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A Branch and Bound Based Heuristic for Solving
the Quadratic Assignment Problem

M. S. Bazaraa and 0. Kirca

Abstract
I\

.... In this paper a branch and bound algorithm is proposed for solving the

quadratic assignment problem. Using symmetric properties of the problem, the
algorithm eliminates "mirror image" branches, thus reducing the search effort.
Several routines that transform the procedure into an efficient heuristic are
also implemented. These include certain 2-way and 4-way exchanges, selective
branching rules, and the use of variable upper bounding techniques for enhanc-
ing the speed of fathoming.

The computational results are quite encouraging. As an exact scheme, the
algorithm solved the 12 facility problem of Nugent et al and the 19 facility
problem of Elshafei. More importantly, as a heuristic, the procedure produced
the best known solutions for all well-known problems in the literature, and

produced improved solutions in several cases.

[A cc *:* For

~¢-. 1c. i

t

This research is supported under NSF grant ENG-79-08375 and ONR grant
N00014-80-k-0709.



1. INTRODUCTION

The quadratic assignment problem, as given by Koopmans and Beckmann

(1957), can be formulated as follows:

m m m m

Minimize I I I fkd jxijxk (1)i=1 J=l k=l il

m

Subject to: x.. 1 J=l,...,m (2)
i~l 13

I X i j 1 i , . , m( 3 )
*j=1

x ij =0 or I i,J=l,...,m (4)

The above problem can be interpreted as follows. There are m indivisi-

ble objects to be assigned to m indivisible locations, where f ik is the flow

or interaction between objects i and k and d is the distance between loca-

tions j and Z. The objective is to assign the objects to the locations such

that the sum of pairwise interactions among objects weighed by the distance

between their respective locations is minimized. Without loss of generality

it is assumed that the interaction and distance matrices are symmetric.

There exists two approaches for solving the quadratic assignment problem

exactly. The first approach utilizes the concept of branch and bound or im-

plicit enumeration, as in the works of Gilmore (1962), Lawler (1963), Craves

and Whinston (1970), Bazaraa and Elshafei (1979), Burkard and Stratmann

(1978), Roucairol (1978), Pierce and Crowston (1971), Land (1963), and Gavett and
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Plyter (1966). Secondly, through an appropriate transformation, the problem

can be reformulated as a linear mixed-integer program which is solved by cut-

ting planes or by a suitable mixed-integer programming package. The algorithms

of Bazaraa and Sherali (1980), Kaufman and Broeckx (1978), and Love and Wong

(1976) fall into this class.

Due to the complexity of the quadratic assignment problem, in general,

none of the above methods can solve problems with dimension m > 15 effectively.

Thus for larger problems, a considerable amount of effort has been given to

the development of inexact methods that obtain good quality solutions with a

reasonable computational effort. A comprehensive survey of inexact methods

can be found in the works of Sherali (1979) and Burkard and Stratmann (1978).

A summary of inexact methods for solving the quadratic assignment problem is

given below.

a) Construction Methods

Starting with a partial solution or the null assignment, a complete

assignment is reached iteratively by locating one or more objects at each

iteration.

b) Improvement Methods

Starting with a complete assignment of objects, an improvement over

the incumbent objective function value is sought by interchanging the loca-

tions of several objects. The procedure is terminated when no further im-

provements are possible.

c) Hybrid Methods

Methods in this class combine several features of exact and

inexact procedures.
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According to the computational experience reported in the literature,

it seems that hybrid methods are emerging as the most successful approach

for solving large quadratic assignment problems. Examples of such procedures

are the methods of Bazaraa and Sherali (1980) and Burkard and Stratmann

(1978). Both methods use an exact solution scheme in conjunction with some

improvement procedures. Bazaraa and Sherali implement Benders' partitioning

method to a mixed-integer formulation of the problem and apply several im-

provement procedures to the solutions found throughout the course of parti-

tioning. The method of Burkard and Stratmann alternates between a branch and

bound (Perturbation) routine and an exchange routine (Verbes) until no better

solutions can be obtained.

In this paper, a branch and bound algorithm for solving the quadratic

assignment problem is proposed. The main feature of the procedure is the

elimination of "mirror image" branches in the search tree. The branch and

bound procedure is modified in order to accelerate the computations result-

ing in an efficient heuristic procedure with the following characteristics:

1. Several improvement routines are used in conjunction with the branch

and bound scheme. The extent of using these improvement routines is a func-

tion of the branch and bound tree level.

2. Several heuristics are utilized to eliminate the search effort at

branches which are likely not to lead to objective value improvements. Fur-

theruore, variable upper bounds are used to reduce the number of solutions

examined,

The computational results are quite encouraging. As an exact procedure,

the algorithm solved the 12 facility problem of Nugent et al (1968) and the
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19 facility problem of Elshafei (1977). More importantly, as an inexact pro-

cedure, the modified branch and bound algorithm produced the best known or

improved solutions for all well-known problems in the literature of the qua-

dratic assignment problem.

I



'I 5

2. AN EXACT BRANCH AND BOUND PROCEDURE

Branch and bound procedures for the quadratic assignment problem can be

classified into single assignment algorithms, pair assignment algorithms, and

pair exclusion algorithms. At each stage of a single assignment algorithm,

one unassigned object is assigned to an unoccupied location. The procedures

of Gilmore (1962), Lawler (1963), Graves and Whinston (1970), Burkard and

Stratmann (1978), and Bazaraa and Elshafei (1979) are some examples of single

assignment algorithms. The pair assignment algorithms proceed by simultane-

ously locating two unassigned objects to two vacant locations. The proce-

dures proposed by Land (1963) and Gavett and Plyter (1966) are of this type.

Pierce and Crowston (1971) proposed a pair exclusion procedure where the

algorithm proceeds on the basis of a stage-by-stage exclusion of assignments

from a solution to the problem.

The proposed procedure is of the single assignment type where the follow-

ing general approach is pursued. Let:

X = {x: x satisfies (2), (3), (4))

I = set of assigned objects

I = complement of I, that is, set of unassigned objects

a(i) = location to which object iEI is assigned

J = {o(i): i I}

j= complement of J, that is, set of vacant locations

P =(IJ) = ((i "c(i)) : il}

= {x: xCX all? x = 1 for all (i,j)cF}

11* = upper bound on the value of the objective function

IT= assignment vector of the objects corresponding to the

upper bound P* 7T*CX.
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At each stage of the procedure, we select a partial assignment of objects

I and locations J that form the partial assignment set P. The set XP is then

partitioned into XP1, Xp2, *,Xpn such that:

X1'k n X 0 if ki; k,Z=l,...,n

n
U X
k1 

=

For a selected partial assignment Pk, a lower bound Z is computed. If

Zp > g* then Pk is fathomed, that is, discarded from further considerations.

kP
Otherwise, a complete assignment i7TP is sought and its corresponding objective

value pPk is calculated. If VPk < V* then l'* and 7r* are updated to Pk and

Ip, respectively. The above procedure is repeated until no partial assign-
k

ment P whose lower bound is less than 11* can be found.

The process of partitioning the X into X i' 1,2' '''Xn is referred to

as branching from the node representing the partial assignment P. The number

of objects in the partial solution is called the level of the tree. The

active nodes or active branches is the set of all partial solutions that have

not been fathomed or selected for further branching. A branch and bound

scheme for solving the quadratic assignment problem can be fully described

by specifying rules for:

1) Computing a lower bound Z on the objective value of all completions

of a partial solution P.

2) Choosing an active node (partial solution) for branching.
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I 3) Branching from a selected partial assignment.

There exist several lower bounding procedures such as those of Gilmore

(1962), Lawler (1963), Graves and Whinston (1970), Roucairol (1978), Edwards

(1980), Christofides et al (1980) and Frieze and Yadegar (1981). Considering

the strength of the bounds and the computational effort, the procedure of

Gilmore-Lawler seems to be the most effective. This procedure is adopted

here and is described briefly as follows.

Given a partial assignment P = (I,J), the lower bound Z is obtained byP

solving the following linear assignment problem LAP:

ZF  Minimum _ _w..X.. + Vp (6)XEXP ici jeJ 13 i3

where:

wij 2 d fikdja(k) + < (i), d(j) >
kC1

f(i) vector of interactions of object i with other unassigned

objects in 1, where the elements of the vector are sorted

in an ascending order.

d(j) = vector of distances from location j to other unoccupied loca-

tions in 3, where distances are sorted on a descending order.

V = I fikdo(i) (k)
ial kcl

<., .>: stands for the inner product of two vectors.

In the above linear assignment problem, w ij is a lower bound on the

assignment of object id to location jEJ. The fixed cost V is the value

i ii , . . .. .. .. -
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accruing from the current assignment of objects in I to locations in J. Let

the optimal assignment of objects in problem LAP be a(i) for idl. Then:

1) 2 is a lower bound on the objective value of Pl completions of

the partial assignment P.

2) The quadratic cost U of the solution ip given below can be used to

update i provided that Ii < 11*.

0 0(i) if iCI

a(i) iEI

3. At optimality of problem LAP, a set of Lagrangian multipliers

ui for icI and v. for jCJ with the following properties, is available:

w w - ui. - v >0 idl, jeJ

if x. =1

The reduced costs w.. for icl, jEJ can be utilized to compute lower1]

bounds for all branches emanating from the node associated with the partial

solution P = (I,J) without the need for solving new linear assignment problem,.

This procedure is called the alternative cost method and has been applied by

Little et al (1963) for the travelling salesman problem and later used by

Pierce and Crowston (1971) for the qundratic assignment problem.

To demonstrate the use of the alternative cost principle, consider the

partial assignment P = (1,J). Let b(j) be the object assigned to location

JEJ in the solution to problem LAP. Now consider the branch with the partial

assignment



9

P' P u {(r,s)} for rET and seJ

A lower bound Zp, on the objective values of all completions of P' is

readily available as:

z= Zp + Yrs

where: 0 if s = a(r)

-Yrs=

minimum rw + ww
s (s) a(r)' rs + a(s) +a(r)

Cti = minimum wl

Z#a(i)

aj = minimum w'

ZEIj

L#b(j)

2.1 Selection of the Branching Node

At each stage of the branch and bound procedure,a partial assignment has

to be selected among all active branches. The following two strategies are

typically used:

1) Depth First

Choose the active branch with the least lower bound among the most

recently created active branches.

2) Breadth First

Choose the active branch with the least lower bound among all active

branches in the current decision tree.
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The attainment of good quality solutions early on is of great importance

for the quadratic assignmnent problem, especially if the algorithm is even-

tually used as a heuristic. Implementing the depch or breadth strategies

alone is not satisfactory. The correlation between lower bounds and quality

of partial assignments at low levels of the branch and bound tree is not

strong. Thus it is highly likely that a depth strategy may select poor qual-

ity branches to pursue initially so that good quality solutions are obtained

only after a large number of nodes is evaluated. On the other hand, high

levels of the branch and bound tree are not reached early on if the breadth

strategy is used. Since good quality solutions are usually obtained only at

high levels of the tree, the process of obtaining such solutions is also de-

layed. For this reason, the proposed algorithm combines the two branching

strategies. Particularly, a breadth strategy is used as long as the tree

level L has not reached L 1for the first time, where L 1is a suitable trigSger

parameter. The depth stragegy is implem-ented if L > L I' With this combirned

strategy many candidate good quality partial assignments are formed at low

tree levels. Starting with one of these solutions, the depth strategy quickly

finds good quality complete solutions. If L1is set equal to 0, then the pro-.

posed procedure reduces to depth first, and if L1is set equal to m, it reduces

to breadth first.

The choice of the trigger parameter Lis highly dependent on the dimen-

sion of the problem. A large value of L1increases the computer storage re-

quirements as well as delay the attainment of good quality solutions. Accord-

ing to our computational experience and depending on the problem size, values

of L Ifrom 3 to 5 are found to be satisfactory.



2.2. Branching from an Active Node

In the proposed branch and bound procedure, the single assignment rule

is used for branching from a selected active node. Particularly, an object

rCI is selected and 1 branches each corresponding to x 1 for sEJ areC, rs

formed. As described previously, by using the alternative costs, some of

these branches may be fathomed immediately. Some alternative procedures for

selecting the particular object r for branching are given below.

2.2.1. Select object r using alternative costs

Alternative costs can be used in the process of selecting the branching

object. By the use of alternative costs, it is possible to estimate the rate

of increase of lower bounds associated with each object icY. An object r in

is selected according to one of the following two rules:

1) Maximum total alternative cost rule

Choose re! satisfying

jy- Yrj 
= maximum I YiE iE! j£J"

Here, object r that results in the maximum sum of all lower bounds

at the next tree level is selected.

2) Minimum number of branches rule

Choose rcl satisfying

I -rs = minimum 1 6
jej rs i! jDJ

where, I

0Oif Z P+ Y i > Pj

1ij e
1 otherwise
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Here, object r that results in the minimum number of branches at the next

tree level is selected.

The proposed procedure uses a combination of the above rules. First a

branching object is attempted using rule (2). If 1 . < IJl, then object
jEJ rj

r is selected. Otherwise object r is selected using rule (1).

2.2.2. Select object r using a predetermined order

Here objects are ranked with respect to a certain criterion and object

rel with the highest rank is selected. The following are some possible cri-

teria for ranking the objects:

1) Maximum total interaction with all objects.

2) Maximum total interaction with unassigned objects.

3) Maximum total interaction with assigned objects.

Our computational experience suggests that selecting objects using

alternative costs is superior.

2.3. Elimination of Mirror Image Branches

Two assignments -ir and T. are mirror images in a quadratic assignment

problem if the following hold:

1) 1TI 1 2

2) d 7(i ) 7l (k ) 
= dI2(i)r2(k) for all i,k=l,...,m;i#k

In a quadrantic assignment problca v here the distance matrix correspcnds

to a rectangular layout, it is possible to identify several mirror images of

a given assignment of objects. A mirror image of an assignment can be ob-

tained by rotating the objects column-wise or row-wise such that all pairwise

) . . .. i i i i ,
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distances among objects remain unchanged. Hence both assignments have the

same quadratic objective function value. An example of obtaining mirror

image assignments is given for a 2x4 layout in Figure 1.

The above property holds for certain partial assignments also. Two par-

tial assignments P1 = (I1,JI) and P2 = (12 AJ2) are mirror images of each

other if the following hold:

1) 11 12

2)daI(i)0I(k) d a 2 (i)C2 (k) for all i,kel i#k

3) For every jcJ, there exists a location ZEJ 2 where:

(i) d j k 1 dia2(k) for all kSl

(ii) d (J) = d2

Condition (1) assures that both partial solutions involve the same set

of objects. The second condition asserts that all pairwise distances among

assigned objects are equal in both partial assignments. The last condition

states that for an unoccupied location jcJ, there exists another unoccupied

location W2 such that the respective distances to locations of assigned

objects and to vacant locations are equal. Obviously, if conditions (1)-(3)

are satisfied then the respective lower bounds Z and Zp2 will be equal also.

Furthermore, all higher level branches emerging from P Iand P2 will also
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Figure 1. Mirror images of an assignment on a 
2x4 layout
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be mirror images of each other. Thus whenever two mirror image partial

assignments are observed, one of the associated branches can be fathomed

A substantial reduction in the number of partial assignments can be

achieved using the mirror image property. For example, in the 12 facility

problem of Nugent et al (1968), at level 1, instead of forming 12 branches

it is sufficient to create only 4 branches, resulting in a reduction of 66%

in the computational effort.

The above branch and bound procedure, termed EXEB, is coded in Fortran

IV. EXBB is applied to some standard quadratic assignment problems in the

literature and the computational results are summarized in Table 1. In Table

2 these results are compared with other branch and bound procedures. A consi-

derable amount of reduction in the total search effort (number of nodes and

number of LAP's) is achieved with EXBB for the test problems. Also note that

for QAP7 where the locations permit no mirror image assignments, the difference

between the performance of EXBB and the other two methods is not clear.
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Table 1. Computational Results of EXBB

Problem Dimension Number of Number of Optimal Time
m Nodes (1) LAP's Objective Cpu Sec (2)

solved Value
1

QAP5 5 3 3 25 .023

Nugent, QAP6 6 5 5 43 .048
Vollmann L
and A 775nl QAP7 7 _ 58 36 74 .372

ProblemsPolm QAP8 8 39 28 107 .466
[20]

QAP12 12 3385 2201 289 78.220

QAPI5 15 16001 12269 575 500.00 (3)

Elshafei'srobhI m 7IL QAP19 19 767 715 8606274 109.027

(1) Using branching object selection strategy alternative costs as described in
Section 2.2.1

(2) On a CDC Cyber 70 Model 74-28/CDC 6400

(3) Terminated at that time without verifying optimality

Table 2. Comparison of EXBB with some other Branch and Bound Procedures

A1 EIBB Burkard and Stratmann Bazaraa and Elshafei
Problem EI (1978) (1979)

Number of Number of Number of Number of Number of Number of
Nodes LAP's Solved Nodes LAP's Solved Nodes LAP's Solved

Not 8
QAP5 3 3 Available 8 20 14

QAP6 5 5 Available 25 67 36

QAP7 58 36 Available 28 73 40

QAP8 39 28 Nt 189 235 141
_________Available 1823

NotT
QAP12 3385 2201 Available 15575 37531 26368

- _____Available_
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3. AN INEXACT METHOD BASED ON. BRANCH AND BOUND

When the exact branch and bound procedure is applied to the test pro-

blems in the last section, it is observed that the optimum solutions are

reached early on in the search procedure. As shown in Table 3, the remaining

effort is spent to prove optimality of the solution.

Table 3. Effort Spent to Prove Optimality

Total Node # at % effort
Problem number of which optimal spent in

nodes solution is proving optimality
found

QAP7 58 6 89

QAP8 39 i3 66

QAPI12 3385 535 84

QAP19 767 78 89

In this section, several improvement routines and methods of eliminating

certain branches which are likely not to produce good quality solutions are

discussed. With these modifications, the branch and bound scheme is trans-

formed into a heuristic that produces good quality solutions within a

reasonable computational effort. The major revisions to EXBB are:

1) 1In order to improve tho quality oE upper bouud:, exchange routlaes

are applied to the LAP solutions at certain branches in the search tree.

2) Since it is not possible to exhaust the search tree for large pro-

blems, several heuristics are developed for discontinuing the search at
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branches where improvements are not likely even if the lower bounds indicate

that fathoming is not yet achieved.

3.1. Application of the Exchange Routine

An attempt to improve the quality of the upper bound is made by apply-

ing an exchange routine to some of the LAP solutions obtained in the lower

bounding process. The application of the improvement routine to all LAP

solutions is not advisable. Especially at low levels of the tree, the qual-

ity of the LAP solutions is not good, so that even with the exchange routine

it is usually not possible to update the upper bound.

Two levels n1 and n2 where n, n x ,lected. These parameters are

used to trigger the exchange algorii;r - 'a.llows:

1) At levels L < n. the ex):,ge a; tine is applied to all LAP solu-

tions. Even though at this stage it is not likely to obtain good quality

solutions, the exchange routine is implemented in order to improve the solu-

tions for use in conjunction with the variable upper bounds (Section 3.5).

2) At levels n1 < L < n2 , the routine is applied only at the branch

that has the least objective function value p among all the branches at

that level.

3) At levels L > n2, the routine is applied at all branches in the

hope of improving the quality of solutions at hand.

A suitable choice of the parameter n is 1 and a good value of n2 is

around m/2.
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3.2. The Exchange Routine

Most of the improvement algorithms available in the literature utilize

2-way exchanges with different implementation strategies. Some routines also

use the higher order 3-way and 4-way exchanges. Los (1978) and Burkard and

Stratmann (1978) discussed some procedures which employ higher order exchanges

and conclude that the extra effort spent is not worthwhile.

In general, 4-way exchanges are computationally very expensive. Given

an assignment of four objects (i,k,p,q), there are 23 different additional

permutations. Mirchandani and Obata (1979) showed that out of these 23 permu-

tations, 6 can be obtained by 2-way exchanges and 8 can be obtained by 3-way

exchanges. Thus,only 9 permutations require 4-way exchanges. Three of these

remaining 9 permutations can be easily computed by making use of 2-way exchanges.

The simultaneous exchange of locations of two pairs of objects is called

a 2x2-way exchange. Specifically, consider two pairs of objects (i,k) and

(p,q). Let A(i,k) and A(p,q) be the change in the objective function value

for the 2-way exchanges of these two pairs of objects, respectively. Then

the net change A(i,k,p,q) in the objective function value resulting from ex-

changing the locations of objects i and k and those of p and q is given below:

A(i,k,pq) = A(i,k) + A(p,q)

+ (fip+ f q- fkp f iq ) (da (k)a t da(i)a(q)- da(i)a(p) -da(k)a(q))

where a(i) is the location of object i in the current assignment.
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The exchange routine implemented in this study evaluates 2-way and 2x2-way

exchanges in the following way:

1) First improvement rule is adopted. That is, the first exchange that

yields an improvement is implemented.

2) An exchange of two objects is considered only if the distance between

their respective locations does not exceed a certain parameter X.

3) The objects are ranked according to total interactions, and exchanges

are performed starting with objects at the top of the list.

Using the above rules, 2-way exchanges are first performed until no im-

provements can be obtained. Then 2x-way exchanges are evaluated. If any

2x-way exchange results in a smaller objective value, the routine is reiniti-

ated using 2-way exchanges starting from the improved solution. This proce-

dure is terminated when no improvements are possible using the 2x-way exchange

routine.

3.3. Selective Location Rule

In optimal or good quality solutions it is generally expected that objects

with large total interaction are assigned to "median" locations while objects

with small total interaction are assigned to "off-median" or corner locations.

While branching from a partial assignment, new branches are created by assign-

ing the selected object to each of the vacant locations. The assignment of a

high interaction object to a corner location is likely not to lead to a good

quality solution, even if the lower bound does not exceed the incumbent objec-

tive value. In general, a substantial computational effort may be expended

in pursuing such "bad" branches. By the selective location rule, high inter-

action objects are assigned only to "cental" locations and low interaction
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objects are assigned to "off-median" locations. Obviously, there is no guar-

antee that all optimal or good quality solutions must satisfy these additional

restrictions, but it is hoped that the exchange routine would help overcome

j this difficulty.

The objects and locations are ranked according to non-increasing total

interactions and non-decreasing total distances, respectively. A parameter t

is chosen and fU each object i, the set of permissible locations T is deter-

mined as follows. Let i* be the rank of the object i. Then:

Ti = {J: i* - t < J* < i* + t)

I where j* is the rank of location j. A good choice of t is in the range from

m/3 to m/2.I
3.4. Group Assignment of Objects

I In an optimal solution we would generally expect that the set of objects: with large pairwise interactions to be located close to each other. This

observation is incorporated in the branch and bound procedure as follows.

Choose a parameter E denoting the threshold percentage of total interactions.

Suppose that at branch P object r is assigned to location s, and that the solu-

tion of LAP yields the complete assignment 71p. Then for all idi satisfying:I
f ri >

I f r
k=l

I
object i is assigned to the location ITp(i) for all completions of the current

IP
I
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partial assignment P. That is, P is updated as follows:

P - P U {(i,r P(i)}

By this procedure it is hoped to speed the branch and bound scheme and

at the same time generate good partial assignments. A suitable choice of C is

around .25.

3.5. Variable Upper Bounds

In order to reduce the search effort, variable upper bounds are used.

Bazaraa and Elshafei (1977) discussed fictitious upper bounding procedures

for tree search algorithms and applied them to the quadratic assignment pro-

blem in [2]. Also, Burkard and Stratmann (1978) implemented a variable upper

bounding scheme to an inexact branch and bound procedure for the same problem.

The concept of fictitious or variable upper bounding can be explained as

follows.

A branch is fathomed if its lower bound is greater than or equal to the

incumbent upper bound. But in quadratic assignment problems, the upper bound

usually exceeds the lower bound except for large tree levels. Thus a substan-

tial amount of effort is typically spent is pursuing bad quality solutions be-

fore fathoming can be achieved. In order to speed fathoming, a fictitious

upper bound V(L) < P* is set for each level L of the search tree. The branches

at level L that have a larger lower bound than V(L) are fathomed. These fic-

titious upper bounds are called variable upper bounds since their values de-

pend on the tree level L, where V(L) < V(L + 1) for L1,.--,m-l. The variable

upper bounds must be such that good quality branches are not fathomed. Only

the branches which are likely not to produce improved solutions are fathomed.
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in order to determine the form of the variable upper bounds, the gap be-

tween the lower bounds and the best known solutions for some test problems are

examined. As Burkard and Stratmann (1978) suggested, the gap decreases quadrat-

ically with respect to the level of the tree. A proper function for the vari-

able upper bounds V(L) is of the form:

2
z + 9L+ L=,L,

V(L) =  glL g2 L ",

1: L=O or L>9

where e is a suitable parameter corresponding to the tree level at which lower

and upper bounds are usually equal. The values of coefficients gI and g2 are

determined by the following boundary conditions:

v(e) p

2V(0/2) - Z0  1*

The computational experience with variable upper bounds show that rela-

tively good quality solutions are obtained early on and further efforts either

do not improve the current upper bound or produce little improvement. Since

for a fixed L, an increased 0 results in decreasing V(L) and hence speeding

the fathoming process, the parameter 0 is incremented by one after evaluating

certain number of n,,des. For Gilmore-Lawler bounds, a good starting value for

2
0 is around 1m. Furthermore, the branch and bound procedure is terminated

if no improvements over the current upper bound are obtrined xithin a specified

amount of time.
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The exact branch and bound procedure EXBB of Section 2 is modified using

the above heuristic strategies, resulting in the code INBB. A variant of this

inexact procedure that differs only in the computation of lower bounds is also

developed. INRO uses Roucairol's reduction procedure [22]. The basic idea

of Roucairol's procedure is to reduce the interaction and distance matrices

so that the quadratic assignment problem is written as:

m m m m m mI !

Minimize fikdxx + c..x +i=1 j=1 k=l t=1Ik fxjk i 1 k=1 13xi X3

Subject to: xEX

where,

f = nonnegative reduced flow from object i to object kik

djt = nonnegative reduced distance between locations j and t

c.. = reduced cost of locating object i to location j
1)

V0 = a fixed cost obtained by the reduction process.

Ignoring the reduced quadratic part, the lower bound Z for a given par-
P

tial assignment P is computed by solving the following LAP:

Zp Minimum I_ h. x.i + VP + V0

xEX icI jc J

where;

hi= cij + ) fikdja(k)

P= i + I I fi do
iel icy() iI kCIi l ~ rk



Obviously, the above lower bound can be strengthened by computing a

lower bound on the reduced quadratic term. But our experience with the test

problems suggest that including the reduced quadratic term into the lower

bound computations does not necessarily yield stronger lower bounds in com-

parison with Gilmore-Lawler procedure. Furthermore as far as the total ef-

fort is concerned, by including the reduced quadratic relations into the

bound computations, the computational advantage of Roucairol's procedure over

the Gilmore-Lawler method is lost.

The modified branch and bound schemes INBB and INRO are applied to the

I problems of Nugent et al (1968). For each problem, the following three stra-

tegies for selecting the branching object are used.

1) Maximum total interaction with all objects

2) Maximum total interaction with already assigned objects

3) The alternative cost rule described in Section 2.2.1.I
The computational results are given in Table 4. As seen from the table,

even with the weaker bounding procedure INRO, good quality solutions are ob-

tained in a relatively small amount of computational time. Furthermore, it is

Iobserved that the selection rule of the branching object does not affect the

quality of the solutions significantly. An attempt to further improve the qual-

ity of the solutions at hand is made using a routine that implements 2, 3, and

4-way exchanges. This routine is similar to the Mixed Exchange Algorithm of

MirchianA-w. and Obata (!-79). Fith,- very litt.i improo?nt or nreo at ill

I TFor problems that have a rectangular grid layout and an interaction matrix

with at least one zero in each row and column, it can be shown that Roucairol's
procedure cannot yield stronger lower bounds even if the reduced quadratic
term is included in the bound computations.

VI



26

*fable 4. Summary of the Results for N ugent et al (1968) Problems

Branchin. Best known
Problem Dimension Object INRO INBB

M Selection Value Cpu. Value Cpu. literature
S tr.aet"g i Rpc ()() [3]

(1) 576 11.85 575 31.49

QAPI5 15 (2) 576 16.55 575 32.74 575

(3) 575 10.80 575 30.59

(1) 1 1297 30.75 1285 100.00

QAP20 20 (2) 1285 29.50 1285 100.00 1285

I (3) 1300 50.00 1285 100.00

30 (1) f 3079 176.19 3079 400.83

QAP30 30 (2) 3083 139.49 3080 346.95 3077

(3) 3080 200.00 3078 40084

(a) on a CDC cyber 70 model 74-28/CDC 6400

I

I
I
I
I
I

I ... ..' ...• i i i iI ' "I
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is attained as a result of these computationally expensive exchange routines,

rendering their use unjustified.

lJ
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4. AN ITERATIVE APPLICATION OF THE INEXACT BRANCH AND BOUND PROCEDURE

One disadvantage of the proposed inexact methods of Section 3 is that

their effectiveness is highly dependent on the quality of the initial partial

assignments selected at low tree levels. Since the search tree is not ex-

hausted, these methods commit themselves to the partial solutions selected at

low levels. In order to reduce this dependency on initial partial assignments

the following iterative branch and bound procedure is developed.

The procedure applies the inexact branch and bound scheme iteratively by

alternating between two branching rules. At each iteration, several number of

objects are fixed at the locations of the previous iteration and the branch

and bound computations are performed by changing the branching rule. The pro-

cedure terminates when no improvements are obtained, and is summarized as follows.

Form two ordered sets of objects S and S such that:

m m
Y f ik I k k for all i ESk=I  -- k=I  it+l'1'

and
m m

fik < Y f i+k for all iltS =l,...,m
k=l V k=l Z

Let s be a parameter corresponding to the branching object selection rule atq

iteration q, where:

I select the branching o-e'zt having maxiMun
s5 total interaction with all objects.
q {2 select the branching object having minimum

total interaction with all objects.

III i ... I ...



29

Step 0: Set q'l, s q=2, Sq=l, J*=, and 7*=0.

Let PO (10 'Jo) (0,0) and go to Step 1.

SteD 1: Apply INBB using the branching rule sq, and starting with the partial

solution P0. Terminate the branch and bound procedure whenever the bottom of

the search tree is reached for the first time. Let the best solution found be

1J and it and go to Step 2.
q ai

Step 2: If 1iq > * or Uq = Pq-2 stop. Otherwise go to Step 3.

i Step 3: Let , a a and ir r q . Determine a number k which corresponds to the, q q

f number of objects to be fixed at this iteration. Set P0 = (10 9J0) as follows:

first k elements of ordered set S if s =1
q q

! I0 first k elements of ordered set S if s q=2

and

J= {Tr*(i): igl O

Let,

q+I q

Sq+l q

q - q+l

and return to Step 1.

The procedure terminates at an iteration q if the objective value of the

assignment found at that iteration is greater than the incumbent 11* or equal

•U
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to that obtained by the previous iteration which has the same branching rule.

The number of objectsk1 to be fixed at each iteration is around m/3.

The above iterative procedure is applied to Nugent et al (1968) and

Steinberg (1961) problems and the results are summarized in Table 5. The pro-

cedure produced at the best known solutions for problems QAP20 and QAP34-l.

For Problems QAF30 and QAP34-2 the iterative procedure produced solutions

which are better than the best known in the literature. These solutions are

given in the Appendix.
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I

Table 5. Summary of Iterations for Nugent et al (1968) and Steinberg
(1961) Problems with Iterative Branch and Bound Scheme

Si Branching Number of ITime Cumulative Best
Problem Dimension Iteration Order fixed I Objective Cpu. Sec. Computation known in

m q Sq objectsk q- value (a) Time literatur
q ICpu. Sec. [31

(a)

1 2 0 !1303 52.62 52.62

2 1 6 1298 28.32 70.94

QAP20 20 3 2 6 1298 19.24 90.18 1285

4 1 8 1292 20.37 110.55

5 2 8 1285 20.08 130.63

6 1 10 1285 15.40 156.03

1 2 0 3130 130.53 130.53

2 1 8 3072 61.91 192.44

iQAP30 30 3 2 8 3064 67.11 259.55 3077

4 1 12 3064 31.20 290.75

5 2 12 3064 29.50 320.25

L 31 2 0 7999 398.22 398.22
)AP34-2...

Hq,,red 34 2 1 13 7926 46.56 444.78 7926
dEan
istancc 3 2 16 7926 62.26 506.71

1_I 2 0 4802 326.60 326.60

*'A234-2 34 L 2 1 13 4800 55.87 382.47 4802
-iRe~in- ''I

"___,____ 3 2 lo 4800 83.26 465.73

(a) On CDC Cyber 70 model 74-2S/CDC 6400
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APPENDIX

I SOLUTIONS FOR QAP30 and QAP34-2

Problem: QAP30

Best found Value: 3064

Assignment:

151 232 11 30 4 14

7 8, 9 10 11 1

17 18 8 16 27 20

131 14 15 16k 17 1e

1 22 7 19! 3 29

19 20 21 22 23 24

24 26 10 9 21 2

25 26 27 28 29 3O

12 6 25 13 28 5

Problem: QAP34-2

Best found Value: 4800

Assignment:

1 2 4 5 i  6 7 8)

26 22 273 23 11 6 5 3

10 I1 121 13 14 15 16 17 18
25 21 14120 12 13 4 8 2

19 20 21 22 23 24 25 26 27

24 32 19 28 1 7 10 18 1 17
28 29 30 31 32 33 9 34 351 36

33 34 31 30 29 15 9 16
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