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ABSTRACT

This paper is concerned with linear hyperbolic systems
of partial differential equations for which certain of the
associated propagation speeds are a great deal larger than the
other propagation speeds. In certain cases the fast modes
allowed by such a system are not present in the true physical
splrit±on. Yet the fact that such modes are allowed means that
when one tries to compute a numerical solution to an initial-
boundary value problem, the errors generated can propagate
quite rapidly. In particular, when the boundary data used
for the computation are less accurate than the initial data,
the fast modes can cause a rapid contamination of the
calculation in the interior. To prevent this, one would
like to have boundary conditions which prevent fast waves
from entering the region. The goal of this paper is to find
such conditions.

The situation described here is often encountered when
equations of gas dynamics are used to model the behavior of
the earth's atmosphere. This is the physical problem which
motivates this study.

In order to find the desired boundary conditions, we first
transform the given system to an approximate diagonal form in
such a way that each of the new dependent variables can be
identified as a slow, incoming fast, or outgoing fast component
of the solution. We then find local boundary conditions which
suppress the incoming fast part. Pseudo-differential operators
are used throughout the entire process. The effects of these
boundary conditions are analyzed using methods from the theory
of propagation of singularities for linear partial differential
equations.

This process has been worked out in detail for a model
problem in one space dimension and for the linearized shallow
water equations, a system in two space dimensions. We have
included the results of some nunerical calculations which
demonstrate the effectiveness of the boundary conditions.
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CHAPTER 1

INTRODUCTION

Hyperbolic partial differential equations are characterized by

the fact that in a certain sense they propagate information at finite

speed. For first order hyperbolic systems there may be several such

propagation speeds, each corresponding to an eigenvalue of the princi-

pal symbol of the system. In this paper we will consider systems for

which the various speeds can have substantially different magnitudes.

Such systems are sometimes said to have "multiple time scales."

Examples of these systems arise in the study of fluid dynamics.

For such systems there are certain propagation modes related to the

movement of the fluid, and there are certain other modes which have a

different physical interpretation. For the Euler equations of gas

dynamics these other modes are associated with the movement of sound

waves, and for the shallow water equations they are related to the

movement of gravity waves. If these waves move at speeds which are

considerably greater than the rate of flow of the fluid, then these

systems have two time scales.

The work presented here is concerned with a certain difficulty

which can arise when one tries to compute numerical approximations to

the solutions of such systems. The physical problem which motivates

this study is the use of hyperbolic systems to model the behavior of

the earth's atmosphere.
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The specific situation is illustrated in Figure I.1. This

figure shows the domain of definition for an initial-boundary value

problem for a hyperbolic system in one space dimension. In this case

the spatial region is an interval I, and the system is to be studied

for time t > 0. The restriction to one space dimension is made solely

for the purpose of keeping the picture simple. In order to define a

well-posed problem on this space-time domain, it is necessary to specify

values for the solution at time t = 0, and it is also necessary to

specify certain conditions at the boundary of I throughout all posi-

tive time. In specific situations the necessary data are taken from

physical measurements.

S\ Inaccurate
----- - boundary data

I.

/

/;

i x
/ J I

Accurate initial data

Figure 1.1

In certain meteorological problems the boundary data available

for a numerical computation are often considered to be substantially

less accurate than the available initial data. The reasons for this

will be discussed a little later. This state of affairs is unfortunate,

since the inaccuracies in the boundary data will generate comparable



inaccuracies in the interior, thereby wasting the extra accuracy

contained in the initial data. Our goal is to control this con-

tamination as much as possible.

This sort of control is feasible Lecause hyperbolic systems

can propagate information only at finite speed. For any subregion

J of the given region I, there is a certain period of time after

t = 0 during which the solution in J cannot be influenced by the

boundary data. However, it is inevitable that the boundary values

will eventually influence the solution in J and thereby reduce the

accuracy of the computed solution in that region. The question is

how long this takes. We have noted that the systems in question can

allow both slow and fast propagation speeds. These are illustrated

by the characteristic lines appearing in Figure 1.1. If the boundary

data influence the interior at the fast speed, then in the region J

the solution is accurate up to the time T1  indicated in the figure.

If the boundary data move in at the slow speed, then the computed

solution is accurate up to time T,. In the meteorological problem

these times can easily differ by a factor of five to ten. It would

therefore be worthwhile to prevent this contamination from taking

place at the faster speed.

In order to do this we will try to find boundary conditions which

prevent rapidly moving waves from entering the given spatial region.

We will try to identify, in some sense, the portion of the solution

which is entering the region at the fast speed, and we will then attempt

to set this part of the solution equal to zero at the boundary.
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For the meteorological problem this would accomplish what we

want. The crucial feature of this problem is that boundary conditions

of this type are entirely realistic. In this problem the fast modes

in the system correspond to the motion of sound waves or gravity waves.

The amount of energy contained in such waves is insignificant compared

to the other forms of energy in the atmosphere, so for practical pur-

poses the fast part of the exact solution is in fact equal to zero.

The only reason that the fast modes can cause any trouble is that a

numerical computation can introduce errors which have nothing to do

with the exact solution. These errors can therefore be propagated by

all of the modes in the system. Because the fast part can consist

only of errors, it is entirely reasonable to try to suppress this part

of the solution. We will not attempt to prevent the propagation of

error at the slow speed, since it is not realistic to assume that the

slow part of the solution is equal to zero. We will instead accept

the fact that on any subregion the computed solution will eventually

suffer reduced accuracy due to the effect of the boundary data.

This discussion has been based on the fact that there are certain

modes allowed by the system which are not present in the true physical

solution. These modes do not contribute to a description of the

physical situation, but they do cause problems when we try to compute

numerical approximations to the solution of the system. We have men-

tioned one such problem, and we will mention another a little later.

It might seem that we could best deal with these problems by modifying

the system of differential equations so as to prohibit solutions con-

taining rapidly moving waves. This would certainly eliminate the
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problems, and it would also be physically reasonable. In meteorology

this process is known as "filtering". However, there are no known

filtered systems which are mathematically well-behaved and which are

sufficiently accurate models of the atmosphere to be useful in meteoro-

logical calculations.

There is a partially filtered system, known as the "primitive

equations", which is currently being used for such calculations. This

system is derived from the Euler equations of gas dynamics, and it is

based on the assumotion that the atmosphere is in hydrostatic balance.

This assumption prevents vertically moving sound waves from appearing

in the solution. Unfortunately, this svtem does not have certain

desirable mathematical properties. The system is not h''erbolic, and

it has been shown by Oliger and Sundstrbm [7 1 that it is not possible

to find local boundary conditions at open boundaries which lead to

well-posed initial-boundary value problems for this system. in current

practice a diffusion term is added to the system to make it parabolic,

and values for all components are then prescribed at the boundary.

This leads to a well-posed problem, but it also reduces the accuracy

of the solution which is computed.

Because of the difficulties involved with finding a suitable

filtered system, it may be desirable to use the unaltered Euler equa-

tions of gas dynamics for meteorological computations. The work pre-

sented in this paper is concerned with one of the difficulties which

can arise when we try to do this.

There is another difficulty which can arise in this situation.
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Because of the Courant-Friedrichs-Lewy condition, the fast modes

in the system can impose a severe restriction on the permissible

time step for stable explicit difference approximations to the

differential equation. In general, this would present us with the

choice of either using an implicit difference method or an explicit

method with very short time steps. Both choices would be undesirable

because of the computational expense which would be involved. How-

ever, some recent work by Kreiss [ 5 1 has made it possible to

avoid this problem by choosing a suitable set of initial data. He

has shown that certain problems of instability can be avoided if we

smooth our given data so that certain elliptic equations in the

spatial variables are satisfied at the initial time. This makes it

possible to use an explicit difference scheme having a reasonable

time step.

We still need to discuss the reason why the boundary data avail-

able for certain meteorological computations are considered to be

substantially less accurate than the available initial data. This

situation arises in limited area computations which are used to predict

local atmospheric phenomena. Such computations are made necessary by

the size of the earth's atmosphere. If we try to compute the solution

to a system of equations over the entire atmosphere, then it will be

necessary to use an extremely coarse grid for the difference equations.

Otherwise, the computation would be too lengthy for present-day comput-

ing machines. In current practice the grid spacing for global atmos-

pheric computations is roughly one interval per two and a half degrees



of lat itude and longitude. Such computations can give useful informa-

tion about global phenoman, but the grid spacing is too coarse for

predicting local phenomena.

It is common practice to perform additional computations over

smaller regions with finer meshes so that these local phenomena can

be resolved. For such a computati ,n the spatial region is a cyclinder

in the atmosphere which is bounded by the earth's surface, the top of

the atmosphere, and an artificial computational boundary. This arti-

ficial boundary merely defines the edge of the computation and repre-

sents nothing physical. The situation is illustrated schematically in

Figure 1.2. The global computation is represented by the coarse grid,

and the local computation is represented by the finer grid in the in-

terval I. It is necessary to find suitable initial data and boundary

&

t

I x

Figure 1.2

data for this computation. We can safely assume that we can find

accurate initial data, since wie would perform local computations

only over a populated region where there is a dense network of obser-

vation stations which are capable of accurate measurements. The

.. .. .' .. . . . , ', f ', _ .. .. I
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problem is in finding suitable boundary data when we are trying to

predict future weather patterns. For such data we would have to use

the results of our global prediction. This computation is made on a

mesh which is much coarser than that of the local computation, so the

results of this computation cannot be considered as accurate as the

initial data which are available. This is one source of the inaccuracies

in the boundary data which we have been discussing.

We now outline the contents of this paper. We will consider initial-

boundary value problems for hyperbolic systems having two tine scales.

Our goal is to find boundary conditions which suppress the part of the

solution which would enter the given spatial domain at the fast speed.

Although the systems of real interest are quasi-linear, we will consider

only linearized systems. Our hope is that a study of such systems can

eventually lead to useful boundary conditions for the nonlinear problem.

Our basic method is to diagonalize the system in such a way that

each of the new dependent variables can be identified as a slow, in-

coming fast, or outgoing fast component of the solution. We will then

attempt to set the incoming fast part of the solution equal to zero at

the boundary. Our methods will rely heavily on the use of pseudo

differential operators. In the Appendix we will define a common class

of such operators, and we will state without proof some of their basic

properties.

In Chapter 2 we will discuss the problem for hyperbolic systems

in one space dimension, and in Chapter 3 we will generalize the methods

of Chapter 2 to problems in several space dimensions. We will use these



techniques in Chapter 4 to derive boundary conditions for the linearized

shallow water equations. The results of some numerical computations will

be included.

The work presented here is related to some work by Engquist and

Majda on absorbing boundary conditions. In [ i j they suggested some

methods for constructing such conditions both for scalar wave equations

and for first order hyperbolic systems. Some of the methods which we

will use here resemble, in rough outline, the ideas they proposed for

hyperbolic systems. Their ideas for scalar wave equations are developed

in detail in [21.

A
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CHAPTER 2

THE PROBLEM IN ONE SPACE DIMENSION

In this chapter we consider the situation for hyperbolic systems

in one space variable. The problems of real interest occur in more

than one space dimension, but certain features of the general problem

can be seen in this simpler special case.

2.1 General Remarks

We will consider the hyperbolic system

(2.1) a ( u b(v c( c2 )(u)

for 0 < x < 1, t > 0. This can also be written wt = Awx + Cw, where

w = (uv)T e R The entries in A and C are functions of x and t.

In order to simplify the notation we have chosen a system having

two scalar components. It can be seen easily that the ideas presented

in this chapter work equally well for systems having several components.

There is no loss of generality in assuming that A is diagonal.

The system is hyperbolic, so A has real eigenvalues and a complete

set of eigenvectors. If A is not diagonal, then a suitable similarity

transformation and change of dependent variables can be made to bring

the system to diagonal form.

We assume jal << :b and a < 0, b < 0. The first assumption

guarantees the presence of propagation speeds having substantially
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different magnitudes. The second assumption is made for the sake of

definiteness. It also contains the assumption that det A # 0, i.e.,

that the boundary is noncharacteristic.

The problem is to identify the "fast" part of the solution of

the system and then find boundary conditions which suppress this as

much as possible. To some degree this can be done by considering the

usual method of characteristics for constructing the solution of the

system. Suppose first that the matrix C is diagonal. The system

(2.1) then uncouples into two independent equations

= au + c lu
t ax 1

v = bv + cv
t

The first is an ordinary differential equation for u along charac-

dx
teristic curves defined by = a. The second is an o.d.e. for v

dx

along characteristic curves . = -b. These are illustrated in
dt

Figure 2.1 for the case al << Ibl, a < 0, b < 0.

t 7 / ,, t
t i/

/ /t/t

0 1 x 0 1 x

Characteristics for u Characteristics for v

Figure 2.1

I ..... ....... ... .. .
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Initial values for these ordinary differential equations are provided

by initial data (t = 0) and boundary data (x = 0, in this case) for

the partial differential equations. It is clear that data for v

are propagated at the relatively fast speed and that data for u

move at the slow speed. Boundary conditions which suppress the fast

part of the solution are therefore

u : given function

v 0 }x =0, t >0.

Conditions on u and v cannot be given at the boundary x I for

the example given here.

The same boundary conditions work in the case where C is upper

triangular, i.e., c,1 = 0. The second component v still satisfies

the equation v = b + c ,v, and setting v = 0 at the boundary
t  x 2.

prevents the boundary from influencing the interior at the fast speed.

In this case v appears as a forcing term in the equation for u,

but this does not matter if v = 0.

Trouble can arise if C is not upper triangular. In this case

u appears as a forcing function in the ordinary differential equations

dx - ic si
for v along the characteristic curves 11 = -b. Since u is in

general nonzero, v will be non:ero in the interior even if it is set

equal to zero at the boundary. The boundary data will influence the

solution in the interior at the fast speed by first influencing u,

which in turn forces v. The boundary conditions mentioned above will

of course have some desirable effects, but it would be better to have

more refined boundary conditions which are more effective at reducing
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the magnitude of what propagates in from the boundary at the fast

speed.

Such boundary conditions can be obtained by transforming the

system so as to reduce the coupling found in the lower order term.

This can be thought of as a process of identifying more precisely the

quantity which moves slowly and the quantity which moves rapidly.

Refined boundary conditions can be obtained by setting the new

fast variable equal to zero whenever permissible and then expressing

this condition in terms of the original urknY, and v.

It would suffice to transform C t- ,. iangular form. Ho ,-

ever, it happens that when one uses the t ,nation method outlined

in the next section, it is almost as ezsy to .btain diagonal form as

it is to obtain triangular form. Diagonal, form seems a bit tidier, so

that is what we will seek.
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2.2 Outline of a Method for Uncoupling Systems of Equations

The uncoupling method used here is a method used by Taylor [10]

to reduce the coupling in systems of pseudo differential equations for

which the leading symbol is in block diagonal form. It is essentially

a simple perturbation argument which is disguised by the language of

pseudo differential operators. It is related to some uncoupling

methods used by Kreiss [4 ] and O'Malley and Anderson [8]. We

will first outline the technique using Fourier transforms in a formal

way. In later sections we will make this process rigorous.

The system is w = Aw + Cw. We want to use Fourier transforms
t x

to reduce it to a system of ordinary differential equations and thus

make it easier to analyze. We will not transform in x because this

would require information about the solution outside of the boundary.

That would not be appropriate in a discussion of boundary conditions.

Instead, we use Fourier transforms in t. The use of such transforms

will be justified later in a localization argument which uses proper-

ties of pseudo differential operators. These operators will also pro-

vide a way of handling equations with variable coefficients. Certain

properties of these operators are summarized in the Appendix.

Write the system (2.1) as

(2.2) W = A- w -A- Cw.
x t

In terms of components this is
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- c1 b-lc2

Introduce formally the Fourier transform in t. Let be the dual

variable, and let u, v, w be the transforms of u, v, w. If the

coefficients of the equation are constant, (2.2) becomes

w (x,i) iA- A Cwx

(2.3 i ( _ A-

=iSR (i )w,

When , is large the matrix R(i ) is a perturbation of the
-i

diagonal matrix A .We will use a perturbation argument to reduce

the coupling caused by the off-diagonal elements.
-1IH

Let Q(i) = I + (ii) M, where M is a matrix to be determined.

For large , Q exists and has the expansion

Using (2.3), we have

, (- 1 -l C i

QRQ = + - ) -M- (A A((; )-

(2.4)
1 -lI-(,-l -1
A .- '(MA A - c .(-)

The coupling is of order -2 if MA - A-1M - A 1C is diagonal,

i.e., if
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- II 
c--21 -- 1

(25 2( 1 m22 b-
)
1  

( b-)(m21 m22 (:I1~ kbl 2 -lC2)

is a diagonal matrix. We therefore set to zero the off-diagonal entries

in (2.5).

-1 -1 -1
m 2b - a m12 - a c1, = 0 (row 1, column 2)

(2.6)

m. a - b 1  
-b 1 = 0 (row 2, column 1)21 21 -

The equation (2.6) can be solved for m1 and m,1  provided a # b,

which is certainly true in this case.

-1
c1 2 12

' b12 =b -a i a-b

b" lc21 ac21

21 =- -1 b-a
a - b

The entries m1 1  and m 22  appear only in the diagonal elements of

(2.-), and in fact the terms involving them cancel. These values can

therefore be chosen arbitrarily. For convenience, we will take

1 0 and m, = 0. The matrix Q is then given by Q I + (i,)- ,. or

o a-

ac , 1

b a
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Equation (2.4) then becomes

QRQ -  = Q (A 1 (i ) A I C)Q -I

(2.8) / - 1
= -l 11 i+ (I)•

-A 0 -b- c ,

For later reference we estimate the coefficient of the error term

(( ). A calculation based on (2.4) shows that this coefficient is a

matrix whose entries are bounded by the corresponding entries of

S(jbiI i-)
(2.9) constant * y

Here y = max{!cij 11, and the constant which appears first depends

only on the number of terms involved and the error made in approximat-

ing lb-al- I by jb I (recall lal << bl). In this case the con-

stant is a little larger than 4.

We use (2.8) to reduce the coupling in equation (2.3).

(2.3) i (x, ) = (iA - A- c)

-_1 -1 -1

(2.10) -x (Qw) = Q(i A - A c)Q (Q".)

The entries in the matrix Q are independent of x since for this

simplified treatment we have assumed that the differential equation

has constant coefficients. Let w, = Qw, and use the properties of
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the similarity transformation in (2.8). Equation (2.10) becomes

^I (- -1

(2.11) + bw 2 ) '
{2 . i) -'7b- b- 1 "-"

Khen is large, the coupling caused by the lower order terms

in (2.11) is weaker than the coupling in the original system (2.4).

This means that for large we can identify more precisely the rapidly

moving part of the solution and do a better job of suppressing it. This

restriction to high frequencies is not a serious one, since the goal of

this work is to suppress the effect of numerical errors, which are

mainly high frequency phenomena. In Section 2.6 we will discuss the

range of values of for which the method is effective.

This method can be applied repeatedly to reduce even further the

coupling at high frequencies. To reduce the coupling to i (-, we

would multiply equation (2.11) by a matrix of the form I (ir) ",,

and then determine M', in the same way that we found the matrix M

above. In general, to reduce the coupling from ('(_ -(n-l) to

((,-n), we would use a multipliar of the form I + -nM . The detailsn

of this process involve no new ideas and will not be given here.

The method has been presented for 2 x 2 matrices. In (4],

s ] , [ i0 ] it is used for block matrices having two square blocks

on the diagonal. In this more general case the equations correspond-

ing to (2.b) can be solved provided that the diagonal blocks correspond-

-l -l
ing to a and b have disjoint spectra. This method is also

valid for block matrices having any number of diagonal blocks. A

general form of this method will be discussed in Section 3.3.
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We now find boundary conditions for this constant coefficient

system which suppress the fast part of the solution at the boundary.

The new dependent variable is defined by w = Qw. By (2.7) this is

(^ ) ( lbc

1 ac21 "(X

v is our new notion of what constitutes the rapidly moving part of

the solution. For large it is a perturbation of the fast charac-

teristic variable v. To suppress the fast part of the solution we

set v : 0 at x = 0, i.e.,

1 ac2

(2.12) 1 (ac u 2 0 at x = 0

To obtain local boundary conditions we multiply (2.12) by i. and

then apply an inverse Fourier transform. The result is

ac 1, = 0 at x 0.

With this we conclude the outline of the uncoupling method.

There are several things left to do for problems in one space dimen-

sion. We still need to justify the use of Fourier transforms in

time, present the uncoupling method for systems having variable co-

efficients, and discuss further the effect of the uncoupling on the

behavior of the solution.
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2.3 Transformations in Time

Here we discuss the question of taking Fourier transforms in

time. We first recall that it is a good idea to use transforms in

one variable or the other since this can simplify the analysis of

the problem. Partial differential equations can be reduced to ordinary

differential equations, and through these transforms the solutions can

be expressed as superpositions of plane %%aves. This latter point is

particularly important for problems in several space dimensions since

in that case the direction of propagation can be as important as speed.

However, there are certain difficulties associated with the use

of Fourier transforms in this case. First of all, we cannot use

Fourier transforms in x since these involve information about the

solution outside the boundary. This is not appropriate in a dis-

cussion of boundary conditions. On the other hand, we cannot use

Fourier transforms in t directly, either. The reason is that in general

the solution to a linear hyperbolic system can grow exponentially as

t - +-. This makes it impossible to define a Fourier transform either

in the classical integral sense or in the sense of tempered distribu-

tions.

A common cure for this problem of exponential growth is the use

of the Laplace transform. Let s = n + i , where n and $ are real

and r > 0. The Laplace transform of a function w = w(t) is de-

fined by
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S t

Lw(s = e w(t)dtJO

This is certainly well defined provided rn is sufficiently large.

However, we are reluctant to use this transform for this problem

because of the effect it has on the form of the differential equation.

Derivatives are transformed according to the relation

(Lwt )(s) = J0 e w t(t)dt

= sLw - w(O)

The transform of the equation wt = Aw + Cw is thereforeX

t2.13) sw'x,s) - w(x,O) = Aw (x,s) C1,

where wsx,s) is the Laplace transform in t for fixed x. The

trouble with (2. 13) is that it includes initial values of the solution.

We would like to use our transformed equation to find boundary condi-

tions having certain properties, but the presence of the initial data

in (2.13) appears to complicate matters.

These problems with the Fourier and Laplace transforms can be

avoided b%' using certain properties of pseudo differential operators.

We were going to introduce these operators an. %ava in order to treat

systems with variable coefficients, so it is no extra trouble to use

this approach to solve the transformation problem. The main idea is
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to localize the solution in time in order to make the Fourier trans-

formation possible and then show that this localization does not have

a great effect on the equation.

We first recall the process outlined in the previous section.

There we formally applied a Fourier transformation to the differential

equation and then manipulated the transformed equation. These manipula-

tions consisted of multiplying Fourier transforms by certain functions

o4: the dual variables. In effect, we were applying pseudo differential

operators to both sides of the differential equation. The utility of

these manipulations suffered from the fact that the Fourier trans-

formations were not justified and from the restriction to systems with

constant coefficients. However, these problems disappear if we apply

general pseudo differential operators directly to the given differen-

tial equation rather than first trying to find a suitable transformed

equation. There will be no problem with variable coefficients, and

the Fourier transformation can be treated in the manner described below.

Restrict attention to a fixed time interval a < t < b, and

choose t, e C0O(R) so that '(t) = I if a < t < b. Consider the

differential equation wt = Aw + Cw. We multiply the solution w by

the cutoff function ,b to produce a function which has compact support

in t and which therefore has a Fourier transform. If ,; satis-

fied the differential equation, then in the case of constant coeffi-

cients we could immediately apply the transformation to the differen-

tial enuation. But this is not the case, since all we can say is
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(2.14) (N) = A -x + C(4w)

provided a < t < b. Equation (2.14) holds for t in this interval

because I = 1 there, but it may fail to hold for t e [a,b].

We will not try to manipulate a transformed equation, but instead

we will apply certain pseudo differential operators directly to the

given differential equation. In the next section we will construct

operators which uncouple the equation in a manner analogous to that

described in the preceding section. The manner in which these opera-

tors will be applied requires some explanation.

Write (2.14) as

(2.15) (,w) x = A-1 w) A- IC(w) .

x t

Denote the left and right sides of (2.15) by L and R, respectivelv.

and let P be a pseudo differential operator in t which we would

apply to (2.15) in an attempt to uncouple the system. Since L and

R both have compact support in t, there is no problem in forming

P(L) and P(R). The question is whether the two are in some sense

equal.

We know that L = R if a < t < b and L # R for certain other

t. Since pseudo differential operators are nonlocal, we can conclude

that P(L) and P(R) are nowhere equal except perhaps at a few points

where equality occurs by accident. But we can still say something

about P(L) - P(R) in the interval a < t < b where we know that 1,

and R are equal. Pseudo differential operators have a property

I •' ' -" l l i lll -l l l i l i l
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known as "pseudo locality". In this case this property implies that

the difference P(L) - P(R) on the interval [a,b] is given by an

operator of order --. Roughly speaking, this means that the difference

is very small at high frequencies. On the interval [a,b] we do not

have equality of P(L) and P(R), but instead we have a near equality

which is compatible with the asymptotic nature of our method which was

indicated in the preceding section.

When we uncouple the system, then, we will first choose a time

interval [a,b] of interest and cut off the solution outside of that

interva'. This will make it possible to apply pseudo differential

operators to each side of the "equation" (2.15). On the interval

a < t < b we have P(L) = P(R) modulo an error of order minus infinity.

This error term will be dominated by other errors arising in the un-

coupling procedure. If we are interested in analyzing the solution on

a different time interval, we will have to choose a different cutoff

function . This will alter the equations we obtain, but only by

modifying the coefficients of the error terms in certain asymptotic

formulas. In the rest of this paper we will assume that the solution

has been cut off in time, and we will not bother to write the cutoff

functions P explicitly.



I

25

2.4 A More Complete Treatment of the Uncoupling Method

In this section we will use pseudo differential operators to

uncouple the given system of partial differential equations. The

treatment given here is similar to that given in Section 2.2, but it

is more complete. This treatment is valid for systems having variable

coefficients, and it uses the method of Section 2.3 fcr obtaining

Fourier transforms in time.

As before, we will consider the equation

Ic
(2.16) t (U) (a b) - (1) (c

l  c12)(u)

for 0 < x < 1 and t > 0. We assume jal<< b , and for the sake of

definiteness we will assume a < 0 and b < 0. The system can also be
,vT

written in the form wt = Aw + Cw, where w = (uv)J e I. The en-

tries in A and C are functions of x and t.

In order to simplify the notation we have chosen a system having

two scalar components. The method presented here works equally well

for systems having several components and for systems in partitioned

form.

Write the system in the form

(2.17) w A - A -Cw.

In terms of components, this is
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a(ll 12 (u)

3x vU ( bi) 3t V - 1 c 2 1 b-1c 22

In Section 2.2 we formally applied a Fourier transformation in t

and then manipulated the transformed equation. These manipulations

consisted of multiplying the transformed equation by matrices of the

form I + (ii) M and then determining a suitable M. This reduced

the coupling in the equation to e"(1). To reduce the coupling from

(,-(n-1)) to , (.-n), we would use multipliers of the form

n

In this section we will not try to manipulate a transformed

equation, for reasons stated earlier. Instead, we will apply certain

pseudo differential operators directly to the given equation (2.18).

The operator which will reduce the coupling from order zero to order

-1 will have a symbol of the form I + (i l-,I M. More generally. the

operator reducing the coupling from order - n~l to order -n will

have a symbol of the form I + (i)- nM . The process given here is• n

similar to the process of Section 2.2, since the leading order term

of the composition of two pseudo differential operators is given by

the product of their symbols. The difference between this treatment

and the earlier one is the presence of certain lower order correction

terms appearing in the formula for composition of operators.

Write equation (2.17) in the form

(2.19) = Gw + Dw

axI
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where D = -A C and G is the operator with symbol i A i.e.,

Gw(x,t) = f e'i t A-'(x,t) iEw(x,)d

= A-lw
t

Here w(x, ) denotes the Fourier transform of w with respect to t

for fixed x. It is understood that w is cut off in t according

to the remarks of the preceding section. We will suppress this fact

in our notation.

Apply a pseudo differential operator I+ K to (2.19), where K

is an operator of order -1 which is to be determined. The symbol

of K will be (i) -IM for some matrix M depending on x and t.

Prom (2.19) we obtain

-a[(I+K)w) (I+K)G(I+K) -

(2.20) + (I+K)D(I+K) [(I+K)w]

+ K w
x

Here K is the operator whose symbol is obtained by differentiating

the symbol of K with respect to the parameter x. (I+K) - I denotes

a parametrix of I + K. It is not hard to show that (I+K) -  has an

asymptotic expansion

(2.21) (I+K) - I- K -K + ...

The validity of this expansion depends on the fact that the order of
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K is negative.

Let wI  (I+K)w. From (2.20) and (2.21) we obtain

awI
3x (I+K)G(I-K)wl + Dwl

+ terms of order (-I) or less,

or

(2.22) aw I Gw + (KG- GK+ D) w 1

+ (order (-llw

The operator KG- GKD+ appearing in (2.22) has order zero. We want

to choose K so that the leading symbol of this operator is diagonal,

since this would imply that the coupling in the system (2.2) has order -1.

Let 7K' cG denote the symbols of K and G, respectively. The

composition law for pseudo differential operators implies that the svm-

bol of KG- GK+ D is

(2.23) KaG - OGOK + D + order (-1).

Let riK (iW -IM, where M is a matrix depending on x and t

which we shall determine, and recall that aG = i .A (See t2.19).

The expression in (2.23) then becomes

(2.24) .IA1 - A *M D + order (-I)

This is the symbol of the operator KG- GK+ D which appears in (2.22).

The symbol of the zero-order part of (2.22) is therefore MA -
- A M+ D,
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and the equation is uncoupled to order -1 if and only if

(2.23) MA 1 
- A 1 M + D = a diagonal matrix.

This is exactly the conu tion encountered in Section 2.2, equation

(2.5). (Recall that we let D = -A- C in (2.19).) This can be

solved for %I in the same way as before. From the earlier work we

conclude that the symbol of the operator K is given by

bc1

(226) C = I -

With this choice of K the coupling in equation (2.22 has order -1.

This process can be continued indefinitely in order to reduce

further the coupling in the system. To reduce the coupling to order

-2, we can apply an operator I + K, to equation (2.22) there K,

has a symbol of the form (i,) M,. The matrix MI, can be determined

in the same way that N1 was determined above. In the equation for

M, corresponding to t2.25), the matrix corresponding to D represents

the error terms of order -1 in (2.22). These terms would have to be

calculated explicitly when deriving (2.22). The new dependent variable

for the system would have the form w, = (I+ K,)w I = (I+ K,)(I+ KI 1w.

Further uncoupling can be carried out in the same manner.

We note that the symbol in (2.26) is the same as the one obtained

in Section 2.2. This is not the case for symbols which uncouple the

system further. The reason for this is that these symbols are influenced
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by error terms which result from the application of the composition

law, for pseudo differential operators during prior applications of

the uncoupling method. These error terms are generally nonzero for

systems having variable coefficients, and they cannot be detected

by" the formal treatment of constant coefficient systems which appeared

in Section 2.2.

We conclude this section by mentioning a minor technical diffi-

culty associated with a symbol of the form (i) -n M . Strictly speak-n

ing, such a function cannot be a symbol of a pseudo differential

operator because of the singularity at 0 = . But it can !e modified

in a neighborhood of = 0 to produce a smooth bounded function of

Such a change will affect only very low frequencies. From now

on we will always assume that such a modification has been made. and

we will ignore this fact in our notation.
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2.5 Boundary Conditions

We will now use the results of the preceding section to find

boundary conditions which suppress the rapidly moving part of the

solution. During the uncoupling process we adopted a change of

dependent variables whose effect was to weaken the coupling contained

in the lower order term, at least at high frequencies. The new depen-

dent variables can be thought of as more precise descriptions of the

rapidly moving and slowly moving parts of the solution. We will .I i

our boundary conditions by attempting to set the "fast" variable

equal to zero at the boundary. In general, it is nut possible to do

this exactly, but it can be done to an order of accuracy which is

compatible with the degree of coupling which remains in the differen-

tial equation.

We will consider the system (2.22) which was obtained through

one application of the uncoupling method. Sy'stems obtained through

several applications of the process can be treated in a similar manner.

Equation (2.22) is

(2.27) 1 = Gwl + (diagonal term of order (Pw I + (order t-l))w

where

12. ) w= ( 2I K)w

Here w = (u,v)T  is the orginal dependent variable for the system.

The symbol of the operator K is given by (2.26). If we let

T
w1 (1u v I then (2.261 and (2.28) give



(2.29) U(x,t) = ei  (x ( 12 d:

; i ac l  b7

(2.30) V(x,t) = ei~t +(2a)U(X, ) v(x, ) d

The components u1  and v1 are perturbations of the original com-

ponents u and v. Recall that u is associated with the slow

characteristics of the system and that v is associated with the fast

characteristics. The new fast variable is therefore v and our

goal is to set this equal to zero at the boundary whenever permissible.

This can be done easily provided the system has coefficients

which are independent of t. In this case the bracketed quantity in

the integral in (2.30) depends only on x and , and it is there-

fore the Fourier transform of v1  with respect to t for fixed x.

We want v= 0 when x = 0. This can be accomplished by setting the

transform equal to zero at x = 0, so we obtain

1 ac21

2.1-(a--)u(O, ) + v(0) C) for all

To obtain a local boundary condition, we multiply by i and then

invert the Fourier transform. The result is

(2.32) + ( )u = 0 when x = 0
3t b - a

This argument is not valid if the coefficients in the system

depend on t. In this case the bracketed quantity in the integral in

(2.30) denends on t as well as x and . It cannot, therefore, be
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the Fourieir transform of anything, and it is not possible to write

(2.31). However, despite the fact that the derivation given above

is ;nvalid, it is still possible to use (2.32) as a boundary condi-

tion in the case of variable coefficients.

Proposition 2.1. If u and v satisfy (2.32), then the new

"fast" variable v1  satisfies

vI = (operator of order -2)u at x = 0.

Proof. Suppose that (2.32) holds, and apply to it the operator

-I
whose synbol is (i) . This gives

"v ac,1  o

'' 1 w t t

Here (--) and (i ) denote pseudo differential operators

with symbols (i )-I and i , respectively. The small circle

denotes composition of operators. The composition law for pseudo

differential operators yields

13) ac.l,, "1 ,1 ac~l(2.33) v + ( (--)u + -- (-) (b_ ) u
b b- a i 3a~ ( 3 b - a u

+ order (-3) 0

The sum of the first two terms is vl , as can be seen by comparing

(2.33) and (2.30). The third term has order -2. From this the result

follows immediately. We note that the term of order -2 is generally

nonzero when the coefficients of the system depend on t.
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The "fast" variable v is therefore small at high frequencies

when x = 0. We will see in the next section that this order of

accuracy is compatible with the degree of coupling remaining in the

system of differential equations when it is written in the form (2.27).

We should note that, for this particular case, there is an easy

way to find a local boundary condition which sets v1  exactly equal

to zero. Set (2.301 equal to zero, and write this as

ac r i t ( 1)G d + v = 0 at x = 0

b-a J i

If ac2 1 1 0, we can multiply by (b-a)/ac1 and then differentiate

with respect to t. The result is

Sb-a

u +- )v] 0 a
c't ac 1

The trouble with this approach is that it does not work if the ex-

pression has more than one term of negative order. This will be the

case if the system has three or more components or if we have applied

the uncoupling method more than once. In general, it is necessary

to use the ideas mentioned in the proof of Proposition 2.1.

We will indicate how this process works in the case where the

uncoupling method is applied again to uncouple (2.27) to order -2.

In this case the method of Proposition 2.1 can be used to help generate

a boundary condition, not just verify its utility.

After additional uncoupling the system becomes
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aw?
= (diagonal operator of order 1)w, + (order (-2))w

where w = (I +K2 )(I+ 1)w. Here K is a suitably chosen operator

of order -2, and K1 K. We can take the symbol of K, to be

zero on the diagonal, as was the case for K. w? can be written

w, = (I + K +K 2 
+ K2K1)w

The operator K2K has order -3 and can be deleted from the

expression for the new dependent variable without affecting the order

of the coupling in the system. We therefore let

(2.34) 2= (I2 KI + K,)w,

and the system becomes

9 ,

= (operator of order ), + (order (-2))v.
3x

T
If we let , = (u,,v,) , then v, is the new "fast" variable.

According to (2.34), v, can he written

I c (X,t) C,(x.t) -

(2.35) v,(x,t) = ei t (x,) c U+ g( ) _*d, ,

where cJ(i ) -3 is the lower left element of the symbol of K..

We want to set v 2 = 0 at x = 0. If c1  and c2 were in-

pendent of t, then we could set to zero the bracketed factor in



36

the integral in (2.35). If we clear denominators and invert the

Fourier transform, the result is

(2.36) 7 c1  -- * cu 0 at x 0 .

The method of Proposition 2.1 can be used to show that this boundary

condition still has some validity when the coefficients cI and c,

vary with t. However, we can obtain a better condition for the case

of variable coefficients by starting with a more general form

-v u
(2.3-) C, + qu = 0 at x = 0,

and then determining q in a manner which we now describe.

Proposition 2.2. If q c, t ' then the condition (2.37)

implies that the "fast" variable v, satisfies

v, = (operator of order -3)u at x = 0.

If (2.36) is satisfied, i.e., q = c, then in general te only have

= order (-2)

Proof. Suppose (2.37) holds, and apply to this equation the

pseudo differential operator whose symhol is (ii)-. This .gives
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1 It t If ""

2 (i & ) " 2 1v + o (i~ c 1 )

(M (M-)

+.o qtu 0.

We now apply the composition law for pseudo differential operators and

obtain

o C " -2 1I
V+U +u.i - u1; (i )

ttt

+ q 2 U + (order (-3))u = 0
(iQ)

This simplifies to

" c * ,c
v (-) u + (i )- (q - 2 ) u = (order (-3))u

a1

If q - 2 = c2 , then the left side of this equation is equal to

v,. (See (2.35).) We therefore obtain v.2 = order (-3) . Note that

if q = c 2 , then we only have v, = order (-2) . This completes the

proof. s j

From this it should be clear how one can find boundary conditions P

corresponding to arbitrary orders of uncoupling. In general, when the

system is uncoupled to order -n, the new "fast" variable can be ex-

pressed in terms of an operator of order -(n+l). We note that the

composition law for pseudo differential operators can play an important

role in determining these boundary conditions.



Jr

38

Ile also note that this process works for systems having more

than two components. The dependent variable for a partially un-

coupled system has the form wn = (I+Kn) ... • (l+K 1 )w, where
nI

th
K. has order -j. The m component of wn has the form

(2.38) v + terms of negative order,

th

where v is the m component of w. The process outlined above

can clearly he applied to (2.38).

In this section we have not vet discussed boundary conditions

for the slow part of the solution. For the system (2.1) which we are

considering here, it is necessary to give a value for a slow variable

at x = 0. One possible condition is

(2.39) u = given function.

From (2.29) we can obtain another condition,

(24)3u be 12
(2-40) 1+ (b ) v = given function

The secon, condition has little practical value for the problem

considered here. It requires boundary values for a derivative of u,

and in a numerical computation it would be necessary to approximate

this derivative from measured values of the solution. In this paper

we have assumed that the available boundary data are not particularly

accurate, so we cannot expect much accuracy at all from numerical

differentiation. This implies that there is little point in attempting
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to use the boundary condition (2.40).

We therefore propose the boundary conditions

ac2 1
(2.41) 21 +

u = g, for x =0,

where g is a given function of t. The first condition is the con-

dition (2.32) which was obtained through one application of the un-

coupling method. It is equivalent to

rt (ac21

v(0,t) = v(0,0) + ! b 2a) g(T)d.

The conditions (2.41) thus prescribe values for the characteristic

variables at the boundary where the characteristics enter the region.

The initial-boundary value problem with these conditions must there-

fore be well-posed. In Section 2.8 we will present the results of

some numerical calculations which compare the conditions (2.41) with

the simpler conditions

v= 0

u = given function, for x 0
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2.6 Estimates of the Size of the Fast Part of the Solution: Outline

and Physical Interpretation

In this section we begin to examine the effects of the boundary

conditions discussed earlier. We will first estimate the size of the

"fast" part of the solution using an approach which has much the same

spirit as the formal treatment of the uncoupling process given in

Section 2.2. We will then give a physical interpretation of this

result. In the next section we will obtain an estimate based on the

more rigorous uncoupling of Section 2.4. The first estimate is not

rigorous because of the limitations of Section 2.2, but its deriva-

tion is basically an elementary version of the proof of the second

estimate. We therefore present the first in order to help explain

and motivate the other. The basic method used here is essentially

the standard technique for finding energy estimates for hyperbolic

partial differential equations.

According to the discussion in Section 2.2, the system

wt = Aw + Cw can be transformed into a system having the form
x

(2.42) n x,',) =~ 1i
x n

+ (diagonal matrix with terms of order zero

or less) n
+ (,-n

We have assumed from the beginning that A is diagonal. In (2.42)

wn is given by
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n n) •

where the matrices N1 are chosen in the manner indicated in Section
k

2.2. Because of the hypothesis Jal << bl in (2.1), the second com-

ponent of wn is the new "fast" variable. We need to estimate the

size of this component in solutions which satisfy the boundary con-

ditions discussed earlier.

TLet wn = (u n ,v ) . According to (2.42) the second component

satisfies the equation

n-I
_2.43 _ -n-'- (x,+) : +b"  h (1 )-kVn xhnx )  for xO

k=O

where h is an error term satisfying
n

(2.44) Ihn(x,,)l < L_ i'n(u(); + Ix,/)

The functions u and v are the components of the vector w. The

coefficient b Iin (2.43) is taken from the expression for the

matrix A in (2.1). The coefficients k and Ln can be expressed

in terms of the entries in A and C. This will be done later for

the case n = 1.

We will now use the ordinary differential equation t2.43. to

estimate the size of 'n.

Proposition 2.3. If (2.43) and (2.44) hold, then for x > 0,
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In .,,)! <_ e 0 v R e 2 )

(her.RS ) = 1n-12

(e .as)+od-2-2 [ I x e(R+o2 ( ~ ) 2\) /

e'0 Ihnd,

we En- (ii)-kk. The sum is taken for even integerswhee (E) '0 +  k=2 k

k. The constant a > 0 can be chosen arbitrarily.

Proof. In order to simplify the notation, let q = vn, h = hn,

and (i ,-k Equation (2.43) becomes

(2.46) qx = ic2b-l + G(1)q + h(x, )

The subscript denotes differentiation.

Ife w'ill find an inequality for n q a us this to estimate

q. Equation t2.416) implies

qXq = ib -qq + G(E)qq h(x, )q

qq = u(-ib - 1) + qG( ) q + qh(x,,)

Bars denote complex conjugation. The sum of the two equations is

3 - = qq + qq3x x x

(2.47) = [ _ Re[qj

= 2R,;) :q + 2Re[hn,
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where R( r) is the quantity defined in (2.45). The last equality

follows from the fact that the X k are real. This in turn follows

from the derivation of the partially uncoupled system (2.42). This

derivation is based upon expansions in powers of i , and all of

the coefficients in these expansions are real.

The second term on the right in (2.47) can be estimated using

the inequality 2ab < a2 + b2 . For any real a # 0 we obtain

2 2  1,2

2Re[hq] < 21hqj < 2o'< q + h •

With (2.47) this yields

-2 1 -h ,

T- jqj < 2(R() + o-) +2 + 2 hK

We now anply the Gronwall inequality. That is, we move the

first term on the right over to the left side, multiply by the

integrating factor exp[- 2(R+a )x], and then integrate. The

result is

q(x~2 e R q(O)*

1 - x 2 (R + ( () d ,. "+o JOeh yI d.

To obtain the final result (2.45) we recall that q = vn and use

the fact that Y/ab < /a + v'bU when a,b > 0. This completes the

proof. 9

In the estimate (2.45) there is a term which involves the values

of v at x = 0. According to the formal treatment of constant-



44

coefficient problems given in Section 2.2, it would be possible to

set v exactly equal to :ero at the boundary x = 0. In that case

nnthe ~ ~ ~ temivlig 1 0, -) ould not appear in (2.45). However,

we saw in Section 2.5 that it is not quite possible to satisfy

v = 0 when the coefficients vary with t. We have therefore in-
n

cluded the extra term in (2.45) in order to suggest the more general

behavior of the boundary conditions. According to Proposition 2.2

and the comment which followed, it is possible to obtain v [,2 =
-n-n

( n w. This is certainly compatible with the other term in (2.45),

which according to t2.--0 is ( . ,). l'e will see that something

like this actually\ happens with the more rigorous estimate which i,e

will obtain in the next section.

The method used here to uncouple the system is valid asvmpto-

ticalIV as - -v' It ,ould be good to have estimates of the co-

efficients in error terms such as (2.44) in order to have a rough

idea of the range of 2 for which the method works. In the follow-

ing proposition we do this for (2-441) in the case n = 1, and we

also (give the value of a relevant parameter appearing in the estimate

,.2A. .

Proposition 2.1. The parameter \ 0 appearing in 2.45) is

given b " = - c ,b -
. When n = I, the constant L in 2.44) can

be taken to he

(2.48) L= constant •v (b

%,here ' raxc The c.. are the coefficients in the undifferentiated
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term in (2.1). The "constant" is approximately equal to 4 in this

case. (See (2.9) and the discussion which follows.)

Proof. In (2.43) the parameter \ is defined to be the

coefficient in the zero-order term in the differential equation for

vn . For the case n = 1 this equation is given by the second rot,

of (2.11). There we see X0 = -c2 2b
1 . This value does not change

with n, since further uncoupling is obtained through transformations

involving matrices of the form I + (ik)Mk for k > 2. Such trans-

formations cannot alter the term of order zero.

The parameter L in (2.44) is part of the bound on the errorn

term in the partially uncoupled system 2.43). For the case n = I
~-1

this system is given by (2.11). The coefficient of the error ( -

is bounded by the matrix in (2.9). From this the conclusion can be

read immediately. This completes the proof. U

We pause to interpret this result. When n 1 the "i:..t" vari-

able v satisfies
n

?vl (~g,1 (ig-1 0v
(2.49) (-- , 2) (~ v+ h (x,2),30 11

where

v2.30) {hl(X,2) < constant -2-h u .1

The first line is equation (2.43) for the case n 1. The second is

a consequence of (2.44) and (2.48). We compare this to the situation

in which we do not do any uncoupling, but instead use the original
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system t = Aw + Cw given in (2. 1). In that case the "fast"

variable is taken to be v, the second component of the vector .

It satisfies

7T- = h v + b (c, u +c110

The forcing term in this equation is dominated by y¥b-lt!, since

= max{fc. K. A comparison with (2.50) shows that the uncoupling

method used to obtain (2.49) has a substantial effect when >y.

This relation defines what we will mean by "large frequencies" in

the context of this paper. We note that similar relations hold more

-l
generallv and that and -, both have the dimensions time

For large scale meteorological problems the Coriolis parameter

is usually the dominant entry in the coefficient matrix of the lower

order term in linoarined systems. It is given by f = 27 sin 7,

,,ere 7 is the earth's angular velocity and ; is the angle of

latitude. That is,

f =2 sin; hr 7Z sin % hr

The methods discussed here should therefore work well for those time

-l
frequencies whose order of magnitude is roughly 1 hr or greater.

In the case of smaller scale problems the Coriolis parameter

may be dominated by certain terms which arise in the linearization

of the system. This will reduce the maximum wavelength for which

the uncoupling method is effective. However, the size of the computa-

tion domain is also reduced, so it appea - that the method may still

be useful.
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In the estimate (2.45) for v there are factors which allow

ex:onential growth in x for x > 0. (The boundary of the domain

is given by x = 0.) We wish to make a rough estimate of the co-

efficient in these exponents in order to determine the length scale

on which this exponential growth can take place. One of these

factors is exp[(R+2 )x), where

n-1 -k

R( ) = X0 +  I (ii) -k •

k=2

The sum is taken for even k, and the parameter i can be chosen

arbitrarily. A similar factor appears in the integral term in (2.45.

An analysis of the uncoupling process shows that the dependence on k
is gk+l

of l is given roughlyo b y We omit the details of this,

but the main idea is that the expansions appearing in Section 2.2 are

dominated by expansions in y ; The behavior of R(-) for large

is therefore governed by the leading term X'0  which according to

Proposition 2.4 is equal to -c, . This satisfies

(2.31), ,]1OI 1
I01 ' 1

-bI  Ibly -

We recall that y = is approximately the lowest time frequency for

which the uncoupling method can have an effect. This corresponds to

a period of y- 1. The denominator bly - 1  in (2.51) is therefore

a rough approximation to the length of the longest fast wave for which

the method applies. This defines the length scale on which the ex-

ponential growth can take place, since for large the parameter 0

dominates the coefficient in the exponential factor exp[(R .2)x].
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2.7 Estimates of the Size of the Fast Part of the Solution:

A More Complete Treatment

We turn now to the problem of making our estimates more rigorous.

The estimate (2.45) for the fast part of the solution was obtained by

considering an ordinary differential equation in x for the Fourier

transform in time. The equation was obtained through the uncoupling

process of Section 2.2. This approach gives a rough idea of ho% the

boundary conditions affect the solution, but the result cannot be

considered very rigorous. First of all, it obviously cannot %,ork

when the coefficients in the system vary with t. Furthermore, this

approach ignores the problems mentioned earlier regardinc Fourier trans-

forms in time. A correct uncoupling of the system really must be based

on the use of pseudo differential operators, even if the system has

constant coefficients, and a correct analysis of the effect of the

boundary conditions must be based on this uncoupling. In this section

we give such an analysis.

As before, we will obtain estimates which indicate the behavior

as ; - of the Fourier transform of the "fast" dependent variable

in the system. In the earlier case we did this by estimating vn (x,
n

for each fixed . However, in a truly rigorous treatment it is not

possible to analyze this problem one frequency at a time. Instead,

we will obtain analogous results by estimating Sobolev norms of the

fast part of the solution. For any real number s, the norm in the

Sobolev space Hs is defined by

I!
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2 )s 1/2
-( f(i I L) Iu(~) dl-

-- IAsul

where

s12

( 2 .5 2 ) (A S u ) ( ) = (1 2) u ) •

An estimate involving a Sobolev norm makes a statement about

the behavior of the Fourier transform as - . From certain such

estimates we will be able to conclude that the "fast" dependent vari-

able is small at large frequencies. However, we will not be able to

conclude that the variable is small altogether, since the estimates

will not say anything about low frequencies. But this is not a severe

loss. The uncoupling process has an effect only at large frequencies,

so it is only at such frequencies that we can identify the fast and

slow parts of the solution. At low frequencies we do not know whether

the "fast" variable is small, but on the other hand we do not know

that it is really "fast", either.

The estimates will be obtained through a technique which re-

sembles the one used earlier to obtain (2.45). It is essentially

the standard technique for proving energy estimates for hyperbolic

partial differential equations.

According to the discussion in Section 2.4, the system

Wt = Aw + Cw can be transformed into a system having the formX

;w

(2.53) n (x,t) = Gw + Z w + E w

1i n nn n



so

Here G is the operator with symbol

-I

b-1

where a and b are defined in (2.1). n is a pseudo differen-

tial operator in the time variable. It has order zero, and its

sxmbol is a diagonal matrix in which x may appear as a parameter.

E is an operator of order -n which does not in general have an

diagonal symbol and which therefore represents the error in the un-

coupling process.

In (2.53) we should also include an error term which represents

the effect of the nrocedure given in Section 2.3 for justifying the

use of Fourier transforms in time. However, this term can be neglected

according to a localization argument which we t,ill present a little

later. We tvill first derive the estimates.

T

Proposition 2.S. Suppose that (2.53) holds, and let wn = (Un 'Vn)

Then for any real s there exist constants c1  and c, such that for

x > 0 the "fast" variable v satisfies

e c Ix v 0
in (x. * e v ,.s

x CI (x-y)
+ C e 1 l(v,")l"n d,

provided that all of the norms are finite. The norms are Sobolev norms

in t for fixed x. The constants c1 and c, may depend on n and s.
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Proof. According to (2.53) the component vn satisfies the

equation

v
n (x,t) = L v + Rn Wax n n n

where Rn  is a pseudo differential operator of order -n, and Ln

is an operator of order one with leading symbol i~b 1 . The symbol

of R is a 1 x 2 matrix. In order to simplify the notation wen

let q = vn, delete the subscripts in Ln and R n, and use a sub-

script to denote differentiation. The result is

(2.55) qx(X,t) = Lq + Rw.

We will obtain an inequality for -. I and then use

this to estimate ;01 2 . This norm is given by

q~l = !AS ql (Asq,.Asq)

where AS is the operator defined in (2.52). This is an operator in

t which commutes with differentiation with respect to x. Therefore

(2.56) . q = (A qA'q + (A-q x,,Vq)

This can he evaluated using (2.55).

A q = A L + A Rw

(2.57)
= L.(/Sq) + [A 5,L]q + AsRW •
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Here [A S,L] denotes the commutator ASL - LA5 . We insert (2.57)

into (2.5b) and obtain

_X iqil s  (ASq,LASq) + (LASq,ASq)

(2.58) (A q,[AS,L]q) - ([AS,L]q,ASq)

+ (A Sq,A 5 Rw) + (ASRw,ASq)

The terms in (2.58) will be estimated using the general fact that

every pseudo differential operator of order m is a bounded linear

t t- mmapping from Ii into H

The first row in (2.58) is equal to (tL+L*)ASq,A).q). where L*

is the adjoint of the operator L. According to the Schwarz inequality

this is bounded by

(2.59) (L+L- )AsqI 1 AsqI 1iL- I.2

The first factor can he estimated by observing that L+ L* has order

zero, even though L and L* each have order one. This is a con-

sequence of the fact that the leading sy-mbol of the adjoint operator

is eoual to the adjoint of the leading s.yMbol of the original operator.

;ince L+ L* is therefore a hounded operator on L, it follows that

(2.59) can be hounded by a constant multiple of JAs 0 or Iq

The second row in (2.58) involves the commutator [As,L] =

A L- LA S. This operator has order s, since the leading symbol of

the product of two operators is given by the product of their leading

symbols. The commutator is therefore a bounded mapping from Hs into



0 --,

H (or L2). It follows from this and the Schwarz inequality that

the second row of (2.58) can be bounded by a constant multiple of

The third row in (2.58) is dominated by a multiple of lIq sn

since the operator ASR has order s-n. From (2.58) we can there-

for conclude

,,2 2q (x, < K1  [q 12 + K, llql l , -n

for suitable constants K and K,. This inequality can he inte-

grated in the same manner as a similar inequality thich appeared in

the proof of Proposition 3.2. The result is (2.54). This comrletes

the proof.

The estimate (2.54) expresses the smoothness of the "fast" part

vn  in terms of the smoothness of its boundary values v (0,.) andn n

the smoothness of the entire solution w = (u,v) According to the

comments of Section 2.5 it is possible to choose boundary conditions

for this one-dimensional case so that v (0,.) is given h an operatorn

of order -(n+l) acting on w(O.,). The inequality (2.54) can there-

for be written

( -, cx
l n x< c- e w ,, .en -- - s-n-I

x c (x-N)
2 es-n-

If w(Y,-) is in Hr for each y, then we can let s-n = r and

conclude that v (x,,) is in Hn~r for each x. The fast part of

the solution is therefore n degrees smoother than the full solution.
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This argument is circular as presented, since the derivation

of the estimate (2.54) is based on the assumption that all of the

norms are finite. This is not a real difficulty. Suppose that we

have a solution w to (2.1) which satisfies the special boundary

conditions and which lies in Hr for each x. We need to show that

for each x the fast part v lies in Hr+n. We first note that then

equation (2.55), qx = Lq + Rw, has a solution in Hr+n which is

equal to vn when x = 0. This follows from a little functional

analysis and the a priori estimate Just obtained. See, for example,

pp. o3-65 in Taylor [9]. This function q must in fact be equal

to V for all x, since v is in Hs for sufficiently low s,
n n

and for such s the estimate (2.54) implies uniqueness of solutions

of equation (2.55). We can conclude that the fast part has the smooth-

ness properties desired.

One matter which we still need to consider is the error term

mentioned earlier which should have appeared in (2.53). This term

represents the effect of the procedure introduced in Section 2.3

for iustifying the use of Fourier transforms in time. The main idea

of this method is to choose a time interval [a,h] of interest and

then truncate the solution outside that interval by multiplying it h.

a smooth function with compact support. This introduces an error term

in the differential equation which, on the interval [a,b], can be

represented by a smoothing operator. Outside [a,b] it cannot in

general he represented in such a manner. This error term really

should appear in (2.53), but it is possible to omit this term if we

localize the solution so that the behavior outside [a,h] becomes



55

irrelevant. We describe how to do this now.

The procedure is based on a construction used by if6rmander in

the nroof of a theorem on propagation of singularities for linear

partial differential equations. See 96rmander [ 3 ] or Nirenberg

[6 1 , p. 44. We will consider an equation Pu = f, where P is

a pseudo differential operator. In our application this equation is

(2.53) with the extra error term added, and P is an operator in

both x and t. H6rmander describes a method for localizing the

solution to a neighborhood of a given bicharacteristic of P. He

constructs a pseudo differential operator B of order zero so that

the commutator [P,B] = PB - BP has order -- and so that the symbol

of B vanishes outside a conical neighborhood of the bicharacteristic.

The equation Pu = f implies P(Bu) = BPu + [P,B]u, or

('-(10) P(Bu) = Bf + [P,B]u.

The local smoothness of u is given by the global smoothness of Bu

(see the next naragraph), so it is possible to study the smoothness

of u along the bicharacteristic by considering global estimates for

(2.60). This behavior is not influenced by the term [P,B]u because

this term is automatically smooth in both x and t. It is also not

influenced by the values of f away from the bicharacteristic, since

these values are cut off by the operator B.

The fact that the local smoothness of u is determined bY the

global smoothness of Bu is a consequence of the fact that B is an

elliptic operator of order zero in a neighborhood of the bicharacter-

istic. To show this rigorously one needs to do a certain amount of
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work with cutoff functioi,. The necessary arglimenits arc given in

part (b) of the proof of Lemma 3 on page 42 of Nirenberg [ ]

This localization process enables us to handle the extra error

term mentioned earlier. Suppose that the symbol of B is truncated

so that it is zero after the characteristic leaves the time interval

[a,b]. Re-write equation (2.53) as

IX (x,t) = Lq + Rw + Ew

where ti w is the extra error term. When we anply the operator B

to this equation, this term is replaced by BE%,. The support of B

in time is contained in the interval [a,b], and the singular be-

havior of Ew is confined to the complement of [a,b]. These facts,

together with the pseudo local property of pseudo differential opera-

tors, imply that BEw must be entirely smooth in t. This term can

therefore be treated as a forcing term which lies in an" Sobolev class

we desire. It follows that the estimate in Proposition 2.3 is com-

pletelv valid nrovided that vn  is replaced by Bv and a suitable

norm of BE%,; is inserted. The conclusions about smoothness can then

be applied to Bv .n

The method used here actually gives more precise information than

is implied by Proposition 2.5, since it deals with propagation along

individual bicharacteristics. This feature will be useful in the

study of problems in several space dimensions, %%here the direction

of propagation can play a key role. In particular, it will he more



important to suppress fast waves moving in a direction normal to

the boundary than it will be to suppress waves moving in a nearly

tangential direction, The method given here allows one to dis-

tinguish between these directions.
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2.8 Numerical Computations

In this section we present the results of some numerical computa-

tions involving the boundary conditions which were derived earlier. We

consider the system

1 -1 u) O(2.61) 3t() = x - x 0

for 0 < x < 1 and t > 0. This is the system (2.1), where a = -1,

b = -5, c21 = 10, and the other ci1 are zero. We compare the

boundary conditions

v = 0

(2.62)
u =g (x =0)

and

+- _ ) u 0
(2.63)

u =g (x = 0).

Here g is a given function of t. The first condition in (2.63) is

the condition (2.32) which was obtained from the results of the un-

coupling process.

In our computation the system is approximated by the leap frog

difference scheme. The function g in the boundary conditions is equal

to a half period of a sine wave which is extended by zero. A for-

ward difference is used to approximate the derivative in (2.63). The

/2 2surfaces pictured in Figures 2."3 and 2.4 are graphs of v u + r" as
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a function of x and t. In Figure 2.2 we illustrate the con-

figuration of these suyg:ce plots.

t

fast slow

Figure.2

In the computations we set the solution equal to :ero Mhen

t = 0. The nonzero part of the solution is due entirely to the non-

zero boundary data, so it is possible to study the influence of the

boundarv data by examining the size of the solution in various parts

of the (x,t) plane. The solution corresponding to the simple

boundary condition (2.62) is graphed in Figure 2.3, and the solution

corresponding to the more refined condition (2.63) is given in Figure

2.4. It is clear from the figures that the second condition is much

more effective in suppressing the fast part of the solution.



Figure 2.3. Solution corresponding to

boundary condition (2 .62) . ~

Figure 2.4. Solution corresponding to

boundary condition (2.63)~.

74 * A *j.
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C- APTER 3

THE PROBLEM IN SEVERAL SPACE DIMENSIONS

In this chapter we will generalize the methods of the preceding

chapter to systems in more than one space dimension. The major change

required lies in the process of diagonalizing the leading sYmbol of

the differential equation. In the case of one space dimension this

diagonalization causes no trouble at all, but in the case of several

space dimensions it can get rather involved. Otherwise, there is little

difference between this case and the one discussed earlier. The lower

order term can be uncoupled in exactly the same manner as before, and

the fast nart of the solution can still be estimated by localizing the

solution to a bicharacteristic and then applying energy estimates.

We will first discuss the problem of diagonalizing the leading

svmbol. We w ill then summarize the uncoupling process for the multi-

dimensional case, and we will conclude with a useful perturbation

lemma which is a generalization of a techniqxe that war used earlier.

In the next chapter we will apply these metho.ds to the shallow water

equations.

3.1 Properties of the Principal Symbol

We will consider the hyperbolic system

(3.1) wt = + Bw + Cw

for x 0, v e IR. Here w(x,y.t,) e Rn , and A, B, and C are real

n × n matrices which are functions of x, y, and t. Without loss
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of generality we will assume that A is diagonal. In order to

simplify the notation we have chosen a system in two space dimensions.

Throughout this chapter it will be obvious that the discussion is

equally valid for systems in higher dimensions where x > 0 and

v e R for k > 2.

There is no serious loss of generality in assuming that the

spatial domain is a half-space. If the given domain does not have

this form hut still has a smooth boundary, then it is possible to

localize the problem with a partition of unity and then map each

boundary portion into the boundary of a half-space. In the new co-

ordinates the problem will have the form given above.

The system (3.1) has been assumed to be hyperbolic. In this paper

this will mean that for every real C and w and for every point

(x,y,t), the sYmbol

(3.2 ,A + w B

has real eigenvalues and a complete set of eigenvectors. There will

be no need to assume that A and B are symmetric or that the sys-

tem is strictly hyperbolic.

In order to have a system with at least two time scales, we will

assume that certain eigenvalues of the symbol (3.2) are substantially

greater in magnitude than the others. In the case of the linearized

shallow water equations this symbol has eigenvalues -u. * and

-u. 0 ± 1cl, where u = (u1,u2 ) is the velocity of the flow about

which the system has been linearized, and o is the vector of dual

variables ( ,w). If Jul < c, then this sytem has two time scales.
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There is a similar set of eigenvalues for the three-dimensional, five-

component Euler system for gas dynamics. In this case the small eigen-

value has multiplicity three.

We now turn to the main problem. We wish to find boundary condi-

tions for (3.1) which prevent rapidly moving waves from entering the

given spatial domain. Our plan is to first transform the system to an

approximate diagonal form, or at least block diagonal form, so that

each of the new dependent variables can be identified as a slow, incom-

ing fast, or outgoing fast portion of the solution. We will then

attempt to set the incoming fast components equal to :ero.

The immediate goal is to diagonalize the leading order terms in

the system (3.1). It would actually suffice to obtain a block diagonal

form, since there is nb need to separate various incoming fast com-

ponents or various slow components. After this part of the uncoupling

has been accomplished, tve can use the methods of the nreceding chapter

to reduce the coupling caused by the lower order terms.

We have assumed that the matrix A in (3.1) is already in diagonal

form. This involves no loss of generality, since if A is not in that

form we can find a similarity transformation which makes it diagonal and

then adopt a suitable change of dependent variable. Unfortunately. it

is not true in general that this transformation can also diagonalize the

matrix B. It is therefore necessary to do something extra if we want

to diagonalize the entire principal part of (3.1).

In the case of constant coefficients it may be tempting to use

Fourier transforms in x and y. This would yield the equation
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w(rw,t) = (i A + iwB)w + Cw.

The leading symbol of this equation can be diagonalized easily because

it is a scalar multiple of the symbol (3.2) discussed earlier. How-

ever, the use of Fourier transforms in x requires the use of informa-

tion about the solution away from the boundary x =0, and this is not

appropriate in a discussion of boundary conditions. It is therefore

necessary to take a different approach.

We will instead use Fourier transforms in time and in the tangent

variable y. For the time being we will use these transforms in a

rather formal way, and it will be understood that one can obtain rigorous

results by translating various arguments into the language of pseudo

differential operators. We first write the system (3.1) in the form

(3. 3) w = A-Iw - A-IBw A- ICw
x t v

It will be assumed throughout this discussion that the matrix A is

invertible. Let w(x,w, ) denote the Fourier transform of w with

respect to y and t for fixed x. Equation (3.3) implies

(3.4) x (x,w, ) = (i A- iwA B)w - A Cw.

We need to determine the values of w and C for which the symbol

(3.5) A_ - I B

can be diagonalized, and we must determine whether such a diagonaliza-

tion can produce a transformed system in which each component of the
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dependent variable can be identified as slow, incoming fast, or

outgoing fast. The answers to these questions are not immediately

obvious, since we have chosen a nonstandard set of variables in which

to apply Fourier transforms.

In order to get started we must consider the eigenvalues and

eigenvectors of the symbol (3.5). Suppose that C is a real eigen-

value of (3.5) and that v is a corresponding eigenvector. This

means that

(3.6) ($A- -jA- B)v = ;v

If we multiply by A and rearrange the terms, the result is

(3.7) ( A + wB)v = ;v

The matrix 7A + wB is the symbol (3.2) which we would obtain by writ-

ing the system in the more common form (3.1) and then applying Fourier

transforms in the usual variables x and y. According to (3.o) and

(3.7), this symbol imposes the same relations between the dual vari-

ables ;, , and I as the symbol (3.5), and it is possible to find

the eigenvectors of one symbol by examining the eigenvectors of the

other. The difference between the two situations is that in one case

the variable is treated as a function of w and , and in the

other case r is treated as a function of and w. This corre-

spondence between the two symbols will be very useful in studying

(3.5). At this point in the discussion we know a great deal more

about (3.2) than we do about (3.5), and the correspondence between

the two will enable us to translate information about one into
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information about the other.

We begin by discussing the eigenvalues of (3.2). In order to

have a system with multiple time scales we have assumed that certain

eigenvalues of (3.2) are considerably larger than the others. An

example of such a set of eigenvalues is graphed in Figure 3.1(a).

In this example there are two relatively large eigenvalues and one

smaller eigenvalue for each C and w. This is the configuration for

the shallow water equations, and it is similar to the configuration

for the Euler equations of gas dynamics. In the latter case the small

eigenvalue has multiplicity three. Throughout this discussion we will

assume that the largest eigenvalues of (3.2) occur in pairs and have

graphs which are similar to the graphs of the large eigenvalues in

Figure 3.1(a). That is, we will assume that there is a large positive

eigenvalue whose graph is a narrow cone, though not necessarily a right

circular cone. This implies that there must also be a negative cone,

since if (;,Lj) is a solution of (3.7) then so is (- , w-, -i).

These eigenvalues generate rapidly moving waves in all directions. The

fact that the graphs are not necessarily right circular cones means

that the speed can vary someilat with the direction of propagation.

We will denote by Q the double cone which corresponds to the largest

eigenvalues, and we will denote by r the portion of the (w,") space

which lies inside Q. These are labeled in Figure 3.1.



(dual to t)

/// ¢ (dual to x)

,' (dual to y)

(a) Graph to the relation (3.6), (3.7) (b) Cross-sectio in the

space

Figure 3.1

We are now in a position to discuss the eigenvalues of the

s mbol (3.5), -A- - ,A 1B. The quantities , , and must

satisfy the relation (3.7), which is the same as the relation (3.0)

which was discussed in the preceding paragraph. We can therefore

study the behavior of I from graphs like Figure 3.1(a).

First of all, it is apparent that the number of real eigenvalues

must vary with the position of (w,r). If (w, ) lies in F, then

there are two values of , which are associated with the surface 42

One is positive and the other is negative. As (w,,) approaches the

boundary of F, these values of approach zero, and when (w_.7)

leaves 7 the eigenvalues leave the real axis and form a pair of

complex conjugates. The eigenvalues cannot be real, since for an\
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real C the point (Cw, ) must lie on one of the surfaces in Figure

3.1(a). They are complex conjugates because they are eigenvalues of

a real matrix.

It is safe to assume that the other values of C do not behave

in this manner, at least in a neighborhood of r. In the case of the

shallow water equations the other satisfies the equation

E = U 1+ u2w. We have assumed that the matrix A in (3.1) is non-

singular, which in this case is equivalent to saying u1 $ 0. It is

therefore possible to solve for in terms of w and , whether

or not (u, is in T. A similar situation holds for the Euler equa-

tions of gas dynamics. We will therefore assume in general that for

(w, ) in a neighborhood of r there is no problem in solving for

the values of associated with surfaces different from 21.

Ile will now characterize the behavior of (3.5) when (w,) lies

in F. This is the only portion of the (w, ) space in which we are

realIy interested, since this is the only portion which corresponds

to the rapidly moving waves. We will say more about this a little

later.

Proposition 3.1. If (w, ) is in F, then the symbol (3.5),

A_-I ,A- IB, has real eigenvalues and a complete set of real eigen-

vectors. This is not the case if (w,r) is not in F. The eigen-

vectors can be determined from those of the symbol (3.2), 7A + wB.

Proof. Equations (3.6) and (3.7) show that the eigenvectors of

(3.2) are also eigenvectors of (3.5). We know that (3.2) has a com-

plete set of real eigenvectors corresponding to fixed (;,w) and
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various eigenvalues {. We want to show the same thing for (3.3), for

fixed (w,,) in T and various eigenvalues i.

Suppose that (w, ) is in r, and let m.... denote the

eigenvalues of (3.5). For each j choose a basis B. for the

eigenspace of .A + B corresponding to the eigenvalue . We are

allowing for the possibility that the symbol (3.2) might have multiple

eigenvalues. The elements of B. are also eigenvectors of (3.3)3

corresponding to the eigenvalue cj. We claim that the union of the

B. is a complete set of vectors. There are clearly enough of these

vectors. The fact that they are linearly independent follows from an

argument which is essentially the one which shows that eigenvectors

corresponding to distinct eigenvalues are linearly independent. This

completes the proof. d

The matters discussed in this section can be given a phyical

interpretation. Suppose that the coefficients in (3.1) are constant,

and let C = 0. This gives the system

(3.8) w = Aw + Bw

If we insert a plane wave solution v exv(igx + iwN- + iVt) into (3.8),

where v is a vector, the result is v = (;A + ,jB)v. This is the

condition (3.7) which was discussed earlier. The surfaces in graphs

like Figure 3.1(a) therefore define the set of all possible frequencies

for plane wave solutions to (3.8). It is apparent that the rapidly

moving waves are associated with 0, which is why we are interested

in the behavior of (3.5) only for (w,) in 7.
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In graphs like Figure 3.1(a) there is a particular wave speed

associated with each surface which defines C as a function of W and

. This implies that it is possible to separate fast waves from slow

waves by diagonalizing the symbol (3.5). It is also possible to detect

the directions in which the fast waves are moving. The portion of the

surface Q for which the product C is positive corresponds to

waves which are leaving the region x > 0, and the portion for which

; < 0 corresponds to waves which are entering the region. By pro-

perly defining the branches of C on the two sections of F, we can

therefore separate the fast part of the solution into incoming and

outgoing components. This justifies our decision to seek diagonal

form for the symbol (3.5).

We need to say a little more about the directions in which the

various waves propagate. A plane wave exp(icx + i y + i t) must

propagate in the direction ± ( ,w). If the point (w,") lies on the

vertical axis in Figure 3.1(b), then w = 0, and the wave moves in a

directiv,' normal to the boundary. If (w, ) lies near the edge of

7, then for a fast wave 1 f is small compared to [mj, and the

wave moves in a direction which is nearly tangential. This observa-

tion will be useful later when we seek explicit formulas for bringing

about an approximate diagonalization of the symbol (3.5). The approxi-

mations we introduce will be valid asymptotically as 0. This

will lead to boundary conditions which work well for fast waves travel-

ing in directions which have sizeable normal components, but they will

not work well for waves moving in directions which are nearly tangential.



These tangential waves do not present an), real problem, since they

cannot influence the interior very rapidly. The approximation schemes

are therefore worth using.
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3.2 Outline of the Uncoupling Process

In this section we will describe the uncoupling process for

systems in more than one space dimension. We will first outline some

of the ideas using Fourier transforms in a formal way, and we will

then use pseudo differential operators to make the process more rigorous.

We consider the system (3.1, wt = Aw + Bw + Cw, on the domain

x > 0. When we solve for w and apply Fourier transforms in v and
x

t, the result is

(3.9) w [x,', } = (iA "I  iwA B)% - A Cw•

According to the remarks of the preceding section, the leading symbol

i."  
- iA- B is diagonalizable for (w,) in r, and it is only

for ( , in - that we can have rapidly moving waves. For the

sake of neatness .,e xill use a cutoff function to restrict attention

to that set. Let ; be a C function of w and which is equal

to zero outside 7 and which is equal to 1 on all of F except for

a thin layer near the boundary. Equation (3.9) can be written

(3.10) w = (iSA -1 iu;A -1 B) - A 1C0 - (l-pO)iwA 1 .

The last term in (3.10) is an error term which is zero on almost all

of T. It is nonzero only near the edge, and for fast waves this

corresponds to nearly tangential incidence. The error term is there-

fore insignificant.

For any particular system it is necessary to find explicit

formulas for similarity transformations which bring the leading symbol
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-r~1  -1
(3. 11) i. i'pA B

of (3.lO) to diagonal form, or at least to approximate diagonal form.

We note that it would actually be enough to obtain a block diagonal

form in which each block corresponds to slow, incoming fast, or out-

going fast components of the solution. This situation could occur

with the Euler equations of gas dynamics, where there is a slow mode

of multiplicity three. The uncoupling can be accomplished either bv

using a certain perturbation method or by explicitly =omputin- "1e

eigenvectors of (3.lli.

To use the perturbation method ,e observe that 3. 11 is equal ta

i7 times the matrix

(3.12) A - --) A B.

The matrix A has been assumed to be diagonal. so if is sa.l,

the matrix (3.12) is a perturbation of a diagonal matrix. 1,"e can

therefore use the perturbation argument introduced in Chapter 2 to

brin (3.12) closer to diagonal form, or at least to block diagonal

form. We can apply the method once to reduce the coupling to order
" )3

-, twice to reduce it to order and so forth. This is

one of the approximation schemes mentioned in the preceding section

which work well in directions having a sizeable normal component

but do not work well near tangential incidence. We hill present a

general form of this perturbation method in the next section. There

it will become apnarent that in the case of multiple eigenvalues this

41
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method cannot give diagonal form, but instead can give a satisfactory

block diagonal form.

Another way to diagonalize (3.11) is to compute the eigenvectors

explicitly. One way to do this is to work directly with the matrix

(3.11). Another is to find the eigenvectors of the symbol (3.2),

-A + wB, and then use the ideas of Proposition 3.1 to translate these

vectors into eigenvectors of (3.11). The latter approach would be

preferable if (3.2) is easier to work with or if its eigenvectors are

already known.

By calculating eigenvectors we will be able to obtain an exact

diagonali:ation of (3.11) when (w, ) is in 7. This may appear to

be an advantage over the perturbation method given earlier. However,

the expressions for the eigenvectors can be complicated, and in order

to obtain local boundary conditions it would usually be necessary to

approximate these expressions with polynomials or rational functions.

We would again use approximations which are valid asymptotically as

0 0. Although it does not give exact results, the second approach

allois greater flexibility in the choice of approximation methods. The

earlier perturbation approach employs one fixed method of approximation,

but here twe have a choice of various Taylor approximations or rational

Pad6 approximations. Engquist and Majda ( [ I ] , [ ' ) found Pad6

lapproximations particularly useful in their work on absorbing boundary

conditions for scalar wave equations.

In the calculations for the shallow water equations which appear
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in the next chapter, we will use the perturbation approach which

was mentioned first. In this case the method gives satisfactory

results. In general, however, one should keep in mind the greater

flexibility allowed by the direct calculation of eigenvectors.

We now give an outline of the uncoupling process for systems in

several space dimensions. Our intent at this point is to give a

broad overview of the method and avoid details which could obscure

the main ideas. We will go through the process in great detail in

the next chapter when we derive boundary conditions for the shallow

water equations. These calculations will be rather long and technical,

so it will be worthwhile to first see a relatively short outline of

the process.

We first solve for w in (3.1) to obtain the form (3.3),

x
W: A- IW A-I1Bw -A-Icw,

In order to simplify the notation we will change the meaning of A,

B, and C and write the system as

(3. 13) w = Awt Bwv + Cw.

A, B, and C will have this meaning throughout the remainder of

this paper. The matrix A is diagonal.

In order to prepare for the uncoupling, ,e till express (3.13)

in terms of certain pseudo differential operators. As in Chapter 2

the solution w will be truncated in t so that these operators
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can be applied to it, but this fact will be suppressed from the nota-

tion. Denote by H the operator with symbol

(3.14) H i A + iuWB,

and let E be the operator with symbol iw(i-4)B. The system (3.13)

then becomes

(3.15) w =Hw + Cw + E .w

As before, ; is a smooth function which is equal to 1 on almost all

of - and is equal to zero outside r. The operator E1  represents

an error which is zero when = 1. In the case of variable coeffi-

cients the cone Q, and therefore r, can vary with x, y, and t,

so p is in general a function of x, y, t, w, and .

We have mentioned that when we try to uncouple the leading symbol

it will be useful to use perturbation arguments involving the quantity

The operators which transform the system must therefore involve

this quantity. A potential problem with this is that cannot be the

symbol of a pseudo differential operator because of the singularity in

the direction = 0. However, we have avoided this difficulty by our

Wuse of the function P. We will find that the ratio T can appear

only in the form L p, and this is nonzero only in a conical neighbor-

hood of the axis w = 0. The singularity is thereby eliminated.

t hen we uncouple the system (3.15) the first task is to take care

of the leading order operator H. Let q be a matrix such that

-1qoq is approximately diagonal or approximately block diagonal,



and let Q be the pseudo differential operator whose symbol is q.

The operator Q must have order zero, since its symbol q is homo-

geneous of order zero in its dependence on w and . If we apply

Q to (3.15), the result is

(3.16) (Qw)x = (QHQ- I)Qw + (QCQ- + QxQ- )Qw + QEIW.

Here Q denotes a Darametrix, or approximate inverse, of Q. This

-i
operator is defined by the property that QQ I is a smoothing

operator. It is not hard to show that such an operator exists and

to obtain an asymptotic expansion for its symbol. An outline of

the argument is given in Section 4.1. The leading order term in

-- l

the expansion is q ,the inverse of the symbol of Q.

We need to examine the operator QHQ -
. According to the composi-

tion law for pseudo differential operators, its leading symbol is the

-1

qu11q which is known to be approximately uncoupled. There are also

-l
various lower order terms in the expansion of QHQ These are due

partly to them effect of the composition law and partly to the lower

order terms in the expansion for Q-. The composition law is stated

in the Appendix.

Let G be the pseudo differential operator whose sinbol is the

-1
diagonal part, or block diagonal part, of qc , and let R be

-l
the operator whose symbol is the rest of qCHq G and R both

-l
have order one. Because oZ the approximate uncoupling in (1,7 ,

IH
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the effect of R is small except near tangential incidence. 
If we

let w0 = Qw, (3.16) becomes

aw0
(3.17) -- = Gw0 + Zw0 + Rw0 + E2Wo.

Here Z is the pseudo differential operator associated with the zero-

order terms appearing explicitly in (3.16) and with the terms of order

-1zero or less which arise in the expansion of QHO . E is equal to

QEIQ - , and its synbol is equal to a smoothing term when P = 1. The

system (3.17) is uncoupled near normal incidence, up to terms of order

zero.

The coupling in the lower order term can be reduced by using the

same technique that was used in Chapter 2 for systems in one space

dimension. That is, we can apply to (3.17) an operator of the form

I+ K, where I is the identity operator and K is an operator of

order -1 which is to be determined. When we apply the operator

I+ K, the result is

(3.18) - [(I+K)wo] = (I+K)G(I+K)-Iw1

+ (I+K)(Z+R+E,)(I K) I K-Xwl0

-l

where w = (l+K)w0 = "I+K)Qw. The parametrix (I+K) has the

asymptotic expansion I- K+ K - .... This follows easily from the

fact that the order of K is negative. The system (3.18) can there-

fore be written
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3wl
w= Gw, + (KG - GK + Z)w1

(3.19) + (terms of order -1 or less)

+ (K+K) (R+E2) (I+K)-lw 1

The zero-order coupling in (3.19) is caused by the operator

KG - GK + Z. Its leading symbol is

(3.20) UKaG - CG(K + ZO

where a K and o G are the symbols of K and G, and z0  is the

leading symbol of 3. In order to eliminate the coupling of order

zero, we will need to determine uK so that the symbol (3.20) is

diagonal (or block diagonal). In Chapter 2 we did this calculation

for a special case, and in the next section we will give a more

general treatment as part of a general perturbation lemma. There we

will find that it is possible to find a suitable aK provided that

the diagonal blocks of aG have disjoint spectra. This condition can

be satisfied here since we are trying to separate slow, incoming fast,

and outgoing fast components of the solution.

The technique given here can be used to uncouple the system

further. To reduce the coupling from order -n+ I to order -n, we

would use an operator of the form I + K , where K has order -n.n n

After m uncouplings the dependent variable would be

wm  (I+K " " " (I+KI1Qw%

... . . . .. . . . . ,, •. . . .. . . . . . . ml r l H l , l r i ~ i i
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where K1 is the operator K discussed above.

Boundary conditions for the system can be generated and then

analyzed using ideas which are similar to those used in the case

of one space dimension. To do the analysis we would localize the

solution to a neighborhood of a bicharacteristic and then find energy

estimates involving Sobolev norms. These estimates would give informa-

tion about the behavior of the solution at high frequencies. The fact

that the solution can be localized to a bicharacteristic means that

we can study the effects of the boundary conditions for various angles

of incidence to the boundary. This gives meaning to the use of the

approximations about normal incidence which were mentioned earlier.
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3.3 A Perturbation Lemma

In this section we present a method for reducing the coupling

found in matrices which are perturbations of block diagonal matrices.

This method can be used to partially uncouple the leading symbol in

the system (3.15), and it is essentially the method which has already

been used to reduce the coupling caused by lower order terms. We pre-

sent it as a separate lemma for the sake of clarity and generality.

Various versions of this method have been used in [4], [8], and

1 10 1 for 2 < 2 block matrices.

Proposition 3.2. Let A and B be square matrices of equal

dimension. Suppose that A is block diagonal, and let Al,...,A n

denote the blocks on the diagonal. If no two of the A. have any

eigenvalues in common, then for small c the sum A + LB can be

uncoupled to order E-. More precisely, there exists a matrix M

such that for £ sufficiently small,

(I+EM) (A+SB) (I+M)-1 = A+ F" (block diagonal matrix) + ((C-)

A method for constructing NI will be given in the proof.

-I
Proof. For small c the inverse (l+M) exists and is equal

.1 1

to I - + f - .. . . We can therefore write

(I+£M) (A+FB) ( + M) I  = (I+ M) (A+£B) (I-EM + t (E:-

= A + E(MA-AM+B) + f,(r-)
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Our goal is to choose M so that

(3.21) MA - AM + B

is block diagonal. For the sake of notation we will partition M and

B into block structures which match the block structure of A. M.

and Bij will denote the blocks in the (i,j) position. They are

not necessarily square, since we are not assuming that A. and A.
i

have the same dimensions. The (i,j) block in (3.21) can then be

written as M. .A. - A.M. . + B. .. For i J j. we want this to be equalIjI 3 1 ij 13

to zero. We are therefore faced with the problem of solving the

equation

(3.22) M..A. - A.M.. =-B..iJ 3 i 13 1

for N1... Once we have done this, the proof is complete. There are

no conditions imposed on the diagonal blocks M.., so these may be

chosen arbitrarily.

If A. and A. are both 1 x I matrices, i.e., scalars, then1 3

we obviously need to have A i # A. in order to be able to solve (3.22)

for arbitrary B... In the general case the system (3.22) is solvable

if and only if A. and A. have disjoint spectra. Proofs of this1 3

fact can be found in several different references. We give one here

for the sake of'completeness.

In order to simnlify the notation we will write (3.22) in the form

XS - TX = Y, where S, T, and Y are given and X is to ae deter-

mined. We are assuming that S and T are square matrices which do

not have any eigenvalues in common. There is no need to assume that
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they have the same dimension. We will denote the columns of X and
Y by x. and Y. and we will denote the entries of S by sij.

We can assume that S is upper triangular, since otherwise we

can use a similarity transformation to reduce the problem to that case.

We will solve for the columns of X, starting from the left. We first

have s 1 1X - Tx Yl The matrix s1 1 I - T is nonsingular since

Sll is an eigenvalue of S and therefore not an eigenvalue of T.

The column x is therefore determined uniquely. We next have

s,,x - Tx, y - s12xI. This system has a unique solution x,

since s,, is not an eigenvalue of T. We can continue in this

manner to solve for all of X. We note that the condition on the

eigenvalues of S and T is necessary as well as sufficient, since

it is equivalent to the statement that s,.I - T is nonsingular for

all i. This completes the proof of the lemma, and therefore the

proof of the main proposition.

II
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CHAPTER 4

AN EXAMPLE IN TWO SPACE DIMENSIONS

In this chapter we will use the methods of Chapter 3 to derive

boundary conditions for the linearized shallow water equations. The

calculations will follow the outline given in Section 3.2. When we

uncouple the leading symbol of the system we will use the perturba-

tion method given in Section 3.3. This process and the one used to

reduce the lower order coupling will each be applied one time. Cer-

tain portions of the calculations are specific to the shallow water

equations, but other portions are more generally applicable. For

much of the chapter the spatial domain we consider will be the half-

space x > 0, but later we will discuss the effect of rotation of

coordinates on the form of the boundary conditions. In the last sec-

tion we will present the results of some numerical tests of these

conditions.

4.1 Uncoupling the System

The linearized shallow water equations can be written in the form

(4.1 - v - V, -c - V

P -c xp -c 5 p

u
+ 'i v

P
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In this notation, (-a,-S) is the velocity of the flow about

which the system has been linearized, and c is a speed associated

with the propagation of gravity waves. We will assume a, 31 << c

and ca 0. The dependent variables are given by u = cu', v = cv',

and p = 0', where u' and v' are the perturbations in the com-

ponents of velocity and 0' is the perturbatiot in the geopotential.

The coefficients yii in the undifferentiated term are due partly to

Coriolis effects and partly to the process of linearization. For the

time being we will consider the system on the domain x > 0.

The first step is to diagonalize the coefficient matrix of the

J
normal derivative 3x in (4.1). To do this we use the matrix

0 1 1

(4.2) 0J 0)
0 1 -1

The columns of this matrix are normalized eigenvectors of the co-

efficient matrix in question. When we multiply (4.P7 on the left by

the inverse of (4.2) and make the appropriate change of dependent

variable, the result is the system

(4.3) = a-c w + Dw + E(43 t  v '

where

(4.4) w = ( . (u+p)

(u-p)

I
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D and E can be written explicitly, but we will wait until we solve

for w.x

lie can use (4.3) to make a preliminary identification of the

slow, incoming fast, and outgoing fast parts of the solution. Since

lcl << c, we can say roughly that the first component v is a slow

component and that u + p and u- p are incoming and outgoing fast

components, respectively. In order to suppress the incoming fast

part of the solution we could therefore require u+ p = 0 at the

boundary x = 0. If a < 0, then we would also prescribe a value

for v in order to have a well-posed problem. The trouble with this

approach is that it ignores the effect of the terms Dwy and Ew.

Our identification of the various parts of the solution is therefore

not very accurate. The purpose of the uncoupling process is to pro-

duce a more accurate identification and thereby enable us to find

boundary conditions which are more effective at suppressing the in-

coming fast part.

We need to solve for w in (4.3). When we do this the resultx

is

w = Awt + Bw + Cw,
x t y

Th e re



A )--c

c +c

B -

2B (o.-c) a-c

-c
, 2 (CL+c) 1 +C /

---- 121 )_1Y2 v1 + V

--. Tl,.232 :.1 l2~13
cI = ' 2 1 - 3+ 31+' 33 "1ii-13 +  3 1-" -,

2 (x-c,  2(:-c' .'

1 32 '11 13 31 33 11 1V '1 3-

v_ L +c/ (-,+c) -

As in Section 3.2 we write the system (-1.5) in the form

(. w Hw + Cw + EIW,

.,here H is the onerator whose symbol is given by

H i A + ic4B

and E1  is the operator with symbol ii(1-P)S. In order to uncouple

the leading order part of (4.7) we need to find a symbol q such that
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- I

qcHq is closer to diagonal form than aH, at least for small

- To do this we will use the ideas of sections 3.2 and 3.3 to

find a matrix M such that

(I + pM) (A + pB (I+ -lM

(4.9)

= diagonal matrix + ip)

We will then let q = I + Lp.

Satisfying the condition (4.9) amounts to solving the equation

NL - AM + B = 0 for M!. A calculation shows that M can be taken

to be

(0 -(c-c) - (CC+c)

and that (I+ ESM)(A+ £B)(I EM) is then equal to

(4.11) ( + E _ c + ,'E)

I )_- )

The off-diagonal elements in (4.10) are determined uniquel" by the

condition (4.9), but the diagonal elements may be chosen arbitrarily.

For convenience we have set these equal to zero.
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We now define the symbol q by

(4.12) q : I +

where M is given in (4.10), and we let Q be the pseudo differen-

-ial operator with symbol q. When the operator Q is applied to

the system (4.7), the result is

(4.13) (Qw) x = (QHQ-1 )Qw + (QCQ - I * QxQ-1)Qw + QE1W.

Here Qx denotes the operator with symbol qx"

We saw in Section 3.2 that the leading sqrbol of QHQ is
-1

qcq According to (4.8) and (4.12) this is given by

qcHq (I + -PM)(i A + i ;B)(I + , M)

If we factor out i, and identify Co with £ in (4.1P, we can
1 seuato G (--2) hr

conclude that qc q1 is equal to + where

11
C4. 4) JG iw(G a,-C -c "

ci+c
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We will let G denote the operator whose symbol is aG. The system

(4.13) can then be written in the form

(4.15) 0- Gwo + Zwo + C'( W 2 V)w + (;((l-))w

where w0 = Qw.

The operator Z is associated with the zero-order terms appearing

explicitly in (4.13) and with the terms of order zero or less which

arise in the expansion of the symbol of QHQ 1. In a moment we will
2

discuss this further. The term ((+-)w denotes the effect of an

operator whose symbol is dominated by SP 2 and which is a result

of the error in uncoupling the leading order part of the system (4.7).

The term ('(w(l-p))w represents the effect of the operator E which

appears in (4.13). Its symbol is equal to zero on almost all of the

set - , which is the only part of the (w,Q) space in which fast

waves can be found. In 7 it is nonzero only near the edge, which

for fast waves corresponds to nearly tangential incidence. This term

is therefore of no consequence.

The system is now partially uncoupled near normal incidence, since

the symbol of G is diagonal. We next need to reduce the coupling

caused by the zero-order operator Z, which is given by

(4= QCQ -  QxQ  (terms of order zero or less
(4.16) f t -oarising from the expansion of QHQ - I )

-- -- tl " ... .... ... ... u H ... ... ... ,h -''" -•... .. -- ... ... .. . ... .. I II .. .. ." ''" ='; IIII II I i*1
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The coupling can be reduced by the method presented in Chapters

2 and 3, but we will first have to identify the leading symbol of Z.

We first consider the first two terms in (4.16). The leading

symbol of QCQ ~I  is

qCq -  (I+ .ip)C(I + Om)

= C + ('(p)

-11

and the leading symbol of QxQ -  is

x q = ( o, Ix (I + -- )
x

The expression for q is taken from (4.12). We will regard terms

of order - p as error terms since -O is no larger than the
2 4

term -- ' which has already appeared in (4.15). The first two

terms in (4.16) are then given by

(4.17) QCQ + Q Q = C + order (-1) +(( )

In order to consider the expansion of QHQ we must first

find the symbol of the parametrix Q .'e start by assLving that

the symbol has an asymptotic expansion of the form r0  ,

where rk is homogeneous of order -k in w and r. The caoice

of orders will turn out to be appropriate, since Q has order zero.

La.. 
,
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We will then solve for the r k one by one.

Let Rk be the operator with symbol rk. According to the

composition law for pseudo differential operators, the symbol of

QR0  is

1 !a Dr 0 1 3qar 0

qro + - - +  -- + order (-2)

The composition law is stated in the Appendix. If we choose

-1
r0 = q , then the leading term is I. We note that r0 really

is of order zero and that the error term really is of order -2.

We now have

(4.18) QR0  I + order (-1)

Now choose rI so that

(4.19) qr - q 0-T + q -

The leading symbol of QR1 therefore cancels the leading symbol of

the error in (4.18). This gives

Q(R0 + R1 = I + order (-2).

This process can be continued indefinitely to find any r k' At each

step we would need to know the leading symbol of the error in the

equation

Q(R + ... I + order (-k)
0 k-l.
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This can be calculated from the expansions of the symbols of QR

for j < k.

In the present problem we really only need the terms r0  and

r1. Q has order zero and H has order one, so the terms r,,r3,...

must contribute terms of negative order in the expansion of 
QHQ - 1

These lower order terms are of no interest to us here.

-1
The leading symbol r0  of Q is given by

(4.20) r0 = q-1 (I Pm) - I

We will see later that in this case it is not necessary to keep any

-1
more terms in this expansion of r0. The second term r1  in Q

is defined in (4.19) to be

I r0 )r0
r =iq (q - + qw v

Equations (4.12) and (4.20) can be used to obtain

r, i(r + w'PM)lf( U+ 0))('()

(4.21)

In (4.21) we have omitted derivatives of p since these are non:ero

only near the edge of r and cannot be of any consequence. From the

above work we can conclude that the symbol of Q-1 has the expansion
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r0 + r 1 + order (-2)

-1

q * r1 + order (-2)

.&2

We are now ready to calculate the expansion for QHQ"  We

will begin by finding the symbol of HQ According to the composi-

tion law, this is

1 30 H 3 r + odr-)

- = aH(r 0 + r + order(-2)) + -tr + order t
HQ-  I 1 at 0

1 DoH+ y (r +order(-l)) * order (-l)

-I

Since r0 = q and cH = iCA + iw'pB, this can be written as

-I ar0 r0
qHQI + (i A + iwiB)r 1 + A r +pB -r-+order (-f1)

lie have again omitted derivatives of €. (4.20) and (4.21) now imply

(i -1 + A + iw B)

HQ- 1 Hq

+ At'( ) + pBtl(- P) + order (-1),

or

(4.22) C - 1 (( ) + order 1-)
HQI H
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The symbol of QHQ- is given by

+ -l ( p) + order (-)
QHQyHQ

_1 q I + ('(p) order 1).

in (4.23)is thereore ( L( C + order an(tethrd)

A short cacltorderhows. Eatin 4.)ca thnb snpiid o

Ii wp I 'M
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(4.24) a qofq + t +0 ) } + order (-1)
QHQ 1 I V

The first term is the term of order one which we have already used,

and the second is the term of order zero which we have been seeking.

The point of all of this work was to find the symbol, at least

to leading order, of the operator Z which represents the zero-order

coupling in the system (4.15). According to (4.16), this operator is

given by

= (CQ - I + QxQ-I + (terms from QHQ -I of order zero or less).

Our results in (4.17) and (4.24) imply that its symbol is

(4.25) C + ,oMA + ( + C + order (-I)

The system (4.15) can therefore be written in the form

3w 0  w
t4.26) -- =Gwv0 + 0 w0 + (,( v)w ,( w

+ ( (w(l-p))w + (order -l)w

where Z0  is the operator whose symbol is ip(C + M1A . We have split

the matrix C into the sum pC + (1-4p)C in order to give a neater

form to certain formulas which will appear later.

We are finally ready to uncouple the term of order zero. To do

this we will use the method given near the end of Section 3.2. That

is, we will apply an operator of the form I+ K to (4.26), where K



9-

has order -1, and then make the corresponding change of dependent

variable. We will choose K so that the zero-order operator in

the transformed system has a diagonal leading symbol. According to

the work in Section 3.2, this operator is KG - GK + -0" We there-

fore need to choose K so that

(4.27) KaG - aK G K + P(C + MA I) = diagonal matrix

Here oK and are the symbols of K and G, respectively,

and the third term is the s.ymbol of 20' jG is given in (4.15),

A and C are given in (4.6), and NI is given in (4.10).

We can solve (4.27) using the method of Proposition 3.2. After

a certain amount of labor we obtain

0' k 12 k~ \
(4.28) k2) 1 0 k, 3

(k 31 k 32

where

k = - [(y, +y1( -c)+ a (av_ +c Vl

k [ (y '32+ 
+  tV ( c)

1  12

--k = (-Yll + y13 - + Y3) (a+c)

k 1

32 = j-(Y I Y1
3 - "31 - Y33)(a-c)
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Equation (4.27) does not impose any conditions on the diagonal

elemnets of K. For convenience we have set these equal to zero.

The operator I + K transforms the system (4.26) into the form

(4.29) 3--1-= Gw1 + (diagonal operator of order zero)w1 + (order(-2))w

2
w

+ ()w + C;( p)w + (,(W-p))w ,

where w1 = (I+K)w0 = (I+K)Qw. The symbol of K is given in (4.28),

the symbol of Q is given in (4.12), and the components of w are

given in (4.4). This represents all of the uncoupling which we will

do for this system.



4.2 Boundary Conditions

It is now time to use the results of the uncoupling process

to derive boundary conditions for the system (4.1). It is necessary

to identify the incoming fast component for the partially uncoupled

system (4.29) and then find conditions which suppress this component

at the boundary x = 0.

The symbol of the operator G which appears in (4.29) is given

in (4.14) and is equal to

I -

A. A

A - c -c

Since c c ia' the second and third components of w1  in

[4. 29) are the rapidly moving portions of the solution. The second

is the incoming component, since a-c < 0. W e need to use the identity

W, = [+K)Qw to find an explicit formula for this -omponent, and then

we need to use this formula to find suitable boundary conditions for

14. 1).

The dependent variable w I is given by

w I (I+K)Qw

(41.30)

"(I + +Tk)""(I

Here we have used the expression (4.12) for the sxmbol of Q. The

quote marks denote pseudo differential operators having the stated
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symbols, and the small circle denotes composition of operators.

(4.30) can be written

(4.31) Wl : ( + + 0 )"w + ( .

In order to produce cleaner formulas later on we have used the cut-

off function c to restrict the solution to the set 7 in the

(,?. space in which the fast waves can be found.

According to the composition law, the symbol of the composition

in (4.31) is

+ -K 4 1 +1 (  +

(4.32)

+ + OK) 3 ' + = s,+ order 1-2.

The derivatives of 4 + K with respect to j and are of order -2,

since 7K has order -1 and we are ignoring derivatives of . 14.32)

is therefore

+ K: (P + 01M) + order (-2)

(4. ;3) = + + P + M + ;o N1 + order (-2)

= +P . cK + . 4 (--) + order t-2).

To oht. in the last line we used (4.28) to conclude o 1

.1I and 1, ...13 now imply
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1.(34 = I- ) ' + ( 2 * ( 1-o) +order (-2)

The error terms in (4.34) can be ignored in the system (4.29),

since their only contributions in that equation are error terms

having the same order as terms which are already there. In particular,
1

S"2 2( 2) "G -t ,+ - P ). The

system (4.29) can therefore be written

- =G- : (diagonal of order zero): + (order(-1)iw

(4 - ;'w + ( p)w +

where

4.3()) + = .7-M) w

-K is gi'en in ".28) and M! is given in (1.10).

The second component of : is the incoming fast component which

we need to suppress. According to (4.36) and the expressions for K

and M, this component is

: 1 (x,y~t) =

i(7"-+ 't) 1 (':12+52) + " 1-c) 1

(4. 37) C _v2 ' ( 2

(2) 1 (1+c)(yl-13 1 '33 -(3),
-c w" I(2) IV4c!
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(-'l (3)

Here w 2 w , and w denote the components of w. These are

given explicitly in (4.4). We note that (4.37) is a perturbation of w (2)

This expression can be simplified somewhat. The factor

- can be approximated by I + When this is

multiplied by (i') I the result is (iir)- + (+ - Ip). For reasons

stated earlier, terms of order can be omitted without affectingr2

the order of the error terms in the system (4.35). We can therefore

replace (-1.3-) with a new fast quantity

)L

(4.3S)t

-(2) 1 l1S)+ w - K '+ (c~c)(YI +Yf1 -y 3 3w .

We need to find a condition which suppresses (4.38) at the boundary

x 0 O. If the coefficients are independent of y and t, then the

bracketed quantity in the integrand is the Fourier transform of (4.38),

give or take a factor kp, and we can accomplish what we want by

setting this quantity equal to zero at the boundary. If we do this,

clear denominators, and then invert the Fourier transform, we obtain

w (1) 1 ()
- y---- &2 + Y31 ) + (a-c)jwly 122 32

44. 39(

' I IY - y 3Y (3) 0 for x = 0

If the coefficients depend on y or t this derivation is not
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valid. However, we can show that (4.39) is still useful in this

case. Suppose that this condition holds, and write it in the simpler

form

(44 + + F w (1) + F-w (3 ) = 0
3 Y I

If we apply the operator having the symbol to (4.40), the result is

- . (2 " t, (1) (3)7• -a o 1 w + (i , -- + F ) w + FKw

, - F 1
I (I)

(--.-1+ + (--+ ( k ( ---V3

i't) - F ( 1K

+ ( ( 2 0-)w + (order(-2))w .

Accorhing to (4.38) and the definitions of F1 and F1 implied by

(4.40), the integral in the last line is our approximation to the in-

coming fast part of the solution. The entire last line is equal to

zero, so this fast part must be equal to

r '( )w + order(-2')w

at x = 0. The incoming fast part is therefore small compared to w

for large frequencies and for angles near normal incidence.
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The boundary condition (4.39) is written in terms of the com-

ponents of the vector w which appears in the system (4.3). We

can use the definition (4.4) of w to write the condition in terms

of the variables u, v, and p in the original system (4.1). When

we do this the result is

(U+ _lCv 1IVT" t (u P ) - c' ("a 1
~~~) (up o._ < ~12+ Y3 2 ) + a cI

(4.40) -(--4 (11 Y13+ Y31 - Y33)(u-p) 0

for x = 0.

It may be worthwhile to compare (4.40) with the boundary condition

(4.41) w (2) = u + p = 0

which we mentioned early in Section 4.1. This condition was derived

from the system (4.3), in which the coefficient of the x-derivative

is a diagonal matrix. The newer condition (4.40) is based on the

incoming fast variable (4.37) which was obtained from a more extensive

uncoupling of the system. An inspection of (4.37) shows that this

variable can be considered a perturbation of w(2) u + p, so in

some sense (4.40) is a refinement of (4.41). One obvious difference

between the two is the presence of derivatives in (4.40). This is a

result of the need to clear denominators in the Fourier transform

of the incoming fast part. The other difference is the presence of
3v

terms which do not involve u + p. The term t 7 is a result of

uncoupling the leading symbol, and the other terms in (4.40) are the
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result of reducing the coupling caused by terms of order zero. The

term iy(Ct-c) corresponds to the part of the zero-order coupling

which resulted from the prior uncoupling of the leading symbol. If

we had not carried out the lower-order uncoupling, then the boundary

condition would have been (u+p) + a _v = O.

Up to now we have discussed boundary conditions only for the in-

coming fast part of the solution. If the boundary x = 0 is an in-

flow boundary, i.e., if a < 0 in (4.3), then we must also specify

a condition for the slow part. One possibility is to use the system

(4.3) to obtain the condition

(4.42) w(1) = v = given function, for x = 0.

Another possibility is to try to base a boundary condition on the

more extensively uncoupled system (4.35). We could presumably pre-

scribe a value for the Fourier transform of the slow component in

(4.35), clear denominators, and then apply an inverse transform to

obtain an inhomogeneous boundary condition analogous to (4.40).

The first approach suggested here is acceptable, but the second

one is not. Our use of the cutoff function p means that we have

uncoupled the system only on the wedge 7 in the , space

which corresponds to rapidly moving waves. This is clearly no re-

striction when we are seeking boundary conditions ;,hich suppress the

incoming fast part of the solution. But in the present case it is

a major restriction, since the slow part of the solution is associated

with the entire (w,:") space. The partially uncoupled system (4.35)
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cannot give a full description of the slow part, so there is no

point in trying to use this system to find an improvement of the

condition (4.42).

We will therefore prescribe the conditions

1 9V 1(u+p) + L - - [a(Y1 2 +Y
3
2) + a (L-c)]v

y y
(a) a+c

(4 .4 3) 4c 1- 1- 1Y-Y 3 + 3 1  - Y33 )  ( u - p )  =0

(b) v = given function, for x = 0

if x = 0 defines an inflow boundary. In the case of an outflow

boundary we will use only the first condition.

We need to discuss whether these conditions define a well-posed

initial-boundary value problem. We will first consider the special

case in which the zero-order terms in (4 .4 3)(a) are not present. This

would be the situation if we were to uncouple the leading symbol but

do nothing about the zero-order coupling in the system. In this case

the boundary conditions at inflow have the form

v g

u+p = (u+P) t= 2& (y,T)dT, for x = 0,

where g is a given function of y and t. Simple energy estimates

for the system (4.3) show that this defines a well-posed problem. The

a priori estimates for the solution involve a time integral of a

tangential derivative of the data.
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In the general case we must do something different in order to

properly handle the incoming fast part of the solution. This is

really no problem, since in principle it has already been done. In

Section 2.6 we described a process for estimating the incoming fast

part for systems in one space dimension, and at the end of Section

3.2 we indicated that this process extends to the multi-dimensional

case with little modification. These estimates were derived in order

to show that our boundary conditions are effective at suppressing the

incoming fast part. One would expect that they also imply that the

conditions give well-posed problems.
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4.3 Effects of Orthogonal Changes of Spatial Coordinates

The spatial domain considered in the previous sections was the

half-plane for which x > 0. In order to treat slightly more general

regions we will now consider the effects of linear orthogonal changes

of coordinates. We will first derive some general formulas, and we

will then use these formulas to derive boundary conditions for the

four sides of the unit square 0 < x < 1, 0 < y < 1. These conditions

will be used for the test problem which will be discussed in the next

section.

We first need to establish some notation. Let R denote an

orthogonal transformation on R , i.e., either a rotation or a flip

of coordinates. This is illustrated in Figure 4.1 for the case where

* = ix.>y)

Fi gure 4.1

R is a rotation. Suppose that f is a function which is defined

with respect to the old coordinates (solid axes), and let f be a

function defined in the new coordinates (dotted axes). From the

figure we can see that if f is evaluated at point z = (x,y), then

the numbers plugged into f must be given by z R-I. We there-

fore have the relation
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-- ?(-1
(4.44) f(z) = f(z) f

for scalar functions. For vector-valued functions the dependent

variables must also be transformed. In this case the vector

f = (flf 2)T describes a direction relative to the solid axes,

and the vector f describes the same direction relative to the

dotted axes. The correct change of coordinates is therefore given by

(4.45) f(z) = Rf(R Z).

We will need to use the fact that t & ..;,dient of a function and

the divergence of a vector field are j tn; in the sense implied

by (4.44) and (4.45). We will give i , eofs of these in order

to help establish our notation.

First consider the gradient. If f(:) = f(R z), then

f'(z) = f (R- Iz)R 
"I ,

or

4.46) (If, 2f) P = ' ,i)R-1

Here the subscripts I and 2 denote differentiation with respect to

the first and second arguments, respectively. (4.46) can be written

(447 1f(z) R 1?R1z)
(4.47) - R - l-l

2f(z) 3 (-1

Here we have used the fact that the transformation is orthogonal, i.e.,

l T
R = R . The invariance of the gradient follows from the observation
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that (4.47) is a special case of the formula for changes of coordinates

given in (4.45).

We now consider the divergence. If f and f are vector-valued

functions such that f(:) = Rf(R -:), then f'(z) Rf'(R :)R- , or

( 1 f,32f) = R(9l1 ,3,)f)R

In this case (31 f,3,f) is the Jacobian matrix of f. The divergence

of f, ')fi+ 3,f,,, is equal to the trace of this Jacobian. The fact

that the trace of a matrix is invariant under similarity transformations

implies

(div f)(:) = (div f)(R-:)

We will now study the effect of the transformation R on the

syst em (.1) ,

= ( ), ) 3 -C V) + u
In order to make it fit our notation for changing coordinates, we 'ill

write this system in the form

(4.48) IV (:,t) = (1111,W') (P) 0 )W~u~

T
where W = (u,v,p) . The numerical subscripts on u, v, p. and W

denote partial derivatives. The 3 x 2 matrix (W1 ,W,) is the



Jacobian matrix of W with respect to the spatial variables. It can

be denoted by IV'.

We will define the change of coordinates by

(4.49) W(Z,t) = W(R-z,t)
I

The matrix in (4.49) is a 3 x 3 matrix in which the 2 × 2 matrix

appears in the upper left. This matrix is present because it is

necessary to transform the velocity components when the spatial co-

ordinates are changed. If (4.49) is inserted into (4.48), the result is

( (R- l,t) : ( ) (R 1 ,t) R 1  a

(4.50) -

- - c 0 R ', j

In the first term on the right we used the chain rule to evaluate the

Jacobian matrix W'. (4.S0) can also be written

=t (WI() R- ( R p, (z, t)
Vt= 61 -1 W _c, 

Z

(4.51)

c 0 v+ ( (R I '

uI + v

According to the formula (4.47) for the invariance of the gradient, the

second term on the right is c(Pl(R -z,t),i2,0) . The form of the

i"
I
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third term is invariant under the transformation, since u1 +'2

is the divergence of the velocity field. The system (4.511 is

therefore the same as

(4.52) ( = (W1 I( ) M() c P0(Y

where

(4.353) and

Equation (4.53) represents the transformation of the velocity field

of the flow about which the system has been linearized.

Equation (4.52) shows that the form of the system (4.48) does

not change under orthogonal transformations of spatial coordinates.

This result depends on the fact that spatial derivatives appear only

as gradients and divergences. The value of this result is that our

previous calculations immediately give boundary conditions along any

straight boundary. Suppose that our spatial domain is the region to

the upper right of the line Z in Figure 4.2. Choose a coordinate

system so that the y axis coincides with . and so that the positive

R direction points into the region. We can now apply our earlier

calculations regarding boundary conditions which suppress the in-

coming fast part of the solution.
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4~ V

'I

x

- / x

Figure 4.2

If this is an inflow boundary, then (4.43) implies that ,we can use

- _" + --" 1 [a( 2 +Y32) +

(4.54) , 1 3u-4c -1 - Y 13 + Y31 Y30

" = given function, for 0 .

If this is an outflow boundary, then we would use only the first con-

dition. The conditions (4.S4) can be expressed in terms of the co-

efficients and components of the original system (4.1) through the

relations

(p = R~

(i) = X_ R

I RI

.. j - l ..
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We will now use these general formulas to derive boundary

conditions for the sides of the unit square 0 < x < 1, 0 < y < 1.

These conditions will be needed for the test problem which will be

discussed in the next section.

Denote the sides of the squares in the manner indicated in

Figure 4.3. For segment A we can use the conditions (4.43) which

V

D

A 'C

B x

Figure 4.3

were derived earlier since this part of the boundary corresponds to

x = 0. The inward normal direction for segment B is the positive v

direction, so for this segment we need to use the transformation R =

v x. The matrix R is then given by

1 0

For segment C the transformation is = x, = y, and foi seg-

ment D it is R = -y, v = x. The matrices for these transforma-

tions are



RC = ~ and RD2 (=~
and10-1 0

respectively.

Routine calculations produce the 
following boundary conditions:

Segment A (x = 0):

*1 I

(4.551+Aa _ +,q +CA_ + _

(ut p O a- - i o [(Y 1 2 Y3 2 )

(. c Yl 1 '(13 + Y31 -33 ) ( Lu-p ) 2 0

v = given function.

Segment B (y = 0):

U(v+p) + U3x c Y 1 +31) + Sx(S-c)]u

B3+c

Y22- T- (22 Y23 + Y 32- Y3 3 ) (v-p ) = 0

u = given function.

Segment C (x 21):

v 1 [ -2 -a (-a-c)v 
9

T-t (-u+p) a y -C "-(Yl2 + Y31)-

(4.55)(C) - ( 4c (YI4 YI Y3 1 -Y3 3
) (-u-p) 2 0

v = given function.
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Segment D (y = 1):

) 3u 1 _ Y +Y31 )  - x(- _ ]
-- p ) - y +2 1  y1  - y (--c)]u

(4.5)(tV) - (i +) (y 2 2 +y 2 3 -Y y 3 3)(-v-p) = 0

u = given function.

For each segment the first condition is the one which is intended

to suppress the incoming fast part of the solution. The second con-

dition prescribes a value for the slow variable, and it should be

imposed only when the segment is an inflow boundary.
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4.4 Numerical Computations

In this section we present the results of some numerical compu-

tations involving the boundary conditions which have just been derived.

We consider the system

u-3)_,_)<)u)_ (0(4S) ;v = 1 0 -3)L') (,jyv

(P -3 -1I -3 0 p

on the unit square 0 < x < 1, 0 < y < I. This system is a special

case of the system (4.11. We will use two differenu choices for the

matrix (.i ).

We wish to compare three types of boundary conditions for this

system. The first of these is obtained by diagonalizing the coeffi-

cient of the normal derivative and then defining boundary conditions

in terms of the dependent variables in the new system. These variables

will be referred to as "characteristic variables". This was discussed

early in Section 4.1, immediately after equation (4.4). For the four

sides of the unit square the incoming fast characteristic variables

are the quantities in (4.55) which are differentiated with respect to

time. The second set of conditions is obtained by uncoupling the

leading symbol in the manner described earlier, but then doing nothing

about the zero-order coupling in the system. These conditions can be

obtained by deleting the zero-order terms in the derivative conditions

appearing in (4.55). The third set of boundary conditions is obtained

by also uncoupling the zero-order terms in the system of differential

equations. These are the conditions (4.55).

i



118

We present two separate tests of these conditions, one to demon-

strate the effect of uncoupling the leading symbol, and the other to

demonstrate the effect of uncoupling both the leading symbol and the

zero-order term. In the first case we let yij  0 for all i,j and

use the first two sets of boundary conditions. In the second case we

use all three sets of conditions, and we let (y ij) be the matrix

/0 10 0

(4.57) -l0 0 0
0 0 0

In the computations we set the solution equal to :ero when t =0.

At the boundary x = 0 we set v (see (4.55)(A)) equal to a pulse

consisting of half a sine wave in t multiplied by half a sine wave

in the tangential variable y. We use homogeneous conditions on the

other boundaries. The nonzero part of the solution is due entirely

to the nonzero data at the boundary x = 0, so it is possible to

study the influence of these data by examining the si:e of the solu-

tion in various parts of the (x,y) plane at various times.

In our computation the system is approximated by the leap frog

difference scheme. The derivative boundary conditions in (4.55) are

approximated by centered differences in the time and tangent variables.

The outgoing fast characteristic variables are extrapolated at the

boundary using the given differential equation. For this we use

centered differences in the time and tangent variables, and we approxi-

mate the normal derivative with a forward difference which uses a time
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average at the back point. At an outflow boundary the slow character-

istic variable is extrapolated in the same manner.

The boundaries y = 0 and y 1 1 are characteristic for the

system (4.56). At these boundaries we integrate the slow character-

istic variable in the boundary using a centered difference approxima-

tion. This is an experiment to see if the incoming fast modes can be

activated at a characteristic boundary. In our earlier discussion we

always assumed that our boundary was noncharacteristic.

The surfaces pictured in Figures 4.5 and 4.6 are graphs of
- 1/2

(u + v2 + pl) as functions of x and y for fixed t. The

configuration is shown in Figure 4.4.

2 2/
(u +v +p')

.nonzero data given here

1---------y

x

Figure 4.4

We show solutions at times t = .125, .25, and .375. The fast mode

entering through the boundary x = 0 has normal velocity 4 since

ot -I and c : -3. Pulses entering on this mode should therefore



120

be visible near the nearest boundary (x 1) in the graphs for t =.25.

In Figure 4.5 we show the effect of uncoupling the leading symbol.

In this case yij = 0 for all i,j. Figure 4.5(a) shows the solution

corresponding to the boundary conditions defined in terms of character-

istic variables. The solution in Figure (4.5)(b) corresponds to the

more refined boundary conditions. The second set of conditions is

clearly more effective at suppressing the incoming fast part of the

solution.

In Figure 4.6 we show the effect of uncoupling both the leading

symbol and the term of order zero. In this case the matrix ('y.)
lJ

is given by (4.57). The simplest boundary conditions are used in

part (a). In part (b) we use the boundary conditions obtained by

uncoupling the leading symbol only. The boundary conditions for part

(c) are obtained by uncoupling both the leading symbol and the term

of order zero. The third set of conditions is clearly the most effec-

tive.

L _"
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Figure 4.5. Effect of uncoupling the leadingsybl

(a) Solution using boundary, conditions based
on characteristic variables.

Q~-

tf .125

/ !7
t. .25

t- .375 7



_(b) Solution using boundary conditions based )
on uncoupling the leading symbol.

/IJk

Z'7:
.125.

.- ---- 7

Ji-N

CT K

t =.25

t =.37S ~j-
4.* -..---
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Figure 4.6. Effect of uncoupling both the leading symnbol

and the term of order zero.

(a) Solution using boundary conditions based
on characteristic variables. )

t =.125 i: -7 z

-7-

=.25

i7

t =. 37S /



124

(b) Solution using boundary conditions based
on uncoupling the leading symbol.

* NJ

t .125-

t- ~~ -.2S--.--- - -

t .37S
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APPENDIX

PROPERTIES OF PSEUDO DIFFERENTIAL OPERATORS

In this appendix we will define pseudo differential operators

and state without proof of some of their basic properties. More

extensive treatments can be found in Nirenberg [ 6 ] , Taylor [ 9

and Treves [ 1 1 1.

We must first establish some notation. Partial derivatives in

1 n will be denoted by e , where a = (l .-.. ,an , and

t 1 L n1 n

nn

The c. are nonnegative integers. Differential operators can then

be written in the form

P = E a

n
The coefficients a are functions on IR , and the sum is taken

over finitely many multi-indices a. We will allow the possibility

that P may act on vector-valued functions. In that case the a,

may be either scalars or matrices.

The Fourier transform on IRn will be denoted by

u( ) = 1 fRn e -ix u(x)dx(2i)

where x Zn x The inverse Fourier transform is then given byJ --
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n1R eiX u d

Differential operators can be represented in terms of the Fourier

transform. For suitable functions u, we have

(Pu)(x) = a (x) Ctu(x)

a = (X)3 f eiX' u(* d

1L n
= f e ix *& [E a , (x ) (i ) ] ua) d

can be written in the form

(A.1) (Pu)(x) = f e'' p(x, )u( )d&

where p(x,r) = Z a (x)(iQ) . The function p is sometimes called

the symbol of the operator P.

Pseudo differential operators are obtained by allowing a larger

class of symbols to be used in (A.1). Ever) differential operator

is a pseudo differential operator, but not vice versa. One fairly

general symbol class is the class Sm, 0 < 6 < o <_ 1, which was

introduced by Hormander. This is defined to be the set of all C'"

functions p which satisfy estimates of the form

(A.2) 3 p(x, < .C (1 x C ,1)n xn+d ; ," x' <CK,a,B ,
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for all ct,B and for every compact subset K of IRn. The constant

is allowed to depend on a, a, and K. The symbol of a differential

operator of order m having smooth coefficients clearly belongs to

the class Sm This class will also be denoted by Sn. For the1 ,0'

operators considered in this paper we always have o = 1 and 6 = 0.

In general, the number m appearing in (A.2) is called the order of

the operator P whose symbol is p. The order need not be positive,

and it need not be an integer.

If u e CO, then Pu e C. It is possible to extend P so

that Pu is defined for any distribution u having compact support.

In this case Pu is a distribution.

A useful concept is that of an asymptotic expansion of a symbol.

Suppose that imi}0 is a sequence of real numbers such that

m. > m.+ for all i and m. - as i - . Let {pi be a
I1 1 1 .1

sequence of symbols such that pi e Sm - for each J. A symbol is

said to be an asymptotic sum of the pi, written

• p I p ,

j=0

provided p - E p= 0 S for all k. That is, the error in

each partial sum must have the same order as the first term omitted

from the partial sum. This concept is analogous to the usual concept

of asymptotic expansion. In fact, if a function p(g of one

variable has an asymptotic expansion
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Sa.

p~s 4 as ~*
j=0 g

in the usual sense, then this expansion is also asymptotic in the

sense described above.

Pseudo differential operators can be composed. Let P and Q

be operators with symbols p(x,Q) and q(x,E), respectively, and

suppose that q has compact support in x. The composition P(Qu)

is then well-defined and is given by a pseudo differential operator

whose symbol has the asymptotic expansion

(A.3) 
aPQ 

- l 1
>0 Ix

q  •

The sum is taken over all multi-indices a = (-, ...,an) having non-

negative components. The order of a is given by a : l., and

the factorial cd denotes the product ci! ! .  -a

It follows from (A.2) that when a symbol is differentiated with

respect to r, the result is a symbol of lower order. This implies

that the leading order term in (A.3) corresponds to lai = 0 and is

equal to p(x, )q(x,). The symbol of the product of two operators

is therefore equal to the product of their symbols, up to certain

terms of lower order.

This makes sense when we consider the special case of differential

operators. The composition of two operators a(x); - and b(x)Y3

is equal to
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aDO(b3) = aba  + lower order terms involving derivatives of b.

In this case the composition law can be derived using Leibni:' rule.

For general pseudo differential operators the derivation is much more

complicated.

It is sometimes necessary to discuss adjoints of pseudo differen-

tial operators. The adjoint of an operator P is a pseudo differen-

tial operator P* whose symbol has the asymptotic expansion

13 - 1Iz a ,(x,)

> 0 i (.

The leading order term in this expansion is the adjoint of the symbol

of P.
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