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) Abstract
~=> A theory for mutual coupling between two dimensional canonical mini-

mum scattering antennae is reviewed, Expressions for self and sutual

» impedance are formulated in terms of the measurable far field radiation
diagram. The case of two identical aerials is considered in some detail.
The constraint of bandlimitation ias applied to the antenna pattern func-
» tion to facilitate the required analytic continuation thereof. HNumerical
analytic continuation is addressed whereby ssmpling proximates and
Miller-Tikhonov regularization schemes are examined,
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Consider a two dimensional, isotropic, canonical minimum scattering*

antenna ina homogeneous, lossless medium set in the plane y = 0, This

antenna produces a two dimensional E-type field i.e., E parallel to the
z-axis. (see figure 1.) Taking E(x,y) = E(r,¢) where x = rcos¢

and y = rsin¢ , the spatial Fourier representation is

B(x,y) = E(x,y)Z = f g(u)e-mx-"vydu
R

u -1k-5
- f E(u)e ~ “du z
R

/B2 u? [u] <8

where k=uk+ v} , k=k/|k|, v=
-142- Bz jul > 8

8 = 2n/)% and implicit time dependence, eﬂ‘m, assumed and suppressed.

with

Note the choice of cuts for v 1s consistent with the restriction

y 2 0 for outwards traveling waves., On setting u = 8 cos §,

v =g gin £, E transforms as

E(x,y) = E(r,¢) = 8 f Beg)e~itr cos(e-0) | 4 e e
]

where S is a Sommerfeld contour in the {-plane - see figure 2. Deforming

S to a steepest descent path in the region of convergence for E gives

the asymptotice

*we use freely the previous study report [1] by Professor Frances-
chetti, Constraints as "invisidbility”, i.e., antennse that do not scat-
ter with particular loadings of ports - "Canonical Minimum Scattering"
being as such with ports open circuited - are discussed at great lemgth

therein.
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E(xr >> 1,4) & <8 sin ¢ R(8 cos ¢) v T:I;' o ifr

It is possible to define a normalized antenna current 1 such as to

require [1) reciprocity, f£(¢) = ft.c(O), where f(uc) is the trans-
mitting (receiving) effective height per unit length. This imposes the
following constraint on spectrum and pattern functions for real values

of the observation angle ¢ ¢ [O,n]

gf 4
bnv

i(B cos §) =

The identity theorem provides for the coincidence of the above quantities
t hroughout the common domains of analyticity. Thus,as f£(u) =f(Bcor £),
we know the spectrum £(u) if we can find the analytic continuation of
the pattern function, f(u), from the visible region u ¢ [-8,8] through
all regions of common analyticity. As f£(uj & £(u) are often entire
functions, this region is generally all of C, Llastly, we note that the
Fourier transform of the magnetic field associated with this E-polarized
field, ﬁ(u) has the following properties:

=ikey du

1)  B(x,y) = B(x,y)z = f (w2 o
R
2) ¢ i) =3 x

With these results it is easy to find the total power, ':o: » injected

into the region y > 0 by the antenna

E(x,0) = f i(ﬂ)o““du
R

TR(x,0) = I & x DHEW)e"
R
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Peote © % f Exp'yex - %— 33- ] EWE* (v du
R R
2 * q
_%_z;u‘l_l_ 8 ‘2“'2] fS\IVZf (v) du
16w =

Frequently P . --zz- |I|z wvhere Z = R+ 41X, the antenna system input ;
impedance(e.g. "one mode slots" in ground plane or infinite wires).
Here one has a relation between s measurable quantity Z(w) and £(u)
which we shall exploit presently., Note this constraint applies to
both "visible” and "invisible" values of f(u).

Finally we give a formal expression for ths mutual coupling between
antennae. (See Figure 3.) Reference lines of Antennae: I = (0,0),

Il = (xo.yo) - (ro,to). Take the plane-wave spectrum of antenna I with

antenna II open circuited (hote invisibility assumption for 1II), then
the spectrum of the radiated field is:

£ (0) = & £ (0t

The open circuit voltage at antenna II due to the spectral component

EI (u)du 1is

=iux =ivy
Bclye o (]

bwv

dvn -

Now for given §, k& cowk +8in£§ whereby the radiation impinges on

11 at angle § + v (see Figure 3,) thus by supetposition:

A (-4 11 I fl(ﬁ)fll(t + %) '1“30 - 1"70
j . V21 - —z;- o e du or

o YL —
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V,; mutual impedance d 3 f1(0E(E + ')g"'“‘o"""o
: Zy) = T = betveen 2 C,M.5, 2° = f—f—; = du
I antennse. R '

-i8r, cos(¢ _-£) i
) EACINCERE a

8 i
by the previous change of variable,

Now we assume the antennae to be identical (e.g. in an array of
slot radiators etc.) whence these expressions simplify for real excita-

tions:

Buw) = —- f!(x.o)e'mix, note -u = B cos( + v)
R

if u=gcos £ then E(-u) = E(u)* where E(x,0) 1is the "antenna

current” (equivalent) excitation at y = 0, Therefore

. «lux o =fux
£(E)E (E)e P(u)e °
. Z,) {% du = —- du
R v

vhere P(u) 1is the conventional power density with u = § cos § and

the antenna system, again, constrained to y = 0. If we force the
sources to be of finite extent the pattern functions become band-limited

i.a.
.

£(u) = £(8 cos ) = f 1(8 cos E)x ¢ yax
=Q

3- vhere the excitation, j(x), is nonzero x ¢ (-s,a] (§ = j(x)&(y); is
; : an equivalent current.) The sequel considers the utility of
: : : this constraint of bend-limitation and the possibility of relaxing it
' as well as the requirement of identicallity of radiators previocusly im-
posed. Ve should state here that we are attempting to calculate the

! mutual couplings between serisls by mesns of the previcusly deduced
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integrals which require knowledge of the pattern or power pattern
function over loth visible and invisible values of argument, At hend
are the values of the power and pattern function in the visible

[-8 < u < B] region and possibly the input impedance over some range
of frequencies. The required numerical analytic continuation to invis-

ible values is a very delicate process (a point to be amplified below) k
and requires much constraint to provide practicability. In that one
may approximate any antire function by a sequence of band~limited

functions, the constraint of band-limited proximates to a given pattern

function is not too onerous. While the general problems of approxima-
tion in this context will be considered extensively below, the virtue i
of this scheme will be displayed now,

Consider the power like quantity fl(u)fn(-u)- Note that given

£,.1, n“: The product quantity, f;(u)fy;(~u), is aleo band-limited as
- follows from the convolution thooru’. In fact, fI(u)fn(-u) teB, .

In the case of identical aerials this £(u)f(-u)= P(u) -~ the conveation-
! - al power pattern function,vhich may be measured with some accuracy there-
by constituting a reasonable candidate for numerical analytic continua-
tion. (The inaccuracy of phase messurement would seem to fordbid an
attempt at coniinnat:lon of the pattern function itself,) let D be the

distance between aerials' reference lines then

«-iuD a
2y, = &% f CH M , 1f £(u) = f 19, (x)ix
R B -a

AR

, a
2 *Sncc of band-limited functions i.e. f(t) = f

omg(o)du vhere
-

g(w) 1s an L3(-1,1) function 1.e, "square integrable."

m,(. de

. etc.

f *rl(u)rz(w) - fl(t)afz(t) vhere f(t) = !'o
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2
Then P(u) = f(u)-f () = |[f(u)| <« + 2 % [g(x)*g(~x)])(x) = G(x)

L
x € [-2a, 2a].
= 0 otherwvise
2a
8 Hence P(u) = f G(x) c'mxdx. Expanding G(x) in an exponential series
-2a 2a
in [-2a, 2a]; G(x) = T C e:lmrlea with ¢ = 7.1— f G(x) c"'“xlzadx =
xD° n a
-2a
) 4‘ P ( ). So one gets the "sampling” theorem representation:
2a 2a
- -fux_inw/2q _ 1x(3X - v)
P(u) f;cne e 3 ;c‘\f e ‘2a dx
o -2a -2a
an, Sin(2au-n¥)
= ;P(ZI) 2au-n¥
Novw insert this result into the coupling integral and invoke the "con-
- .
. volution theorem”
L]
_ P(u)e-mn Sin(2au-nw) e -1ud
~ —_——————— gy - 2 P( ) f (2.“"‘?) du
- v 82“ u? V8

z P( )I(u 8,D)

-

Recall the following fourier transform pairs

ixnw/2a
- D ————s;:‘(:_z_::-m) + - —‘———. " xe [-2a, 2a)
= 0 otherwvise
. 2) and for our choice of cuts (ef. p. 1).
[ g
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1 u§2) (é'xl)
< > 3 hence
/82,42 |
2a
1 (n,8,D) = BW: ‘mwx/h llgz) (8|D + x|) dx. Now recall further
-2a
the integral representation for ll:z) over finite limits
v/
~1(248/2) -2z Cot 6
H:z)(z) -%1 s = 46 {Rez >0}
0 Sin® Ycosb
This may be used in the expression for I(n,8,D) and limits of inte-

viel
gration exchanged to reduce I(n,B8,D) to a concatenation of elementary

functions readily amenable to evaluation with 1) fortran complex
algebra 2) any simple numerical integration scheme. e.g. i

for D > 2a we have

v/2 j

-16/2 _-28D Cot 0 :

I(n,8,D)= 21e 18P | & e Sin(n¥-2084488¢ 00). , |
sin 6 vcos © (nw-2aB+41a8Cot 6)

with a somevhat more tedious form for D < 2a. :

So for reciprocal antennae with real excitation the first order (exact

c.u;s.) mutual coupling Zn may be expressed

221 - .2.% Plu) ‘-1nDdu - {-:- Z:P(;%) I(n,8,D) Note that
JB2_“2

-6

in the integral formulation the reactive part of the coupling is ex-
tracted from the integration over the invisible (8 < |u]) range of the ]
pattern. Likewise the radiative portion of the coupling from the

visible portion, to see thias mote
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where P(u) is in general an even function hence the first integral 1is
obviously pure real as is the second. However, we have reduced this
quadrature to a series whose tb term has both real and imaginary parts,
Thus the "sampling transformation' displays the contribution of both
visible and invisible parts of the pattern to the total mutual impedance.
It should be pointed out that P( ) and I(n,8,D) are both "Fourier-
series" coefficients of G(x) and 352)(810 4+ x [), hence decay as
o(-l-]l'-) and give a somewhat tardy convergence of 0(—%;) to the mutual
impedance series. It 1is possible to improve this :emlt somevhat as we
shall show later. Now however, the problem at hand!

How can one extract the first few P( ) from the knowmn P(0)
and P(u) for u € [-8,8] and thereby-estimate the coupling for two
identical aeriasls? How may one analytically continue from the segment
the bandlimited function P(u)? We should point out that, depending on the
antenna structure(visible range - dimensions of antenna - :-i—. ’ %3))
P(0) P(r) may be known. In fact for highly directive antennae, in
wvhich case the coupling question is somewhat moot, the extensive nature of
the visible range contains sufficient sample points (-8 < '-t; < B) to
yield a very accurate picture of the coupling, Exclusive thereof, we are
faced with the solution of the so—called "ill-posed problem" of "numerical
snalytic continuation" of band-limited functions. The following discussion
considers numerous naive but tractable solutions to this problem and at

length some sophisticated yet avkward methods of solution. We shall

require also some information of the sampling theorem and its cognates

A n vt B et A K, AR AR 2 M S DRk




to speed the convergences of the various series involved, We commence
with a general discussion of numerical analytic continuatiom.

Analytic continuation, cornerstone of complex analysis, is not directly
numerical in character. The usual context is that of a "magic wand"” waved
over a given functional representation known valid in a restricted region
but convergent in a larger region. The agreement of these representa-
tions on any dense set (just a limit point!) provides for total agree-
ment in any common domain of analyticity. Hence one'analytically contin-
ues", the function from some small set, with reckless abandon, throughout
C or so it seems. In the case of an exact agreement, e.g. two integral
representations of TI'(z) , analytic continuation is a deft tool. Numeri-
cal (experimental) attempts, however, are characterized by the following

playful Theorems [2], used by Atkinson, quoted below.

Divine Theorem: If one knows an analytic function on a segment of
a line, inside its domain of analyticity, one knows it throughout this

domain of analyticity.

Diabolical Theorem: If the function is not known exactly on the
line segment, but only within an error corridor of width 2¢ , then the
uncertainty in the continued function is such that its value at any given
- point, in the domain of analyticity, can be any number whatsoever, and

this for any €, no matter how small,

All seems, but is not, lost. It turns out that "global bounds" on
the function to be continued [3] will restore the "continuous data dep-
endence” lost in the process. However the restrictions suitable to a
given problem are ad hoc. The sequel will examine two "slmost-best-possible
methods of snalytic continuation based on the Miller-Tikhonov regularization

schemes. This exposition is borrowed with modification from recent optics
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literature of image extrapolation and object restoration. These methods,
which utilize the eigenfunctions of the finite Pourier transform, the
Prolate-Spheroidal wave functions, are quite cumbersome to employ. They
may be used, eventually, as benchmarks to compare with proposed "sampling”
proximates to be introduced shortly, It should be remarked that we are
here concerned with the analytic continuation of band-limited functions
i.e, given f(u) = I. Omxg(:t)dx and f(u), u € [-B,8] find £(u)

for u ¢ [-B,8); or-?harder) find g(x)Vx € [-a,a] in the above Fredholm
equation of the first kind, whence one may compute £(u) from the trans-
form relationship above, It is this duality between the analytic continu-
ation of band-limited functions end the Fredholm esquation that partially
motivates our requirement of band-limitation, The general problem of
analytic continuation, by means of the Cauchy theorem, can be expressed
as the solution of a singular integral equation [3] which is an insidious
numeric task, whereas, the constraint of band-limitation requires the
"solution" tu a regular integral equation of the first kind - a simpler
task well considered in the literature. Let us consider a band-limited
function f£f(u) with £(u)= ] 2 emr(x)dx €B, . First note (4) the
sequence [_gi_gé‘%l:u_&l‘;‘_l)_} 1-.-2: complete, orthogonal sequence in R all
of whose terms are band-limited, € 5 a’ If one were to consider the
distribution due to various currents at y = 0 in the previous geometry
with the insistence of piecewise constant currents (thus approximating

a given smooth distribution) the pattern would be of this form. Recall

ve have previously the bend-limited power pattern as a ssapling series

in(2au -~
P(u) = E P(%) ﬁ—?;yn—'l

Ve might ask the following:

B e e L ek
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1) 1s it possible to approximate P(u) in the visible range with

a "sampling series" of unknown coefficients with the constraint of antenna

self-impedance matched as measured?

2) 1s it possible to solve for P(-i;-"l) as a Eruncated) set of

linear equations that we implicitly define through the data as follows:
A, Record P(u,) for f{u }ZN and u {-8,B] for all {1
* i i'i=1 i ’ ¢

B. Solve the truncated set of equations

N sin(2au; - jr)
4a B(u,) -%: rE) TICED 1=1, 2N

for P(%). j = =N, N. (recall P(0) knowm)

C. Impose the impedance constraint on these near singular linear

equations.,

3) 1Is it possible to hasten the convergence of the “sampling series"
and provide for solution of fewer coefficients, thus taking advantage of
our ability to sample the visible interval at will? (e.g. find a deri-
vative of P(u))

All questions are answered in the affirmative, and involve novel
techniques that circumvent the previously required usage of the Prolate
Spheroidal Harmonics, We shall investigate each in turn.

1) First, one requires a criterion of fidelity, Without loss of

generality, we take a mean-square (12(-2;,21)) setting. Take
fu) = { N unihu - nﬂ;
&% i u - n¥) , with a - P(0) known, as the sampling
proximate, Find f g (P(u) - P(u))zdu = minimm, subject to the
-8 (a1}
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constraint zm is given, Recall z:l.n may be expressed in terms of

the pattern function as previously shown., To wit

=R+ x=gE f —-‘-’i‘i——au-r-?lfum—:i‘li—du

The quadratures may be found by direct integration of the above

quantities or the previous convolution approach i.e,

= R 4+ ’_x = --E f .—i“—").— d“ - L ——(i@ n')\ d\l
1n 2su -nv /
R 702 R4

8 N
-g; Z nnl(n,s,o)

n==-N

where

2a
I(n,8,0) = j TL e~inTx/2a ugz)(alxl)dx

~2a
(even + 0dd) (even)

which, again, may be reduced to a ld integration of elementary

functions by the prior integral representation for the Hankel function.
N
We have two constraints on {a '} _ . :

X X
8
ne38 T, ahe(@p,0)  x- = T, Sala(1(,8,00)

It is now a simple matter to use Lagrange multipliers to solve for

8
{a,) such that (P(u) - P(u))2du = ninmn given XR. The
-£ a
functional of {a } to be minimized: 1

X N
Ha,) = [_B (§ a .'.}'LZ_‘.!.-_'!!. - r(u))zdu + ‘_[_. 8, + xz'-z' TR




R
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N
where 1I! = Re I(n,8,0) etc. and %-; R=R =2 oI,
8y N a{a,) N
R ;Njanx;; T =0 forall a;,1=+1,4+2,..,+N

requires

N 8
sin 2au - nt sin(2au -1v) sinSZau ix
2 ¥ % f “2au - nw (2au - ur) dv - 2 -8 ?(0) :l.w)“l du

' "
+ Xli + 1211 =0

The last 2N + 2 equations may now be solved for the 2N + 2 unknowns
{nill:‘_ A;» Ape To minimize sampling of P(u) in evaluating the

second integral one could use, say, a Gauss-Legendre quadrature, Note
that the finite range and analytic nature of the integrands makes their

evaluation a simple and inexpensive task. Results numeric of this

procedure are contained in the first appendix.

2) The possibility of using the continuum of pattern values in the
visible to extract a continuation through the sampling theorem is not new
[{5]. One mpy measure at will and solve the set of linear equations des-
cribed above. Goodman's classic text on optics [6] considers this proc-
edure and provides it blessings. In point of fact, one is apt to get
order of magnitude results or better in its blind application. However,
the linear set is not, to begin with, favorably conditioned and any
attempt to continue "very far” will lead to trouble, The problem of
constraints or regularization in this connection has not been explored in
the literature, nor has the very specialized nature of the linear equa-
tions involved (to wit they have the form of the "double-alternant™). We
intend to pursue these topics at length, and while results to date gre
incomplete, we give cause to further these activities. Part of the

problea stems from the slowly convergent nature of the sampling series.
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This we shall examine in some detail, offering “quicker” sampling
proximates as means to the required coefficients. Lastly, we indicate
how the transformed expressions for mutual coupling might be improved
through this device.

Recall that we wish to solve

N sin(2au, - j¥)
P(u,) = rdh 1 1,28
1 j-z-!l 2 2au1-j1r ’ ’

for r(-}}) § % ~NyeeesN,d # 0 (which is known, P(0)) by accurate
samplings of P(ui) for u, [-NB.B] subject to u: self-impedance
constraints, truncated as X = g P(-;%)I: » R = -ZN P(%:-)I:a vith

I"; etc. as previously defined. For the moment we ignore these constr-
aints and consider just the set of linear equations sabove. As previously
remarked, direct solution thereof produces "trash" for N of any size,
Out of curiosity, the least-squares (normal) solution was also conaidered

for a few test functions (Appendix B, pt. I) i.e.
d.n(hui-j ®)

)

If Ax e where b« {P(u))}; — {P(l'-)} -—
s t Il D 1 2 %a Q Zaui-jt

T

the nonsingular least squares problem QTA x'= A

b has x' as solutior
€ & . - -~

to the problem || Ax' - ‘.’llz = minimum, uniquely. The results (Appendix B)
indicate order of magnitude agreement "in trend"” with the true coefficients.
(This will be seen consistent with Tikhonov regularization of the 1llposed
linear set.) Furthermore these truncated equations are of a peculiar form.
Previous investigators (7,8] have considered similar sets and noticed
closed form solutions may be readily obtained from Cramer's rule as such
equations have the form of the double-alternant [9].

To see this we renormalize” the equations as follows:

*unna ?(0) unknown to simplify indices.




sin(2au, ~ §v) = [sin 2aui](-1)j. let i(%—}) - (-1)'11'('}}) =A,
P(“i)
sin 2au

. -Bi R yj = [(§ - 1) -Nl'lr, 51 = ?&\li. Thus we obtain

2M+1 .
B e T a 1 Lte1,2041

1 4 3%~y je1,2M+1

L - -
8- : : A=ca
1 .« & o 1
» San+1~ My SaN+1 V2N + 1/

Now the determinant of C may be found in simple closed form., Some

~
- more notation (9] is required however,
Define the "difference~product” of the array ('1"2"“' n) {
as follows
® i=}
;1,2(.1’.2'....ﬂ) - ﬁTT (.1 - .j)
i+2 =1
P then [9]
(2841)N.1/2 172 1
5 . lcl = petc| = (-1 E (81080000 e8oa) 8 (YgaYg00 000 Yayy)
s . 2N+1
U
- kel K

28+l

vhere u‘ is a cross product i.e. U = TT (6x - 11). Using Cramex's
i=1

ruleon 3= CA and taking lgul as the deletion of the ith columm,
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e jth row of |2| in the usual expansion about minors, gives the following
explicit form for the solution of the truncated (infinite) set:
sn 1oyl
BeCA= A =2 (1) *B
J : 3 lel
vhere B, are the (measured) r.h.s, of the normalized equation set allow-
ing one thereby
®
1) to see how an error in {'1} night. pregy wis.
2) the explicit calculation of the pusdisi” sciucion and suggestive
. perhaps of a new analytic-product form sepinsmirative of the band-limited
function,
3) to settle the question of what, if any, constraints on {Bi}
'
are necessary to obtain the solution of these equations [e.g. 5] in the
presence of noise or otherwise (Linfoot and Shephard [8] found in a simi-
o~ lar but not applicable set explicit constraints on the various
.
{Bi}’ {61 - 6“_1), {yi - Yi+1} etc. dictating convergence.) .Ue are
presently attempting to resolve these questions and can provide here only
8 few initial observations.
»
As the row~columsn deletions leave yet another alternant form
1€,
-l—i-}- - Aji is mildly tractable, just delete g and Gj from the ex-
c .
r 3 L
pression for lg | and divide obtaining
B 28+1 ;'N_-O-Il_.
o b, = ko1 8k = Yo) gy (8 - vp) 1
. -1 201
. (1 =1)1(2N+ 1~ 1)1 (8, ~v,) (8, = &) TT G =8
. L Ke1 J Keg4l 3
)

N, P -
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hence
2wl 201
TT e ~vpent -7 1T, -y,
o R & pIS!
72N (1-1)1(2N+1 = 1)1 8, - vy 1‘“( (8 - 8 TT (-
3 K=§+1 5

it is now necessary to assume some regularity on the sample points Gx.

1 b, -5, * = A, for all i, the monster simplifies thus
2N+1 +
i h|
A
17O 2“(1 DIEN+1-9)  §51 (8, = ¥ (1 -1 (2N+1-9)

One advantage here, the option of calculation in extended precision of the
coefficients of Bj hence allowing one to "Monte Carlo" the direct solu-
tion and examine questions of behaviour.

The linear set of equations, previous, is known ill-conditioned. In-
tuitively, the compressed visible range, relative to the range of hopeful
extension (say |8] < w< N|g|, N= 5,7) and the slow convergence of the
sampling series tend to require a conditioning problem. One can't enlarge
the visible range. Since we can sample freely however in its continuum, it
is reasonable to ask if the "sampling" serier rate of convergence may be
enhanced. To this end we discuss briefly the convergence properties of the
sampling series and produce the long awaited "q;lick" proximates promised

previously., We thenusethese new series to obtain an analytic continuation

of the power pattern function.

*’neo, 51 = Ai + &o

P “‘|' N } ) .
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To start, consider the mean-square error in truncation of the sampl-
ing series over R . Recall the orthogonality relationship of

{sinc(u -n) };' on R, and let

‘N(“) » f(u) - fn(u) = -:4 f(n)sinc(u -n)

|n!_>_N +1

where fN - | 'Z %-f(n)s:lnc(u-n) t and f 1is of exponential type =,
aj< N

bandlimited [~w,x] . The m.s.e.

E= j € € du = -Lz f Y, f(n)ainc(u-n)% t(n')sinc(u -n')du,

‘o n h0 N

Note orthogonality kills the cross terms hence E = % z lf(n)lz.
* |n|>N+1

The —fésl are Fourier coefficients and decay at least as
0(;1-). Thus the m.8.e. in truncation is (cf. [10], p. 170) with some work
~ —15 + As mean-square error is quadratic, one might expect and would find

N
absolute error '\o% , hence the "tardy" convergence observed. Indeed, if

N> 1

€ 'lf-fl'l )3 f(n) sinvt_, )Y [£(n) | .lsimvt

1 N ln]> 8 " FEB T 01T R e - n 2
N
0(1)

and

= -~ 1 d 1
2 t-?n+~°(z: nZn—d)'\' '[N u(u-uf) -i—'t.‘“I.

h=N

sin wx
1 £

*
sinc x =

"'fot convenience 2a = ¥, renormalization,

1
|
|

N e e Mk e e i
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1
!
|
3
i
i

o Published results indicate [11, 12, 13] that though it is possible to
"fine tune” the above, the magnitudes must stand, We now derive sampling

proximates that display enhanced pointwise convergence of arbitrary order,

. given knovwledge of f and its derivatives in the visible region, at arbi-
trary points interior to the sample points (unknowns , P(5= ) ). :
Let g(x) be of exponential type = (this scaling to simplify nota-
* tion) so that 1
g(z) = f " efty(vrat 1
-r
. where ¢(t) 1is n? [-n,n]. Form the quantity ;(z) - 8(2) 20 -g'0)x
where without loss of generality we require krnowledge of g, 3': g" (later at
g = 0, One.can readily generalize to any point in the visible region. Note
* 8(z) has a removable singularity st zero and i
> 2
| lin () = lim 8(0) +1—1'(0) + 7 8"(0) + o0 ~5(0) -8 (o)ﬁ ‘3';“’-1
T~ z-+0 z=+90 '2
-
These quantities exist and will be l.z(ll) for g(z) of wodest growth i.e,
g(z) ~ 0(z%) where a < 3/2. In this case, g(2) 1.2(11). 90 by the Paley-
k - Wiener Theorean", since § 1s of exponentisl type ¥, it is band-limited ﬂ

[-%,%]. Now replace E(z) by its Cardinal (Sampling) Series representation:

g(z) = §ﬂ%cmw:[:%1-l§l-.l¥gl]. 1

We require the following identities:

- (1) Zv%.%-ﬂ%’l -%(1--'—’%;'!-) wvhere hereafter

N £

'm. cnt:lnl!unetinn £(s) 4s of order 1, tm ¢ and belongs to l. (R)
12 £(z) = 5= f o1%% (5)as whare (o) s 32(41,1).
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the prime will denote deletion of n = 0 term.)

3
1 sinng 1 {nz)
Proof: Observe 1lim = (1 «-——=) = 1lin =(1-1- = lim =0 .
2+ 0 %z 2*0:( 3! ) z-voj! ’ .

hence the quantity i{s entire. As sinc(z) 1is bounded,

2
L (R), and of exponential type 7, we have, again by the Paley-
Wiener Th., the entire quantity is band-limited. Thus using again the
sampling theorem

1, _ sinmz - 1 sinw _@:l.nwz)(-)n (=)"sin
¢ nz ) %; n Q- nz ) n(z-n) - Z' m%z:ns" y

z
N RN
= §(0,n)

1 .nmg-z“ 1l sinnz wzsinn
(11) Z' ;3 %(2-n) -;7 n- rz ) - 31 %z

1 -.'_.i.“_"!]

Proof: Consider —12- wz J» note the quantity has a removable
z i

singularity at zero and is thus Entire, of type «. PFurther, the

limiting value at zero is 12/3!. As the quantity 1s also '.I.z(lt) the

sampling theorem applies

n 2 ;
b o - s B L . stan sl s %

These results set directly into the sampling expression for E(z),
holding in mind that g(0) = g"(0)/2 give:

— n
sinrz g"(0) + L 5-22 sinxg ;gnz < 3'(0) _i_u - '::“l

Bl2) = 2nz N wvn (2 - n)

2
- g(o)[:%u S )




A
Now, writing g(z) 1in terms of g(2) as previously defined gives
i
)
‘ o Z8innz ' sinrz (8innz znsinwz
g(z) 55— 8"(0) +g ©) — te8@® [ ar T ]
+ Z' ()" « sinvz + g(n) * £ i
® N n2 * % e+ (z=n)
3
The result is confirmed* {14] in the literature. We note that knowledge of
- higher derivatives at a point in the visible region produces a "faster"
family of series [15). Also, estimating the (second) derivative in the
presence of noise is difficult enough - again an "ill-posed" problem, but
e 8 well studied one. (e.g. splines, interpolations etc. [16]). To obdbtain
- these even "faster" estimators one need only substitute more terms of the
Taylor series cf. g(z). Late literature quotes a "slower" result requiring
B . lknowledge of only one derivative [17] - the proof does not generalize:
] n . .
g(z) = _.._'m" z g'(0) g(owzzimrz + T &) stnws - g(n) - ¢
N m(z - n)
*

e

Somewhat less ambitious but more practicable. At this junctare it would be

possible to establish error bounds - a little thought,however, would convince

ot shown, general discussion [15] gives germ for proof.




the reader that the previous bounds are improved by a factor of n in

the series denominators so results are one to two magnitudes better.

We illustrate for ¢(t) = |sint| the explicit series form. (A

numerical table of convergences and error is in Appendix B, pt. II). Kote

|sint]

smooth.

has the required vanishing properties at + 7 and ig not too

s - "ot fingfay o 2L toomE) oy

~Tr 1.2
g(n) =0 n odd

g(n) = 4/(1 - na) n even.

A simple way to find derivatives is the direct differentiation of the

integral representation. Whereupon, g'(0) = 0, g"(0) = 8 - 21r2 .

Thus the three series interpolations for g(z)

.. N
1l =
D o T (TP

2) G(z) = -—112— + Z ' (e - )

3) &(z) = [B-2r) BER , yslim , Ty

sinmz

(etnz) + 2(——iy)

heinmz

l-en

lmiml"_

(Cardinal Series)

2:' (1-n")

evenn n 7{z - n)

Note the series are O(-:-LB-), O(-]-j;), O(-lg) convergent respectively. However,
n n n

large values of z require a "cancellation" convergence - the subtraction

of large quantities from each other - which can get sticky.

We will be

openting,' however, with £ visible, so given accurate measurement this

fact 18 of little import.
Needless to say, one can now rework the solution of the truncated
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linear sets previously presented using these "faster" sampling series. (A
‘;‘ typical example is discussed in Appendix II). The analytic arguments are
paralleled by those previously given and we omit the details. It is easy
to see that the double-alternant form is preserved in the "faster" equation :
set and, it 18 possible to consider the behaviour of the exact solution. '

In passing we note that these "faster” formulae for band-limited functions

may be used in the previous integral expression for the mutual coupling to
derive a rapidly convergent expression for the coupling involving only the
sample points. Consider the expression for g(z) (-m,m] with
e g'(0) = 0 (maximum at 0° = 8) as an example., (We use the second expres-

sion requiring knowledge of the first derivative) j
n
0 - . ~iuD
. “ D 3 rgg !;:mm +§. (<) (aﬂiﬁg):! nggnhe D,
. a2 J “‘L—F———E“ w- f T
o - 00 -u

The first integral has been evaluated as a convolution. The remaining may

Py be easily found with the following
31(n,8,D) _ j'” 4ty i, sinm(u-n) du
T - nr gm
- ] -

which is directly proportional to the required quantity. (Note powers:

e Hb(n)(x) etc.). The numerical evaluation of BDI is simple, just the
q

introduction of & cot @ term in the integrand of the 1~ form of

I(n,8,D) (ef. p. 7). 8o

T YT v v T e ey

L daryn, ik . -~

|
|
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where the series convergence is now &3- versus —15 previously. That
aDID ~ 3‘-1- is obvious from the convolu:ion form ot’n I(n,8,D) over a finite
interval. i.e.the Fourier coefficients of the Héa) 's rirst derivative.

These arguments, again, may be made quite general with the accurate
knowledge of each successive derivative of g(u) at a point enhancing the
rate of convergence of 221 by an order of magnitude as gbove. Thus the
series form of 221 is made practicable if it is possible to exprapolate
the first few values of P(g-z) outside the visible region. A perusal of
the appendices hints that while least square "ball-park" results are
readily forthcoming much work needs yet be done. The stabilization of an
ill-posed problem, described heretofore in totally analytic terms, e.g.
simultaneous solution of linear equations, may be accomplished if constraints
exterior to the data are introduced. Now we leave the discussion of the
"sampling-proximates” solutions to explore the general methods of Miller-
Tikhonov regularization for such prohlems. We will later return to
these truncated linear sets as subject for regularization.

Regularization is necessary when the problem at hand is "ill-posed"
which is not to say unphysical. Required in this context may be 1) numeri-
cal differentiation 2) analytic continuation 3) solution of Fredholm or
Volterra equations of the first kind etc. Many proper physical situations,
e.g.computation of atmospheric density profiles, nuclear scattering, inverse
scattering, remote sensing, and imege enhancemente in optics give rise
to models that are "ill.posed" or "conditioned". The problem at hand,
numerical analytic continuation of bandlimited functions, may dbe seen as
ill.conditioned with the aid of the Riemann.lebesgue Lemma. In the Fredholm
formulation, we wish to solve for f(x), with g(x) =f f(y)emdy
g8(x) for xev given. Now eiyx is a smooth kernel, thus this integral




operator does not have a bounded inverse. To see this, let
£ (y) = sinny , note that for n_ big Ij; te(y)e"wdyl may be made
as small as desired by the Riemann-lebesgue Lemma. Hence f£(y) and
(y) + fe(y) are indistinguishable as "solutions" i.e. finite changes in
£(y) may produce infinitesimal changes in g(x). However, -if one restricts
suitably the characteristics of the solution, f(y), e.g. take
f (f'(y))ady a minimum, one produces a restricted problem whose solu-
tign is unique, with the continuous dependence on data, g(x), restored.
To this end we consider three such formulations. It is not known as yet
vhich of these procedures are optimal or feasible. This must be the sub-
Ject of future numerical research. We can only outline the various methods
and indicate our reasons for preference or ol..erwise,

Tikhonov regularization (18, 19, 20] may be readily applied to the
collocative solution of the Fredholm equation of the first kind [21].
In such a solution, the required extrapolation is Just a matter of quad-
rature i.e. given g(z) = _L f(x)euxdx and given f(x), g(z) is
"defined" by quadrature outside V - {-B,8]. The problem is the determina-
tion of f£(x). let Tf(x) =j;, t(x)eizxdx and take an 12(V) setting

[21). If g 4is the exact pattern and 8, the measured pattern, let

le, - &l <v. Introduce the functional M(f,g.a) = e - g I° + ani(e)

vhere W(f) = c°||r||2 + Cl||f1||2 and Ilh(x)||2 = f h(x)h(x)dx , 1.e. the
standard 12('1) norm. o, the regularization pzruneter, is >0, with
C,C; likewise. A theorem (18, Chap. 1I] of Tikhonov requires that for
all g, ¢ 12(\!) there exist a unique, continuous, differentisble fav
minimizing M given a, 8y This 1’” is seen to be a stable solution

to the original problem in least squares sense with fuv =L as

{o,v} - 0[18). The oM(f) acts as a sort of Lagrange multiplier, restricting

B
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PY oscillatory or excessive behaviour of f, frequently o is quite small -
providing "Just a bit" of damping. For such an f oy’ the first variation
must vanish i.e. g
e » .f
Bf[M(f,gv,ct)] =0 &= [T*T + a(CoI - C,D )]fav = T*gv ;
vhere T*f = f e'izxf(x)dx and
v
L
_ 2sinf(x' - x)8)
e -j\; P 2B g(xtyaxe
- Note T* 1is the adjoint on 1[.2(\7) » D the differentiation operetor, I )
identity ete. Thus a formal solution is
= 17lreg, where L= [T + o(C I - €,D%)]
[
> Note that the choice of « has not been specified. Here some of the
"ad hoc" flavour of this technique sets in. For specific values of
e C, =2, C =0 [21) 1t can be shown that £, -2 |'< v/2/& where
fs minimizes M(f,g,a) (noise-free smoothing . For [[f -fll< Y’Y<u+x el
where N, is max In| for Terf - AT with g << ||f||, o < Nliefl. Hence
1 e with some knowledge of [|f||¢ f Icurrent|2magn:ltude in "slot") one has an
upper bound on o. A bound on |t -f|| may be calculated anda (21,19]
given, thus |if, - fl < v/2f + (afa+ N)l£]l. If the self-impedance of the
, PS antenna producing the given pattern is known, one might pick o such that
3
‘ the pattern solution provides the best approximation to the measured self-
g 4
S impedance (to be evaluated by the integral forms involving visible and in-
Py visible patterns for self-impedance discussed previously.) In general, the

selection of a 1s a "questionable" procedure subject to numerical experi-

ment. In using the Fredholm approach to continuation, we are required to
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solve for a quantity, f, which is then integrated with another kernel,
providing the required extrapolation. One might expect that the reinte-
gration would obliterate scme of the error in solution. However, we are
also finding the inverse of a transform , f, only to retransform it, a
seemingly redundant procedure. In fact, it can be shown ([22,23] that the
error in finding £ 1is subject to & logarithmic continuity, whereas the
optimal extrapolation error for extracting g(u), u e invisible, ie
subject to a Holder continuity i.e. error in |f - fvl ~ (4n v)'l as

& TTETEIE € whereas Ig(u)-gv(u)|~ (v)8 a8 g, visTere” & with

u € invisible region
0<PB <l for optimal methods in both regards. The hazards of logaritimic

continuity need numerical investigation in this comnection. An important
benefit in theuse of the Tikhonov scheme is its ease of implementation.
Whereas "optimal" methods referred to above make use of the Prolate Spher-
oidal Harmonics, the procedure outlined here requires only simple quadra-
tures and the equations in guestion are stable. The descretization of all
operators with any Gaussian Quadrature scheme (to minimize required
sempling of the visible pattern) presents no nuisance and the inversion of
L presents no difficulty. (Also numerically cheap!) Details of numerical
experiments [21,18] are also encouraging.

A more elaborate technique of regularization, due to Miller [24) and
extended by Viano et al., [23, 25 see also the exhaustive references listed
there] makes good use of the Prolate Spheroidal Harmonics to establish the
analytic continuation of bandlimited functions. While quite elegant, this
theory's use of P,S.H. condemns one, in trying to implement it, to a host
of nmerical nightmares. Even recent algoritims [26] for ccmputation of
P.5.H. eigenfunctions and eigenvalues require messy matrix bisection/Strum
e.v, sequences procedures which allow no simple change or rescaling without

atfcgoniiiinion e
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camplete recomputation at great expense. The only virtue in these techni-
ques is their "best-possible" nature. Some consideration shows the method
instinctively no different from those suggested [1] in our first progress
report. We consider briefly these results.

Let X denote the set of all permissible pattern functions (i.e.
f ¢ X is band-limited appropriately, -}r |f|2du <w etc). For feX
let Af denote whatsoever is subject to ::asurement (the "perfect" data
in V) approximately. Take h as the measured data. Af and h are
contained in the "data space” Y (in this case ]Le(v) ). To stabilize
the problem, one constrains f by "boundary” or "global" values. Let
B be & linear operator. Bf provides some constraint operation on f.

Bf € Z the "constraint” space. Then if fo satisfies
|| af_ - nl| y < € (satisfies expected data fit)
||Bf°||z < E (satisfies global bound)

it may be shown fo also satisfies (by Lagrangian arguments)

Il Af_ - bl % + (%)2 IIBfollg < 2¢ 2, This last equation may be mini-

mized by solution of the normal equations to obtain an f which can be
shown to be "optimally" fit to £, indep:ndent of norm used to measure the
error [see, e.g., 24]., If the criterion of error is < « >e » it may be
shown <f - f > «< Y2 M(€,E), where M(€,E) 1is defined as

sup{<x>, |x € X, llellY <€, | Bxlk < E} - the "best possible stability

estimate.” Called as such since M( €¢,E) gives the "size" of all f that

satisfy the global and data bounds, for such (fl,fz), ”A(f1 - fz)”Y <2 ,

IB(f, = £)]l < 2E so that <f; - £,> < 2M(€,E) [see 23,24] etc.
Whence we may take f = [A®A + 6%)2 B*B]'IA*h as a regularized
[

solution whose error (in < >e) is "best possible” but for a factor of

Hrtams bt
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/-. Numerous estimates may be fashioned in terms of the eigenfunctions
and spectrumof A, A*A, etc. for the various error norms [cf. 23] but
these estimates generally require full knowledge of the spectral de-
composition of the various operators - something not readily available
here.

Our problem is placed in the above setting when one considers the
problem of extrapolation of optical images (see [25] for physical details.)
We require explicity that the object image 18 of bounded emergy E in
1% [-1,1).

Let x = x(t), t € R, be ][.2 (R) , bandlimited such that the
image, x(t) = j c/2n eZ“itm x(w)dw and take Ax to be the restriction

-c/2nn
of x to the interval [-1,1], (We assume that the images are known, in
a system of unit magnification, over an interval equal to the support of
the object, [-1,1].) Take h = Ax + z, the image corrupted by measure-

ment error. The problem to estimate x(t) given h(t). In this context

_we identify the following

—

1 X «—u\mz(\nﬁ‘u—mmd@ted £}

2) Ye&——> functions of compact support [-1,1] ~ 1" (-1,

3)  Ax(t) = x(t) t € [-1,1], = 0 otherwise

1
4)  A*y(t) = fl %%:—%:E-)— y(s)ds y €Y etc,

It is possible to specify a stabilization constraint

1 1
x(t) -f 8inc(t-8) (.45 wher f v(s)lzds < £
-1 (t-2) ¢ l

t=-g) ™ -1

(band-pass filter etc.)

T

e
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with regards to optical object energy, With suitable normalization

one can take B = (A*)'1 and after much dust get a "best" approxi-

mation
3/2
® Ak
x(t) L )-: —_— hk‘bk(c.t)
k=0 X2 + (_5_)2
k E
1 1
with hk - (h,vk)Y - 7;: -1 h(t)wk(c,t)dt and Y the appropriate

P.S.H., This review is not designed to be complete - details may be

found in [23,24]., Others have considered the use of P.S.H. to

extrapolate [27) band-limited functions with constraints and achieved
similar results, Though keenly analytic in nature, they all evolve as

quite cumbersome due to the use of P.S.H., We therefore continue to

ignore such schemes save as possibly benchmark measures for other pro-
posals. It shoud be noted that the constraining operator B, data fit
constants (€, E) need not both be known [24] to use the Miller method.
Through certain concavity properties it suffices to know just one of

these quantities. The selection of B, the linear constraint operator, is
quite open. Further study, elsewhere, would seem appropriate.

Let us note that knowledge of the self impedance of a given antenna

does not qualify as a constraint in the sense given above. (This does

not exclude its use as a Lagrangian constraint as we shall see -~ it simply
will not allow us to use it to stabilize the ill-posed problem.)
Specifically, the input impedance zin a L % is a functional

of P(u) unless we are allowed to vary 8. 8" -u But P(u) implicitly
(especially in 3d) contains £, hence rendering different frequency measure-
ments, unless P(u) 1is 8 invariable, worthless, The question of what
information may be had from different freqyebct measurements of the

visible pattern and impedance is open. It would seem necessary to have,

a priori, some notion of antenna geometry to pursue this

e
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1
problem. ‘
@
That self-impedance specification will not stabilize the prcoe < is
seen in the previous ILZ(R) context of the Miller example, That !
< P(u),——-—éa———-> = Const merely implies the projection of P(u) on the

L /a2 _ 2
L2(®) "® "% vector —2—— s fixed - this does not preclude wild
2 2
oscillations as previouslysdi;cgssed over sets of finite measure as would,

i ' say some limit on the average value of P'(u) (mean squared). This does

: )

Lf not mean one ought discard this information but, that it is not enough
hence, one can use it as another Lagrangian constraint. (It turns out that

if one tries to continue the pattern function (not power) the impedance

®
operator can be reformulated to be of service, f _..Lf_L_ du places
2 '82 - 02
some constraints on |£]“du= but this case will not admit useful ]
R
° mea surement ., )

The final method of regularization applies to the solution of linear
equations with error in the "right hand side" (i.e. the specific measure-

ments of g(;—:) + Error (n)) and the stabilization thereof, [28,29,18,

L
Chap, II1). These results apply directly to the truncated linear sets
considered in the text. The setup is as follows:
» given é§-§+f andz:le:l ie2<<1
how can one vary € (since Q' g are fixed this is equivalent to
° "vary £")to minimize the a quadratic constraint on f,
l Q= Z hij §f g " g*!-!g. There are two cases of interest:
i 1) there exist {ﬁ(i) }: such that Q is minimized and
* I - glf < e 1 this case ;(1) is a variational solution
. to 8Q =0 and Af = g + € = vwhich is unlikely - g(”
s .1 = index of vectors.




is however a valid solutiomn.

e
2) For Q such that a variational minimum does not occur within
{f} such that ||¢||2 < ez, we know that the minimum must occur ‘
PY on the boundary of {f |(Af = g+€ or f£= é-l(g + €)) and
€]l = e} or simply for {f| [le|l = e}.
Therefore we may use the method of Lagrange Multiplier(s) to solve the
o following equivalent problem:
Minimize Q = f*Hf, subject to the constraint
- '. he
(Af - g)*(éf - §) = €k e2 i.e, minimize the functional
. - S hd
f*Hf + v €e*e,
- me [« IO -~
In our context, we may require a second Lagrange Multiplier to take into

e
account any knowledge of the self-impedance associated with the measured
visible pattern. In general, one may also require Zm =f°ce

- Thus for F(g) = 5*’35 + Yof_*f + ylg*g we require Gf!-‘(g) =0
[ ]
2
2 _ RARAE = pRAf = £ * -
i.e. i, {IE*A%AL - ghAf - £*A%g + ghgly, + £MIf + v,f¥c) = O
* - ARg - A% -
s or (2a Af - A*g - A 8)Yo + 2Bf + vye = 0 i.e.
N
% - RY o —
‘é éyo + E)S Yo# g 2 &

S vhere Y, Y are to be selected to satisfy the discrepancy and impedance
constraints, (In practice the second constraint is linear and it incor-
porates directly into the solution of the above equations; if A, f are

s nxn, n etc, , we have, with the equation zm =f+*c n+l linear

n
equations in terms of the n + 1 unknowns {f:l}i-l and v, , using vy,
L
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1 'asa known" parameter which we vary to (erperimentally)satisfy €*¢€= ez).
® The application of this technique to the previous sampling equation set(s)
is immediate and will be considered and coded as soon as time permits, 1

A few remarks concerning the method are in order.

1) The quadratic constraining function Q 1s essentially arbitrary.
Possible forms for E are "minimum variance", first difference (tabular),
and prior departure from given form, e.g. the asymptotic pattern form.*
Which form or forms are suitable must, perforce, be found in an empirical

fashion.

e 2) One can show that the variation of f with Yo is slow and
the ensuing numerical satisfaction of € * € = e 1s "easy" with convex-

ity arguments.

3) The method is a "generalized" least squares technique no more
difficult than the solution of the normal equations. That it is possible

to satisfy and solve the Lagrangian constraints (no inconsistency) is

not clear from the above arguments - we refer to [18] for a discussion
of this. The method was one of the first tractable solutions to the

numerical problem of the First Kind Fredholm Equation, [29, circa 1962).

Conclusions and Extensions.
We have presented the rudiments of a theory for mutual coupling

between canonical minimum scattering antennae requiring knowledge of the

total pattern function, The problem of extending the visible pattern
function throughout the entire required domain was solved by introducing
the constraint of band-limitation. Whereupon, a series form representation

. of the required coupling integrals, utilizing various extensions of the

L
"note g(f) = [ ' Femax o £(n) (2n)2ETES see, e.g. [30],
-%

an "observable " quantity.




sampling theorem, was developed. Lastly, we have proposed several
techniques that should allow the computation of the invisible pattern
values from the available data. Several well known regularization & |
techniques were drawn from the literature in the context of our pro- |
blem. The present research must now shift emphasis to the numerical
validation of the "sampling" forms of continuation and/or comparison to

the Miller~Tikhonov method. The ill conditioned numerical problem at

hand required an extensive investigation into possible analytic forms of
solution and having accomplished this, we now hope to devote substantially
more time to the actual computations required. The appendix confirms

at least order of magnitude results are possible so, at worst, "reasonable”
bounds on the couplings may be expected.

There are several points novel to our approach. Intrinsic is the

restriction to coupling amongst like antennae. This is required by the
difficulty of phase measurement. The problem of phase retrieval [e.g. 31]
RN is well known in optics but usually requires, say for a Logarithmic
Rilbert transform resolution, knowledge of the pattern magnitude and its
zeros over a relatively large interval, information here unknown. It may
be possible to model or bound phase effects on the coupling and extrapola-
tion formulae previously obtained, whereby the generality of the analysis
would be restored. However, save at the expense of accurate phase measure-
ment, the problem remains. The most useful observation is the bandlimited
1 nature of the pattern power function. This lone fact restores the accu-
racy needed to consider extrapolation seriously. With the hope of extend-
ing the techniques to multiple dimensional antennae, we have kept the
sampling theorems multidimensional character in mind [32]). These notions
* would hopefully allow analysis of measured couplings between planar aper-

tures and the like to follow through, whereas the various integral formu-
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lations (Fredholm) would not readily reformulate, Note the assumption of
bandlimitation to a degree holds implicitly some knowledge of that degree.
To the extent all physical systems behold finite measure of energy and
geometry (explicit in té ) suggestive of the bandlimit, one may be for-
given its accurate assumption, The sensitivity of this assumption to
error is another matter. Lastly, the optics literature, in considering
the problems of image-processing and restoration - likewise demanding

extrapolation - may yet be of further service.
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Appendix A

Numerical Illustration of the First Varistional Method,

Correct and generated solutions to the extrapolation problem for

var jous measure are presented,

For this and subsequent examples the

é
following bandlimited power pattern, typical of a Z  slot radiator,

will be employed.

P(u) =

P(u)

Note the pattern is real and even, whereby many

simplifications ensue,

linz (A0

2
mu, 2
(—2-)

2
» P(0) w1, P"(0) = -

1 - Lehert

2)
! (=)"sinnz , 4 sinnz
é Lo ) thnzl + - (Sampling Series)
; 8zsinnz 1 + sinrz
San “3 (nz _ z2)“2 wz
n>0 (utilization of .n.'-n)
n
. '
zsinnz -n, . (sinwz  swsinwe, | z: *'n
2% 6 Yz kY] I‘2."(“._”

odd n

("fast sampling series"

e A ekt e 11 e

e ks e o aa

3
8z sinng gnsing sinwz ., znsinwz
'°§n 3 Bl T 12 + G ot A )
n>0
("fast" series with LI constraint)
S— it \ s Lo




Taking an ]Lz(-'n,u) setting, pick as the unknown proximate to be matched
N
- sinn(z-n
on (=8,B) A(u) n-Z-N & ~r(z-n) and invoke the constraint that a =a_,

split the range of summation to obtain

3 Aw) = a simrz_’_ £ g-z“zzamu
° Tz n=1 t(zz-nz) n

where a = 1 = P(0), which is known a priori. As previously discussed, the

3
{.1} need minimize the functional

B 2
(A(u) - P(u))“du

J({a D=
17 Jo

S
subject to the constraint of self-impedance. To wit:

B sinzl;- du
f = C, (resistive, measured)

8 (12!)2 B2 - u2

'inz%! du
f =C, (reactive, measured)
lul > 8

("i"'l') 2 Al - )

The last constraints provide the first two of N + 2 linear equations for the

unknowns {'1}’ Y Yp

B
o= [ aw—=2—; - J s
L2 _ .2 Jul>8 /u2__ 85

B B2 - u

The rest follow from the minimization of

i
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g N (9)™2usin 2
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-B =l w(u-2% °
$
1 2
-8 /az -l [ul>8 (2 g2 ‘
% : 1
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' j—liZusin d
3 + f L - - O fot i= 1,.0.,“0
| & lul>e x-1?)  a? gl
wiyr
k : vhere w(u) = 2 sﬁuu » also even. Notice all integrands are even

(II"IT
and all lingularitziee are weak or removable. To that end, let t = /B --u2

TR
’

or .Juz - B where appropriate, then

°1 -2 8 Alw) du - 2 8 sintu du g 2 f oin'l v/g -v dv a
0. 72 o ™ /“"“iz n-]. 82 —v? - n? n’®
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Appendix B, Pt, I,

The solution of Least-Square Sampling Proximates. Slow and Fast.

For various values of (8,N) a least square and direct solution of %
the Harris-type extrapolation procedure is provided. Again, the even
slot-like pattern is used. Note the order of magnitude "contour" agree-

aent.

Sampling proximate:

sinmu i N u is inu :l"
P(“i) - - 2 2 .n i= l.ooo,No
i n=l (n - “:l.)

ui € [‘B’B]

"Fast" Sampling Proximate:

PaLy = ( umrui . n uis:lmtui) ] milimmi .
i ] uy 6 12
N sinmu, ° uz ° a
i i n

n=l nz(n -u 1)

vhere 1=1,...,N, u, € [-§,8]. Note the solution to ATax' = ATp 1s j

given (cf. p. 14 etc.).
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a a=1,3,5,7

(.5,2)

(6.0,3)

(1.5,5)

(6.0,4)

H an-0.00 for n even

0+4052848E 00
0445031 04E-01
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0.8271120E-02
0.50035128-02
0e3349462E-02
0.2398137E~02

0«1051074E-04
0¢3393462€-08

i
‘o.a"’.
=0011228

ic0©000©
100000

0.4054381E 00
o.onszoeee-gs

~0e891174€E-04

__=0.27868828-07

0.4106502€ 00
Qe ’“.a‘ SE-01
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(5.0,7)
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=0+63381 01 E-02
Q¢ 1724828E~02
0.9194S¢9E~-04
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Ce4647213E~0)
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=0« 4907089E-01
0.5001487€6~01
=041003777€ 00
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Note the extrapolative capacity is
limited in keeping with the error in

integration (about .0001)
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Whereby we have sanitized most of the integrands for computation., These are
3
still a number of numerical problems 1) the integrals over an unbounded
range have a slow tail 1i.e.
- [T 2 1A """![2*32
. 'Tail"'f sin(nv/t "’B)d:-f _— 9" 4
0 t2+n 0 Bu® +1

where w = 1/t 4s used and the infinite integrand "essentially" vanishes near

w~ 0 by cancellation from the sin(l/w) term. 2) The integral

8
J[ sintu dy provides some nuisance at t = 8 which
0

may be solved by the substitutions we=f -u, ws= tz.

Results of solution for some (B8,N) pairs follow.
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“angwer” for s both fast and slow series
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Appendix B, II.

g(z) = j"’ eutlsintldt - 2Q1 + cosrz)

=T 1 -z
] sinngz
8;(2) = Y Y g(n) (Sampling series proximate)
~2N
28 sinnz lozz 2,zginne sin®z . zwsinnz
g = 2 7 + - FEEEE 4 450 + S5
«2N n“w(z=-n)(1-n°)

(2nd derivative proximate)

evaluated for 2N = 2, 12, 24, 36, 48
at points 2z = 16,0 + (,221333)%k , k= 1,2,3,4,5

Note the improvement possible for even g(z) as follows;

M M M
sinwz sinnz sin ve
§ (z-n) 8 nz-:]. te) & ngl (z+n)

M
- go) + 3 sin rz g(n) ¢ 2t ) converging now o(—li-)
nel " o2 - o2 n

It is possible to reduce our labor considerably for g(n) even or odd thus.




ANSWER

~0.1756904E~01
~0.1136048E-01
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~0.4895511E~03

0.1834701E~01
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-0,1798547E-01
-0,1768929E~01
-0.1761997E-01

NEXT K
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-0,1989841E-02
-0.1201773E-01
-0,1154983E-01
-0.1144117E-01

NEXT K
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NEXT K

0.9681560E-02
-0.3699139E~03
-0.8303262E-03
-0,6526075E-03
-0,6120130E-03

NEXT K
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