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I. INTRODUCTION

If modern airborne radiating systems are to function properly, the
antenna pattern must meet certain specifications. In fact, system
performance is often very much dependent upon the resulting patterns.

The usual design procedure for an airborne antenna consists of allocating
specific locations for the antenna based primarily upon convenience with

regard to aircraft structure specifications. Measurements are then used

to evaluate the performance of the antenna system in terms of its desired
pattern. This approach of airborne antenna design requires a great deal

of engincering time and wioney. Thus, the nced for an analytical approach
which provides the antenna pattern performance in the presence of an air-
frame is quite apparent.

One of the approaches that has found great success for analyzing on-
aircraft antennas is the Geometrical Theory of Diffraction (GID). The
GTD is a high frequency asymptotic solution in which the scattering
object under consideration is large in terms of wavelength. In general,
a modern high-speed aircraft is quite large electrically and complex in
shape. To be able to obtain an accurate radiation pattern. one must
take the various scattering structures into account. Based on its appli-
cations to previous on-aircraft antenna studies [1-6], the GID has proven
itself well suited to this type of analytical study. Not only does this
approach fit nicely into a ray optics format, but it also provides a
means of analyzing the effects of three dimensional structures and identi-
fying the significant contributions in the resulting antenna pattern.

Previous GTD solutions for far-field calculations have hbeen shown to be
accurate in predicting radiation patterns when compared with various
model measurements. However, a significant problem exists with attempting
to take far field pattern measurements. In order to satisfy the far-field
requirement, one should separate the transmitter and receiver by a minimum
distance (i.e., 202/x, where D is the maximum dimension of the aircraft).
Using this requirement for various scale models that have been considered,
one would need a range on the order of hundreds to thousands of feet in
length. It is obvious, then, that this requirement can not be met for the
majority of ranges. The discrepancy caused by the near field measurcment
is in the definition of directions. That is, the direction from the
antenna to the receiver is not the same as that from the center of the

aircraft to the receiver. These directions are identical in the far field.

Consequently, real far field measured data for most airborne antennas are
not practical. In fact from a measurement point of view, it is most ad-
vantageous to measure patterns in the extreme near field of the aircraft
using a small indoor range and a scale model aircraft. For full scale
measurements, it is most convenient to make measurements of the field in
the vicinity of the aircraft while the aircraft sits on the flight line.
Unfortunately, the near field pattern, that is most easily measured, is
not simply related to the far-ield pattern. Therefore, a near field
analysis for the air-borne antennas must be carried out.




It should be noted that the GTD solution for the near- and far-field
analysis are simply related. Thus the concept of decowposing the aircraft
structure into simpler components based on previous analyses [1-6] in the
far-field problems is still applicable in the near-field case. As a first
step to study the near zone aircraft problem, in this report an analytic
solution for the near-zone radiation from a general elliptic cylinder is
developed. Section Il presents the high frequency asymptotic analysis for
slot antennas radiating from a circular cylinder. The results cbtained in
Section Il are then generalized, on the basis of lacality of high frequency
propagation, to elliptic cylinder problems in Section II1. Finally, in
Section IV, numerical results calculated from the solution are presented
in graphical form and compared with eigenfunction solutions. Excellent
agreement 1s obtained.

IT. NEAR ZONE FIEEDS EXCITED BY SHORT SLOTS ON
LARGE CIRCULAR CYLINDERS

Consider the radiation from a short slot antenna mounted on a perfectiy-
conducting circular cylinder where the surrounding medium is free space.
Figure 1 11lustrates the geometry of the problem, where the antenna is
located at Q' and the field point at P. According to geometrical optics
the region exterior to the cylinder with the antenna at Q' is divided into
an illuminated region and a shadowed region by a plane tangent to the
cylinder surface at Q'. The plane is referred to as the shadow boundary.

A portion of these two regions adjacent to the shadow boundary is a transition
region. Previous work (e.g., [7]) based on the Geometrical Theory of Dif-
fraction (GTD) formulation for the fields radiated from an antenna on a
cylinder employs three different expressions for the fields in the various
regions. Nainely, the ygcometric-optics (GO) solution is used in the "deep"
1l1luminated reqgion, the creeping-wave representation in terms of the residue
series in the deep shadow region, and integral representation in terms of

Fock functions within the transition region. One then has to "blend”

these different representations for the solution to obtain the total field
pattern over the entire region exterior to the cylinder. In practical ap-
plications, this is accomplished by graphical extrapolation of the solution
obtained using different representations until they intersect smoothly in the
region where the solution switches from one representation to the other.
In this report integral representations in terms of fock functions are
employed throughout the whole space. The integral representation used
in the entire illuminated region recovers the GO solution in the "deep"
illuminated region, and the integral representation used in the shadow
region reduces to the creeping-wave (residue) series representation in
the decep shadow region. The following sections will describe how the
high-frequency near-zone radiated field may be calculated in the i1lumi
nated and shadow regions. The case for the field point P located in the
shadow region will be investigated first.
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Figure 1.  Geometry of the problem considered.

A.  Shadow Region

Consider an infinitesimal magnetic current moment py, located on the
surface of a circular cylinder at Q' as shown in Figure 2. The figld
point P is inside the shadow region. The magnetic current moment pp is
arbitrarily oriented and may be resolved into two orthogonal components
in terms of the two principle unit tangent vectors e} and ey of the cylinder
surface at Q' (see Figure 1). Thus an arbitrarily oriented magnetic
current moment can be resolved into two orthogonal components

T ~ A
Pm i € PpSins + e, p cosg, (1)

where g is the angle between ég and Sh as shown in Figure 1. In the
above expression pg and pd are the equivalent magnetic current moments
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Figure 2. Ray geometry relevant for the analysis in the shadow region.




corresponding to a short circumferential and an axial slot antenna on

the cylinder surface. Therefore, to represent the radiation due to a

short slot of any orientation, it is sufficient to determine the expressions
for short, axial and circumferential slots mounted on a cylinder. It is
well known [8] that for a short slot located at Q' (a,¢',z') on the
circular cylinder with radius a, the formal solution of the fields external
to the cylinder at P(p,¢,z) can be expressed as:

E3 =0 (2)
a o A& N
La - pm_ ( e-jh(Z-Z') 1 (‘]n)e—jn(:-“) H'?(P )_ ah
C e N e ()
(3)
a
P s 0 N ' H'(BD)
2.2 J edn(z-27) g gmin(e-e?) Hi(say dh (4)
4r"a 7 -= n=-e nt’
c
P . ' . ' H (f"(r)
(€. m [ e-dh(z-2") y e-dnle-e') "n 0 (5)
Z 4 a - n=-o Hn(baT
e P r -Jh(Z-Z')(~J’h)°§ ~in(e-¢") Hnlee) (6)
= Tl e LY I N+ dh 6
PN B S Hy(82)
p; -jh(z-2'Y(h 1 1 \T .2\ -jnl¢-¢") Ho(8o)
5




The time dependen?e e‘]“t and the superscript for the Hankel function of
the second kigd H 2}1 ) are understood and suppressed. In the above
expressions, Ed afld EC are the fields due to an axial and a circumferential
slot radiating from a circular cylinder, respectively. The above formal
solutions can not be cvaluated exactly. !However, for a large radius
cylinder and when the field point P is not too close to the cylinder
surface (i.e., not inside the paraxial region), the above integrals can

be asymptotically evaluated. Following the procedure described in
Appendix I, the high frequency asymptotic approximation {keeping only the
leading term) for the exact integrals can be expressed as:

a .

EZ-O (8)
2 pa

a a1 m (.
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C
2 P 1/3
c . 'm . . s _7_‘2 - %o,
EO X E] (—3 ZA—)sm ag sin "q J (ka oS wq) g(ﬁq)} F(Qq,sq)

2 pC
~ R m ) . .
+ %] (-J 2-)cos ay sin wq g(gq) F(lq,sq) (12)

C 2 g-1 p; .
E: : 2'1 (-1) j 5 sin 1, Sin wq g(iq) F(.q.sq)

» pC 1/3 ]
a1 sm . 2 TR
+ Z] (-1) ( Jo )cos ay Sin wq‘l J(ka cos wq ) g(tq) F(.q,sq)

where
-jke -Jk Sq
Fle s )=9%-- % . — (14)
99 + g
fsq(s q)
ka cos W \/3
(a] = — 2_"~—_ (]¢ ¢ , - ao) (]5)
and
ka cos W, \/3 '
g (2 T2) 0 @iefese'] - ay). (16)

In the above expressions, g(-) and a(-) are the well-tabulated Fock
functions [9], and the parameters ag, Wq, £q and sgq are defined in
Appendix I. These vector components of the electric field can be cast




into a ray format in that two orthogonal field components (transverse to
the ray path) travel from the source point Q', along the yeodesic, to the
field point P, This will be described in the following sections.

First, let us introduce several parareters. According to the
generalized Fermat's principle proposed by Keller [19], contribution of
E at P is the field on the ray from Q' to Qy (which is the geodesic
on the conducting surface), then from Q1 to P which is a straight line
tangent to the surface at Q) (see Figure 2). The unit tangent, normal,
and binormal vectors of the ray are (tj, nj, b= t]xnv at Q7. Note that

(ty, n1, b)) form a moving trihedron along the straight path from Q7 to P.

The vector cowrponents in terins of the cylindrical coordinate system
(-.7,2) can be cast into the vector cowponents in the ray coordinate
svstem (t,n,b). [quations (8)-(13), therefore, can be easily expressed
in the ray coordinate system as follows:

a
+a . pm . -
By v 5 [eos wy gley) F(e .59

- cos w, g(f,) F(Qz,sz)nz] (17)
“Eg =0 (18)
pc
E::‘ N -] -zﬂ {sin wy a(&g) F(iy,59)n,
+sin wy g(£,) F(2,,5,)n,1 (19)
pc 1/3
1/3
. A____Z____- N s
+J(a cos w2) 9(52) F(QZ’SZ)bZ}
8

o
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note that n] is the unit normal vector at_Qy, t] is the unit vector
directeddfrom Q) toward P, and b ty x ny. Similar definitions are

used for (t, np, It is in eresting to note that only field com-
ponents transverse %o the ray exist in the final expressions. Before
proceeding to the next section, it should be noted that the final ex:
pressions, Fquations (17)-(20) are approximate solutions for large

radius cylinders with field point not close to the surface. The analysis
for the field point close to the surface has to be carried out differently.

B. Illuminated Region

If the field point P is in the illuninated reqion as shown in Figure 3,
the radiation from the source Q' on the circular cylinder propacates alang
a straight line to P. According to g‘OlLtllCﬂ] optics, the electric field
at P due to a short imagnetic current monent p defined by Equation (1) at
Q' can be expressed

-Jjks

22 _ ..a _. N -I , .

{:¢I - "me sin © s ¢ (2])
) . ~-jks |

>C - C ] o P

E¢. = Jp, €os 0 (e] . t) S A (22)
-jks .

2c _ ..cC e V"7

where n' is the unit normal vector at Q', 3 is the vector directed
from Q' toward P, and (6',4') are the logal ray coordwnate systems as
shown in Figure 3. Note that e - t = (e] - s}/ sine' andn' . t =
(n" . s)sina'.

Using a heuristic approach, Ivanov [11] employed a parabolic equation
method to find the asymptotic behavior of the current in the illuminated
side of the cylinder due to a plane wave illumination. lIvanov's solution,
employing an integral representation in terms of Fock functions, is vatid
in the illuminated region and holds right up to the shadow boundary.
Furthermore, his solution, when applied in the "deep" illuminated region,
has the same accuracy as the first two terms of the asymptotic form of
the geometrical optics solution. Based on this observation, together
with the reciprocity theorem and the similitude concept [12], Ivanov's
result is employed to modify the geometrical optics solution given by




b i
P'(xp,¥pi2s) %
._:_f’{"

0)

Pz( X

pYYp’
Figure 3. Geometry relevant for the analysis in the illuminated region.
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[quations (21) to (23). The final expression for the electric field at P
inside the illuminated region due to short slots on a circular cylinder
can be written as:

a .
. p . -jks R
I L L A I ) (24)
c .
. p . -jks
C m N ]'\t e . e ~
E; 03, cos (ey - t) Gl ) (25)
C .
p 1/3 . ] -Jjks
2C o oM J o 2 lit e ">
Bge ¥ -3 3 J(ka sin 0" ) 6™ s N (26)
where
. . ' 1/3
L\\t - _(kq ;1n_9‘ ) (n' - t) . (27)

The functions G(-) and &(.) are related to the Fock functions g(+) and a(-)
by the following equations:

6(x) = e %3 g(x) (28)
and

. 3

6(x) = e 9X 73 §(x) (29)

It should be emphasized that the above Equations (24) to (27) are obtained
via an engincering approach. This is accomplished by combining Ivanov's
result and the geometric optics solution for a magnetic current moment
located on a large circular cylinder. However, numerical results obtained
by using Equations (24) to (27) show excellent agreement with the eigen-
function solution for the same problem (see Section 1V), thereby con-
firming their validity.

1




[11. GTD GENERALIZATION FROM CIRCULAR CYLINDER TO
GENERAL ELLIPTIC CYLINDERS

The high frequency asymptotic solutions obtained for fields radiated
from slot antennas on a circular cylinder will now be generalized, on
the basis of locality of the high frequency propagation, to the elliptic
cylinder problem. The case for the field point P located in the illumi-
nated region will be investicated first.

A. Illuminated Region

Consider a slot antenna radiating from the surface of an elliptic
cylinder with radius of curvature o

Based on the local nature of high frejguency radiation from slot on
cylinder, the results obtained in the previous sections for the circular
cylinder problem can be directly applied to the elliptic cylinder case.
Specifically, Fquations (24) through (27) can Lie modified for the elliptic
cylinder case by replacing the radius of the circular cylinder "a" by
the cross sectional radius of curvature 91(0‘) of the ellipse at the source
location Q'. Thus, the fields of slot antennas radiating from an elliptic

cylinder can be expressed as:

a

p . -jks .
2a ., ;om . | Tity e V7> -,
E(J"l < =] 2 sin o G(C ) S ¢ (30) ;
¥
t
o
A p - ~ : jks
E;. N ?E cos o' (e] t) G(illt) Qg ¢! (31)
p ( 1/3 -jks
R | e Tity, e Y7 -,
Eel N J 2 IJ( kDXQF)'Sin e| ) a(g ) s € (32)
where
lit ka(Q')sin o' \/3 . .
R R (n' - t) (33)

The parameters in the above equations have the same definition as those
in Equations (24) thorugh (27). This concludes the analysis in the il-
luminated region.
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B.  Shadow Region

In this section, radiation from an elliptic cylinder where the field
point is located in the shadow region is considered. Again, the solution
obtained for the circular cylinder problem is generalized to the elliptic
cylinder case based on the locality of high frequency propagation.

One assumes that the radiation from a cylinder of general elliptic

cross section may be described in terms of rather highly attenuated surface
waves originating in the neighborhood of the source and traveling around
the cylinder in opposite directions. For the circular cylinder, each of
these waves is represented by a decaying amplitude and a phase that in-
creases essentially lincarly with distance along the geodesic. Referring
to [quations (17) through (20), one notes that the variation of the surface
wave is essentially described by ..o factor e-Jk» ("), where . is the
distance traveled along geodesic path on the surface and : is related to

2. The parameter ¢ given by Equations (15) and (16) is examined to
identify this relation. Equation (15)

can be written in a different form:

{" " (34)
g o= | 5 ; 34
1 202 ] 1

g

where pq = a/cos2 wy can be identified to be the radius of curvature

along tge geodisic path, and ¢ = a(l¢-¢'|-ng)/cos wy is indeed the arc
length along the geodesic. It follows from the work of Fock [13],

Wetzel [14], and Goodrich [15] that the procedure on an elliptic cylinder
is to divide the surface into small segments over each of which the radius
of curvature may be considered approximately constant. The variation of
the surface wave over each segment is calculated as if the segment were a
section of a circular cylinder with a radius equal to the local radius of
curvature. The total variation in the surface wave is taken to be the sum
of the increments so calculated. Thus the near-zone fields, Equations
(17) through (29), of slot antenna radiating from a circular cylinder can
now be generalized for the elliptic cylinder case:

a 1/6
N p 0q(Qy) :
ga ] zf’l{cos Wy g(f,])(p—g(q»].-)»—) F(Q],s])n] {35)
\

¥ caamd

Iy




N

Eg= 0 (36)
c 1/6

- p e (07) :

Eg Y] ém sin Wy g(i])(dg(dl)) F(il,s]) n (37)

c 1/6
2c . s Pmd . 2 \/3 . < (Ql) -
bp v -3 2 (;zdr'(d-‘)zas”w‘]‘) 9(ey) 03'(0-)' Flaysylty (38)

_ ) /3., (g0
' J(O'T(mcas“w; %2) (og(o'

Q.
g. = J ] 2 1/3
i g [—2] d, (39)

kog

where the integration is performed along the geodesic from the source Q'
to the diffraction point Qi' The additional factor

(DETQT))

rmust be incorporated in the gencralization to the general elliptic
cylinder to preserve reciprocity and to reduce uniformly to Keller's
surface ray field in the deep shadow region [16] as indicated in [7];
it is observed that this factor also occurs in a result given by
Logan and Yee [17] which is based on a more complicated boundary layer
method of solution. This concludes the analysis of the solution for
the near zone field due to axial and circumferential slots radiating
from an elliptic cylinder.
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For an arbitrarily oriented slot E;]definod by fquation (1), the
total field can be readily obtained via the superposition theorem:

P . ca
En = sin & En + cos R tn (40)
= g - -C 22 a
Eb = sin ; Lb + Cos ¢ Eb. (41)

Note that it is straightforward to transform the field solutions given in
Sections 1l and IV into the spherical c(oordinate systems (+,:) defined in
Fiqure 3.

IV, NUMERTCAL RESULTS

In this section various numerical results obtained by using the
equations described in the previous sections are presented for slot
antennas radiating from a general elliptic cylinder.

Consider a short magnetic current momaent F% - O]p; sin ¢+ gép; oS -
where ¢ = 45° radiating from a circular cylinder. The source is located
at Q' on the cylinder with radius “a” with cylindrical coordinate system
(,'-a, ¢'=180", and z'=0). The field point is located at P with (. .:,2).
Figures 4 and 5 show the patterns of E: and E; for a field point P located
at (. z:=1000%) and ¢ varies from 0° to 360°. This is a coniral pattern
with the cone angle equal to 45°. The far-field conical pattern with
¢ -45° is also calculated using eigenfunction series and plotted in Figures
4 and 5. It is observed in Figure 4 that Ey calculated from the high fre-
quency asymptotic solutions at ,:=1000) agreces very well with the far-’one
cigenfunction solution. The field component E. as shown in Figure 5 also
shows excellent agreement between the two solutions except for J40¢-:- 3307,

The reason for the disagreement in this small region is that the leading terms
of £2 and EC given in Equations (17), (19), (24) and (25) almost cancel with
each other in that region. This is demonstrated in Fiqures 6 and 7. Fiqure
6 is the pattern E§ contributed from the circumferential component of the mag-

netic current moment, and Figure 7 is the pattern E9 resulted from the
axial component. As described in Appendix I, for this special situation,
the next higher order term in the asymptotic solutions is important and
should be included. Figure 8 shows the final result when the next higher-
order term is included. One observes that the refined solution shows
excellent agrecment with the eigenfunction result. Next some numerical
results for an elliptic cylinder case are presented. figures 9 and 10
show the radiation patterns E, and Ey due to the same 45" magnetic current
moment radiating from an elliptic cy%inder. The results scem to be
reasonable, however, independent checks will be performed later using
other solutions (e.g., an integral-equation solution). The results just

15

ik atodi

aadtiondinge,




shown confirmed the validity of the solution for the far zone calculation
(i.e., »=10002). However, the solutions are also useful for near zone
calculations. Figure 11 presents the result £2 in the principle plane

for an axial slot radiating from a circular cy?inder (radius a= ) with the
field point P located at (p=10%, ¢, and z=0). The exact solution Equation
(4) is available but can not be evaluated exactly. However, numerical
integration techniques can be employed to obtain approximate results. This
is a tedious procedure and will be investigated in the future. In order

to check the near zone result, & two dimensional problem, namely, an
infinitely-long slot radiating from the circular cylinder, is considered.
It is well known that the radiation pattern for a short axial slot in the
principal plane is identical to that of a magnetic Tine <ource rounted on

a cylinder. The eigenfunction result for the two dimensional problem is
also plotted in Figure 11. One can sce the excellent agreement. For
comparison, the far zone eigenfunction result is also included in Figure 11.

It is interesting to note that for this r+~ «. the near zone pattern retains
the shape of the far zone result but ti -~ t to back ratio is decreased
in the near zone case. Judging fror. * « . re;ults, it is believed that
the solution obtained in Sections .*' . ..i are useful to calculate the
near zone field due to short slot an:-.+ . with arbitrary orientation
radiating from a general elliptic cv' .  ‘¢r.
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EIGENFUNCTION SOLUTION
X X X X X HIGH FREQUENCY SOLUTION
(NO HIGHER ORDER TERMS)
OO
p = 1000 X 7
z = 1000 A A ¢ 1
- ‘
A A
’ NV P
270° o
Y/ —~20 —X\IO 0°°
[ dB A
\\\ %
180°
Figure 4. Normalized radiation pattern Eg due to an orientated siot
antenna (£=45°) on a circular cylinder at Q'.
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EIGENFUNCTION SOLUTION
X X X x x HIGH FREQUENCY SOLUTION
(NO HIGHER ORDER TERMS)
OO
p =1000 A\
z=1000A — ¢
ka =10 | h :
s XX ls
:;/(h i
| X \
|
| AU
‘ °
270 : X, N _
180°
Figure 5. Normalized radiation pattern E, due to an orientated slot
antenna (£:45°) on a circular cylinder at Q'.
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EIGENFUNCTION SOLUTION
X X X X x HIGH FREQUENCY SOLUTION

$ (NO HIGHER ORDER TERMS)

1000 A\ 0
1000 A > ¢

o
u

N
1]

N
~
o
o
- memm—— -
O
(@)
]

TPETAETTr

Figure 6. Normalized radiation patteIn £¢ contributed from the circum-
ferential component p’% of P in Figure 5.




EIGENFUNCTION SOLUTION
X x X X x HIGH FREQUENCY SOLUTION
(NO HIGHER ORDER TERMS)

Oo
p =1000 A -
z2=1000\ L\pqs
ka =10 1
270°

180°

Figure 7. Normalized radiation pattern Eg contributed from the axial
component pd of Bm in Figure 5.
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. GENFUNCTION SOLUTION
X X X x x HIGH FREQUENCY SOLUTION

(WITH HIGHER — ORDER TERMS)

p = 1000 A .
z = 1000 A Y

._———-——"/
180°

Figure 8. Normalized radiation patterns E4 (with higher order term
induced) for the problem considered for Figure 4.
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L i A e s A

P =1000 A —
z =1000 )\ — 4
ka=95 |
kb= 10
I X B
"‘ X "’
° b
270 : »
—20 10
0]
' < o ’ dB
. *
180°

Figure 9. Normalized radiation pattern Eq due to an orientated slot
antenna (g=45°) on an elliptic cylinder.




p =1000 X
z =1000 A
ka =5
kb=10

270

Figure 10.

Normalized radiation pattern E4 due to an orientated slot
antenna (8=45°) on an elliptic cylinder.
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0000000000000k EIGENFUNCTION SOLUTION (p  » )
2D EIGENFUNCTION SOLUTION (p = I0A)
X X X X X HIGH FREQUENCY SOLUTION (p = I10X)

[+]
a= A\ Y

(-]

180

Figure 11. Normalized near zone radiation pattern £¢ due to an axial
slot antenna on a circular cylinder. (In the principle
plane z=0.)
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V. SUMMARY

Near zone radiation characteristics for an antenna radiating from a
generat elliptic cylinder are investigated. Integral representations in
terms of Fock functions for the radiated fields are employed throughout
the entire space exterior but not close to the cylinder. In the illumi-
nated region, an engincering approach, employing Ivanov's results for the
field produced by plane wave reflection at a convex cylinder, is used to
derive the expressions for the fields due to slots radiating on circular
cylinders. This representation is valid in the illuminated region and
holds up to the shadow boundary. Furthermore, this solution, when applied
in the "deep" illuminated region, has the same accuracy as the first two
terms of the asymptotic form of the geometric optics solution. On the
other hand, a high frequency asymptotic solution is derived from the
rigorous solution for a slot antenna radiating from a circular cylinder.
This solution is, again, an integral representation in terms of the Fock
functions. It can be shown that in the deep shadow region this integral
representation reduces to the creeping-wave (residue) series representation.

The solution obtained for the circular cylinder problem is then gen-
eralized, on the basis of locality of high frequency propagation, to the
general elliptic cylinder case.

The solution described in this report is employed to calculate the
near-zone field radiated from a short slot mounted on a general elliptic
cylinder. The numerical results thus obtained show excellent agreement
with various other solutions when the field point is in the far zone.

Qur solution is also valid in the near zone, however, it remains a task to
generate the near zone results by using other solutions for comparison.
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APPENDIX 1. ASYMPTOTIC EVALUATION OF THE INTEGRALS

In this appendix one of the integral expressions encountered in
Section Il is evaluated asymptotically. The procedure serves as a
recipe, all the expressions given in Equations (3) through (7) can be
evaluated in the same fashion.

Consider now the integral

a3

L TR S WS LICRE I (a2)

| o

. 3 nT_‘x

where

hn

A{n,h) = "5 -

(2)',,
H (?o)
A (43)

20 2y
g a Hn (2a)
and

a8 = k2 - n? . (44)

The first essential step is to apply a Watson transformation to express
the series in the integral as a contour integral in the manner [18]

(=]

z A(n,h)e_jn(¢‘¢l) = ']7 J
n=-°° 2J C]+C2

where v is a complex variable, and cy+c2 is a contour which encloses
the poles of the integrand (i.e., the zeros of sin vn) as shown in
Figure 12. Now the integral can be expressed as

© Jum il
i= ;5 f e~Ih(z-2") J AGv,h) & e Ivhee gy an (a6
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v —PLANE
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o
e 20
-- . - & 4 e - e - @ S =
-3 —2 —I | 2 3 4
-
¢
Figure 12. The inteygration contour in the complex v-plane.

Replacing v

fc A(v,h)
2

by -v in the integral over cp, it is scen that

R TR TN A
AR QJ e 4.
S]n wn '

-
ed

BRI T-EE A B YN e
sin vn ¢ dv Jc [-ACen)]

)
(47}

Substituting Equation (47) into Equation (46), one obtains

-0
2j -

In this contour, Im(v) -

AT
e‘] .

sin vn

o h(z-z") J eV

2]

| PR R PRy
EITE :
“

(48)

0 and therefore it is permissible to write

z e‘j\'?"m (49)

m=0
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which leads to

oL T,00 - Tz (50)

where

Loy endvlerim) gy (51)

o

in which = =21,

Substituting Fquation (43) into (51) and keeping only the m=0 term,
one obtains

d- dh (52)

TN RO BB IS W o

Following a standard procedure (e.q., Reference [18]), one transforms
variables via the relation

. \1/3
v = ra +(12'a' ) t. (53)

It follows from Wait [18] that in the shadow region, particularly in the
case where |v| and fa are both large and of the same order f magnitude,
the Airy function approximation for the Hankel function HSZ (ra) is

given by
' - 2/3 2/3
(2) =3 (2 : J 2 ]
H™P (2a) v 5 | v wy(t) \[] + 0|t (54)
where wi(t) is the Airy Integral [13] defined by
3
w'](t) = 1.- J]‘ X e(t)(‘t /3) dx
Ja

The contour O is shown in Figure 13.
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Figure 13. The integration contour in the complex t-plane.

£
b
Returning to Equatijon (52), one notes that fp are greater than t
ga « v; therefore, lé% may be replaced by their Debye asympotic [
form ;
' -jep(sina_-a_ coSa_ )" ; m
H\(,Z) (80) % e °© 0 9 g

(56)

}5202 - v2)1/2. Now since

in which gp cos ag = v so that Bo s1n3 0
and ag % cos‘](a/@. There-

v A ga, it follows that gpsinagy %

fore
' N J\’(l
1) (go) % fJ— sin o e e (57)




2
where d:(>2~a2)]/‘ and 15 are shown in Figure 14. Substituting Equations
(54) and (57) into Equation (52), the function Ty(x) can now be written

as
e ; \1/3
T ()" e gnlz-27) b [:a «(24-) t] (58)
S R B

e 37 dv dh.

Making use of Fquation (53), one transforms the integration from -
plane into t-plane and Fquation (58] is now expressed as

TO( 1) N osin T j_{zﬁlj{"a {‘(‘7)*j(;152i' )1/3 a' (5)j {59)

Si(h(z-2" )4+ -
Zia e Jin(z-zt)eitaraly do)]?dh
R




Figure 14. Ray geometry in the x-y plane.

Defining D sin §

= z-z' and D cos & (a-ag) and transforming the
above integral To(a) i

=d+ a
nto w-plane via h = k sin w [19], one obtains

. ( 1/3
To{a) & sin a/ J__ g§;ggﬂw 1&a cosw g(g) + j (ka/§9314 ) 9'(&)}
p

25 _-3kD cos(w-s)
okd cos w °© k cos w dw (63)

where P is the integration path in the complex w-plane shown in Figure 15.

Equation (63) can be written in a form suitable for an asymptotic
evaluation via the method of steepest descent:

T (a) & sin a f 5 F(w) e¥P a(w) 4, . (64)

in which
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b8 i 1/ S W \]/3 ‘ 2]
= L SIMW o cos wgl(n) + j (ka ;OS " Jo )k cos w j“J

fw) = 5 los w , “kd cos :
(65) i
i ,
and .
q(w) = -J cos (w-%) (C6) " !

{r
where kD 35 the Targe parameter. ‘

3

W — PLANE '

— "72 Wg 172
P |
Figure 15. The integration path in the complex w-plane. g j
:
Using q'(ws)= 0, the saddle point of the function q(w) can be found 3
to be

s A = -y z-z' {
wS = & = tan (d + a(:x-uo)—) ' (67) :




Let us now study the geometrical meaning of wg. Figure 16 illustrates the
geometry of the ray path from the source Q' to the field point P. It is
evident from the developed view of Figure 16(c), that the path Q'QP
minimized the distance between the source Q' and the field point P.

A part of the ray path Q'Q lies on the cylinder surface, where it is a
geodesic helix with pitch angle wg. The tangent line QP, then, completes
the ray path. Note that (sce Figure 16)

2 cos w, = ala-a) (68)

s cos w, = d (69) :
and

D=5+ 2 (70)

From the standard procedure (e.g., see [19], the asymptotic approximation
of the integral To(a) can be expressed as

where
alwg) = - (72)
and
q"(w,) = J (73)
and
fiug) = |7 e sinw, o) (74)
py k(ST s (ka cos w )1/3 9' (& )] e el ) ]
J z(t'o"s“w )(""2““" ST /s
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ala-ap)
(a) 3D VIEW (c) DEVELOPED VIEW

(b) 20 VIEW

Figure 16. Geometry for the ray path.



Substituting Equations (72) through (74) into Equation (71), one
finally obtains

j,2 ) K sin W ka cos W, \/3
To(a) vy kTa sin w g(é:s) - §é03—~w~ B g (gs)

S
(75)
e 1Kt gmdks
\/é(s +£—5
where
ka cos W, \/3
gs = -7»7A2-~'~—— (O.-O.O)- (76)

It should be noted that the second term in Equation (75) is a higher-
order term. Usually it can be neglected. However, for some special
situations, (e.g., see Figures 5 and 8 in Section IV) this higher-
order term is important and should be included. For consistency, one
then should also include the next higher order term for the Airy
function approximation of Hankel function given by Equation (56).

37




APPENDIX 11. LISTING OF THE COMPUTER PROGRAM GENELRATING
THE SOFT FOCK FUNCTION gS(x)
3
L] r X

6*(x)

"
1]
[= 2N
—
x
S
b
A
o

a%(x) = -

‘ g“i’*(x)

]
>
—

>
~—
>
A%
(en]

where g(x) is the soft Fock function tabulated by Logan [9],

ra ixt
N

.’\(X/ :JT_;' j_Ti W]'('t*)' dt .

Note that Logan's table uses the time dependence e WL,




W INT JEON-

[
Lo

Cesay
(SR A& 5
f:t‘i‘
rxXx%y
Croesy
Carsey
C**ey
Ftexy
Ceddy
[ X B X

FUMPLEX FUNCTION GRIX)

(e8(X) IS RELATED 106 THE FOCK FUNCTION (CURRErT OISIRIBUTION
FUMCTION ) FOR THE SUOFT CASF,
EOR X<0,4,0 JeEe IN THE LIT RFGIONS
CRIX)=CEXP(Xex3/X *J)sTHE INTEGRAL OF
CEXPlOX*T)/Ww1(T1)/SGURT(PY)
FOR X>N,0 1.FE« IN THE SHADOVW REGION?
GAIX)I=THL INTEGRAL UF CEXPUUSX*T)/n1(T)/SGRT(F])
rOTE THAT THE TIMe CONVEMTION 1S CEXPleJwT)

PIMENSION XFUQYoLL (9o VFLUIYeVFD(9)4PFLI9)YsFFD(I)

~aTa li./vy

PATA XF/eOoveDeYloetleDelst2e50e3eed,504,/

CATA VFN/Z a7 75806808294 4167844060 ¢,0250e011914,00234000125,4,5/
"ATA VFL/Q7759'1t5770?01&05.3-Uﬁa.q.od“qs.UIQQGQUC“Q70002QBQGUI/
NATA PR/ =600 0=380 0T 0aNB 85,88 T71.61 01 0ASTe1U40e€6T1170,08004/
“ATA p:L/'bﬁo0-7505“0'85.?2!”60078.'56'57"89012"690“8'
1-89.,674=89,78/

PI=3,14199265

SGN=SIGNIY,1X)

IF(X 0T, 4,) GO TU 2000

TF (X LTe=%,) GO 10 3000

IF(INJNE.O) GO TO 1

N0 2 I=1+9

cLely=1,

U 2 N=1+9

| X=SSGWX(XF(1)=XFL:1))

IFCARS(OX) L T,1leb=6) 0OX=1,

culI=CL(I)*DX

CONTINUE

=l

CONTINUE

T=1.

N0 3 N=149

OX=X=XF(H)*SGN

TFIABSIDX) LT,1,E=6) GO TO 1000

T=T*0X

CONTINUE

VGRzSUue0

PLR=0.0

"0 4 N=1.9

VF=VFO(N)

PF=PFO(N)

1F(XeLT40,0) VFEVFLUIN)

:F(X.LT.U.O) PF=PFFLIN)

C=CLIN)E(XeXF(N)®SGN)

c=1,/C

VeH=VGBeCryF

FGR=PLGB+(*PF

39

- r—




P eipas b s

) autingnumrmgut

21

o 1)
iehv}
D
©7
3i-

-

4

1uvlo

2000

Tya

rOMTINOE

'\/bH'—'V‘Jt“‘]

PolizPo i)

CB=VOHSC AP LLNMPLRGL,UPGCPYH1/1bUL))
P Turh

Vo= SVEOLE)

PLAZPFO (1)

JF (X uTeua) VEBIVELLL)
TFIX, LT . o6) PRBIFFLLL)
Co=VihasCt XPICWPLY L, CorGRel ] /180,
"(LTUR:\.

r.D‘:( .Uq .")

e TUR -

cHr(.C.1.).\:(2.-(.0.1.)/(L.';tt?))

Re Ty

Syt

R
pg,( i

40

4.)‘3




3°(x)
r e PN
x mag phase (deg.)
-10,000 20,000 -£9,986
«9.500 19,hy0 -89,.,963
«9.000 lg,n00 -89,980
-c,.500 17,000 -29,977
~8,uf10 le, 100 -f9,972
«-7.500 15,000 =-49,9Ah
~7,u00 ly,0cCcp -89,958
-6,200 13,000 =%3,948
-6,000 17,000 -R9,934
~%9.200 11,000 -R3,014
~2.u00 1¢,~0C “~89,08%
-4%,200 s, Cun -£9,a43
-~ Uu0 L. 001 -59,780
03.500 70(‘02 '890670
~3.,000 6,004 -59,48C
~2 4200 5.L10 -£94120
-2,000 4,024 -88,370
~1.,500 3,163 -86,780
~1,000 2.101 -£3,220
-,500 1,377 =-75,540
u,u00 776 -6U,000
.9570 .83 ~x3,370
1,000 L167 L, 080
1,590 JNEA 395,680
2,000 .025 71,610
c.500 .09 146,510
4,000 .N03 luv,.670
3,500 L001 A70,000
4,U00 0,200 v,000
4,.5C6 0,200 v.000
5,0Nn0 0,N00 Uu,n00
9,500 0,N00 v, 00U
6,000 0,000 0,000
6,50C c.noQ 0,000
7,000 U000 0.000
7.500 0,n00 U N0N0
6,U00 g,00¢C vU.,000
6,200 000 u,000
9,0n0 0,000 v,000
9,500 0,.%u0 v.000
10,070 0,000 V.Cc00
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APPENDIX II1I. LISTING OF THE COMPUTER PRuUGRAM GENERATING THE HARD

FOCK FUNCTION g"(x) and g; (" (x)]
( xS

[ep]
*
—
>
~
"

| g(x) x >0

where g{x) is the hard Fock function tabulated by Logan [9].

10 elxt

:1(X) = J,i J_r w}(t7

dt .

Note that Logan's table uses the time dependence e'JWt.
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£ ur L™

15

17
1ib
19
20
21
22
23
24
[4)
Z2b
27
cu
29
30
31
32
33
34
3%
36
37
3
39
4
41
42
93
4y
45
Yo
47
48
49
o0

Creny
Croxy
k¥ kg
Chxs g
Cx¥ xx
crE¥e
(R R
Cxexy
Creey
Ckxwy

COMPLEX FUNCTION G(X)

G(X) 1S KRELATED 10 THE FOCK FUNCTION (CURREMY DISTRIBUTION
FUNCTIUN ) FUR THe HARD CASE,
FOR X<N, U T.Fe IN THFE LIT RFGIOMS
GIXY=CEXP(X*¢X/3,xJ)«THE INTEGRAL OF
CEXPUURX®T) /W1 (T)/SQRrTI(pPY)
FOR XDU,U T.Fe InN THE SHal'OW REGIUN?
G(X)ITHE INTEGRAL OF CEXP(JxX%xT)/u1(T)/SORT(PI)
NOTE THAT THE TIME CONVENTION (S CexPl=usT)

FIMENSTION XF(10)eCL(L1O) o VFL(10) o vFO(LIL)«PFL(10)PFU(10)
CATA INZUY/

NATA XF /o0 40250090100l eDic04PeD92ee2eDekkad5/

NATA VFD/1,3998,1,232,1.0591,¢73R2,,4681,,3153,,2(¢5,.,13,
1.UB83616U5377

ﬂATA FFD/.G.“.555011.36'26.6“042.56,57.98.72.90.87.57.
1102.174116,75/

DATA VFL/Z)1,3998 01455243 ¢6002e1 026101 ,C9R¢1,98201:99%01.99¢,
21.,9990.1,999%/

NATA PFL/Ze(:1=2e8644~3,913.671=2,42¢=1e45¢=¢0851=.924=,33¢~422/
PI=3,14159265

SUN=SIGHIL, v X)

IF(XGT,4,) G0 TO 2000

TF(X.LT,=2,9) GO TG 5C0C

IF{INJNESO)Y GO TO 1

N 2 I=1¢)0

cL(I)=1,

N0 2 fizle10

NX=1,0%(XF(I)=XF(N))

TF(ARS(NX) LT 2et=6) DX=1,

cL{I)=CL(T)*DX

CONTINUE

THN=1

( ONTINUE

T=1.

PO 3 N=1,10

FX=X=-XF{N)sSGN

IFIABS{DX) .LTL,1+E=68) GO TO 10090

T=T*DX

CONTINUE

V6=0,.,0
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