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I
BIT SYNCHRONIZATION WITH CROSS SPECTRUM SYNCHRONIZATION LOOP

I T. S. Tsang
C. M. Chie

W. C. Lindsey

LinCom Corporation
P.O. Box 2793D

Pasadena, CA 91105

I Sumary

The purpose of this report is-two-fold: (a)-to identify the

I optimal analog technique for implementing a bit synchronizer for wide-

band data channels-and (b) to compare, in detail, the performance of the

analog bit synchronizer with the optimal digital implementation

I - exemplified by theJ'DTTL already built and tested. For biphase data, it

is shown that the optimal analog implementation based upon the cross-

I spectrum principle is a delay-and-multiply circuit followed by a

conventional CW loop. The optimal delay is about one-quarter of the bit

duration. For a 12.5 Mbps data stream, it is roughly 20 ns. The IF

- 3 filter in front of the delay-and-multiply nonlinearity is immaterial as

long as the BT product exceeds three approximately.

3 When compared to the DTTL, the performance of the analog loop is

roughly equivalent to a DTTL with a 50% error arm window. It

outperforms a full-window DTTL by roughly 3 dB in terms of jitter yet

l gives inferior acquisition performance. On the other hand, a DTTL with

a quarter-window outperforms the analog loop by roughly the same amount.

I It therefore appears that both the analog and digital bit

synchronizer performs equally we. The selection of one over the other

must be based on other criteri such as sensitivity to environmental

variations, biases, stability and perhaps packaging ease.

I
1 -1-



II

I
3 1. INTRODUCTION

Bit synchronization [1.2] is an important and well-established area

in communication theory; however. a detailed analysis which compares

analog loop implementations with that of digital implementations has not

been fully performed. Recently, a detailed analysis of an old bit

I synchronizer, viz., the Filter and Square Bit Synchronizer Loop (FSTL)

was done by J. K. Holmes [3]. A modification of the FSTL was introduced

I by McCallister and Simon [4) which used a delay and multiply circuit

3instead of the squaring circuit. This configuration, the Cross-Spectrum

Symbol Synchronization (CSSL), shown in Fig. 1, has been demonstrated to

3 have a better performance than the FSTL.

However, in [4), performance was given only for the case of a

I single-pole RC filter, and NRZ signaling format. In this report, the

3 case for Manchester signaling format Is given as well as for NRZ

signals. Butterworth filters of order 2 and 3, and ideal low pass

U filters are also studied. In [4], the analysis method used for

numerical computation was pretty complicated and hard to be

I generalized. In this report, a simple way for numerical computation is

introduced which applies for most physical low pass filters.

Squaring loss is used as a parameter for performance analysis.

3 Along with the design curves given, clock jitter and average slip rate

can be determined. Comparison of the CSSL with the popular bit

I synchronizer, the Digital Data Transition Tracking Loop (DTTL) is also

illustrated.

2. SYSTEM MODEL OF CSSL

The system model of the Cross-Spectrum Symbol Synchronizer Loop

(CSSL) is given in Fig. 1. The baseband input signal ARM is a PCM

I
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I *1

Isignal. The additive noise is white Gaussian with two-sided spectral
density NO/2 watt/Hz. The power of the signal is S. and m(t) is modeled

as

I7
MW(t) * alp(t-IT) (1)

where ai = tl is the l-th data bi. The data is assumed to be binary

Iand independent. The pulse waveshape p(t) is assumed to have NRZ or

3Manchester (biphase) signaling format. Let the a priori probability of

the data a= 1 be p, i.e. P[al=1] = p. Then, P[al=-1) = q = i-p. The

3 transition density pt can be shown to be pt - 2pq. For equal a priori

probability p = q, Pt = 50%.

I The filter H(s) plays an important role in determining the

performance of the synchronizer. The shape of the transfer function and

its 3 dB bandwidth are two important factors to be determined. Although

3 Ia matched filter matched to the input signal pulse waveshape and

transition density can be found theoretically, they are very difficult

to be implemented. In practice, simple linear Butterworth filters are

g used. In this report, Butterworth filters of order n = 1, 2, 3 and

(ideal low pass filter) are used for H(s).

3 The filter G(s) is a bandpass filter to pass the desired n-th

harmonic frequency (w = 2nu/T) of the signal y(t). 'Other harmonics aren

l filtered out. This signal z(t) is then fed into the phase-locked loop

" (PLL) for tracking.

3. PERFORMANCE ANALYSIS OF CSSL

3 The input to the filter Hi(s) is

1 -4-



I x(t) * , m(t) + n(t)

1  aip(t-iT) + n(t) (2)3 By using the Heaviside notation, the output signal x(t) is

; (t) H(p)X(t)

* * vrr(t) + ;(t) (3)

where m(t) - H(p)m(t) is the output of the signal component, and the

; (t) =H(p)n(t) is the output of the noise component. The signal y(t)

output of the delay and multiply circuit is

y(t) = ;(t)x^(t-xT)

I= Yss(t) + Nsn(t) + Nnn(t) (4)

3 where s(t) = Srn(t)ni(t-CiT)

3 Ns(t) - 4Str(t)n(t-caT) + n(t);(t-aT)J

3 Nnn(t) - n(t);(t-sT)

3 The yss(t) is the signal x signal component, Nsn(t) is the signal x

noise component, and the Nnn(t) is the noise x noise component of

I y(t). Define an equivalent noise process

IN(t) -Nsn(t) + Nnn(t) (5)

* We have

y(t) -yss(t) + N(t) (6)

The yss(t) process can be decomposed into two components,



U Yss(t) + SSt) (7)

where

SNss (t) - y 5 5 t) - YT (8)

and the overbar denotes statistical average. We assume the fluctuation

of yss(t) due to the data pattern (self-noise) is small [3,4), so that

- yss(t) can be replaced by (Y

y-s(t) can be written as

m(t)= SC(t) (9)

with
1

3 C(t) = k p(t-kT)p(t-aT-kT)
k

S+ I (p-q) 2p(t-nT)p(t-T-kT) (10)

k n
-'-I n4

Since C(t) is periodic in t with period T, it can be expanded in a

Fourier Series

3 C(t) = Cn t (11)

mn=- '-

3 where

2nw

and
IT _j ItI Cn "T C(t)e dt

3 ln Eq. (10), we have adopted the lower case g0 for both pulse waveshape
and the a priori probability Plak-l] - p, but there will be no confusion3 in the context.

1 -6-
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After some algebra (see Appendix A), Cn can be expressed as

a

C = -PR J P(W)P(wn-w)e-" Tdw

2 - 2*,, ,2,k -j  2.-.f-)aT+Pq I£ }: ;(w, - -'rr.T e• (12)

T k=-w

where w() is the Fourier Transform of the output pulse shape p(t).

Next, we need to evaluate the power spectrum of the equivalent noise

N(t). From (4), (5) we have

N(t) = vS-[m(t)n(t-aT) + m(t-aT)n(t)] + n(t)n(t-QT) (13)

The autocorrelation of N(t) is

RN(T) = <N t >

SS[2Rm(T)Rn(r) + RV(r-T)R( + T)

+ RA(r+cT)Rn(r--T)) + Rnn(T) (14)

where
2

Rm(T) = <m(t)m(t+T)> (15)

Rn(T) = n(t)n(t+T) (16)

R..(T)= R2.(oT) + RF,(?) + R,(-oT)R.(4+aT) (17)
nn n n n n

2Since m(t) is a cyclostationary process, we need to take the time
average also in Rm(T).

-7-



3 The spectrum of N(t), SN(w), is the Fourier Transform of RN(r).

SN(w) - ERN(r)]

=S5 (w) + Sn(w) (18)

where

S5 n(w) =S f m~TR~?

U+R -(T+ cLT) R ;( T T)ejwTd T (19)
mn

* and

3 n(w) 1 R'.(aT) + R2(T) + R..(TaT)R(iT)]e-jwTdr (20)
-- n n n n

I Let

2' 3 ~S^(w) = E- ()

and (21)

Un n
Ssn(w) and Snn(w) can be written as

Ssr(w) = ~ S,(x)S,(w,-x)f1+cosI(uw-2x)czT]Jdx (22)

2nfj(()w- 1 x)(23
S () -2,n(T)(w) + j I () (-)1elx (3

nn n -. n

To evaluate S(W), we first find Sm(u) (see Appendix B), and make use of

the relation

S;(bw) IHa~ 2 sm~ (24)



'I* U which yields

S,() 4 P(&)jI2 JH(w) 1214 pq +4!2, (p-q) 2 X6(Q* 2qw&)J (25)

I A N

Sn(w) IH(w)12S (W) =  2 01(w)1 (26)

Substituting (25) and (26) into (22) and (23) with z = xT, at

1w = wn *0, we obtain

Ssn(wn)

No  J [1 + cos[2a(n,-z)lH (2n.i 2 . IP(4)J 2 H{)I 2 dz

w -
T

(p-q)2 [1+cos[27r,(n+21t)]]JHCIT.w (n+2.))2 T.Z LP- }I H -(I)

(27)

Snn(wn) 8-N lH-)I 2 Hw-( z),I2E1+eJ 2a(nw'z)Jdz (28)

As mentioned above, the input to the PLL is a single tone (wn) plus

1 narrowband equivalent noise. By using the linear PLL theory [5], the

mean-square phase tracking jitter is given by

I02 [Ssn("wn)+Snn(wn)]WL

#n S tcnI2+tC_"I 2J
.Ss n( wh)+ S n n(w h) A (2 9 )

sZcnIz '

I
-9-



3 where WI is the two-sided loop bandwidth WL 2BL, and BgL is the single-

sided bandwidth. The mean-square phase tracking jitter can be expressed

in terms of the "squaring loss" SL

I 1- (30)

- where S 2R
P R (31)

R _ ST (32)

Then the squaring loss S is expressed as

3 - ~ SNoICn I 2  1
L Ssn(n nn(wn) (33)

. The relative timing error, normalized to a symbol period, is defined as

A n (34)
13

The variance of this error Is

a 2
a 2 1n 2 (35)I (2nw) 2 nw)

3 The "clock jitter" is defined as An which is an important parameter for

synchronizer performance.

Another important parameter in tracking qerfomance analysis is the

average cycle slipping rate S. From [5, Ch. 9)

p
-10-



-AW

WL cosh ( 36)
as JB=sl (36)

For 0. s - PSL the normalized slip rate S/WL is

WL PSL 211 olPSL) 12 (7

where 10(x) is the modified Bessel function of the first kind of order

zero.

The filter used in H(s) is a n-th order Butterworth filter

characterized by

IH(W)I z  _ 1 (38),+ r Zn (8

where f0  B/2w is the 3 dB cutoff frequency. The transfer function of

the Butterworth filter is given by

(BT)
n

H(jW) (n 1 1,2....,n (39)

1 (jwT-BTSt )
=1

with

Si  exp[jw( +(21-1)/2n)]

When n-i, the Butterworth filter is a single pole RC filter. When n+-,

it approximates an ideal low pass filter.U
The signaling format for the input signal is NRZ and Bi-#. Their

* Fourier Transform of the pulse shapes are givey by

A

I
-11-



NRZ: PC) - .L i-.1JwTj (40)

Bi-#: P() - 1 [2e3JwTIZ+eJWTJ3 (41)

Substituting (40) and (41) in (12), we obtain

E NRZ:

(p-)2H (0 + H (T)i( ZJsinc2(zzejd; n-0

CnU .(J
3 d; r, (42)

Ii2p.2 7 )H(.2 fl-z)sinc()sinccr )e-J*dz; o

C _,)n2,, (,H 2 w-z)(z)(z-nf)sinc 2*Jsinc2 z-2n)e-jzdz

(-1)n(p-q) 2 ~ H(.2wk)Hr(n2!.kw) (..sn2 (* )[kZ-1Jl

*sinc2 [ (k-nl 3e-j(nk) 2 wz (43)

U For Bi-#, when n is even (which is the case for tracking), Cn is further

simplified to

2 2 *)jt ~-k) 2 w(n-Ih)aU+ H klL n (44)
k odd



I 4. NUMERICAL RESULTS

3 In this section, numerical results for the CSSL performance on NRZ

and Bi-# signaling formats are provided. Here Equations (27), (28)6

3(42), and (43) are evaluated directly by numerical methods, rather than
first expanded in series as done in [4]. In this way, different

Itransfer functions H(w) of filters can be easily substituted
numerically, whereas the method of series expansion will involve a lot

of calculation.

3 Fig. 2 plots the normalized harmonic power for the case of Bi-#,

a- 0.5, p = 0.5, and single pole RC filter. Fig. 3 plots the same case

I except for a = 0.22. For the case of interest, foT = 3.0, the second

harmonic (n=2) component, and delay a = 0.22 should be chosen since it

has a larger harmonic power input to the PLL for tracking. Later on it

S 1 will be shown this case indeed yields a larger squaring loss SL (smaller

clock jitter). Fig. 4 plots the harmonic power for NRZ. This figure

NI suggests the first harmonic (n-1) should be chosen.

Fig. 5 plots the SL in dB vs the filter time-bandwidth product fT

for Bi-#, RC filter, Rs U 5 dB, n - 2, and various values of a. It

l confirms for FoT = 3.0, a - 0.22 is the optimum value. As compared to

Fig. 6, which has the same conditions except for n-i, the case a - 0.22,

l n - 2, provides the optimal condition for tracking. Fig. 7 plots the

same case for NRZ format. In this case,a- 0.5, n - 1 provides the

optimal condition. For small values of foT (say foT ( 1.5), the

1 assumption that the pattern noise (e.q (8)) is negligible may not hold

[6]. Therefore, the values of SL is valid only for large foT.

UFig. 8 plots SL vs foT for Bi-# and diffelent filters. It is shown

that for Bi-#, 2nd and 3rd order Butterworth filters have a similar

p !II I•__
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I
performance and are better than (for fOT 3.0) the RC filter and the

lbideal LPF. Fig. 9 plots the same case for NRZ format.

IFigs. 10 and 11 plot SL vs Rs for Bi-$ and NRZ, respectively. It
shows that Bi-# has a better performance than the NRZ in terms of SL.

For Bi-*, the 2nd and 3rd order Butterworth filters have a very close

performance.

Fig. 12 plots SL vs the data transition density pt for Bi-#, Rs = 5

It dB, 2nd order Butterworth filter, and various values of a. For the same

a, SL is larger for smaller pt since for Bi-# format, smaller pt will

I arrive on the average a larger number of zero-crossings which in turn

will yield a better performance in tracking. Figs. 13 and 14 plot the

same case for Rs 
= 15 dB and -5 dB, respectively. For Rs = -5 dB, a =

5 0.25 is the optimum value, whereas for larger Rs, a = 0.22 is the

optimum. Fig. 15 plots SL vs Pt for the NRZ signaling format. As

I epxected, SL decreases when Pt decreases, since for NRZ the waveform

will look like a DC signal when pt is small, which is very difficult for

tracking.

3 Figs. 16 and 17 are two design curves in terms of SL.  Fig. 16

plots the clock jitter aX versus SL for p ranging from 20 dB to 43 dB.

5 If the SL at a Rs value is known, the clock jitter can be found for the

corresponding p. 'recall that p is a function of Rs and WLT. Fig. 17

plots the average normalized slip rate versus SL for p ranging from

3 10 dB to 40 dB. Fig. 17 is used for sinusoidal signal tracking (e.g.

CSSL). Given these two curves, the performance of the CSSL can be

" Ipresented in terms of the SL only.

5. PERFORMANCE COMPARISON BETWEEN CSSL AND DTTL

Performance comparison between CSSL and DTTL can be done in terms

1 -21-
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I
of SL which is equivalently the clock jitter. Fig. 18 plots plots the

SL versus Rs for DTTL, NRZ signaling format, Pt - 0.5, with the window

C as a parameter. Fig. 19 plots the same case for bi-phuse format. A

abrief derivation of the SL for DTTL is given in Appendix C.
Comparing Figs. 10 and 19, for Bi-#, the CSSL has a comparable per-

I formance with the DTTL with 0 - 0.5. Comparing Figs. 11 and 18, the

performance of the CSSL with NRZ format and RC filter is comparable with

I the DTTL with Co = 0.45 for Rs = 15 dB, and with 0. 7 for Rs a -5dB.

i This comparison may not be valid in the strict sense since the DTTL

has assumed a wideband signal but the CSSL in this case has assumed f0T

I = 3.0. The CSSL has an advantage of simpler hardware implementation

(easier to maintain and more economical) comparing to the DTTL which may

'I be an important consideration. Yet the DTTL could have still better

-i performance by reducing the window width.

6. SUMMARY

The CSSL has the optimum performance when a = 0.5, i.e. a half-

symbol delay time, for NRZ signaling format. For Bi-* signals, optimum

performance is reached when a 0.25 for small Rs (say Rs < 0 dB), and

, 0.22 for high Rs. The first harmonic should be the frequency to be

tracked for NRZ while the second harmonic should be used for Bi-#
* 1 signals.

Tracking performance, clock jitter and average slip rate, are given

I in terms of the squaring loss. Since the average slip rate is very

sensitive to the value of SL (see Fig. 17), optimization of average slip
rate (or SL) over the filter time-bandwidth product foT seems possible

I(see Figs. 5 and 7). However, since the optimal f0T value is pretty

small (<1) for NRZ, it is only of interest for very narrow-band

I
I
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I applications. Yet in this case, the pattern noise may not be

negligible. For Bi- , the gain in optimizing foT is pretty small.

Also, it is only of interest for narrow-band applications.

Butterworth filters of order I (RC filter), 2, and 3 have

relatively the same performance in the small Rs region. For RS > 0 dB

(Bi- case), Butterworth filter of order 2 or 3 is recommended.

Manchester signaling format performs better than the NRZ signaling

A i format for all cases of interest. It is the one to be recommended in

terms of synchronization performance.

The CSSL system performs roughly the same with a OTTL with 50%

window. However, in the case of DTTL, the window width can be reduced,

subject to the hardware restriction.

j The CSSL has the advantage of simplicity in implementation.

However, it is analog in nature, some disadvantages in using analog
circuits, such as drift, start up calibration, saturation, etc., need to

be considered. Digital version of CSSL could be more attractive in the

future.

I
Ii
I

.. I

II
I
1



APPENDIX A

This appendix derives the Eq. (12) in the main text. From Eq. (11)

j in the main text, we have

C(t) n Ce jWt(A.1)

V where

2nirw -

- 1 T tejwtd(A2

' Substitute Eq. (10) into (A.2) to get

C =4I j T[ I p(t-kT)p(t-al -kl )

k

Cn Tf Et)-')+ (p-q) p(t-T)p(t-aTTkF) e dt (A.)

By using the Parseval's theorem, with P(w) P(w)w) (A.4) can be

written in the frequency domain

Cnw)e-j=T[1+(p-q) 2  ejwwL A5

Cn 7 n()~ e n )
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i

p. With the help of the Poisson sum formula,

2irI h(kT)ej k wT 1 H(, -* (A. 6)

(A.5) can be written as Eq. (12) in the main text.

I

I

i
I
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APPENDIX B

This appendix evaluates Srn(w) in Eq. (24). From Eq. (2),

M(t) = akP(t-kT)(.)
k

m(t) is a cyclostationary process, its spectru is defined to be

SM(W) F F[<m(t) m(t+ r)>I

EjFIj p(t-kT)p(t+r-kT) + (p-q)2 I I p(t-nT)p(t+-t-kT)>j (B.2)
k n k

n4

I. Consider the first term

F{<j p(t-kT)p(t+T-kT)>l
k

fIXT f p(t-kT)p(t+i-.kT)dtf
k 0

T J- p(tlp(t+Tr)e J~dtdTr

1 pa+r e- w d d
I = T f P(t)

I s P~w p-~ td

- 14T P(w)P(-ui) (B.3)

Similarly, for the second term
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Xil p(t-nT)P(t+-T-kT)>)
n k

-~ ~ III , p(t-AT-kT)p(t+r-kT)dt}

40 k 0

- If~ f p(t-ZT)p(t+-t)dtj

-. I p(t-l-T) 1f p(t+T)e -w.(d rdt

T4 P(w)P(-rn) e
too

21 62w+21
T P(w)P(-w) C- + I) (B.4)

fTherefore,

=mw 1~ )(w[p + 2w (p..q)2  6( + 2-Ni!) (B.5)
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APPENDIX C

This appendix presents a brief derivation of the SL for DTTL. The

SL can be determined given the loop S-curve g(k) and the equivalent

noise spectrum S(wAx) [13. By using a Gaussian approximation for the

probability density function of X, the squaring loss is found to be

1 2 [g.,()32

LI (2nir) 2 P02 (2 2 h (c.1)

where g'(O) is the derivative of the normalized S-curve at A =0, h(0)

is the lized noise spectrum at A - 0, and n is set to be 1 for NRZ

and 2 for biphase format.

II For NRZ format r1)

~ A)= x- -)erf (4-) + (3.x + TD)erf (ff(1-2A)); 0 4 A

(C.2)

i g(0 u~ (2 erf (4s) - to /e-RS (C.3)

h(O) I -7 1 LCR - --e erf2 ()- ~esr~i

For bi-phase format, gn(A) and h(O) can be found by the similar

method [7) with the period to be tracked replaced by T/2. With the help

of Fig. C.1 and Tables C.1, C.2, and C.3, we have

-39-
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dk/2 dk/2+1l k/2+2
I I ' ) t

(k+2)T/2 (k-1)T/2 kT/2 (k+1)T/2 (k+2)T/2 (k+3)T/2 (k+4)T/2

dk/2 dk/2+1 d /1

-- 
0 0 0

_ _ _ I I0 0 1

I0 1 0

I _ _ _ _ _ _ _ 0 1

IF .L 1 I

1 0 0

I1 01

I 1
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IL

aI Table C.l. Definition of x(i) and Y(t)"

x(t)* A > 0 Y(0); <-

:&1 1 - 41 41

2 1

.4x

.4

Table C.2. Values of xk,yk for Different Data Patterns,

Unshifted Case..1

dk/ 2  dk/2+1 Xk Xk+l Xk+2 Yk Yk+l

0 0 -x(1 ) x -X -Y Yl

0 1 x(1) -x2 X Y2 -Yl

1 0 x( 1 ) Y2 Yl

1 1 x( 1 ) "X Xl Yl "Yl

For convenience, the bracket in the subscript is neglected. The
entries in the Tables C.2 and C.3 should look like the first column.

Iii



Table C.3. Values of xkUyk for Different Data

I Patterns, Shifted Case.

' k/2 d k/2+1 k/+ Xk x k+1 Xk2 Y k+l

0 0 0 Ax -xI i Y-]

10 0 1 -X1  -X x2  Y Y

0 1 0 -X2  X1 X2  -'I Y

o 1 1 -X2 X -XI -] Y

1 0 0 x2  -xI x1 Y Y

1 0 1 X2 -XI X2 '-Y2

I 1I -xi 1  x 2 -x Y
_ _ _ _ _ _ _ _ _ _ -X _ _ _ _ _

A
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1A E k erf ( X erf(L Xg.() = T- E. f k - k+l

-R2  RX2

- texp ( xk) - exp sk+I) C.5)

where
xk f s t)d

Y s(t)dt
!- .(k-1) .i

OTA
(k- +) T

and their values for different data patterns are given in Tables C.2 and

C.3. The expectation is averaged over the signal patterns. Half of the

signal pattern is shown in Fig. C.1 and the other half is the same as

Fig. C.A excpet T/2 shifted to the right. The normalized equivalent

noise spectrum at A = 0 is found by

h(0) 2 CQ(01) + 2Q(II[)) (C.6)

where

SQ(0lX) = E E s [  + R- 11 - erfr~ xk ef/iXk+1J)
RR

A "- x )erf(, Xk+1

-y flkexp( S ,c'4)erf /-S x.RS

Rs  2 RS  2
- i-exp(- y- x.kjexp(- 2-x-1) (C.7)

and
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Q(1I)L s E{ 2 Ykyk+ler(i xk+ler/i Xk+2)

+ erf (/r x )erf /I Xk+1) - erf (/' xkJerf( i xk2)J

k k+' k+2

yr1 xt s x (e r xk+2J + erf !R- X)]

97 YexP - k~tx(r-ep( lx+

2s 2 2
+-exp- 7- k l)ep 2k+ 2J T x- r k 11

s- -
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