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SECTION I
INTRODUCTION

In recent years there has been considerable research effort in the

field of computational turbulent boundary layer flows because of the

need for more accurate solutions to flow problems that arise in engi-

neering applications. The turbulent boundary-layer flows are generally

more complex than laminar boundary-layer flows in the sense that these

flow problems do have their own distinct and important characteristics

which may require special attention in the application of solution tech-

niques. For instance, the growth of turbulent boundary-layer thickness

occurs at a much faster but unknown rate, and the very thin viscous sub-

layer in the vicinity of the wall has an extremely large velocity gra-

dient; consequently, special measures are needed in the discretization

of the flow region. In general, large numbers of grid points with

relatively small grid sizes must be specified near the wall in order to

obtain an accurate solution.

The governing boundary layer equations for incompressible turbulent

flows contain a term, called the Reynolds stress, which involves the

time mean of the product of two fluctuating velocities. The Reynolds

stress has been modeled by means of the mean velocity, of the turbulent

energy, of the product of turbulent energy with a length scale, and of

the Reynolds stress itself as the dependent variables of the differeitial

equations; consequently the closure models for turbulent boundary-layer

flows can be classified as zero equation, one-equation, two-equation,



and stress-equation models. The zero-equation models are easier to

formulate and calibrate and therefore have been used extensively to

provide predictions for engineering problems. Other closure models are

more complex and their use for practical problems is rather limited at

present. Reynolds 1] provided an overview of the closure models

and concluded that the zero-equation model has been applied to a variety

of turbulent flows and works quite well for most turbulent boundary

layer flows considered at Stanford conference, a special conference

was held at Stanford Universtiy in 1968 to compare the viability of

prediction methods based on various closure models for the partial dif-

ferential equations describing turbulent boundary layer flows. In

addition, the Stanford conference provided a direct check on the accur-

acy of the various prediction methods. A total of nine methods of

solving governing partial differential equations with a closure model

competed. The results of the conference indicated that the prediction

methods of Mellor and Herring [2], Cebeci and Smith [3], and Ng,

Patankar and Spalding [4] can provide acceptably accurate solution

for the flow problems considered. The solution of Mellor and Herring

with the effective eddy viscosity model is obtained completely across

the boundary layer. They used the Hartree-Womersley semi-discrete

method for solving the governing equations, where the ordinary differen-

tial equations are solved across the layer using the Runge-Kutta inte-

gration procedure. Ng, Patankar and Spalding selected a mixing length

model and used a Crank-Nicolson type of finite-difference scheme, which

is not applied to the wall. Instead, a wall function is introduced

that gives the flow quantities at the wall. Cebeci and Smith used an

implicit finite-difference scheme to obtain the solution across the
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complete boundary layer with the eddy viscosity model. Several hundred

grid points across the boundary layer had been used by the above men-

tioned finite difference methods for accurate solution.

Recently, the two-layer eddy viscosity closure model has been ex-

tensively used in solving practical turbulent flow problems. This

model consists of inner and outer regions, and the distributions of

eddy viscosity are described by two separate empirical expressions in

the two regions (e.g. Cebeci and Smith, [5]). The expression for eddy

viscosity in the inner region is based on mixing length theory, and a

modified expression for the mixing length is used to account for the

viscous sublayer close to the wall. The expression for eddy viscosity

in the outer region is based on a constant eddy viscosity modified by

a transverse intermittency factor. This model has been accepted as the

standard form of the zero-equation model and used by many researchers

to develop computational methods for turbulent flow problems.

Keller and Cebeci [6] applied a Levy-Lees Transformation to the

governing equations and then used the well known box scheme with

Richardson extrapolation to obtain the solution for turbulent f-ow aver

a flat plate. The flow region considered is from the local Reynolds

number Re x = 0.83 x 10O3 to Re x= 1.88 x 10 6 with constant boundary

layer thickness. The numerical solutions, using Keller's box scheme

based on 11, 21, and 31 grid points across the boundary layer with the

designed variable-grid system, were obtained at 17 different stations

in the streamwise direction. The results of the 31-grid scheme are

acceptably accurate but the results of the other two schemes are not

acceptable; however, the accuracy of solutions can be improved by the

Richardson extrapolation. These results show that Keller's box scheme
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with Richardson extrapolation can be very simple and accurate for tur-

bulent flows.

Blottner [7] pointed out that Keller's box scheme requires the

solution of block-tridiagonal equations and can be very time consuming

when extended to compressible boundary layer flows. Consequently, he

proposed a Crank-Nicolson type of difference scheme with a variable

grid and solved the same flat plate problem. The results obtained

indicated that the Crank-Nicolson type scheme is easier to formulate

and can give the same accuracy as Keller's box scheme for the turbulent

boundary layer flow. In addition, the number of grid points required

for the Crank-Nicolson method is less than that of Keller's box scheme

under the same accuracy requirement.

Recently Rubin and Khosla [8] have extended their higher-order

collocation method to turbulent flows with some success. The higher-

order collocation method derived from polynomial spline interpolation

and Hermite collocation is used to overcome the stiffness problem

caused by the extremely small grid size near the boundary. Again, they

chose the flow over a flat plate as the testing example. The solutions

were obtained for the range 5.45 x l04 < Rex < 2 x 106. For the Rey-

nolds number considered here they only used 11 grid points across the

boundary layer, with first element size hi = 0.1432, to provide 5-10%

accuracy. With 21 points and h1 = 0.005 the results are well within

the experimental scatter. Indeed the method can also provide accurate

results. It should be pointed out, however, that an iterative method

can lead to erroneous solutions if the truncation error of the approxi-

mation is large. This fact is evident from the results of the numerical

experiments given in Rubin and Khosla (1977).
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More recently a finite element-differential method has been develop-

ed and tested successfully for two-dimensional laminar boundary layer

flows (Hsu, [9] and Hsu and Liakopoulos, [10]). The application of

the method is very simple and straightforward; however, one must carry

out a number of transformations in the analysis first. In this method

the transformed flow region is divided into a number of strips parallel

to the boundary and the unknown functions at a given streamwise station

are approximated by classical cubic splines. The transformed governing

partial differential equations are then reduced to a system of first

order nonlinear ordinary differential equations by a subdomain collo-

cation method; consequently, the resulting initial value problem is

solved by a numerical integration method. The stiff problem associated

with the reduced equations may be pronounced if one used a great number

of strips and very small element sizes near the wall. The numerical

results obtained showed that the method is indeed very efficient and

can provide highly accurate results for the entire flow region.

It seems that the finite element-differential method developed is a

rather promising solution technique for more complex flow problems.

The objective of this study is, therefore, to investigate the applicabi-

lity as well as the accuracy and efficiency of the finite element-dif-

ferential method to more complex two dimensional incompressible turbulent

boundary-layer flows. The governing boundary layer equations with the

two-layer eddy viscosity closure model have been transformed into the

proper forms for applying the solution technique.

The applicability, accuracy and efficiency of the solution method

for complex turbulent boundary layer flows have been investigated in

detail upon the flat plate problem. The boundary layer flow considered
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consists of the laminar, transitional, and turbulent regions which

covers the range of local Reynolds numbers from Re. = 8.1 x 10O3 to
8x

Rex = 1.1 x 108. The results obtained have shown that the finite

element-differential method can be very efficient and provide highly

accurate solution for the turbulent boundary layer flow problems.

Moreover, the result of numerical experiments has given valuable

information on the flow characteristics relevant to numerical approxi-

mat ion.
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CHAPTER 11
GOVERNING BOUNDARY-LAYER EQUATIONS

For two-dimensional, steady, incompressible turbulent boundary

layer flows, the governing equations are (e.g. White, [11])

;U + av 0 (2-1)ax y~ 0

p~u + v - ~ ) 2.-..(v ' - j ) + oU dU (2-2)
Dx ay 9y y dx'

where

x = the coordinate along the boundary in the direction of flow,

y = the coordinate normal to the boundary,

u = mean velocity component in x direction,

v = mean velocity component in y direction,

u' = fluctuating velocity component in x direction,

v' = fluctuating velocity component in y direction,

U = velocity just outside the boundary layer,

w = dynamic viscosity,

P = fluid density.

The associated boundary and initial conditions considered are

u(x, 0) = 0 , v(x. 0) = 0 , u(x, y -) - U(x) , (2-3)

u(O, y) = uo(y) (2-4)

In equation (2-2) -pW;T is called Reynolds stress which is caused by

the action of turbulence. When the Reynolds stress is zero, equations

7
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(2-1)-(2-4) are the governing equations for laminar boundary-layer flows.

Equations (2-1)-(2-4) are not complete; a closure model to make the

system closed is needed. The purpose of a closure model is to re-

late the Reynolds stress to other flow quantities and thereby obtain a

closed system of equations.

There are several levels of closure models available (Reynolds,

1976). The zero-equation model, based on algebraic eddy viscosity for-

mulation, has been tested for a wide range of turbulent boundary layer

flows with considerable success. The one-equation model, in which a

partial differential equation for the turbulence energy is solved in

conjunction with the partial differential equations for the mean motion,

finds use in practical applications on occasion. The two-equation

model, obtained by adding an additional partial differential equation

for the turbulence length scale to the one-equation model, has not been

used extensively for engineering problems, although it is currently

popular among researchers. The stress-equation model, which involves

partial differential equations for all components of the turbulent

stress tensor, is now under intensive development.

Due to its simple formulations and wide applications in various

engineering problems, the two-layer eddy viscosity model is used in the

present analysis. The development of this model is discussed in some

detail in appendix A. According to the model, the kinematic eddy vis-

cosity, vt, is defined by

V 7Y V (2-5)
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The effective eddy viscosity is defined by

Ve = Vt + V ' (2-6)

where v is the kinematic laminar viscosity. Consequently, the distri-

bution of the two-layer effective eddy viscosity across the boundary

layer including the transitional and transverse intermittency factors

can be written as (appendix A, equations (A-12) and (A-13))

(ve)i v + {0.4y[l - exp (-1)-} 1u yt (2-7)

(Ve) 0 : + 0.0168 U(x)6* y yt , (2-8)

where subscripts i and 0 represent the inner and outer regions, respec-

tively. The damping constant A, transitional intermittency factor

Yt" transverse intermittency factor y, and displacement boundary layer

thickness 6*, as discussed in appendix A,are

(2 6) x( - I .8 ) (2-9)
t t

-1 U 3 x R-34X
Yt 1 - exp [ - (U_"x) x 1.4 - X tr) dst 20 v Xt Xtr U s) , (2-10)

y = [1 + 5.5 (y/6) 6 ]-, (2-11)

S* = (1 - )dy, (2-12)

0

where xtr is the location of the start of transition and 6 is the bound-

ary layer thickness. The friction velocity, u, and the transition

Reynolds number, R ,are defined by the following expressions, respectively,
Xtr

•9



u T Wx)/P)(2-13)

U(x)XtrR X- V. (2-14)

Xtr

where T w(x) is shear stress at wall.

The matching point which separates the inner and outer regions must

be determined from the continuity of the eddy viscosity, that is,

(ve)i = (e)0 (2-15)

Therefore, the complete set of the governing boundary layer equations

for the flow problem considered is given by

au + V -0 (2-16)
3x @y '

DU + v - ay 2 -  d (2-17)

1(v )i given by equation (2-7)
ee (2-18)

I(Ve) 0 given by equation (2-8)

u(x, 0) 0 , v(x, 0) = 0 , u(x, y-,- ) U(x) , (2-19)

u(O, y) u0 (y) (2-20)

The important physical quantity besides the velocity flow field is the

wall shear stress distribution, Tw (x), which is defined by

Tw(x) [Pe Ayy (2-21)

As usual the local skin-friction coefficient Cf is defined by

C w ( X )Cf tw (x (2-22)
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CHAPTER III
TRANSFORMED BOUNDARY-LAYER EQUATIONS

In solving boundary layer flow problems governed by equations (2-16)-

(2-20), it is often advantageous to carry out a number of coordinate

transformations before application of a solution method. First, the

governing equations can be made dimensionless by the following trans-

formations:

x Y (3-1)

UlXl 1) u(x y) v (x, , U 1) = -(x)
I isU" v 1(xl9 Yl)  =  I (x ) U:

in which L and U0, are the characteristic length and velocity. The re-

sulting non-dimensional equations are

+ -= 0 , (3-2)Xl Yl

ul + V ve DUl dUl

Ul -l+v = - (3-3)1 x1 1 Yl Re Y I ') Yl d

(e) = 1 + Re {0.4 yl[l - exp( )D},3l,

Ve = -' (3-4)

(j)0 = 1+ 0.0168 R,*Ui(xl )yYt

ul(xl,o) 0 , vl(x,, 0)= 0 , ul(xl,y,--)-* Ul(xl) , (3-5)

ul(O' Yl) = Uo(Y(Yl))/U , (3-6)
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where Re = U. L/v is the Reynolds number while R6.- U. 6*/v is the Rey-

nolds number based on the displacement thickness 6*.

By use of another transformation the transformed equations can be

made independent of the Reynolds number and the boundary conditions the

same for all conceivable problems of the class considered. Let

xl Ul(s) ds . Y2  Re Ul(x )yl (3-7)

uu (Xl, Y)

u2(x2, Y2) - Ul(X ,U 2 (x2 ) = Ul(xl)

d ln U2
Vl(xl, Yl) = Re- U1 (xl)[V2 (x2 ' Y2) - Y2 u2  d x2

Then equations (3-2)-(3-6) become

au2  av2
_x+ a 0 (3-8)x 2 aY2

au2  au2  a ve au dIn U2
u v2 + (1- u2) (39)2 ax2  2 3Y2  ay2  v 3Y2  2dx2

Ve = 1- e  2_
e = (-) =1 + Re (0.4 Y2 [l exp Y L  )]}2 u2

V i AReiU 2(x2) )Y2

V u(3-10)
(e ot = 1 + 0.0168 R6*U2(x2)yyt ,

u2 (x2, 0) = 0 , v2(x2, 0) = 0 , u2 (x2, y2-) - 1 , (3-1l)

u2 (O, Y2) = uo(y(y 2 ))/U2 (0)U'  (3-12)

12



It is known that the number of dependent variables can be reduced

by one if the Von Mises transformation is introduced (e.g. Yih, [12]).

One can introduce a stream function i(x 2 , y2) to satisfy the continuity

equation 3-8), with

u2 (x2  Y2) (x2' Y2 )  v2 (x2 , y2 ) (x2' Y2 )  (3-13)

Then in the Von Mises transformation the stream function ',2 is used as

the independent variable corresponding to Y2. Let

3 (x 2' Y2) = 2 (x2, Y) : Y2 u 2(x2' s) ds , x3  x2

(3-14)

u3(x3 ' i3 ) = u2'x2 : U3 (x3 ) = U2(x2)

Equaticns (3-8)-(3-12) Decome

'u3 u3 2 3 e 3u3 2 d In U3(x3)

u3 _3 - u3-J) + u3- (-u- 3 ) + (I -u3) dx 3

(3-15)

I e= 3-Y2 ( '3 )L

1 + Re u3 3 04 - exp 2 -
Ve A Re-U 3(x3)

v (3-16)
( 1 + 0.0168 R )YytR 0 U3(x3) t

u3 (x3 , 0) : 0 u3 (x3, 3-o) - 1 , (3-17)

u3(O, i3 ) : uo(y( 3))/U2(O)U" (3-18)

Furthermore, if one introduces the new function

13



w3 (x3 , 03) u3(x 3, y3 ) , (3-19)

one obtains

3w 3  w3  -w d In U3(x3) (3-20)ax3  w3 
T  v 3 3) (d323

Ve 1 + Re3 0.4 y2 (Y3)[1 - exp( dY 2 pL 2 3w3

Ve  2AR2U 3(x3
)  2 3

v 
(3-21)

I + 0.0168 R6*U3(x3)yyt

w3 (x3, 0) = 0 , w3 (x3, 3- =) - l , (3-22)

w3 (0, ip3) = wo(p3) (3-23)

For a boundary layer profile, whose development with respect to Yl

starts with the linear term, the independent variable ''3 is inconvenient

to use for a function which is analytic in y, and not analytic in terms

of p3 (Guderley and Hsu, [13]). This motivates the following transfor-

mation:

, xr4 3 4 = x3
(3-24)

w4 (x4, q4 ) w3(x3 , 3) , U4(x4) = U3 (x3)

Hence, one finds

Aw: I v aVe Dw4  1v e .w4 d ln U4(x4)
a[= T - - -) - - W3-25)
4 4n4n 4 _ 4) 4v4 ] ( 4 4 (

14



Ue Y2 ( 4)L - 4-l-W4

(-) = 1 + j Rei{0.4 y2(n4 )[l exp(- 2 )] --)L 4 1) t ,
i ARkeU 4 (x4) 743'

(3-26)
e) 0 1 + 0.0168 R*U

3(x3)yyt

w4 (x4, 0) = 0 , w4(x4, '+14 - (3-27)

w4(0, n4) = Wo(7 4) (3-28)

For any numerical method of solution, it is desirable to have the

transformed boundary layer thickness remain approximately the same order

of magnitude through the entire flow region. The rate of growth of a

turbulent boundary layer is not known; however, for laminar boundary

flows the application of the Falkner-Skan transformation seems to main-

tain a boundary layer thickness of the same order throughout the entire

flow region (Schlichting, [14]). Therefore, one hopes the Falkner-Skan

transformation may somewhat decrease the growth rate of the turbulent

boundary layer. The Falkner-Skan transformation is given by

X jx4 dsn 4  "4  s x
'5 S

(3-29)

w( , n) = w4(x4, n4 ) , W(I) = U4 (x4)

where E is a small constant introduced to overcome the singularity resulted

from a coordinate transformation. Then equations (3-25)-(3-28) become

1w = w1Iaew) I 1w Vw + 2( -w) d In W((.30
S: r 3nV 3n) -, - -] +'4 -j d
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(eV ,0 5 Re) Y2( Ti)L ) } I

0.25 R 04 y(9)[l exp ( AeW)L n

Ae) ReW(~) rIn
Ve (3-31)

VV

(-) = 1 + 0.0168 R6 W (y-
V

0

w(C, 0) = 0 , w( ,rr) + 1 , (3-32)

w(O, I) w 0(n) (3-33)

In the present formulation, the dependent variable w(c, n) is the

square of the dimensionless velocity. Because of the homogeneous bound-

ary conditions, equation (3-11) and the transformation, equation (3-14)

and (3-19), one has, for sufficiently small value of n,

w( ,n) =  OW )  ,(3-34)

which implies that

3 =0 (3-35)
n=0

Furthermore, the asymptotic behavior of a boundary-layer profile implies

that

lim w = 0 (3-36)
n~- T

For application of a numerical method, the boundary condition at

infinity must be imposed at a finite but sufficiently large distance H.

The proper choice of H is in general crucial to the efficiency of a

given numerical scheme as well as to the accuracy of the results obtained.

Hence, for a selected H, the initial-boundary value problem to be

16



numerically solved is go\erned by

w = Rl(W )  (3-37)

Re) -Y(n)L 23w 1
= I + 0.25 (e YARe W() t T

re

-) = 1 + 0.0168 R * W(W)Yt , (3-38)
0

at n = 0 w = 0 , (3-39)

at n = H w = , (3-40)

at = 0 w =w 0() , (3-41)

where the nonlinear operator RI(w) is given by the right hand side of

equation (3-30). The additional boundary conditions, equation (3-35)

and (3-36) are

w = 0 at n = 0 and at n = H (3-42)Tn

which are important and useful in the spline fit approximation.

Following the transformations given by equations (3-1), (3-7),

(3-14), (3-19), (3-24) and (3-29), the shear stress is given by

T : P(U.W( (I) fl 0 (3-43)4(ReceY) ( n : 0

One notes fru;, equation (3-35) that

1 (3-44)

Consequently, the local skin-friction coefficient, Cf defined by

17



equation (2-22),becomes

Cf - 1 2w (3-45)
2(Ree) n:O

The system of governing equations (3-37)-(3-41) will be used to

investigate the development and applicability of a finite element dif-

ferential method in which the unknown function w(E, n) at a streamwise

station C is represented by the classical cubic spline. Some of the

important variables and parameters which must be evaluated in the

course of computation are

Y2  (e ) f 2s ds (3-46)

0 w

y = [I + 5 . 5 (-L)6]- , (3-47)

exp[- ~R1iW20(dE: - 1.34 e ds e5 ds

tr tr e~tr
R t 1 -Re x - 00) e t  "X(3-48)
Xtrr 0'

R x t Re W(E), ;e0 ds)(-9

R , = (Re ce ) E (2, - 2n) dn] (3-50)

0 
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CHAPTFR IV
CLASSICAL SPLINE APPROXIMATION

In approximating a mathematical function, a spline function will

usually provide closer and smoother approximations to the function and

its low-orderderivatives than a polynomial (Greville, [15]). The amount

of computation involved is not materially greater than that required in

a polynomial. In addition, the spline functions possess certain impres-

sive optimal properties such as minimum norm, strong convergence and

best approximation (Ahlberg et al. [16]).

A spline function is a function whose graph is a composite curve

made up of a number of polynomial arcs of a given degree fitted togeth-

er in such a way that the junctions of successive arcs are as smooth as

they can be made without going toasingle polynomial over the entire

rangp Mahematically, the spline function can be defined as follows:

Let u = )O' '. ...... nn' nn+l = H be a strictly increasing sequence

of real numbers (called nodes of the spline function). Then . srline

function of degree m with the nodes no' , ..... . n' "n+, d

function s(n) satisfying the following two conditions:

(1) In each interval (ni' ni+l) (i = 0, 1, ... . n) ( is given by

a polynomial of degree m.

(2) S(n) and its derivatives of order 1, 2 ..... m - 1 are continuous

over the region (0, H).

A spline function, in general, may be represented in two distinct,

but completely equivalent ways. The choice of the representation
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materially affects the formulation of the problem and its ease of solu-

tion.

The first representation is referred to as the piecewise poly-

nomial representation; it simply uses different polynomials of the same

degree m, one for each interval. This formulation can be written as

m
S ) Cij (n  - j_i )i ,  n ( i rij) j 2, r + 1

(4-1)

S.(n) represents the polynomial of degree m in the jth interval. Cij are

the coefficients for the polynomials and are determined by applying the

continuity conditions at internal nodes and boundary conditions at the

two extreme nodes. When this formulation is used, the continuity con-

ditions are explicitly part of the problem to be programmed. This

representation is easily understood and the computations involved are

simple and straightforward.

The second representation is formed by a set of basis functions.

A spline function represented by a set of basis functions is called a

B-spline. The B-spline may be written as

nl+m+l

S(n) = di  Bim(n) , (4-2)

where Bi(n) is the so-called "compact support basis" and di are the

coefficients of the B-spline. When a B-spline is used to approximate the

solution of a differential equation, it leads to well-behaved matrices

in addition to having built-in continuity. The drawback of this repre-

sentation is that B-splines are not simply related to elementary func-

tions, and must be evaluated, using their definition as a divided
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difference of the truncated power function. Further reference to

B-splines and their properties is given elsewhere (De Boor, [17]).

In general, cubic spline functions with m =3 are the most useful

and interesting ones because of their easy application. The first repre-

sentation of the cubic spline function will be used to approximate the

transformed velocity profile in this study.

Cubic spline functions have been effectively applied to some fluid

flow problems. Panton and Sallee [18] have considered heat condition

and laminar boundary layer flow problems using both point collocation

and integral methods, in which assumed solutions were represented by

B-splines. Rubin and Khosla [19], [8] have investigated in detail

the applicability of cubic splines for Burgers equation, potential

flow and boundary layer flow problems using higher-order collocation

methods. Hsu (1976) has studied the classical cubic spline with the

subdomain collocation method for laminar boundary layer flows past a

submerged body. Furthermore, Inoue, Kuromaru and Ytamaguchi [20]

made use of a cubic spline in solving a potential flow problem.

In the proposed method of solution the transformed boundary layer

region is first divided into n + 1 strips of unequal size which are

parallel to the fixed boundary n~ = 0. The unknown solution w(:, -,)

at a streamwise station r. is approximated by the classical cubic spline.

The choice of the approximation seems to be very well suited for the

laminar boundary layer flow region since the governing equations are of

second order in 9- and the cubic spline does satisfy continuity of the

dependent variable, its slope and curvature at the joint nodes. There-

fore, it is expected that highly accurate results will be obtained in
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that region. When the approximation is applied to the transitional and

turbulent flow region, the slope of the eddy viscosity which is not con-

tinuous at the matching point because of the closure model, may introduce

some difficulties and require special measures in approximations.

Let f(C, n) be the function to be approximated by a cubic spline

function in the interval 0 < n < H. Assume that the interval is divi-

ded into n + 1 elements with the nodal points

0 = o < nI <. . < n < nn+ 1 = H

Denote the function f(C,n) and its first and second derivatives with

respect to n evaluated at the nodal points i as

f(' i:f [)  f  : f ( )' 2 fj :f (4-3)
n(Ti i mL i  -7 n

ani =9 = T2f ( )= l

Moreover, for an ith element the local coordinate z and the element size

h are defined by

z n - ni- 1  , (4-4)

0 z 5 hi  = n i  - hi 1  , for i = I .... . n + 1

Use of the local coordinate instead of the global coordinate simplifies

much of the formulation and computation. Let gi( , z) be the cubic

polynomial approximating f( , n) in the ith element. Then the continu-

ity of curvature at nodes ni.l and n, indicates that

32 gi

: .- [(hi - z) f!'i (&) + z f' ( )] (4-5)
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Integrating equation (4-5) twice with respect to z and applying the

conditions g 0) = fi-l(") and gi(C, hi ) =. fi() one obtains the

cubic polynomial for the ith element

[(hi. - z)3 + hi2 (z - hi)] f"'l (c) + [z- h1 z] f''(0
gi z) 

6 hi

(4-6)

+ [(hi -z)f i l() + z fi ( ]

h .i

Next, evaluating the slope at the extreme nodes no and nn+l and satis-

fying the continuity of slope at joint nodes, that is,

gi( , Z) 3gi~l( , Z) I

: , L(4-7)3z z=h . z z=0

1

for i = 1, 2....... n, one obtains the following system of (n + 2)

linear algebraic equations:

h f 0 f1
hl f1 ,+ hl~ - fo fl _ f,

JUl UI f1 1 0o

h hh h 1 1 1~
Shfit hi fi+l +l ,, fi-l 1 f) f"
6 i-l 3 i 6 i+l hi hi hi

1 1 i+l i+l

(4-8)

hn+l hn+l f fn f n+l + f

6 n + n+l hn+ 1  hn+l n+l

These equations can be put into the matrix form

[B]{f"} [c]J{f} +{f'} , (4-9)

where both [B] and [c] are symmetric, tridiagonal, (n + 2) by (n + 2)
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constant matrices. The vectors {f'' and {f} have n + 2 elements but

{f'} has only two elements f0 and fn It is clear that the inverse

of [B] does exist and hence one has

If"] = [B] "I [c] {f} + [8]{f'}. (4-7)

Accordingly, one has

n+l
f!'() I aj.() - Wi,0 f( ) +  i,n+l +l (4-11)1 j=0 i, E in!f~

where the constants a,, are elements of [B]-l[c] and i. are elements

of the inverse of [B].

In accordance with equation (3-42) if one assumes that the slopes

at the extreme nodes no and nn+l are zero, one obtains

n+l

I( : ijfj( , i = 0, 1...... n, n + 1. (4-12)

This implies that the second derivative at each node depends linearly

upon all the nodal functions fj( ); however, f!'(4) is generally influ-
3 1

enced by the nodal functions fj( ) in the neighborhood of the ith node.

For example, when the element size distribution is the following:

H = 2.5 , n = 3 , hi = /0.2, 0.3, 0.5, 7.5/

Oij can be determined and written in a matrix form as

-101.76 115.99 -15.86 1.73 -0.11

53.51 -81.98 31.71 -3.46 0.22

[i,j] = -10.54 29.28 -28.47 10.38 -0.65 (4-13)

1.62 -4.50 8.07 -7.14 1.95

-0.81 2.25 -4.04 4.90 -2.31
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which clearly indicates the weight of f () on the curvature f!'( )..1 1
Substituting equation (4-12) into equation (4-6) gives

n+l
gi( , z) I a. (z) f() (4-14)

j=0 13 3

where aij (z) is a known polynomial of degree three in z and is given

by

[(hi z)3 + h2(z - hi)] c i  + [z3  h
6 hi

h i- .i (4-15)
+ h 1 j h- i j

Here 6 i'j is the Kronecker delta. Therefore, the classical spline

approximating the function f(E, q) is

n+l
s(, n) =i~l= . gi( '  z) , (4-16)

where 6. = I when qis l S n S ri, otherwise 6. = 0.
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CHAPTER V
METHOD OF SOLUTION

Natural variational principles do not exist for boundary layer

flow problems and hence formulation of the finite element method should

be based on the governing equations. This approach is categorized as

the weighted residual method. The weighted residual method is a mathe-

matical means of finding approximate solutions to differential equa-

tions. One of its most attractive features is that this method is

applicable to nonlinear and non-self-adjoint problems. For a given

differential equation and associated boundary and initial conditions,

the general approach of the weighted residual method is to assume a

trial solution whose functional dependence is chosen, but includes un-

determined functions. The latter are found by requiring that the trial

solution satisfy the differential equations in some specified approxi-

mate sense.

In the proposed numerical method for solution of equations (3-37)-

(3-41), the boundary layer flow problem, a subdomain collocation method,

one of the weighted residual methods, is employed to reduce the govern-

ing partial differential equations into a system of first order, non-

linear, ordinary differential equations. The reduced initial value

problem is then numerically integrated to provide the solution.

For the spline approximation of w( , n) at a given streamwise sta-

tion E, the interval 0 < < H is divided into n + 1 elements with nodes

at0 qO < 91 <........ < nn < nn+l H and element size hi -j ,i-l
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for i=l ........ n+l. If one denotes the unknown function w(r, nI), and

its first and second derivatives at the ith node as

W. 2,
w( , ni)  = WM() , Ini w' (5

1 5-z 1
Tln i  n=n i

and also lets wi (, z) be the cubic polynomial approximating w(r, n) in

the ith element, then the assumed solution for the weighted residual

is the sum of the cubics and can be written as

n+l
w(C, n) 6i wi (. ' z) , (5-2)

i =1

where

1, when ni_ 1 < n < i

6 i  =, z = n - -
0, otherwise

As a result of spline approximation, equations (4-5)-(4-12), the assumed

solution can be written as

n+l n+l
w(i, rl) = Z ( ii a. (z)) wj( ) , (5-3)

j=0 i=l

in which aij (z) is given by equation (4-14). The quantities inside the

parentheses are called shape functions, which are known polynomials of

degree three in z.

The substitution of the assumed solution, equation (5-3), into the

governing equation (3-37) and application of the weighted residual

method gives

H w H
Iyj(n) dn f y.(n) Rl(W) dn (5-4)
0 0J
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where yj(q) are the weighting functions and the nonlinear operator

R1(w) is given by the right hand side of equation (3-30). Because of

the boundary conditions given by equation (3-32), there are only n

values of w.( ) for j = 1, .... , n in equation (5-3) to be determined.

Thus one needs n equations for n unknowns; consequ, ' y, it requires a

choice of n weighting functions to be used in equation (5-4). The error

made by the spline approximation at each interior nodal point is mostly

propagated to the neighboring intervals (Hildebrand, [21]). This sug-

gests that the weighting functions yj(n) should be chosen so that the resi-

duals will be distributed to both sides of the nodal point in some sense.

For simplicity the weighting functions employed in this study are boxcar

functions of the form

= l, when nj q ' nj+ l  (55)

i , otherwise

This choice implies that the subdomain collocation method is employed

in the approximate procedure which forces the residual to be uniformly

distributed over the two neighboring elements for each interior nodal

point. Equation (5-4) incorporated with equations (5-2) and (5-5),

therefore, gives the following system of n equations

h. aw h.~ aw. ~ h. h
f dz + f dz =f Rl(Wi)dz + i+l Rl(wi+)dz, (5-6)
0 0 0 0

for i = 1, 2, ... , n. The substitution of the explicit expression for

the cubic polynomial wi( , z) in equation (4-14) then gives a system of

n first order nonlinear ordinary differential equations in wl(), w2(t),

...... w n(), which can be expressed in matrix form as
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[Q] w -Yl w)} (5-7)

or
dw{L}= [Q]-I {YI(;,w) 1 (5-8)

where [Q] is a nonsingular n by n constant matrix with its elements given

by

1 3 h3q.j = "-{[hi ( jL + )i] +h (c
,24 [ ij+l +j+ + i+l(ai+l,j+l + Oi+2,j+l )]

h (h. + h hi
+6 + 6+) + 5i (5-9)i-Ij 2 ij 2 i+l,j 2

The elements of the n dimensional vector {w} are wI(), w2 (),

wn(r), and those of {yl(C,w)} are the integrals of nonlinear functions

of the elements of {w} given by the right hand side of equation (3-30),

that is,

W (1 ve 3w 1 w -a -L" + 2 (1 w) d I n W (j

(5-)0)

With the given initial condition, equation (3-41), which is discretized

at the interior nodes, the system of n equations. (5-3). car be

integrated numerically to provide the solution.
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CHAPTER VI
COMPUTATIONAL METHODOLOGY

The computational work involved in the proposed method appears

very complicated and laborious. However, the computations can be sim-

plified and reduced to a minimum by developing the numerical algorithm

carefully.

For a given boundary layer flow problem, the constant matrices [B],

[C] and [Q] in equations (4-9) and (5-7) are determined after the flow

region has been discretized into n + 1 elements in the n direction. The

question of finding the inverse of the matrices [B] and [Q] is of pri-

mary importance. There are many methods whereby the inverse of a matrix

can be determined. in this study the Gauss-Jordan elimination method

has been used, since the difference in computer time between the Gauss-

Jordan elimination method and the Gauss elimination method is insigni-

ficant in finding the inverse of matrices such as [B] and [Q]. For tne

mathematical basis of the Gauss-Jordan elimination and a FORTRAN program

see Hornbeck [22]).

The main difference between the proposed method and the finite dif-

ference method is that integrations are required using the finite element

approach. The right hand side of equation (5-7) must be evaluated at

each integration step. Unfortunately, an explicit expression for ele-

ments of~rl(, w)} cannot be obtained due to the fact that the opera-

tor Rl(w) involves the square root of the dependent variable. Hence,

an approximation technique must be employed for evaluating the integrals
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on the right hand side of equation (5-6). Two different approximation

techniques had been investigated for the laminar boundary layer flow

problem (i.e. -ye- = 1) (Hsu, 1976). The first approximation utilizes a
V

Taylor series expansion. The manipulation involved in this approxima-

tion is rather tedious and cumbersome; hence, this approach is not

suitable for the complex turbulent boundary layer flows. An alternative

approach considered was to evaluate those integrals numerically using a

Gauss-Legendre quadrature formula,which is generally capable of supplying

comparable accuracy with fewer ordinates compared with numerical inte-

gration formulas such as the Simpson's rule and the trapezoidal rule.

This latter approach is employed in the present study.

The Gauss-Legendre quadrature formula is given by

l M

= ;$ M AM F(,(M)) (6-1)
m=1

where the set of weighting coefficients A() and roots (M, for a

Ir1 mI

given M are obtained in such a way that the quadrature formula is exact

whenever the integrand F( ) is a polynomial of degree less than or

equal to 2M - 1. For reference, see Krylov [23]). For actual evalua-

tions of the integrals given in equation (5-6), one notes that the sim-

ple transformation of the variable

h.
Z = -- (I + ) (6-2)

gives the relation

hi  hi  1 h. ii
1 F(z) dz F(,) d7 - 7 A (M) - (6-3)

0 2 -1 2 m1l m
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For turbulent boundary-layer flow problems the values ot M = 6 and

M = 4 have been tested. The results obtained using M = 6 and M = 4 are

almost the same. This implies that M = 4 can give acceptable accuracy.

When one comes to evaluate the functional values F(;m X) another

difficulty arises because F is not an explicit function of z, due to

the equation (3-46). Consequently, a simple tabulation and interpola-

tion technique must be employed in determining the value of Y2 for a

given q at each streamwise station r. The interpolation process is

based on the polynomial of an assigned degree constructed by points

which are close to the value for which interpolation is desired. This

interpolation is carried out by a general purpose function subprogram

ATKN (X, Y, N, k, XI), which is listed in appendix B.

The reduced initial value problem, equation (5-8), can be solved

by a numerical integration method. Hamming's 4th order predictor- or-

rector method (Ralston, [24]) and Gear's stiff method (Gear, [25])

are employed to solve equation (5-8) in this study.

The solution obtained by Hamming's 4th order predictor-corrector

method shows that the integration step size is quite small so that the

efficiency of the solution method is deteriorated. This motivates the

investigation on the degree of stiffness associated with the reduced

initial value problem. Because of the nonlinearity of equation (5-8),

one has to examine the results obtained using the Hamming method to

determine the degree of stiffness of the equations. The reduced initial

value problem is indeed very stiff. The typical step size required is

extremely small for the solution behavior obtained. Accordingly,

Gear's stiff method which has been shown to be very efficient for stiff
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equations (Hindmarsh, [26]) is utilized to solve the reduced initial

value problem.

The University of Florida Amdahl 470 V/6-II and IBM 3033N computers

have been used to perform the numerical experiments in double precision

computations. Cases I to IV have been performed by the Amdahl 470 V/6-

II. Cases V to XII have been performed by the IBM 3033N.
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CHAPTER VII

FINDINGS OF PRELIMINARY NUMERICAL EXPERIMENTS

To investigate the applicability as well as the accuracy and ef-

ficiency of the solution method for turbulent boundary-layer flows,

the turbulent boundary layer flow over a flat plate has beeri considered

for numerical experiments in this study. This flow problem is a severe

test for a numerical method, since the last term of the equation (3-30)

is zero and consequently, the only forcing function which is related to

the eddy viscosity for changing the solution profile in the streamwise

direction is implicitly dependent upon the unknown solution. For such

a parabolic problem, an accurate initial profile is very essential for

accurate results. Any error made in the computed effective eddy viscos-

ity may require a large number of integration steps to correct; moreover,

an inaccurate computation for the effective eddy viscosity distribution

across the boundary layer at a streamwise station can be detrimental to

the solution. Therefore, to numerically solve the governing equations

for turbulent flows over a flat plate with a two-layer eddy viscosity

model is a great challenge.

In the development of the Solution method a problem with a unit

Reynolds number of 1 x 10 6(U., = 160 ft/sec, v = 1.6 x 10- ft 2/sec,

L = 1 ft) has been chosen for the numerical test. The transitional

point from laminar to turbulent flows is specified at the local Reynolds

number Rex U = 5.45 x 104 which had been used by Rubin and Khosla (1977)
V

and corresponds to the transformed variable %r10.906. The

transitional intermittency factor for flow over a flat plate (W(7) =1)
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can be obtained from equation (3-48) under the assumption that C in eq-

uation (3-48) is equal to 10-6. The transitional intermittency factor

is given by

1Y = I - exp[- e - etr2(7-1)
1200(e Ctr) 1.34

For application of the method, a boundary condition at infinity must

be imposed at a finite but sufficiently large distance H from the fixed

boundary. The interval 0 : q H is then divided into a limited number

of elements, N, of different sizes, hi for i = 1,.., N, for spline

approximations. How to discretize the region considered for a finite

element method depends completely on how much is known about the problem.

In turbulent boundary layer flows it is known that very steep velocity

gradients occur near the wall and approximately zero velocity gradients

exist near the edge of the outer boundary layer. From the efficiency

view point of the method, a variable grid system is preferred. Thus,

small element sizes must be used in the vicinity of the wall in order to

obtain an accurate estimation of the wall shear stress, and relatively

large element sizes can be used near the edge of the boundary. Since

the nature of velocity profiles in turbulent boundary layers is not well

understood, the importance and difficulty in choosing the proper or op-

timal discretization of the flow region is greatly enhanced in this study.

Since the initial profile, in general,is not available in turbulent

regions, the integration must be started at a streamwise station in the

laminar region where the initial profile can be obtained. An approxi-

mate profile to the Blasius equation is used as the initial profile

in this study. This transformed approximate profile is
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Wo(n) : [2(f) 2 _ 2(a)3 + (2)412 (7-2)

For the first numerical experiment, the following finite element

model was selected based on experience from computation of laminar

boundary layer flows:

case I: H = 7.0, N = 16, hi = /0.1, 0.2, 0.3, 0.4, 12*0.5/.

The value of H = 7.0 is believed to be large enough for the range of the

local Reynolds number to be covered. The integration of the reduced

initial value problem, equation (5-8), is started at a streamwise

station, Re = 4.8 x 10, in the laminar flow region with the assumedx

profile given by equation (7-2) as the initial profile. The average

integration step required for an average accuracy of 10-6 in the modi-

fied Hamming's 4th order predictor-corrector method is = 4 x -

The computed local skin-friction coefficient, Cfis shown in Figure 1

as a function of Rex.The CPU (Central Processing Unit) time spent on

this case is 570 seconds. The measured skin-friction coefficients of

Dhawan [27], Smith and Walker [28]. and Winter and Gaudet [29] are

also given in Figure 1 for comparison. It is clear that the complted

Cf is in excellent agreement with the experimental daLa up to

Rex = 7.0 x 105. This implies that the solution method is applicable

to complex turbulent flows; however, the accuracy of the result starts

to deteriorate further downstream. A close examination of the computed

results has shown that the accuracy of the computed effective eddy

viscosity distribution across the boundary layer starts to degenerate

by exhibiting oscillatory characteristics in the inner region somewhere
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after Rex 3. 0 x 10 5  but a short distance downstream from Rex

3.0 x 10 5 the wiggle occurring in the effective eddy viscosity has

negligible effect upon the curvature of the solution profile at the

boundary, w6'(C), which is linearly proportional to Cf in this case.

Figure 2 presents the distribution of the effective eddy viscosity,
e

V , computed at a number of streamwise stations. The deterioration of

the local skin-friction coefficient may be caused by the erroneous

distribution of the effective eddy viscosity which may be resulting

from the distorted solution profiles obtained in the problem. It is

hard to recognize if this is so at this moment.

To gain further insight onto the accuracy and efficiency of the

solution technique, the following refined finite element model was

considered:

case II: H = 7.0, N = 16, h i = /3*0.1, 2*0.2, 3*0.3, 0.4, 4*0.5, 3*1.0/.

The numerical integration of the reduced initial value problem is started

at Rex 6 x 10 5 with the initial profile obtained by interpolating the

results of case I. The integration step of Hamming's method with the

same accuracy as case I is about A = 2 x 10- which is only half of the

step size allowed in case I. This reflects the increase in the stiff-

ness of the reduced system of ordinary differential equations due to

small element sizes used near the wall; consequently, the efficiency

of the method is reduced. The computation for this case was stopped at

Rex = 106. The computed C f is also shown in Figure l and is quite

accurate. The computed effective eddy viscosity distributions also

exhibit some oscillatory behavior in the inner region; however, the

amplitude of the oscillation is smaller than that in case I at the same
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local Reynolds number. This means that the small element sizes used

near the wall may have some influence on the computed viscosity dis-

tribution. The CPU time used in this case is 200 seconds.

The numerical results obtained from cases I and II seem to indicate

that the given value of H may be too large for the flow region consid-

ered. In order to investigate the importance of choosing a proper value

of H we have also considered the following model:

case III: H = 5.0, N =10, hi = /2*0.1, 0.2, 0.3, 2*0.4, 0.5, 3*1.0/.

The value of H =5.0 corresponds approximately to the boundary layer

thickness at Rex = 2 x 106. Again the initial value problem is started

at Rex = 6 x 10 5 using Hamming's method with the initial profile obtained

from the result of case I. The computation for this case is terminated

at Rex = 2 x 10 6 and the CPU time required is about 200 seconds. The

computed C f shown in Figure 1 is apparently very acceptable. Figure 3

presents the distribution of ve computed at a number of local Reynolds

numbers. Again the oscillatory behavior starts to show up after

Rex 1.0 x 106. The efficiency of the method can be improved by a small

value of H; consequently, a scheme which starts with small H at relatively

small boundary layer thickness and increases automatically with increas-

ing boundary layer thickness would be a most effective way for computing

the turbulent flows.

The comparison between the computed local skin-friction coefficient

for case I and case III shown in Figure 1 seems to imply that the

deterioration of the local skin-friction coefficient in case I might be

due to the accumulation of errors, which resulted from the extremely

large number of integration steps used. The following finite element

model, which is the same as case III, is adopted to find out
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whether the accumulation error is pronounced or not:

case IV: H = 5.0, N =10, h.i = /2*0.1, 0.2, 0.3, 2*0.4, 0.5, 3*1.0/.

The computation for this case is carried out in the region of 4.8 x 104

.:. Re x< 2 x 10 6. Equation (7-2) is used as the initial profile. The

computed Cf is shown in Figure 4. The local skin-friction coefficient

obtained in case III is also shown in Figure 4 for comparison. The

difference between cases IV and III in the local skin-friction coeffi-

cient within the range of 6 x 10 5 < Re x 2 x 10 6is insignificant.

This implies that the accumulation error is not pronounced. Accordingly,

the deterioration of the local skin-friction coefficient and the wiggle

occurring in the computed effective eddy viscosity may result from

other sources. The CPU time used in this case is about 400 seconds.

The numerical results obtained from case IV show that the solution

method is indeed applicable to complex turbulent flows and the computed

local skin-friction coefficient is in excellent agreement with the

experimental data up to a local Reynolds number of Rex 2 x 10 6. How-

ever, the solution method is not efficient because of the small inte-

gration step required. This motivated the investigation on integration

methods to overcome the numerical instability. The numerical results

obtained by Hamming's method indicated that the reduced equations are

stiff due to the fact that the average integration step size required is

much smaller than that needed by the solution behavior. Gear's method

for stiff equations is chosen to efficiently solve the reduced initial

value problem. The DIFSUB subroutine subprogram (Gear, [30]) of

Gear's method has been modified and incorporated into the main pro-

gram to solve the reduced initial problem. The accuracy of the method is
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assigned as 10- . Moreover, since the boundary layer thickness of

turbulent flows increases with C and its growth rate is hard to foresee,

it is generally impractical to select a large constant value of H for

the flow region considered. Therefore, the program is also implemented

to automatically adjust the boundary layer thickness, H, based on an

empirical formula. In this study the boundary layer thickness is

assumed to be 8.5 times the displacement boundary layer thickness. The

number of elements is increased in the program to account for the

growth of the boundary layer. The maximum allowable integration step is

limited to 10- 2 in DIESUB subroutine.

The following finite element model was used to start t~ie intital

value problem for demonstrating the efficiency of Gear's method:

case V: H =4.0, N =8, h.i = /2*0.1, 0.3, 3*0.5, 2*0.1/.

The computation is started right after the transitional point at

Rex = 6.0 x 10 4 with the initial condition given by equation (7-2) and

is carried out up to Rex = 2.24 x 10 6. The final boundary layer thick-

ness and the number of elements are H = 6 and N = 10, respectively.

The CPU time spent on this case is only 22 seconds, which is approximate-

ly 20 times less than that required for case IV. It is clear that the

efficiency of the solution method has been drastically improved by using

Gear's method. Moreover, the computed results showed that the deterior-

ation of the effective eddy viscosity starts somewhere after Rex 1.1 x 10 6

and the wiggle in the effective eddy viscosity occurs in the neighborhood

of n = 1.0 in this case; on the contrary, the deterioration and wiggle

of the effective eddy viscosity occurs after Rex 1.5 x 10 6and -I= 0.7,

respectively, in case IV. When comparing the element size distribution
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in case IV and case V, one may tell that the deterioration of the

effective eddy viscosity takes place at different local Reynolds number

and the wiggle in the computed effective eddy viscosity occurring at

different locations in the n direction may be due to the erroneous

solution profiles which result from truncation errors. This fact seems

to imply that the effective eddy viscosity can be very sensitive to the

solution profiles.

Since the stiffness problem induced by using the small element

sizes near the wall has been overcome by using Gear's method for stiff

equations, how the effective eddy viscosity is influenced by very small

elements near the wall can be investigated numerically. The finite ele-

ment model case VI was arranged for this purpose:

case VI: H = 4.0, N =9, h.i = /2*0.05, 0.1, 0.3, 3*0.5, 2*1.0/.

4

The computation covers the region of 6.0 X 10~ _< Re _ 2.57 x 1

Deterioration of the effective eddy viscosity takes place further down-

stream after Rex 2.1 x 10 6, and the wiggle which occurs in the com-

puted effective eddy viscosity is still in the neighborhood of q 1.0.

These results show that the very small element sizes used near the wall

can defer the occurrence of the deterioration of the effective eddy

viscosity.

The next problem one needs to investigate is whether or not the

element sizes not in the immediate vicinity of the wall have any

influence on the calculation of the effective eddy viscosity. The

following finite element model ;as designed for this purpose:
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case VII: H =5.0, N =11, h. /2*0.05, 0.1, 0.2, 2*0.3, 2*0.5, 3*1.0/.

The element sizes are slightly changed within the range of n = 0.0 to

n = 1.0 compared with case VI. The computation for the reduced initial

value problem is started at Rex 2.0 x 10 6 and proceeds to Rex = 1.47

x 10 . The deterioration of the effective eddy viscosity still occurs;

however, the wiggle in the effective eddy viscosity is shifted farther

from the wall in the neighborhood of n = 1.50 instead of n = 1.0 in

case VI.

Since in cases VI and VII we found that small elements near the wall

can defer the occurrence of the deterioration of the effective eddy

viscosity, and small elements used not in the immediate vicinity of the

wall can shift the location of the wiggle farther away from the wall,

it is believed that a slight variation of the solution characteristics

can very significantly affect an accurate calculation of the effective

eddy viscosity. In order to gain further insight the variation of the

solution w(c, qi), its first derivative at n, and second derivative at

Tobtained from case VI are shown as functions of Re. in Figures 5 and

6. Upon close examination of the results in these figures, it is evi-

dent that the first element size smaller than 0.05 should be used if the

computation proceeds to local Reynolds number greater than 106

Most of the finite difference methods available for turbulent flows

have been tested only for the region in which the local Reynolds number

is less than 2 x16. However, in this study we are especially interes-

ted in applying the finite element-differential method to sufficiently

high local Reynolds number in order to find some information on the flow

characteri stics.
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The Gauss-Legendre quadrature formula worked very well in the
V

laminar region (i.e. e = 1) and its applicability in the turbulent

region is expected to be good as well. However, due to the two-layer

eddy viscosity model, in which the slope of the eddy viscosity is

discontinuous at the matching point which separates the inner and outer

regions, the Gauss-Legendre quadrature may not be suitable for direct

evaluation of the integral over the element which contains the matching

point. When the local Reynolds number is not high, the term involving

the discontinuous slope of the effective eddy viscosity is much smaller

than other terms on the right hand side in equation (3-30). The errors

involving the integral in using the Gauss-Legendre quadrature on the

discontinuous function may not be significant. However, when the local

Reynolds number reaches a certain number, the magnitude of the dis-

continuous function is pronounced. The errors introduced by this

inaccurate approximation of the integral involving the discontinuous

function result in a very small integration step in which the assigned

computer time is used up. The termination of the computation in case VI

resulted from this improper integration. Hence, a special measure is

required for the evaluation of the integral involving a discontinuous

function. For instance, the integral can be divided into two parts and

then Simpson's rule can be used for the evaluation.

In the process of computation the matching point has to be deter-

mined at each streamwise station. The following scheme was used to find

the matching point. First each element is further divided into 10 equal

subintervals. The effective eddy viscosity is computed from the wall

outward at each joint node of the subintervals and compared with that

in the outer region. If at a certain joint node the effective eddy vis-

cosity is larger than that in the outer region, the effective eddy
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viscosity is then computed at a location which is less than the previous

location by half the previous increment. If the newly computed effective

eddy viscosity is less than that in the outer region, the effective

eddy viscosity is again computed at a new location which is larger than

the previous location by half the increment. This procedure is repeated

until enough points in the inner region are generated. Finally, the

matching point is obtained by extrapolation using a polynomial of degree

two. After the matching point is determined, Simpson's rule can be ap-

plied to evaluate the integral over the special element in which the

integrard is a discontinuous function.

The next numerical experimentwas to investigate the accuracy of

the algorithm for determining the matching point. The finite element

model employed to start the initial value problem, equation (5-8) and

equation (7-2), is

case VIII: H = 3.5, N =11, h.i = /2*0.05, 0.1, 0.2, 2*0.3, 5*0.5/.

4The initial condition is applied at Rex= 5.5 x 10 and the integration

routine employed is the newly acquired subroutine package LSODE which is

the latest version of the Gear method developed at Lawrence Livermnore

Laboratory. The computed matching point shows irrational behavior after

Rex 1.52 x16. This results in a small integration step and the comn-

putation hardly proceeds downstream. The typical jumping characteris-

tics of the computed matching points are given in Figure 7. Since the

matching point represents the growth of the inner region, it should be

monotonically increasing as the computation proceeds downstream. The

incorrectly determined matching point may be due to improper extrapola-

tion or other causes.
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If the incorrectly determined matching point is due to improper

extrapolation, the difficulty can be overcome by modifying the original

algorithm for finding the matching point. The modified algorithm is

that one of the extrapolation points would be close enough to the

effective eddy viscosity in the outer region by the difference of ).5

when the effective eddy viscosity in the outer region is greater than

50. If the computed eddy viscosity is less than 50 the original scheme

is used.

Another numerical experiment was conducted and the result obtained

indicated that the alternate jumping characteristics of the determined

matching points is not due to inaccurate extrapolation but due to the

wiggle in the computed effective eddy viscosity. The wiggle can result

in difficulty in finding the matching point at high local Reynolds

number, which is important to the solution method.
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CHAPTER VIII
RESULTS AND DISCUSSION

The preliminary numerical experiments show that the choice of the

first element size h1 and other element sizes in the inner region can

be decisive in the computation of turbulent flows. The improper discre-

tization of the flow region can result in inaccurate solution profiles

which deteriorate the accuracy of the effective eddy viscosity. The

wiggle occurring in the effective eddy viscosity distribution across the

boundary layer can result in difficulties in finding the matching point,

which is very important to the solution method. Moreover, the properly

chosen value of H can be crucial to the accuracy of the solution as

well as to the efficiency of the method. The stiffness problem of

the reduced equations has been overcome by using Gear's method.

According to the findings in case VI, the small first element size

less than 0.05 seems to be needed for computations which proceed to

high local Reynolds number. The following two finite element models

are designed to find how the solution is affected by the small first

element size as well as the element sizes in the inner region at high

Reynolds numbers:

case IX: H = 6.5, N = 18, h. = /2*0.02, 2*0.03, 2*0.05, 0.2, 7*0.3,

2*0.5, 1.0, 2.0/

case X: H = 6.5, N = 16, hi  /2*0.02, 2*0.03, 2*0.05, 0.2, 2*0.3,

5*0.5, 1.0, 2.0/.
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The first element size used in both cases is 0.02. The difference

between these two models is only in the element sizes near the matching

point but still in the inner region. The integration of the initial

value problem for case IX and case X is started at Re x = 2.2 x 10 6 and

1.1 x 10 6, respectively. The computed local skin-friction coefficients

in Figure 8 compare satisfactorily with the measured data. The computed

effective eddy viscosity is therefore found to be correct. No wiggle

occurs in the effective eddy viscosity distribution in either case in

the course of integration up to Rex 1.0 x 10 This indicates that

the wiggle which deteriorates the effective eddy viscosity distribution

can be due to the large first element size. The relatively large element

sizes away from the boundary may not be critical to the solution.

For the high local Reynolds number, the solution profiles change

very rapidly in the vicinity of the wall. The small first element size

is absolutely necessary to take care the variation of the solution pro-

file there. So far we know that the first element size 0.02 gives good

results up to Rex = 1.0 x 10 7; we would like to know whether this first

element size 0.02 is still valid further downstream. The finite element

model for this purpose was given by

case XI: H = 4.0, N = 15, h.i = /2*0.02, 2*0.03, 2*0.05, 0.2, 2*0.3,

6*0.5/.

The initial condition, equation (7-2), is employed to start the initial

value problem at Rex = 5.47 x 10 . The growth of the boundary layer

thickness is automatically adjusted by the empirical formula. Whenever

the boundary layer thickness (H) changes, the increment is .,H =1. The

number of elements is increased by two; each has the element size 0.5.
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The computed local skin-friction coefficient shown in Figure 9 is in

excellent agreement with the experimental data up to Rex = 5.0 x 10.

The deterioration of the effective eddy viscosity again takes place

somewhere after Rex = 2.0 x 10 . The computation is terminated at

Rex 8.6 x 10 7 with H = 12 and N = 31. The CPU time spent on this case

is 250 seconds. The matching point as a function of Rex , given in

Figure 10, shows the growth of the inner layer. The matching point

after 3 x 107starts to decrease as the local Reynolds number increases.

These results reflect that the solution profile can be affected by the

wiggle in the effective eddy viscosity after Rex = 3 x 10 . The computed

displacement boundary layer thickness grows very fast as the local Rey-

nolds number increases. Consequently, a special measure in choosing the

value of H is needed for sufficiently high local Reynolds number. The

curvature w65' and the first derivative w6 are also given in Figures 12

and 13, respectively. Both w6' and wi deteriorate near the trailing

edge of the curves. This suggests that a very small first element size,

less than 0.02, must be used further downstream.

Since the accuracy of the solution profile is mostly determined

by the first element size, the first element size obtained by cutting

h. 0.02 of case XI in half is used in the following finite element

model to investigate how the accuracy of the solution improved:

case XII: H =.4.0, N = 16, h. 1 2*0.01, 0.02, 2*0.03, 2*0.05, 0.2,

2*0.3, 6*0.5/.

The initial value problem is solved in the region 8.1 x 10~ 3< Rex
.: 7.8 x 10 7. The computed skin-friction coefficient in Figure 14 is
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indeed improved and is good up to 7.8 x 10. It is clear that the small

first element size is certainly needed for accurate prediction of the

local skin-friction coefficient. The computed effective eddy viscosity

without using transverse intermittency at ;everal local Reynolds

numbers are given in Figures 15, 16, 17 and 18, respectively. The dotted

lines in Figures 15, 16, 17 and 18 represent the effective eddy viscosity

computed by the inner region formulation above the matching point. The

solid lines represent the effective eddy viscosity distribution across

the boundary layer. The computed effective viscosity in Figure 15, 16

and 17 are good but not so in Figure 18. The wiggle occurring in the

inner region may not deteriorate the solution until the wiggle is of

sufficient magnitude to cause the sign of the first derivative of the

effective eddy viscosity with respect to n to alternate. In order to

eliminate the wiggle a first element size smaller than 0.01 seems to

be required further downstream. The final boundary layer thickness is

H = 12 with 24 elements. The increment of the boundary layer thickness

is AH = 2. The corresponding increment of the elements is 2; each has

element size 1.0. The total CPU time for this case is 350 seconds.

Because the computation was carried out in the transformed plane,

one would like to know what the corresponding physical plane looks like.

The relationship between n and y, is of major interest. The functional

relation obtained from case XI is given in Figure 19. The transformation

used to stretch the coordinate y, seems to be suitable for the boundary

layer flow problems in this study. Consequently, the number of nodal

points required for the solution method can be reduced without loss of

accuracy. This leads to computational efficiency.
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CHAPTER IX
CONCLUDING REMARKS

In this study the applicability as well as the accuracy and

efficiency of a finite element-differential method has been investigated

in detail for steady, two dimensional, incompressible turbulent

boundary -layer flow problems. The two-layer eddy viscosity closure

model was utilized to simulate the Reynolds stress and provide a reason-
able modeling of turbulent flows. The resulting system of partial

differential equations has been transformed into the proper form for

application of the finite element-differential method.

In the solution method, the transformed partial differential

equation is first reduced into a system of first order nonlinear

ordinary differential equations by a subdomain collocation method, in

which the unknown function at a streamwise station is represented by

a classical spline function. The reduced initial value problemwas then

integrated numerically by the modified Hamming's 4th order predictor-

corrector method as well as by the Gear method for stiff equations.

A number of numerical experiments have been conducted on the

boundary layer problem of flow over a flat plate which includes laminar,

transitional, and turbulent flow regions. The numerical results show

that the solution method can provide highly accurate results for the

complete boundary layer flow field. In addition, the application of

this method is simple and straightforward. For example, in Figure 14
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the computed local skin-friction coefficient is in excellent agreement

with the experimental data for the local Reynolds number up to 7.8 x 10~

The efficiency of numerical methods for boundary layer r.oblems, in

general, depends on how many nodal points are needed in the direction

normal to the flow direction. Due to the better approximation of the

solution profiles by the spline function and the transformatijti; u.sed to

stretch the y coordinate, the number of nodal pointLs required for the

accurate solution in the present method has been significantly reduced as

compared to previous methods. For example, for local Reynolds numbers

less than 2 x 10 6, the present method needs only 8 nodal points to pro-

vide highly accurate results, while the higher order collocation method

(Rubin and Khosla, 1977) and Keller's box scheme (Keller and Cebeci,

1972) may require 20 and 30 nodal points, respectively. Therefore the

efficiency of the method of solution can be comparable to finite dif-

ference methods.

This study shows that when the local Reynolds number is sufficiently

high, the solution profiles change too much near the wall. Consequently,

due to this rapid changing of flow characteristics the choice of first

element size is crucial to the accuracy of the solution. The valuable

information about the variations of the first derivative Wj at rl9, the

second derivative w6, at no, and the displacement boundary layer thick-

ness as a function of the local Reynolds number has been obtained. This

information can give us a guide to properly choose the first element

size. The results of numerical experiments show that a first element

size of h I = 0.1 is small enough for the range of w6' less than 1.33;

however, a much smaller value of h 1 = 0.05 is required for w6' between

1.33 and 9. For values of w6' greater than 9, it has been found
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necessary to further cut down the first element size. For instance the

values of hI= 0.01 and h 1 =0.05 will be needed, respectively, for

24 : w65' 32 (3.0 x 10~ 7 Re x : 7. 0 x 10 7) and 32 S~ w6' s 62 (7.0 x

10 7 < Re~ 5.0 x 10 8). For w~'greater than 62, it is expected that

the first element size which is less than 0.005 should be used.

The results obtained in this study show that the finite element-

differential method can be efficient and provide highly accurate results

for the turbulent flow problems. Moreover, the computer program can be

implemented to automatically select the value of the first element size

based on the computed value of w'and wj. It is expected that there

will be little difficulty in extending the method of solution to flow

past more complex geometries with the two-layer eddy viscosity model

or with other transport-equation closure models.
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APPENDIX A

EDDY VISCOSITY MODEL

Over the years, the eddy-viscosity model has been one of the most

popular and extensively used models. Boussinesq [31] was the first

to attack the problem of finding a model for the Reynolds stress -pu'v'

by introducing the concept of eddy viscosity. He assumed that turbulent

stresses act like viscous stresses, which implies that turbulent stresses

are proportional to the mean velocity gradient. The coefficient of

proportionality was called "eddy viscosity" and was defined by

-pu'v' (A-l)

When the model is applied to boundary layer flow problems, the boundary

layer is regarded as a composite layer consisting of inner and outer

regions, and the distributions of kinematic eddy viscosity are described

by a separate empirical expression in each region.

The determination of eddy viscosity in the inner region depends on

the Prandtl's mixing length theory. The distribution of the eddy

viscosity in this region is given by (e.g. Schlichting, 1979)

(V2i e 211uay  (A-2)

where Z is the mixing length and is proportional to y, that is,

S:ky , (A-3)
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in which k is the so-called universal constant and its numerical value

is to be determined from the experiment. For flows at high Reynolds

number, k has a value of 0.4. However, in the viscous sublayer, which

is very close to the wall, the mixing length theory is not valid. There

have been numerous attempts to extend equation (A-3) to include the

viscous sublayer by multiplying the mixing length by some functions.

Van Driest [32] deduced from an analysis based upon experimental data

and the second problem of Stokes [33] that the correct form for the

mixing length in the inner layer including the viscous sublayer is

= ky [I - exp ( - Y)] , (A-4)

A

where the exponential term is due to the damping effect of the wall on

the turbulent fluctuations and approaches zero at the outer edge of the

viscous sublayer so that the law of the wall as expressed in equation

(A-3) is valid.

The damping constant A in equation (A-4) is given by

A = A+ V/u , (A-5)

where A+ denotes an empirical constant equal to 26 for flat-plate flow

(Van Driest, 1956) and u., the friction velocity, was defined by

T

For incompressible flow with pressure gradient A+ is expected to vary

somewhat with pressure gradient and was given by (Reynolds and Cebeci,

[34]

A +  26(1 - v )2 (A-7)

dx
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Equations (A-4), (A-5) and (A-7) incorporated with equation (A-2) give

the formulation of the kinematic eddy viscosity distribution in the in-

ner region.

The formulation of the eddy viscosity in the outer region is based

upon the Clauser [35] model. The eddy viscosity in the outer region

is scaled by the displacement boundary layer thickness 5* and the

external velocity U(x). Therefore,

(Vt) = k2U(x)6* (A-8)
t0 2

The value of k2 in equation (A-8) must be deduced from experiment and

has a value of 0.0168 (Matsui, [36]). However, Mellor and Gibson f37]

used 0.016 in their computation rather than 0.0168.

To improve the calculation of the shear-stress distribution across

the boundary layer, equation (A-8) needs to be modified by a transverse

intermittency factor y; that is,

(Vt) 0  k2 U(x)6*y (A-9)
t0 2

in which y was obtained by curve fit of measured data and given by

(Reynolds and Cebeci, 1978)

y = [I + 5.5 (Z) 6]-I (A-10)

where 6 is the boundary layer thickness.

Equations (A-2) and (A-9) may be multiplied by a transitional inter-

mittency factor y, which accounts for the transitional region between

the laminar and turbulent flow regions. According to Chen and Thyson

[38], the transitional intermittency factor yt derived from

74



experimental data for incompressible flow is

Sexpl- U 3 (x) R -1.34 (x - x ) x ds (A-11)
1200v 2  xtr tr t , A-I

U(x)Xtr
where x tr is the location of the start of transition and R =

According to the eddy viscosity model, the two separate expressions

for the distribution of kinematic eddy viscosity, including transverse

and transitional intermittency factors become

( jt) ky [1 - exp (-Y) 2 T3 (A-12)
1

(Vt) = k2U(x)6*yyt (A-13)
0

Equations (A-12) and (A-13) can be used to describe the distribution of

the kinematic eddy viscosity for boundary layer flow with and without

a pressure gradient. The location of the matching point separating t'-e

inner and outer regions can be determined with the condition

(Vt) = (Vt) (A-14)
i 0

The eddy viscosity model has been used with considerable success to

compute a wide range of turbulent boundary layer flows. This model

does not, however, allow for the transport of turbulent properties

which do not appear parametrically in the equations of mean motion and

its applicability is limited to near-equilibrium flows, which encompass

most engineering problems.
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