the ith component in the

selected subset, and let Li(e) denote the loss due to cluding the ith compon-

ent from the selected subset. The total loss due to selecting a subset (a)

is given by

k k ,
(2.2) L(6,O) I=l siL i() + (l (-6i)L.(-)

k k
= i (Li(e) " Li(+)) + Li (e)

where 6 a (61,-960 and i= 1(0) if the ith component is included in

(excluded from) the selected subset. We assume thatk(2.3)Me) 0 , _

The above inequality implies that the loss due to including all the components

in the selected subset is < the loss due to excluding all the components from

-------------------------------- ------- --
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the selected subset. Therefore, we include at least one component in the

selected subset.

Next, consider the problem of selecting the largest component. We call

4 it Problem II. Using the same generic notation for the loss function as in

Problem I, we let Li(_) denote the loss due to selecting the ith component

as the largest component, and let Li (e) be the loss due to not selecting the

ith component. The total loss due to selecting a component (6) is given by

(2.2) where now i = I(0) if the ith component is selected (not selected)

for the largest component.

Consider a special case of the loss function, given above. Let

r if ei = "[k ]

4 (2.4) Li(e) =
1 f i  8 [k]

L' i = c(-L i(e))

where c is a positive number and e[k ] = max (el,...,6k). We let c > k-l for

Problem I and c = 1 for Problem II. In Problem I the value of c measures

the loss due to excluding the largest component from the selected subset,

relative to the loss due to including a wrong component in the selected subset.

The inequality (2.3) holds since c > k-l.

The risk, that is, the expected loss due to a selection rule 0 O(A)

is given by

k k

(2.5) R (L L (6)) E 0.(x) i

In Problem I the risk for the loss function given by (2.4),is equal to the

sum of c(l-PCS) and the expected number of wrong components included in the

6- -----
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selected subset. In Problem II the risk for the same loss function is equal

to (l+c)(l-PCS).

Let P0 denote the conditional distribution of X given 0. We suppose

that the distribution has a denisty p,(x) with respect to a a-finite measure
kg

4 on Rk. For the Bayes formulation of the selection problem we assume that

_ is distributed a' priori according to a probability distribution G, say.

The optimal selection rule is a functional @ which minimizes the average of

the risk function with respect to the given prior distribution of e, given

by

RO = f R(e) dG(e).

Let

(2.6) Mi(x) = f (Li(e) - Li(e)) p (x) dG(j)
i- -

(2.7) M(x) = min (M!(x) ,..., M (X))

* By virtue of (2.5) a Bayes rule for Problem I is given by

'I if Micx) < 0
(2.8) el(x) = 1

otherwise

The Bayes rule for Problem II is given by

(2 .9 ) i (x ) i if M i ( ) M (A )

0 otherwise

If Mi(x) - M(x) for several values of i, we select the smallest among the

tied values of i for the largest component. We note that the Bayes rules

(2.8) and (2.9) are both non-randomized selection rules.

l- '7~ - 0
LT
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We illustrate our results by the following example.

Example. Let X be distributed according to a multivariate normal distri-

bution N(,.), where the covariance E is a diagonal matrix, the ith element

on the diagonal being denoted by ar. Let the loss function be given by (2.4)

and let e be distributed a'priori according to N(0, T21), where I denotes
an identity matrix. Let O(x) and t(x) denote the standard normal density

and cdf, respectively, and let

S2 =T2 / 2( 2

i  I

By direct computation we get

k X-C. Xi2xX

(2.10) Mi(x) = p(x) [-(l+c) j1 1-j + i u + 113], j=l~ji) ( kjCy Xj (j

where

p(x) = $p_(x) dG(O)

11=1= 1I (21T(a +T2) exp (- Xi  (G +T2))

i=l =

denotes the marginal density of X.

If we let T + =, so that the prior distribution of e tends to be non-

informative, then

k a. x.X
(2.11) Mi(1x) - p(x) [l-(l+c) 11 u + )0 (u) du]

Hence, the ith component is included in the selected subset if

.- k ari u +1i x
(2.12) r I (11u+ ) (u) du>

-- j (j#i) Ilj -
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The above inequality holds for sufficiently large values of (xi-x.)/a , joi.

In Problem II we select the rth component if the quantity on the left side

of (2.12) is maximized for i=r. For k=2 this quantity is equal to

(xi-x) I (+ j ) )

Therefore, we select the component associated with the larger of the two values

x and x2.

Let 01 = = .= , say, giving A, = = Xk = X ' say. We have

0 00 k
(2.13) Mi(x) p 0(x) [l-(l+c) 1 f 0 (u + (x.-x (u) du]

-0 j=l (ji) 1

where pO(x) is obtained from p (x) by substituting a for oi , i a 1,...,k.

We find that M(x) < 0 for xi-x. > 0

j = l,...,i-l, i+l,...,k. Therefore, we include the ith component in the

selected subset if none of these differences is negatively large. Also, M.(x)

is minimized for the value of i associated with the largest component of x.

Therefore, in Problem II we select the component associated with the largest

value among xl,... ,xk . These are ordinary selection rules. We see them as

Bayes rules.

3. Just rules. First we define a stochastically increasing property

(SIP) of a class of multivariate distributions. A set A C Rk is said to be

monotone if, if x e A and yi > xi , i-l,...,k then y e A. Let P be a

family of probability distributions on Rk indexed by a vector parameter

9 _ (-(l,...,ek). Let QC Rk denote the parameter space. The family of distribu-

tions P is said to have SIP with respect to 6 if , if a , _ and

ej<ej , I = 1,..., k then P_(A) <. Pe_(A) for all monotone sets A. A character-

4..

I - -'
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ization of the SIP, due to Lehmann (1955), is given as follows: A function

((x) is said to be nondecreasing in x if, if x < x! , i = l,...,k then

p(x) < p(x'). A family of distributions P. is said to have SIP with respect

to e if and only if, if p(x) is nondecreasing in x then fi(x) d P6(x) is

nondecreasing in 9.

Now we define a just rule. A selection rule is said to be just if

oi(x) is nondecreasing in xi and nonincreasing in x. (jii) for i, j = 1,...,k.

Theorem 1 belowshows that the Bayes rules given by (2.8) and (2.9) are just

if the following assumptions are valid.

Assumption 1 - The posterior distribution of 8 given x, has SIP with

4 respect to x.

Assumption 2 - The function Li(e) - L (e) is nonincreasing in ei and

nondecreasing in ei(Jti).

* Assumption 3 - Mi(x) is a continuous function of x.

Assumption 3 is valid if, for example, the loss functions L.(e) and Lt(j)
are bounded and is continuous in x uniformly for e e 0.

Theorem 1. If assumptions 1 and 2 hold then the Bayes rule (2.8) is

just. If moreover Assumption 3 holds then the Bayes rule (2.9) is just.

Proof: From the characterization of the SIP given above, and Assumptions

1 and 2, it follows that Mi(A) as given by (2.6), is nonincreasing in xi and

nondecreasing in x.(j~i). Therefore, the function i(x) as given by (2.8),

is nondecreasing in x i and nonincreasing in x.(j#i). Hence, the Bayes rule

(2.8) is just if Assumptions I and 2 hold. If moreover Assumption 3 holds

then it follows from the continuity and monotonicity property of Mi(x) that

oi(x), given by (2.9), is nondecreasing in xi and nonincreasing in x.(joi).

Hence, the Bayes rule (2.9) is just. 0
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In the application of Theorem 1 it would be interesting to find for a
given family of distributions P which is stochastically increasing in 0,

the family of prior distributions for which Assumption 1 holds. We have not

investigated this problem to any length. We discuss below some cases in which

an appropriate prior distribution can be found for which Assumption 1 holds.

Clearly, Pa(x) has SIP with respect to 0 if e is a location parameter

of the conditional distribution. The posterior distribution of 0 with respect

to a non-informative prior distribution G which is uniform on Rk, has SIP

with respect to x. Similarly, P,(x) has SIP with respect to 9 if _ is a scale

parameter (component-wise) of the conditional distribution. The posterior

distribution of e with respect to the non-informative prior on Rk with density

function g(_) - (a... k) has SIP with respect to x.

The prior distributions for the location and scale parameters considered

IT above, which lead to the posterior distri -tion with SIP are both improper

distributions. We give now an example of a proper prior distribution for

a location parameter. Let P5 denote the multivariate normal distribution

N(e,Z) and let a be distributed dpriori according to N(O,). A'posteriori,

a is distributed according to the normal distribution N(A x , (_-+ l)-),

where
A = z 1 + l) l  " .

If the elements of A are non-negative then the posterior distribution of e

has SIP with respect to x. The elements of A are positive if the covariance

matrices - = (rij) and p = (wij) are given by jii = 1 , (.ij = p (isj), p < 0,

= and wij = 0 (i#j). The matrix A is given by

A = 11+ (l-)'))A(I - ++pki

where I denotes the identity matrix and J denotes a matrix whose elements

are each equal to 1.

I 'A- '
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