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SYMBOLS

E elastic modulus of ice
H water depth
I moment of inertia (=d3 /12 for a beam of unit width)
L length of ice floe
M x  bending moment at location x
M0  end conditioning moment

P0  end conditioning force
c celerity of a surge wave
C1, C2, C3, C4  constants
d thickness of ice cover
9 acceleration due to gravity
Ish height of surge wave
t~hcrit change in water level required to create shore cracks
k modulus of the foundation (= pg - 104 N/m 2 for water)

Qlength of surge wave
Qcr length of surge wave that creates cracking of the ice cover
q distributed load = AhTk
s distance from the end of the surge wave to the ice cover edge

x, x, x length coordinates (defined in Fig. 4)
deflection of the ice
characteristic length (X = k14EII1)

of flexural strength of ice

P density of water
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BREAKUP OF SOLID ICE COVERS DUE TO
RAPID WATER LEVEL VARIATIONS

Lennart Billfalk

INTRODUCTION

Purpose of the study
It is well known that rapid ice cover formation often reduces ice problems encountered at

hydroelectric power plants. It is therefore common practice at many power stations to reduce
the discharge and keep it as constant as possible during the beginning of freeze-up in order to
facilitate the formation of a stable ice cover6 . From experience, the operational staff usually gets
some feeling for when and how flow regulation can start again without breaking the solid ice cover
once it has formed. This problem is quite site-dependent, and very little theoretical or experimental
work, on a more fundamental basis, has been done on the stability of solid ice covers1 , 17.

One way to get direct information about what flow and water level variations an ice cover can
withstand, on a specific river stretch, is to conduct a field test. Such tests have been undertaken
by some power companies1 0,11 . However, when analyzing observations from such field tests one
finds it difficult to draw general conclusions regardirg the mechanisms involved in the breakup of
solid ice covers.

One "driving force" contributing to the breakup of solid ice covers is certainly the frictional
forces on the ice, induced by increased flow velocities. Rapid discharge variations also cause
surge waves that deform the ice cover. The purpose of the present study is to analyze under what
circumstances rapid water level fluctuations can cause breakup (fracturing) of a solid river ice
cover.

Stating the problem
Donchenko studied the conditions for ice jam formation in the tailwaters of hydroelectric

power stations. He claimed that the dynamic destruction of the edge of the ice cover starts with
the formation of cracks along the shores. After shore cracks have formed, debacles and hummocks
form, and finally separation of the edge takes place9 .

The formation of shore cracks due to water level variations has also been studied by Billfalk,
using the theory for beams on an elastic foundations . The changes in water level (LAhcrt) required
to create cracks along the river shores in an ice cover of thickness d, as found in that study, are

Acrit = 0.0058 of (dlE)% (1)

assuming that the ice cover has a fixed end (frozen) along the shore. Assuming that the ice cover
has a hinged end at the shore, cracks will occur at a distance f1/4, out from the shoreline (1 /A is
a characteristic length defined later) if the variation of the water level exceeds

Ahcrit = 0.018 of (d/E) (2)
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Figure 1. Modification of the characteristics of a sinusoidal
wave passing under the edge of an ice cover (water depth 10
i). From Carter et al. 8.

where of and E are the flexural strength and the elastic modulus of the ice, respectively. These
expressions were derived using elastic theory, and they are not valid if the water level variation is

slow. The elastic assumption is probably adequate if the critical water level fluctuation takes place

within a minute6 .
Let us now consider a uniform prismatic channel upstream or downstream of a hydroelectric

power station. An ice cover is assumed to exist on the channel and may extend to the powerhouse,
or there may be open water for some distance away from the station.

Consider further a situation where the discharge is rapidly increased or decreased at the power
station. For example, a linear increase of the flow with time will cause a nearly triangular-shaped
negative wave to move upstream and a nearly triangular positive wave to move downstream from

the station. At a decrease of the discharge, a positive wave travels away in the upstream direction
and a negative wave in the downstream direction. The celerity c of such waves is approximately

2
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c = (gH)y (3)

where g = acceleration of gravity and H = water depth.
If there is an ice cover on the water channel it will be deformed when the wave front passes.

If the stresses in the ice sheet then exceed the strength of the ice, it will break.
Due to interaction between the wave and the ice cover the characteristics of the open water

wave will be modified when it reaches the ice cover. Carter et al.8 used a linearized wave theory
to analyze the modification of the characteristics of a sinusoidal wave (wind wave) passing under
the edge of an ice cover. The wave motion was described in terms of a velocity potential, both
in the case of open water and of ice-covered water (the water depth strictly needs to be much
larger than the ice thickness). By coupling the Bernoulli equation, which governs the wave motion,
with the equation of motion for the ice plate under elastic bending, Carter et al. were able to show
how the celerity of the wave on ice-covered water depends on the ice thickness and the wave
period 8 . Their results regarding the celerity for a water depth of 10 m are shown in Figure la.
As seen in this figure the phase velocity for short wave periods on ice-covered water is greatly in-
creased, especially when the ice is thick. For longer periods the ice does not significantly modify
the wave velocity as compared to open water conditions. Carter et al. also argued that the edge
of the ice responds essentially at a frequency corresponding to the period of the incident wave,
and concluded that the wave period therefore remains unchanged while the wave passes from the
open water to the ice-covered water. In order to satisfy the condition that the wave length should
equal the celerity of the wave times the wave period, it was found that the wave length must be
modified as required by the phase velocity relation for ice-covered water. As can be seen from
Figure Ia, this means that the lengths of short-period waves will increase when they enter the ice-
covered water. The comparison of wave length for ice-covered water at different ice thicknesses
is shown in Figure lb for a water depth of 10 m.

Using energy considerations for the combined ice/water system, Carter et al. also derived a
relation between the amplitudes of the waves in open and ice-covered water. Their results on this
point for a water depth of 10 m are shown in Figure 1 c. As can be seen, the damping of a wave
passing under an ice cover is quite dependent on ice thickness and the wave period. However, for
thin ice covers (0.25-0.50 m) there is negligible damping at the edge for wave periods larger than
about 10 seconds.

What are the minimum wave lengths that might be generated by discharge variations at a hydro-
electric power plant? Let us as an example assume that a rapid shutdown might take place in 5
to 10 seconds, and that the water depth in the channel is 5 m. From eq l it is seen that this would
create a surge wave 35 to 70 m long. For a rough comparison with Carter's theory the surge wave
might be considered as half a period (wave length) of a sinusoidal wave. The minimum "equiva-
lent" wave period that should be considered when comparing waves generated by discharge changes

in power stations with wind waves would, under these assumptions, be 10 to 20 seconds. For such
wave periods the effect on the characteristics of a surge wave passing under an ice cover could prob-
ably be ignored in a first approximation, especially if the ice is thin.

It should be noticed that the characteristics of surge waves on rivers are affected by friction,
and that the steepness and the height of the wave change along the channel (see, for example,
Henderson1 2). Furthermore, very rapid discharge changes might create surges having a breaking
front 1 2, 18.

FRACTURING OF THE ICE COVER DUE TO THE PASSAGE OF SURGE WAVES

A Basic assumptions
Consider the situation in Figure 2, where a triangular-shaped, positive or negative surge wave

is reaching the edge of an ice cover. The stresses induced in the ice cover when the wave front

3
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Figure 2 Negative and positive surge waves approaching the edge of an ice
cover.

passes the edge will be estimated under the following simplifications and assumptions:
1. The deformation of the ice sheet due to the passage of a wave of the considered wave length

takes place within 10 to 20 seconds. Even if some viscous deformation occurs during this
time, brittle fracture of the ice will most probably occur 6 . Elastic deformation of the ice
sheet is therefore assumed to give adequate results.

2. The channel is wide, or open cracks exist in the ice cover along the banks. The interaction
with the shore is therefore ignored, and the problem is assumed to be independent of the

channel width.
For the given simplifications the problem will be analyzed by applying the theory for beams on
an elastic foundation to a semiinfinite strip of ice of unit width oriented along the channel. Only
buoyancy forces will be considered, which means that drag forces and inertia forces acting on the
ice when the wave passes are igrored.

In the theory for beams on an elastic foundation the reaction forces from the elastic medium
(water in this case) are assumed to be proportional to the deflection of the beam 1 4 . The propor-
tionality constant is called the modulus of the foundation and will be indicated by k. For water
k=p'g(, 104 N/m 2 ), where p is the density of water and g is the acceleration due to gravity. Let

- us now assume that the freeboard of the ice sheet, when it is floating on water, is 0.ld, where d
is the thickness of the ice. That means that 0.9d of the ice floats below the water surface. De-
pending on the wave height and the type of wave (positive or negative), one could distinguish
different "loading" cases. The buoyancy forces induced by the wave are applied as a distributed
load on the ice strip. The distributed load per unit width is indicated by q. As long as a negative
wave is lower than 0.9d the distributed downward load on the "beam" is proportional to the
"local" value of the wave height. For a negative wave higher than 0.9d the load does not become
larger than 0.9.d'k, but the bending moment must be calculated in an iterative way, since the
support from the water might "disappear."

The upward load induced by a positive wave cannot be larger than 0.1 "d'k if water leakage can
occur freely. If the water is higher than 0.1d (freeboard of the ice) no further load (buoyancy
force) is then imposed by the wave. The different situations that might be encountered regarding
the height of the wave compared to the thickness of the ice are summarized in Figure 3.

The case that will be treated in detail in this study is the situation shown in Figure 3a, i.e. a
negative wave with a height toss than 0.9d.

Derivation of the bending moments induced by a surge wave
The differential equation for the deflection curve of a beam supported on an elastic founda-

A- tion is

El = -ky +q (4)
dx

4
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Figure 3. Negative and positive surge waves impinging on the edqe of an ice

cover. Induced buoyancy forces are applied as a distributed load on a semi-
infinite beam simulating a strip of ice along the river.

where El = flexural rigidity
y = deflection of the beam (positive downward)
x = longitudinal coordinate
k = modulus of the foundation

q = distributed load.' 4

Along the unloaded parts of the beam (q = 0) eq 4 will be reduced to

El d = -ky. (5)
dx

As shown by Hetenyi, it is sufficient to consider only the general solution of eq 5, from which solu-
tions can be obtained for cases implied in eq 4 by adding to it a particular integral corresponding
to q. The general solution of eq 5 can be written

y = e xx (c I cos Xx + c 2 sin Xx) + e-kx (c3 cos Xx + c 4 sin Xx) (6)

mud-
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Fgure 4. Intinite beam loaded with the distributed load q and the end condi-

tioning forces PO and M0 in order to simulote a semiinfinite beam with a tree

end.

where tj to C-4 are constants to be determined by the loading and end conditions of the actual

beam under consideration 4. The factor X is defined as (k/4E/)v" . The term /X, having the di-
mension length, is often referred to as the characteristic length 14.

BNy the method of superposition, lietenyi has det,rmined the integration constants for an in-
finite beam. lie also shows that by superposing the expressions for the infinite beam, solutions
can be derived for beams of any length and with any loading and end conditions. Using this method
the bending moment induced in the semiinfinite beam shown in Figure 3a will be derived by anal-

yzing the infinite beam shown in Figure 4. The edge of the ice cover is at = 0, and the ice cover
extends to infinity in the positive direction. At point A, corresponding to the edge of the ice

cover, the semiinfinite beam has a free end.
In order to simulate the free end, the force P0 and the moment M 0 are applied on the infinite

beam immediately left of point A. Since there is to be zero moment and zero shearing force at
the free end, Het~nyi 1 4 gives the following expressions for the end-conditioning forces M 0 and P0 :

P0 A + QA) (7f

M -- (2 M'A + QA) (8)

where MA and QA are the moment and shearing force created at point A in the infinite beam bN

the actual load.
MA and QA are determined by superposing the contributions from the uniformly distributed

load on the part of the beam for which 0 < % < s and the triangular distributed load for which
0 < ' < V. By inserting the appropriate parameters i. to the expressions given by Het~nyi one

finds that:

QA = l0 C et sin (Xs+XV) - sink (9)
q0 V

MA =" -e -\- " e' (cos(Xs+XQ)+sin(Xs+AV)I +sinks+cossj. (10)

Substituting eq 9 and 10 into eq 7 and 8, one gets

qa X V I2 Q es1 sn ~ o ~ - -VIo (V Xs+ i X + slI(

MO = -0 e 1-2 sin -cos I+e-x\ Icos (XQ+Xs)+2sin (XQ+xs) 1 (12)

The bending moment in the semiinfinite beam can now be determined by applying the calculated
end conditioning forces PO and M O , together with the distributed load on the infinite beam. To

6



be able to use the expressions given by Hetenyi, the moment is determined within three sections

of the beam defined by 0 < x < s, 0 < x' < Q and x" > 0, where the coordinates x, x' and x" are

defined in Figure 4. By doing so, the following contributions to the total moment from the tri-

angular distributed load (M2 ), the uniformly distributed load (MS), the force P0 (MPO), and the

moment M0 (MM 0) are derived.

Within 0< x <s

Me e-ts-x) Ix Icos (u+)M-Xx) + sin (s+X2-Xx))

+ cos (Xs-Xx) + (1 -2X) sin (Xs-Xx)j (13)

qo i+e(sx) sin (Xs- (14)

42 8X
3 e-A sin sine-M25

MXO = -s_-0 e-kx (cosXx - sin V) 2M + e-hs 13 sin Xs + coss s

- [cos (X;Q+s) + 3 sin (X+)s)] 1 (15)

M"O qQ e-x -cos Ax XQ +e- 1-2 sn M- co
403k

+ e - N, - [cos (XR+Xs) + 2 sin (V+s)] 1 (16)

The total moment M. within 0 < x < s is then given by

.- P MM - 0
M,( = MS+M 2O + (17) M

Within 0 < x' < R

qo I-e-( L-x') [cos (R-Xv'") + sin (XQ-Xx')]

+ e - (x'  cos Xx' + (1 +2 I Q) sin ?x'I (19)

Ms '  e.XX' lexs sin (Xx' + Xs) - sin Xx'j (19)

MX.O .e.A(x'+s) [cos (Xv *+ As) - sin (Xx'+M)l j2M

+ e - As - (3 sin As + cos ks - e- XO [cos (X + Xs) + 3 sin (;£+Xs)] 1 (20)

). = - o . e.&(.x+s) cos (Xv'+ M) AR+eA S1- 2 sin M -cos s

+ e- XQ • [cos (XQ + Xs) + 2sin (M' + Xs)1(21)

7



The total moment M x within 0 < x' < R is given by

P0  MO
x, =M *+M,,. x+Mx' °+MX (22)

For x" > 0

q0 XX,-cos Ax" - sin Ax" + e- XQ [cos (0 + Xx")

+ (1+2 )S) sin (X + x")]t (23)

Ms,,= 2 .e_"x" [eX(2+s) sin (XQ + Xs + Xx") -e - A'1 sin (Xx" + XQ) (24)

8X3 1

+ e-AS [3 sin Xr+cos Xs-e- XQ [cos (XR+)is) + 3 sin (XQ+?s)f li (25)

Mx1? -. ek(x"+s+Q) .[cos (f"+Xs+XQ) -+e -As [-2sin Xs- cos Xs

4'3

+ e- Q [cos (XM+Xs) + 2sin (Xx+As)] (26)

The total moment Mx,, for x" > 0 is given by

-= Mx.m + +4 (27)

Determination of the wave characteristics for which the ice cover breaks
Let us take as an example a triangular wave with a slope of 0.01. (This could correspond to a

wave 0.5 m high and 50 m long; see Stating the problem, p. 1.) In Table 1, values of X and Xx
are given for such a wave for different ice thicknesses, assuming that the wave has progressed into

the ice cover so that the drop in water level at the edge is equal to O.9d.

Table 1. Values of X, e and .R

for different ice thicknesses,
assuming E = 6-10' N/m2and
considering a triangular wave
with a slope of 0.01.

k'e Okkness X Q
(in) (N -2) (n) (M/M)

. 0.1 0.264 9 2.4
0.2 0.157 18 2.8
0.3 0.116 27 3.1
0.4 0.094 36 3.4
O.S 0.079 45 3.6

i - -:.-,'... . -. ,,.. . ..
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Figure 5. Dimensionless bending moment as a function of Xx

In Figure 5 the distribution of the bending moment in dimensionless form (MX2/qo) is shown

graphically for MR = 10-6, AR = 1 and M, = 10 according to eq 17, 22 and 27. For each value of

XR, curves for different values of As are shown.
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Figure 5 (cont'd). Dimensionless bending moment as a function of Xx.

The moment distribution for small values of XQ and large values of M will approach the solution
given by Billfalk6 for X = 0 and Xs - -. This type of wave having a vertical front is not realistic,
and the corresponding bending moment could be considered as a theoretical upper limit. As can be
seen in Table 1 and the previous discussion, minimum values for X on the order of 2 to 3 might

be expected for thin ice covers. As can be seen from Figure 5c, the maximum absolute value of
the bending moment for large XQ (i.e. 1 >> e- XQ) occurs at the location of the wave front (x" = 0)

and equals the moment at the end of the wave (x' = 0) for large Xs. Furthermore, the maximum
value at x" = 0 is almost independent of ks for large values of X. As can be seen from inspection

of eq 23-26, the only term that contributes to the moment at x" = 0 for large values of XR is the

first term in eq 23. The maximum absolute value of the bending moment at x" 0 according to

eq 27 for large values of V would thus be

Mma= IMx" =01=-M X- . (28)

For X) = 10, eq 28 gives a value of 0.0125 for the dimensionless moment MX2 /q 0 , which is prac-

tically the same value as is given by the full expression according to eq 23-27, as can be seen from

Figure 5c.

The ice cover is assumed to crack if

of d2  

(29)

where of = flexural strength of the ice and d = thickness of the ice.
Equations 28 and 29 indicate that the ice breaks if

Q<3.28. 3 . d 14 . 6 (30)

of

where the wave height Ah is assumed to be less than O.9d and the modulus of the foundation isI set to 104 N/m 2 (water).

10



Table 2. Critical length Rcr, slope hlfcr
and XMcr of a surge with height tAh = 0.9d
that breaks the Ice cover.

Ice thickness d Qcr Ah/2cr ( 0"9 d/Qcr) cr

() (n) (mr/) (rn)
0.10 5.96 0.015 1.57
0.20 14.18 0.013 2.23
0.30 23.53 0.012 2.73
0.40 33.72 0.011 3.17
0.50 44.57 0.010 3.52

-.1

Typical values for E and of for freshwater ice would be 6 - 109 N/m2 and 6 • 10 N/m2, re-
spectively, according to Bergdahl 4 and Lavrov 1 5 . Taking these values for of and E, and assuming
that Ah = 0.9d, the length 2 is determined as (eq 30)

R < 106d 14  (m). (31)

In Table 2, critical values of 2 corresponding to 2 cr = 106d 5/4 are shown for different ice
thicknesses. The critical slopes of the wave front defined as 6h/Qcr (for 6h = 0.9d) are also shown.

As can be seen from Table 2, thin ice covers can resist steeper waves without breaking than
thick ice covers can. However, quite steep waves are required even to break thick ice covers. It
should be noted that eq 31 was derived by assuming M to be !arge (1 >> e~AQ). As seen from
Table 2, the value of XQcr approaches 1 for thin ice covers. This means that waves even steeper
than indicated in Table 2 are required to break thin ice covers. (The actual bending moment for
XQ = 1 is about 35% lower than that given by eq 28.)

Example
Consider a 1 O-m-deep tail-race channel to a hydropower station. The flow per unit width is

assumed to be decreased from 6 m2/s to 0 m2/s in 5 seconds. The full flow then corresponds to
an average flow velocity of 0.6 m/s. Ignoring the flow velocity, the negative wave generated by
the decrease of the flow will travel downstream at about 10 m/s (eq 1). Close to the power station
(where friction effects might be ignored) the slope of such a wave would be about 0.012, enough
to break an ice cover having a thickness of about 0.3 m according to Table 2. Assuming thus that
the thickness of the ice is 0.3 m, the wave should break the ice cover at 23.5-m intervals as it
advances downstream.

Deflection of the ice
On p. 3-6 the bending moment in the ice cover induced by a negative wave with a height less

than the thickness of the ice was derived. It was shown that the maximum absolute value of the
moment occurs at the nose of the triangular wave as it passes under an ice cover (provided that
1 >> e-"). When the wave has passed the edge of the ice cover the moment at the end of the
wave (x' = 0; see Fig. 4) approaches the absolute value of the moment at the nose for large values
of Xs.

Let us now analyze the deflection for the case when s = 0 (see Fig. 4). The deflection around
the nose of the wave, for large values of XR (1 >> e-X2 ), will be almost the same as for the case
s > 0. Using the solutions given by Hetinyi for an infinite beam, the deflection of the semiinfinite

A. strip of ice is found by applying the triangular distributed load and the conditioning forces P0 and
M0 on the infinite beam. Ignoring terms that are small for large values of k£ (e.g. 1 >> e - XQ) the
deflection within the wave (0 < x' < 9) and to the right of the wave nose (x" > 0) can be well
approximated by the following expressions (Xs 0 at x =x'):
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- + Qx) [cos (AR-XV) - sin (R-XI)] for Xs = 0 and 0 < x < 2 (32)
tAh R X

- = 4 x ) [cos (Xx-XM) - sin (?x- )]) for s = 0 and x > 2 . (33)
A/i 4X2 co

These expressions are shown graphically in Figure 6 for XR = 5. As can be seen, most of the bending
takes place at the nose of the wave; very little occurs along the rest of the wave front.

Consider now the case shown in Figure 7, where the wave height &h is larger than 0.9d. As
long as the wave front is not steeper than 0.9d, X can be considered large (1 >> e- 2 ). This case
can be treated in an approximate way by calculating the deflection (and the moment) for the nose
and the end of the wave separately, assuming that negligible bending takes place along the central

part of the wave.

DISCUSSION AND FIELD OBSERVATIONS

The bending moment induced in an ice cover by the passage of a negative wave with linearly
sloping front has been derived for waves lower than 0.9d. The derived moment distribution is, in

principle, also valid for a positive wave just by changing the sign of the moment.
In the present study the ice cover is assumed to float freely from the shores. The maximum

distributed load q0 induced by a positive wave is therefore assumed to be about 0.1 .d-k (see Fig.
A 3). Let us now consider a very steep positive wave, and try to estimate if such a wave could break

an ice cover under this assumption. As can be seen from Figure 5, the maximum bending moment
for M* = 10-6 (practically vertical front) will be on the order of 0.1 .qOX 2 . With q0 = 0.1 d-k the
resulting moment will give rise to a bending stress in the ice cover of about 105 NIm 2 , which is less
than the typical bending strength of freshwater ice. This indicates that under the given assumptions
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Figure 8. Water level variations at load acceptance (b) and at
shutdown (c) in the headrace channel of Stornrrfors power sta-
tion measured at point A, 1000 m upstream of the intake.

the buoyancy forces induced by a positive wave should not be able to break a freely floating ice
cover unless the ice is weakened (as it usually is at spring breakup).

If the ice cover is frozen to the shores, or the leakage of water through the cracks along the
shores is sriall, a positive wave presumably could induce a distributed load which is larger than
0.1 .d-k tnd thereby be able to break the ice cover.

Tr, check the validity of the presented theory, laboratory experiments or well-controlled field
tests should be done. In order to provide some insight into the characteristics of waves generated
by rapid discharge variations some field observations from Swedish power stations will be discussed.
Furthermore, some field measurements of water level variations associated with the formation and
breakup of ice jams will be briefly discussed.

For the theoretical analysis a surge wave with linearly sloping front has been assumed. Such an
"ideal wave" can be approximated in a uniform channel by a constant rate of change of the flow.
Waves generated by discharge variations in hydroelectric power stations may, however, depart from
the assumed "ideal form" for many reasons. For example, the typical rate of flow variation is not
perfectly linear. Furthermore, the waterways often have a nonuniform geometry.

Water level variations have been measured at a point located 1000 m upstream of Stornorrfors
power station in Sweden (point A, Fig. 8a) during tests with rapid discharge variations under ice-
free conditions. The surface width is about 65 m at point A and increases to about 140 m at the
intake. From a steady flow of 75 m3 /s the total flow through the three turbines was increased to
600 m 3/s at load acceptance by opening the wicket gates in 7 to 8 seconds. The resulting water
level variation at point A is shown in Figure 8b. At load rejection the flow was decreased from
600 m3/s to 75 m3/s by closing the wicket gates in about 5 seconds. The measured water level
variation at point A in this case is shown in Figure 8c.

Considering the actual water depth, the wave speed and the wave form along the headrace
channel can be estimated from the stage measurements shown in Figure 8. The average slopes of
the negative and positive wave fronts were thus found to be about 0.003 and 0.018. The negative

A. wave, assuming normal ice strength, would not be steep enough to break a solid ice cover. The
positive wave was much steeper but, as already discussed, positive waves should not be able to
break an ice cover unless the ice is frozen to the shore.

At this point it should perhaps be noted that only the occurrence of cracks in the ice cover,
due to the passage of a wave, can be predicted by the theory presented. Sometimes in the text
this process has been referred to as breakup of the ice cover. This is an important distinction,
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since the breakup of an ice cover often means the cracking and subsequent initiation of movement
of the broken ice field along the river.

A positive wave associated with increasing flow means that the water level rises, and for most
natural waterways the surface width increases. The ice cover probably loses its contact with the
shore more easily in this case than in a situation with negative waves where the water level de-
creases and hinges develop along the shores. Also, the size of the ice floes should be of importance
for the stability of the fractured ice cover.

There are many studies dealing with the stability of ice blocks approaching the leading edge of
an ice cover. See, for example, works of Ashton2 , 3 . According to Ashton there is a weak trend of
increasing stability (higher critical velocity) with decreasing values of the ratio between ice thick-
ness and block length 3. This indicates that large ice floes, being the result of wave-induced breakup
of a solid ice cover, would be more stable than the commonly smaller ice pans occurring at freeze-
up of a river. Also, the resistance of hinges along the shores probably is of importance for the over-
all stability of an ice cover that has been fractured by the passage of a wave1 . A solid ice cover
that has been fractured can therefore probably resist higher flow velocities than an unconsolidated
ice cover formed during freeze-up.

Let us now discuss a test of the stability of a solid ice cover on the headrace channel of Malfors
power station in southern Sweden. During a shutdown over a cold weekend, 10-11 February 1976,
a 7-cm-thick ice cover was formed over the 1600-m-long headrace channel. Close to the intake the
channel has been widened to form a 100-m-long forebay before the water enters a narrow, 120-m-
long concrete flume leading to the penstock (see V 47

The purpose of the test was to investigate I + V , of a solid ice cover during rapid flow
variations. During the test the water level va' v. ) .t three locations in and near the forebay
by submerged pressure gauges (Fig. 9a, -e . and 3). On the morning of 12 February the
flow was increased from 0 m3/s to 60 m3 i5'.,- " ;'stes, kept constant for about 5 minutes, and
then decreased to 0 m3/s in another 15 m v. '.uring. this slow variation of the flow the ice
cover broke along the shores of the c6f4nel, b a ,part from shore cracks the ice cover remained
intact. After -his slow variation very rapid discharge variations were tested at successively higher
maximum flows, as summarized below:

Discharge
Test (m3/s)

1 0-10-.0
2 0-20-0
3 0-40-0
4 0-60-0
S 0 - 84 (max)

During the first four tests the ice cover remained stable (observations were made only from the
downstream end of the forebay). A couple of minutes after the flow had reached its maximum in
the 5th test the ice cover collapsed on the channel just upstream of the forebay.

The water level variation at point 3, that is, about 60 m upstream of the forebay, is shown for
tests 4 and 5 in Figure 9b. As can be seen, steady state was not reached, either at maximum or at
zero flow.

The average slope of the water level over a "longer" period of time was hardly steep enough to
cause the fracturing of the ice cover that presumably preceded the collapse in test 5. However,

A very rapid stage variations superposed on the slower water level variations did appear. See, for
example, the steep rise in water level at 1050 and the sudden drop at about 1053 in Figure 9b.
The theory presented is not valid for the irregular wave form shown in Figure 9b. It is estimated,
however, based on the theory, that the sudden drop in water level at about 1053 was steep enough
to fracture the ice.
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Figure 9. Water level variations at point 3 in the headrace channel of Mal-
fors power station.

The collapse of the ice cover that occurred at about 1107 was apparently initiated at the exit of
the channel in the forebay. Suddenly, ice floes seemed to be rotated over the entire width of the
channel at this section. The ice cover on the channel then started to move downs tream and slid
under the ice cover on the forebay. Although the ice cover on the forebay developed some cracks
it remained stable. The moving ice cover on the channel had been broken into floes of different
sizes. About 10 minutes after the maximum discharge was reached the power plant had to be shut
down because the broken ice blocked the trash racks at the intake.

Let us try to estimate the in-plane force required to make the broken ice field, resting against
the solid ice cover on the forebay, unstable. It can be shown that the in-plane force per unit width,
Fr , needed to cause incipient instability of a broken ice field is

Fcr 1/12 pgL 2  (34)

where L is the length of the ice floe along the channel1 9 . In an ice cover that is forming by accum-
ulation of ice floes the pressure at a given section increases with increasing distance to the leading
edge. This holds as long as the distance to the edge is less than about three to six times the river
width. Additional forces due to accumulation of more ice at the edge are transmitted to the shores,
and the pressure at the considered section levels off1 6. In a solid ice cover that has been fractured
the pressure at a given section might be assumed to increase even for longer distances to the edge
than in the case of a fractured ice cover built up of drifting ice floes.

No close observations were made at the location where the collapse of the ice cover was init-
iated. The size of the floes that formed when the solid ice was first fractured at this section is
therefore not well known. From pictures taken somewhat later of the moving ice on the channel
it is estimated that the smaller floes were on the order of I m long. The force required to create
instability of such ice floes is about 820 N/m according to eq 34. It seems reasonable that such a
force could be induced by the flow (unsteady) in the channel, since the contact between the ice
cover and the shore probably was weak due to well developed shore cracks. Thus the collapse of
the solid ice cover in this case seems to be explicable as being the result of the passage of a steep
wave and the instability mechanism described by eq 34.
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Rapid changes in water level and water velocity in a river can also occur as a result of the sudden
formation, failure and re-formation of ice jams. Henderson and Gerard1 3 presented a theoretical
study of the kind of surge waves that can be formed by such processes. Calkins7 reported some
field measurements from a 3.3-km-long reach of the Ottauquechee River in Vermont, where such
surge formations were registered during the winter of 1980-81. He also described observations of
the breakup of the solid ice cover on several occasions along the same reach. For example, on I1I
February the water level rose 0.62 m in about 20 seconds at one location (from Calkins' published
figures this wave seems to have become steeper further downstream). This event was the result
of breakup of an upstream ice cover, which initiated a positive surge wave traveling downstream.
The wave caused breakup of the solid ice cover on a 1.3-km-long reach of the river.

The assumed wave form in the theory presented does not permit a strict comparison with
Calkins' published data. However, a more thorough analysis of these interesting data should be
performed.

In the analysis presented only the buoyancy forces induced by the passage of a wave are con-
sidered as a load on the solid ice cover. The breakup of an ice cover can, however, be induced by
high flow velocities only. Michel and Abdelnourl 7 have shown by laboratory experiment how the
breakup of a solid ice cover with a free upstream edge occurs when the flow is slowly increased.
Even though their analysis is questionable, the experiments show that no waves are required to
cause breakup of a solid ice cover6.

Downstream from a power station a rapid increase of the discharge causes a positive wave and
increased flow velocity. If the flow velocity is high, the flow-induced forces may have the same
ability to break the ice cover as the buoyancy forces induced by a wave. Consequently the break-
up of a solid ice cover can be caused by waves smaller or less steep than those assumed in the
theory presented.

SUMMARY

-~ The purpose of this study was to analyze under what circumstances rapid water level fluctuations
can cause breakup of a solid river ice cover. The analysis is restricted to considering the buoyancy
forces induced in the ice cover when a surge wave with a linearly sloping front passes the edge of the
ice cover (see Fig. 2 and 3). This means that the action of the wave is considered as a static load
by "freezing" the wave at different locations along the ice cover (Fig. 4). Furthermore, the inter-
action with the shore is ignored, and the problem is assumed to be independent of the river width.

For the given simplifications the problem is analyzed by applying the theory for beams on an
elastic foundation to a semniinfinite strip of ice oriented along the river. Using the method of super-
position, and solutions given by Het~nyi 14 for an infinite beam, the bending moment induced in
the semiinfinite strip of ice shown in Figure 3a has been derived. Bending moment distributions
for different steepness and location of the wave front are shown in Figure 5. Where the induced
bending moment exceeds the flexural strength of the ice a crack is assumed to occur.

One of the conclusions of the study is that thin ice covers can resist steeper waves without
breaking than thick ice covers can. However, quite steep waves are required to break even thick
ice covers.

Most common rates of discharge variation at hydropower stations will not generate steep enough
waves to break a solid ice cover on adjacent waterways. Very rapid flow variations occurring, for
example, at shutdowns or very rapid load acceptances could, however, cause fracturing of a solid
ice cover.

Very steep waves can be generated by the collapse of ice jams as can be seen from field measure-
ments in the Ottauquechee river7. The measured waves show a form that differs from the triangular
form adopted for the theory presented here. A strict comparison between the observations and the
theory is therefore not possible. However, a more thorough analysis of these data is needed.
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The present theory should be considered as a first estimation of the significance of surge waves
in the breakup of solid ice covers. A more complete theory should include dynamic effects, which
might be of importance for very steep waves. Other wave forms also ought to be analyzed, and
the significance of the interaction between the ice cover and the shore needs to be clarified. The
combined action of ir-plane forces and buoyancy forces is another effect that should be analyzed.
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