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. g to Levy [7] and Sanathanan and Koerner [8] has been suc-
SFR e 'f'f‘:a cessfully extended in the z-domain to determine a dynamic
BT ¥ "\ digital controller. As a result of these efforts, better perform-
%'} 4 ance of redesigned systems can be achieved. In this corre-

A Dominant-Data Matching Method for Digital Control
Systems Modeling and Design

L. 8. SHIEH, Y. F. CHANG, AND R. E. YATES

Abstract—A deminznt-data matching method Ia presented for
obtsining & reduced-order pulse-transfer function from either a high-
order comtinwous-data tramsfer fumction or s high-order pulse--
transfer function, and for identifying the pulse-transfer function of a
system from avallable experimental time and frequency respomse
data. The method may siso be applied to the digital control systems
design problem with various sampling periods.

I. INTRODUCTION

Most practical industrial circuits and control systems are
continuous-time systems for which analog filters and control-
lers are employed to improve performance. The recent avail-
ability of high-performance low-cost microprocessors and as-
sociated electronics has led to replacement of many continu-
ous systems with system employing digital filters and con-
trollers. Many techniques have been developed for digital con-
trol systems design [1]-[4]. Among them the w-domain bi-
linear transformation is often applied to design industrial
digital controllers. However, this method is graphical and in-
volves ‘“cut-and-try” procedures. Recently, Kuo [5] and
others developed an optimal discrete-time data matching
method for the redesign of a continuous-data system. Con-
stant controllers instead of dynamic digital controllers are
mainly employed in these designs. As a result, good perform-
ances of redesigned systems can be achieved if the frequency
of the input signal is sufficiently lower than the sampling fre-
quency. As an alternate to Kuo’s time-domain approach,
Rattan and Yeh [6] have given an elegant frequency-domain
method for the redesign of continuous-data systems. The
method of weighted least squares complex-curve fitting due
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ugd spondence, a computer-aided method is proposed for match-

ing the dominant data of a high-order continuous-data sys-
tem, or a discrete-data system, with the dominant response
of a low-order digital system replacement. Also, methods are

given for system identification and digital controller design of
these systems.

1I. DOMINANT-DATA MATCHING METHOD

The characteristics of a control system or a filter are often
expressed by either a time-response curve, or a frequency-re-
sponse curve or a set of poles and zeros in the complex plane,
or both. The quantitative description of transient behavior is
represented by its time-domain control specification [9] (for
example, the percentage overshoot and the rise time) and by
the frequency-domain control specifications (for example, the
maximum value of the closed-loop frequency response and the
bandwidth). These specifications which are defined for analog
control systems [9] can be considered as specifications of
digital control systems. This is because a digital control system
can be viewed as a continuous-data system in the frequency
domain when z = ¢/“T where T'is a sampling period.

Some empirical observations or rules of thumb due to
Axelby [10] and Truxal {[11] that link the specifications of
the continuous-data systems in both the time and frequency
domains can be found in [10], [11].

Recently Shieh etal. [12] have studied the relationships
between the complex-domain specifications (the damping
ratio and the undamped natural angular frequency) and the
time-domain and frequency-domain specifications. Based on
the results {12], the time and complex-domain control speci-
fications can be converted into the equivalent frequency-
domain specifications and vice versa. These control specifica-
tions are used as dominant data of a continuous or discrete-
data control system.

Our new dominant-data matching method matches the
dominant data of a continuous-data or a discrete-data system
to those of the newly designed or modeled discrete-data sys-
tem. The steps involved are as follows:

Step I1: Determine a set of dominant frequency-response
data from the assigned or obtained time-domain and complex-
domain specifications by using the rules and resuits in {10]-
[12].

Step 2: Assume a fixed configuration digital system and
controllers with unknown constants. Determine the open-loop
and the overall pulse-transfer function of the system.

Step 3: Formulate a set of linear/nonlinear equations by
matching the unknown constants of the pulse-transfer func-
tion and the assigned dominant data. Solve the equations by
using the multidimensional Newton-Raphson method [13],
available as a library computer program package (called the
Z system) in many digital computers {14].

Step 4: Estimate initial value for the numerical solution of
the Newton-Raphson method by constructing a crude pulse-
transfer function which can be obtained by a complex-curve
fitting method.

Step S: Compare the results with the assigned specifications,

0018-9421/81/1100-0390800.75 ©® 1981 IEEE

82

03 24 042

&




IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS AND CONTROL INSTRUMENTATION, VOL. IECI-28, NO. 4, NOVBJ(E‘.R 1981 391
R(S) & Y(s)
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Fig. 1. Block diagram of a missile pitch control system.
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Fig. 2. The Nyquist plots of various exampie open-loop transfer functions.

III. MODELING A REDUCED-ORDER PULSE-TRANSFER  Gy(s) = transfer function of the actuator and aerodynamics

FUNCTION of the missile system
We use a real stabilized pitch control system of a semiac-
. tive terminal homing missile [15] as an illustrative model to + +
show that the characteristics of the transient-state response of = 324 332.316(s +0.1933)s + 65)s + 1500)
a system can be estimated from the dominant frequency-re- S(s—2.921)s+3.175Xs +87.9£j95.5)s+ 112.5)s +1385) 1
. sponse data and the applications of the proposed method to
the identification and model reduction problems. A block (1)
diagram of the missile system is shown in Fig. 1. The closed-
loop high-order transfer function is H‘(_g) = transfer function of the gyro=1
Y6) ___ Gel)Gols)  __ Gel) . ) (1a) (1d)
RG) 1+G(0Go(WHgs) 1+Gels) ¢
© WolsW(5) ) G.(5) £ G (5)Go(s) = unstable open-loop transfer function of the
where existing stabilized system.
G () = stabilization filter (le)
1.6( ol L+ l) The Nyquist plots of G(s) and Go(s) are shown in Fig. 2. The
25 125 dominant data of G.(s) sre:

= [ s\ 06 | s \ 08 1) Real and imaginary parts of G.(s) at s = jw = jO are
BEER BEes
150 150 200 200 Re [G.(/0)] = —2.103 817

(1) Im (G.(0)] = =.
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2) Gain margin G,p, of this system G¢(jw,) is

1 1
Re [G.Gwon)] ' = ' s (2b)

Gem =

)
Ge(jwy)
where the phase-cross-over frequency wy is given by

Wy = 1.9 rad/s, such that LG, (jw,) = —180°. (2¢)

The equivalent real and imaginary parts of G.(jw,) at wy =
1.9 rad/s are

Re [Ge(jw,)) = —1.507 944 (2d)
Im [Go(jw,)] = —0.006 490 205 . (2¢)
3) Phase margin ¢e,, of the system G (jw) is

Gem = 180° + LG (jw,)=5.7787° 2nH

where the gain-cross-over frequency w, is given by w, = 3.2
rad/s so that

1G(we)l = 1. (2»)
Equivalent real and imaginary parts of G (jw,.) are

Re [G.(w,)] =—0993914 3 (2h)

Im {G.(jw.)] = —0.095 474 78. (2i)

It is required to determine a reduced-order pulse-transfer func-
tion such that the characteristics of the identified discrete-data
model agree as closely as possible with those of the high-order
continuous-data system.

Let the required overall pulse-transfer function be

SRS w
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type “1” systems and we need to match the dominant data
of G (jw) as w = 0 in (2a) and the dominant data of G (z)
as w =0 orz=e/“" =1 in (3b) or (4), the expression for
G,(z) in (3b) is modified as follows:

Substituting z = z* + | into (3b) yields
x.* +Xp 1 o 4. +xot2tp

G (z*%) = —F
r Z¥(Pa* + yq_ 1 %2% + o yy %)

=e_y2* ' deg te 2t ezt + (5a)
where
P P q
Xt =2 % Xpo* =3 i Yo*=
=0 = i=0
q
yq»l,.l = iyq-~l’

-,
-

e =xp*[yg* andeg = (¥e*xp_1* —~¥q .1 *xp*)yg*?, ete.

Equating the respective real and imaginary parts of G,(z)
for w = 0 and those of G (2*) for w = 0 gives

Re (Go(@)] {:=1+jo =Re (Gi2™)] |ze=2_ 1 =jo = €0 (5b)
and
Im {G,(2)] lz=1+jo =Im [G(2*)] |02z 1=jo = . (5¢)

Equations (Sb) and (5c¢) imply that eq in (5b) is the asymp-
totic line of the type “1” systems at low frequencies.

In the frequency domain, (4) can be expressed in an alter-
native form as follows:

Let us define

2=/ kT = cos wi T+ sin we T2 uy + jug (6a)
T(z)=—G’(2_. (3a)
r 1+G,2) and substituting z = uy + ju into (4), we have
(ot ? = xquy 2 + Xy + Xy ) F(2X Uit +X1Ug)
Gl v0) = i oMk” ~ xoUy” X, Uy 2_) f(2x ok b + X1 Ui — =Ry +]ly
[ — Dup® —ox +yqup+y )~ Quity +yy U] +7{@i — I 2ukty 3 0) Ho g~ +yu +2))
(6b)

where the open-loop pulse-transfer function G (2) is

xozf +xy2P ' b xy qz¥x,
= Dre2® +y1297 1 + 4 yg_yz+y,)

G(2)=

(3b)

Gx(z) is assigned to be a type “1” system because G.(s) in
(le) is a type “1” system. To match the five dominant data
in(2)wechoose g = 2, p = 2, and yg = 1. Thus G ,(2) becomes

x022 +xy2+x,
@~ +y,2+y;)

GA)= )

where x; and y; in (4) are unknown constants to be deter-
mined. The goal is to determine the unknown constants x, and
¥ in GAz) 30 that Gz) as z = ¢/“T matches the dominant
data in (2). The sampling period T (=0.008 s) and w, (=250n
rad/s) are chosen to be synchronized with the 125-Hz pulse-
width modulated actuator [16]. Since Ge(s) and G,(z) are

where wy are specific frequencies and Ry £ Re [G(ug,vy)],
Iy 2 Im [G (ug, vi)). If Ry and [; are the known or assigned
values at frequencies wy, we can obtain two linear equations.
First, we multiply both sides of (6b) by the common de-
nominator, then we separate the real and imaginary parts and
then equate the respective real and imaginary parts. Thus we
have

flxo. X1, %2, 71, 72)
= (xoux? —xoUp? +xyux +x;)
=Ry [ — DNr? —0p® + yyup + y3)
=0 (QQubx + 3 0x)) + In[(uy — 1(2up0y
+ 7100 + vl — v + yux +9,y)]

=0 (6¢)
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Fig. 3. Time responses of the various systems.

and
Jie1 (0. X1, X3, 5. 72)
= (xourth + xy0y)
= Raf(uy — 1rvx +y,00) + 0an? — vy ?
+ypa + )] — WG ~ 1)Xw? —u?
+yue + 7)) - (20 +y )]
=0,
Using the expressic

(6d)

in (5b), (6c), and (6d) and the assigned
dominant dats in Y, (2d), (2¢). (2h), and (2i), we can
formulate one nonlir - equation and four linear equations
fdx,yd=0fori=1,_, .

The Newton-Raphscn r.ethod availabie as a library compu-
\er program in most digital computers [14) can be spplied to
solve these nonlinsar equations. However, as is well known,
the Newton-Raphsor method will converge to a desired solu-
tion for a small range of starting values or initial solution esti-
mates. To improve the convergence and to obtain the set of
desired solutions, we offer the following method for initial
estimates.

Since fy(x;, ) = O is nonlinear and ffx;, y;) = 0,i = 2,
-, § are linear equations, we linesrize f;(x;, ¥;) = 0 by choos-
ing a very low frequency. For example, if we choose wy =
0.01 € wo.01, then Ry R Rg. 0y = ~2.1,13 R fg 01 = 40.173
19, up 8 ug oy = cos wo 91T = 0.999 999 50, and v, £
Up.oy = 8in wo o017 = 8 X 10°5, Solving f;(x;, ¥;) = 0 and
Ilxy, yp) = 0,1 =2, S for the unknown constants x; (de-
fined as x,*) and y; (defined as y;*) we have the initial esti-
mates x,* and y,*. Using these values as initial estimates for
the solutions of f(x;, ;) = 0 and using the Newton-Raphson
method we obtain the exact solution x; and y; at the second
iteration with error tolerance of 10~ The desired open-loop
pulse-transfer function is

0.006 792 596z* — 0.012 335 992z + 0.005 545 311 4
23 _ 2,998 541 222 + 2.996 486 42 — 0.007 945 2

)

A Nyquist plot of G,(z) is shown in Fig. 2. The plot matches
closely that of G.(s) not only at the dominant frequencies,
but also at others. The G,(z) is seen to be a good reduced-
order digital model of the original 11th-order unstable analog
system G.(s). This is the contribution of our new method be-
cause there are no known effective continuous-discrete model
conversion and model reduction methods for unstable sys-
tems. The resuiting closed-loop pulse-transfer function which
is the reduced-order discrete-data model of the original high-
order continuous data system is

G2)

TAz)= ————
D= 6e

0.006 792 5962° — 0.012 335 992z +0.005 545 311 4
2>~ 2.991 748 5242% +2.984 150 408z ~ 0.992 399 888 6

®)

Since the assigned dominant data are the steady-state fre-
quency response, it is interesting to compare responses of the
11th-order continuous function T.(s) in (la) and the 3rd-
order discrete function 7,(z) in (8) shown in Fig. 3. Observe
that both the transient response and steady-state response of
the reduced-order model T,(z) are excellent matches of the
original high-order system. This indicates that the dynamic
characteristics of the system (for example, peak value time
and overshoot, which may not occur at the sampling time) are
indirectly controlled by the assignment of the gain-cross-over
frequency and the phase margin. This is a major advantage of
our new method. Also note that the reduced-order model
gives an excellent approximation of the original system when
driven by high-frequency input signals.

To determine the initial estimates x,* and »,*, & general
formulation of a set of linear equations can be constructed
from the following complex-curve fitting method.

Consider the pulse-transfer function

xo*z™ +x.‘z"'" oot x,t
LA
N ETNEAFETE

G@)= (%)

\




PSR

determined. Substituting z” = /"“*7 = cos rew, T+ sin rwy T
into (9a) gives

G(ei"" .1‘)

" m
2 x;* cos (m —l)wkT+i2 xg® sin (m — Do T
) =0

2 vi* cos (1 — DT +] 3 yi* sin (n = Do T
=0 =0

=R(wy) + jl(wy) =Ry + jly (9b)

where R, and Iy are the real and imaginary parts of the trans-
fer function at the experimental frequencies or the assigned
frequencies wy. After multiplying both sides of (9b) by the
common denominator and separating the real and imaginary
parts, we equate the respective real and imaginary parts. This
yields the following matrix equation:

—cosmw,Tcos(m—l)w,T" 1
smmw,Tsm(m—l)w,T b

W o By
4 - ' . o ———
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where yo® = 1 and x;* and y,* are unknown constants to be v Y

A

6 65,02

R(Z) o

Fig. 4. Block diagram of a digital pitch control system.
where
GaGo®)=(1 —27")Z [ Go(s)]

Ge1(2) 2 G (2)GxGo(2)

—e T

1
Gu(s)= = the zeroth-order hold

T = the sampling period = 0.008 3.

(—Rycos(n—Dw, T+, sin(n—1)nT) »* (R, cosw,T+/,sinw, T
0 (_Rl sin(”_l)wlr_l| Cos(n—l)ﬁﬁn b (‘R| sinw.T—l. Coshhr)

cos mw;Tcos(m— 1) T += 1 (—R;cos(n— 1), T+ Iisin(n— 1), T) = (=R, cos T + I;sin w,T)
sinmw,Tsin(m ~ 1) *+ 0 (—R;sin(n — 1), T —Lcos (n — Dy T)  ~ (~R;sin ;T —1I; cos w;T)
L : : :
_Rq [ xo.'l
- x* Ry cos nwo T — Iy sin nwy T) |
: . (Ro sin nwo T + Iy cos nwoT)
| et . : %)
=4 i n* (R; cos new;T — Iy sin nwyT)
: 2t @Ry sin nuy,T + I cos mw,T)
. . | : ]
J LVn"*

Substituting the selected (n + m + 1) frequency-response data
into (9c), we can solve for the required (n + m + 1) unknown
constants x,* and y,*,

IV. DIGITAL CONTROL SYSTEM DESIGN

Consider the pitch control transfer function of the missile
system of (1a). The unity-feedback system without the stabili-
zation filter G.(s) is unstable, and a rate gyro is not available
for this example system. It is required to design a digital con-
troller G.(2) instead of an analog controller G.(s) such that
the designed system has the exact control specifications (9]
of the original stabilized continuous-data system given in (2).
Furthermore, the response G(jw) at w = 140 rad/s £ w40 is
chosen as a dominant data constraint because the system has
an inherent high frequency signal component at w, 4¢. This is
a digital redesign problem. The structure of the digital control
system is shown in Fig. 4. The closed-loop pulse-transfer func-
tion of the desired digital system becomes

YE)  G2)GaGo(2) Goy(2)
ot G e ——————————— T' AR ————m
Re) " T+ 6.006:Ge@ 2 TP Y6 (19

P LI T

G.(2) is the desired digital controller and is

X922 +xy2 + x5

G2)= (1n)

2? +yiz2+y,

where x; and y; are unknown constants to be determined. Be-
cause G.(2) is a forward controller, the equations f{x;, y) =
0 can be formulated from the following:

Ge(‘) ll’lwk

a2
GaGo(®) lmelwiT

Ge@)lzeelwnT =

where wp = 0, wy 9 = 1.9, W3 3 = 3.2, and Wy 49 = 140.
Notice that G,Go(z) for z = /T i5 not equal to Go(s)
for s+ = jwy unless T = 0. Using the domimnt data of (2a),
(2h), md S?i). the required response at w;q9, Of Re
(G (e/“140T)} = 26951878 and Im [G (e/W140T)) =

19.196 865, and the relationships exprossed in (5b) and (12)
yield a set of equations f((x;, y)) =0fori=1,2, 5.

The set of linear and nonlinear equations can be solved
using the Newton-Raphson method. The initial estimates
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for the Newton-Raphson solution may be determined from
(9¢). Another linear equation f;*(x;, y;) = 0, instead of
fi(xi, ¥7) = 0 can be constructed to yield five linear equa-
tions with five unknown constants (x,* and y;*). G (jw) at
w = 001 £ wgqy is used in this case. Substituting Re
[Ge(e/¥0.01T)] = 1,596 1120 and Im [G (e/w0.01T)) =
6.409 642 into (12) we get the linear equation. Using x,*
and y;* obtained from (9c) and the Newton-Raphson
method, we obtain the solution x; and y; of flx;, y)) = 0 at
the fifth iteration with the error tolerance of 106, The re-
quired digital compensator is

11.869 083z — 13.492 37z + 3.058 4008 N

395

newly designed digital controller G.*(2) is

G.*(2)

_ 13.170 704z — 25.531 4302% + 14.629 6352 — 2.268 545 |
e 0.374 248 41z* —0.327 57047z —0.297 947 56 ’

(16)
The closed-loop pulse-transfer function is
Y@z G.,(2
—(l§7¢2(1)=_”—()—— (17)
R@) 1+Gea(2)
11.869 083(z — 0.824 080 67Xz —0.312 685 33) a3)

G2)=

The Nyquist plot of G¢1(2) & G(2)GyGy(2) is shown in Fig.
2. It closely matches the Nyquist plot of G.(s). The unit-step
responses of the existing stabilized continuous-data system
T.(s) in (13) and T,y (2) in (10) are shown for comparison in
Fig. 3. The time-response of the newly designed samplied-data
system is very close to the existing stabilized system. It is in-
teresting to note that G (s) of (1b) is a fourth-order analog
controller whereas the G.(z) of (13) is a second-order digital
controller,

In a large control system it is often difficult to select a min-
imum common sampling period among the various subsystems.
For example, the missile inner loop stability system with
sampling period T = 0.008 s is used with a terminal guidance
system. The terminal guidance system is low pass. Therefore,
a larger sampling period may be economically used in this
system, If we assign a larger sampling period T; (=0.015 s)
for the outer guidance loop, and we desire a single sample
period, we must raise the sampling period T (=0.008 s) of the
actuator and inner loop from T (=0.008) to T, (=0.015).
Notice that the new sampling frequency wy,y (=21/T) =
418.88) » 2wj40 (=280 rad/s). The modified open-oop
puise transfer function with Ty = 0.015 s is

1—e T
GxGo*(z) 22 [—-—’— Go(s)]. 149)

Since a larger sampling period 7 is used, we select a third-
order digital controller G.*(z) rather than the second-order
digital controller. G.(2) of (13) is

x92 +x,22 +x2 4 x;

G.*2)= 15)

P4yt +yz2+y,

The x; and y, are seven unknown constants to be determined.
Geliw) st w=02 1w, w=19=w; 9, w=32Lw;4,8nd
w = 140 £ w49 shown in (2) are used as the dominant data
to determine x; and y;. Using the above design procedure, we
can determine a set of equations f(x;, ¥;) =0,7r=1,2,, 7,
These equations can be solved by using the Newton-Raphson
method, with the set of initial estimates obtained from (9c¢),
The dsta obtained from (12) at w = 0.01 £ wy 91, Wy.9,

w3 .2, And Wy4q 8re used in (9¢c) to determine the initial esti-
mates x;* and y,*. Using these values as initial values for the
Newion-Raphson method, gives the desired constants x; and
»; st the 17th iteration with error tolerance of 10=%. The

22 —0.750 552 99z + 064699237 (z—0.375 276 50 +j0.711 449 17z — 0.375 276 50 —0.711 449 17)'

where
Ge2(2) = G *(2)GnGo*(2).

The Nyquist plot of G.4(z) shown in Fig. 2 matches very well
that of G.(s). The unit-step response for Y(z) in (17) is shown
in Fig. 3. The time response of T,(2) very closely matches
that of the original system T.(s). The resulting design is seen
to be quite satisfactory.

V. CONCLUSION

A dominant-data matching method has been given for fitting
the coefficients of a pulse-transfer function from available
time and frequency response data or from assigned design
goals expressed by a set of control specifications. When the
dominant data are obtained from a high-order continuous-data
as well as a discrete-data system, our new method has been
used to determine a reduced-order discrete-data system. If the
data are experimental time and frequency response data of a
system to be identified, our method may be used to identify
the pulse-transfer function. Also, the method has been used
for redesigns of a continuous system using a digital filter with
various sampling periods. The pulse-transfer function ob-
tained by our new method has the exact dominant perform-
ance of the original or desired system. We feel that the flexi-
bility and accuracy of our new method will have significant
practical advantages for the design of digital control systems
and for the implementation of a low-order digital controller
by using low cost microprocessors.
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