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to Levy [7] and Sanathanan and Koerner [81 has been suc- -
cessfully extended in the z-domain to determine a dynamic
digital controller. As a result of these efforts, better perform-

S i ;, ance of redesigned systems can be achieved. In this corre-
.spondence, a omputer-aided method is proposed for match-

ing the dominant data of a high-order continuous-data sys-
,. tern, or a discrete-data system, with the dominant response

of a low-order digital system replacement. Also, methods are
given for system identification and digital controller design of
these systems.

4. II. DOMINANT-DATA MATCHING METHOD

hThe characteristics of a control system or a filter are often
___ expressed by either a time-response curve, or a frequency-re-
" . sponse curve or a set of poles and zeros in the complex plane,

or both. The quantitative description of transient behavior is
A Dominant-Data Matching Method for Digital Control represented by its time-domain control specification [91 (for

Systms Modeling and Designt example, the percentage overshoot and the rise time) and by
the frequency-domain control specifications (for example, the
maximum value of the closed-loop frequency response and theL. S. SHIEH, Y. F. CHANG, AND Rt. E. YATES bandwidth). These specifications which are defined for analog

control systems [91 can be considered as specifications of
Abtrac--A d imlmaint4at- matcdig edtod I presented for digital control systems. This is because a digital control system

obtaining a redmed-order Pullo-traNer Inectiom frm either a high- can be viewed as a continuous-data system in the frequency
order coadhlu-dats truamer funetlon or a bll-order Psa9- domain when z = eiWT where T is a sampling period.
transrer fuctio, Sad for Ideni the plse-trafhfer fueti of a Some empirical observations or rules of thumb due to
system fron oawnle ezperlmental time and frequency respeAme
dat. The etod may a-s be appliedtotledigial rl Axelby [10) and Truxal [111 that link the specifications ofdeig problem wit variou maplni perieds, the continuous-data systems in both the time and frequency

domains can be found in [ 101, [ I 11.
Recently Shieh et al. [ 121 have studied the relationships

I. INTRODUCTION between the complex-domain specifications (the damping
Most practical industrial circuits and control systems are ratio and the undamped natural angular frequency) and the

continuous-time systems for which analog filters and control- time-domain and frequency-domain specifications. Based on
lers are employed to improve performance. The recent avail- the results [ 121, the time and complex-domain control speci-
ability of high-performance low-cost microprocessors and as- fications can be converted into the equivalent frequency-
sociated electronics has led to replacement of many continu- domain specifications and vice versa. These control specifica-
ous systems with system employing digital filters and con- tions are used as dominant data of a continuous or discrete-
trollers. Many techniques have been developed for digital con- data control system.
trol systems design [1 ]-[41. Among them the w-domain bi- Our new dominant-data matching method matches the
linear transformation is often applied to design industrial dominant data of a continuous-data or a discrete-data system
digital controllers. However, this method is graphical and in- to those of the newly designed or modeled discrete-data sys-
volves "cut-and-try" procedures. Recently, Kuo [5J and tem. The steps involved are as follows:
others developed an optimal discrete-time data matching Step 1: Determine a set of dominant frequency-response
method for the redesign of a continuous-data system. Con- data from the assigned or obtained time-domain and complex-
stant controllers instead of dynamic digital controllers are domain specifications by using the rules and results in (IOf-
mainly employed in these designs. As a result, good perform- [121.

>_ ances of redesigned systems can be achieved if the frequency Step 2: Assume a fixed configuration digital system and
Q_ of the input signal is sufficiently lower than the sampling fre- controllers with unknown constants. Determine the open-loop

quency. As an alternate to Kuo's time-domain approach, and the overall pulse-transfer function of the system.
Q- Rattan and Yeh [6] have given an elegant frequency-domain Step 3: Formulate a 'set of linear/nonlinear equations by

method for the redesign of continuous-data systems. The matching the unknown constants of the pulse-transfer func-LUJ method of weighted least squares complex-curve fitting due tion and the assigned dominant data. Solve the equations by
using the multidimensional Newton-Raphson method [131,

LL. Manuscript received 1979. This work was supported In available as a library computer program package (called the
part by the U.S. Army Research 761R, iunder Grant DAAG 29-80-K- Z system) in many digital computers [ 141.
0077, and by the U.S. Army Missile Research and Development Com. Step 4: Estimate initial value for the numerical solution ofmand, under Contract DAAHO1-80-C-0323. the Newton-Raphson method by constructing a crude pulse-

L. S. Shieh and Y. F. Chang are with the Department of Electrical transfer function which can be obtained by a complex-curve
Engineering, University of Houston, Houston, TX 77004.

R. E. Yates is with the Guidance and Control Directorate, U.S. fitting method.
Army Missile Command, Redstone Arsenal, AL 35809. Step 5: Compare the results with the assigned specifications.
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Fig. 1. Block diagranm of a missile pitch control system.
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2) Gain margin Gem of this system Ge(j w r) is type "I" systems and we need to match the dominant data
of Ge(ij) as w = 0 in (2a) and the dominant data of G,(z)

11Ias w o 0 or z = eiw T -I in (3b) or (4), the expression for
Gem = -Re G( )] I (2b) Gr(z) in (3b) is modified as follows:

G(jjw.) Re I G,.(i,)] -1.5 iSubstituting z = z* + 1 into (3b) yields

where the phase-cross-over frequency w. is given by x, * + xp *Z* + + Xo*: * p

G,(z*) =

w, a 1.9 rad/s, such that LG.(w,) - i 80. (2c) Z*(Y' * + Yq - *Z* + + Yo *zQ)
=e.,z*-n + e0 +enz. +e 2 z. 2 +..• (5a)

The equivalent real and imaginary parts of G(jwol) at w. ==

1.9 radfs are where

Re [Ge(j,)1 = -1.507 944 (2d) p p qI~~ xp* , = x' _1* =Yvp_, Y.*=1Yi.
Im I Ge(ftOf)] --0.00 490 205. (2e) i

3) Phase margin Oem of the system Ge(i ) is q

Oem = 180 + LGe(Jwc) 5.77870 (2f) iI

e_ t = xp*/yq* and eo (yq~Xp i Yq- t *Xp*)IYq . 2, etc.
where the gain-cross-over frequency w c is given by cc a - 3.2

rad/s so that Equating the respective real and imaginary parts of Gr(z)
for w = 0 and those of Gr(z*) for W = 0 gives

Re (G,(z)j lz=,t+io = Re (G,(Z*)I Iz. '=t io =eo (5b)

Equivalent real and imaginary parts of G(iw,) are

and
Re [Ge(jwc) =-0.993 914 3 (2h)

Im (G,(z)] Ino = Im [G,(z*)] I =z- jo =. (5c)
Im [Ge(]jw)] -0.095 474 78. (2i)

Equations (5b) and (5c) imply that e0 in (5b) is the asymp-
It is required to determine a reduced-order pulse-transfer func- totic line of the type "I" systems at low frequencies.
tion such that the characteristics of the identified discrete-data In the frequency domain, (4) can be expressed in an alter-
model agree as closely as possible with those of the high-order native form as follows:
continuous-data system. Let us define

Let the required overall pulse-transfer function be

Tr(Z )z = eiw k r = cos wkT+j sin CkT= Uk +iVk (6a)
rg(z) = Gz (3a)

I + Gr(z) and substituting z = Uk + jVk into (4), we have

GA k) (XoUk 2 XoV2 + xuk + x 2)+i(2OuVk +xtVk) =Rk +ik
((Uk - IXuk Vk +Y Uk+Y2)-Vk( 2 UkVk +y U) +i((uk- IX2UkJk +ynVk)+k(U 2 -v, +y1u, +y2) +

(6b)

where the open-loop pulse-transfer function Gr(z) is where cwa are specific frequencies and Rk Re [G,.(ut.v&)],

XOZP + XZ P - i + - +XP_ Iz + XP lk A= lm [Gr(uk, Vk)J. If Rk and Ik are the known or assigned
S+ + +values at frequencies Wk, we can obtain two linear equations.

zf(z - I yoz9 +Ya ~+ "'" +Yq- Z + Yq) First, we multiply both sides of (6b) by the common de-

(3b) nominator, then we separate the real and imaginary parts and
then equate the respective real and imaginary parts. Thus we

G,(z) is assigned to be a type "I" system because G.(.) in have
(le) is a type "I" system. To match the five dominant data
in (2) we choose q = 2, p = 2, and y 0 

= 1. Thus G,(z) becomes Mx, x1, x2, Y , Y2)

Gz)- Xoz 2 + X1 + X2 2

((z- 1Xz 2 +y)z +y2) (4) =(XoUk -XoVA 2 +X1Uk +X 2 )

where x1 and yj in (4) are unknown constants to be deter- Rk(Uk - I)ukl -v,2 +y 1uk +y2)

mined. The goal is to determine the unknown constants x, and -ut( 2 utvt +Yluk)) + l1(ai - I 2utvt
Y, in G(z) so that G,(z) as z = e T matches the dominant

data in (2). The sampling period T (=0.008 s)and w, (250r + YIu&)+ vk(uk 2 -V,, +7YtUh +Y2)1
radis) are chosen to be synchronized with the 125-Hz pulse-
width modulated actuator 116). Since Ge.() and G(z) are = 0 (6c)

SEEM&
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Fig. 3. Tine responses of the various systems.

and A Nyquist plot of Gr(z) is shown in Fig. 2. The plot matches
closely that of Ge(s) not only at the dominant frequencies,

fA+I(X 0 .X1 .X2Y-Y2) but also at others. The G,(z) is seen to be a good reduced-

' (2Xoi&V + X IV,) order digital model of the original 11 th-order unstable analog
system G5(s). This is the contribution of our new method be-

- Rt[(u - l)(2UkVk + y u,) + uk(U,2 
-(k2 cause there are no known effective continuous-discrete model

conversion and model reduction methods for unstable sys-
+ yaMu + YA ) - 4l(l a - I XUt -U tems. The resulting closed-loop pulse-transfer function which
+ yl 1 +y1 - v(2svA~ +y J is the reduced-order discrete-data model of the original high-

order continuous data system is
=0. (6d)

G,(z)
Using the expreesk in (Sb), (6c), and (6d) and the assigned T,(z)= --

dominant data in 1, (2d), (2). (2h), and (2i), we can I + Gr(z)
formulate one nonlit • eqaton and four linear equations 0.006 792 596z2 -0.012 335 992z + 0.005 545 311 4
fAXl, Y)=Ofor I ... ,

The Newton-Raphsc.n r..ethod available as a library compu- z3 - 2.991 748 524z2 + 2.984 150 408z - 0.992 399 888 6
ILA ter program in most digital computers 1 141 can be applied to

solve thee nonlinear equations. However, as is well known, (8)
the Newton-Raphson method will converge to a desired solu-
tion for a small range of starting values or initial solution esti- Since the assigned dominant data are the steady-state fre-
mates. To improve the convergence and to obtain the set of Se thessed doinan ta are sesatetfedesied oluions weoffr te foowig mthodforiniialquency response, it is interesting to compare responses of the
desired solutions, we offer the following method for initial 11th-order continuous function T,(s) in (Ia) and the 3rd-
estimates. der discrete function T&) n (8) shown in Fig. 3. Observe

t ~~~Since fl(xi, yl) -= 0 is nonlinear and fl~xi, yl) = 0, 1 = 2, ordrisetfuconT()i()shw il.3ObreS" a linea 0 equations, we linearize f (xi, yl) = 0 by chos- that both the transient response and steady-state response of
' r iereutos elnerz a(e ~ ycos the reduced-order model T,.(z) are excellent matches of the

ing a very low frequency. For example, if we choose wt =
0.01 A wo. 0 1 , thenRk 4R 0 .o1 = -2.1,1% AiO.O1 =40.173 original high-order system. This indicates that the dynamic
19, uk A uo0 o -- cos oo. 1 T -- 0.999 999 SO, and U A characteristics of the system (for example, peak value time
o.o I = sin wo.o T r - 8 X 10- S. Solving f, (xi, yl) - 0 and and overshoot, which may not occur at the sampling time) are

fi(xi, yi) - 0, 1 - 2, "", 5 for the unknown constants x, (de- indirectly controlled by the assignment of the gain-cross-overfined a Xly ) and y, (defined as yi*) we have the initial esti- frequency and the phase margin. This is a major advantage of
mates xz* and y7*. Using thes values as initial estimates for our new method. Also note that the reduced-order model
mte solutions of f sxi, y t) - 0 and using the Newton-Raphson gives an excellent approximation of the original system when

method we obtain the exact solution x, and y at the second driven by high-frequency input signals.
iteration with error tolerance of 10- 6 . The desired open-loop To determine the initial estimates x1* and yg*, a general
pulse-transfer function is formulation of a set of linear equations can be constructed

from the following complex-curve fitting method.

0.006 792 5960 -0.012 335 992z + 0.005 545 3114 Consder the pulse-transfer function

a') z3 - 2.998541 2z2 + 2.9964864s - 0.007945 2 G - + +9s)

(7) s Z + *Z"- + .+ (9e
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where yo° = I and xl and yg* are unknown constants to be t*'

determined. Substituting z'= e rw kT = cosrwkT+j sin r' T
into (9a) gives

G(e"'rw T)
M Fig. 4. Block diarm of a digital pitch contro system.

xj* cos (m - OkT + 1 1 x" Sin (m - tIMT
= 1=0 where

y," cos (n - 14j T +/ y, sin (n - I)t T

1-0 0 GaG(z)=(l -z')Z I GO(s)
= R((a) + j1(wk) = Rk + ill (9b) IS

where Rk and It are the real and imaginary parts of the trans- G., (z) A G,(z)GGo(z)
fer function at the experimental frequencies or the assigned
frequencies wa. After multiplying both sides of (9b) by the G(s) -e - T  zeroth-orde hold
common denominator and separating the real and imaginary s
parts, we equate the respective real and imaginary parts. This
yields the following matrix equation: T = the sampling period = 0.008 s.

cosmwTcos(m - i)wT -" I (-R, cos(n - i)wT+l, sin(n - l)w€ T) (-RI coswT+ I, sin (ooT)
sin mcil T sin (m - l)w1 T - 0 (-R, sin (n - )wl T- 11 cos(n- I)w,7) (-R 1 sin wi T - 11 cos a, T)

cosmwTcos(m- l). 1 T I (-R cos(n - l)wiT+.I,sin(n- l)wT) (-Rj cos wjT+1I sin wiT)

sinmwjTsin(m- l)wT 0 (-R, sin(n-l )wT-41cos(n-I)w T) (-R, in wjT-icos wT)

-R x O *

-1 X.* (Ro cos nw o T- to sin nw o T)

* (Rosin noT+locosncoT)

-R Xm* (9c)
-/I yj* (RI cos n aT- i sin nwT)

Y2 * (RI sin nco1T + i cos nwT7)

Substituting the selected (n + m + 1) frequency-response data G¢(z) is the desired digital controller and is
into (9c), we can solve for the required (n + m + 1) unknown
constants x* and yrS. X0

2 + X1Z + X2  (1)

IV. DIGITAL CONTROL SYSTEM DESIGN Z2 Y - Y2
Consider the pitch control transfer function of the missile where x, and yj are unknown constants to be determined. Be-

system of (I a). The unity-feedback system without the stabili- cause G,(z) is a forward controller, the equations fj(xt, yj)
zation filter G,(s) is unstable, and a rate gyro is not available 0 can be formulated from the following:
for this example system. It is required to design a digital con-
troller G(z) instead of an analog controller G() such that G,(s)l./,I ,
the designed system has the exact control specifications (91 G(z)I-eIWa =' - (12)
of the original stabilized continuous-data system given in (2). GGo(z),.Ie1 (r
Furthermore, the response G,(jw) at w = 140 md/s a w 1 4 0 is

chosen as a dominant data constraint because the system has where wo = 0, W1.9 - 1.9, W3s) = 3.2, and W1l40 - 140.
an inherent high frequency signal Component at W14 0. This is Notice that GjGo(s) for z = ew k " is not equal to Gg(&)
a digital redesign problem. The structure of the digital control for : = jW& unles T - 0. Using the dominant data of (2a),
system is shown in Fig. 4. The closed-loop pulse-transfer func- (2h), and (2i), the required response at Cw4o, or Re
tion of the desired digital system becomes ]Gc(ei40T)J = 26.951 878 and Im (G,(eIF149T),

19.196 865, and the relationships expresed in (Sb) and (12)

Y(:) GlGaGo) G, Iyield a set of equations f(xt, yg) - 0 for - 1, 2, -, S.
(10) The set of linear and nonlinear equations can be solved

R(:) I + G.(:)GGo(:) I +Get(z) using the Newton-Raphson method. The initial stimates
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for the Newton-Raphson solution may be determined from newly designed digital controller G,*(z) is
(9c). Another linear equation fi*(xi, yg) = 0, instead of Gc*(z)
fi(xi, Yi) = 0 can be constructed to yield five linear equa-
tions with five unknown constants (xl" and yj*). Ge(iw) at = 13.170 704z 3 -25.531 430Z2 + J4.629 635z - 2.268 545 1

w = 0.01 A wo.0 1 is used in this case. Substituting Re z3 -0.374 24841z 2 -0.327 57047z -0.297947 56
[Gc(e/WO-IT)i = 1.596 1120 and Im [Gc(elwO.OlT)] = (16)
6.409 642 into (12) we get the linear equation. Using xl*
and yj* obtained from (9c) and the Newton-Raphson The closed-loop pulse-transfer function is

method, we obtain the solution x, and yj of fi(x,, y) = 0 at
the fifth iteration with the error tolerance of 10- 6 . The re- Y(z)T2(z)= G, 2(z) (17)

quired digital compensator is R(z) I + Ge2 (Z)

11.869 083z 2 - 13.492 37z + 3.058 4008 11.869 083(z - 0.824 080 67Xz -0.312 685 33) (13)

z2 - 0.750 552 99z + 0.646 992 37 (z-0.375 276 50 +/0.711449 17Xz-0.375 276 50-/0.71144917)

The Nyquist plot of G. 1 (z) - G,(z)GhGO(z) is shown in Fig. where
2. It closely matches the Nyquist plot of Ge(s). The unit-step
responses of the existing stabilized continuous-data system G, 2 (z) Gc*(z)GhGo*(z).
T,(s) in (Ia) and Te1 (z) in (10) are shown for comparison in
Fig. 3. The time-response of the newly designed sampled-data The Nyquist plot of Ge2 (Z) shown in Fig. 2 matches very well
system is very close to the existing stabilized system. It is in- that of Ge(s). The unit-step response for Y(z) in (17) is shown
teresting to note that Gc(s) of (lb) is a fourth-order analog in Fig. 3. The time response of Te2 (z) very closely matches
controller whereas the G,(z) of (13) is a second-order digital that of the original system Te(s). The resulting design is seen
controller, to be quite satisfactory.

In a large control system it is often difficult to select a min-
imum common sampling period among the various subsystems. V. CONCLUSION

For example, the missile inner loop stability system with A dominant-data matching method has been given for fitting
sampling period T = 0.008 s is used with a terminal guidance the coefficients of a pulse-transfer function from available
system. The terminal guidance system is low pass. Therefore, time and frequency response data or from assigned design
a larger sampling period may be economically used in this goals expressed by a set of control specifications. When the
system. if we assign a larger sampling period T1 (=0.015 s) dominant data are obtained from a high-order continuous-data
for the outer guidance loop, and we desire a single sample as well as a discrete-data system, our new method has been
period, we must raise the sampling period T (=0.008 s) of the used to determine a reduced-order discrete-data system. If the
actuator and inner loop from T (=0.008) to Ti (=0.015). data are experimental time and frequency response data of a
Notice that the new sampling frequency w, (=2r IT, = system to be identified, our method may be used to identify
418.88) ) 2wI4o (=280 rad/s). The modified open-loop the pulse-transfer function. Also, the method has been used
pulse transfer function with T, = 0.01 5 s is for redesigns of a continuous system using a digital filter with

various sampling periods, The pulse-transfer function ob-

GeGe1(z)AzI- sr(4 tained by our new method has the exact dominant perform-
G0(s)J. (14) ance of the original or desired system. We feel that the flexi-

£ biity and accuracy of our new method will have significant
Since a larger sampling period T, is used, we select a third- practical advantages for the design of digital control systems

orde diita cotrolerG,*z) athr tan he ecod-oderand for the implementation of a low-order digital controller
order digital controller G*(z) rather than the second-order by using low cost microprocessors.
digital controller. Go(z) of (13) is
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