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Let i = (i],...,xk) be a random vector whese distribution depends on

Lo

an unknown vector parameter 8= (61,...,ek). The marginal distribution of

X; depends on ei only. , i =1,...,k. This paper deals with the problem of
selecting the largest component of © and the analogous problem of selecting

a subset of the components of 8- which inc]ude§ the largest component. We
consider the selection prob]em‘in a general decision theoretic framework

and derive Bayes rules for selecting the largest component. The Bayes rules
are shown to have certain optimal properties. The ordinary selection rules are

shown to be Bayes rules, with respect to a special loss function. «—
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1. Introduction. Let X = (X],...,Xk) be a random vector whose distribu-

tion depends on an unknown vector parameter § = (e],...,ek). The marginal
distribution of Xi depends on ei only, for each i = 1,...,k. We consider
the problem of selecting the largest component of 8 given x, an observed value
of X.
There are two formulations of the selection problem which have been gener-

ally considered in the literature. In one the goal is to select the largest
component with a "high" probability. In the other the goal is to select a

| subset of the k components which includes the largest component with a high
probability and includes any of the remaining components with a “low" probabil-
ity. In the second case, the selection would be correct if the largegt component

- 4 is included in the selected subset.

In the standard formulation of the selection problem a minimum probability

is pre-assigned, equal to P*, say, such that the probability of a correct

; selection (PCS) should be at least as large as P*. This is called the P*-

. condition. To meet the P*-condition it needs to find a "least favorable"
configuration (1fc) of the parameter sbace for which the PCS is minimized. The
1fc is found easily in some special cases which have been considered in the
literature for the underlying distribution of X. In other cases the minimi-

-~ zation of the PCS is not so straightforward. Consider, for example, the case

where X is distributed according to a multivariate normal distribution with

mean © and covariance matrix Z; where £ is known. A simple rule can be given
for selecting the largest component of 9 in the special case when the compo-
nents of X have a common variance and are equi-correlated (see Gibbons, Qlkin
and Sobel (1977), §15.2.1). It is not simple to find an optimal selection
rule when £ is defined more generally. The difficulty arises even in the

case where the components of X are uncorrelated but they have unequal variances.
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For this case various rules have been proposed in the literature for selecting
a subset which includes the largest component of §. Berger and Gupta (1980)
have examined these rules and compared them, applying certain criterion of
optimality.

In this paper we consider the selection problem in a Bayesian framework.

The Bayes formulation involves the specification of a loss function and the ;

assumption of a prior distribution for the parameter 8. Given the loss function g

and the prior distribution of 5, it is fairly easy to find an optimal selection
rule. The optimal rule is called a Bayes rule. The Bayes solution does not
i involve the minimization problem of finding the least favorable configuration.

Therefore, at least from the point of view of mathematical simplicity, a Bayes

o
A

solution of the selection problem should be more attractive than the standard

method, discussed above.

In the following section we give a decision theoretic formulation of

We illustrate our result with an example from the multivariate normal distribution. 4

Berger and Gupta (1980) have considered a monotonicity property for an

I' ' the selection problem and derive the Bayes solution for a general loss function.
|

{ optimal selection rule. A rule is said to be just if it has that property.

|

In Section 3 we show that our Bayes rules are just if certain conditions

with regard to the distribution of X and the loss function.are met.
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2. Bayes selection rules. We formulate the selection problem in a

decision theoretic framework, as follows: A rule for selecting the largest
component of 8 (selecting a subset of the k components, which includes the
largest component) is given by a vector ¢ (x) = (¢1(5)”"’¢k(5))’ where
¢i(5) denotes the probability that the ith component is selected (included
in the selected subset) when x is the observed value of X. For the problem

of selecting the largest component we have

k
1

=]
First, consider the subset selection problem. We call it Problem [. Let

Li(g) denote. The loss incurred due to including the ith component in the
selected subset, and let L:(g) denote the loss due to cluding the ith compon-
ent from the selected subset. The total loss due to selecting a subset ()

is given by

k K *
(2.2 Le.0) = [ &Li@ + T (1-6,)L500)

1= 1=

k . K
= 1_21 §;(L;(8) - Ly(9) + iz'l L;(e)

where § = (51""’5k) and §; = 1(0) if the ith component is included in

(excluded from) the selected subset. We assume that
k *
(2.3) 121(1-1(2) - Li(e_))f_ 0o, Y8

The above inequality implies that the loss due tb inc1uding all the components

in the selected subset is < the loss due to excluding all the components from

Tmem o e T % 3 =
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the selected subset. Therefore, we include at least one component in the
selected subset.

Next, consider the problem of selecting the largest component. We call
it Problem II. Using the same generic notation for the loss function as in
Problem I, we let Li(g) denote the loss due to selecting the ith component

*
as the largest component, and let Li (8) be the loss due to not selecting the
ith component. The total loss due to selecting a component (3) is given by

(2.2), where now 8 = 1(0) if the ith component is selected (not selected)
for the largest component.
Consider a special case of the loss function, given above. Let

(2.4) L4(®) = .

Li (i) = C(]‘L.I(.e.))

where c is a positive number and er, ; = max (675---58,). We let c > k-1 for
Problem I and ¢ = 1 for Problem II. In Problem I the value of c measures
the loss due to excluding the largest component from the selected subset,
relative to the loss due to including a wrong component in the selected subset.
The inequality (2.3) holds since ¢ > k-1:

The risk, that is, the expected loss due to a selection rule ¢ = ¢(x)
is given by

k k %
(2.5)  R,(9) = 1§1 (L4(®) - L(e) E oy + ] Ly(e)

In Problem I the risk for the loss function given by (2.4),is equal to the

sum of ¢(1-PCS) and the expected number of wrong components included in the
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selected subset. In Problem II the risk for the same loss function is equal
to (1+c)(1-PCS).
Let Py denote the conditional distribution of X given 8. We suppose

that the distribution has a denisty pe(g) with respect to a o-finite measure
u on Rk. For the Bayes formulation 6; the selection problem we assume that
8 s distributed a' priori according to a probability distribution G, say.
The optimal selection rule is a functional ¢ which minimizes the average of

the risk function with respect to the given prior distribution of 6, given

by
R, = | Ry(0) aaC).

Let
(2.6)  My(x) = 1 (L;(8) - L{(8)) b, (x) dB(e)

(2.7) M(x) = min (M!(l) geeos Mk(_)g))

By virtue of (2.5) a Bayes rule for Problem I is given by

1 if Mi(x) <0
(2.8)  6.(x) =
0 otherwise

The Bayes rule for Problem Il is given by

1 if Mi(ﬁ) = M(x)
(2.9)  o;x) =
0 otherwise

If "1(5) = M(x) for several values of i, we select the smallest among the
tied values of i for the largest component. We note that the Bayes rules

(2.8) and (2.9) are both non-randomized selection rules.
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We illustrate our results by the following example.

Exampie. Let X be distributed according to a multivariate normal distri-
bution N(8,c), where the covariance r is a diagonal matrix, the ith element
on the diagonal being denoted by o?. Let the loss function be given by (2.4)

and Tet 9 be distributed a'priori according to N(O, 121), where [ denotes

an identity matrix. Let ¢(x) and 9(x) denote the standard normal density

and cdf, respectively, and lTet

A? =12 / (12+o,g)

By direct computation we get

2 2
i

(2.10)  M;(x) = p(x) [1-(1+c) r 7 Gy o ST )
. AX) = p(x -{1+c b u+ ¢(u)du
! S 3=1(34) N A%

where

p(x) = Ipy(x) d6(a)

k k
(1 (o™ e (- 3 )G/ (o))

i=]

denotes the marginal density of X.
If we let 1 + =, so that the prior distribution of 6 tends to be non-

informative, then

k . =X
(2.11)  Mi(x) = p(x) [1-(T+c) I $ (i‘— u+ i‘—(;l)qs (u) du]
- §=1(3#i) % j

Hence, the ith component is included in the selected subset if

k o X=X
(2.12) r 1 p (u v —dy § (u) dus =
g (ga) oy oy - e
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The above inequality holds for sufficiently large values of (xi-xj)/cj . J#i.
In Problem II we select the rth component if the quantity on the left side

of (2.12) is maximized for i=r. For k=2 this quantity is equal to

¢ ((xg=x;) 7 (o3rd)h)

Therefore, we select the component associated with the larger of the two values

Xy and Xy
Let 0y % .. =0 =0, 53, giving A] = ... = Ak = A, say. We have

(2.13) M.(x) = p0(x) [1-(1+c) J’w I'E o (u +;>;- (xj-x3)) ¢(u) du]
-0 J=1(j#1)

where po(ﬁ) is obtained from p (x) by substituting o for oy » 1= 1ok

We find that Mi(é)'i 0 for xi-xj‘3 0,

J=1,...,1-1, i+l,...,k. Therefore, we include the ith component in the ' i

selected subset if none of these differences is negatively large. Also, Mi(i)

is minimized for the value of i associated with the largest component of x.

Therefore, in Problem II we select the component associated with the largest ? @

value among XyseoosXy - These are ordinary selection rules. We see them as
Bayes rules.
3. Just rules. First we define a stochastically increasing property

(SIP) of a class of myltivariate distributions. A set A CZRk is said to be

monotone if, if xcAandy, > x; , i=l,...,k thenyc A. Let P, bea i
family of probability distributions on Rk indexed by a vector paramzfer |
9= (91""'ek)‘ Let QC Rk denote the parameter space. The family of distribu-
tions Pe is said to have SIP with respect to 68 if , if3 % ,8'cQ and

615_6% s 1 =1,..., k then Pe(A)‘g Pe.(A) for all monotone sets A. A character-

= ‘ii : -~
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ization of the SIP, due to Lehmann (1955), is given as follows: A function
v(x) is said to be nondecreasing in x if, if x; < xi , i =1,...,k then
wix) < p(x'). A family of distributions Pe is said to have SIP with respect
to 9 if and only if, if y(x) is nondecreas;ﬁg in x then fy(x) d Pe(i) is
nondecreasing in 9. -

Now we define a just rule. A selection rule ¢ is said to be just if
¢i(i) is nondecreasing in Xs and nonincreasing in X; (j#i) for i, j = 1,...,.K.
Theorem 1 below, shows that the Bayes rules given by (2.8) and (2.9) are just
if the following assumptions are valid.

Assumption 1 - The posterior distribution of 9§ given x, has SIP with

respect to X.

Assumption 2 - The function Li(g) - L?(g) is nonincreasing in 8, and

o nondecreasing in ei(j#i).
Assumption 3 - Mi(l) is a continuous function of x.

Assumption 3 is valid if, for example, the loss functions Li(Q) and L;(g)

are bounded and p6(5) is continuous in x uniformly for g e Q.

Theorem 1. If assumptions 1 and 2 hold then the Bayes rule (2.8) is

Jjust. If moreover Assumption 3 holds then the Bayes rule (2.9) is just.

Proof: From the characterization of the SIP given above, and Assumptions
1 and 2, it follows that Mi(i) as given by (2.6), is nonincreasing in x; and
nondecreasing in xj(jfi). Therefore, the function ¢i(5) as given by (2.8),

i
(2.8) is just if Assumptions 1 and 2 hold. If moreover, Assumption 3 holds

is nondecreasing in x, and nonincreasing in xj(j#i). Hence, the Bayes rule

then it follows from the continuity and monotonicity property of Mi(g) that
¢i(5)’ given by (2.9), is nondecreasing in x; and nonincreasing in xj(j#i).

Hence, the Bayes rule (2.9) is just. (J

_._w~““14}\. L | -M,T‘, . —— | T~ é xw;:,.‘
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In the application of Theorem 1 it would be interesting to find for a
given family of distributions P6 which is stochastically increasing in 9,
the family of prior distributiﬁgs for which Assumption 1 holds. We have not
investigated this problem to any length. We discuss below some cases in which
an appropriate prior distribution can be found for which Assumption 1 holds.
Clearly, Pa(ﬁ) has SIP with respect to 9 if 6 is a location parameter
of the conditiozél distribution. The posterior distribution of 8 with respect
to a non-informative prior distribution G which is uniform on Rk, has SIP
with respect to x. Similarly, Pe(i) has SIP with respect to 3 if 5 is a scale

parameter (component-wise) of the conditional distribution. The posterior
distribution of 8 with respect to the non-informative prior on Rk with density
function g(9) = (a]....%k) has SIP with respect to x.

The prior distributions for the location and scale parameters considered
above, which lead to the posterior distritution with SIP are both improper
distributions. We give now an example of a proper prior distribution for
a Tocation parameter. Let Pa denote the multivariate normal distribution
N(c,Z) and let g be distribﬁzed dpriori according to N{(0,Q). A'posteriori,

3 is distributed according to the normal distribution N(A x , (:']+ﬂf1)']),

where

A = (E-] + 9-1)-1 2-1.

If the elements of A are non-negative then the posterior distribution of &
has SIP with respect to x. The elements of A are positive if the covariance

matrices ¢ = (Oij) and @ = (wij) are given by gy5 = 1, %4 =5 (i), 0 < 0,

w4 =-% and wij = 0 (i#j). The matrix A is given by

A= (a(-00"HT (1 - m‘l}%‘ﬁ;ﬂ’d )

where I denotes the identity matrix and J denotes a matrix whose elements

are each equal to 1.

\ I . . . &i/‘( ~~ _ : /
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