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A FRIEDLAND-LIKE FILTERING TECHNIQUE
FOR ESTIMATING PIECEWISE CONSTANT CONTROLS

IN DISCRETE LINEAR STOCHASTIC SYSTEMS

BY

HAROLD L. STALFORD*

ABSTRACT

We consider discrete linear stochastic processes in which

the control variables take unknown jumps at unknown times and

remain constant between jumps.. We develop a Friedland-like filtering

technique for obtaining the optimum estimates x of the state and

u of the control:

1 x A u

u = u + SAu Au

where x is the control-free, jump-free estimate of the state x,

u is the jump-free estimate of the control u and Au is the

optimum estimate of the jump Au in control. The matrix Su is a

function of the x-filter gain. The matrices Sx ad S Au depend

on the gains of both the x-and the u-filters.

I
A GLR algorithm is presented for detectirg .mp time.

It consists of the x- and the u-filters and a bank of Au-filters.

t A procedure is developed for reinitializing the x- and the

*President, Practical Sciences, Inc., 40 Long Ridge Road,
Carlisle, MA 01741
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u-filters after a jump has been detected. After reinitialization

the optimum estimates x and u are functl.ons only of x and u,

satisfying Friedland's expression. The reinitialization procedure

provides the tri-filter technique with the capability to handle

" multiple jumps.

The advent of the tri-filter technique together with the

reinitialization procedure makes it unnecessary to augment the

state x with the control u and to use augmented state filters in

the estimation of state and piecewise constant controls. The new GLR

algorithm avoids, therefore, computational problems that may be

associated with processing large matrices in augmented state

filters. It uses only unaugmented state filters and, consequently,

it has particular application to problems involving a large number

of state and/or jump variables.
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1. INTRODUCTION

Techniques for the detection and estimation of abrupt

changes in discrete linear stochastic systems have a variety of

applications. They are applicable to target motion analysis and

the tracking of maneuvering targets, [1] - [5]. In aircraft

control they are used for the detection of actuator and sensor

failures, e.g., [6] and [7]. In electrocardiogram analysis, they

are used to detect sudden changes in the rhythm of the heart, [8].

They have been applied to the problem of detecting sudden structure

variations in the Italian power system, [9]. A survey of such

techniques are given in (10].

The generalized likelihood ratio (GLR) method, [11] and [12],

is one of the most attractive and promising approaches with which

to develop such techniques. The GLR method provides an optimum

decision rule for detecting and estimating abrupt changes (jumps)

in stochastic systems. Several techniques have been developed

using the GLR approach, [1], [1], [13] - [18]. Willsky and Jones'

GLR technique [16] has spurred interest in reducing the compu-

tational requirements of the GLR approach and in reducing the

- computational difficulties associated with large matrices. Chang

and Dunn, [17] and [18] have shown that the requirement for matrix

inversions (or for solving matrix equations)in GLR techniques such

as [16] can be reduced or avoided by using the sequentially updated

I
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Kalman filtering technique described in [19] and [20]. Stalford

[1] shows that further reductions in computation and storage are

realized by using a decomposition of the maneuver signature matrix

(failure signature matrix of [10] and [16]).

Herein, we are interested in discrete linear control (stochastic)

processes in which the control vector takes unknown jumps at

unknown times and remains constant between jumps (i.e., piecewise

constant controls). The extension of the work contained herein,

to the case of a time varying control between jumps is dealt with

in a future report. Chang and Dunn [18] have treated the time

varying bias jump case but their work is based on the underlying

assumptions: (1) the jump variable is zero before the jump and

(2) there is only one jump. That is, in [18] the vector taking
the jump has no influence on the dynamics of the state before the

jump; the jump vector jumps from a zero state as far as the

dynamics of the system is concerned. They, in essence, treat the

case of an unknown time varying bias which appears as a system

input at some unknown time. Since we address the case of multiple

jumps in control we must necessarily, as a consequence, treat

jumps in control that jump from nonzero values.

2
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It is a common practice in engineering to augment the state

vector by adding bias terms (such as the control variable con-

sidered herein) as additional state variables. We call the

resulting system the augmented system and we term the original

system the unaugmented system. Augmenting the state vector with

the control vector may be undesirable when the augmented state

vector is substantially larger in dimension than that of the

unaugmented state vector. That is, the additional computations

required by augmented state filtering algorithms may become

*excessive. Also, numerical inaccuracies may be introduced by

computations with the larger vectors and matrices of augmented

state filters. Friedland [21] and [22] investigated the problem

of estimating the state x of a linear process without augmenting

to the state a constant but unknown bias vector b. He showed that

the optimum estimate x-of the state could be expressed as

x =x + Sb

where x and b are computed using two unaugmented filters. The

estimate x is the bias-free estimate, computed as if the bias

were zero. The estimate b is the optimum estimate of the bias and

it is the output of a filter whose state vector is b. The matrix

S is a funtion of the bias-free gain matrix. Consequently,

Friedland's filtering technique avoids excessive computations and

numerical inaccuracies resulting from augmented state filters.

Tacker and Lee [23] extended Friedland filtering to the case of

estimating a state x in the presence of a time varying bias b.

3



Chang and Dunn [181 essentially investigated the same

problem as that considered by Friedland [21] and Tacker and Lee

[23] but with the one difference that the jump time is unknown.

That is, the problem considered in [211 and [23] is equivalent to

the problem of estimating a jump in the bias vector (from a zero

value) when the jump time is known. Chang and Dunn assume the

jump time is unknown. They apply the GLR method to estimate the

jump time and Friedland's filtering technique to estimate the state

x and the time varying bias b. In addition, their GLR algorithm

'1 makes use of the sequentially updated Kalman filtering technique

for the purpose of minimizing the computations.

Herein, we develop a GLR algorithm for the problem of

estimating the state x in the presence of a piecewise constant

control variable u with multiple jumps Au. We show that the

optimum estimate x is the sum of the outputs of three unaugmented

filters:

A

x=x+S u+S AUu x

where x is the control-free, jump-free estimate (computed as if

no control and no jump were presencel, u is the jump-free estimate

of the control (computed as if the no jump were presence) and

Au is the optimum estimate of the jump. We show that the optimum
A

estimate u satisfies the expression

u- u + SAU Au

4
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The matrix Su is a function of the Kalman gain used to compute

x. The matrices Sx and SAU are functions of the Kalman gains

used to compute x and u. The GLR method is used to detect and

estimate the jump time.

Multiple jumps are handled by a reinitialization of the x

and u filters after a jump has been detected and estimated. After

the reinitialization the optimum estimates satisfy Friedland's

expressions [21]:

A S

x=x + S' U

u u

where the prime indicates the quantities after reinitialization.

5



2. SYSTEM DEFINITION: UNAUGMENTED AND AUGMENTED

Consider the following discrete linear stochastic system

with control jump:

System Dynamics

x(k+l) = A(k+l,k) x(k) + B(k+l,k)(u(k) + AUq 6 qk)

+ r(k) w(k) (1)

u(k+l) = u(k) + AUq 6 qk (2)

where x is the state vector, u is the control, Au is the jump in
q

control at time q, 6 qk is the Kronecker delta, and r is the system

noise coefficient matrix. The matrix A is the state transition

matrix and B is the input control matrix. The jump time q and

the jump magnitude A u are unknowns.
q

Measurement Equation

z(k) =H(k) x(k) + u(k) (3)

where z is the measurement vector and H is the measurement

matrix.

6



The noise sequences w and u are zero-mean, independent,

white Gaussian sequences with covariances defined by

E {w(k) wT (j)} =Q(k) 6 kj (4)

E{u (k) UT (k)} = R(k) 6 kj (5)

where E{-} denotes the expectation and the matrix R(k) is

bounded positive definite. The initial state x(O) is normally

distributed with mean x(O) and covariance P (0). The initialx
control u(0) is normally distributed with mean u(O) and

covariance P (0). The cross covariance of x(0) and u(0) is

denoted by P (0). A description of the variables and their
xu

dimensions are given in Table 1. We assume that the linear

system (1) - (3) is observable.

We define the augmented state vector X as

x(k)
X(k)= ( ] (6)

u(k)

The augmented system is given by

X(k+l) = f(k+l,k) (X(k) + A Xq 6qk) + ra(k)w(k) (7)

z(k) = H (k) X(k) + u (k) (8)
a

17



TABLE 1
SY"M VARIABLES FOR DISCRETE LINEAR STOCHASTIC SYSTEM

WITH CONTROL JUMP: UNAUGMENTED SYSTEM

VARIABLE DEFINITION DIMENSION

x(k) State vector nxl

A(k+l,k) State transition matrix nxn

B(k+l,k) Input control matrix nxp

u(k) Control vector pxl

u Jump in control at time q pxl

r (k) System noise coefficient matrix nxr

w(k) Gaussian white system noise rxl

0Q(k) System noise covariance matrix rxr

z (k) Measurement at time k mxl

H(k) Measurement matrix mxn

u (k) Gaussian white measurement noise mxl

R(k) Measurement noise covariance matrix mxm

x(0) Mean value of x(O) nxl

u(0) Mean value of u(0) pxl

P (0) Covariance of x(0) nxn

Pxu(0) Cross covariance of x(0) and u(0) nxp

P (0) Covariance of u(0) pxp
U P

Au(q) Mean value of Auq pxl

P6u (q) Covariance of aUg pXP
t'u

8
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where

A(k+1,k) B(k+1,k)
0 (k+l,k) =[](9)

0I

AX =D AUq (10)

0

H a (k) =[H(k) 0] (12)

and where r (k) is defined as the augmented matrixa

r (k)
*r a (k) = [ (13)

0

The initial mean value and covariance are given by

X(O) = A ](14)

P x(0) p x(0)
P 0)u (15)

T
Px (0) P (0)

A description of the variables and their dimensions for

jthe augmented system are given in Table 2.

9



TABLE 2

SYSTEM VARIABLES FOR THE AUGMENTED SYSTEM

VARIABLE DEFINITION DIMENSION

X(k) State vector (augmented) (n+p)xl

0(k+l,k) State transition matrix (n+p)x(n+p)

rak) System noise coefficient matrix (n+p)xr

Q(k) System noise covariance matrix rxr

AX Jump in state at time q (n+p)xlq

z (k) Measurement at time k mxl

H (k) Measurement matrix mx(n+p)a

R(k) Measurement noise covariance matrix mxm

w(k) Gaussian white system noise rxl

u (k) Gaussian white measurement noise mxl

X(O) Mean value of X(O) (n+p)xl

P(O) Covariance of X(O) (n+p)x(n+p)

D Jump coefficient matrix (n+p)xp

Au Jump in control at time q pxlq

Au(q) Mean value of Auq pxl

PAu (q) Covariance of Auq pxp

10



We let Z(j) denote the sequence of measurements from time 1

to time j:

Z(j) = { z(1), z(2), . . . , z(j) I

Our problem is that of obtaining the optimum estimates of

x, u, iu and q without using augmented state filters.
q

;v1
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3. EQUIVALENT FILTERING: UNAUGMENTED AND AUGMENTED

In this section we address the nonjump system:

System Dynamics

x(k+l) = A(k+l,k) x(k) + B(k+l,k) u(k) + r(k)w(k) (16)

u(k+1) = u(k) (17)

Measurement Equation

z(k) = H(k) x(k) + u(k) (18)

Ws are given the initial means x(O) and u(O) and the initial

covariances Px(O, Pxu(0) and Pu (0). It is customary to augment

the state x with the control vector u (the control u serves as a

bias state vector) and then apply the Kalman-Bucy filter to the

augmented system. One obtains the optimal estimates X(k) and

P(k). The Kalman-Bucy filter equations [24] - [28] are given

in Table 3 for the augmented system. The filter variables are

described in Table 4.

12



TABLE 3

DISCRETE KALMAN-BUCY FILTER EQUATIONS
FOR AUGMENTED SYSTEM

X(k+l,k) = 0(k+l,k) X(k) (i)*

P(k+lIk) = *(k+l,k) P(k) IT(k+l,k) + ra (k)Q(k) raT(k) (ii)

Ya (k) = z(k) - H a (k) X(klk-i) (iii)
a a aV(ki = H al(k P(klk-l) HaT~ + R(k) (iv)

T -
K a (k) P(klk-l) H a(k) V a-(k) (v)

X(k) = X(klk-1) + K (k) Y (k) (vi)a a

P(k) = [I-K a (k) H a (k)] P(klk-1) (vii)

*The usual notations X (kik) and P (kjk) have been shortened
to Xlk} and P(k).

'I
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TABLE 4

FILTER VARIABLES FOR AUGMENTED SYSTEM

VARIABLE DEFINITION DIMENSION

A

X(k) State estimate at k given Z(k) (n+p)xl

P(k) Covariance matrix of the error (n+p)x(n+p)
in X (k)

X(k+lIk) State estimate at k+l given Z(k) (n+p)xl

P(k+lI k) Covariance matrix of the error (n+p)x(n+p)
-in X(k+llk)

Ya(k) Predicted measurement residual mxl

V (k) Covariance of y (k) mxm
a a

K (k) Filter (Kalman) gain matrix at k (n+p)xm
a

14

8



Friedland (21] has shown that it is unnecessary to augment

the state vector x by adding additional components (e.g., bias

vector such as the control u) in order to obtain the optimal
A A

estimates x and u. He showed that the optimum estimates could

be obtained by employing two Kalman-Bucy filters: a "bias-free"

unaugmented filter and a bias filter. In particular, he showed

that the optimum estimate x of the state could be expressed as

x = x + Su where x is the output of the "bias-free" unaugmented

filter and u is the output of the U ; . filter and where the matrix

S depends only on matrices whi(,- ; in the computation of x.

In that work Friedland assumed ! ondition that there is no

a priori correlation between the s-iate x and the bias control

vector u, i.e., P (0) = 0.*xu

The purpose of this section is to show that Friedland's

unaugmented filtering technique [21] holds for the case when

there is correlation between the state x and the control vector

u, i.e.,

P (0) # 0 (19)* xu

We make the following definitions

S0 - P (0) Pu (0) (20)

..- x(0) - SO u(0) (21)

*Ignagni [291 has rederived Friedland's two-stage estimator
in which he assumed at the outset that x and u are initially
correlated by means of a given form. We show here that it is
unnecessary to assume the given form.

15
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Px(0) =P x(0)- S Pu (0 ) SOT (22)

0 = u (0) (23)

Pu (0) = Pu (0) (24)

u u

In view of (20) - (24) the initial values x(0), u(O) and

P(O) have the form

x(o) = xo + S0 U0  (25)

u(0) = u 0  (26)

(0) +S0Pu (0) S 0P(0.

P(O) = [x (0) (27)

Pu( 0)SOT Pu(0)

We call the above form the Friedland form. Friedland [21]

showed under the condition

xu(0) = 0 (28) -

that the optimal estimates x(k), u(k) and P(k) of the augmented

system satisfy

A j
x(k) = x(k) + S(k) u(k) (29)

A

u(k) = u(k) (30)

16



GT
P(k) (k) + S Pu (k) ST (k) S(k) P u(k) (31)

U k P(31)ST(k) (~k )  Pul(k)

where x(k), P (k) and S(k) are output of a "bias-free"
x

unaugmented filter and where u(k) and Pu (k) are output of a

bias filter. We are to show that the Friedland form (29) - (31)

holds under condition (19).

We treat the non-jump system (16) - (18) as a jump process

at time zero in the following manner. At time zero before the

jump we assume that the augmented system has the following initial

state, mean and covariance

x(O) - S o u(0)
X 0 =[ ] (32)0

X 0  (33)

0

P (0) 0
PI( 0 )[ ] (34)

0 0

C Eqs. (32)- (34) imply that the control u is known to be zero

; before the jump.

17



We assume that a jump AX 0occurs at time 0 + in the augmented

state

A X 0  0 i: ] u35)

where u(0) has mean u,0 and covariance P (0) and is independent

of x 0 * The covariance-AP(0) of AX 0 is given by

S 0 Pu (
0 ) 50  S0 P U(0)

a P(0) 1-L T (36
P (0) S0P U(0)

The mean value of AX 0is

AX0  0

From Eqs. (27), (34) and (36) we note that

P(0) = P 1 (0) + a P(0) (38)

From Eqs. (32) and (35) we observe that

X(0) = u(O)~ x 0 + A 0  (39)

* is
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From Eqs. (21), (33) and (37) we see that

A x(0) A A

X(O) = [^ ] = X 0 + AX 0  (40)
u(O)

Eqs. (38) - (40) show that we have a well-defined jump

process at time zero. Consequently, we can employ the results

of [1] which applies to jumps in the augmented state vector.

For this purpose consider the following filtering conditions

for the Kalman-Bucy filter:

Hi: There is a jump in state and control but the filter is

unaware that the jump (35) has taken place and it operates

as if the jump is zero. The control u(k) is assumed to be

perfectly known as a zero control. The initial conditions

(32) - (34) are used.

H2: There is a jump in state and control, the jump (35) is

known to the filter and the jump information is made use

of in the filter. Before the jump, the control u is

assumed to be perfectly known as zero control. The initial

conditons are (34), (41) and (42).

x 2 ( 0 ) = x 0 + S 0u(0) (41)

T A
u2(0) = u(0) (42)

19;I



-: 1The discrete v,-lman-Bucy filter equations are given in Tables 5

and 6 for Conditions H1 and H 2 " respectively. The Kalman gains,

the state covariances and the predicted measurement covariance

A satisfy

K x(k) = K2()(43)

P x(k) = P 2 (k) (44)

P x(k4-1Ik) = P 2 (k+1ljk) (45)

V x (k) = V 2 (k) (46)

We make the definitions

AA(k+1,k) =[I-K (k+1)H(k-I-)]A(k+l,k) (47)x

AB(k+1,k) = [I-K (k+l)H(k+l)]B(k+1,k) (48)x

In view of (43) it follows from Tables 5 and 6 that

x 1 (k+1) A A(k+l,k) x (k) + K x (k+l)z(k+1) (9

x 2 (k+1) =AA(k+,k)x 2 (k) + AB(k+1,k)u(O)

+ K x(k+l)z(k+1) (50)

20
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TABLE 5

DISCRETE KALMAN-BUCY FILTER EQUATIONS
FOR CONDITION H1

x l (k+l l k) = A(k+l,k)x 1 (k) (M)*

TTP x(k+llk) = A(k+l,k) P x(k) A (k+l,k) + r(k) Q(k) F T(k) (ii)
y1W = zk H x(k) xl(kj k-1)

Vx(k) = H(k) P(klk-l)HT(k) + R(k) (iv)

Kx(k) = P(k1k-1) HT(k) V -(k) (v)

x W x 1 (klk-i) +Xx()y1()(i
Px(k) =[I- K x(k) H(k)] P x(klk-l) (vii)

Z =( k )  z(k) - H(k) x (k) (viii)

x1 (0) = 0  (ix)

(0) = Px (0) - S0 PU(0) SOT 0

*The usual notations x (klk) and P (klk) have been shortened
to R (k) and P (k).

21
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TABLE 6

DISCRETE KALMAN-BUCY FILTER EQUATIONS*
FOR CONDITION H2

x2 (k+llk) = A(k+l,k) x 2 (k) + B(k+l,k) u(k) (j)*

P2 (k+llk) = A(k+l,k) P2 (k) AT(k+l,k) + r(k) Q(k)r (k) (ii)

(= z(k - H(k) x (klk-1) (iii)
V2(k) H(k} P2(klk-l) HT kW + R(k) (iv)

2 2 (v
, 2(k PR) H V (v)

x x2 xu2su klk- ) K2 lk) a K2WY2(k) (vi)

o2 k W [Ia- K2 (k) H ] P2(klk-l) (vii)
Az 1k W z(k) - Hlk) x 2 ( k )  (viii)

x2 (0) x x 0 + S 0 u(O) (ix)

P2 1( 0 ) Px 1( 0 )  - S0  P u(0) So 0iT)

-ulk) =u(O) (xi)

*The~usual notations x 2 (k Ik) and P 2 (klk) have been shortened

~22
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We define the A-state variable Ax (k) as

.1 1

A k)= x2M- x 1 (k) (51)

Subtracting (49) from (50) gives

Ax (k+1) =AA(k+1,k) Ax (k) +AB(k+1,k)u(O) (52)

In view of Eqs. (41) and (51) this becomes

A X (0) = S U(O) (53)

Ax 1 (k+l) =AA(k+1,k) Ax (k) +AB(k+1,k)u(O), kcO (54)

We define the S matrix as
U

S u (k+1;0) =,&A(k-1,k) S u (k;O) +IA B(k+1,k), k>O (55)

S (0;0= )SO (56)

Consequently, Ax 1 Mk satisfies

AX 1 (k) S U(k;0)u(k) (7

since u(k) =u(0).

23



The measurement equation for Ax I is easily derived. We

define the two a posteriori measurement residuals for Conditions

HI and H2:

Az(k = z(k) - H(k) xl(k) (58)
A

Az2 (k) = z(k) - H(k) x2 (k) (59)

Subtracting (59) from (58) gives the measurement equation for

Ax 1

A z(k) = H(k) Axl(k) + Au (k) (60)

where

AU 1 (k =Az2 (k) (61)

The measurement noise Au (k) is a zero-mean white Gaussian

sequence with covariance defined by

E {Zu (k) AU T (k)} = Ru(k) 6 kj (62)

where

Ru(k) = R(k) Vx -l (k) R(k) (63)
-.

* !We have made use of Eq. (46) in obtaining (62).
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The system equations for u(k) are

System Dynamics

u(k+l) = u(k) ,k>0 (64)

Measurement Equation

A z (k) H H(k) u(k) + a,)(k) (65)

where

H Hu (k) =H(k) S u (k;0) (66)

- I Eqs. (57) and (60) give (65).

The Kalman-Bucy filtering equations for estimating u(k) are

given in Table 7.

In view of (57) the augmented tAX(k) is given by

A x (k) S (k;O0)
A= Xk)u ]u(k) (67)

u(k)I

The estimate of AX(k) is

S (k;O) -

aX(k) = u u (k) (68)
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TABLE 7

FILTERING EQUATIONS FOR ESTIMATING u(k)

u(k+llk) = ulk) (i)

Pu (k+llk) = Pulk) (ii)

Yu(k) = Az1 lk) - Hu (k) u(klk-1) (iii)

V (k) =H (k) Pu (kIk-1) HT(k) + R (k) (iv)

T -1u) Pu (klk-1) HuT(k) V u-(k) (v)

* u(k) = u(klk-1) + K u(k) y u(k) (vi)

Pk) = [I - Ku (k) H (k)] Pu(kik-1) (vii)

where

u(0) = u(0) (viii)

P (0) = pu(0) (ix)
u u
H (k) H(k) S (k;O) x)u u

S (k+1;0) = AA(k+l,k) S (k;O) + AB(k+l,k) (xi)
u u

S u(0;0) = S0  (xii)

AA(k+l,k) = [I - Kx (k+l) H(k+l)] A(k+l,k) (xiii)

AB(k+l,k) = [I - K x(k+1) H(k+l)] B(k+l,k) (xiv)

R (k) R(k) V (k) R(k) (xv)

z(k) = z(k) - H(k) x 1 (k) (xvi)
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The covariance of AX(k) is

P~) S'(k;O) iu() (k;0) Su(k;O) P u (k)] (69)

P(k) ST(k;O0) Pu(k)

where UMk and P u (k) are given by the filter of Table 7.

In view of Eqs. (33) and (34) and the filter of Table 5

the augmented X (k) satisfies

x k)k (70)

and has covariance

P kPx ( k[ ) 0 (71)
1 0

The optimal estimates X(k) and P(k) follow from the

Kalman-Bucy filter of Table 3 for the augmented system:

A x(k)
X (k) = A ](72)

u(k)

P (k) P (k)
P(k) [XU (73)

4 T (k) P (k)
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It is shown in [i] that the following identities hold:

X(k) = Xl(k) + AX(k) -(74)

P(k) = Pl(k) + AP(k) (75)

Consequently, Eqs. (74) and (75) verify that the Friedland form

(29) - (31) holds under the condition that there is correlation

initially between the state x and the control vector u, i.e.,

Eq. (19) holds.

It is also shown in [1] that the gains are related by the

expression

Ka(k) K (k) +A K(k) [I Ha(k) Kl(k)] (76)a a

where

Kx(k)
K 1 (k )  1 [ (77)0

Su (k;0) Ku (k)

K k)

Eq. (78) follows from Eq. (vi) of Table 7, Eqs. (57) and (67).

Eq. (77) follows from Eq. (70) and Eq. (vi) of Table 5. We define

K (k)
Ka (k) = [ (79)aKu(k)
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Using (76) -(78) we obtain

K (k) =K x(k) + S u(k;O) K u(k) (I -H(k) K x(k)] (80)

K u (k) =0 + K u (k) [I - H (k) Kx Mk) (81)

It follows from Eqs. (68) -(75) that

x (k) x x1 (k) + S u(k;0)u(c) (82)

u(k) =u(k) (83)

T
P(k) Px(k) + S (k; 0) P u (k) Su(k;O) (84)

P (kc) S (k;0) (kc) (85)

Pu (kc) = P~ (k) (86)u
We show now that the predicted measurement residual covariances

Vare related by

V a (k) = V(k) R1 k Vu (I) (k) V x (k) (87)

It is shown in [1] that the augmented matrices V a(k), V(k) and

AV(k) are related by

1 -1
V a (k) =V(k) R- (k) AV(k) R- (k) -V (k) (88)

where

(k)= H a(k) A P (kl k-1) Ha(k) + R(k) V1 (k) R(k) (89)

v V1 (k) H a(k) P 1 (klk-1) H AT(k) +R(k) (90)
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~t1 Since

T T
H a(k) AP(klk-l)H a(k) = H u(k) P (klk-1) H u(k) (91)

iiT T
H a(k) P 1(klk-1)H a(k) = H(k) PX (klk-1)H (k)

It follows that

V(k) = V(k) (92)

Vu(k) = AV (k) (3

a i .
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4. OPTIMAL FILTERING OF UNAUGMENTED JUMP PROCESSES:
REINITIALIZATION AT JUMP

We address the jump process described by Eqs. (1) - (3).

A jump in the cotrol variable occurs at time q. The jump Auq

is normally distributed with mean t u (q) and covariance P (q).

We assume the jump is independent of all other processes. In

this section we assumed that the jump time q is known. We use
+

the time q to denote the time before the jump and we use q to

denote the time just after the jump.

Before the jump the augmented estimates X(q) and P(q)

satisfy

x(q) = Xl(q) + Su (q;0) u(q) (94)

u(q) - u(q) (95)

(q) P x(q) + Su(q;O) Puq) Su(q;O) (96)

Pxu (q) = Su (q; 0 ) Pu (q) (97)

Pu (q) = u (q) (98)

After the jump they satisfy

x(q+) - X(q) + &X(q) (99)

Plq+) - P(q) + AP(q) (100)

1.
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where

^ 0A X(q) (101)

Au(q)

0 0
AP(q) =  [ (102)0 Pu (q)

Therefore, after the jump we have for the augmented system

+

x (q+ = x (q) (103) li

u(q + ) u(q) 4. Au(q) (104)

P (q + ) = P (q) (105)x x

Pxu ( q + )  P xu (q) (106)

P u(q + = (q) + P (u q) (107)

In order to utilize the unaugmented filtering technique

we need to put Eqs. (103) - (107) into the Friedland form

(25) - (27). We make use of the reinitialization equations

(20) - (24) of the unaugmented filters. Consequently, we

make the definitions

Sq = P xu(q + ) P u-(q + ) (108)

X1 (q
+) = x(q+) - S ulq+ 1  (109)

+ P (q+)  S P ( q + ) SqT (110)

P (q ) q u q
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b+

u (q+) = u(q +) (111)

PU (q) =Puq) (112)

The initial conditions (108) - (112) ensure that we have the

Friedland form

A + + +
x(q ) = x 1  + Sq u(q (113)

... A + - q+
u(q ) = u(q) (114)

(q + ) + S PqsT S P q + )

+ Pq (q) q qP u 4.

P(q+) =[T (115)

Pu (q+)S q u lq

In view of Eqs. (94) - (98) and (103) - (107) we can

rewrite Eqs. (108) - (112) as follows

SqS = Su (q;0) Pu (q) [P u(q) + PAu(q)]-  (116)

A

x1 (q+ ) = X(q) + Sulq;0) u(q) - Sq [u(q) + Au(q)] (117)

u(q+) = u(q) + ul(q) (118)

(q+ = Px(q) + Su (q;)Pu (q)SuT(q;0)

-S[P (q) + P (q)] ST (119)
q u AU q

Pu(q+ ) =Puq) + Pu (q) (120)
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Note that

Eg Sq (Pu(q) + PAu(q)] S u (q;:t Pu (q) (121)
Si SqPu(q) Su(q;0, = Su(q'0) Pu(q) q (122)

(121) and (122) are used in showingthat Px(q

defined by Eq. (119) is the covariance of x1 (q+) as defined j
by Eq. (117).

Eqs. (116) - (120) are the equations for reinitializing

the unaugmented filters defined by the equations in Tables 5

and 7. Equations (x) - (xii) of Table 7 are replaced with the

following:

H u(k) = H(k) S u(k;q) (123)

Su (k+l);q) =AA(k+l,k) Su (k;l) +AB(k+l,k) (124)

Su (q;q) = Sq (125)

34
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5. OPTIMAL FILTERING OF UNAUGMENTED JUMP PROCESSES:
REINITIALIZATION BEYOND JUMP

We continue to address the jump process described by Eqs.

(1) - (3). In this section we make the same assumptions as those

given in the first paragraph of- the previous section. Herein,

we develop the equations for the optimal estimates in terms of the

unaugmented estimates for the case that we do not reinitialize the

unaugmented filters at the jump time. Rather, we initialize at

some time k* beyond the jump time q.

Consider the following conditions for the Kalman-Bucy filter

of the augmented system:

Hi: There is a jump in control but the filter is unaware that

the jump (10) has taken place and it operates as if the

jump at time q is zero. The initial conditions immediately

after the jump are (126) and (127). That is, it uses the

same estimates immediately after the jump as it had just

before the jump.

H2 : There is a jump in control, the jump (10) is known to the

filter and the jump information is made use of in the filter.

The initial conditions immediately after the jump are

(128) and (129).
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(q)= X(q) (126)

P 1 (q ) = P (q) (127)

X 2 (q') =X(q) +A X q(18

P 2 (q+) = P (q) (129)

It is shown in [1] that after the jump the optimal estimates

X(k) and P (k) are given by

X(k) = X (k) + AX(k) (130)

P(k) P p(k) + AP(k) (131)

where AX(k) and AP(k) are the output of a Kalman-Bucy filter

having the initial conditions

A X(q) = AXq (132)

A P(q) = [ 0] (133)
0 p Au (q)

Therein, the A-state &X(k) is defined as I
A X(k) - XA k - X 1 (k) (134)

It satisfies the A-state equation

A X(k) At (k, k-l1) A X(k- 1) (135)

where

At (k,k-1) =[I K K(k) H (k)JO (k,k-1) (136)1 a
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The matrix Ha is defined by Eq. (12). The Kalman gain KI isa 1
that which is given by the filter operating under Condition H1 .

From Eqs. (80) and (81) we see that K can be expressed in terms

of the unaugmented gains K and K :

K lx (k)
Kl (k) = 1 ] (137)1 K (k)

lu

where

Kx (xk) Kx (k) + Sulk;0) Klu(k) (138)

K (k) =K (k)[I - H(k) K (k)] (139)
lu u x

The augmented state AX in terms of the unaugmented states

is given by

Ax(k)
AX(k} = [ 1 (140)

Au(k)

We have the initial conditions

Ax(q) = 0 (141)

Au(q) =AU (142)
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We define the nxp matrix S and the pxp matrix SAu as follows

Sx (k+l;q) =A 1 (k+l,k) S x (k;q) +a AB 1 (k+l,k) S6u(k;q) (143)

SAu (k+l;q) =AA 2 (k+l,k) S x (k;q) +AB 2 (k+l,k) SAu(k;q) (144)

S (q;q) = 0 (145)

S Au(q;q) = I (146)

:1 where

AA 1 (k,k-1) = [I - K (k)H(k) - Su (k;O)Klu(k)H(k)] A(k,k-1) (147)

A B1 (k,k-1) = [I - Kx (k)H(k) - Su(k;0) Klu(k)H(k)] B(k,k-1) (148)

A A2 (k,k-1) = -Klu(k) H(k) A(k,k-1) (149)

A B2 (k,k-1) = [I- Klu(k) H(k) B(k,k-1)] (150)

Using Eqs. (135) - (150) one can verify that

Ax(k = S x (k;q)Auq  (151)

Au(k) = S u(k;q)Au (152)
Au q

The measurement equation for AX(k) is shown in (1] to be

Az(k) = H a AX(k) +Au(k) (153)

where ]

Az(k) - z(k) - H a (k) X 1 (k) (154)

Au (k) - z(k) - Ha(k ) X2(k) (155)
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Note that Au is the a posteriori measurement residual under

Condition H2 . It follows that Au (k) is a zero. mean white Gaussian

sequence with covariance defined by

E{ Au (k) AuT(j) A R (k) 6 kj (156)

where

A R(k) = R(k) V 2
1 (k) R(k) (157)

The matrix V2 (k) is the predicted measurement residual covariance

under Condition H2. From Eq. (87) we see that V2 can be expressed

as a function of V andV
X vu

V2 1k) = V(k)R- (k) Vu (k) R- (k) Vx (k) (158)

Consequently, A R(k) is given by

AR(k) = R(k) Vx (k) R(k) Vu (k) R(k) Vx (k) R(k) (159)

Using Eqs. (82) - (83) we see that X1 (k) is given by

~ 1 (k ) + Su(k;O) u(k)
(k ) = I u (160)

u (k)

Consequently, Eq. (154) can be rewritten as

i Az(k) = z(k) - H(k) MX1 (k) + Su (k;0)u(k)] (161)
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In view of Eqs. (12) and (140) we can rewrite (153) as

Az(k) = H(k) Ax(k) + Au(k) (162)

Substituting (151) into (162) gives the measurement equation

for AUq

Az(k) = H(k) Sx (k;q) Au q(k) + Au(k) (163)

where AU (k) satisfies the constant state equation
q

,u q(k) = Uq (k-i) = AUq (164)

The filtering equations for estimating Au are given in Table 8.
q

The optimal estimates X(k) and P(k) are given by Eqs. (130)

and (131)

X(k) = X1 (k) + AX(k) (165)

P(k) = P(k) + AP(k) (166)

where

Ax(k) (6
AX(k) [ 167

AU(x)

A

Ax(k) = S (k;q) Auq (k) (168)

A u(k) = S Au(k;q) Au q(k) (169)
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S x(;qP MS T(kq) S x(k; q) P U M ST (k; q) 110

Ai(k Pi~k (171) II

T T
P k) S (k; q) M S (k;q) SA ( k; q ])(7
P (k) = A P,6, k) (k) . ( k 73)

(170)

P Pu (k)

Pi (k) [ Tk] (174)

U PlxuT (k) P lu (k)

Plx(k) x(k) + Su (k;0)u(k) S uT (k;0) (172)

lk Plxu(k) Su ( k ; 0 ) P (k) (173)

Uq

P lu~k W ul(k) (174)

Using Eqs. (160) , (165) - (174) we have the optimal estimates

x(k) = x (k) + Su (k;0)u (k) + S (k; q ) AuS(k) (175)

u (k) = u M) + S AUl(k; q) Au q (k) (176)

(k) = ;x(k) + Su(k; 0) Pu(k) Su(k; 0) +Sx(k; q)

P : () SxT (k; q) (177)

P (k)= Su (k;0) iu(k) + S x (k;q) ;Au (k) SAu T(k;q) (178)

- TPu(k) = Pu(k) + SAU (k;q) P AU(k) SAu (k;q) (179)

Eqs. (175) - (179) give the optimal estimates in terms of

the unaugmented filter estimates described by the filters of

Tables 5, 7 and 8.
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At some time k* beyond the jump we desire to reinitialize

the filters of Tables 5 and 7. This is more efficient than

operating the three filters of Tables 5, 7 and 8.

We make the following definitions with k=k*:

Sk* = Pxu(k) Pu (k) (180)

X1 (k
+ ) = x(k) - Sk* u(k) (181)

Px(k + ) = Px(k) - Sk* Pu(k) Sk*T  (182)

u(k + 1 = u(k) (183)

P (k) = Pu (k) (184)

The argument k refers to values just after the reinitialization

at k=k*. Eqs. (180) - (184) are the equations for reinitializing

the unaugmented filters of Tables 5 and 7. Equations (x) - (xii)

of Table 7 are replaced with the following (the time k* represents

the time of reinitialization):

H u(k) = H(k) S u(k;k*), k>k* (185)

Su (k+l;k*) = &A(k+l,k) Su (k;k*) + AB(k+l,k), k)>k* (186)

Su(k*;k*) Sk* (187)

Using the expression derived in [1]

K(k) - K1 (k + K(k) [I - Ha(k) K (k)] (188)
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I? The optimal Kalman gain K(k) is given by

K x(k) = Kilx(k) + AK x (kc) [I - H(k) Kilx (k)] (189)

K U(k) = K 1 u(k) + A K u(kc) [I - H(k) K lx(k)] (190)

where

Kilx (kc) = x (k) + Su(k;0) K lu(k) (191)

K lu(k) =K (k) (I -H(k) K x(Ik)] (192)

Axx(k) = S x (k;q) K (Ic) (193)

& u k)= .5Au(k;q) KAu() 14

Eqs. (193) and (194) follow from Eq. (vi) of Table 8 and

Eqs. (151) - (152).

'1 one may note that

[I - K H] = [I- AK H] [I S S K H] [I K xH] (195)

The predicted measurement residual covariance V satisfies

-1 --V (k) V V1 (k) R (kc) VA (kc) R (kc) V, (k) (196)

*1 where

V (k) -Vx(Ic) R (kc) Vu (I) R (k) V (kc) (197)

1.1
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TABLE 8

FILTERING EQUATIONS FOR ESTIMATING Au

A u (k+lt k) = Au (k)(i

PAU(k+llk) = PA u(k) (i

Y,&U(k) =A z(k) - I~(k) A u (kj k-1)(i)

VAu(k) =HAu(k) PAU(klk-1) HA T(k) + R u(k) (iv)

(k)P HT -1(v
Wi A(klkl1) H k Wv (k)

~Au Au AU- V

A Au~ W iuq(k lk-1) + KA u(k) yAu(k) (vi)

'P,,u (k) =I KA(k) H, AU Wk] PAU(kik-1) (Vii)

where

Au q(q) A u q(Viii)

'N u (q) (ix)

H Au(k) H H(k) S x(k;q) Wx

S x (q;q) =0 (xi)

S (q; q) = I(Xii)

S (k+1; q) A A 1 (k+l,k) S~ (k~q + AB (k+l,k) SAu (k~q) (xiii)

S U(k+1;q) =,AA2 (k+1,k) S (q)+,&B (k+1,k) S(kqAU2 x 2kq A U(;q (Xiv)

&AA(k,k-1) =[-Kx(k)H(k) - S, (k;O)Ki (k)H(k)]A(k,k-1) (XV)j1

AB 1 (k,k-1) - [I - x (k)H(k) - S u (k;0)K lu(k)H(k)JB(k,k-1) (Xvi)

AA 2 (k,k-1) - -K lu(k)H(k)A(k,k-1) (Xvii)

AB 2 (k,k-1) =[I - K lu(k)H(k)B(k,k-1)] (Xviii)

K iu(k) - K(k) [I - H(k) Kx (k)] (Xix)

R (k) - R(k)-.'kRk'u'kRk'x()R) AU )

A 2(k) -z(k) - 1(k) [x (k) + S~ (k;0)u(k)] (xxi)
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1 6. DETECTION AND ESTIMATION OF JUMP USING THE GLR APPROACH:
BANK OF A-FILTERS

We consider the employment of a bank of Kalman-Bucy constant

A-state filters for detecting and estimating the jump Au q. The

jump AUq and the jump time q are unknowns. We consider a moving

window of length M. That is, at each j, k-M<j<k we employ the

constant A-state filter defined by the equations of Table 8. Let

j be a candidate jump time and let k be the current observation

time. The filtering equations in Table 8 are used to obtain the

estimate Au (k) and P u(k). The filter is started when the
J Au,)

current observation time is j. It uses the initial conditions

Auj(j) =a u (198)
j q

P u(j) = P (q) (199)
*Au,) AU

Sx = 0 (200)

S (j;j) = I (201)Au

At each new observation k the matrix S x(k;j) is computed using

xr
Eqs. (xiii) - (xix) of Table 8. Eqs. (i) - (vii) are then used

to compute iu(k) and PAuj (k). The following are also computed

jT -l
dj(k) = dj(k-1) + HAd '  (k) RAU (k) Az(k) (202)

j (k) - dj T (k) Au (k) (203)
* J

!I "
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The vector d. has the initial condition

d.(j) = 0 (204)

The above computations are carried out for each candidate

jump time j, k-M<j<k. A jump is detected at time k for the

jump time q, k-M.q<k, if

9 q (k)> 2 £n(n)

£ (k) = Max {W (k) k-M.<j<k 1 (205)
qJ

where the value n is chosen to provide a reasonable tradeoff

between false and missed alarms. The above is a generalized

likelihood ratio (GLR) algorithm for detecting and estimating

the jump, [1] and [16]. In applying the filter described by the

equations of Table 8 one should sequentially update the correlated

subblocks of components of the measurement vector as discussed

in [17] - [20].

After a jump has been detected and estimated we use Eqs. (175) -

(187) to reinitialize the filters of Tables 5 and 7. The above

GLR algorithm is used to detect and estimate the next jump.
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7. SUMMARY OF DERIVED EXPRESSIONS

The optimum estimates x of the state and u of the control

satisfy the expressions

x = x + S u+ S A u (206)

u = u + S Au (207)

with covariances

P x = Px + S u P u S uT + S x ;Au S xT (208)
T

Pxu =S Pu + Sx PAu SAu (209)

Pu = u +  u u 210)

u u &uAU AU

where x, u and AU are the output of a tri-system of

unaugmented Kalman-Bucy filters with covariances P x Pu and

PAu' respectively.

The matrices Su , Sx and S u satisfy
XAu

Su(k+l) Ax A Su(k) + X B (211)

S (k+l) = AuA S (k) Au B Su (k) (212)

S (k+l) =a A BS (k) + B Sau W + S u(k) (213)AU Au Au k x AAu Auu
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where

A = I -K H (214)x x

A = [I- S K HIA (215)
U U U X

A Au = -KuH A (216)

The initial conditions of Su, Sx and SAU are

.4 -1
S, u(0) = Px (0) PU (0) (217)

U XU

S, (q) = 0 (218)

, SAu(q)=I (219)

where q is the jump time, Pu (0) is the initial covariance of

u and P (0) is the initial cross-covariance of x and u.
xu

The optimal Kalman gains satisfy

Kx = Kx + [Su K + Sx KAu(I -H Su Ku)] [I -H Kx ] (220)

K = [Ku + SAu K (I- Su [I - H Kx] (221)

The predicted measurement residual covariance satisfies

-- 1V V 1 R VAu R - VI  (222)

AU41
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where

V =V R - V R- V (223)1 x u X

and where V V and V are the predicted measurement residual
x Au

covariances of the x-, the u- and the Au filters, respectively.

After reinitialization, the optimum estimates satisfy

Friedland's expressions [21]

x = x + U' (224)

u =u' (225)

where the prime denotes the output of the x- and the u-filters

after reinitialization. The reinitialized values of Su, x,

P x u and Pu satisfy the following expressions at reinitialization:

u'= [S U.u + S x Au SAu [Pu + SAu AU SAU (226)

=x +S u+ S u - S ' , uu (227)

u x U

T - TPx = x Su u S + Sx PAU Sx

- S'[Pu + SAu PAu S AuTIS'T (228)

U' u + S Au (229)

= Pu + u Au sAuT (230)

The equations of the x-, the u-, and the Au-filters are

given in Tables 5, 7 and 8, respectively.
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8. CONCLUSIONS

We have developed a Friedland-like filtering technique for

estimating the state x of a discrete linear stochastic process

which depends on a piecewise constant control vector u. It is
composed of three unaugmented Kalman-Bucy filters. In the first

filter the estimate x of the state is computed as if there were

no control present and no jump in control present. This estimate

is then corrected to account for the control and for the jump in

control. In the second filter the estimate u of the control is I
computed as if there were no jump in control present. This estimate
is corrected to account for the jump in control. In the third

filter the optimum estimate Au of the jump in control is computed.

The optimum estimate x is a vector sum of the three estimates

x, u and Au. The coefficient of u in the sum is a matrix having

dependence on the gain of the x-filter. The coefficient of A u

in the sum is a matrix that depends on the gains of the x- and the

u-filters.

The optimum estimate u is a vector sum of the two estimates

u and.Au. The coefficient of Au is a function of the gains of

the x- and the u-filters.

50
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I'
The x-filter processes the measurement z. The u-filter

jprocesses as its measurement the a posteriori measurement
residual z-Hx of the x-filter. The Au-filter processes the a posterior

measurement residual z - Hx - H Suu of the u-filter in which Su

depends on the gain of the x-filter.

A procedure has been developed for reinitializing the x-

and the u-filters after a jump has been detected so that the

optimum estimates x and u are functions only of the output of

those filters and, as a result, satisfy Friedland's expressions

[21]. The reinitialization procedure permits the treatment of

multiple jumps.

We have presented a GLR algorithm for detecting the jump

time q. It uses the x- and u-filters and a bank of Au-filters.

The algorithm reinitializes the x- and u-filters after a jump has

been detected. This GLR algorithm avoids numerical inaccuracies

introduced by computations with large vectors and matrices due

to augmenting the state vector of the original system with the

control vector. The algorithm has particular application to

problems involving a large number of state and/or jump variables.

I5

I

[



REFERENCES

[1] H. Stalford, "GLR algorithms for detecting and estimating

abrupt maneuvers in ASMD scenarios using a decomposition

of the maneuver signature matrix," PSI Technical Report

81-1, July 1981.

[2] R. J.McAulay and E. Denlinger, "A decision-directed adaptive

tracker," IEEE Trans. Aerosp. Electron. Syst., Vol. AES-9,

pp. 229-236, March 1973.

[3] R. R. Tenney, R. S. Hebbert, and Nils R. Sandell, Jr.,

"A tracking filter for maneuvering sources," IEEE Trans.

Automatic Control, Vol. AC-22, pp. 246-251, April 1977.

[4] R. L. Moose, "An adaptive state estimation solution to

the maneuvering target problem," IEEE Transactions on

Automatic Control, pp. 359-362, June 1975.

[5] C. B. Chang, R. H. Whiting and M. Athans, "On the state

and parameter estimation for maneuvering reentry vehicles,"

IEEE Trans. on Automatic Control, pp. 99-105, February 1977.

[6] R. Bueno, E. Y. Chow, K.-P. Dunn, S. B. Gershwin and

*A. S. Willsky, "Status report on the generalized likelihood

ratio failure detection technique, with applications to the

F-8 aircraft," Proc. 1976 IEEE Conf. on Decision and

Control, Clearwater, FL, pp. 38-47, December 1976.

52



[7] J. C. Deckert, M. N. DESAI, J. J. Deyst, A. S. Willsky,

*I  "F-8 DFBW sensor failure identification using analytic

* redundancy," IEEE Trans. on Automatic Control, Vol. AC-22,

No. 5, pp. 795-803, October 1977.

(8] Chr. Zyweitz and B. Schneider, Computer Application on

ECG and VCG Analysis, North Holland, 1973.

*11

[91 M. Fiorina and C. Maffezzoni, "A direct approach to jump

detection in linear time-invariant systems with application

to power system perturbation detection, "IEEE Trans.

Automatic Control, Vol. AC-24, pp. 428-434, June 1979.

[10] A. S. Willsky, "A survey of design methods for failure

detection in dynamic systems," Automatica, Vol. 12,

pp. 601-611, 1976.

[11] D. Middleton and R. Esposito, "Simultaneous optimum

detection and estimation of signals in noise," IEEE Trans.

Inf. Th., Vol. IT-14, No. 3, pp. 434-444, May 1968.

[12] H. L. Van Trees, Detection, Estimation and Modulation

Theory, Part I: Detection, Estimation, and Linear

Modulation Theory, Wiley, New York, 1971.

[13] J. J. Deyst and J. C. Deckert, "RCS jet failure

identification for the space shuttle," Proc. IFAC 75,

SCambridge, MA, August 1975.

15



[14] P. Sanyal and C. N. Shen, "Bayes' decision rule for rapid

detection and adaptive estimation scheme with space

applications," IEEE Trans. Aut. Control AC-19, pp. 228-231,

June 1974.

[15] E. Chow, K.-P. Dunn and A. S. Willsky, "Research status

report to NASA Langley research center: A dual-mode

generalized likelihood ratio approach to self-reorganizing

digital flight control system design," M.I.T. Electronic

Systems Laboratory, Cambridge, MA, April 1975.

[16] A. S. Willsky and H. L. Jones, "A generalized likelihood

ratio approach to the detection and estimation of jumps in

linear systems," IEEE Trans. Automat. Contr., Vol. AC-21,

pp. 108-112, February 1976.

[17] C. B. Chang and K. P. Dunn, "A recursive generalized

likelihood ratio test algorithm for detecting sudden

changes in linear discrete systems," in Proc. 17th IEEE

Conf. on Decision and Control, San Diego, CA., January 1979.

[18] C. B. Chang and K. P. Dunn, "On GLR detection and estimation

of unexpected inputs in linear discrete systems," IEEE

Trans. on Auto. Contr., Vol. AC-24, No. 3, pp. 499-501,

June 1979.

5ii



II

[19] H. W. Sorenson, "Kalman filtering techniques," in Advances

in Control Systems, Theory and Applications, Vol. 3,

C. T. Leondes, ed., Academic Press, N.Y., pp. 219-292,

1966.

[20] D. Willner, C. B. Chang, and K. P. Dunn, "Kalman filter

algorithms for a multi-sensor system," in Proc. 1976 IEEE

Conf. on Decision and Control, Clearwater, FL., pp. 570-574,

December 1976.

[21] B. Friedland, "Treatment of bias in recursive filtering,"

IEEE Trans. on Automatic Control, Vol. AC-14, No. 4, pp.

359-367, August 1969.

[22] B. Friedland, "Notes on separate-bias estimation," IEEE

Trans. on Automatic Control, Vol. AC-23, No. 4, pp. 735-738,

August 1978.

[23] E. C. Tacker and C. C. Lee, "Linear filtering in the

presence of time-varying bias," IEEE Trans. on Automatic

Control, AC-17, pp. 828-829, December 1972.

[24] R. E. Kalman, "A new approach to linear filtering and

prediction problems," Trans. ASME, Series D, Journal of

Basic Engineering, Vol. 82, pp. 35-45, March 1960.

5



-pm

[25] R. S. Bucy, "Optimum finite-time filters for a special

non-stationary class of inputs," JHU/APL Internal

Memorandum BBD-600, 1959.

[26] R. E. Kalman and R. S. Bucy,"New results in linear filtering

and prediction theory," Trans. ASME, Series D, Journal of

Basic Engineering, Vol. 83, pp. 95-108, March 1961.

[27] R. E. Kalman, "New methods in Wiener filtering theory,"

in the 1960 Proc. of the 1st Symposium on Engineering

Applications of Random Function Theory and Probability,

Edited by John Bogdanoff and Frank Kozin, John Wiley & ?

Sons, N.Y., pp. 270-388, 1963.

[28] A. H. Jazwinski, Stochastic Processes and Filtering

Theory, New York, Academic Press, 1970.

[29] M. B. Ignagni, "An alternate derivation and extension of

Friedland's two-stage Kalman estimator," IEEE Trans.

Automatic Control, Vol. AC-26, No. 3, pp. 746-750,

June 1981.

56I

• 56 tL.-




