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NOMENCLATURE Tf- TO

al, a2 coefficients in eq 13

2k 2 l em + O21 ' 1+ 2 STm
b - . -em 6 temperature penetration depth

Gb
B(. - 0, )b  

-- I dimensionless penetration depth

B1  parameter defined by eq 18 
1 l

c mass specific heat 
0m - (Tf - TO)

C2 1  c2/cl 
al

F defined by eq 27 Ow QL (rT (0,t) - To

G specified surface heat flux

h surface coefficient of convection C1

k thermal conductivity 
a_ T- (T- -To)

k21  k2lkl t integrated temperature

2mass latent heat of fusion p density

q surface heat transfer rate per unit area o x, dimensionless phase change depth

q*q .
h(T- - Td) h2 (T. - rf) (t - t o )

S aGX ,dimensionless phase change depth T time PI kq ,dimensionless

1

G t

ST (Ts - Tf), Stefan number 1 p2- * vG t'-, dimensionless time

Cl (T. - Tf), modified Stefan number 6, dimensionless temperatureST. "6 
diesonestmprtr

t time penetration depth

to  time at which phase change starts

T temperature Subscripts

x Cartesian coordinate

xe volumetric water content 0 initial value

X phase change depth 1,2 thawed and frozen regions, for thaw case

at thermal diffusivity f fusion value

s surface value
ambient value

iv
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CONVERSION FACTORS: U.S. CUSTOMARY TO METRIC (SI)
UNITS OF MEASUREMENT

These conversion factors include all the significant digits given in
the conversion tables in the ASTM Metric Practice Guide (E 380),
which has been approved for use by the Department of Defense.
Converted values should be rounded to have the same precision
as the original (see E 380).

Multiply By To obtain

Ibm/ft 3  16.01846 kg/m 3

Btu/Ibm 2326.000* J/kg

Btu(Ibm *F 4186.800* J/kg K

Btu/hr *F ft 1.730735 W/m K

*Exact
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APPLICATION OF THE HEAT BALANCE
INTEGRAL TO CONDUCTION PHASE
CHANGE PROBLEMS

Virgil J. Lunardini

INTRODUCTION

Problems of freezing and thawing arise frequently
in such diverse applications as thermal design in
permafrost regions, thermal storage of latent heat T

for solar systems, and the heat treatment of metals. 2 Depth

One is often interested in the penetration rate of x+8
the phase change interface, the temperature field,
and the boundary heat transfer rates. These prob-

lems fall into the category of conductive heat trans-
fer with solidification phase change. From an engi-
neering design viewpoint, exact solutions are sought Figure 1. Temperature penetration depth.
for geometries and boundary conditions that are
simple and yet representative of significant systems.
Unfortunately the mathematical difficulties are
such that exact solutions to this class of problems
are limited to a few very special geometries and
boundary conditions (Lunardini 1981). However, The conduction equation, with constant thermal
a number of approximate methods have been de- properties, is
veloped that can yield solutions acceptable for
engineering design. This report describes one of (23 = ar (1)
these approximations: the heat balance integral ax 2  t
method. where ot is thermal diffusivity. Now this equation is

This method, which has been used with good re- spatially integrated over the distance X(t) + 6(t).
suits for phase change problems, involves the concept Thus
of the temperature penetration depth. Consider
the semi-infinite solid shown in Figure 1. At a timet, after the surface temperature has jumped to Ts, X0 a 2  X+6 a T
the temperature in the solid will be disturbed to a t

depth X(t) + 8(t). Beyond this depth, the temper-
ature of the solid remains at the initial temperature The left-hand side of this equation is
To and no energy is transferred beyond this point. X+6 a2 T d rT(X+6,t)
The penetration distance X + 6 is analogous to the fa T dx
boundary layer thickness in fluid mechanics. The 2

heat balance integral method is similar to the mo-
mentum integral method in that the basic equations aT | (2) 
are satisfied on average over the volume of thickness ax (2)
X(t) + 6(t). This avoids solving the partial differ- Leibniz's rule for a general function is
ential equation at each point within the domain of
interest.



d b(t) db da The solution of a general problem with superheating
dt S1 (t) f(x,t) dx f(b,t) dt - f(,t) dt or subcooling (the initial temperature is above or

--(t) below the fusion value) will involve two coupled,
b af nonlinear differential equations for the parameters

+ i a (xt) dx Xand &. The solution will normally be tedious and

often requires a starting solution to handle the singu-
Then larity at the origin. However, assume that the initial

temperature is Tf. Then the problem reduces to
X+6 ar d X+6 only one differential equation since the penetration

at - dx = O T(x,t) dx distance X+6 is now identical to the phase change
depth X:

+ T(X+8) d(X+f) TX
dt 

!Ld 0d ax
Let -it- Tf d- - ax

X+6~ T~x~) d.aT 1 (0,t). = (8)
SSo T(x, t)dx. (3) ax

x
Then the heat balance integral equation is S T 1 (x, t) dx . (9)

0

Sa d(X+) (4) The heat balance integral method has been useddt ax -0 dt
extensively for single phase problems (Goodman

This equation is valid if there is no phase change. 1958, 1964, Goodman and Shea 1960, Poots 1962,
Consider the case of phase change with the proper- Lardner and Pohle 1961, Bell 1978) and also for the
ties of the frozen region different from those of the much more complicated two-phase problems (Lun-
thawed region. Using the procedure outlined above, ardini 1980, Lunardini and Varotta 1981). The
there will then be two integral equations as follows: sinsgle phase problems are also referred to as non-

dX rT, (X, t) subcooling problems since the initial temperature isd Tf T- - [ 1 identical to the fusion temperature.

a T (0,t)1 _

- xJ -0 (5) COLLOCATION METHOD

The usual heat balance integral equations for two-
d 2 TO d(X+ + Tf dX phase problems are coupled and the solution can be
dt T dt difficult. A slight variation of the heat balance inte-

a T,2(X, t) gral method can be used to find an explicit functional

+ k2 0 (6) relation between 6 and X that will uncouple the equa-
tions and simplify the solution.

where If eq 5-7 are added together the result will be the

X overall energy balance for the volume of interest:

s t [Plc1f1 + P2c2 + PiX
X+6 +t

2= SX T2 (xt)dx + (p2c2 -pIc) TfX -P 2c 2 To(X+6)]

and T1 (X, t) = T2 (X, t) = T, T2(X+6,t) = To have aT, (0, t) (
been used. The energy balance at the phase change 1  dx (10)
interface is The term (P2c2 -plcl) TfdX/dt, in eq 10, is the

aT 1 (X, t) aT2 (X t) net sensible flux of enthalpy at the phase change
1  ax - k 2  ax interface due to the sudden jump in the specific heats

of the frozen and thawed volumes. This term was
-PQ dX (7) omitted in a recent study by Yuen (1980), although

dt Yuen's derivations implicitly assumed that P2c 2 , p2cI

2



at the phase change interface. The retention of the T,
sensible enthalpy term gives better numerical com-
parisons to exact solutions.

Equation 7 can be rewritten as two collocation . .

equations (see Lunardini 1981):

a T(, Mt) aT2 (x, t)
"kl ax + k2  ax = I -

a2 T,(X, t) a T1 (, t)

ax2  ax
3TM t) a T2 (X, t) Figure 2. Geometry of the Neumann problem.

"k1 ax + k2  ax -P2 9*2

a2T 2(X, t) a T2 (X, t) (12) B1 =k 23Ox2  a)x ]=21+ 2

W aX210+2S T

For semi-infinite solids the following temperature
approximations can be used: 2

T1 = Tf +al(X -X)+o 2 (x -X)
2  (13) + J 21 + 20

(18)
(T - TO)

T2 = Tf - 2 a (x-X) Equations 17 and 18 reduce to those of Lunardini
and Varotta (1981) for the single phase case when

(Tf - TO) 3= 0. When 3* 0, eq 17 and 18 agree well with
+ (x-X) 2 . (14) the exact solution but are less accurate than the

82 solution of Lunardini and Varotta (1981); the max-
Equation 13, representing the temperature in the imum errors of about 15% occur at low Stefan

region which has changed phase, contains two un- numbers with high 3 values.
known coefficients. One of these can be found from Although this solution is for a step change in
the specified boundary condition at x = 0. Corn- surface temperature, it has been shown that the
bining eq 11-14 yields solution is valid for a sinusoidal surface temperature

02 1121 if the step change temperature is the average value

a2 . (15) of the sinusoidal temperature over one half cycle.

NEUMANN PROBLEM SPECIFIED SURFACE HEAT FLUX

The problem of a specified surface heat flux can
The surface temperature of the volume changes also be solved in a closed form. The surface temper-

to aconstant T s at the start of phase change (se ature will increase from TO to the fusion value Tf

Fig. 2). This problem has beer solved exactly by uwhen melting begins (see Fig. 3) and the phase

Neumann (c. 1860) and approximately by Lunardini changeltin can the botie

and Varotta (1981) using the heat balance integral. change solution can then be obtained

The solution to eq 10-15 is The surface boundary condition is

a ,T (0, t)
X = 2 (16) " aX = G(t). (19)

2 81+*21 Equations 13 and 15 lead to
(o:21 + 28 1 .C21p g+1C218l10+ *21 A-1l

3(17) a l, 6" 21X ,I

3



ical computations. The surface temperature (for
t > to) is given by

Tf- w-0 m  a2= 2 +(2s

2(A+ 2 1 S) (23)

T .As has been pointed out by Goodman (1964), the
08solutions here are valid only if G(t) is .aonotonically

increasing with time or is a constant. Pulse type heat
fluxes will not yield correct solutions.

Figure 3. Specified surface heat flux for CONVECTIVE SURFACE HEAT FLUX
a semi-infinite medium.

A problem of importance is that of heat flow from
G C(2 1  the environment, by convection, to or from a volume

02 +21 ( C - a2 1 X) which is undergoing phase change. The situation is

e cshown in Figure 4 for thawing. This problem is

The collocation method allows a simple relation to physically more significant than the Neumann prob-

be derived between and X. By using equation 12 lem because the ambient temperature and convective
heat transfer are specified rather than the surface

+ . JB2temperature.
2 + + 021 B S (20) The surface boundary condition is

5T 1 (O,t)
where -k1  = htT - T, (O,t)] . (24)

B= 2k 21 
0 m + 0a2 1. Equations 13 and 15 now yield

Equation 10 can now be solved for the phase change _.R (0- -0m)
depth S. The result is al ¢1 x 21 + h-) +.

0'S3 + S2 +~~2  14c 1  ) \26 h 6I
9- R 6 21 (1+ C21Om Again usingeq 12

+ S I +c 2 Om) A+ -k 2 1 Om (A-B1 =b( +1) 2(7+1)2 a
2 4 +a2l a + 1)b

+ 1- C2 1 Om 6(A_-8) =* (A +0a 2 1 S). (25)

(21) where
2k21 6 rn +-a 2 1

There is no exact solution of this problem for corn- b =

parison, but approximate solutions can be found for m
the single phase case when 0m - 0. Equation 21 then where
reduces to

7, 5 S + 1(22) *=h 6
h

This is exactly the equation obtained by Goodman o - X.
(1958) with the usual heat balance integral. This
solution has been shown to be in good agreement The energy balance equation, eq 10, can now be
with an analog solution be Kreith and Romie (1955). written as

Lozano and Reemsten (1981) derived an exact
solution for the single phase case. The solution for dF 2 (0 + a2 1 a)
Srm = 0.2 was essentially identical to eq 22. Un- - 20(a + 1) + 2 1 (a + 2) (26)

fortunately the exact solution converges so slowly
for large time values that it is inefficient for numer- and

4



The numerical solution to eq 28, when 0
m 

= 0,
Ambient is identical to the heat balance integral solution of

To Goodman (1958);
h

12- - - =[(1[-1 +(2+y)+vj +-y(2- 0)1112

To . .. . .. X B- - '1  2 7_. inL]+ o( +a 1 / 2 +.[(1 +G)?] 1 /2

-4(- - 1) In - 1, + (2 + a) + [I + -u(2 * + )] 1/2
Figure 4. Surface convection for a semi- 2-
infinite body. 02

: +( +S ) +2(y2+4y-2)ao - -27 (31)

(0--om) 02(0 +} 21a) wherey = I + 2 STm. Equation 31 reduces to eq 29
F= 3when ST m = 0.

20 (a + 1) + a 2 1 o(o + 2) Cho and Sunderland (1981) presented an approxi-

mate metl;od of solving this problem for the single
+ 00 + c2 1Om) + C21  phase case (Om = 0). Their results agree very well

3 (27) with eq 31, but they note that the zero-subcooling
solution is a good approximation to the subcooling

Equation 26 can be written as problem when 0 m * 0. This is not true, as can be
a seen from the graphs presented here. The subcooling

2r = f Q do' (28) has a very significant effect upon the rate of phase

change and may be ignored only at the risk of serious
where error.

The surface temperature is
PQ(2-C 2 l a)aSTirm+(0 +C 2 1O0)g T1 (0, t) - Tf a a(20 + a 21 a)

+2 o(+C 2 10M)+1C210m 4, T_ -Tf u(20+o02 1 a)+2(0+ &2 1a)

X (P+21)+STm 2 C210mg (32)

2)(The nondimensional surface heat transfer rate is-- +2 [o(1 + C210r) + " C210m¢ ] (0o+1) W + 0a2l )

- 2 + .b(P + 12 ) _2(P +0 2 1 ) F )* = 1 (33)'=" - 2 (O+ 1)/- b(o + 1) -2O +P z1 F0($ 1o21o) + (0 + ot2l 0

where P = + &2 1 0 and g = 2 [P(1 - o) - o ]. Equation 28 can be solved by simple, numerical,
There is no exact solution of eq 26 for comparison quadrature. Figures 5-14 are plots of the solution

but it can be shown that when 0
m = 0 and STm for some values of Stefan number and Om, with

(0- - 0,) = 0, eq 26 can be solved as property ratios given as functions of the volumetric
U= 2 water content for soil systems. As has been noted,
2- (29) the heat balance integral method yields solutions

that compare quite well with the few exact solutions.
or Thus the graphs presented here should be accurate

for normal engineering design, especially since the
o = -1 + J+27. (30) soil thermal properties will normally be known only

to within 10-20%.
Physically this is a single phase problem with the Storage of thermal energy, as latent heat, is be-
latent heat predominating. Equation 30 is the quasi- coming more significant as solar energy becomes more
steady solution (Lunardini 1981). important. In general, the storage of thermal energy

will play an increasingly important role in energy
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Table 1. Thermal properties of some phase change materials.*

Specific Thermal
Latent heat at conductivity

Fusion heat of Tf at Tf Density
Phase change temperature fusion ( LtuIkm FJ (Btu/hr *F ft) at 25.q

material (* F) (Btu/Ibm) Sold Liquid Solid Liquifi (ibm/ft )

B203  842 142 0.41 0.44 0.9 0.58 115.5
33 LIF-67 KF 918 266 0.32 0.39 2.4-4.8 2.30 157.9
67 NaF-33 MgF2  1530 265 0.34 0.33 2.4-4.8 2.69 133.6
12 NaF-59 KF-29 LiF 849 257 0.32 0.38 2.4-4.8 2.60 157.9

*ERDA (1976)

conservation for technically advanced countries. The graphs ci.- ten be used by assuming that the
Figures 15-24 give the phase change depth vs time insulation layer has no latent heat and phase change
for some possible phase change materials with the starts at t = to when the temperature of the insula-
properties listed in Table 1. tion-slab interface reaches Tf.

With these graphs the phase change depth, temper- The single-phase solution, with STm = 0, eq 30,
ature, and heat flux can be predicted as a function can be rewritten as
of time. The computer listing is given for the numer-
ical quadrature and can be used if materials with . Ik2 22 (T. -Tf_(t_- to)
different properties are considered. Xc I-- id2 + P £

-kt d. (36)
INSULATED SEMI-INFINITE BODY

Equation 36 is identical to the quasi-steady solution
Figures 5-24 can also be used for the case of a derived by Lunardini (1981).

slab insulated with a layer of material when the insu-
lation temperature is T_, as shown in Figure 25. The
conductive resistance of the iisulation must equal CONCLUSION
the convective resistance of the air layer. Then

d 1 The heat balance integral method can be applied
3 k . = h (34) to conductive heat transfer problems with phase change

to obtain good, approximate, solutions. The method
The dimensionless phase change depth is then given is particularly useful for soil systems since their nature
by often precludes obtaining accurate data on the soil

-i thermal properties. Thus the use of approximate
oc = j X¢. (35) solutions will not increase the uncertainty of the

design process.
The main value of the collocation method is that

nsulotimO Thawed Frozen it provides an explicit functional relationship between
k, k k2 the phase change depth and the temperature disturb-

ance depth. This relationship will usually uncouple
the system of differential equations for two-phase

T0 problems and can lead to closed form solutions or to
reduced numerical effort. The collocation solution
of the Neumann problem has been shown to be quite

d - accurate with a worst case accuracy of less than 15%.
For most soil systems the accuracy is within 5%. The

-- collocation method is not quite as accurate as the
usual heat balance integral method but it is easier to
apply to two-phase problems.

Figure 25. Semi-Infinite body with Quantitative values have been obtained for the
Insulation layer. previously unsolved case of convection at the surface
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APPENDIX A. PROGRAM LISTING FOR NUMERICAL QUADRATURE OF EQUATION 28

This appendix includes the FORTRAN program for the numerical quadrature of the conduction
phase change problem for a semi-infinite medium with a convective heat flux at the free surface.

C FREEZING CASE

C FREEZING CASE
C CONDUCTION PHASE CHANGE

0 CONVEC71VE SURFACE FLUX
C SEMI-INFINITE MEDIUM

IMPLICIT DOUB~LE PRLCISION (A-'49O-Z)
CALL COTRL(2.'CODUT#5)
WRITE( 1,782)

782 FORMAT(I**OU7PU7 WILL APPEAR IN FILE COMOUTI)
WRITE (5,953)

950 FORMAT(1*5X9I3HFREEZING CASE)
Z=100.
CALL TNOU(OUHJAT K(21 VALUE AOULI) YOU LI1(r9,29)

CALL TNOU('twHA7 A21 VALUE WOULD YOU LIKE*,2R)
READ( 1.* )A
CALL TNOU(#WHA7 C21 VALUE WOULD YOU LIKE0929)

CALL TNOU(OWHAT STEFAN VALUE WOULD YOU LIKE9937)
RE A 3 1%,* )ST
CALL TN0U(9HOW MANY THETA-M VALUES DO YOU HAVE09135)
READ(I ,*)ICOUNT

DO 50 J=1,ICOUNT
WRITE(1 siO) J

780 FORMAT(1,'INPUIT THETPM-',P)
SE A DC1.* ) THE7I Y
4R1TE(5,75)THrTP9ST0 9C9A

7b FORM4DT(I9/195X,10HTHF7A-M = 9F3.1/
I /I,5X,0HSTEFAN = : *
I I1,5X96HK21 = F.
I /195X~bHC2l = vfE.2
I I1,5X96HA21 = 9F6.2)

4RITE (53i)
10j0 FORMAT(//1,2X.5HSIGMAI5X3HAU91X34lPHI13X,&HSQRT TAU)

TAU=C.

U0 125 K=0920
UPP=FLOAT(K)
CALL SIMP(C-ONSTTHETMSIGMA.ESOWUPPST .ZDHITZTAL,,,*CA)

* 83W:UPP
I AU=TAU.TOTAL
Sj7AU=TAUi**(1 S2. )
WRITE(5,70j)SIGMATAU9PHIqSGTAU

125 CONTINUE
31) CONTINUE

CALL CONTRL(49*COMOUT*,5)
CALL EAIT
END

SUBROUTINL SIMP(CON.TTHETMsSIGMA8CJWUPPST .7,PHI TOTAL.U.CA)
IMPLICIT DOUBLE PRECISION (A-HO-Z)
0=0.
TOTAL: O.
H:(UPP-&Ow)/Z
SI G 1A: UOW. H. 1
CALL FCT(CONSTTHETMSJGMA.TOTSTPHI .%*CA)
TOTAL=TOT
0:041.
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SIGMA=UOWH*D)
CALL FCTICOINS1 THrT,SIATOTvSTPHI9,*Ck
TOT:101*4.
T OTAL=0T AL+T UT

S IGMA~ii0W+H*D
IF(0 *EGO Z)GO TO 2:0
CALL FLT(CONSTTHET",SIG4A lDT ST PHIwCtA)
TOT =TOT*2.
TO0TA L:TUT A L* 1 U
GO TO 23

2C0 CALL FCT (CONSTTHETt4,SIGMA,TOTSTPHI,* .C.t)
TOTAL=(TOTAL+707) *H/3.

END

SUE-ROU1INE FCT(COFSTTHtT$,SIGMATCT9SI9PHI ,WCA)
IMPLICIT OO.JbLl PRECISION (A-HO-Z)

8ET=(2.*W*THLETM44A)/1ST

FUNC:(T*SIGMA*2(PI1/.+E**SIJ!A*II)*2*H*S
1/4e )A*SIGMA* (SIGMM42. II.S*IG')* (1./2.)H ~A 1.'

PFFP1*PHI&MA) *2#.)*SMA(IA+)

FUNC(SSIIMAAf2.*PtiA*S1GA)/ A*lP)/(.Pl4lM

1(SIGMSIMA(SGMA*2.) )lmA(.CT M*.

lIl./3.)**PHETH~2*SGI~/C(I~i

D=Z2.*FUNC*(PHI+A*iSIGMA1))

G=R+T+Y*U-L)

RETURN
END

14 *U. 8.GoYRR~um zAM h orls: OlC3 n62Io-68/208
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