AD=A112 813 COLD REGIONS RESEARCH AND ENGINEERING LAS HANOVER NH

F/6 20713

APPLICATION OF THE HEAT BALANCE INTEGRAL TO CONDUCTION PHASE CH=-ETC(U)

NL N

DEC 81 V J LUNARDINI
UNCLASSIFIED CRREL-81-2%5




SHE 1.0 B nz
=ik

re
M
14

| TR
= i

2 B s

i )

-

MICROCOPY RESOLUTION TEST CHART _ ’
NATIONAL BUREAU OF STANDARDS 1964 A

A




CRIREL

FEPONRY 81-25

Application of the heat balance integral
to conduction phase change problems

~p)
-
2
N
ye=i
yuad
<
E

Pil

ON STRTENENT A~ -
l Apprered for publc eleae } 82 08 22 010




CRREL Report 81-25

Application of the heat balance integral
to conduction phase change problems

Virgil J. Lunardini

December 1981

UNITED STATES ARMY CORPS OF ENGINEERS
COLD REGIONS RESEARCH AND ENGINEERING LABORATORY
HANOVER, NEW HAMPSHIRE, US A,

Approved for public release, distnbution unhimited




Linclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
S
REPORT DOCUMENTATION PAGE BEFOmE COMPE pc o ORM
[7. REPORY NUMBER . GOVT ACCE$S|ON 3. RECIPIENT'S CATALOG NUMBER
CRREL Report 81-25 Dl /4 _j_ i | Sﬁ
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

APPLICATION OF THE HEAT BALANCE INTEGRAL TO
CONDUCTION PHASE CHANGE PROBLEMS

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORC(s) 8. CONTRACT OR GRANT NUMBER(s)

Virgil §. Lunardini

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
U.S. Army Cold Regions Research and Engineering Laboratory .
Hanover, New Hampshire 03755 DA Project 4A161101A91D
Y1. CONTROLLING OFFICE NAME AND ADDRESS 12. RERPORT DATE

December 1981

U.S. Army Cold Regions Research and Engineering Laboratory

Hanover, New Hampshire 03755 13- NUMBER OF PAGES

2

14, MONITORING AGENCY NAME & ADDRESS(If different from Controfling Office) 15. SECURITY CLASS. (of this report)

Unclassified

Sa. DECL ASSIFICATION/DOWNGRADING
SCHEOULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public refease; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, 1f different from Report)

19. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side it sary and identify by block ber)
Energy storage Soils
Heat transfer Thermal conductivity

Phase transformations
TN

20. ABSTRACT (Continue an reverse sish ¥ neceseary and identify by block mumber)

» The problem of heat conduction with phase changeAoften called the Stefan problemgrincludes some of the most
intractable mathematical areas of heat transfer. Exact solutions are extremely limited and approximate methods

are widely used. This report discusses the collocation method for the heat balance integral approximation. The meth
is applied to some standard problems of phase cMngeE-Neumnn's problem-fand a new solution is presented for the
case of surface convection for a semi-infinite body. Numerical resuits are given for soil systems and also for materials

of interest in latent heat thermal storage. - -

DD, m/i EDITION OF 1 NOV 65 1S OSSOLETE

SECUMTY CLASSIFICATION OF THIS PAGE (When Data Entered)




PREFACE

This report was prepared by Dr. Virgil J. Lunardini, Mechanical Engineer, Applied Research
Branch, Experimental Engineering Division, U.S. Army Cold Regions Research and Engineering

Laboratory.
Funding for this study was provided by DA Project 4A161101A91D, /n-House Laboratory

Independent Research.
Appreciation is expressed to Dr. Y.C. Yen, Dr. G.D. Ashton, and F.D. Haynes of CRREL for

their technical review of the report.
The numerical calculations and the computer program were prepared by T. Carpenter

lecosslon Fox-
I\”IS GRART
T Ty

,nr\.

!

!

| soctirs

i tify. élt,ion_. —
S —

By .

h.—-'_“‘—-
D{stribntton/ ]

ivaty. oy Codes e
) Lod/op . .

1
-

j
f
|
D
!

LA /

R PR
R




CONTENTS
Page
Abstract i
Preface ii
Nomenclature resbesesensssareasnesrncns v
Conversion factors.......ceceeees v
Introductijon 1
Collocation Method.......ccovcesiisnisersnseesassserserivssnessosasssens 2
Neumann problem........ccccmiiivicrsnnssnineinineennnsnnes 3
Specified surface heat fiux 3
Convective SUrface heat flUX .....ovvecvecriiiiisiininntiesnsninieinrssenosemssss e 4
Insulated semi-infinite body ......cccrvevnincincrnnenns "
Conclusion ressresarsanerens 1
Literature Cited .........cccmvmvrcreencninsensensesnesacsersens 12
Appendix A: Program listing for numerical quadrature of equation 28.........cccccecvuennence 13
ILLUSTRATIONS
Figure
1. Temperature penetration depth ........cveemeenenssniisiiiinnesnsnsssinssseens 1
2.  Geometry of the Neumann problem.... 2
3. Specified surface heat flux for a semi-infinite MediUM....ceurvrveeeeerrsscecnsnenn, 4
4.  Surface convection for a semi-infinite body 5
5. Surface convection for soil, x, (volumetric water content) = 0, Sy, = 0.5...... 6
6.  Surface convection for soif, xo = 0.25, $1,,, =0.5.. 6
7. Surface convection for soil, x, = 0.50, Sy, = 0.5 6
8.  Surface convection for soil, xg = 0.75, S, =0.5.. 6
9.  Surface convection for soil, x, = 1.0, Sy, = 0.5 7
10.  Surface convection for soil, x5 = 0, Sypy = 2 verciniienisneninininiinnscsnscsieninns 7
11, Surface convection for soil, x; = 0.25, S, = 7
12, Surface convection for sail, x, = 0.50, St,,, = 7
13.  Surface convection for soil, x, = 0.75, S¢,, = 8
14.  Surface convection for soil, x, = 1.0, S¢, = 2 . 8
15.  Surface convection, ByO3 Spp = 0.1t icicssennsisesaseenes 8
16.  Surface convection, B,05 Sy, = 0.2...... e 8
17.  Surface convection, 33 L|F-67 KF, Stm = 0.05 e incieccnninnsnesaiasnis 9
18.  Surface convection, 33 LiF-67 KF, S¢,,, =0.1........... 9
19.  Surface convection, 33 LiF-67 KF, St =0.15 9
20.  Surface convection, 33 LiF-67 KF, St =0.20......... 9
21.  Surface convection, 67 NaF-33 MgF,, Sy, = 0.05......... . 10
22.  Surface convection, 67 NaF-33 MgF,, Sy = 1.5 10
23.  Surface convection, 12 NaF-59 KF-29 LiF, S1,= 0.05 ..ccouiiivnriennnccncnnnsennes 10
24.  Surface convection, 12 NaF-59 KF-29 LiF, 5y, =1.5.. 10
25.  Semi-infinite body with insulation layer ............ 11
TABLE
Table
1 Thermal properties of some phase change materials.........coveovcisiiisinsinieniens n

iit




NOMENCLATURE
ay,09 coefficients in eq 13
2Ry O * oy
b 0y ~0m
B (0., - 0)b
8, parameter defined by eq 18
c mass specific heat
€21 caleq
F defined by eq 27
G specified surface heat flux
h surface coefficient of convection
k thermal conductivity
ka1 kalky
2 mass latent heat of fusion
q surface heat transfer rate per unit area
q* L S
T -T¢
S _GX_ , dimensionless phase change depth
Py 80y
)
St T (T, - T¢), Stefan number
4 .
Stm T (T.. - T§), modified Stefan number
t time
to time at which phase change starts
T temperature
X Cartesian coordinate
Xg volumetric water content
X phase change depth
a thermal diffusivity
az1 alay

Subscripts

1,2

T R —

Ti-To

Ts - 7-f

1+2 STm

temperature penetration depth

———— _ dimensionless penetration depth
PR pe p

€y

7 TenTo

12

< (1100 -Tol

)
—Q— (T- - TO)
integrated temperature

density

-’-:—'— X, dimensionless phase change depth
1

BT, -Tp) lt-1g)

41 k‘g
time

, dimensionless

G te—
22024, I \/(-;(t')dt', dimensionless time
ey o

LA
kq
penetration depth

8, dimensionless temperature

initial value

thawed and frozen regions, for thaw case
fusion value

surface value

ambient value




CONVERSION FACTORS: U.S. CUSTOMARY TO METRIC (St)
UNITS OF MEASUREMENT

These conversion factors include all the significant digits given in
the conversion tables in the ASTM Metric Practice Guide (E 380),
which has been approved for use by the Department of Defense.
Converted values should be rounded to have the same precision

as the original (see E 380).

Multiply By To obtain

bm/ft3 16.01846 kg/m3

Btu/lbm 2326.000* J/kg

Btu/lbm °F 4186.800* Jkg K

Btu/hr °F ft 1.730735 W/mK ;

*Exact .
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APPLICATION OF THE HEAT BALANCE
INTEGRAL TO CONDUCTION PHASE

CHANGE PROBLEMS

Virgil J. Lunardini

INTRODUCTION

Problems of freezing and thawing arise frequently
in such diverse applications as thermal design in
permafrost regions, thermal storage of latent heat
for solar systems, and the heat treatment of metals.
One is often interested in the penetration rate of
the phase change interface, the temperature field,
and the boundary heat transfer rates, These prob-
lems fall into the category of conductive heat trans-
fer with solidification phase change. From an engi-
neering design viewpoint, exact solutions are sought
for geometries and boundary conditions that are
simple and yet representative of significant systems.
Unfortunately the mathematical difficulties are
such that exact sofutions to this class of problems
are fimited to a few very special geometries and
boundary conditions {Lunardini 1981). However,
a number of approximate methods have been de-
veloped that can yield solutions acceptable for
engineering design. This report describes one of
these approximations: the heat balance integral
method.

This method, which has been used with good re-
sults for phase change problems, involves the concept
of the temperature penetration depth. Consider
the semi-infinite solid shown in Figure 1. At a time
1, after the surface temperature has jumped to 7,
the temperature in the solid will be disturbed to a
depth X{(t) + 8{¢). Beyond this depth, the temper-
ature of the solid remains at the initial temperature
Ty and no energy is transferred beyond this point.
The penetration distance X + 8 is analogous to the
boundary layer thickness in fluid mechanics. The
heat balance integral method is similar to the mo-
mentum integral method in that the basic equations
are satisfied on average over the volume of thickness
X(t) + 6(t). This avoids solving the partial differ-
ential equation at each point within the domain of
interest.
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Figure 1. Temperature penetration depth.

The conduction equation, with constant thermal
properties, is

2
Q—I = ar “)

¢ a2 ot

where a is thermai diffusivity. Now this equation is
spatially integrated over the distance X(t) + 56(¢).
Thus

X6 271 X+6 ar
a — dx= — dx.
50 ax2 fo ar

The left-hand side of this equation is

X+5 32
Jear . . [a T{X+5,2)

0 axz ox

- QL@J.Q] ) ) )

ox

Leibniz's rule for a general function is




@) g 90 &
a Sy Motde=r0 G - fla) -

b
+5 a (x,¢) dx .

Then
X+6 T g X
So TS dx-E _"0 T{x,t) dx
+ T(X.q,&) M s
dt
Let
X+8
= _f Tix,t) dx . (3)
[
Then the heat balance integral equation is
a7(0,2) d(x+s
+ O £ - 0 dt =0. (4)

This equation is valid if there is no phase change.
Consider the case of phase change with the proper-
ties of the frozen region different from those of the

thawed region, Using the procedure outlined above,
there will then be two integral equations as follows:

&1 0, [T

dat " tar T ax
aT,(0,1)

ai e )

2 d‘XﬂS )
0

AT, (X, 1)
+ay—5—— =0 (6)

+det

X
E-' = .fo T] (x,t)dx

X+6
& = -‘.x Ty (1) dx

and T1(X, 1) = Ty(X 1) = Ty, To(X+8,t) = Ty have
been used. The energy balance at the phase change
interface is
aT,(xt) a7,(X 1)
I Pl B P

= .p,0 9X 7
e (7)

The solution of a general problem with superheating
or subcooling (the initial temperature is above or
below the fusion value) will involve two coupled,
nonlinear differential equations for the parameters
X and 6. The solution will normally be tedious and
often requires a starting solution to handle the singu-
larity at the origin. However, assume that the initial
temperature is 7;. Then the problem reduces to
only one differential equation since the penetration
distance X+ is riow identical to the phase change
depth X:

dt, 7 dX [371()(")
ar ~ tgr T ® ax
ar,(o,:)}
T @
X
1 = S T,(X,t) ax . (9)
o

The heat balance integral method has been used
extensively for single phase problems (Goodman
1958, 1964, Goadman and Shea 1960, Poots 1962,
Lardner and Pohle 1961, Bell 1978) and also for the
much more complicated two-phase problems (Lun-
ardini 1980, Lunardini and Varotta 1981). The
single phase problems are also referred to as non-
subcooling problems since the initial temperature is
identical to the fusion temperature.

COLLOCATION METHOD

The usual heat balance integral equations for two-
phase problems are coupled and the solution can be
difficult. A slight variation of the heat balance inte-
gral method can be used to find an explicit functional
relation between § and X that will uncouple the equa-
tions and simplify the solution.

If eq 5-7 are added together the result will be the
overall energy balance for the volume of interest:

d
7t ey + pacoky + 20X

+ (P22 -p1c1) Te X =~ pacaTo(X+8)]

ar7{0,1)
=~ ky - (10)

The term (py¢, - p1cq) T dX/dt, in eq 10, is the
net sensible flux of enthalpy at the phase change
interface due to the sudden jump in the specific heats
of the frozen and thawed volumes. This term was
omitted in a recent study by Yuen (1980), although
Yuen's derivations implicitly assumed that pycq = pyc,y




at the phase change interface. The retention of the
sensible enthalpy term gives better numerical com-
parisons to exact solutions,

Equation 7 can be rewritten as two collocation
equations (see Lunardini 1981):

Ty (X, ¢ AT, (X, t
2 )*k 2% 1)

L )% 2 T P
92T, (X, t aT (X, 1)
o 2l )/ il (1)
ax2 ox
aT,(x 1) a7,(X, 1)
—g— t Ry — 5 =-pfa
1 X 2 ax 28942
2T,(X, 1) T, (X ¢)
2T / Al (12)
ax2 ax

For semi-infinite solids the following temperature
approximations can be used:

Tl = Tf+a1(x -X)"'Uz(x —X)2 (]3)
T,=T¢-2 (——-—-T';T") (x-X)
+ %IP—) (x-X)2 . (14)

Equation 13, representing the temperature in the
region which has changed phase, contains two un-
known coefficients. One of these can be found from
the specified boundary condition at x = 0. Com-
bining eq 11-14 yields

ay an

01=-36._. (15)

NEUMANN PROBLEM

The surface temperature of the volume changes
1o a constant 7 at the start of phase change (see
Fig. 2). This problem has bees; solved exactly by
Neumann {c. 1860} and approximately by Lunardini
and Varotta (1981) using the heat balance integral,
The solution to eq 10-15 is

X=2yyay T (16)

8y +ay,

y2=

) f i 1)1,
@y “231‘['2"’0215"’5‘2131&3;] <6
(17)

MO ® !
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Figure 2. Geometry of the Neumann problem.
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By =hy B+ ——

1 0 st
2
ay1\2 azy
+‘(213+2"§_;) +k21°‘213+‘2§;

(18)

Equations 17 and 18 reduce to those of Lunardini
and Varotta (1981} for the single phase case when
8=0. When 8+ 0,eq 17 and 18 agree well with
the exact solution but are less accurate than the
solution of Lunardini and Varotta (1981); the max-
imum errors of about 15% occur at low Stefan
numbers with high § values.

Although this solution is for a step change in
surface temperature, it has been shown that the
solution is valid for a sinusoidal surface temperature
if the step change temperature is the average value
of the sinusoidal temperature over one half cycle.

SPECIFIED SURFACE HEAT FLUX

The problem of a specified surface heat flux can
also be solved in a closed form, The surface temper-
ature will increase from 7 to the fusion value T
when melting begins (see Fig. 3) and the phase
change solution can then be obtained,

The surface boundary condition is

a7, (o,
‘k] '—iax_ﬂ =G(t).

- Equations 13 and 15 lead to

_Gl a3y X ]
01“

ky (+ag X




e

Figure 3. Specified surface heat flux for
a semi-infinite medium.
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The collocation method allows a simple relation to
be derived between § and X. By using equation 12

this is
2
+ VBT +ay BS (20)

A=

ST}

where

Equation 10 can now be solved for the phase change
depth S. The result is

a
—21— §3 + 82 [%*“21 (1+cy am)]
+S [(1 +C2] om)A"‘%kz‘ 0m (A‘Bil

+ 3001 0 (A-B)=1* (B +ay 5).

(21)

There is no exact solution of this problem for com-
parison, but approximate solutions can be found for
the single phase case when 8, = 0. Equation 21 then
reduces to

. % (5+5 +Ji745) . (22)

This is exactly the equation obtained by Goodman
(1958) with the usuat heat balance integral. This
solution has been shown to be in good agreement
with an analog solution be Kreith and Romie (1955).
Lozano and Reemsten (1981) derived an exact
solution for the single phase case. The solution for
Stm = 0.2 was essentially identical to eq 22. Un-
fortunately the exact solution converges so slowly
for large time values that it is inefficient for numer-

ical computations. The surface temperature (for
t> tg) is given by

o o 0 S2r2se

b =0m = FETay, 87

(23)
As has been pointed out by Goodman (1964), the
solutions here are valid only if G(t) is .nonotonically
increasing with time or is a constant. Pulse type heat
fluxes will not yield correct solutions.

CONVECTIVE SURFACE HEAT FLUX

A problem of importance is that of heat flow from
the environment, by convection, to or from a volume
which is undergoing phase change. The situation is
shown in Figure 4 for thawing. This problem is
physically more significant than the Neumann prob-
lem because the ambient temperature and convective
heat transfer are specified rather than the surface

temperature,
The surface boundary condition is
3T, (0,1)
15— =hTL T 0] (24)

Equations 13 and 15 now yield
-2 (0.-0,)

cr a4 Ry a4
Xé* % ")*T 15X

Again using eq 12
2 2
potlet ) (POt IR o o,

aq =

(25)
where
p= K21 0m *
(on "om)
where
=h
$= 3 8
=l
[ k; X.

The energy balance equation, eq 10, can now be
written as

dfF ___ 2(¢te0)

dr —%(0‘* 1)""“21 (0 +2)

(26)

and
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Figure 4. Surface convection for a semi-
infinite body.

1
e (0,_,-0",)02 (¢+§‘(¥2] 0)
T 26 (0+ 1) *ay; olo+2)

1
+°(1+C219m)*§" €210md, {27)

Equation 26 can be written as

g
27 = _’; Qdd’ (28)

where
PQ=(2¢0+ay, g aS¢,, +(1+ Cy10m)9
+2[0(1+ Cpy0p) * 5 C10m8)
X (P+ay,)+S¢y, o? +]§ Cy10m8
#2{0(1+ Cyl,,) + 3 Cp10nd] (0+1)

~2(o+1)F WJW”)) -2(P+ay) F

2¢-b(o + 1
where P = ¢ +ayj0and g =2 [P(1 - o) - a¢].
There is no exact solution of eq 26 for comparison

but it can be shown that when 6y =0andSy,
=(0., - 0,,) =0, eq 26 can be solved as

-2
Ll a4 {29)

or

o=-1+/1+27. (30)

Physically this is a single phase problem with the
latent heat predominating. Equation 30 is the quasi-
steady solution (Lunardini 1981).

The numerical sofution to eq 28, when 0n =0,
is identical to the heat balance integral solution of
Goodman (1958);

12y 7= {(1+2y) + (2+ 7)0] |1 +70(2+ 0)} /2

J2y-1)  [1ryo2+ o) V2 4 [(1 4+ g)y] V2
VT 1+J7

-1+y(2+ o)+ [1+y0(2+ 0)}1/2
2y

“4yly~-1In

2
+(72+57)‘-7§- +2(12+4y-2)0-1-2y (31)

where y=1+ 2S¢ .. Equation 31 reduces to eq 29
when Sy . =0,

Cho and Sunderland (1981) presented an approxi-
mate met}.od of solving this problem for the single
phase case (9, = 0). Their results agree very well
with eq 31, but they note that the zero-subcooling *
solution is a good approximation to the subcooling ‘
problem when 6., # 0. This is not true, as can be
seen from the graphs presented here. The subcooling
has a very significant effect upon the rate of phase
change and may be ignored only at the risk of serious
error.

The surface temperature is

T, 0,0-7 _ o(2¢ +ayy 0)
To-T: - 0(20 + ay0) +2(¢ + @y 0)
(32)

The nondimensional surface heat transfer rate is

g% = (6 a210) . (33

a(¢+12~a210)+(¢+a210)

Equation 28 can be solved by simple, numerical,
quadrature. Figures 5-14 are plots of the solution
for some values of Stefan number and §,,, with
property ratios given as functions of the volumetric
water content for soil systems, As has been noted,
the heat balance integral method yields solutions
that compare quite well with the few exact solutions.
Thus the graphs presented here should be accurate
for normal engineering design, especially since the
soil thermal properties will normally be known only
to within 10-20%.

Storage of thermal energy, as latent heat, is be-
coming more significant as sofar energy becomes more
important. {n general, the storage of thermal energy
will play an increasingly important role in energy
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Figure 21. Surface convection, 67 NaF-33 MgF 2
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Table 1. Thermal properties of some phase change materials.*

Specific Thermal
Latent heat at conductivity
Fusion heat of f at Ty Density
Phase change temperature  fusion  (Btuffdm.°F)]  (Btufpr °F ft) at 25°
material (°F) (Btu/lbm) Soltd Liquld Solld  Liquid  (Ibmfft>)
By05 842 142 041 044 0.9 0.58 1155
33 LiF-67 KF 918 266 032 039 24-48 230 1579
67 NaF-33 MgF, 1530 265 034 033 24-48 2.69 133.6
12 NaF-59 KF-29 LiF 849 257 032 038 24-48 2.60 157.9
*ERDA (1976)
conservation for technically advanced countries. The graphs c«.: then be used by assuming that the
Figures 15-24 give the phase change depth vs time insulation layer has no latent heat and phase change
for some possible phase change materials with the starts at ¢ = £, when the temperature of the insula-
properties listed in Table 1. tion-slab interface reaches 77,
With these graphs the phase change depth, temper- The single-phase solution, with S3 . =0, eq 30,
ature, and heat flux can be predicted as a function can be rewritten as
of time. The computer listing is given for the numer-
ical quadrature and can be used if materials with 2%, (T, - TeMe-t,)
different properties are considered. X = Jk%dz + P
~kyd. (36)
INSULATED SEML-INFINITE BODY
Equation 36 is identical to the quasi-steady solution
Figures 5-24 can also be used for the case of a derived by Lunardini (1981),
slab insulated with a layer of material when the insu-
lation temperature is T, as shown in Figure 25. The
conductive resistance of the insulation must equal CONCLUSION
the convective resistance of the air layer. Then
Jd 1 The heat balance integral method can be applied
. = B (34) to conductive heat transfer problems with phase change
! 1o obtain good, approximate, solutions. The method
The dimensionless phase change depth is then given is particularly useful for soil systems since their nature
by often precludes obtaining accurate data on the soil
k; thermal properties. Thus the use of approximate
% = gky X.. (35) solutions will not increase the uncertainty of the
design process.
The main value of the collocation method is that
nsuiotion] Thawed Frozen it provides an explicit functional relationship between
k; Ky k2 the phase change depth and the temperature disturb-
ance depth, This relationship will usually uncouple
the system of differential equations for two-phase
To problems and can lead to closed form solutions or to
reduced numerical effort. The collocation solution
of the Neumann problem has been shown to be quite
o 4 —vfe— X —= accurate with a worst case accuracy of less than 15%,
s For most soil systems the accuracy is within 5%, The
collocation method is not quite as accurate as the
usual heat balance integral method but it is easier to
apply to two-phase problems.
Figure 25. Semi-infinite body with Quantitative values have been obtained for the
insulation layer. previously unsolved case of convection at the surface
n




of an infinite medium. These results generalize the
widely used Neumann solution and are applicable
to the same physical situations as the Neumann
probiem.

The procedure can be used for any material if the
appropriate thermal properties are supplied. The re-
suits of this report apply only 10 conductive heat
transfer and should be considered as first approxima-
tions if convection occurs within the melted phase
of the material.

LITERATURE CITED

Bell, G.E. (1978) A refinement of the heat balance
integral method applied to a melting problem. Inter-
national Journal of Heat and Mass Transfer, vol.

21, p. 1357-1362,

Cho, S.H. and ).E. Sunderland {1981) Approximate
temperature distribution for phase change of a semi-
infinite body. fournal of Heat Transfer, vol. 103,
no. 2, p. 401-403,

Energy Research and Development Agency (1976)
Thermal energy storage program. Information Ex-
change Meeting, Cleveland, Ohio, Sept. 8-9.
Goodman, T.R. (1958) The heat-balance integra’ and
its application to problems involving a change of
phase. American Society of Mechanical Engineers
Transactions, vol. 80, p. 335-342,

Goodman, T.R. (1964) Application of integral
methods to transient nonlinear heat transfer. In
Advances in Heat Transfer (T.F. Irvine and J.P. Hart-
nett, Eds.), New York: Academic Press, vol. 1, p.
52-122.

12

Goodman, T.R. and J.}. Shea (1960) The melting of
finite slabs. Journal of Applied Mechanics, ASME,
vol. 27, p. 16-24,

Kreith, F. and F.E. Romie (1955} A study of the
thermal diffusion equation with boundary conditions
corresponding to solidification or melting of mater-
ials initially at the fusion temperature. Proceedings
of Physical Society, Section B, vol. 68, p. 277-291.
Lardner, T.). and F.V. Pohle (1961) Application of
the heat balance integral to problems of cylindrical
geometry. ASME, series E., vol. 83, no. 2, p. 310-312,
Lozano, C.J. and R. Reemsten (1981} On a Stefan
problem with an emerging free boundary. Numerical
Heat Transfer, vol. 4, p. 239-245.

Lunardini, V.J. (1980) Phase change around a circular
pipe. CRREL Report 80-27. ADAO94600.
Lunardini, V.}. (1981) Heat transfer in cold climates.
New York: Van Nostrand-Reinhoid.

Lunardini, V.J. and R. Varotta (1981) Approximate
solution to Neumann problem for soil system. fourna/
of Energy Resources Technology, vol. 103, no. 1,

p. 76-81,

Neumann, F. (c. 1860) Lectures given in 1860’s, cf.
Riemann-Weber, Die partiellen Differentialgieichungen.
Physik (edn. 5, 1912}, vof. 2, p. 121.

Poots, G. (1962) On the application of integral methods
to the solution of problems involving the solidifica-
tion of liquids initially at fusion temperature. /nter-
national Journal of Heat and Mass Transfer, vol,

5, p. 525-531,

Yuen, W.W. (1980) Application of the heat balance
integral to melting problems with initial subcooling.
International fournal of Heat and Mass Transfer, vo\.
23, p, 1157-1160.




e e e

APPENDIX A. PROGRAM LISTING FOR NUMERICAL QUADRATURE OF EQUATION 28

This appendix includes the FORTRAN program for the numerical quadrature of the conduction
phase change problem for a semi-infinite medium with a convective heat flux at the free surface,
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