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BIT SYNCHRONIZATION WITH CROSS SPECTRUM SYNCHRONIZATION LOOP
T. S. Tsang
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W. C. Lindsey
LinCom Corporation 1

P.0. Box 2793D
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Summar, ~YT o sTway Teehs
The purpose of this report is two-fold: (a)-to identify the
optimal analog technique for implementing a bit synchronizer for wide-
band data channels-and (b} io compare, in detail, the performance of the
analog bit synchronizer with the optimal digital implementation
exemplified by thé)DTTL a1ready built and tested. For biphase data, it

is shown that the optimal analog implementation based upon the cross-
spectrum principle is a delay-and-multiply circuit followed by a
conventional CW loop. The optimal delay is about one-quarter of the bit
duration. For a 12.5 Mbps data stream, it is roughly 20 ns. The IF
filter in front of the delay-and-multiply nonlinearity is immaterial as
long as the BT product exceeds three approximately.

When compared to the DTTL, the performance of the analog loop is
roughly equivalent to a DTTL with a 50% error arm window. It
outperforms a full-window DTTL by roughly 3 dB in terms of jitter yet
gives inferior acquisition performance. On the other hand, a DTTL with
a quarter-window outperforms the analog loop by roughly the same amount.

It therefore appears that both the analog and digital bit
synchronizer performs equally !Sl‘° The selection of one over the other
must be based on other criterikhs such as sensitivity to environmental

variations, biases, stability and perhaps packaging ease.
!
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1. _INTRODUCTION

Bit synchronization [1,2] is an important and well-established area
in communication theory; however, a detailed analysis which compares
analog loop implementations with that of digital implementations has not
been fully performed. Recently, a detailed analysis of an old bit
synchronizer, viz., the Filter and Square Bit Synchronizer Loop (FSTL)
was done by J. K. Holmes [3]. A modification of the FSTL was introduced
by McCallister and Simon [4] which used a delay and mulitiply circuit
instead of the squaring circuit. This configuration, the Cross-Spectrum
Symbol Synchronization (CSSL), shown in Fig. 1, has been demonstrated to
have a better performance than the FSTL.

However, in [4]), performance was given only for the case of a
single-pole RC filter, and NRZ signaling format. In this report, the
case for Manchester signaling format is given as well as for NRZ
signals. Butterworth filters of order 2 and 3, and ideal low pass
filters are also studied. In [4], the analysis method used for
ndmerica] computation was pretty complicated and hard to be
generalized. In this report, a simple way for numerical computation is
introduced which applies for most physical low pass filters.

Squaring loss is used as a parameter for performance analysis.
Along with the design curves given, clock jitter and average slip rate
can be determined. Comparison of the CSSL with the popular bit
synchronizer, the Digital Data Transitfon Tracking Loop (DTTL) is also
{1lustrated.

2. SYSTEM MODEL OF CSSL

The system model of the Cross-Spectrum Symbol Synchronizer Loop
(CSSL) 1s given in Fig. 1. The baseband i’nput stgnal /Sm(t) s a PCM
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signal. The additive noise is white Gaussian with two-sided spectral

density Ng/2 watt/Hz. The power of the signal is S, and m(t) is modeled
as

m(t) = " .aip(t-iT) (1)
where 3; = 4+l is the i-th data bi.. The data is assumed to be binary
and independent. The pulse waveshape p(t) is assumed to have NRZ or
Manchester (biphase) signaling format. Let the a priori probability of
the data aj = 1 be p, i.e. P[aj=1] = p. Then, P[a;=-11 = q = 1-p. The
transition density py can be shown to be py = 2pq. For equal a priori
probability p = q, py = 50%.

The filter H(s) plays an important role in determining the
performance of the synchronizer. The shape of the transfer function and
its 3 dB bandwidth are two important factors to be determined. Although
a matched filter matched to the input signal pulse waveshape and
transition density can be found theoretically, they are very difficult
to be implemented. In practice, simple linear Butterworth filters are
used. In this report, Butterworth filters of order n =1, 2, 3 and =
(ideal low pass filter) are used for H(s).

The filter G(s) is a bandpass filter to pass the desired n-th
harmonic frequency (“h = 2nx%/T) of the signal y(t). "Other harmonics are
filtered out. This signal z(t) is then fed into the phase-locked loop
(PLL) for tracking.

3. PERFORMANCE ANALYSIS OF CSSL

The input to the filter H(s) fis




x(t) = /5 m(t) + n(t)

- AL _ap(e-am) + ne) (2)

By using the Heaviside notation, the output signal ;(t) is
x(t) = H(p)x(t)

= & a(t) + n(t) (3)

where ﬁ(t) = H(p)m(t) is the output of the signal component, and the
n(t) = H(p)n(t) is the output of the noise component. The signal y(t)
output of the delay and multiply circuit is

y(t) = x(t)x(t-oT)

Yeg(t) + N, (t) + N (t) (4)

where -~ &
yss(t) = Sm(t)m(t-aT)

N, (t) = BIn(t)n(t-aT) + n(t)m(t-aT)]

Nnn(t) = n(t)n(t-al)

The yss(t) is the signal x signal component, Nsn(t) is the signal x
noise component, and the N, (t) is the noise x noise component of

y(t). Define an equivalent noise process

N(t) = Nsn(t) + Nnn(t) (5)
We have

y(t) =y (t) + N(t) (6)

The yss(t) process can be decomposed into two components,
|

[
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Ygs(t) = Y lt) + No (t) (7)
where
Neglt) = yglt) - ;;;TE’ (8)

and the overbar denotes statistical average. We assume the fluctuation
of ys¢(t) due to the data pattern (self-noise) is small [3,4], so that
¥gg(t) can be replaced by ;;;TET.

};;TET can be written as

Yoo(t) = SC(t) (9)

withl . .
c(t) = J p(t-kT)p(t-al-kT)
K

11 (p-9) 2p(t-nT)p(t-aT-kT) (10)
n .
n#

Since C(t) is periodic in t with period T, it can be expanded in a

Fourier Series
® Jut

ct) = ) cpe " (11)
n.—--.
where
w = 2NT
n T
and

Cn =T IO C(t)e dt

11p Eq. (10), we have adopted the lower case g for both pulse waveshape
and the a priori probability P[ak-ll = p, but there will be no confusion
in the context.




After some algebra (see Appendix A), C, can be expressed as

C, = %?9 ]:. I;(m)s(wn-w)e-jwﬂdw
Zﬂk)

_z. - - ’j[w' T
gl TR - HE ST T e

where 5(u0 is the Fourier Transform of the output pulse shape 5(t).
Next, we need to evaluate the power spectrum of the equivalent noise
N(t). From (4), (5) we have

N(t) = /S[m(t)n(t-oT) + m(t-aT)n(t)] + n(t)n(t-aT) (13)

The autocorrelation of N{t) is

RN(T) = <W>

= S[ZR';('r)Rr“‘(t) + R""‘( 'r-aT)R";(ﬁ»aT)

+ R"‘;(ﬂaT)R";( -al)] + R""r"‘( 1) (14)
where2

RA(7) = <m(t)m(t+r)> (15)
RA(T) = n(t)n(t+1) (16)
Ro.(1) = R(aT) + R2(1) + Ru(t-aT)R.(T+aT) (17)

nn n n n n

t
2since m(t) is a cyclostationary process, we need to take the time
average also in Rp(T).
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The spectrum of N(t), Sy(w), is the Fourier Transform of Ry(1).

sy(@) = FIRy(1)]

= Sgple) + Sy (w)
where

Sgplw) =S ]_D EZR'ﬁ(t)R';( 1) + R"‘I‘(r-aT)R,‘;(ﬂcT)

+R~(+aT)R( 1-oT) Je~d “7dx

and

Snn(w) = f [Rg(aT) + Rg(r) + R“(r'ankﬂ("“”]e-jmtdz

® n n n n

Let
Sa(w) = FIR(t)]
and

Si(e) = FIR(7)]

Ssn(uo and Snn(ué can be written as

S [ carerca
Ssn(uo = = f_, Sm(x)Sn(u»x){1+cos[(u»2x)aT]}dx

Snn(w) = ZuRE(aT)G(u) +.%; j-. SJ(X)SJ(u»x)[1+ej(“*zx)°T

To evaluate Sﬁ(uo. we first find Sp(w) (see Appendix B), and make use of

the relation

Sae) = [H(w) (25,00

Jdx

(18)

(19)

(20)

(21)

(22)

(23)

(24)
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which yields

Sale) = T IP(@)1° ()P thpq + 2 (p-0)® ) ol B)} (25)

N
saw) = [H(W)ZS (W) = 52 [H(w)]? (26)

Substituting (25) and (26) into (22) and (23) with z = xT, at

w= w + 0, we obtain

Sgnlwn)
= SN {28 [ s cos[za(nn-z)nw{@#)l"’%z P12 InE)| Zaz

+ (p-q)? ;z' Liscostzna(mza) IJIHE" (ne2))I® 1 PR 2 INCERE)I?)
(27)

2
N ® X
Snled = gar | WG ANEEE) e PR3 o)

As mentioned above, the input to the PLL is a single tone (mn) plus

narrowband equivalent noise. By using the linear PLL theory [5], the

mean-square phase tracking jitter is given by

A = [Ssn{up#Spn(un) JW
“S201c alc 121
*n séCic, 1°+1c_19)

[Ssn{uh)*Spnlun) I8y (29)
N
sZ|c, |
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where W_is the two-sided loop bandwidth W = 2B , and B, is the single-
sided bandwidth. The mean-square phase tracking jitter can be expressed

in terms of the “"squaring loss" §

s 1
oin N (30)
h
where -A s i ZRS 3
¢S N T WY (31)
0y, L
ez M
_ ST
R = W (32)

Then the squaring loss S, is expressed as

2
SNA [C.|
0'n
s, = <1 (33)
L Ssalty) * Sppluy)

The relative timing error, normalized to a symbol period, is defined as
¢
A *n
% Znw (34)

The variance of this error is

2
o
2 *n 1 1
) = . 35
o T Tl aem? L o)

The "clock jitter" is defined as uan which §s an important parameter for
synchronizer performance.

Another important parameter in tracking qerformance analysis is the

average cycle slipping rate S. From [5, Ch. 9)




L cosh =8
2 — :z____---z 3
s S “js(“s)l (%)

For 8= 0, o = o5 the normalized slip rate S/W, is

1
L oS #1g(es)) |2

(37)

:Iml

where Ip(x) is the modified Bessel function of the first kind of order
zero.
The filter used in H(s) is a n-th order Butterworth filter

characterized by

a2 .« 1
[H(w)| I:@'r;zﬁ (38)

where fg = B/2% is the 3 dB cutoff frequency. The transfer function of
the Butterworth filter is given by

n
W) = 2

i=1,2....,0 - (39)
i=1

with
Sy = explin(z +(2i-1)/2m)]

When n=1, the Butterworth filter is a single pole RC filter. When n+e,
it approximates an ideal low pass filter.

The signaling format for the input signal is NRZ and Bi-¢. Their

Fourier Transform of the pulse shapes are gfve‘ by




- g

‘;:rmmmnwwﬁu-b_%ﬁwﬂ Lt AT R AR Xt 5B - S G
A T . .~ =

. -

IR

NRZ: P(w) = %3[1-6-"‘7] (40)
Bi-¢: P(w) = %‘_“[1_22-5«7/2“-3»71 (41)

Substituting (40) and (41) in (12), we obtain
NRZ:

(p-)2H2(0) +35-°~ I. H({.)u( Jsinc? (219 J®y;. a0

G * (42)
1:1%2223 / H(-)HLZ""' )sinc@z)51nc(2"" Z)e" J“zdz, n#0

Bi-¢:

cn - ‘-1')"229 I:'. H(%)H[Zn‘ll-z)({_){Z-ZHI)SH'CZ (-f'JSi ncZ(Z-an)e-jczdz

CEDNea? T HEERERE G sin () gl

. sincZ [ k-n)n ]e-j(n-k)Zta (43)

For Bi-¢, when n is even (which is the case for tracking), C, is further
simplified to '

C,* -2-29 ]. HG)I(E'-';E) 3-({-&21'9- sincz(lz-)sﬂ'tcz(z'zn')e"’udz

(n-¥)a |
) TG STt Pl il )
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4. NUMERICAL RESULTS

In this section, numerical results for the CSSL performance on NRZ
and Bi-¢ signaling formats are provided. Here Equatfons (27), (28),
(42), and (43) are evaluated directly by numerical methods, rather than
first expanded in series as done in [4]. In this way, different
transfer functions H(w) of filters can be easily substituted
numerically, whereas the method of series expansion will involve a lot
of calculation.

.Fig. 2 plots the normalized harmonic power for the case of Bi-¢,
ea= 0.5, p= 0.5 and single pole RC filter. Fig. 3 p10fs the same case
except for a = 0.22. For the case of interest, foT = 3.0, the second
harmonic (n=2) component, and delay a = 0.22 should be chosen since it
has a larger harmonic power input to the PLL for tracking. Later on it
will be shown this case indeed yields a Targer squaring loss § (smaller
clock jitter). Fig. 4 plots the harmonic power for NRZ. This figure
suggests the first harmonic (n=1) should be chosen.

Fig. 5 plots the S, in dB vs the filter time-bandwidth product foT
for Bi-¢, RC filter, Rg = 5 dB, n = 2, and various values of a. It
confirms for FoT = 3.0, a=0.22 is the optimum value. As compared to
Fig. 6, which has the same conditions except for n=1, the case a = 0.22,
n = 2, provides the optimal condition for tracking. Fig. 7 plots the
same case for NRZ format. In this case,a= 0.5, n = 1 provides the
optimal condition. For small values of fgT (say fgT < 1.5), the
assumption that the pattern noise (e.q (8)) is negligible may not hold
[6]. Therefore, the values of S 1{s valid only for large fgT.

Fig. 8 plots S vs foT for Bi-¢ and diffeyent filters. It is shown
that for Bi-¢, 2nd and 3rd order Butterworth filters have a similar

-13-
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performance and are better than (for fgpl = 3.0) the RC filter and the
ideal LPF. Fig. 9 plots the same case for NRZ format.

Figs. 10 and 11 plot 5, vs Ry for Bi~-¢ and NRZ, respectively. It
shows that Bi-¢ has a better performance than the NRZ in terms of Spe
For Bi-¢, the 2nd and 3rd order Butterworth filters have a very close
performance.

Fig. 12 plots S vs the data transition density p, for Bi-¢, Rg = 5
dB, 2nd order Butterworth filter, and various values of a. For the same
a, S is larger for smaller Pt since for Bi-¢ format, smaller Pt will
arrive on the average a larger number of zero-crossings which in turn
will yield a better performance in tracking. Figs. 13 and 14 plot the
same case for R = 15 dB and -5 dB, respectively. For Rg = -5 dB, a=
0.25 is the optimum value, whereas for larger Ry, a = 0.22 is the
optimum. Fig. 15 plots S| vs p, for the NRZ signaling format. As
epxected, S decreases when Pt decreases, since for NRZ the waveform
will look like a DC signal when p, is small, which is very difficult for
tracking.

Figs. 16 and 17 are two design curves in terms of S - Fig. 16
piots the clock jitter o, versus S for p ranging from 20 dB to 43 d8B.
If the S_at a Rs value is known, the clock jitter can be found for the
corresponding p. "ecall that p is a function of Ry and W T. Fig. 17
plots the average normalized slip rate versus S for p ranging from
10 dB to 40 dB. Fig. 17 is used for sinusoidal signa! tracking (e.g.
CSSL). Given these two curves, the performance of the CSSL can be
presented in terms of the S, only.

5. PERFORMANCE COMPARISON BETWEEN CSSL AND DTTL

Performance comparison between CSSL and DTTL can be done in terms

i'.
|
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of S which is equivalently the clock jitter. Fig. 18 plots plots the
S_ versus Ry for DTTL, NRZ signaling format, p, = 0.5, with the window
& as a parameter. Fig. 19 plots the same case for bi-phase format. A
brief derivation of the S for DTTL is given in Appendix C.

Comparing Figs. 10 and 19, for Bi-¢, the CSSL has a comparable per-
formance with the DTTL with & = 0.5. Comparing Figs. 11 and 18, the
performance of the CSSL with NRZ format and RC filter jis comparable with
the DTTL with § = 0.45 for Rg = 15 dB, and with & = 0.7 for Ry = -5dB.

This comparison may not be valid in the strict sense since the DTTL
has assumed a wideband signal but the CSSL in this case has assumed fyT
= 3.0. The CSSL has an advantage of simpler hardware implementation
(easier to maintain and more economical) comparing to the DTTL which may
be an important consideration. Yet the DTTL could have still better
performance by reducing the window width,

6. SUMMARY

The CSSL has the optimum performance when a = 0.5, i.e. a half-

symbol delay time, for NRZ signaling format. For Bi-¢ signals, optimum
performance is reached when a = 0.25 for small Rg (say R¢ < O d8), and
a= 0.22 for high Rc. The first harmonic should be the frequency to be
tracked for NRZ while the second harmonic should be used for Bi-¢ 1
signals.
Tracking performance, clock jitter and average slip rate, are given

in terms of the squaring loss. Since the average slip rate is very

sensitive to the value of S, (see Fig. 17), optimization of average slip
rate (or S_) over the filter time-bandwidth product foT seems possible
(see Figs. 5 and 7). However, since the optimal foT value is pretty

small (<1) for NRZ, it is only of interest for very narrow-band

-31~
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applications. Yet in this case, the pattern noise may not be
negligible. For Bi-¢, the gain in optimizing fgT is pretty small.
Also, it is only of interest for narrow-band applicatjons.

Butterworth filters of order 1 (RC filter), 2, and 3 have
relatively the same performance in the small Rg region. For R, > 0 @8
(Bi-¢ case), Butterworth filter of order 2 or 3 is recommended.

Manchester signaling format performs better than the NRZ signaling
format for all cases of interest. It is the one to be recommended in
terms of synchronization performance.

The CSSL system performs roughly the same with a OTTL with 50%
window. However, in the case of DITTL, the window width can be reduced,
subject to the hardware restriction.

The CSSL has the advantage of simplicity in implementation.
However, it is analog in nature, some disadvantages in using analog
circuits, such as drift, start up calibration, saturation, etc., need to

be considered. Digital version of CSSL could be more attractive in the

future.




APPENDIX A

This appendix derives the Eq. (12) in the main text. From Eq. (11)

in the main text, we have

e e Bis< B s

o Jw t
ct) = § cpe " (A1)
where
2nn
““." T
« T -jut
C, = +J Clr)e "t (A.2)
0

Substitute Eq. (10) into (A.2) to get

c, =.1|. jOT[ % p(t-KT)p(t-al-KT)

i Memy e e BN

a ~ -Jj t
+ (p-q)? k{ L p(t-iT)p(t-oT-kT)le LN (A.3)
1

1%

P |

By change of variable, i = #+k, in the second term of Cn, the integral

i can be written to
~ 1 bad -~ - 2 .; - -~ "jwnt
C, =1/ [p(t)p(t-oT) + (p-q) 2,2' p(t-2£T)p(t-aT)]e = dt (A.4)
240

By using the Parseval's theorem, with 5(u0 = P(w)H{w), (A.4) can be

written in the frequency domain

W] W e e

" Bwp -J o -jlu-w)el
n * 7ot I Plup(o-ule JouTr14(p-q)? L. D o
240 (A.5)
: -35-
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With the help of the Poisson sum formula,

y e 1y ne- 3K (A.6)

k= k=-0

(A.5) can be written as Eq. (12) in the main text.
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APPENDIX B

This appendix evaluates Sp(w) in Eq. (24). From Eq. (2),
m(t) = % a,p(t-kT) (8.1)
m(t) is a cyclostationary process, its spectrum is defined to be
s,(w) £ F {@EImer 5]

= E{C) p(t-kT)p(t+e-kT) + (p-q)° } E p{t-nT)p(t+r-kT)>} (B.2)
k n
n¥k

Consider the first term
E{<) plt-kT)p(t+e-kT)> )
1 J
= F{Y g/ p(t-kT)p(t+=-kT)dt}
Tk 0 '

=%-f § plt)p(trr)e I Tdtds

'% [ plt) I' p(t+r)e "t

Lo S ple)ed®ar

3 P(a)P(-u) (8.3)

Similarly, for the second term
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1 2109) g p(t-nT)p(t+1-kT)>}
nk T
) T I ple-aT-KT)p(te kTt

“Ef LT e(e-mpee)
I’ -0
= -}» “);0 f:’ p(t.-JLT) f:’ p(t+t)e'jmdtdt
=) prapl-w jueT
1 P(w)P(-w) "3;0 e
- 1 pup(w) 1+ & P 2 (B.4)

Therefore,

Sals) = T PLPC-o)lapa + 32 (-0l T s(we TN (8.9)
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APPENDIX C

. .. This appendix presents a brief derivation of the S for DTTL. The
S| can be determined given the loop S-curve g(1) and the equivalent
noise spectrum S(w,A) [1]. By using a Gaussian approximation for the

h probability density function of A, the squaring loss is found to be

2Lg;(0)12

R b1
A s # = c.1
L (2anm%d  (20m)%ggh(0) (c.1)

where 9;\(0) is the derivative of the normalized S-curve at A = 0, h(0)

[ is the lized noise spectrum at A = 0, and n is set to be 1 for NRZ
and 2 for biphase format.

i

_l‘ For NRZ format [1]

1

> ' g,(2) = %- L ;E)EV'f(R;) + (324 EEQ-)erf(v'R's'(l-ZA))]; 0<2a ‘;Q
1 (c.2)
R
-R

1 9,(0) = %[2 erf(RR;) - & /—':,—-S- e °] (c.3)
1

-2R_ R -R
h(0) = 1 + -i- RSEO - ;0- e °- —-;—69- erfz(/rs) - /k;—; ge serf(/F;)

{
;I (C.4)
For bi-phase format, g, (A) and h(0) can be found by the similar

KY ' method [7] with the period to be tracked replaced by T/2. With the help

i of Fig. C.1 and Tables C.1, C.2, and C.3, we have
‘ -39-
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® 1 X(1)5 A>0 y(”;0<1<7
0 § ] 1 - 4 4
2- 1 3 i
4 i
.3
A .
Table €.2. Values of X oYk for Different Data Patterns,
., Unshifted Case.
ds2 | Yks2a X X1 | *k+2 | Yk | Yk
0 0 -x(]) . x’f X4 -y, N
0 )] -X(-I ) -Xz X] 'yz '.Y"
1 0 X(]) X2 “X] .YZ .y‘l
1 1 X(-l) -X] x] .Y'l ‘y‘l
1
|
1.
‘ -
[ il"For convenience, the bracket in the subscript is neglected. The
, entries in the Tables C.2 and C.3 should look like the first column.
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I -
in Say i S v ARSI ) o i ) » 2 . . - - -




A
| a
‘ I Table C.3. Values of Xy oY for Different Data
. . Patterns, Shifted Case.
t
E o
, Aoz Yy Ykzez | X | ke ] w2 | Yk ] Y
| 0 0 0 X X, I I ¥
, ¥ 0 0 1 X3 X3 Xy ¥; ~Y,
f ‘ 0 1 0 —Xz x.’ Xo ')'1 .Vz
¥ ! 0 0 X2 X Nt on 4]
1 0 1 X, -x % | 2 23
1 ! ¢ "X Xy 3N Wed Y
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Y
a0 = deE rt(/gE x - ertt/gE n
2 2

-R_x ~R_Xx ,
- lexpl—3%) - exp(—S22L)] (.5)
S
where
T -~
K o +
xké 1 Izs‘s(t)dt
(k-1)] +e
\ <k+§9)%+2
= I & _ s(t)at
(k- 2—) {-ﬂ:

and their values for different data patterns are given in Tables C.2 and

C.3. The expectation is averaged over the signal patterns. Half of the

signal pattern is shown in Fig. C.1 and the other half is the same as
Fig. C.1 excpet T/2 shifted to the right. The normalized equivalent

noise spectrum at A = 0 js found by

h(0) = %1a(0[% + 20(1]») (C.6)

where

2
R
Q01 = {1 + ik][l - erf(/z-‘{ Xy )erf{/ﬁ_zi Xe 193

/R R R
-y - 1 ExiJexn(- 5 ":krf( '/;‘s‘ Xye1)

/R R R
-/ Iy -7 % JerPle 7° x§+1 Jert( /2;' %)
(C.7)

R R
- ?— exp(- 5% € Jexp(- 52 2,1 )}

and




- m——
I
g Q(1}y) = E{ ;%6 yk"kﬂ[‘*""('/;E "k+1)°"f'*/§;' *k+2)
; + erf(/-‘;—-; X, )erf(/gi_ Xeap) - erf[/;; X, )erf(/;E Xi42)-11
+ v/;-% ¥, [exp(- ;5 X§+1)(erf(/§;— Xeap) ¥ e,f(/? x))
+ expl- ;2 xi+2)(erf(/-g_—;-: Xap) - erf(/fs x, ))]
+ /:;i YearLexpl- st- xiﬂ )[erfl/‘;s— Xepp) * elrft/;E x )3
} - expl- 52 K2 )[erf(/;; Xesg) - e,,f[/';z Xe1)7]
| + ;9,-’ exp{- ;—s- st[exp(- ;5 xtyq) - expl- ;5 xeip)]
: + -:% exp(- —2—-5- xfﬂ)[exp{- ;3 X§+2J - expl- ;E X|2(+1 )1}
| (c.8)
!
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