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are investigated. Integral representations in terms of Fock functions for
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of Fock functions is obtained from the canonical problem of antennas
radiatino from a circular cylinder. This integral representation
reduces to the creeping-wave (residue) series representation in the
deep shadow region. Smooth, continuous patterns are observed for fields
across the lit-dark boundaries. The solutions obtained for a circular
cylinder art- then generalized to elliptic cylinders on the basis of
the local nature of high-requency prcpagation.

This report presents the theory and numerical results for the
near-zone fields due to antennas mounted on circular and elliptic
cyl ijders. Excellent agreemnent is obtained between the high-frequency
asymptotic solutions and other solutions to the same problem.
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I. INTRODUCTION

If modern airborne radiating systems are to function properly, the
antenna pattern must meet certain specifications. In fact, system
performance is often very much dependent upon the resulting patterns.
The usual design procedure for an airborne antenna consists of allocatinq
specific locations for the antenna based primarily upon convenience with
regard to aircraft structure specifications. Measurements are then used
to evaluate the performance of the antenna system in terms of its desired
pattern. This approach of airborne antenna design requires a great deal
of engineering time and money. Thus, the need for an analytical approach
which provides the antenna pattern performance in the presence of an air-
frame is quite apparent.

One of the approaiches that has found great success for analyzinq on-
aircraft antennas is the eowetrical Theory of Diffraction (GTD). The
GTD is a high frequency asymptotic solution in wNhich the scattering
object under consideration is large in terms of wavelength. In general,
a modern high-speed aircraft is quite large electrically and complex in
shape. To be able to obtain an accurate radiation pattern, one must
take the various scattering structures into account. 'ased on its appli-
cations to previous on-aircraft antenna studies [1-6], the GTD has proven
itself well suited to this type of analytical study. NAot only does this
approach fit nicely into a ray optics format, but it also provides a
means of analyzing the effects of three dimensional structures and identi-
fying the significant contributions in the resulting antenna pattern.

Previous GTD solutions for far-field calculations have been shown to be
accurate in predicting radiation patterns when compared with various
model measurements. However, a significant problem exists with attempting
to take far field pattern measurements. In order to satisfy the far-field
requirement, one should separate the transmitter and receiver by a minimum
distance (i.e., 2D2/A, where 0 is the maximum dimension of the aircraft).
Using this requirement for various scale models that have been considered,
one would need a range on the order of hundreds to thousands of feet in
length. It is obvious, then, that this requireiment can not be met for the
majority of ranges. The discrepancy caused by the near field measurement
is in the definition of directions. That is, the direction from the
antenna to the receiver is not the same as that from the center of the
aircraft to the receiver. These directions are identical in the far field.
Consequently, real far field measured data for most airborne antennas are
not practical. In fact from a measurement point of view, it is most ad--
vantageous to measure patterns in the extreme near field of the aircraft
using a small indoor range and a scale model aircraft. For full scale
measurements, it is most convenient to make measurements of the field in
the vicinity of the aircraft while the aircraft sits on the flight line.
Unfortunately, the near field pattern, that is most easily measured, is
not simply related to the far-ield pattern. Therefore, a near field
analysis for the air-borne antennas must be carried out.



It should be noted that the GTD solution for the near- and far-field
analysis are simply related. Thus the concept of decomposing the aircraft
structure into simpler components based on previous analyses [1-6] in the
far-field problems is still applicable in the near-field case. As a first
step to study the near zone aircraft problem, in this report an analytic
solution for the near-zone radiation from a general elliptic cylinder is
developed. Section II presents the high frequency asymptotic analysis for
slot antennas radiating from a circular cylinder. The results obtained in
Section II are then generalized, on the basis of locality of higfh frequency
propagation, to elliptic cylinder problems in Section III. Finally, in
Section IV, nuMerical results calculated from the solution are presented
in graphical form and compared with eigenfunction solutions. Excellent
agreement is ohtained.

I. N'L AR ZOINE F I FL )S IXCITED BY SHORE SLOTS ON
LARGE CIRCULAR CYLINDNERS

Consider the radiation from a short slot antenna mounted on a perfectly-
conducting circular cylinder where the surrounding medium is free space.
Figure 1 illustrates the geometry of the problem, where the antenna is
located at Q' and the field point at P. According to geometrical optics
the region exterior to the cylinder with the antenna at Q' is divided into
an illuminated region and a shadowed region by a plane tangent to the
cylinder surface at Q'. The plane is referred to as the shadow boundary.
A portion of these two regions adjacent to the shadow boundary is a transition
region. Previous work (e.g., [7]) based on the Geometrical Theory of Dif-
fraction (GTD) formulation for the fields radiated from an antenna on a

cylinder employs three different expressions for the fields in the various
regions. Namely, the geometric-optics (GO) solution is used in the "deep"
illuminated region, the creeping-wave representation in terms of the residue
series in the deep shadow region, and integral representation in terms of
Fock functions within the transition region. One then has to "blend"
these different representations for the solution to obtain the total field
pattern over the entire region exterior to the cylinder. In practical ap-
plications, this is accomplished by graphical extrapolation of the solution
obtained using different representations until they intersect smo~othly in the
region where the solution switches from one representation to the other.
In this report integral representations in terms of Fock functions are
employed throughout the whole space. The integral representation used
in the entire illuminated region recovers the GO solution in the "deep"
illuminated region, and the integral representation used in the shadow
region reduces to the creeping-wave (residue) series representation in
the deep shadow region. The following sections will describe how the
high-frequency near-zone radiated field may be calculated in the illumi
nated and shadow regions. The case for the field point P located in the
shadow region will be investigated first.
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Figure 1. Geometry of the problem considered.

A. Shadow Regi on

Consider an infinitesimal magnetic current moment Pm located on the
surface of a circular cylinder at Q' as shown in Figure 2. The field
point P is inside the shadow region. The magnetic current moment Pm is
arbitrarily oriented and may be resolved into two orthogonal components
in terms of the two principle unit tangent vectors ej and e2 of the cylinder
surface at Q' (see Figure 1). Thus an arbitrarily oriented magnetic
current moment can be resolved into two orthogonal components

Pm e sin 2 + e2  B (1)

where B is the angle between e2 and Pm as shown in Figure 1. In the
above expression pc and pa are the equivalent magnetic current moments

3
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corresponding to a short circumferential and an axial slot antenna on
the cylinder surface. Therefore, to represent the radiation due to a
short slot of any orientation, it is sufficient to determine the expressions
for short, axial and circumferential slots mounted on a cylinder. It is
well known [8] that for a short slot located at Q' (a,',z') on the
circular cylinder with radius a, the fornal solution of the fields external
to the cylinder at P(p,t,z) can be expressed as:

Ea = 0 (2)z

S i h(z-z') jn(-') H(F)2a = m e - h -z ) l (jn)e - H '( ,a) - dh

a -_ n-. n

(3)

a (o)

a m -jh(z-z') ' e-Jn("- ') H'n' (E -: --2- -( e =  H'( a-} dh (4)

4n a n=--

c H

Ec PM- ef eJh(z-z') e-J n( -') n( d (5z 42a -n -  H n--&a - dh (5)

c
cP If e-Jh(z-z')(l e ) dh (6)

41 a Jcn-- n
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C m jh(z-z') (h 1 -jn(:-:) H' n

. .. a-- e H -a- dh (7)

4 f ZjifYn ) nH:a)h¢4 2 a _

v. here ,C
9j ~ - ' h) 1 -,-: 

)d

2 ,2 2
. = - h .

The time dependenCe eJ  and the superscript for the Hankel function of
the second kiQd H(2)(.) are understood and suppressed. In the above
expressions, Ea and Ec are the fields due to an axial and a circumferential
slot radiating from a circular cylinder, respectively. The above formal
solutions can not be evaluated exactly. However, for a larae radius
cylinder and when the field point P is not too close to the cylinder
surface (i.e., not inside the paraxial region), the above integrals can
be asymptotically evaluated. Following the procedure described in
Appendix I, the high frequency asymptotic approximation (ke.ing only the
leading term) for the exact integrals can be expressed as:

Ea = 0 (S)

a 2 q-
Ea ) ( 1 )q- J 2 -cos o cos Wq 9(Eq) F( qSq) (9)

2 a

S q=l \'q~

EC 2 2-(i 9 o ow ( ) F (q/3Sq(11)

Sq=1 q

6



E T? (j 2 -- )sin ao sin w -j -) F ,sq ()
q=lq q q )

+ (- -J 2- c )os o sin w S{(q ) F( qSq) (12)

qz 2

EC ~ (-Il)q-1 J m_ sin ,o si n Wq f ( q) F( qSq)

2 1 ( )q-1 p m C ( 2 1/+ - -  - m )cos ao sin w - c-¢ s- qsq

q=l 2 q a cos Wq q

(13)

where

-jkq -jk sq
F(z l e ___ (14)

qSq .Sq(Sq + 'q)

= ka cos w /
F, 1 ) ( - (15)

and

=(ka Cos W2 1/3
'2 --_ 2 o ) .  (16)

In the above expressions, g(.) and "(.) are the well-tabulated Fock
functions [9], and the parameters too, Wq, 9iq and Sq are defined in
Appendix I. These vector components of the electric field can be cast

7
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into a ray format in that two orthogonal field components (transverse to
the ray path) travel from the source point Q', along the geodesic, to the
field point P. This will be described in the following sections.

First, let us introduce several parameters. According to the
yeneralized Fermat's principle proposed by Keller [10], contribution of
E at P is the field on the ray from Q' to Q1 (which is the geodesic
on the conducting surface), then from Q1 to P which is a straight line
tangent to the surface at Ql (see Figure 2). The unit tangent, normal,
and binormal vectors of the ray are (tl, nl, bl=tlxnl) at Ql. Note that
(tl, nl, b-) form a moving trihedron along the straight path from Ql to P.
The vector ceoiponents in terms of the cylindrical coordinate system

. ,:,z) can h)e (a-t into the vector covporents in the ray coordinate
system (t,n,b). Fqudtions (8)-(13), therefore, can be easily expressed
in the ray coordinate system as follows:

a

a os w 2  ()) F(2 ,s2 )n 2  (17)

I

+ sin w2 9( 2
) F(Q2 ,s2 )n21 (1g)

Eb = F (20)

+ sin w2 9(2 F( s )n2  b(

I/3 2 5/
+J-Cos -w2 '(&2 9" 2) 9 2's2

8



note that nI is the unit normal-vectgr at.Q l , tI is the unit vector
directeddfrom QI toward P, and bj = t1 x nl. Similar definitions are
used for (t2 , n2, £2). It is interesting to note that only field com-
ponents transverse to the ray exist in the final expressions. Before
proceeding to the next section, it should be noted that the final ex-
pressions, Equations (17)-(20) are approximate solutions for large
radius cylinders with field point not close to the surface. The analysis
for the field point close to the surf-ice has to be carried out differently.

B. Il lu-mina ted Regio_n

If the field point P is in the illu;Jitted reciion as shown in Figure 3,
the radiation from the source Q' on the circular cylinder propagates along
a ,traight line to P. According to gyo;.etrical optics, the electric field
at P due to a short magnetic current moicent Pm defined by Equation (1) at
Q' can be expressed

-jks= .a . ' e (21
E : -jpm  sin -- (21)

c c. cos 0' (e t) ejks (.2)

CO  = - p (" . ) e j k s

-jC (n . --- - ' (23)
0 s

where n' is the unit normal vector at Q', s is the vector directed
from Q' toward P, and (o',q') are the local ray coordinate systems as
shown in Figure 3. Note that e• t = (e1 I )/ sin 0' and n' t
(n' -SO sin o'.

Using a heuristic approach, Ivanov [11] employed a parabolic equation
method to find the asymptotic behavior of the current in the illuminated
side of the cylinder due to a plane wave illumination. Ivanov's solution,
employing an integral representation in terms of Fock functions, is valid
in the illuminated region and holds right up to the shadow boundary.
Furthermore, his solution, when applied in the "deep" illuminated region,
has the same accuracy as the first two terms of the asymptotic form of
the geometrical optics solution. Based on this observation, together
with the reciprocity theorem and the similitude concept [12], Ivanov's
result is employed to modify the geometrical optics.solution given by

9
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Figure 3. Geometry relevant for the analysis in the illuminated region.
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Equations (21) to (23). The final expression for the electric field at P
inside the illuminated region due to short slots on a circular cylinder
can he written as:

a lit) se -(24)

a P- 2 sin e' G(1 2-

pC -jks

p M lit e~4c J 2- Cos ,;' (eI  t) G(.l t e ( 5

Pm 2 3 ejks[ c - 2 e (i5)

0 , n ' (26)

where
51/3

lit (ka sin

. - 2 ( n ' t ) ( 2 7 )

The functions G(.) and (.) are related to the Fock functions q(-) and ()
by the following equations:

G(x) = e-jx 3/3 9(x) (28)

and

e -jx 3 /3G(x) e J(x) (29)

It should be emphasized that the above Equations (24) to (27) are obtained
via an engincering approach. This is accomplished by combining Ivanov's
result and the geometric optics solution for a magnetic current moment
located on a large circular cylinder. However, numerical results obtained
by using Equations (24) to (27) show excellent agreement with the eigen-
function solution for the same problem (see Section IV), thereby con-
firming their validity.

11



III. GTD GENERALIZATION FROM CIRCULAR CYLINDER TO
GENERAL ELLIPTIC CYLINDERS

The high frequency asymptotic solutions obtained for fields radiated
from slot antennas on a circular cylinder will now be generalized, on
the basis of locality of the high frequency propagation, to the elliptic
cylinder problem. The case for the field point P located in the illumi-
nated region will be investigated first.

A. Illuminated Reqion

Consider a slot antenna radiating from the surface of an elliptic
cylinder with radius of curvature ,

Based on the local nature of high frequency raJiiation from slot on
cylinder, the results obtained in the previous sections for the circular
cylinder problem can be directly applied to the elliptic cylinder case. I
Specifically, Equations (24) through (27) can he modified for the elliptic
cylinder case by replacing the radius of the circular cylinder "a" by
the cross sectional radius of curvature p,(Q') of the ellipse at the source
location Q'. Thus, the fields of slot antennas radiating from an elliptic
cylinder can be expressed as:

a
-p Pm lit e - j k s

-- a 2--sin o' G( s e--- (30)-j m2 M I ( 1  ,(0

t

j 2 Cos, (el t) G(E e (

c it e -jksEe rkP t j __ J _iI i ) - ___(32)

where

lit (kPT(Q')sin 
1 /3

_- _2 __ _ ) (n • ) (33)

The parameters in the above equations have the same definition as those
in Equations (24) thorugh (27). This concludes the analysis in the il-
luminated region.

12



B. S-hadow Region

In this section, radiation from an elliptic cylinder where the field
point is located in the shadow region is considered. Again, the solution
obtained for the circular cylinder problem is generalized to the elliptic
cylinder case based on the locality of high frequency propagation.
One assumes that the radiation from a cylinder of general elliptic
cross section may be described in terms of rather highly attenuated surface

waves originating in the neighborhood of the source and traveling around
the cylinder in opposite directions. For the circular cylinder, each of
these waves is represented by a decaying amplitude and a phase that in-
creases essentially linearly with distance along the geodesic. Referring

y to Equations (17) through (20), one notes that the variation of the surface
wave is essentially descrihed by ,:.e factor e-Jk I. ), here is the

distance traveled along geodesic path on the surface and ." is related to
. The parameter Z given by Equations (15) and (16) is examined to
identify this relation. Equation (15)

V (ka cos wl /3

can be written in a different form:

1 =2 113 (34)

2P

where Pg= a/cos2 w1 can be identified to be the radius of curvature
along t e geodisic path, and Ql = a(K4- ' j-'o)/cos wl is indeed the arc
length along the geodesic. It follows from the work of Fock [13],
Wetzel [14], and Goodrich [15] that the procedure on an elliptic cylinder
is to divide the surface into small segments over each of which the radius
of curvature may be considered approximately constant. The variation of
the surface wave over each segment is calculated as if the segment were a
section of a circular cylinder with a radius equal to the local radius of
curvature. The total variation in the surface wave is taken to be the sum
of the increments so calculated. Thus the near-zone fields, Equations
(17) through (20), of slot antenna radiating from a circular cylinder can
now be generalized for the elliptic cylinder case:

pal fp (Q1) 1/6.
C m os W, .q( l ) p-(-Q- - F(zlts 1)n 1 (35)

o (Q) 1/6

-Cos 14w2 9(F,2) ')9 2)) F( 29,s 2)n 2

13



E b 0 (36)

E b nw1g"

(Qp) //6

+ sin w2  2 F(2,s2)n 2

C 1/ 1/6
-mJ-j ((2 )  , )g-(Q, F(siS)b (38)
b J t' kP Tw Q' )cos J g w2,2)

(7(%) 1/6

(-2s ~, F(2 s b}

where
Q.

fQ, 2-11/ d zi  (39)

Q kogJ

where the integration is performed along the geodesic from the source Q'
to the diffraction point Qi. The additional factor

n(Qi) 1/6

9

must be incorporated in the generalization to the general elliptic
cylinder to preserve reciprocity and to reduce uniformly to Keller's
surface ray field in the deep shadow region [16] as indicated in [7];
it is observed that this factor also occurs in a result given by
Logan and Yee [17] which is based on a more complicated boundary layer
method of solution. This concludes the analysis of the solution for
the near zone field due to axial and circumferential slots radiating
from an elliptic cylinder.
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For an arbitrarily oriented slot Pm defi ned by Fquation (1), the
total field can be readily obtained via the superposition theorem:

E sin Ec + cos E a (40)
n n In

Fc sin [C + cos Ea (41)
b b"

Note that it is straightforward to transform the field solutions given in
Sections III and IV into the spherical (oordinate systems (.,:) defined in
F iqIu re 3.

IV. ,,, R I CZAL R SUlL I S

I n th is sec tion va ri ous nui ;eri ca I res ul ts ob ta inted by Lis ing the

equations described in the previous sections are presented for slot
antennas radiating from a general elliptic cylinder.

S A a

Consider a short magnetic current moment nin e p sin e2p cosIII
where -I-, 45' radiating from a circular cylinder. The ,ource is In(ated
at Q' on the cylinder with radius "a" with cylindrical coordinate system

(.' a, ¢'=180", and z'=O). The field point is located at P with (- *:,z).
Figures 4 and 5 show the patterns of E.; and E: for a field point P Incated
at (, z l000k) and varies from 0" to 360'. This is a toniral pattern
with the ,one angle equal to 45". The far-field conical pattern with
-45' is also calculated using ei genfunction series and plotted in Fi gutes

4 and 5. It is observed in Figure 4 that E0 calculated from the high fre-
quency asymptotic solutions at ,z]000 agrees very well with the far-;'one
eigenfunction solution. The field component F, as shown in Figure 5 also
shows excellent agreement between the two solutions ex(ept for '40 - 330'
The reason for the disagreement in this small region is that the leading teris
of Ea and Ec given in Equations (17), (19), (24) and (?5) almost cancel with
each other in that region. This is demonstrated in F i(pires 6 and 7. F i qure
6 is the pattern EC contributed from the circumferential comporient of the tag-
netic current momet, and Figure 7 is the pattern F1 resulted from the
axial component. As described in Appendix I, for this special situatinn,
the next higher order term in the asymptotic solutions is important arid
should be included. Figure 8 shows the final result when the next hi'h er-
order term is included. One observes that the refined solution shows
excellent agreement with the eigenfunction result. Next some numerical
results for an elliptic cylinder case are presented. Figures 9 and 10
show the radiation patterns E0 and E due to the same 45" magnetic current
mioment radiating from an elliptic cylinder. The results seem to be
reasonable, however, independent checks will be performed later using
other solutions (e.g., an integral-equation solution). The results just

15



shown confirmed the validity of the solution for the far zone calculation
(i.e., =lO00A). However, the solutions are also useful for near zone
calculations. Figure 11 presents the result Ea in the principle plane
for an axial slot radiating from a circular cyiinder (radius a= ) with the
field point P located at (P=1OX, , and z=O). The exact solution Equation
(4) is available but can not be evaluated exactly. However, numerical
integration techniques can be employed to obtain approximate results. This
is a tedious procedure and will be investigated in the future. In order
to check the near zone result, a two dimensional problem, namely, an
infinitely-long slot radiating from the circular cylinder, is considered.
It is well known that the radiation pattern for a short axial slot in the
principal plane is identical to that of a wiagnetic line source mounted on
a cylinder. The eigenfunction rosult for the two di::ensional problem is
also plotted in Figure 11. One can see the excellent agree;:,ent. For
comparison, the far zone eigenfunction result is also included in Figure 11.
It is interesting to note that for this r. . the near zone pattern retains
the shape of the far zone result but ti :' t to back ratio is decreased
in the near zone case. Judging fro, . rf;ults, it is believed that
the solution obtained in Sections _i are useful to calculate the
near zone field due to short slot an- , 'ith arbitrary orientation
radiating from a general elliptic c "-.

16



EIGENFUNCTION SOLUTION

x x x x x HIGH FREQUENCY SOLUTION

(NO HIGHER ORDER TERMS)

P=I0 X 
0

270 900

I~ 8O

Figure 4. Normalized radiation pattern E0 due to an orientated slot
antenna ( =45) on a circular cylinder at Q'.
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EIGENFUNCTION SOLUTION

x x x x x HIGH FREQUENCY SOLUTION

(NO HIGHER ORDER TERMS)
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Z = 1000

270 = 10
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EIGENFUNCTION SOLUTION

x x x x x HIGH FREQUENCY SOLUTION

(NO HIGHER ORDER TERMS)

Z = 1000 X °

ko = 10

2700 -90

1 1800

J Figure 6. Normalized radiation pattern Ec contributed from the circum-
ferential component pC of p in Figure 5.
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EIGENFUNCTION SOLUTION

x x x x x HIGH FREQUENCY SOLUTION

(NO HIGHER ORDER TERMS)

00

270 go 90

a 0

1800

Figure 7. Normalized radiation pattern E a contributed from the axial
component pa of p in Figure 5.
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I LC GENFUNCTION SOLUTION

Ix x x x x HIGH FREQUENCY SOLUTION
(WITH HIGHER -ORDER TERMS)

I0
p IO

z 00
Ia=1

x I- ,f

2700 ------ 900

Figure 8. Normaized radiation patterns El (with higher order term

induced) for the problem considered for Figure 4.
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Figure 9. Normalized radiation pattern E0 due to an orientated slot
antenna (6=45') on an elliptic cylinder.
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Figure 10. Normalized radiation pattern E due to an orientated slot
antenna (a=45') on an elliptic cylinder.
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EIGENFUNCTION SOLUTION ( ~

2D EIGENFUNCTION SOLUTION (p = OX)

x x x x x HIGH FREQUENCY SOLUTION (P IOX)

00

aI

180

Figure 11. Normalized near zone radiation pattern E a due to an axial
slot antenna on a circular cylinder. (In the principle
plane z=O.)
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V. SUMMARY

Near zone radiation characteristics for an antenna radiating from a
general elliptic cylinder are investigated. Integral representations in
terms of Fock functions for the radiated fields are employed throughout
the entire space exterior but not close to the cylinder. In the illumi-
nated region, an engineering approach, employing Ivanov's results for the
field produced by plane wave reflection at a convex cylinder, is used to
derive the expressions for the fields due to slots radiating on circular
cylinders. This representation is valid in the illuminated region and
holds up to the shadow boundary. Furthermore, this solution, when applied
in the "deep" illuminated region, has the same accuracy as the first two
terms of the asvyptotic form of the g oeetric optics solution. On the
other hand, a high fre quency asymptotic solution is derived from the
rigorous solution for a slot antenna radiating from a circular cylinder.
This solution is, again, an integral representation in terms of the Fock
functions. It can be shown that in the deep shadow region this integral
representation reduces to the creeping-wave (residue) series representation.

The solution obtained for the circular cylinder problem is then gen-
eralized, on the basis of locality of high frequency propagation, to the
general elliptic cylinder case.

The solution described in this report is employed to calculate the
near-zone field radiated from a short slot mounted on a general elliptic
cylinder. The numerical results thus obtained show excellent agreement
with various other solutions when the field point is in the far zone.
Our solution is also valid in the near zone, however, it remains a task to
generate the near zone results by using other solutions for comparison.
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APPENDIX I. ASYMPTOTIC EVALUATION OF THE INTEGRALS

In this appendix one of the integral expressions encountered in
Section II is evaluated asymptotically. The procedure serves as a
recipe, all the expressions given in Equations (3) through (7) can be
evaluated in the same fashion.

Consider now the integral

e-jh(z-z') Y A(n,h) e - j n ( , - t ' )  dh (42)S e

where"

where

H (2)' 0,0)hn Ff2

A(n,h) .... (43)2 - -(2-)- (43)-
6a Hn (Fa)

and

k h2  (44)

The first essential step is to apply a Watson transformation to express
the series in the integral as a contour integral in the manner [18]

Anh -jn(-') 1 A(v,h) sjv dv (45)

SA(n,h)e- 2 ~ ~ ----n=- m 2j- ClI+C 2 si i

where v is a complex variable, and cl+c2 is a contour which encloses
the poles of the integrand (i.e., the zeros of sin v\,) as shown in
Figure 12. Now the integral can be expressed as

1 -jh(z-z') f
2j e A(v,h) sei- , ! e dv dh (46)
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- PLANE

C2

-3 -2 -1 I 2 3 4

C1

Figure 12. The integration contour in the complex -plane.

Replacing v by -v in the integral over c2, it is seen that
ej '' i -JJ.,1 ' :-,

e(,h d, = -A(,.,h)] e- " e,,

J 2 A( ,h) sin sin rd

(47)r

Substituting Equation (47) into Equation (46), one obtains

1 - e jh(z -z') e { [d. dh... A(k ,h) e - o V 4 d'r - -dd
2j fclsin v,

(48)

In this contour, Ir(v) - 0 and therefore it is permissible to write
e j  

2i j 2
sin vi -2 e-J (49)

m=O
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which leads to

S ) [T() -T (2 -1)] (50)
m-iO

where

(T " -jh(z-z') (',h) e-jV( 4..) d dh (1
.c

in which , : '

Substituting Fquation (43) into (51) and keepinq only the mzO term,
one obtains

)= e-jh(z-z') hv H( ) e., dh,
c 2 (2)(a)d dh (52)

Following a standard procedure (e.g., Reference [18]), one transforms
variables via the relation

)1/3ira +2' t (53)

It follows from Wait [18] that in the shadow region, particularly in the
case where jvj and FPa are both large and of the same order of maqnitude,
the Airy function approximation for the Hankel function H(2) (Fa) is
given by

l7(Pa) < . (22/ wj(t) II + 0 ... (54)

where wi(t) is the Airy Integral [13] defined by
_1 r (tx-t 3/3

wi(t) x- li x e dx (55)

The contour r1 is shown in Figure 13.
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2r

-3-

3

"2

Figure 13. The integration contour in the complex t-plane.

Returning to Equa ion (52), one notes that Fp are greater than
9a v; therefore, H may be replaced by their Debye asympotic
form

pi 2 -Jp(sinc0 - 0 cosa°) 
jH-- ()  ) (-j) S--- sin aee4

(56)

in which Bp cos ao = v so that Bp sing o 202 v2 )1/2. Now since
v k a, it follows that spsin 0 d 6(P-a2 and -o cos- (a/p). There-
fore

(2)- sf n eJd jva 0(Bo) _j2 sin o e e (57)
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I

where d=(, and x, are shown in Figure 14. Suhstituting Equations
(54) and (57) into Equation (52), the function T)(,,) can now he written
as

To() "' e j(zz 2a :.-a )'/' t] (58)
-0- 2- a c2

1

1-. a' w(tj (-J 'd -iin ~

-j '

e-j v ' dv dh.

Making use of Fquation (53), one transforms the integration from -v

plane into t-plane and Equation (53) is now expressed as

h i'< (..a )1/3

,) ' sin oa (5q)

J2j eJh(zz )-[da(- o d

2- -c ifhe - ;-d ~ dh

where

(2a )1/3,_% (61))

and

e - dt (61)
2 J 1  wt-)

, = jI t e -~?je t (62)

f r2 2i-0--
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y

x

Figure 14. Ray geometry in the x-y plane.

Defining D sin 5 = z-z' and D cos . = d + a(a-Ao) and transforming the
above integral To(a) into w-plane via h = k sin w [19], one obtains

T.f sin iw ka cos w /) w'(1)
0p2 cosa , si2 ~

Hcosj- ejkD cos(w-6) k cos w dw (63)

where P is the integration path in the complex w-plane shown in Figure 15.

Equation (63) can be written in a form suitable for an asymptotic
evaluation via the method of steepest descent:

0T (a) , sin f f(w) ekD q(w) dw (64)

in which
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n a cos w () ( (a cos w d cos

(65)

a nd

q(w) -j cos (w-±) ((6)

where kD - tht large i'a" ..tr.

W- PLANE

Figure 15. The integration path in the complex w-plane.

Using q'(ws)= 0, the ;addle point of the function q(w) can be found
to be

w tan d + a(a-co (67)
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Let us now study the geometrical meaning of ws . Figure 16 illustrates the
geometry of the ray path from the source Q' to the field point P. It is
evident from the developed view of Figure 16(c), that the path Q'QP
minimized the distance between the source Q' and the field point P.
A part of the ray path Q'Q lies on the cylinder surface, where it is a
geodesic helix with pitch angle ws. The tangent line QP, then, completes
the ray path. Note that (see Figure 16)

z cos ws = a(,-Q0 ) (68)

s cos ws = d (69)

and

D = s + (70)

From the standard procedure (e.g., see [19], the asymptotic approximation
of the integral To (a) can be expressed as

-J 2 - kO q(ws) j -
To ( ) jk-D Iq1,-(Ws- -  f(ws)e e (71)

where

q(ws ) = -j (72)

and

q"(w S) = j (73)

and

f(ws) [ k2a sin ws g(Es) (74)

(sin Ws) ( a cos w s '
/3  Iv)]e e e 4-

2 9 sJs35
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Substituting Equations (72) through (74) into Equation (71), one
finally obtains

2 s in ws  (s
c o s 2/3

T (a) k a sin w g( I0s -- g(& )

(75)

e -ikk e -jks

Js(s )

where

(ka cos Ws 1/3 '76)

&S~ 2 (a-a ) (6

It should be noted that the second term in Equation (75) is a higher-
order term. Usually it can be neglected. However, for some special
situations, (e.g., see Figures 5 and 8 in Section IV) this higher-
order term is important and should be included. For consistency, one
then should also include the next higher order term for the Airy
function approximation of Hankel function given by Equation (56).
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APPENDIX I. LISTING OF THE COMPUTER PROGRAM GENERATING
THE SOFT FOCK FUNCTION _qS(x)

9 3
+j x

*( x e 3 (x) x < 0

~i *(x) - (x) x _o

where 6(x) is the soft Fock function tabulated by Logan [9],

I e ixt

W(x) dt

Note that Logan's table uses the time dependence e-jwt
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1 rUMPLLX -UNLTION L,'IX)

~ r***( t(X) IS RELATLU In THE FOCI( FUNcTl0N (CtREUT UIlSIRIBuTIUfK
4 r**** 97UNC110N ) OR THE SOFT CASF,
'r **** co X<Ou JF. IN THE LIT 'w'IOrN:

r****(68(X)=CEXP(Y**S/2.,*J',uTHE INTEGRAL OF
7 (-**** CEXPlI)*X*T )/..(1 )/S% RT(PI)
% r** FOR X>fl.U i.F. IN THE SHADDW tKEGION:
9 r*** i,RIYJZTHL INTERL OJF CLYP(%*X*T)/wl(T)/SGRT(PI)

1i u ****t "OTE THAI THE TIML CONVFN'TION iS CLXP( -JvT)
11 ( ****

1;d rl"ENSION4 XF 19) .1L19)VFLC9),VFpc9),PFL(9) ,FFD(9)
15 - A T If./L/

1.) iATA VP /.77, 8 .0251 0*,11 .00.63, *OG.3.900/

1 r) rATA VFL/.779e 91.377 ,? ,r-t u63,4.Oe+.5* ulfI ,i.UG'4, 7.OU2,FA.rQ1/

19 1-69.679-b~9.78/

Zko pI=3.j41t)92bb

zi! IF(X.uI.4.) GO0 TO 2000
23 TF(X.LT.-4.) c~O to 3uflo

,e 4 1 F C I N .rE .O 0 0 TO 1
no I =1.9
r LI I= 1.

27 CDO 2 N=199

31 ;? rUjNTIN~UE

33 r CON T INU
34 T=I.

~~03 )P N 4199
6b PX=X-XF(r4*SGN

37 TF(ABSIOX).LT.19E-6) GO TO 1('OO

,5 jT=T*Dk
59 3 C0I~TINUE

'46?tl

'41 fl,R0 0
41) 'lU4 N2199

45 VF=VFOINI
'44 PF=PFU(N)

"ta IF(X*LT.0,O) VF=VFLIN)
4 6 'I (X.LT*090) PF=PFL(N)

* 47 czCLfr.)*IX-XF(NI*SGN4)
'4t f.. 1./C

49 VUH=V('MC*VF
Do F6jRPGuII+L*PF
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APPENDIX III. LISTING OF THE COMPUTLR PRu.GRAM GENERATING THE HARD

FOCK FUNCTION gh (x) and -d [gh(x)]x3

G*(x) = e q(x) x < 0
9h(x)

G*(x) 9(x) x - 0

where 9(x) is the hard Fock function tabulated by Loqan [9].

I iext| 1 e" ei t

S(x) dt

Note that Logan's table uses the time dependence e
-jw t
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I COMPLEX FUNLTION 6(X)
e, C****
3 (*** n(X) IS XELATEn O 1 THE FOLK FUN~CTION~. (CURRErKT D1STRIbUT1QfN
r** P uN~CTIuN ) FOR THt. HARDO CASE,

S r*** rO X<O.U I.E. IN THF LIT R~F~1oru':
tj r***G(X)=CEYP(y**A/3.*J)*THiL INTEGRAL OF

7 r**** CLExp(.j*)*T)/Wl(T)/SQRT(PI)
f, r**** POR X>0.U I.E. TN4 THEf SHM(OW mFGIUP%:
9 r**** G(X)=THE INTFGRAL OF CEXPfJ*xsT)/6j0IT)/S( RT(PI)

lo C -UTL THAT 7,4f. TIME CU?.-Vt ljION iS CLXP( -J.qT)
I1I r***.
1?1. rIMENSION wF(lfl).rL(1J),VFL(1U) ,VFC(lL,P;:L(10HtPFUL(10)
13 rATA IN/U/
14 ')A TA x 2, , . P*: .. ' 5

Ih DATA F,
Ic l.U836v.ub37/

17 DATA FF0/ * no4.* 36,11.3* , * 64 ,42.56, F I * ,72,*90,87.57,
lb 11u2.l7,t1E6.75/

20 21.999n,1,99"5/
21 nATA L/r.28439t.7-24-1.5-o5-2..3-./

2? PI=3.14159?6b
23 Sut4=sjc-rP±j.ox)
24 IF(X.GT.4.) GO 10 2000

.d!) 7F(X.LT.-2.5) GO TO 6000
zb lIF(XNsrlE*.) GO T0 1
ie 7 r0 2 1=191o

29 90 2 r4=1910
60 D)X=10*(XF(I )-XFIN.))

32 CL(I)=CL(7)*OX
33 ? CON~TINUE
64 TjN~1
311 1 cONT INUL
ab T~l *
37 D0 3 N=I11

Sb rX=X-XF(N)*SGN
69 IF(ABS4DX)'.LT.1.E-6) GO TO 1000
411 T=T*DX

41 3 cQI'T ItwJE
"2 VG=O0 0
43 PG=O.o
'44 r-U 4 NK1192

45 VF=VFOCN)
4v PF=PFD IN)

47 TF(X.LT.U.U) vF=VFL(N)

49 r=CL(tg)*lX.XF(N)*SGN)
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AC KNOWL EDGMENTS

Helpful discussions with Dr. P. Pathak and Dr. W. D. Burnside aretruly appreciated.
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