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Abstract

A theory for mutual coupling between tw dimensional canonical mini-

umn scattering antume is reviewed, xpressions for self and mutual

p impedance are formulated In terms of the measurable far field radiation

diagram. The case of two Wdentical aerials is considered in some detail.

The constraint of bandlimitation ia applied to the anteuna pattern func-

tion to facilitate the required analytic continuation thereof. imerical

analytic continuation is addressed whereby mpliz* proximates and

Miller-Tikhonov regularization schemes are examined.
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Consider a tw dimensional, isotropic, canonical miniu scattering*

antenna in a homogeneous, lossless medium set In the plane y - O. This

antenna produces a two dimensional E-type field i.e., ! parallel to the

z-axis. (see figure 1.) Taking E(x,y) - !(r.4) where z - r cos

and y r sin # , the spatial Fourier representation Is

R(x'y) - (x'y); - JR (u)eMi~x1du

r -:Lk-r

J i(u)e " du

u2 jul

where kinua + v , m/kj with

B = 2wfX and Implicit time dependence# e+wt asmed and suppressed.

Note the choice of cuts for v is consistent with the restriction

y > 0 for outwards traveling waves. On setting u P cos ,

v - B sin tj E transforms as

E(xy) - E(r,#) a 0 fS ()-ior co8(#-E) . sin , dt

where S is a fntmerfeld contour in the C-plen* - see figure 2. Deforming

S to a steepest descent path In the region of convergence for I gives

the asymptotic

*e use freely the previous study report [13 by Professor Trances-

chtti. Constraints as "invisibility", i.e., antennse that do not seat-
ter with particular loadings of ports - "Canonical Kinmla Scatterl"
being as such with ports open circuited - are discussed at great length
therein.

.
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E(r 1,) -0 $In i(n Cos s) / -ir
1b.

It is possible to define a normalized antenna current I such as to

require 11] reciprocity, f(#) - f rec(), where f(rec) is the trans-

mitting (receiving) effective height per unit length. This fIposes the

followuing constraint on spectrum and pattern functions for real values

of the observation angle 4 [O0,w)

cos)
4WV

The identity theorem provides for the coincidence of the above quantities

throughout the comon domains of analyticity. Thusas f(u) -f(Oco C),

we know the spectrum t(u) if we can find the analytic continuation of

the pattern function, f(u), from the visible region u i [-0,0] through

all regions of comnon analyticity. As f(u) & 1(u) are often entire

functions, this region ts generally all of C. Lastlywe note that the

Fourier transform of the magnetic field associated with this E-polarized

field, A(u) hes the following properties:

1) !(xy) U(xy)a f E(u); a-ik'rdu

2) (u) - x (u)

With these tesults it is easy to find the total power, Ptot Injected

nto the region y ! 0 by the anteuna

IN,O) - f Z(u)eiuSdu

CNIx,o) - f (Sfitu. ,+
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P x ,*fA -l f I(u)1*(u)v du
tot J k D A 2 jj Jo

Frequently Peat " i 2  where Z - R + IX. the antenna systm Input

impedance(e.g. "one mode slots" In ground plane or infinite wires)-

Here one has a relation between a messurable quantity Z(o) and f(u)

which we shall exploit presently. Note this constralt applies to

both "visible" and "invisible" values of f(u).

Finally we give a formal expression for the mutual coupling between

antennae. (See Figure 3.) Reference lines of Antennae: I - (0,0),

II - (xoy o ) - (re,#o). Take the plane-wave spectrum of antenna I with

antenna I open circuited (ote invisibility assumption for 1) then
V

the spectrum of the radiated field is:

The open circuit voltage at antenna II due to the spectral component

E1 (u)du is

dV 21 * - ..... du f1 (M)f1 1 (?)
4wV

A
Nov for given C, k a cost +sin CA whereby the radiation Impinges on

1I at angle C + w (see Figure 3.) thus by superpoeitien:

V 1" J fI()fl(c + W) -Lux ° - ivy, or
2f v "
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V21  mutual impedance + f(.)fT( . W) '4A o-LVyo
. -betwen 2 C..S. 2d duZ21 1. 1 4W v

.f f ()f 2 (C + O) O coa -) dcS

by the previous change of variable.

Nov we assume the antennae to be identical (e.g. in an array of

slot radiators etc.) whence these expressions simplify for real excita-

tions:

2(u) 2 f E(x.0)J'e"x, note -" U cos(C +1)

if u - 0 cos C then E(-u) I(u)* where R(zO) is the "antenna

current" (equivalent) excitation at y - 0. Therefore

U ~~~~ f ________ B ? U3e0 d

S0du = ;S "0 du

where ?(u) is the conventional power density with u - S cos C and

the antenna syatem, again, constrained to y - 0. If we force the

sources to be of finite extent the pattern functions become band- inited
i.e.

f(u) - f(O cos C) - e( GOs )OXJ(x)dx

where the excitation, j(x), is nonzero x 0 [-e,a Qi - J(x)&(y)s Is

an equivalent current.) The sequel considers the tilit at

this constraint of bend-limitati md the possibility of relaxing it

as wall as the requirment of Identicallity of radiators previously to-

posed. We should state here that we are attmptmg to calculate the

mutual couplings between aerials by ms of the previously deduced
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Integrals which require ktnowledge of the pattern or power pattern

function over taoth visible and Invisible values of argument. At band

are the values of the power and pattern function In the visible

1-0 u < 0 region and possibly the Input Impedance over soe range

of frequencies* The required numerical analytic continuation to Invis-

ible values is a very delicate process (a point to be amplified below)

and requires much constraint to provide practicability, In that one

may approximate any entire function by a sequence of band-limted

functions, the constraint of band-limited proximates to a given pattern

function is not too onerous. While the general problems of approxima-

tion In this context will be considered extensively beby, the virtue

of this scheme will be displayed now.

Consider the power like quantity f1 (u)f1 1 (-Qz). Note that given

f I The product quantity, f1 (u)f 1 1 (-u), Is also band-limited as

... r follows from the convolution theorem". In fact, f,(u)f 1 1 (-U) C 3~a

In the case of Identical aerials this f (u)f (-)m - (u) - the convention-

al poe pattern function, which may be wmesred with soe accuracy there-

by constitating a reasonable candidate for numerical analytic continua-

tion. (The Inaccuracy of phase measurement would seem to forbid an

attempt at continuation of the pattern function itself.) Let D be the

distance between aerials* reference lines then

J f (u) -iu du f fu (a 1U Imax~
z21  /o - T au i

*Space of band-limited functions iLee f(t) - f et(dw where

g() Is an IL2(-,; -r) function iLee. "square iegrable."

t 1 t. 2 t where f(t) * I oe V(udo etc.
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Then 1(u) a f(u).f (-a) ) * 4 2 v ls(x)*S(-x)](x) - G(z)

x ( [-2a, 2al.

= 0 othervise

Hence P(u) - J G(x) elUdx. Expanding G(x) In an exponential series

-2a 2a
in [-2a, 2e]; G(x) - Z C *inwx/2 with r a- f (x) e'inwXf 2*dxinn

,n rw 
-2a

(a ).a So one gets the "sampling" theorem representation:

2a 2a

P~u)'Ta-u)

-2. N -2a d

. r Panw) Sin(2&u-nw)
2a' 2au-nw

Nov insert this result into the coupling Integral and nvoke the "con-

volut ion theorem"

I. pPew." f Sin(2au-nw) e:uD

du a(2 (aun- du

/02 ' _(u~ 2 D

Recall the following fourier transform pairs

1) Sin(2au-n') , ez 1-2a, 2&l
2au-nw Ie

0 otherwise

2) and for our choice of cuts (of. p. 1).



~(2) (ii
S2 ' hence
42~2

2a

I (nD) inx2 ) (BID + xj) dx. Nov recall further

-2a

the integral representation for R 2) over finite limits

(2 2 -i(z+9/2),-2z Cot e
R W)j m .1 - de [Re z 1- 0

00

0 ~sine r'00gB

This may be used in the expression for I(n,,D) and limits of tInt-

gration exchanged to reduce I(nB.D) to a concatenation of elementary

functions readily amenable to evaluation with 1) fortran complex

algebra 2) any simple numerical integration schme. e.g.

for D > 2a we have
V/2

I(nBD)u 21eiBDje-i/2 e- 26 D Cot 0 Sin(nw-2aO+40B1&eb) dO

f sin e C-8 (nw-2a044ia8Cot e)

with a somewhat more tedious form for D < 2a.

So for reciprocal antennae with real excitation the first order (exact

C.M.S.) mutual coupling| 12 may be expressed

d;'u - P MnD) Note that

in the integral formulation the reactive part of the coupling is ex-

tracted from the integration over the invisible (a - Jul) range of the

pattern. Likewise the radiative portion of the coupling from the

visible portion, to see this note

Cp

-. ~ I



z du + du212, 2 4 lul B

where P(u) is in general an even function hence the first integral is

obviously pure real as is the second. However, we have reduced this

quadrature to a series whose nhterm has both real and Imaginary parts.

Thus the "sampling transformation" displays the contribution of both

visible and invisible parts of the pattern to the total mutual Impedance.

nw
It shouldbepointed out that P(s) and I(n,B,D) are both "Fourier-

asa
series" coefficients of G(x) and R (2)(01D + x 1), hence decay as

0(E) and give a somewhat tardy convergence of 0(-+) to the mutual
n

impedance series. It is possible to improve this result somewhat as we

shall show later. Nov however, the problem at hand!
4ni

How can one extract the first few P(-) from the known P(O)
5€a

and P(u) for u e [-,IS] and thereby-estimate the coupling for two

identical aerials? How may one analytically continue from the segment

the bandlimited function P(u)? We should point out that, depending on the
t-2a 2a

antenna structure(visible range - dimensions of antenna * (-T" )

P(O) P(j8-) may be known. In fact for highly directive antennae, In

which case the coupling question is somewhat moot, the extensive nature of
+ nw

the visible range contains sufficient sample points (-0 < B) to

yield a very accurate picture of the coupling. Exclusive thereof, we are

faced with the solution of the so-called "Il-posed problem" of "numierical

analytic continuation" of band-limited functions. The following discussion

considers numerous naive but tractable solutions to this problem and at

length some sophisticated yet avkward methods of solution. We shall

require also some information of the sampling theorm and its cognates

: , **, --. . fq " - - -... ..
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to speed the convergences of the various series involved. We commence

with a general discussion of numerical analytic continuation.

Analytic continuation, cornerstone of complex analysis, is not directly

numerical in character. The usual context Is that of a 'magic wand" waved

over a given functional representation known valid in a restricted region

but convergent in a larger region. The agreement of these representa-

tions on any dense set (just a limit point!) provides for total agree-
S

sent in any common domain of analyticity. Hence one"anlytically contin-

ues". the function from some small set, with reckless abandon, throughout

C or so it seems. In the case of an exact agreement, e.g. two integral

representations of r(z) , analytic continuation is a deft tool. Numeri-

cal (experimental) attempts, however, are characterized by the following

playful Theorems [2), used by Atkinson, quoted below.

Divine Theorem: If one knows an analytic function on a segment of

a line, inside its domain of analyticity, one knows it throughout this

* domain of analyticity.

Diabolical Theorem: If the function is not known exactly on the

line segment, but only within an error corridor of width 2e * then the

uncertainty in the continued function is such that its value at any given

point, in the domain of analyticity, can be any number whatsoever, and

this for any e , no matter how small.

All seems, but is not, lost. It turns out that "global bounds" on

the function to be continued [3] will restore the "continuous data dep-

endence" lost n the process. However the restrictions suitable to a

given problem are ad hoc. The sequel will examine two "almost-bmt-possib2o

methods of analytic continuation based on the Miller-Tkhonov reul riation

0 schemes. This exposition is borrowed with modification from recent optics
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literature of image extrapolation and object restoration. These methods,
S

which utilize the eigenfunctions of the finite Fourier transform, the

Prolate-Spheroldal wave functions, are quite cumbersome to employ. They

may be used, eventually, as benclmarks to compare with proposed "sampling"

proximates to be introduced shortly. It should be remarked that we are

here concerned with the analytic continuation of band-limited functions

i.e. given f(u) - j a gu(x)dx and f(u), u 1 [-0,0 find f(u)

for u % [-0,01; or (herder) find g(x)Vx I [-aa] in the above Fredbo3a

equation of the first kind, whence one may compute f(u) from the trans-

form relationship above. It is this duality between the analytic continu-

ation of band-limited functions and the Fredhim equation that partially

motivates our requirement of band-limtation. The general problem of

analytic continuation, by means of the Cauchy theorem, can be expressed

as the solution of a singular Integral equation [31 which is an Insidious

numeric task, whereas, the constraint of band-limitation requires the

"solution" t. a regular integral equation of the first kind - a stapler
a

task well considered in the literature. Let us consider a bend-ltamted

function f(u) with f(u).J 2 iluxF(x)dx a Z . First note [A1 the

sequeice 2au-nw) Iis a complete, orthogonal sequence In R all

of whose terms are bend-limited, a 2 a If one were to consider the

distribution due to various currents at y - 0 In the previous geometry

with the Insistence of piecewlse constant currents (thus approximating

a given smooth distribution) the pattern wuld be of this for. Recall

we have previously the bend-imited power pattern as a sampling series

a

p(u) - * i sin(2au - na)
e (2mu -af w

Q We sht aeek the following :

... . .. . .-A.. ..m/ " ..l ' ..
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1) Is it possible to approximate P(u) in the visible range with

a "sampling series" of unknown coefficients with the constraint of antenna

self-impedance matched as measured?

2) Is it possible to solve for P() as a truncated) set of

linear equations thet we Implicitly define, through the data as follows:

2N

A, Record P(ui) for futil=1 and u i  [-B1 for all L.

B. Solve the truncated set of equations

S4a (ui) R In(2u jr) £ - 1, 2N
I.

2aui jw

for P(21), j - -H, N. (recall P(O) known)

0 C. Impose the Impedance constraint on these near singular linear

equations*

3) Is it possible to hasten the convergence of the "sampling series"S

and provide for solution of fewer coefficients, thus taking advantage of

our ability to sample the visible interval at vll? (e.g. find a deri-

vative of P(u))

All questions are answered in the affirmative, and involve novel

techniques that circumvent the previously required usage of the Prolate

* Spheroidal Harmonics. We shall investigate each n turn.

1) First, one requires a criterion of fidelity, Withut loss of

generality, we take a mean-square (:L 2 (-28,2a)) setting. Take
F N()" . - aw)-Ea (2" - with % -P(o) known, as the ampling

proximate. Find (;(u) - P(u)) 2du - minitsr, subject to the
(a I

-mo
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constraint Zin i jiven. Recall ZIn may be expressed In terms of
S

the pattern function as previously shown. To wit

/n -1+ ix- fj du

The quadratures may be found by direct Integration of the above

quantities or the previous convolution approach i.e.

i (W 8a 2&u -nw d

Nws  • I ( n ' 6 ' ° )

nmN

where

n ,2 a v -inwx/2a (2)(xf)dx_- ~ ~ ~ ~ ~ ~ a a(,6o -0G."% ,Il
-2a0

(even + odd) (even)

vhich, again, my be reduced to a Id integration of elementary

functions by the prior Integral representation for the Rankel function.
N

We have two constraints on {a)n=_N

N I

R . -0 a Re(l(n,.O)) x a s (I(njO))

* It is nov a simple uatter to use Lagrange multipliers to solve for

i{.) such teat ON) - Plu)2du - minimam given X,l. The

functional of {() to be minimized: i

J ' : an I.' , w - ?(u)) 2 du + 13 +.. n

f0
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w where I' - Re I(n,0,O) etc. and 1 - . anI'
n-N III aJ(1 } n)

CS X X a " . - * 0 for all a,, I - + 1, + 2,...,± N-X-X -N nl ai - ---

requires

2N sin 2au -n sin.2au- -2) n(2u iwd

2 an  2au - nw (2au dv-2 (0) ( 2au-ii du
nm-N (ui

+ Al1 + A2i ' 0
*

The last 2N + 2 equations may now be solved for the 2N + 2 unknowns

fa NIi -- N X11' A2. To minimize sampling of P(u) in evaluating the

* second integral one could use, say, a Gauss-Legendre quadrature, Note

that the finite range and analytic nature of the integrands makes their

evaluation a simple and nexpensive task. Results numeric of this

- procedure are contained in the first appendix.

2) The possibility of using the continuum of pattern values in the

visible to extract a continuation through the sampling theorem Is not new

[5]. One moy measure at will and solve the set of linear equations des-

cribed above. Goodman's classic text on optics [6] considers this proc-

edure and provides it blessings. In point of fact, one is apt to get

order of magnitude results or better n its blind application. However,

the linear set is not, to begin with, favorably conditioned and any

attempt to continue "very far" will lead to trouble. The problem of

constraints or regularization in this connection has not been explored in

the literature, nor has the very specialized nature of the linear equa-

tions involved (to wit they have the form of the "double-elternant"). We

intend to pursue these topics at length, and while results to date se

incomplete, we give cause to further these activities. Part of the

problem stis from the. slowly convergent nature of the sampling series.
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This we shall examine in some detail, offering "quicker" sampling

proximates as means to the required coefficients. Lastly, we Indicate

how the transformed expressions for mutual coupling might be Improved

through this device.
S

Recall that we wish to solve

N s n ( 2 a u i ' j w)

P(u 1 ) - P (u) V I I.. 1,2
if--N 2au-ji

for P(t!L) j - -N9,....N~J 0 0 (which Is known, P(O)) by accurate
2a

samplings of P(u.) for ui [-0.01 subject to the self-mpedance
N N

* constraints, truncated as O - '2-(EI R P(")II with
-N 2a n -N

I" etc. as previously defined. For the moment we Ignore these constr-
n

aints and consider just the set of linear equations above. As previously

* remarked, direct solution thereof produces "trash" for N of any size.

Out of curiosity, the least-squares (normal) solution wes also considered

for a few test functions (Appendix 3, pt. ) I.e.

* If A L where b4 P(u)1; w { -,))OW1)2 2au, - J w
the nonsingular least squares problem ATA x' - ATb has x' as solution

to the problem 1l x' - b minimum, uniquely. The results (Appendix 3)

indicate order of magnitude agreement "In trend" with the true coefficients.

(This will be seen consistent with Tikhonov regularization of the illposed

linear set.) Furthermore these truncated equations are of a peculiar form.

Previous investigators (7,8] have considered similar sets and noticed

closed form solutions may be readily obtained from CramerIs rule as such

equations have the form of the double-alteruant [9].

To se this we renormalise the equations as follows:

* assme P(0) unknown to simplify indices.

~ t~ ~ ~ ~~-i
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* . .,.sin(2au -J t) lain 2au,(-,l)1 .l t - (-,,(j, - .

., eP(u)
nai ,  , y - [(j -1) -11w, 5 2 ?u 1 " Thu weobtain

0 21t+1 I - 1,2N + 1B E Aj f i- Y
j - A - 1,21 + I

* or

1 _
Y ~ 1 Y2 N+ I

A A

*0 2N+10 YN+1

1 1
1 .0

* 6 2N +1 l - 2 N+ 1 " 2 1 + 1

Now the determinant of C may be found in simple closed form. Some

0 more notation 19] is required however.

Define the "difference-product" of the array (a,,a2 .

as follows

Q ~1/2(1% '. " -1 (t"5
C (a 19&28 TT (a, -a,

1+2 3-1

*. then [9]

ICI -De-I (2N+I)N 1/2 (al6**6NlC12 (ly9*yN

241

where UK Is a cross product i.e. UK - T (a K- 1). Using Crmet'o

* rul* on ,C A and taking Ij lI as the deletiot of the ith coIV,
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jth roI of Isj in the usual expansion about minors, gives the folloving

explicit form for the solution of the truncated (infinite) set:

I A * AIL a

where B are the (measured) rh.s. of the normslized equation set allow-

ing one therebye

1) to see how an error in (B might, ptrO _

2) the explicit calculation of the w- iution and suggestive

perhaps of a new analytic-product form rep :tive of the band-limited

function.

3) to settle the question of whet, if any, constraints on (B )

are necessary to obtain the solution of these equations [e.g. 5] in the

presence of noise or otherwise (Linfoot and Shepherd [8] found in a simi-

lar but not applicable set explicit constraints on the various
9

(Bt) {) - 6 L+1) {t - Y1+11 etc. dictating convergence.) We are

presently attempting to resolve these questions and can provide here only

a few initial observations.

As the row-column deletions leave yet another alternant form

S- i is mildly tractable, just delete y, and 6 from the ex-

pression for ICI and divide obtaining

2111 21141

( 17T " (a- y) 1

J1 2N K- K.... - Y1Ri i 2

Wi ' 1 (Il)1(21+l-1)t ( 6 1ftYi) i(68 ax T7~ 21a1 8j)
X-1 K.Fr
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0 hence 2N+1 23+1

TT (a - )(l)i 2+1 . ... )J ( -K)B

A K-1 K - iK-i j I
li 21+l7r2N(i.1)tl2N+l -i01 J-1 18 .i yti 161 .7 (1 67[ 6j)

0 -1 K-J+1

it is now necessary to assume uome regularity on the sample points 6 K
*

If a - 4  = A, for a11 i, the monster simplifies thus

9 12N+1
W T-(, - 1i) 23+1 (-)J

A 2N k-i k

ai ffN2N (L-1) 1(2N + I1-i) J-l (6- )Q-1 (N+1-J

9

One advantage here, the option of calculation in extended precision of the

coefficients of Bj hence allowing one to "Monte Carlo" the direct solu-

tion and examine questions of behaviour.

The linear set of equations, previous, is known ill-conditioned. In-

tuitively, the compressed visible range, relative to the range of hopeful

extension (say 101 < In< N01, N- 5.7) and the slow convurgence of the

sampling series tend to require a conditioning problem. One can't enlarge

the visible range. Since we can ample freely however In its continuum, it

is reasonable to ask if the "sampling" serier rate of convergence may be

enhanced. To this end we discuss briefly the convergence properties of the

sampling series and produce the long awited "quick" proximate@ promised

previously. We then use these new series to obtain an analytic continuation

of the power pattern function.

8 *~i.e., 5i = t+5
+50

L_ Amok
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To start, consider the mean-square error in truncation of the ampl-

ing series over It. Recall the orthogonality relationship of

(sinc(u-n) ) on R, and let

V (u) - f(u) - fN(u) I (f(n)sinc(u -U)

. 1E
where f E f(n)snc(u-n) t and f is of exponential type w,N In -- N

bandlimited [-ww] . The m.s.e.

E - E/du - -L E f n)sinc(u-n), "'(n')sinc(u-n')du.

Note orthogonality kills the cross terms hence z- 2 F. If(nbJ 2

f)V In' +
The are Fourier coefficients and decay at least as

0(;!'-). Thus the m.s.e. in truncation is (cf. [10J, p. 170) with some work

% As mean-square error is quadratic, one might expect and would find
N I* absolute error '. , hence the "tardy" convergence observed. Indeed, if

N 1

fn) sinw __ _ sinwt
o 30 N W I-I , > Nt-ni V2

0(1)

and

0 (: 1 I du . 1
U-~ Nuu-_t Nh- * (-t

sinc X -
m WX

tfor convenience 2a - w, renormalization.
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Published results indicate [11, 12, 13] that though it is possible to

"fine tune" the above, the magnitudes must stand. We now derive sampling

proximates that display enhanced pointvise convergence of arbitrary order,

given knowledge of f and Its derivatives in the visible region, at arbi-

trary points interior to the sample points (unknowns , P(i) ).

Let g(x) be of exponential type v (this scaling to simplify nota-

tion) so that

It(z) f e Lst4lt)dt

0 where 0(t) is L.2 [-n,n]. Form the quantity -(z) - AW)- It) - 24()z

z2

where without loss of generality we require knowledge of g, g', g" (later at

z 0 0. One. can resdily generalize to any point in the visible region. Note

* j(z) has a removable singularity at zero and

z 282
g(o) + -,'(0) + S"(0) + (0) - '0oits j~zi- lis - cm

z. 0t.0 2 2

a2
These quantities exist and will be L 2(a) for g(z) of modest growth I.e.

S(z) %, O(sa ) where a < 3/2. In this case, j(z) L2(t) , so by the Paley-

Wiener Theorem % since i Is of exponential type v, it is band-limited

[-ww]. Now replace j(z) by its Cardinal (Sampling) Series representations

U21  sinwz[5S~l- 41-AL.

We require the following Identities:

(i) ' = I - -= I (l - sl) wbre hereafter

The enttrefunction f(s) Is of order 1. type c and belongs to L2(3)

iff f(a) a c - 1 e35](s)ds where F(s) is 1.2(-a,1)
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the prime will denote deletion of n - 0 term,)

Prooft Observe 1la (1 Ila!L-;(I - 1ja

hence the quantity is entire. As sinc(z) is bounded,

2L (R), and of exponential type ir, we have, again by the Paley-

Wener Th., the entire quantity is band-limited. Thus using again the

sampling theorem

z( RZ 'jn liZ Tu(z-n
- .0
- 8(0,n)

n s n -
(l) n2 ,(3-) "2 ,,z - 3 ,'-'-

Proof: Consider .- 8 -- ], note the quantity has a rmovable

singularity at zero and is thus Entire, of type w. Further, the

limiting value at zero is i2 /31. As the quantity is also 3L(R) the

sampling theorem applies

+ "  -" ' - -
TZ inz-n) 31 ira

These results set directly into the sampling expression for i(z).

*holding In mind that j(0) - S"(O)/2 give:

(Z )sinwia +& n~ (n) -- n
gS) ~ "(O) + E n ( -) - U0 Ii at12wz 2 - W

4b

- - sAnw s ir sinwz

z w z " " 3 - Z -

l'b
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*

Now, writing 9(z) in terms of g(z) as previously defined gives

g(z) s g"(O) + &9 .sswz! + g(O) [sinwz + zweiniz

+ , () • sinwz (n) * z
S n . w • (z-n)

The result is confirmed* (141 in the literature. We note that knowledge of

o higher derivatives at a point n the visible region produces a "faster"

family of series [15]. Also, estimating the (second) derivative in the

presence of noise is difficult enough - again an "ill-posed" problem, but

a well studied one. (e.g. splines, interpolations etc. 1163). To obtain

these even "faster" estimators one need only substitute more terms of the

Taylor series cf. i(z). Late literature quotes a "slower" result requiring

0 knowledge of only one derivative [17] - the proof does not generalize:

g(z) . sin z s'(O) + g(Q)sinwz + E -)ns • (n)
WZ IN wn(z - n)

o

Somewhat less ambitious but more practicable. At this junctare it would be

possible to establish error bounds - a little thought,howver, ould convince

not shown, general discussion (151 gives g for proof.

* n
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the reader that the previous bounds are improved by a factor of n In

the series denominators so results are one to two manitudes better.

We illustrate for 4(t) = Isintl the explicit series form. (A

• numerical table of convergences and error is in Appendix B, pt. II). Note

Isintl has the required vanishing properties at + v and is not too

smooth.

g(z) = J i z t aintfldt = 2(l+ .zi, g(O) =4

g(n)-0 n odd

g(n) - 4/(l - n2 ) n even.

A simple way to find derivatives is the direct differentiation of the

integral representation. Whereupon, g'(0) = 0, g"(0) = 8 - 2 2

Thus the three series interpolations for g(z)

1) g(z)= e n " ( 4 (Cardinal Series)

2 (sinrr) • +( - n

even )

4z2
zai.r +ir 4 Bi7 .~ -

3) g(z) u 8-i 2  +5n7 +- _
7r eve n n2w(z - n)

*Note the series ae 0(!), O(-'Z), o¢) convergent respectivey. However,

large values of z require a "cancellation" convergence - the subtraction

of large quantities frc each other - which can get atickT. We will be

* operating, hovevero, with z visible, so given accurate measurement this

fact iB of little import.

Needless to say, one can now rework the solution of the truncated
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linear sets previously presented using these "faster" sampling series. (A

typical example is discussed in Appendix II). The analytic arguments are

paralleled by those previously given and we omit the details. It is easy

to see that the double-alternant form is preserved in the "faster" equation

set and, it is possible to consider the behaviour of the exact solution.

In passing we note that these "faster" formulae for band-limited functions

* may be used in the previous integral expression for the mutual coupling to

derive a rapidly convergent expression for the coupling involving only the

sample points. Consider the expression for g(z) [-T,T] with

* g'(o) - 0 (maximu at 0* = 0) as an example. (We use the second expres-

sion requiring knowledge of the first derivative)
g(O)sin__ _ (_)n(__, )u -" ( n ) e iu D d u

47r~u e:D, du du . -

* ~821j f ~ f~

The first integral has been evaluated as a convolution. The remainaig may

* be easily found with the following

aI (n,,JD) O - i " u e - uD . sinr(u-n) du

CID ?ru - MTi

which is directly proportional to the required quantity. (Note powers:

un - (n)(x) etc.). The numerical evaluation of BDI is simple, Just the
d

* introduction of a cot e term in the integrand of the 17 form of

I(n,0,D) (cf. p. 7). so

472 . g ~() x n a u du + ' f sinc(u-n)eiuD. udu (nL)

-g(O)I(0,,D) + El L n InpOD
I'

• ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 3 na i ...-."' ... . _..,_,. .
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0 where the series convergence is now versus - previously. That
1

n3

II~D ~ is obvious frcm the convolution form of I(n,8,D) over a finite

interval. i.e.the Fourier coefficients of the H(2) a8 first derivative.

0 These arguments, again, may be made quite general with the accurate

knowledge of each successive derivative of g(u) at a point enhancing the

rate of convergence of Z21 by an order of magnitude as above. Thus the

0 series form of Z21 is made practicable if it is possible to exprapolate

the first few values of P(Ra) outside the visible region. A perusal of

the appendices hints that while least square "ball-park" results are

0 readily forthcoming much work needs yet be done. The stabilization of an

ill-posed problem, described heretofore in totally analytic terms, e.g.

simultaneous solution of linear equations, may be accomplished if constraints

• exterior to the data are introduced. Now we leave the discussion of the

"sampling-proximates" solutions to explore the general methods of Miller-

Tikhonov regularization for ouch problems. We will later return to

* these truncated linear sets as subject for regularization.

Regularization is necessary when the problem at hand is "in-posed"

which is not to say unphysical. Required in this context may be 1) numeri-

* cal differentiation 2) analytic continuation 3) solution of Fredhola or

Volterra equations of the first kind etc. Many proper physical situations,

e.t.computation of atmospheric density profiles, nuclear scattering, inverse

* scattering, remote sensing, and image enhancements in optics give rise

to models that are "il-posed" or "conditioned". The problem at hand,

numerical analytic continuation of bandlimited functions, may be seen as

Sil-conditioned with the aid of the Riemann-Lebesgue Lama. In the Fredholm

formulation, we wish to solve for f(x), with g(x) = I f(y)ei'xdy

g(x) for x t v given. now e 1y  is a smooth kernel, thus this integral

ii~ ~ II - "*. ,, ..
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operator does not have a bounded inverse. To see this, let
fe(y) = sin ney, note that for n big J rC(Y)e "dYI lmay be made

as small as desired by the Riemann-Lebesgue Lemma. Hence f(y) and

f(y) + f;y) are indistinguishable as "solutions" i.e. finite changes in

f(y) may produce infinitesimal changes in g(x). However, if one restricts

suitably the characteristics of the solution, f(y), e.g. take

Or (f, y))2dy a minimum, one produces a restricted problem whose solu-

tion is unique, with the continuous dependence on data, g(x), restored.

To this end we consider three such formulations. It is not known as yet

which of these procedures are optimal or feasible. This must be the sub-

ject of future numerical research. We can only outline the various methods

and indicate our reasons for preference or oLervise.

Tikhonov regularization (18, 19, 201 may be readily applied to the
•

collocative solution of the Fredholm equation of the first kind [21].

In such a solution, the required extrapolation is just a matter of quad-

rature i.e. given g(z) = t f(x)elzxdx and given f(x), g(z) is

"defined" by quadrature outside V = (-$,1. The problem is the determina-

tion of f(x). Let Tf(x) a f(x)eilXdx and take an IL (V) setting

[211. If g is the exact pattern and gv  the measured pattern, let

flg - gl6 v . Introduce the functional M(f,S ra) = frtf llII2 + *W(f)

where W(f)= Col1fl 2 + C111flll2 an lh(x) 112 =fh(x)l(x)dx , i.e. the
2Vstandard L(V) norm. a, the regularization parameter, is > 0, with

0

Co, C likewise. A theorem [18, Chap. II] of Tikbonov requires that for

2
all gv e L (V) there exist a unique, continuous, differentiable f

0 minimizing 1 given a, gv. This fay is seen to be a stable solution

to the original problem in least squares sense with fay - f as

(a,v) -# 01181. The *(f) acts as a sort of Larange multiplier, restricting

0' -
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* oscillatory or excessive behaviour of f, frequently a is quite small -

providing "Just a bit" of damping. For such an fm,, the first variation

must vanish i.e.

~f(Mf6~ = T*T + OfCl- C1Dc)If. =~

where T*f = eizx f(x)dx and

* fw 2sin[(xl )Ifx)x

fXV (X, -xX)  ]fx,

Note T* is the adjoint on L 2(V), D the differentiation operator, I

identity etc. Thus a formal solution is

forv = L'*gv where L = [T*T + a( o I - ClD )1

Note that the choice of a has not been specified. Here same of the

"ad hoc" flavour of this technique sets in. For specific values of

* Co = 1, C1 = 0 [21] it can be shown that llf0,r - rI <_ v/a where

f minimizes M(f,g,a) (noise-free smoothin@ . For 1f1%-fI _y, Y _P-l llfli
where N is max I for T*Tf - Nif with -y << llf l1, a < NIlf [I. Hence

Swith se knowledge of liflitfIcurrent Imagitude In "slot") one has an

upper bound on a.* A bound on hlf0!, -f H mayr be calculated and (21,191

given, thus lCffv - f 1_ v/Pvg + (/+ 'A) lf 11. If the self-impedance of the

* antenna producing the given pattern is known, one might pick a such that

the pattern solution provides the best approximation to the measured self-

impedance (to be evaluated by the integral forms involving visible and in-

* visible patterns for self-impedance discussed previously.) In general, the

selection of a is a "questionable" procedure subject to numerical experi-

ment. In using the Fredholm approach to continuation, ve re required to
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solve for a quantity, f, which is then integrated with another kernel,

providing the required extrapolation. One might expect that the reinte-

gration would obliterate some of the error in solution. However, we are

also finding the inverse of a transform , f, only to retransform it, a

seemingly redundant procedure. In fact, it can be shown (22,23] that the

error in finding f is subject to a logarithmic continuity, whereas the

optimal extrapolation error for extracting g(u), u e invisible, is

subject to a HIrder continuity i.e. error in If - fvI ~ (in v).1 as
visible = g whereas Ig(u)- gv(u) l- (v)O as gv visible g ith

u e invisible region

0 < 0 < I for optimal methods in both regards. The hazards of logarithmic

continuity need numerical investigation in this connection. An important

benefit in the use of the Tikhonov scheme is its ease of implementation.

Whereas "optimal" methods referred to above make use of the Prolate Spher-

oidal Harmonics, the procedure outlined here requires only simple quadra-

tures and the equations in question are stable. The descretization of all

• operators with any Gaussian Quadrature scheme (to minimize required

sampling of the visible pattern) presents no nuisance and the inversion of

L presents no difficulty. (Also numerically cheap!) Details of numerical

* experiments (21,18] are also encouraging.

A more elaborate technique of regularization, due to Miller (241] and

extended by Viano et al., (23, 25 see also the exhaustive references listed

there] makes good use of the Prolate Spheroidal Harmonics to establish the

analytic continuation of bandlimited functions. While quite elegant, this

theory's use of P.S.H. condemns one, in trying to Implement it, to a host

0 of nmerical nightmares. Even recent a.gorithms (26] for computation of

P.S.H. eigenfunctions and elgenvalues require messy matrix bisection/Strm

e.v. sequences procedures which allow no simple change or rescallg without
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complete reccputation at great expense. The only virtue in these techni-

ques is their "best-possible" nature. Some consideration shows the method

instinctively no different from those suggested [1) in our first progress

report. We consider briefly these results.

Let X denote the set of all permissible pattern functions (i.e.

f e X is band-limited appropriately, f Ift2du < - etc). For f e X

let Af denote whatsoever is subject to measurement (the "perfect" data

in V) approximately. Take h as the measured data. At and h are

contained in the "data space" Y (in this case L2(V) ). To stabilize

the problem, one constrains f by "boundary" or "global" values. Let

B be a linear operator. Bf provides some constraint operation on f.

Bf e Z the "constraint" space. Then if f satisfies0

1 ii fo - hl y < f (satisfies expected data fit)

II Bf 0i Z / E (satisfies global bound)

it may be shown f also satisfies (by Lagrangian arguments)

II AfO - ht 2 + (_E)2 11 Bo 112 < 2E . This last equation may be mini-

mized by solution of the normal equations to obtain an f which can be

shown to be "optimally" fit to f0  independent of norm used to measure the

error [see, e.g., 24]. If the criterion of error is < 0 >e I it may be

shown <f - fo>e < / M(e,E), where H(E,E) is defined as

sup{<x>e Ix X, 1i Axl 1 y < e .1 IxJ6 < El - the "best possible stability

estimate." Called as such since M( E,E) gives the "size" of all f that

satisfy the global and data bounds, for such (ff 2), II(f " f2) JJY < 2

i0(f 1 - f2) 11 !.2E so that <f I f2>e <- 2M( £ ,E) (see 23,24] etc.

Whence we may take f -)[A*A + (L)2 RB] -A*h as a regularized

solution whose error (in < >e) is "best possible" but for a factor of
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r2. Numerous estimates may be fashioned in terms of the eigenfunctions
S

and spectrum of A, A*A, etc. for the various error norms [cf. 233 but

these estimates generally require full knowledge of the spectral de-

composition of the various operators - something not readily available

here.

Our problem is placed in the above setting when one considers the

problem of extrapolation of optical images (see [25] for physical details.)

We require explicity that the object image is of bounded energy E in

I2 [-1,1].

2Let x - x(t), t E P., be IL (P.) , bandlimited such that the

image, x(t) - c/2w e 2ito (w)dw and take Ax to be the restriction
J,.c/ 2n w

of x to the interval [-1,1]. (We assume that the images are known, in

a system of unit magnification, over an interval equal to the support of
0

the object, [-1,1].) Take h - Ax + z, the image corrupted by measure-

ment error. The problem to estimate x(t) given h(t). In this context

we identify the following
0

1) X - iL1( P.) )U rn ited f)

2) Y4- functions of compact support [-1,1] ( L '11

3) Ax(t) - x(t) t E [-1,1], - 0 otherwise

4) A*y(t) sinc(t-s) y(s)ds y C Y etc.
f 1 (t-s)

It is possible to specify a stabilization constraint

x(t) ( sinc(t-s) d where jv(s)1 2 ds <

w -1

(band-pass filter etc.)

- I
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with regards to optical object energy. With suitable normalization

one can take B - (A*) and after much dust get a "best" approxi-

mat ion
.3/2

x(t) k -k
k-0 2 + 2

k E

With h k - (hv k ),y - f h(t)*k(c,t)dt and *k the appropriate

P.S.H. This review is not designed to be complete - details may be

found in [23,24]. Others have considered the use of P.S.H. to

extrapolate [27] band-limited functions with constraints and achieved

similar results. Though keenly analytic in nature, they all evolve as

quite cumbersome due to the use of P.S.H. We therefore continue to

ignore such schemes save as possibly benchmark measures for other pro-

posals. It shoud be noted that the constraining operator B, data fit

constants (E, E) need not both be known [24] to use the Miller method.

Through certain concavity properties it suffices to know just one of

these quantities. The selection of B, the linear constraint operator, is

quite open. Further study, elsewhere, would seem appropriate.

Let us note that knowledge of the self impedance of a given antenna

does not qualify as a constraint in the sense given above. (This does

not exclude its use as a Lagranglan constraint as we shall see - it simply

will not allow us to use it to stabilize the ill-posed problem.)

Specifically, the input impedance Zin ] P(u)du is a functional

of P(u) unless we are allowed to vary 0. But P(u) implicitly

(especially in 3 ) contains e, hence rendering different frequency measure-

ments, unless P(u) is B invariable, worthless. The question of what

information may be had from different freqyebct measurements of the

visible pattern and mpedance is open. It wuld seem necessary to have,

a priori, some notion of antenna geometry to pursue this

...,Not- . . .
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problem.

That self-impedance specification will not stabilize the proo I is

seen in the previous .2 (OR) context of the Miller example. That
1

< P(u), > - Const merely implies the projection of P(u) on the

2 OR) vector is fixed - this does not preclude wild
2 2

oscillations as previously discussed over sets of finite measure as would,

say some limit on the average value of P' (u) (mean squared). This does

not mean one ought discard this information but, that it is not enough

hence, one can use it as another Lagrangian constraint. (It turns out that

if one tries to continue the pattern function (not power) the Impedance

operator can be reformulated to be of service, f ---- du places

1f12 
R /02_ u 2

some constraints on J If I2 du- but this case will not admit useful
IR

measurement.)

The final method of regularization applies to the solution of linear

equations with error in the "right hand side" (i.e. the specific measure-

ments of g( ) + Error (n)) and the stabilization thereof, [28,29,18,

Chap. III]. These results apply directly to the truncated linear sets

considered in the text. The setup is as follows:

5 given f- +  e and ei 'e 2 << 1
i

how can one vary e (since A, I are fixed this is equivalent to

"vary f")to minimize the a quadratic constraint on

Q- X hijfifj - f*Hf. There are two cases of interest:

1) there exist { (i)}i such that Q is minimized and

*2 (i)II < - 2 < . In this case ( is a variational solution

to 8Q a 0 and Af-+ - which is unlikely- t(i)

i - index of vectors.

,Met
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is however a valid solution.

2) For Q such that a variational minimum does not occur within

{f) such that Il 112 < e 2 we know that the minimum must occur

* on the boundary of { (Af -I + or f - A- (g+)) and

II;II"' e I or simply for {f I t" el.

Therefore we may use the method of Lagrange Multiplier(s) to solve the

0 following equivalent problem:

Minimize Q - f*Hf, subject to the constraint

(Af - )*(Af - ) m E e2 i.e. minimize the functional

f *Hf + yoEE

In our context, we may require a second Lagrange Multiplier to take into

account any knowledge of the self-impedance associated with the measured

visible pattern. In general, one may also require Zin f * c.

Thus for F(f) - f*Hf + y *1E + ylf*c we require 6fF(q) - 0

{[f*A*Af - g*Af - f*A*g + g*g)y^ + f*Hf + yl!*c- 0afe fk  a X - Z '- . . . . . t ~

or (2A*Af - A*g - A*g).y + 2 + .e.

(A*Aty + H)f w oA*g -

where yo Y1 are to be selected to satisfy the discrepancy and Impedance

constraints. (In practice the second constraint is linear and it incor-

porates directly into the solution of the above equations; if A, f are

g n x n, n etc. , we have, with the equation Zin - f c n + 1 linear

equations in terms of the n + 1 unknowns {f n and y, using yo

-,Eint

6~~ n 1'ui Y
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'lasa known" parameter which we vary to (eiperimentally)satisfy * e2

0 The application of this technique to the previous sampling equation set(s)

is immediate and will be considered and coded as soon as time permits.

A few remarks concerning the method are in order.

1) The quadratic constraining function Q is essentially arbitrary.

Possible forms for H are "minimum variance", first difference (tabular),s

and prior departure from given form. e.g. the asymptotic pattern form.*

Which form or forms are suitable must, perforce, be found n an empirical

fashion.

* 2) One can show that the variation of f with y is slow and

the ensuing numerical satisfaction of C * E e 2  is "easy" with convex-

ity arguments.

3) The method is a "generalized" least squares technique no more

difficult than the solution of the normal equations. That it is possible

to satisfy and solve the Lagrangian constraints (no inconsistency) is
S

not clear from the above arguments - we refer to [18] for a discussion

of this. The method was one of the first tractable solutions to the

numerical problem of the First Kind Fredholm Equation, [29, circa 1962].

Conclusions and Extensions.

We have presented the rudiments of a theory for mutual coupling
S

between canonical minimum scattering antennae requiring knowledge of the

total pattern function. The problem of extending the visible pattern

function throughout the entire required domain ws solved by introducing

the constraint of band-linitation. Whereupon, a series form representation

of the required coupling integrals, utilizing various extensions of the
note g(f) izX f((x) a )(2)os see, **So [301#

an "observable " quantity.
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sampling theorem, was developed. Lastly, we have proposed several

techniques that should allow the computation of the invisible patternj

values from the available data. Several well known regularization

techniques were drawn from the literature in the context of our pro-

blem. The present research must now shift emphasis to the numerical

validation of the "sampling" forms of continuation and/or comparison to

the Miller-Tikhonov method. The ill conditioned numerical problem at

hand required an extensive investigation into possible analytic forms of

solution and having accomplished this, we now hope to devote substantially

more time to the actual computations required. The appendix confirms

at least order of magnitude results are possible so, at worst, "reasonable"

bounds on the couplings may be expected.

There are several points novel to our approach. Intrinsic is the

restriction to coupling amongst like antennae. This is required by the

difficulty of phase measurement. The problem of phase retrieval le.g. 31]

is well known in optics but usually requires, say for a Logarithmic

Hilbert transform resolution, knowledge of the pattern magnitude and its

zeros over a relatively large interval, information here unknown. It may

be possible to model or bound phase effects on the coupling and extrapola-

tion formulae previously obtained, whereby the generality of the analysis

would be restored. However, save at the expense of accurate phase measure-

ment, the problem remains. The most useful observation is the bandlinited

nature of the pattern power function. This lone fact restores the accu-

racy needed to consider extrapolation seriously. With the hope of extend-

Ing the techniques to multiple dimensional antennae, we have kept the

sampling theorem's multidimensional character In mind 132). These notions

would hopefully allow analysis of measured couplings between planar aper-

tures and the like to follow through, whereas the various Integral fox=u-
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0I lations (Fredholm) would not readily reformulate. Note the assumption of

bandlimitation to a degree holds Implicitly some knowledge of that degree.

To the extent all physical systems behold finite measure of energy and
d

geometry (explicit in 2- ) suggestive of the bandlnlit, one may be for-

given its accurate assumption. The sensitivity of this assumption to

error is another matter. Lastly, the optics literature, in considering

the problems of image-processing and restoration - likewise demanding
e
extrapolation - may yet be of further service.

i£

t
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* Appendix A

Numerical Illustration of the First Variational Method.

* Correct and generated solutions to the extrapolation probem for

various measure are presented. For this and subsequent examples the

d
following bandlinited power pattern, typical of a Z slot radiator,

will be employed. Note the pattern is real and even, whereby many

simplifications ensue.

2 (v) 2sin2
P(U) P(0) 1, P"(0) -IL wu 2

2. -it ( w

N- 1' (_)n sinwZ 4 it
odd n ~(-n) -] + (Sampling Series)

Szsinwz 1 + sinwz

d n W 3 (n2 _ z2)n2  WX

n > 0 (utilization of an =a.)
2 )n

2 cmi:. 2
-Zsinwit W 2i sinw:z isnr Ev vn2ssJ ~ ~ ~ ~ .Inw +. . + F,~

3! odd n n . (n -a)

It("fast sampling series"

8= 3  5mws steimn: sinwz + an a
o4 d2 2) 2 3 "
oddn n (n -a)

n O 0

("fast" series wirth an - a~ onstraint)

-- - -



Taking an L 2(- ww) setting, pick as the unknown proximate to be matched
* N snw-)

on (-B) A(u) a X an wz-n) and invoke the constraint that an  a
L, 11n--.N

split the range of summation to obtain

AN) a siUw: + A-)12zsinwz
o - + 2n

1i w(z -n)

where a - 1 - P(O), which is known a priori. As previously discussed, the4 o

{ai) need minimize the functional

J({al}) . (A(u) - P(u)) 2 du

subject to the constraint of self-impedance. To wit:

B sin T du C 2 (resistive, measured)

Su2 du 2 (reactive, measured)

The last constraints provide the first two of N + 2 linear equations for the

unknowns (ai 1 , 7l Y2

C1 - A(u) du C2 AN) d

The rest follow from the minimization of

--



jN n 2usinwr

M wu) - E 2 2 a)2 du

+ ,Z A(u) /0-2- + Yf IA(u) d

- -- -->

N -B 2u(-) t sinvu slfliu 2u(-)n
2 Ean 2 2l T2 U2)d

nini J- (u-) u-n

+ fB4 I*SfWU'-U u+ 0 (-)1 2usinvu du
-B wu - ()U) d*+Y 2_:L2)

+ f~i~ (2usinru du -0 for i-
w(' >0 2 2- 2

whr ~)2 *also even. Notice all Integrands are even
I&)

and all dinguJlariteas are weak or removable. To that end, let t -U~

or ru- where appropriate, then

CmfAU) d~Lu 0 siniru du N~flf m
c, fo A~) /2 2 u -Wu + F, 'o 8 2 -V 2 -_ 2 dv anl

jc du + ! () 4  jr _ __ _ _

2-- L ~ 0 2 t 2 - ,2 dv;

uJ I2~ Vn-I Jo (itI 2 1)(U 2  a

Y14(-)L (B f-2 4y 2() ~,t .

+o 0 J 0 2 V2 2 ' * 2 + t 2
I

2 u t -0



Appendix B. Pt. I.

The ;olution of Least-Square Sampling Proximates. Slow and Fast.

For various values of (0.N) a least square and direct solution of

the Harris-type extrapolation procedure is provided. Again, the even

slot-like pattern is used. Note the order of magnitude "contour" agree-

sent.

Sampling proximate:

sinwu N u Isinu i aP~ul) ~ i  2 an  i - ,...,N.
P~i) T"'F 2 2 n

n-1 (n -ui)

ui e [-0,0]

"Fast" Sampling Proximate:

w u: Siniul) Wu sinwu
_ lP(ut +u 6 12

Ni siniru 1 *u 2 an
2,

nl n(n - ui)

where I - ,...,N, u £ [-0.01. Note the solution to AT Ax- A Tb Is

given (cf. p. 14 etc.).



a n-1,3,5,7 ; 7~0.00 for n even

004@5284SE 00
0.45031 o4E0 1
Oe 162113@E-0 I
OeS2?1&20E-02
0. 500351 2S-02
Oo33494626-02
0239S13?E02(507

u*405* 2 6 00
0,4292067E-04

oem7495B9E 00 40645046@41-01
-0*799466SE-04 -964460
091517,32GE-05 0*10201S9E-01

-0.3 638101E-0

0.91051074E-04 (207
0.e3393462E-06 (207

(6.*0,*3)

Os*063641E 00 0*40596341 00
-0*994350SE-01 -0.91 £lao3m-0a
0. a36965ft OC 0.46?al3E-@

-0 .S1638901'@1 -0 5750649E-o 1
-O.4243167E 01 0 .536454E 1

- - -.- 04207059E-01
(1.5,4) I00*59814SM-1-o

0.4053106 0 -0.1003777 0
@,16 39E-1 -C.7090361 01
002487861a 00
@.297013CE 00

:0:276365GE1040. a112432-09 mote the extrapolative capacity Is
11mited in keeping with the error In

(3.5,4) 0516C00Integration (about .0001)

-@.010756sUE Go
0.24282211 00
a .9326207E 00

O.4543SIE 00
0*4652494E-0i
0.5990240, 00
0.1374*313E 00
-0.7004111 00
-0009&1744E-04
-0.17869021-07

(6.0,4)

0: "31689 00

-0. 11726901

-0. 1701969 61



Whereby we have sanitized most of the integrands for computation. These are

still a number of numerical problems 1) the integrals over an unbounded

range have a slow tail i.e.

Tal 4 , dt - fo do
0 t + B Jo BW + 1

where w - li/t is used and the Infinite integrand "essentially" vanishes near

7. w u 0 by cancellation from the sin(l/w) term. 2) The integral

B provides some nuisance at t B which
8inwu dO u2

may be solved by the substitutions w - -u, v - t 2

Results of solution for some (B,N) pairs follow.

wi



V Appendix 3 Part

"an.se" for % both fast and slow serie ae -. 258012 a 7 -.. 005265

U £3- -. 026666 ai- -..003185

ai- -. 010320 &=0.O

SL0W PAST

*(6,3.948)

-0.25801*01 00 -0.25601*OE 00 -0.i5601279 00 -0.7104913E 01
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~~14 (10,6.262)
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Appendix B, II.

) - eiztint.t 2( + cosw

awsI - Z2

-2N
$~-a (n) (Saapltnig series proximate)

2N z2
92 () "mx " + 14 21 sum' + s nz + twinsz

2 2 2 21-2N n W(z-n) (1-t)

(2nd derivative proximate)

evaluated for 2N - 2, 12, 24, 36, 48

at points z a 14.0 + (.221333)*k , k - 1,2,3,4,5

•J - Note the improvement possible for even g(s) as follows&

M sni: . ini: M sin t:
-yz- s(-) - a(o) +F-"z- B(n) + E &(-n)

-N 0-1 A-1 (94.n)

M i Wz(n) 2z:
8(0) + W. - converging now 04y

n-i, z2 -n 2

It is possible to reduce our labor considerably for g(n) even or odd thus.
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ANSWER

-0.1756904E-01
-0.1136048E-01
-0.47402681-02
-0.582084 51-03
-0.48955119-03

0.1834701E-01 0.1444149E 00

-0.1685422E-02 0.8106232E-04
-0.1798547E-01 -0.1764774E-01
-0,176892 9E-01 -0.1755905E-01
-0.1761997E-01 -0,1754761E-01

NEXT K

0.2778002E-01 0.2243681E 00
-0.1989841E-02 0.7362366E-03
-0.1201773E-01 -0.11518481-01
-0.1154983E-01 -0.1137543E-01
-0.1144117E-01 -0.1135540E-01

NEXT K
0.2423075E-01 0.2007780E 00

-0.1306236E-02 0.1142502E-02
-0.5337119E-02 -0.4887581E-02
-0.4911125E-02 -0.4752159E-02
-0.4812896E-02 -0.4734039E-02

NEXT K

0.9681560E-02 0.8227921E-01
-0.3699139E-03 0.6351471E-03
-0.8303262E-03 -0. 6475449E-03
-0.6526075E-03 -0. 5903244E-03
-0.612 0130E-03 -0.5817413E-03

NEXT K
-0.8909047E-02 -0.77645301-01
0.21534049-03 -0.7429123Z-03
-0.2517626E-03 -0.43106081-03
-0.42246651-03 -0,4873276E-03
-0,46111641-03 -0,4949570E-03
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