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ABSTRACT

This paper is concerned with linear hyperbolic systems
of partial differential equations for which certain of the
associated propagation speeds are a great deal larger than the
other propagation speeds. In certain cases the fast modes
allowed by such a system are not present in the true physical
sptlution. Yet the fact that such modes are allowed means that
when one tries to compute a numerical solution to an initial-
boundary value problem, the errors generated can propagate
quite rapidly. In particular, when the boundary data used
for the computation are less accurate than the initial data,
the fast modes can cause a rapid contamination of the
calculation in the interior. To prevent this, one would
like to have boundary conditions which prevent fast waves
from entering the region. The goal of this paper is to find
such conditions.

The situation described here is often encountered when
equations ot gas dynamics are used to model the behavior of
the earth's atmosphere. This is the physical probler which
motivates this study.

In order to find the desired boundary conditions, we first
transform the given syster to an approximate diagonal form in
such a way that each of the new dependent variables can be
identified as a slow, incoming fast, or outgoing fast component
of the solution. We then find local boundary conditions which
suppress the incoming fast part. Pseudo-differential operators
are used throughout the entire process. The effects of these
boundary conditions are analyzed using methods from the theory
of propagation of singularities for linear partial differential
equations.

This process has been worked out in detail for a model
problem in one space dimension and for the linearized shallow
water equations, a system in two space dimensions. We have
included the results of some numerical calculations which
demonstrate the effectiveness of the boundary conditions.
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CHAPTER 1

INTRODUCTION

Hyperbolic partial differential equations are characterized by
the fact that in a certain sense they propagate information at finite
speed. For first order hyperbolic systems there may be several such
propagation speeds, each corresponding to an eigenvalue of the princi-
pal symbol of the system. In this paper we will consider systems for
which the various speeds can have substantially different magnitudes.
Such systems are sometimes said to have '"multiple time scales.”

Examples of these svstems arise in the study of fluid dynamics.
For such systems there are certain propagation modes related to the
movement of the fluid, and there are certain other modes Ghich have a
different physical interpretation. For the Euler equations of gas
dynamics these other modes are associated with the movement of sound
waves, and for the shallow water equations they are related to the
movement of gravity waves. If these waves move at speeds which are
considerably greater than the rate of flow of the fluid, then these
systems have two time scales.

The work presented here is concerned with a certain difficulty
which can arise when one tries to compute numerical approximations to
the solutions of such systems. The phyvsical problem which motivates
this study is the use of hyperbolic systems to model the behavior of

the earth's atmosphere.
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The specific situation is illustrated in Figure 1.1. This
figure shows the domain of definition for an initial-boundary value
problem for a hyperbolic system in one space dimension. In this case
the spatial region is an interval I, and the system is to be studied
for time t > 0. The restriction to one space dimension is made solely
for the purpose of keeping the picture simple. In order to define a
well-posed problem on this space-time domain, it is necessary to specify
values for the solution at time t = 0, and it is also necessary to
specify certain conditions at the boundary of 1 throughout all posi-
tive time. In specific situations the necessary data are taken from

physical measurements.
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1 - | IR
X
/ J I
Accurate initial data
Figure 1.1

In certain meteorological problems the boundary data available
for a numerical computation are often considered to be substantially
less accurate than the available initial data. The reasons for this
will be discussed a little later. This state of affairs is unfortunate,

since the inaccuracies in the boundary data will generate comparable
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inaccuracies in the interior, thereby wasting the extra accuracy
contained in the initial data. Our goal is to control this con-
tamination as much as possible.

This sort of control is feasible lLecause hyperbolic systems
can propagate information only at finite speed. For any subregion
J of the given region I, there is a certain period of time after
t = 0 during which the solution in J cannot be influenced by the
boundary data. However, it is inevitable that the boundary values
will eventually influence the solution in J and thereby reduce the
accuracy of the computed solution in that region. The question is
how long this takes. We have noted that the svstems in question can
allow both slow and fast propagation speeds. These are illustrated
bv the characteristic lines appearing in Figure 1.1. If the boundary
data influence the interior at the fast speed, then in the region J
the solution is accurate up to the time T1 indicated in the figure.
If the boundary data move in at the slow speed, then the computed
solution is accurate up to time T:' In the meteorological problem
these times can easily differ by a factor of five to ten. It would
therefore be worthwhile to prevent this contamination from taking
place at the faster speed.

In order to do this we will try to find boundary conditions which
prevent rapidly moving waves from entering the given spatial region.
We will try to identifyv, in some sense, the portion of the solution
which is entering the region at the fast speed, and we will then attenmpt

to set this part of the solution equal to :zero at the boundary.
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For the meteorological problem this would accomplish what we
want. The crucial feature of this problem is that boundary conditions
of this type are entirely realistic. In this problem the fast modes
in the system correspond to the motion of sound waves or gravity waves.
The amount of energy contained in such waves is insignificant compared
to the other forms of energy in the atmosphere, so for practical pur-
poses the fast part of the exact solution is in fact equal to cero.
The only reason that the fast modes can cause any trouble is that a
numerical computation can introduce errors which have nothing to do
with the exact solution. These errors can therefore be propagated by
all of the modes in the svstem. Because the fast part can consist
only of errors, it is entirely reasonable to try to suppress this part
of the solution. We will not attempt to prevent the propagation of
error at the slow speed, since it is not realistic to assume that the
slow part of the solution is equal to zero. We will instead accept
the fact that on any subregion the computed solution will eventually
suffer reduced accuracy due to the effect of the boundary data.

This discussion has been based on the fact that there are certain
modes allowed by the system which are not present in the true physical
solution. These modes do not contribute to a description of the
physical situation, but they do cause problems when we try to compute
numerical approximations to the solution of the svstem. We have men-
tioned one such problem, and we will mention another a little later.

It might seem that we could best deal with these problems by modifving
the svstem of differential equations so as to prohibit solutions con-

taining rapidly moving waves. This would certainly eliminate the




problems, and it would also be phvsically reasonable. [n meteorology
this process is known as ''filtering". However, there are no known
filtered systems which are mathematically well-behaved and which are
sufficiently accurate models of the atmosphere to be useful in meteoro-
logical calculations.

There is a partially filtered syvstem, known as the 'primitive
equations”, which is currently being used for such calculations. This
system is derived from the Euler equations of gas dynamics, and it is
based on the assumption that the atmosphere is in hyvdrostatic bhalance.
This assumption prevents vertically moving sound waves from appearing
in the solution. Unfortunately, this svtem does not have certain
desirable mathematical properties. The svstem is not hvperbolic, and
it has been shown by Oliger and Sundstrom [ 7 ] that it is not possible
to find local boundary conditions at open boundaries which lead to
well-posed initial-boundary value problems for this system. 1In current
practice a diffusion term is added to the system to make it parabolic,
and values for all components are then prescribed at the boundary.

This leads to a well-posed problem, but it also reduces the accuracy
of the solution which is computed.

Because of the difficulties involved with finding a1 suitable
filtered svstem, it may be desirable to use the unaltered Euler equa-
tions of gas dynamics for meteorological computations. The work pre-
sented in this paper is concerned with one of the difficulties which
can arise when we tryv to do this.

There is another difficulty which can arise in this situation.
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Because of the Courant-Friedrichs-Lewy condition, the fast modes

in the system can impose a severe restriction on the permissible
time step for stable explicit difference approximations to the
differential equation. In general, this would present us with the
choice of either using an implicit difference method or an explicit
method with very short time steps. Both choices wculd be undesirable
because of the computational expense which would be involved. How-
ever, some recent work bv Kreiss [ 5] has made it possible to
avoid this problem by choosing a suitable set of initial data. He
has shown that certain problems of instability can be avoided if we
smooth our given data so that certain elliptic equations in the
spatial variables are satisfied at the initial time. This makes it
possible to use an explicit difference scheme having a reasonable
time step.

We still need to discuss the reason why the boundary data avail-
able for certain meteorological computations are considered to be
substantially less accurate than the available initial data. This
situation arises in limited area computations which are used to predict
local atmospheric phenomena. Such computations are made necessary by
the size of the earth's atmosphere. If we try to compute the sclution
to a system of equations over the entire atmosphere, then it will be
necessary to use an extremelv coarse grid for the difference equations.
Otherwise, the computation would be too lengthy for present-day comput-
ing machines. In current practice the grid spacing for global atmos-

pheric computations is roughly one interval per two and a half degrees
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of latitude and longitude. Such computations can give useful informa-
tion about global phenoman, but the grid spacing is too coarse for
predicting local phenomena.

It is common practice to perform additional computations over
smaller regions with finer meshes so that these local phenomena can
be resolved. For such a computati n the spatial region is a cyclinder
in the atmosphere which is bounded by the earth’'s surface, the top of
the atmosphere, and an artificial computational boundary. This arti-
ficial boundary merely defines the edge of the computation and repre-
sents nothing physical. The situation is illustrated schematically in
Figure 1.2. The global computation 1s represented by the coarse grid,
and the local computation is represented by the finer grid in the in-

terval 1. It is necessarv to find suitable initial data and boundary

Figure 1.2

data for this computation. We can safely assume that we can find
accurate initial data, since we would perform local computations
only over a populated region where there is a dense network of obser-

vation stations which are capable of accurate measurements. The

-



problem is in finding suitable boundary data when we are tryving to
predict future weather patterns. For such data we would have to use

the results of our global prediction. This computation is made on a
mesh which is much coarser than that of the local computation, so the
results of this computation cannot be considered as accurate as the
initial data which are available. This is one source of the inaccuracies
in the boundary data which we have been discussing.

We now outline the contents of this paper. We will consider initial-
boundary value problems for hyperbolic svstems having two time scales.
Our goal is to find boundarv conditions which suppress the part of the
solution which would enter the given spatial domain at the fast speed.
Although the systems of real interest are quasi-linear, we will consider
only linearized svstems. Our hope is that a study of such svstems can
eventually lead to useful boundary conditions for the nonlinear problem.

OQur basic method is to diagonalize the system in such a wayv that
each of the new dependent variables can be identified as a slow, in-
coming fast, or outgoing fast component of the solution. We will then
attempt to set the incoming fast part of the solution equal to :ero at
the boundary. Our methods will relv heavily on the use of pseudo
differential operators. In the Appendix we will define a common class
of such operators, and we will state without proof some of their basic
properties.

In Chapter 2 we will discuss the problem for hyperbolic systems
in one space dimension, and in Chapter 3 we will generalize the methods

of Chapter 2 to problems in several space dimensions. We will use these
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techniques in Chapter 4 to derive boundary conditions for the lineari:ed
shallow water equations. The results of some numerical computations will
be included.

The work presented here is related to some work by Engquist and
Majda on absorbing boundary conditions. In [1 ] they suggested some
methods for constructing such conditions both for scalar wave equations

and for first order hyperbolic systems. Some of the methods which we

will use here resemble, in rough outline, the ideas they proposed for
hyperbolic systems. Their ideas for scalar wave equations are developed

in detail in [2].
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CHAPTER 2

THE PROBLEM IN ONE SPACE DIMENSION

In this chapter we consider the situation for hyperbolic systems
in one space variable. The problems of real interest occur in more
than one space dimension, but certain features of the general problem

can be seen in this simpler special case.

2.1 General Remarks

We will consider the hyperbolic system

c C,,
e A (0 )R- 2

for 0 < x <1, t>0. This can also be written W, = Aw‘ + Cw, where

2

w = (u,v)T € R°. The entries in A and C are functions of x and t.

In order to simplify the notation we have chosen a system having
two scalar components. [t can be seen easily that the ideas presented
in this chapter work equally well for svstems having several components.

There is no loss of generality in assuming that A is diagonal.
The system is hyperbolic, so A has real eigenvalues and a complete
set of eigenvectors. If A 1is not diagonal, then a suitable similarity
transformation and change of dependent variables can be made to bring
the system to diagonal form.

We assume |a| << b] and a <0, b < 0. The first assumption

guarantees the presence of propagation speeds having substantially

L
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different magnitudes. The second assumption is made for the sake of
definiteness. It also contains the assumption that det A # 0, 1i.e.
that the boundary is noncharacteristic.

The problem is to identify the 'fast'" part of the solution of
the system and then find boundary conditions which suppress this as
much as possible. To some degree this can be done by considering the
usual method of characteristics for constructing the solution of the
system. Suppose first that the matrix C 1is diagonal. The syvstem

(2.1) then uncouples into two independent equations

The first is an ordinaryv differential equation for u along charac-

dax

teristic curves defined by Fra -a. The second is an o.d.e. for Vv
along characteristic curves %% = -b. These are illustrated in

Figure 2.1 for the case J|a|<<|b], a <0, b<0,.

A y] A
t // / // . ¢ L_/,,,//f
///‘ ’/
// // /
I/
///’ / ! P4
/ yavi > _—
0 1 X 0 1 X
Characteristics for u Characteristics for v

Figure 2.1
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Initial values for these ordinary differential equations are provided
by initial data (t = 0) and boundary data (x = ¢, in this case) for
the partial differential equations. It is clear that data for v

are propagated at the relatively fast speed and that data for u

move at the slow speed. Boundary conditions which suppress the fast

part of the solution are therefore

j =1
[}

given function

v=20

Conditions on u and v cannot be given at the boundary x =1 for
the example given here.

The same boundary conditions work in the case where (C 1is upper
triangular, i.e., <¢,, = 0. The second component Vv still satisfies

1

the equation v, < bvx + C55Y, and setting v = 0 at the boundary
prevents the boundary from influencing the interior at the fast speed.
In this case v appears as a forcing term in the equation for u,
but this does not matter if v = 0.

Trouble can arise if € 1is not upper triangular. In this case
u appears as a forcing function in the ordinary differential equations
for v along the characteristic curves %% = -b. Since u is in
general nonzero, v will be nonzero in the interior even if it is set
equal to zero at the boundary. The boundary data will influence the
solution in the interior at the fast speed by first influencing u,
which in turn forces v. The boundary conditions mentioned above will

of course have some desirable effects, but it would be better to have

more refined boundarv conditions which are more effective at reducing




e,

the magnitude of what propagates in from the boundary at the fast
speed.

Such boundary conditions can be obtained by transforming the
system so as to reduce the coupling found in the lower order term.
This can be thought of as a process of identifying more precisely the
quantity which moves slowly and the quantity which moves rapidly.

Refined boundary conditions can be obtained by setting the new

fast variable equal to zero whenever permissible and then expressing

this condition in terms of the original wkny - and v.
It would suffice to transform C t- r..«; siangular form. How-
ever, it happens that when one uses the ti1.* .. -mation method outlined

in the next section, it is almost as ezsy to .Dtain diagonal form as
it is to obtain triangular form. Diagona! form seems a bit tidier, so

that is what we will seek.
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2.2 Outline of a Method for Uncoupling Systems of Equations

The uncoupling method used here is a method used by Tavior [10]
to reduce the coupling in systems of pseudo differential equations for
which the leading symbol is in block diagonal form. It is essentially
a simple perturbation argument which is disguised by the language of
pseudo differential operators. It is related to some uncoupling
methods used by Kreiss [d4 ] and 0'Malley and Anderson [8]. We
will first outline the technique using Fourier transforms in a formal
way. In later sections we will make this process rigorous.

The svstem is wt = wa + Cw. We want to use Fourier transforms
to reduce it to a svstem of ordinary differential equations and thus
make it easier to analvze. We will not transform in x because this
would require information about the solution outside of the boundary.
That would not be appropriate in a discussion of boundary conditions.
Instead, we use Fourier transforms in t. The use of such transforms
will be justified later in a localization argument which uses proper-
ties of pseudo differential operators. These operators will also pro-
vide a way of handling equations with variable coefficients. Certain
properties of these operators are summarized in the Appendix.

Write the svstem (2.1) as

(2.2) w Cw .

A w - AT
t

In terms of components this is

il
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_1 -
3 quy _[2 3 [u SRS DR &
BT(V) ‘( b-1>§?<v)‘<b-1c_ b-1cm>(l\j)'

Introduce formally the Fourier transform in t. Let £ be the dual

variable, and let u, v, w be the transforms of u, v, w. If the

coefficients of the equation are constant, (2.2) becomes

iea te - a7 lew

£
~

tal
gy
Nt

n

ig(al - I%—A'IC)G

iER(if)w .

"

When < is large the matrix R(i§) 1is a perturbation of the

. S .
diagonal matrix A We will use a perturbation argument to reduce

the coupling caused by the off-diagonal elements.

Let Qi) =1 + (iE)-lM, where M is a matrix to be determined.

For large 3, Q-1 exists and has the expansion

Q-1 - E%’” L ().

Pl

T

gy

Using (2.3), we have

-1 1 -1 1 -1 1 =2
- = M)A - =M e e(§
QRQ (T + 30 A O - TN cE)
(2.9
=Aale L (m'l calv o ater (5

gy

1

1

1 M- A°C is diagonal,

The coupling is of order -2 if MA™ - Al

i.e., if

et
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-1 1 -1 -1
™M1 ™2\/? a M M2 a € 2 ¢pn
(2.5) - _
-1 -1 -1 -1
My M2 b b my Mo by b oen,

is a diagonal matrix. We therefore set to zero the off-diagonal entries

in (2.5).

b -a'm - a Cl‘ =0 {row 1, column 2)

(2.6)

m. a-l _ b—lm - b'lc =0 (row 2, column 1)

The equation (2.6) can be solved for m and m, provided a # b,

12 1
which is certainly true in this case.

a le | be, 4
- : 12 . 12

R4 - - -
12 b 1 1 a-b
b-lc,1 ac,,

m,, = = = =
21 dd _b-l b-a

The entries and m,, appear only in the diagonal elements of

M1 22

(2.6), and in fact the terms involving them cancel. These values can

therefore be chosen arbitrarily. For convenience, we will take

my s 0 and m,, = 0. The matrix Q 1is then given by Q=1 *(ii)-lM. or
o bey
a-»b
(2.7 Q=1 + —
ig ac
21 0
b-a

——— i e




Equation (2.4) then becomes

Rt = et - @ Thatog
(2.8) -1
EEETY Bt " 1
=A 4 it * (’(‘jf)
0 —b-lc 5

For later reference we estimate the coefficient of the error term
- 2 - » - . .
¢ (I 7). A calculation based on (2.4) shows that this coefficient is a

matrix whose entries are bounded by the corresponding entries of

(2.9) constant * y°
It et

Here Yy = max{!cijl}, and the constant which appears first depends
only on the number of terms involved and the error made in approximat-
ing [b -a[cl by [b[’l (recall |a| <<ib]). In this case the con-
stant is a little larger than 4.

We use (2.8) to reduce the coupling in equation (2.3).

(2.3) e = aeatt - aTled
(2.10) 2@ = easa - o .

The entries in the matrix Q are independent of x since for this
simplified treatment we have assumed that the differential equation

has constant coefficients. Let Ql = Qw, and use the properties of
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the similarity transformation in (2.8). Equation (2.10) becomes

" )

, ( -1 -1
’ a\l . a a c]1 o
(1) o= ie 1) g @) g
1 b “¢c,,

-

When £ 1is large, the coupling caused by the lower order terms
in (2.11) is weaker than the coupling in the original system (2.4).
This means that for large £ we can identify more precisely the rapidly
moving part of the solution and do a better job of suppressing it. This
restriction to high frequencies is not a serious one, since the goal of
this work is to suppress the etffect of numerical errors, which are
mainly high frequency phenomena. In Section 2.6 we will discuss the
range of values of £ for which the method is effective.

This method can be applied repeatedlv to reduce even further the
coupling at high frequencies. To reduce the coupling to (({_;), we

would multiply equation (2.11) by a matrix of the form I+ (iZ) "M,,
and then determine M, in the same way that we found the matrix M

-(n—l)) to

above. In general, to reduce the coupling from ¢ (g
(™), we would use a multiplisr of the form I + 5-nMn. The details
of this process involve no new ideas and will not be given here.

The method has been presented for 2 x 2 matrices. In [4],
{ 8], [ 10] it is used for block matrices having two square blocks
on the diagonal. In this more general case the equations correspond-
ing to (2.6) can be solved provided that the diagonal blocks correspond-
ing to a-1 and b—1 have disjoint spectra. This method is also

valid for block matrices having any number of diagonal blocks. A

general form of this method will be discussed in Section 3.3.
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We now find boundary conditions for this constant coefficient

system which suppress the fast part of the solution at the boundary.

The new dependent variable is defined by ;1 = Quw. Bv (2.7) this 1is
- . 1 (b_Cg .
(ul(x,£)> 1§ a~b) <U(x,5)>
v, (x,E) 1 (‘“21) ) v(x,2)
i \b-a

vy is our new notion of what constitutes the rapidly moving part of

the solution. For large £ it is a perturbation of the fast charac-

teristic variable v. To suppress the fast part of the solution we

set vl = at x =20, 1.e.,
ac
1 21 A ~
0 D —_ = =
(2.12) ii (b _a')u +v=0 at x=0.

To obtain local boundary conditions we multiply (2.12) by 1 and
then apply an inverse Fourier transform. The result is

v

aC.)l
K*(m)l}:O at x = 0.

With this we conclude the outline of the uncoupling method.
There are several things left to do for problems in one space dimen-
sion. We still need to justifv the use of Fourier transforms in
time, present the uncoupling method for systems having variable co-
efficients, and discuss further the effect of the uncoupling on the

behavior of the solution.

woa

i
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2.3 Transformations in Time

Here we discuss the question of taking Fourier transforms in
time. We first recall that it is a good idea to use transforms in
one variable or the other since this can simplify the analysis of
the problem. Partial differential equations can be reduced to ordinary
differential equations, and through these transforms the solutions can
be expressed as superpositions of plane waves. This latter point 1is
particularly important for problems in several space dimensions since
in that case the direction of propagation can be as important as speed.

However, there are certain difficulties associated with the use
of Fourier transforms in this case. First of all, we cannot use
Fourier transforms in x since these involve information about the
solution outside the boundary. This is not appropriate in a dis-
cussion of boundary conditions. On the other hand, we cannot use
Fourier transforms in t directly, either. The reason is that in general
the solution to a linear hyperbolic system can grow exponentially as
t ~+o, This makes it impossible to define a Fourier transform either
in the classical integral sense or in the sense of tempered distribu-
tions.

A common cure for this prohlem of exponential ‘growth is the use
of the Laplace transform. Let s =n + if, where n and £ are real
and n > 0. The Laplace transform of a function w = w(t) is de-

fined hv
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) I -5
Lw(s) = . e 5% w(t)ar .
This is certainly well defined provided n is sufficiently large.
However, we are reluctant to use this transform for this problem
because of the effect it has on the form of the differential equation.

Derivatives are transformed according to the relation

_ ™ st
(Lw )(s) = . e w_ (t)dt
t Iy t
= sLlw - w(0) .
The transtorm of the equation We = wa + Cw 1is therefore
(2,13 SRON,S) - w(x,0) = AW (x,8) + O,

where w(x,s) 1is the Laplace transform in t for fixed x. The
trouble with (2.13) is that it includes initial values of the solution.
We would like to use our transformed equation to find boundary condi-
tions having certain properties, but the presence of the initial data
in (2.13) appears to complicate matters.

These problems with the Fourier and Laplace transforms can be
avoided by using certain properties of pseudo differential operators.
We were going to introduce these operators anvway in order to treat
svstems with variable coefficients, so it 1s no extra trouble to use

this approach to solve the transformation problem. The main idea is




to localicze the solution in time in order to make the Fourier trans-
formation possible and then show that this localization does not have
a great effect on the equation.

We first recall the process outlined in the previous section.
There we formally applied a Fourier transformation to the differential
equation and then manipulated the transformed equation. These manipula-
tions consisted of multiplving Fourier transforms by certain functions
of the dual variables. 1In effect, we were applying pseudo differential
operators to both sides of the differential equation. The utility of
these manipulations suffered from the fact that the Fourier trans-
formatiuns were not justified and from the restriction to systems with
constant coefficients. However, these problems disappear if we apply
general pseudo differential operators directly to the given differen-
tial equation rather than first trving to find a suitable transformed
equation. There will be no problem with variable coetficients, and
the Fourier transformation can be treated in the manner described below.

Restrict attention to a fixed time interval a <t < b, and
choose ¢ € C:(IR) so that y(t) = 1 if a <t <b. Consider the
differential equation W = wa + Cw. We multiply the solution w by
the cutoff function 1 to produce a function which has compact support
in t and which therefore has a Fourier transform. If w satis-
fied the differential equation, then in the case of constant coeffi-
cients we could immediatelv apply the transformation to the differen-

tial equation. But this is not the case, since all we can say is

4




(2.14) (W) = A (W) + Clw)

provided a <t < b. Equation (2.14) holds for t in this interval
because ¢ = 1 there, but it may fail to hold for t ¢ [a,b].

We will not try to manipulate a transformed equation, but instead
we will apply certain pseudo differential operators directly to the
given differential equation. In the next section we will construct
operators which uncouple the equation in a manner analogous to that
described in the preceding section. The manner in which these opera-
tors will be applied requires some explanation.

Write (2.14) as

(2.15) (), = A-I(tbw)t - a o .

Denote the left and right sides of (2.15) bv L and R, respectivelv,
and let P be a pseudo differential operator in t which we would
apply to (2.15) in an attempt to uncouple the system. Since L and
R both have compact support in t, there is no problem in forming
P(LY and P(R). The question is whether the two are in some sense
equal.

We know that L =R if a <t <b and L # R for certain other
t. Since pseudo differential operators are nonlocal, we can conclude
that P(L) and P(R) are nowhere equal except perhaps at a few points
where equality occurs by accident. But we can still say something
about P(L) - P(R) in the interval a <t < b where we know that L

and R are equal. Pseudo differential operators have a property

st Sttt L |
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known as "pseudo locality'". 1In this case this property implies that

the difference P(L) - P(R) on the interval [a,b] 1is given by an
operator of order -®«. Roughly speaking, this means that the difference
is very small at high frequencies. On the interval [a,b] we do not
have equality of P(L) and P(R), but instead we have a near equality
which is compatible with the asymptotic nature of our method which was
indicated in the preceding section.

When we uncouple the system, then, we will first choose a time
interval [a,b] of interest and cut off the solution outside of that
interval!. This will make it possible to apply pseudo differential
operators to each side of the '"equation' (2.15). On the interval
a<t<b we have P(L) = P(R) modulo an error of order minus infinity.
This error term will be dominated by other errors arising in the un-
coupling procedure. If we are interested in analyzing the solution on
a different time interval, we will have to choose a different cutoff
function Y. This will alter the equations we obtain, but only by
modifying the coefficients of the error terms in certain asymptotic
formulas. In the rest of this paper we will assume that the solution
has been cut off in time, and we will not bother to write the cutoff

functions ¥ explicitly.




2.4 A More Complete Treatment of the Uncoupling Method

In this section we will use pseudo differential operators to
uncouple the given system of partial differential equations. The
treatment given here is similar to that given in Section 2.2, but it
is more complete. This treatment is valid for systems having variable
coefficients, and it uses the method of Section 2.3 fcor obtaining
Fourier transforms in time.

As before, we will consider the equation

a0 g () ) E (2 ()
t \v b/ 8x \v Cyp  Con J\V

for 0 <x<1 and t > 0. We assume |a|<<|b|, and for the sake of
definiteness we will assume a < 0 and b < 0. The system can also be
written in the form We = wa + Cw, where w = (u,v)T € Rz. The en-
tries in A and C are functions of x and t.

In order to simplify the notation we have chosen a system having
two scalar components. The method presented here works equally well
for systems having several components and for syvstems in partitioned

form.

Write the system in the form
- - -1
(2.17) W= A L A "Cw .

In terms of components, this is

PR
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a5 (00 ) F - (L)

In Section 2.2 we formally applied a Fourier transformation in t
and then manipulated the transformed equation. These manipulations
consisted of multiplyving the transformed equation by matrices of the
form I + (i) 'M and then determining a suitable M. This reduced
the coupling in the equation to (’(é»). To reduce the coupling from

,(5—(n-1)) to ¢ ™™y, we would use multipliers of the form

. -n
£y ™y .
[+ (15)7

In this section we will not try to manipulate a transtormed
equation, for reasons stated earlier. Instead, we will apply certain
pseudo differential operators directly to the given equation (2.18}.
The operator which will reduce the coupling from order zero to order
-1 will have a symbol of the form I + (iE]-lM. More generally, the
operator reducing the coupling from order - n+l to order -n will
have a svmbol of the form [ + (iE)-nMn. The process given here is
similar to the process of Section 2.2, since the leading order term
of the composition of two pseudo differential operators is given by
the product of their symbols. The difference between this treatment
and the earlier one is the presence of certain lower order correction
terms appearing in the formula for composition of operators.

Write equation (2.17) in the form

- w _
(2.19) ™~ - Gw + Dw,




-

where D =-A"lC and G is the operator with symbol ifA™ ", i.e.

G (x,t) [ et8t AT (x,t) i€ W(x,8)dE

= A-lw .
t
Here Q(x,g) denotes the Fourier transform of w with respect to t
for fixed x. It is understood that w 1is cut off in t according
to the remarks of the preceding section. We will suppress this fact
in our notation.

Apply a pseudo differential operator I+ K to (2.19), where K
is an operator of order -1 which is to be determined. The symbol
of K will be (ii)-lM for some matrix M depending on x and t.

From (2.19) we obtain

1

IQ)

e [(IeKIw) = (I+KYG(I+K) ~[(I+K)w]
(2.20) + (I+K)D(I+K)-1[(I¢K)w]
+ K w.
X

Here K( is the operator whose symbol is obtained by differentiating
the svmbol of K with respect to the parameter X. (I+K)_1 denotes
a parametrix of I+ K. It is not hard to show that (I*K1-1 has an

asymptotic expansion

(2.21) (K~ ToKe KTk,

The validity of this expansion depends on the fact that the order of




K 1is negative.

Let Wy oS (I+K)w. From (2.20) and (2.21) we obtain

awl
7;:'= (I*K)G(I-K)wl + le
+ terms of order (-1) or less,
or
Bwl
ln] "‘) ——— ’ - "
2.22 < Gw1+ (KG - GK + D)\1

+ (order (-1))w

The overator KG-GK+D appearing in (2.22) has order zero. We want

to choose K so that the leading symbol of this operator is diagonal,

.

since this would imply that the coupling in the system (2.2} has order -1.

Let CK' s denote the symbols of K and G, respectivelv. The

composition law for pseudo differential operators implies that the svm-

bol of KG-GK+D is

(2.23) + D + order (-1) .

OKOG - OGGK

Let = (i&)-ln, where M 1is a matrix depending on x and t

I

which we shall determine, and recall that o5 = 15A_1. (See (2.19).)

The expression in (2.23) then becomes

1 1

(2.249) MATY - ATM ¢ D + order (-1).

This is the symbol of the operator KG- GK+D which appears in (2.22).

The svmbol of the zero-order part of (2.22) is therefore MACI- A'1M+ D,

SN RS




and the equation is uncoupled to order -1 if and only if

ae -1 1

(2.25) MA™" - A"°M + D = a diagonal matrix .

-

This is exactly the cona tion encountered in Section 2.2, equation

(2.5). (Recall that we let D = Al

solved for M in the same way as before.

conclude that the syvmbol of the operator

(2.26) CL = M=

in (2.19).) This can be

From the earlier work we

K is given by

With this choice of K the coupling in equation (2.22) has order -1.
This process can be continued indefinitely in order to reduce

further the coupling in the system. To reduce the coupling to order

-2, we can apply an operator I+ K: to equation (2.22), where k:

1,. The matrix M, c¢an be determined

-0
has a svmbol of the form (i) "N

in the same way that M was determined above. In the equation for

M

the error terms of order -1 in (2.22).

~» corresponding to {2.25), the matrix corresponding to D represents

These terms would have to be

calculated explicitlv when deriving (2.22). The new dependent variable

-

for the svstem would have the form w,

Further uncoupling can be carried out in

(T + K,)w1 = (T+K,(I+ Kl]w.

the same manner.

We note that the svmbol in (2.26) is the same as the one obtained

in Section 2.2. This is not the case for svmbols which uncouple the

svstem further. The reason for this is that these svmbols are influenced

o A

oo
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by error terms which result from the application of the composition
law for pseudo differential operators during prior applications of

the uncoupling method. These error terms are generally nontero for
svstems having variable coefficients, and they cannot be detected

bv the formal treatment of constant coefficient systems which appeared
in Section 2.2,

We conclude this section by mentioning a minor technical diffi-
culty associated with a svmbol of the form (ia)'nMn. Strictly speak-
ing, such a function cannot be a syvmbol of a pseudo differential
operator because of the singularity at & = 0. But it can Ye modiried
in a neighborhood of & = 0 to produce a smooth bounded function of
S. Such a change will affect only very low frequencies. From now
on we will always assume that such a modification has been made. and

we will ignore this fact in our notation.

e e e g




2.5 Boundary Conditions

We will now use the results of the preceding section to find
boundary conditions which suppress the rapidly moving part of the
solution. During the uncoupling process we adopted a change of
dependent variables whose effect was to weaken the coupling contained
in the lower order term, at least at high frequencies. The new depen-
dent variables can be thought of as more precise descriptions of the
rapidly moving and slowly moving parts of the solution. We will ling
our boundary conditions by attempting to set the "fast'" variable
equal to zero at the boundary. In general, it i1s nu* possible to do
this exactly, but it can be done to an order of accuracy which is
compatible with the degree of coupling which remains in the dirfferen-
tial equation.

We will consider the system (2.22) which was obtained through
one application of the uncoupling method. Svstems obtained through
several applications of the process can be treated in a similar manner.

Equation (2.22) is

ow
2.27 3: = Gw, + (diagonal term of order 0w, + (order {(-10w
where
(2.28) w, = (I+K)w .

1

Here w = (u,v)T is the orginal dependent variable for the svstem.
The svmbol of the operator K is given by (2.16). If we let

w, = (ul,vl)T, then (2.26) and (2.28) give

1

PPONPTRRE
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t

(2.29) o, (x,1) Y ')+i(bc”)‘ LE)| dz
c.29) 1 X, e u{x,c ic P \(x,s;J 5

ac

de€ .

2 N ™
”;)uu,ﬂ + v(x,£)

(2.30) v (x,t) =

ite | 1
| e

I

The components v and v, are perturbations of the original com-
ponents u and v. Recall that u 1is associated with the slow
characteristics of the system and that v is associated with the fast
characteristics. The new fast variable is therefore Vi and our
goal is to set this equal to zero at the boundary whenever permissible.
This can be done easilyv provided the svstem has coetficients
which are independent of t. In this case the bracketed quantity in
the integral in (2.30) depends only on x and £, and it is there-
fore the Fourier transform of v, with respect to t <for fixed «x.

1

We want vy = 0 when x = 0. This can be accomplished by setting the

transform equal to zero at x = U, so we obtain

ac
y -y 1 21
(=.>1) T(b-a

Jry

YU(0,£) + v(0,£) = 0 for all

Ut

and then

FAA

To obtain a local boundary condition, we multiply by i
invert the Fourier transform. The result is

acy,

< v
2 LA = =0
(2.32) T (b-a Ju=0 when x =0.

This argument is not valid if the coefficients in the svstem
depend on t. In this case the bracketed quantity in the integral in

2.30) depends on t as well as x and £Z. It cannot, therefore, be




w
(€2

the Fouri«r transform of anything, and it is not possible to write
(2.31). However, despite the fact that the derivation given above
is .nvalid, it is still possible to use (2.32) as a boundary condi-

tion in the case of variable coefficients.

Proposition 2.1. If u and v satisfy (2.32), then the new

"fast'" variable vy satisfies

vy = (operator of order -2)u at x = 0.

Proof. Suppose that (2.32) holds, and apply to it the operator

wvhose swvmbol is (i5)°1. This gives

ac
P2 SR DS S SR 21 _
(E) (ig) v + (;—a') (g5)u=0.
Here %g) and ”(ii)" denote pseudo differential operators

with symbols (J'.E)-1 and if, respectively. The small circle
denotes composition of operators. The composition law for pseudo

differential operators yields

~
ro
(93]
(9%
—
-
+
~~
H-|
oy
=
~~
o

+ order (-3) = 0.

The sum of the first two terms is vy, as can be seen by comparing

(2.33) and (2.30). The third term has order -2. From this the result

follows immediately. We note that the term of order -2 1is generally

nonzero when the coefficients of the system depend on t.

s Al
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The "fast" variable 1 is therefore small at high frequencies
when x = 0. We will see in the next section that this order of
accuracy is compatible with the degree of coupling remairiing in the
system of differential equations when it is written in the form (2.27).

We should note that, for this particular case, there is an easy

way to find a local boundary condition which sets ! exactly equal

to zero. Set (2.30) equal to zero, and write this as

ac., ¢ .

21 ) iEt o1 A,

. ey < = -=0-
b-a;e (15)Ud”+v 0 at x

If ac,, # 0, we can multiply by (b-a)/ac, and then differentiate

with respect to t. The result is

3
u + g{[(

b-a
ac,

Yvi=0.

The trouble with this approach is that it does not work if the ex-
pression has more than one term of negative order. This will be the
case if the system has three or more components or if we have applied
the uncoupling method more than once. In general, it is necessary
to use the ideas mentioned in the proof of Proposition 2.1.

We will indicate how this process works in the case where the
uncoupling method is applied again to uncouple (2.27) to order -I.
In this case the method of Proposition 2.1 can be used to help generate

a boundaryv condition, not just verify its utility.

After additional uncoupling the system becomes

[




vl (diagonal operator of order l)wz + {order (-2))w

where Wy = (I +K;)(I+ Kl)w. Here K2 is a suitably chosen operator
of order -2, and K1 = K. We can take the symbol of K, to be

zero on the diagonal, as was the case for K. w, can be written

w, = (I+K, +K,+ K,Kl)w

1

The operator K,K1 has order -3 and can be deleted from the
expression for the new dependent variable without affecting the order

of the coupling in the system. We therefore let

(2.34) az = (I+K +K)w,

and the system becomes

= = (operator of order 1)w, + (order (-2))w .

If we let &, = (u,,v,)T, then v, 1is the new 'fast" variable.

According to (2.34), v, can be written

cl(x,t) . c,(x.t) :7
= u

(2.35) v,(x,t) = J eigt G(x.E) + T u+ ——5— de

gy
—
—
g
—
L

where ci(ig)-j is the lower left element of the svmbol of Ki'

We want to set v, = 0 at x=0. If ¢, and ¢, were in-

pendent of t, then we could set to zero the bracketed factor in
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the integral in (2.35). 1If we clear denominators and invert the

Fourier transform, the result is

v
1 dt 2

The method of Proposition 2.1 can be used to show that this boundary

condition still has some validity when the coefficients < and ¢,

vary with t. However, we can obtain a better condition for the case

of variable coefficients by starting with a more general form

-

(2.37) 3‘,’+c1§—‘t‘+qu=o at x = 0,

3t~

and then determining q in a manner which we now describe.

. 3c1 .

Proposition 2.2. If q = ¢, - i then the condition (2.37)

(9 %4

implies that the ''fast' variable v, satisfies

-

v, = (operator of order -3}Ju at x = 0.

If (2.36) is satisfied, i.e., q = ¢ then in general we only have

-2
-

v, = order (-2) .

Proof. Suppose (2.37) holds, and apply to this equation the

-
s

pseudo differential operator whose symbol is (i) This gives




w
~1

" 1 " " . 2” 1" 1 " 1" R "
5 o (18)7 v+ 5 o (i&c)) u
(ig) (ig)~™
. 1"t 1 ; 114 o " "u _ 0
(i)~

We now apply the composition law for pseudo differential operators and

obtain
" c " " ac "
1 -2 . 1
vV o+ =) u+ - (if =—) u
ig (ii)’ Jt

s 9"y + (order (-3))u= 0.

)
(i&)
This simplifies to
" cl " " A acl o
v o+ (I;-) u + (i) " (q - 2 '5{') u = (order (-3))u
acl
If q -2 5 = S then the left side of this equation is equal to

v (See (2.35).) We therefore obtain v, = order (-3). Note that

-
if q = €5, then we only have v, = order (-2) . This completes the

proof. ®

From this it should be clear how one can find boundary conditions
corresponding to arbitrary orders of uncoupling. In general, when the
system is uncoupled to order -n, the new "fast' variable can be ex-
pressed in terms of an operator of order -(n+l). We note that the
composition law for pseudo differential operators can play an important

role in determining these boundary conditions.

P T

s mateds




We also note that this process works for svstems having more

than two components. The dependent variable for a partially un- :

coupled system has the form WS (I+Kn)- el (I+K1)w, where

K. has order -j. The mth component of W has the form

(2.38) v + terms of negative order,

where v 1is the mth component of w. The process outlined above !
can clearly be applied to (2.38).

In this section we have not vet discussed boundary conditions .
for the slow part of the solution. For the system (2.1) which we are :
considering here, it is necessary to give a value for a slow variable 1

at x = 0. One possible condition is
(2.39) u = given function.
From (2.29) we can obtain another condition, i

be¢

) au 12 . .
[2.40 T 0('1_ h) v = given function .

The secon condition has little practical value for the problem

considered here. It requires boundary values for a derivative of u,

chle

and in a numerical computation it would be necessary to approximate
this derivative from measured values of the solution. In this paper

we have assumed that the available boundary data are not particularly

accurate, so we cannot expect much accuracy at all from numerical g

differentiation. This implies that there is little point in attempting
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to use the boundary condition (2.40).

We therefore propose the boundary conditions

ac
(2.41) .g% +(b_2;)

where g 1is a given function of t. The first condition is the con-
dition (2.32) which was obtained through one application of the un-
coupling method. It is equivalent to

rt ac71
v(0,t) = v(0,0) + , (E_'—)g(r)dr.
lo a

The conditions (2.41) thus prescribe values for the characteristic
variables at the boundary where the characteristics enter the region.
The initial-boundary value problem with these conditions musf there-
fore be well-posed. In Section 2.8 we will present the results of

some numerical calculations which compare the conditions (2.41) with

the simpler conditions

v=20

o4
H

given function, for x = 0.

skl m s o om e
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2.6 Estimates of the Si:ze of the Fast Part of the Solution: Qutline

and Physical Interpretation

In this section we begin to examine the effects of the boundary
conditions discussed earlier. We will first estimate the size of the
"fast'" part of the solution using an approach which has much the same
spirit as the formal treatment of the uncoupling process given in
Section 2.2. We will then give a physical interpretation of this
result. In the next section we will obtain an estimate based on the
more rigorous uncoupling of Section 2.4. The first estimate is not
rigorous because of the limitations of Section 2.2, but its deriva-
tion is basically an elementary version of the proof of the second
estimate. We therefore present the first in order to help explain
and motivate the other. The basic method used here is essentially
the standard technique for finding energy estimates for hyperbolic
partial differential equations.

-

According to the discussion in Section 2.2, the system

We = wa + Cw can be transformed into a system having the form
awn -1~
(2.42) Ix (x,5) = 1€A \v'n

+ (diagonal matrix with terms of order :cero

or les w
ess) n

s 8Ma

We have assumed from the beginning that A is diagonal. In (2.42)

~

v is given by

[V T PR .
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~

- DY 1| -1 ~
w (X, 8) = (T + (i8) Mn) c .o (v iD) M13w,

where the matrices Mk are chosen in the manner indicated in Section
2.2. Because of the hypothesis |a| <<|b| in (2.1), the second com-
ponent of wo is the new ''fast" variable. We need to estimate the

size of this component in solutions which satisfy the boundary con-

ditions discussed earlier.

T . )
Let WS (un,vn) . According to (2.42) the second component

satisfies the equation

v n-1

- ~ .-k, D - -
& - e . g - Y >
X (x,8) = 1%b Vot kZo {(i3) \kvn hn(x,ﬁ) for x>0,

where hn is an error term satisfying

(2.44) [ (8] < Lnisi’”(;&(x,g
The functions u and v are the components of the vector w. The
coefficient b-l in (2.43) is taken from the expression for the
matrix A in (2.1). The coefficients \k and Ln can be expressed
in terms of the entries in A and C. This will be done later for
the case n-=1.

We will now use the ordinary differential equation (2.43) to

estimate the size of |v |.

Proposition 2.3. If (2.43) and (2.44) hold, then for «x >0,

B d ot




.il-Hh---iﬂ—ﬁnuhdiﬂi.-hr ks I it 000 sshomon I

e(R(€)+62)x

(2.45) 1/

rX - ,
e (17 R®ODE) gy Py
a2 \o n

where R(§) = XO + ZE;£ (i&)_kxk. The sum is taken for even integers

k. The constant o > 0 can be chosen arbitrarily.

Proof. In order to simplify the notation, let q = V., h=h

and G(&) = zf“tl) (i;)'k\k. Equation (2.43) becomes

PP

(2.46) q = icb i ¢ G(D)q + h(x.2) . 1‘

The subscript denotes differentiation.

-~

) hl

'q!” and use this to estimate

We will find an inequality for <

lq)”. Equation (2.46) implies

i£b7 147 + 6(2)ag + n(x,0)T

£
el
I}

a(-i5671Q) +qCE)  + ah(x,5)

X
=l
“
"

Bars denote complex conjugation. The sum of the two equations is

< qlf = a3+ ag
Ix ! 1‘x X
R _ .
(2.47) = 2Re[G(I)] 'q:" + 2Re[hq] 1
= 2R(E) ,q|” + 2Re[hal, ’*




r where R(Z) 1is the quantity defined in (2.45). The last equality

F follows from the fact that the Ak are real. This in turn follows

from the derivation of the partially uncoupled system (2.42). This

; derivation is based upon expansions in powers of if, and all of
the coefficients in these expansions are real.
The second term on the right in (2.47) can be estimated using

the inequality 2ab < a2 + bz. For any real o # 0 we obtain

he 2 2
2Re[hq] < 2}ha] < 207{q}" + —= [hj
2o
With (2.47) this vields
s) ~ B hl
g% faq]“ < 2(R(E) + o7) lq!” + 1 = 'hi~
2c

We now anply the Gronwall inequality. That is, we move the
first term on the right over to the left side, multiply by the
2
integrating factor exp[ - 2(R+c”)x], and then integrate. The

result is

5 2
eh(R+c )x l

lq(x)]? < a@]*

X 4 2 . -
- (7 (2 (Reo VM vy [ 7dy
207 /0

+

To obtain the final result (2.45) we recall that g = C»n and use

the fact that va+b </va + /b when a,b > 0. This completes the
proof. @

In the estimate (2.45) there is a term which involves the values

of Va at x = 0. According to the formal treatment of constant-

S b aletle,
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N

coefficient problems given in Section 2.2, it would be possible to
set Vi exactly equal to zero at the boundary x = 0. 1In that case
the term involving Gn(o,sw would not appear in (2.45). However,
we saw in Section 2.5 that it is not quite possible to satisfy

Vo T 0 when the coefficients vary with t. We have therefore in-

cluded the extra term in (2.45) in order to suggest the more general
behavior of the boundary conditions. According to Proposition 2.2
and the comment which followed, it is possible to obtain vn(ﬂ.i} =

VNG This s certainly compatible with the other term in {2.15),

which according to (2,440 is /(E_HG\. We will see that something
like this actually happens with the more rigorous estimate which we
will obtain in the next scection.

The method used here to uncouple the svstem is valid asympto-
tically as I ~ =, It would be good to have estimates of the co-
efficients in crror terms such d4s (2.44) in order to have a rough
idea of the range of I ftor which the method works. In the follow-
ing proposition we do this for (2.44) in the case n = 1, and we

also give the value of a relevant parameter appearing in the estimate

Proposition 2.4. The parameter 1\ appearing in (2.45) iz

Q
civen by KO = —c\,h_l. When n = 1, the constant Ln in 2.3 can
be taken to bhe
2 -1
(2.48) L, = constant - v~ Ib] ",

L The ¢;; are the coefficients in the undifferentiated
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term in (2.1). The '"constant" is approximately equal to 4 in this

case. (See (2.9) and the discussion which follows.)
Proof. In (2.43) the parameter \O is defined to be the
coefficient in the zero-order term in the differential equation for

Vo For the case n = 1 this equation is given by the second row

of (2.11). There we see )\, = -c77b-1. This value does not change

with n, since further uncoupling is obtained through transformations
involving matrices of the form I + (ii)—kMk for k > 2. Such trans-
formations cannot alter the term of order :zero.

The parameter Ln in (2.44) is part of the bound on the error
term in the partially uncoupled system (2.43). For the case :h =1
this svstem is given by (2.11). The coefficient of the error (\i_l‘

is bounded by the matrix in (2.9). From this the conclusion can be

read immediatelv. This completes the proof. ®

We pause to interpret this result. When n = 1 the "tfast" vari-
able Vo satisfies
3'1 .
] 1 - = 1 N -
(2.49) X (x,2) (i&bh ~ + ‘O)Vl + hl(x‘”}’
where
(2.50 Ihl(x,i){ < constant .T%T‘. TtT Cup o+ v
S B

The first line is equation (2.43) for the case n = 1. The second is
a consequence of (2.44) and (2.48). We compare this to the situation

in which we do not do any uncoupling, but instead use the original
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system w, = Aw‘ + Cw given in (2.1). In that case the "fast"
variable is taken to be v, the second component of the vector .

It satisfies

v _ b-lc . b-l(c, ~

X 21 22

The forcing term in this equation is dominated by Y|b-1d!, since
v = max{lciil}. A comparison with (2.50) shows that the uncoupling

method used to obtain (2.49) has a substantial effect when [Z,>>vy.

This relation defines what we will mean by 'large frequencies' in
the context of this paper. We note that similar relations hold more
senerally and that - and ~ both have the dimensions 'cime-1

For large scale meteorological problems the Coricolis parameter
is usuallv the dominant entry in the coefficient matrix of the lower
order term in lincarized svstems. [t i3 given by f = 270 sin ¢,

where 2 is the earth's angular velocity and ¢ is the angle of

latitude. That is,

9

1

. - . -1
sin ¢ hr x sin ¥ hr

h
H
L
‘l
to)r—

L]
o8

The methods discussed here should therefore work well for those time

. . . . -1

trequencies whose order of magnitude is roughly 1 hr or greater.
In the case of smaller scale problems the Coriolis parameter

may he Jdominated by certain terms which arise in the linearization

of the svstem. This will reduce the maximum wavelength for which

the uncoupling method is effective. However, the size of the computa-

tion domain is also reduced, so it appea « that the method may still

be useful.
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In the estimate (2.45) for Gn there are factors which allow
exponential growth in x for x > 0. (The boundary of the domain
1s given by x = 0.) We wish to make a rough estimate of the co-
efficient in these exponents in order to determine the length scale
on which this exponential growth can take place. One of these
factors is exp[[R+02)x], where

i nlo Lk,
R(E) = X, + kgz SR
The sum is taken for even k, and the parameter 3 can be chosen
arbitrarily. A similar factor appears in the integral term in {l.453}.
An analysis of the uncoupling process shows that the dependence on Kk
k+1

of f\kl is given roughly by vy . We omit the details of this,
a0

but the main idea is that the expansions appearing in Section ’.

Jominated by expansions in yfij-l. The behavior of R({Z) for large

are

%L 1s therefore governed by the leading term AO’ which according to
-1

Proposition 2.4 is equal to -cﬂzb . This satisfies
4

(2.51) e X .1

ol < LI

We recall that £ =y 1is approximately the lowest time frequency for
which the uncoupling method can have an effect. This corresponds to

a period of v“!. The denominator [b(y_l in (2.51) is therefore

a rough approximation to the length of the longest fast wave for which
the method applies. This defines the length scale on which the ex-
ponential growth can take place, since for large £ the parameter \0

”
dominates the coefficient in the exponential factor exp{(R+c")x].




48

2.7 Estimates of the Size of the Fast Part of the Solution:

A More Complete Treatment

We turn now to the problem of making our estimates more rigorous.
The estimate (2.45) for the fast part of the solution was obtained by
considering an ordinary differential equation in x for the Fourier
transform in time. The equation was obtained through the uncoupling
process of Section 2.2. This approach gives a rough idea of how the
boundary conditions affect the solution, but the result cannot be
considered very rigorous. First of all, it obviously cannot work
when the coefficients in the svstem vary with t. Furthermore, this
approach ignores the problems mentioned earlier regarding Fourier trans-
forms in time. A correct uncoupling of the svstem really must be based
on the use of pseudo differential operators, even if the system has
constant coefficients, and a correct analvsis of the effect of the
boundary conditions must be based on this uncoupling. In this section
we give such an analvsis.

As before, we will obtain estimates which indicate the behavior
as ¢ =« of the Fourier transform of the 'fast' dependent variable
in the svstem. In the earlier case we did this by estimating Gntx,i)
for each fixed ¢&. However, in a truly rigorous treatment it is not
possible to analy:ze this problem one frequency at a time. Instead,
we will obtain analogous results by estimating Sobolev norms of the
fast part of the solution. For any real number s, the norm in the

N

Sobolev space H is defined by
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2.5 . 5 1/2
Hulg = € [+ 1] Ju®)]” d8)
=A%)l
2
where
. 8/2
(2.52) AW E) = (1« [E]T) GE .

An estimate involving a Sobolev norm makes a statement about
the behavior of the Fourier transform as & = ©. From certain such
estimates we will be able to conclude that the “fast’® dependent vari-
able is small at large frequencies. However, we will not be able to
conclude that the variable is small altogether, since the estimates
will not say anvthing about low frequencies. But this is not a severe
loss. The uncoupling process has an effect only at large frequencies,
so it is only at such frequencies that we can identify the fast and
slow parts of the solution. At low frequencies we do not know whether
the '"'fast' variable is small, but on the other hand we do not know
that it is really ''fast', either.

The estimates will be obtained through a technique which re-
sembles the one used earlier to obtain (2.45). It is essentially
the standard technique for proving energy estimates for hyperbolic
partial differential equations.

According to the discussion in Section 2.4, the svstem

W AW 4 Cw can be transformed into a system having the form

awn
(2.33 —_— = T w o+ w .
(2.353) X (x,t) Gwn + n“n Env

o Mmimbhia ol aan cada




Here G 1s the operator with symbol

-1
a

where a and b are defined in (2.1}. h is a pseudo differen-
tial operator in the time variable. It has order zero, and its
symbol 1s a diagonal matrix in which x may appear as a parameter.
En is an operator of order -n which does not in general have a
diagonal symbol and which therefore represents the error in the un-
coupling nrocess.

In (2.53) we should also include an error term which represents
the effect of the procedure given in Section 2.3 for justifving the
use of Fourier transforms in time. However, this term can be neglected
according to a localization argument which we will present a little

later. We will first derive the estimates.

- T

Proposition 2.5. Suppose that (2.53) holds., and let W= (un,vn)

Then for anv real s there exist constants ¢ and ¢ such that for

1 2
x > 0 the "fast" variable v_  satisfies
¢, X
_ 2 1 2
v iy et v o, e
(2.54y
rX cl(x‘,‘") 3
Hwfy . o)1~ :
+c2JOe Hety, 1], 9y

provided that all of the norms are finite. The norms are Sobolev norms

in t for fixed x. The constants < and ¢, may depend on n and

Csriaen s menmdamd e N o ol e —e yoney .
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Proof. According to (2.53) the component v, satisfies the
equation
v
n

T (x,t) = ann + Rnw,

where Rn is a pseudo differential operator of order -n, and L
is an operator of order one with leading symbol igb-l. The symbol
of R isa 1 x 2 matrix. In order to simplify the notation we

let q = vn, delete the subscripts in Ln and Rn’ and use a sub-

script to denote differentiation. The result is

(2.55) qx(x,t) = Lq + Rw.

)
We will obtain an inequality for g%{|q(x,-){{; and then use

2 . s
this to estimate {{qH; . This norm is given by

2 2 s s
iiqllg =||Asq’[L3 = (\°q, 0 ),

where A° is the operator defined in (2.52). This is an operator in

t which commutes with differentiation with respect to x. Therefore
o = 3 A2 < (S, AS s s

(2.36) g;]}q(X. )Hs = (Aq,A7q) + (M, A7)

This can bhe evaluated using (2.55).

A%q = ASLq + ASRw

"

(2.57)
L(A%q) + [A%,L]q ¢ ASRw.

1]

T e e eatd i
————




Here [AS,L] denotes the commutator AL - LAS. We insert (2.57)

into (2.56) and obtain

H

3 2 S
scllally = (%q, 1% + (14%q,4%)
2.58) + (A%q, [A%,L]1q) + ([A%,L]q,A%q)

(A3q, A%Rw) + (A°Rw,A%q) .

+

The terms in (2.58) will be estimated using the general fact that
every pseudo differential operator of order m 1is a bounded linear
mapping from 1i* into H' ™.

The first row in (2.58) is equal to ((L+L*)Asq,l<q). where L*

is the adjoint of the operator L. According to the Schwarz inequality

this is bounded bv

2.59) e nSqlf L%l ,

L- L-
The first factor can be estimated by observing that L+ L* has order
zero, even though L and L* each have order one. This is a con-
sequence of the fact that the leading svmbol of the adjoint operator
is equal to the adjoint of the leading svmbol of the original operator.

s
Zince L+ L* 1is therefore a bounded operator on L~, it follows that

to

- . CINTRY 2
-59) can be hounded by a constant multiple of [[A7a!l™,, or !ql].

t
The second row in (2.58) involves the commutator [AS,L] =

APL- 1y, This operator has order s, since the leading svmbhol of

the product of two operators is given by the product of their leading

symbols. The commutator is therefore a hounded mapping from H  into

_—— e

P P L PSS U
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0 2
H" (or L7). It follows from this and the Schwarz inequality that
the second row of (2.358) can be bounded by a constant multiple of
2
ilall ;-
The third row in (2.58) is dominated by a multiple of l]qHJ!wHS-n,

since the operator AR has order s-n. From (2.58) we can there-

for conclude

3 2 2
2 a2 <k Hlali + k fall fwll,

’

for suitable constants K1 and K,. This inequality can he inte-
grated in the same manner as a similar inequality which appeared in
the proof of Proposition 3.2. The result is (2.54). This completes

the proof. ®

The estimate (2.54) expresses the smoothness of the "fast' part

v in terms of the smoothness of its boundarv values v _(0,«) and 1

n nL

. . T .
the smoothness of the entire solution w = (u,v) . According to the [
comments of Section 235 it is possible to choose boundary conditions
for this one-dimensional case so that vn(O,-) is given hy an operator

of order -{(n+l) acting on w(U,+). The inequality [(2.54) can therc-

for be written

> X 5
v (x, )] <c. e 1 Hw(o, )~
n s -9 s-n-1
(X Cl(.‘(-'\') 02
| coe YT
+c, g e ffw(y, )'|S-H~l

r

If w(v,*) 1is in H for each v, then we can let s-n = r and

n+r

conclude that vn(x.') is in H for each x. The fast part of

the solution is therefore n degrees smoother than the full sclution.




54

This argument is circular as presented, since the derivation
of the estimate (2.54) is based on the assumption that all of the
norms are finite. This is not a real difficulty. Suppose that we
have a solution w to (2.1) which satisfies the special boundary
conditions and which lies in HY for each x. We need to show that
for each x the fast part va lies in H™'™. We first note that the
equation (2.55), q, = Lg + Rw, has a solution in ™" which is
equal to Vo when x = 0. This follows from a little functional

analysis and the a priori estimate just obtained. See, for example,

pp. ©3-65 in Tavlor [9]. This function q must in fact be equal

to vy for all x, since Vn is in H> for sufficiently low s,
and for such s the estimate (2.54) implies uniqueness of solutions
of equation (2.55). We can conclude that the fast part has the smooth-
ness properties desired.

One matter which we still need to consider is the error term

mentioned earlier which should have appeared in (2.53). This term
represents the effect of the procedure introduced in Section 2.3

for justifyving the use of Fourier transforms in time. The main idea
of this method is to choose a time interval [a,b] of interest and
then truncate the solution outside that interval by multiplying it by
a smooth function with compact support. This introduces an crror term
in the differential equation which, on the interval [a,b], can be
represented by a smoothing operator. Outside [a,b] it cannot in
general he represented in such a manner. This error term really

should appear in (2.53), but it is possible to omit this term if we

localize the solution so that the behavior outside [a,b] hecomes

et

.l




irrelevant. We describe how to do this now.

The procedure is based on a construction used by Hormander in
the proof of a theorem on provagation of singularities for linear
partial differential equations. See Hérmander [ 3] or Nirenberg
[6 ], p. 43. We will consider an equation Pu = f, where P is
a pseudo differential operator. In ocur application this equation is
(2.53) with the extra error term added, and P is an operator in
both x and t. Hormander describes a method for localizing the
solution to a neighborhvod of a given bicharacteristic of P. He
constructs a pseudo differential operator B of order zero so that

the commutator [P,B] = PB - BP has order -« and so that the symbol

of B vanishes outside a conical neighborhood of the bicharacteristic.
BNY

The equation Pu = f implies P(Bu) = BPu + [F,BJu, or

(2.00) P(Bu) = Bf + [P,B]u.

The local smoothness of u 1is given bv the global smoothness of Bu
(see the next paragraph), so it is possible to study the smoothness
of u along the bicharacteristic by considering global estimates for
(2.60). This behavior is not influenced by the term [P,B]Ju because
this term is automatically smooth in both x and t. It is also not
influenced by the values of f awayv from the bicharacteristic, since
these values are cut off by the operator B.

The fact that the local smoothness of u 1is determined by the
global smoothness of Bu is a consequence of the fact that B i3 an
elliptic operator of order zero in a neighborhood of the bicharacter-

istic. To show this rigorously one needs to do a certain amount of

s
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work with cutoff function.,. The necessary arguments arc given in
part (b) of the proof of Lemma 3 on page 42 of Nirenberg [6].

This localization process enables us to handle the extra ervor
term mentioned earlier. Suppose that the symbol of B i3 truncated
s0 that it is zero after the characteristic leaves the time interval

fa,b]. Re-write equation (2.53) as

qx(x,t) = Lq + Rw + Ew,

where Lw 1is the extra error term. When we anply the operator B
to this equation, this term is replaced by BEw. The support of 3B
in time is contained in the interval [a,b], and the singular be-
havior of Ew 1is confined to the complement of ([a,b]. These facts,
together with the pseudo local property of pseudo differential opera-
tors, imply that BEw must be entirely smooth in t. This term can
therefore be treated as a forcing term which lies in any Sobolev class
we desire. It follows that the estimate in Proposition 2.3 is com-
pletely valid nrovided that Vo is replaced by an and a suitable
norm of BEw 1is inserted. The conclusions about smoothness can then
be applied to an

The method used here actually gives more precise information than
is implied by Proposition 2.5, since it deals with propagation along
individual bicharacteristics. This feature will he useful in the
studv of problems in several space dimensions, where the direction

of propagation can play a key role. In particular, it will be more

A . .

[ T OSSR
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important to suppress fast waves moving in a direction normal to
the boundary than it will be to suppress waves moving in a nearly
tangential direction. The method given here allows one to dis-

tinguish between these directions.

ISPy




2.8 Numerical Computations

In this section we present the results of some numerical computa-
tions involving the boundary conditions which were derived earlier. We

consider the system

3 ,u -1 3 su 0 0 u
2 — = —_—
(2.61) ot (v) ( -5 ) ax (x) * (10 0 ) (v)
for 0 < x <1 and t > 0. This is the system (2.1), where a = -1,
b = -5, c:71 = 10, and the other cij are zero. We compare the
boundary conditions
v =0
(2.62)
us=g {(x = 0}
and
IV 21
= + ( )U = 0
(2.63) 't ‘b-a
u=g (x = 0} .

Here g 1is a given function of t. The first coadition in (2.63) is
the condition (2.32) which was obtained from the results of the un-
coupling process.

In our computation the system is approximated by the leap frog
difference scheme. The function g in the boundary conditions is equal
to a half period of a sine wave which is extended bv zero. A for-

ward difference is used to approximate the derivative in (2.63). The

—————r
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surfaces pictured in Figures 1.5 and 2.4 are graphs of JuT + vT as
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a function of x and t. In Figure 2.2 we illustrate the con-
figuration of these surface plots.
/02 +v2
t
fast slow
X
Figure 2.2

In the computations we set the solution equal to zero when
t = 0. The nonzero part of the solution is due entirely to the non-
zero boundary data, so it is possible to study the influence or the
boundary data by examining the size of the solution in various parts
of the (x,t} plane. The solution corresponding to the simple
boundary condition (2.62) is graphed in Figure 2.3, and the solution
corresponding to the more refined condition (2.63) is given in Figure

-.4. It is clear from the figures that the second condition is much

more effective in suppressing the fast part of the solution.
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Figure 21.3.
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Solution corresponding to

boundary condition (2.62).

Solution corresponding to

boundary condition (2.63).
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CHAPTER 3

THE PROBLEM IN SEVERAL SFACE DIMENSIONS

In this chapter we will generalize the methods of the preceding
chapter to systems in more than one space dimension. The major change
required lies in the process of diagonalizing the leading symbol of
the differential equation. In the case of one space dimension this
diagonalization causes no trouble at all, but in the case of several

space dimensions it can get rather involved. Otherwise, there is little

RS B

difference between this case and the one discussed earlier. The lower
order term can be uncoupled in exactly the same manner as before, and

the fast part of the solution can still be estimated by localizing the
solution to a bicharacteristic and then applving energy estimates.

We will first discuss the problem of diagonali:zing the leading
symbol. We will then summarize the uncoupling process for the nulti-
dimensional case, and we will conclude with a useful perturhation
lemma which is a generalization of a technique that was used earlier.
In the next chapter we will apply these methols to the shallow water

equations.

3.1 Properties of the Principal Symbol

We will consider the hyperbolic system

(3.1) w, = Aw_ + Bw + Cw 1
t X v

for x >0, v € R. Here w(x,v.t) € Rn, and A, B, and C are real

n » n matrices which are functions of x, ¥, and t. Without loss
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of generuiity we will assume that A 1is diagonal. In order to
simplify the notation we have chosen a system in two space dimensions.
Throughout this chapter it will be obvious that the discussion is
equally valid for systems in higher dimensions where x > 0 and

v E ]Rk for k > 2.

There is no serious loss of generality in assuming that the
spatial domain is a half-space. If the given domain does not have
this form but still has a smooth boundary, then it is possible to
localize the problem with a partition of unity and then map each
boundary portion into the boundary of a half-space. In the new co-
ordinates the problem will have the form given above.

The system {(3.1) has been assumed to be hyperbolic. In this paper
this will mean that for every real 7 and w and for every point

(x,»,t), the symbol
(3.2) A+ wB

has real eigenvalues and a complete set of eigenvectors. There wiil
be no need to assume that A and B are svmmetric or that the sys-
tem is strictly hvperbolic.

In order to have a svstem with at least two time scales, we will
assume that certain eigenvalues of the symbol (3.2) are substantially
greater in magnitude than the others. In the case of the lineari:zed
shallow water equations this svmbol has eigenvalues -u-+g and
-usg * |c|, where u = (ul,uz) is the velocity of the flow about
which the svstem has been linearized, and o is the vector of dual

variables (Z,w). If Jul<<e¢, then this svtem has two time scales.
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There is a similar set of eigenvalues for the three-dimensional, five-
component Euler system for gas dynamics. In this case the small eigen-
value has multiplicity three.

We now turn to the main problem. We wish to find boundary condi-
tions for (3.1) which prevent rapidly moving waves from entering the
given spatial domain. Our plan is to first transform the svstem to an
approximate diagonal form, or at least block diagonal form, so that
each of the new dependent variables can be identified as a slow, incom-
ing fast, or outgoing fast portion of the solution. We will then
attempt to set the incoming fast components equal to zero.

The immediate goal is to diagonalize the leading order terms in
the svstem (3.1). It would actually suffice to obtain a block diagonal
form, since there is no need to separate various incoming fast com-
ponents or various slow components. After this part of the uncoupling
has been accomplished, we can use the metﬂods of the preceding chapter
to reduce the coupling caused bv the lower order terms.

We have assumed that the matrix A in (3.1) is already in diagonal
form. This involves no loss of generality, since if A is not in that
form we can find a similarity transformation which makes it diagonal and
then adopt a suitable change of dependent variable. (nfortunately, it
is not true in general that this transformation can also diagonalizZe the
matrix B. It is therefore necessary to do something extra if we want
to diagonalize the entire principal part of (3.1).

In the case of constant coefficients it may be tempting to use

fourier transforms in x and v. This would vield the equation

o b e A - AAAML £ Rt s oo e e e
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W(Z,u,t) = (iEA + iwB)w + Cw.

The leading symbol of this equation can be diagonalized easily because
it is a scalar multiple of the symbol (3.2) discussed earlier. How-
ever, the use of Fourier transforms in x requires the use of informa-
tion about the solution away from the boundary x =0, and this is not
appropriate in a discussion of boundary conditions. It is therefore
necessary to take a different approach.

We will instead use Fourier transforms in time and in the tangent
variable v. For the time being we will use these transforms in a
rather formal way, and it will be understood that one can obtain rigorous
results hv translating various arguments into the language of pseudo

differential operators. We first write the svstem (3.1) in the form

I 1 -

(3.3) woo= A w_ - A
T

It will be assumed throughout this discussion that the matrix A is
invertible. Let Q(x,w,g) denote the Fourier transform of w with

respect to v and t for fixed x. Equation (3.3) implies

1

(3.4) & w8 = (iea”! - e leye - aTlen

We need to determine the values of w and ¢ for which the symbol

(3.5) gA'l - oA B

can be diagonalized, and we must determine whether such a diagonali:za-

tion can produce a transformed system in which each component of the




dependent variable can be identified as slow, incoming fast, or
outgoing fast. The answers to these questions are not immediately
obvious, since we have chosen a nonstandard set of variables in which
to apply Fourier transforms.

In order to get started we must consider the eigenvalues and
eigenvectors of the symbol (3.5). Suppose that ¢ is a real eigen-
value of (3.5) and that v is a corresponding eigenvector. This

means that

(3.6) Al - waey = oy

I[f we multiply bv A and rearrange the terms, the result is
(3.7) (zA + wB)v = Ev.

The matrix ZA + wB 1is the symbol (3.2) which we would obtain by writ-
ing the svstem in the more common form (3.1) and then applving Fourier
transforms in the usual variables x and v. According to (3.6) and
(3.7), this symbol imposes the same relations hetween the dual vari-
ables 7, w, and £ as the svmbol (3.5), and it is possible to find
the eigenvectors of one svmbol by examining the eigenvectors of the
other. The difference between the two situations is that in one case
the variable ¢ 1is treated as a function of « and %, and in the
other case I 1is treated as a function of ¢ and w. This corre-
spondence between the two svmbols will be very useful in studving
(3.5). At this point in the discussion we know a great deal more
about (3.2) than we do about (3.5), and the correspondence tetween

the two will enable us to translate information about one into

o




66

information about the other.

We begin by discussing the eigenvalues of (3.2). In order to
have a system with multiple time scales we have assumed that certain
eigenvalues of (3.2) are considerably larger than the others. An
example of such a set of eigenvalues is graphed in Figure 3.1(a).

In this example there are two relatively large eigenvalues and one
smaller eigenvalue for each ¢ and w. This is the configuration for
the shallow water equations, and it is similar to the configuration
for the Euler equations of gas dvnamics. In the latter case the small
eigenvalue has multiplicity three. Throughout this discussion we will
assume that the largest eigenvalues of (3.2) occur in pairs and have
graphs which are similar to the graphs of the large eigenvalues in
Figure 3.1(a). That is, we will assume that there is a large positive
eigenvalue whose graph is a narrow cone, though not necessarily a right
circular cone. This implies that there must also be a negative cone,
since if (7,w,f) 1is a solution of (3.7) then so is (-3, w-, -3).
These eigenvalues generate rapidly moving waves in all directions. The
fact that the graphs are not recessarily right circular cones means
that the speed can vary somewnat with the direction of propagation.

We will denote by {2 the double cone which corresponds to the largest
eigenvalues, and we will denote by [ the portion of the (w,£) space

which lies inside Q. These are labeled in Figure 3.1.
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£ (dual to t)
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 {dual to x)

w (dual to V)

(a) Graph to the relation: (3.6), (3.7) (by Cross-section in the

{w,3) space

Figure 3.1

We are now in a position to discuss the eigenvalues - of the
symbol (3.5), iA_l - wA'B. The quantities 3, w, and £ must
satisfv the relation (3.7), which is the same as the relation (3.6)
which was discussed in the preceding paragraph. We can therefore
study the behavior of 7 from graphs like Figure 3.!(a).

First of all, it is apparent that the number of real eigenvalues
must vary with the position of (w,§). If (w,§) lies in T, then
there are two values of 7 which are associated with the surface §
One is positive and the other is negative. As (w,{) approaches the
boundary of TI', these values of ¢ approach zero, and when (w,%)

leaves T the eigenvalues leave the real axis and form a pair of

complex conjugates. The eigenvalues cannot be real, since for any

Y
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real ¢ the point (Z,w,£) must lie on one of the surfaces in Figure
5.1(a). They are complex conjugates because theyv are eigenvalues of
a real matrix.

It is safe to assume that the other values of 7 do not behave
in this manner, at least in a neighborhood of T. 1In the case of the
shallow water equations the other 7 satisfies the equation
g = Upg *+ U We have assumed that the matrix A in (3.1) is non-
singular, which in this case is equivalent to saving u1 £ 0. It is
therefore possible to solve for ¢ in terms of w and £, whether
or not (w,5) 1is in T. A similar situation holds for the Euler equa-
tions of gas dynamics. We will therefore assume in general that for
(w,&) 1in a neighborhood of T there is no problem in solving for
the values of 7 associated with surfaces different from 3.

We will now characterize the behavior of (3.5) when (w,Z) lies
in T. This is the only portion of the (w,f) space in which we are
really interested, since this is the only portion which corresponds
to the rapidly moving waves. We will say more about this a little

later.

Proposition 3.1. If (w,£) 1is in T, then the symbol (3.5),

:'A-1 - wA'lB, has real eigenvalues and a complete set of real eigen-

el

vectors. This is not the case if (w,f) 1is not in T. The eigen-

vectors can be determined from those of the svmbol (3.2), ZA + wB.

Proof. Equations (3.6) and (3.7) show that the eigenvectors of
(3.2) are also eigenvectors of (3.5). We know that (3.2) has a com-

plete set of real eigenvectors corresponding to fixed (3J,w) and
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various eigenvalues ¢. We want to show the same thing for (3.5), for
fixed (w,£) in T and various eigenvalues Z.

Suppose that (w,£) is in T, and let Cl""’cm denote the
eigenvalues of (3.5). For each Cj choose a basis Bj for the
eigensnace of ch + wB corresponding to the eigenvalue £. We are
allowing for the possibility that the symbol (3.2) might have multiple
eigenvalues. The elements of Bj are also eigenvectors of (3.5)
corresponding to the eigenvalue Cj' We claim that the union of the
Bi is a complete set of vectors. There are clearly enough of these
vectors. The fact that they are linearly independent follows from an
argument which is essentially the one which shows that eigenvectors

corresponding to distinct eigenvalues are linearly independent. This

completes the proof. ®

The matters discussed in this section can be given a physical
interpretation. Suppose that the coefficients in (3.1) are constant,

and let C = 0. This gives the system

(3.8) wt = wa + Bwy.

If we insert a plane wave solution v exp(igx + iwy + i%t) into (3.8),
where v 1is a vector, the result is £&v = (ZA + wB)v. This is the
condition (3.7) which was discussed earlier. The surfaces in graphs
like Figure 3.1(a) therefore define the set of all possiblé frequencies
for plane wave solutions to (3.8). It is apparent that the rapidly
moving waves are associated with {, which is why we are interested

-

in the behavior of (3.5) only for (w,%) 1in T.
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In graphs like Figure 3.1(a) there is a particular wave speed
associated with each surface which defines 7 as a function of w and
5. This implies that it is possible to separate fast waves from slow
waves by diagonalizing the symbol (3.5). It is also possible to detect
the directions in which the fast waves are moving. The portion of the
surface Q for which the product &Z 1is positive corresponds to
waves which are leaving the region x > 0, and the portion for which
£ < 0 corresponds to waves which are entering the region. By pro-
perly defining the branches of Z on the two sections of T, we can
therefore separate the fast part of the solution into incoming and
outgoing components. This justifies our decision to seek diagonal
form for the svmbol (3.5).

We need to sav a little more about the directions in which the
various waves propagate. A plane wave exp(iZx + iwy + ift) must
propagate in the direction = (z,w). If the point (w,Z) 1lies on the
vertical axis in Figure 3.1(b), then w = 0, and the wave moves in a
directiv- normal to the boundary. If (w,£) lies near the edge of
T, then for a fast wave [z| 1is small compared to |w|, and the
wave moves in a direction which is nearly tangential. This observa-
tion will be useful later when we seek explicit formulas for bringing
about an approximate diagonalization of the svmbol (3.5). The approxi-

mations we introduce will be valid asymptotically as % + 0. This

k]

will lead to boundary conditions which work well for fast waves travel-
ing in directions which have sizeable normal compconents, but they will

not work well for waves moving in directions which are nearlv tangential.

e i .




These tangential waves do not present any real problem, since they

cannot influence the interior very rapidly. The approximation schemes

are therefore worth using.
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3.2 Outline of the Uncoupling Process

In this section we will describe the uncoupling process for
systems in more than one space dimension. We will first outline some
‘ of the ideas using Fourier transforms in a formal way, and we will
then use pseudo differential operators to make the process more rigorous.
We consider the system (3.1), W, = wa + Bwy + Cw, on the domain
x > 0. When we solve for W and apply Fourier transforms in vy and

t, the result is

(3.9) 3 = 5T - T e - AT

According to the remarks of the preceding section, the leading symbol
igAQl - iuA-lB is diagonalizable for (w,§) in T, and it is only i
for (w,Z) in T that we can have rapidly moving waves. For the

sake of neatness we will use a cutoff function to restrict attention 1
to that set. Let ¢y be a C Function of & and & which is equal
to zero outside T and which is equal to 1 on all of T except for

a thin laver near the boundary. Equation (3.9) can be written

~ - - ~ - - ~ ‘
(3.1M) w = (if Vogea e - a7lea - (1-0)iwa lae ]
The last term in (3.10) is an error term which is zero on almost all ]

of T. 1It is nonzero only near the edge, and for fast waves this
corresponds to nearly tangential incidence. The error term is there- 3

fore insignificant.

o

For any particular system it is necessary to find explicit

formulas for similarity transformations which bring the leading svmbol




(3.11) il - e ls

1

of (3.10) to diagonal form, or at least to approximate diagonal form.
We note that it would actually be enough to obtain a block diagonal
form in which each block corresponds to slow, incoming fast, or out-
going fast components of the solution. This situation could occur
with the Euler equations of gas dvnamics, where there i35 a slow mode
of multiplicity three. The uncoupling can be accomplished either by
using a certain perturbation method or by explicitly computing <he
eigenvectors of (3.11).
To use the perturbation method we ohserve that (3.1l 1is egual

i times the matrix

(5.12) NI

The matrix A has been assumed to he diagonal, so if £ 1is smuall,
the matrix (3.12) is a perturbation of a diagonal matrix. ke can
therefore use the perturbation argument introduced in Chapter 2 to
bring (3.12) closer to diagonal form, or at least to block diagonal
form. We can applv the method once to reduce the coupling to order

bl -

. . ' S - . .
), twice to reduce it to order (#) , and so forth. Thig is

S
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one of the approximation schemes mentioned in the preceding =ection
which work well in directions having a sizeable normal component
but do not work well near tangential incidence. We will present a
general form of this perturbation method in the next section. There

it will become apvarent that in the case of multiple eigenvalues this




method cannot give diagonal form, but instead can give a satisfactoryv
hlock diagonal form.

Another way to diagonalize (3.11) is to compute the eigenvectors
explicitly. One way to do this is to work directly with the matrix
(3.11). Another is to find the eigenvectors of the svmbol (3.2),

ZA + wB, and then use the ideas of Proposition 3.1 to translate these
vectors into eigenvectors of (3.11). The latter approach would be
preferable if (3.2) is easier to work with or if its eigenvectors are
alreadyv known.

By calculating eigenvectors we will be able to obhtain an exact
diagonalization of (3.11) when (w,%) 1s in T[. This may appear to
be an advantage over the perturbation method given earlier. However,
the expressions for the eigenvectors can be complicated, and in order
to obtain local boundary conditions it would usually be necessary to
approximate these expressions with polynomials or rational functions.
We would again use approximations which are valid asymptotically as
? + 0. Although it does not give exact results, the second approach
allows greater flexibility in the choice of approximation methods. The
earlier perturbation approach emplovs one fixed method of approximation,
but here we have a choice of various Tavlor approximations or rational
Padé approximations. Engquist and Majda ( [1 ], {2]) found Padé

Japproximations particularly useful in their work on absorbing boundary
conditions for scalar wave equations.

In the calculations for the shallow water equations which appear




in the next chanter, we will use the perturbation approach which
was mentioned first. In this case the method gives satisfactory
results. In general, however, one should keep in mind the ¢reater
flexibility allowed by the direct calculation of eigenvectors.

We now give an outline of the uncoupling process for systems in
several space dimensions. Our intent at this point is to give a
broad overview of the method and avoid details which could obscure
the main ideas. We will go through the process in great detail in
the next chapter when we derive boundary conditions for the shallow
water equations. These calculations will be rather long and technical,
so it will be worthwhile to first see a relativelv short outline of
the process.

we first solve for wo in (3.1) to obtain the form (5.3),

woo= ahe o ale - atlew .
X v
In order to simplifyv the notation we will change the meaning of A,

B, and C and write the svstem as

(3.13) W = Awt + Bwy + Cw.

A, B, and C will have this meaning throughout the remainder of
this paper. The matrix A is diagonal.
In order to prepare for the uncoupling, ve will express (3.13)

in terms of certain pseudo differential operators. As in Chapter C

the solution w will be truncated in t so that these operators

il




can be applied to it, but this fact will be suppressed from the nota-

tion. Denote by H the operator with symbol 3

(3.14) oy = 1EA + iwvB,

and let E1 be the operator with symbol iw(i-+?)B. The system (3.13)

then becomes

(3.15) w = Hw + Cw + E_w .
X 1

As before, ¢ 1is a smooth function which is equal to 1 on almost all 4
of T and is equal to zero outside T. The operator E1 represents
an error which is zero when ¢ = 1. In the case of variable coeffi-
cients the cone @, and therefore [, can vary with x, v, and t,
so ¢ 1is in general a function of x, v, t, w, and £&.

We have mentioned that when we try to uncouple the leading svmbol

it will be useful to use perturbation arguments involving the quantity

Jnje

The operators which transform the system must therefore involve

this quantity. A notential problem with this is that £ cannot be the

g

svmbol of a pseudo differential operator because of the singularity in

the direction £ = 0. However, we have avoided this difficulty by our

use of the function ¢. We will find that the ratio % can appear
only in the form % ¢, and this is nonzero only in a conical neighbor-
hood of the axis w = 0. The singularity is thereby eliminated.

When we uncouple the system (3.15) the first task is to take care
of the leading order operator H. Let q be a matrix such that

quq-1 is approximately diagonal or approximately tlock diagonal,
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and let Q be the pseudo differential operator whose symbol is q.
The operator Q must have order zero, since its symbol ¢ 1is homo-
geneous of order zero in its dependence on w and §£. If we apply

Q to (3.135), the result is
(3.16) (@), = (@HQ Haw + (@CQ ™"+ Q@ hHaw + QEpw .

Here Q-l denotes a parametrix, or approximate inverse, of Q. This
operator is defined by the property that QQ-l - I 1is a smoothing
operator. [t is not hard to show that such an operator exists and

to obtain an asymptotic expansion for its syvmbol. An outline of

the argument is given in Section 4.1. The leading order term in

. . -1 . -
the expansion is q ~, the inverse of the symbol of Q.

We need to»examine the operator QHQ—I. According to the composi-
tion law for pseudo differential operators, its leading symbol is the
product of the leading symbols of Q, H, and Q-l. This is the matrix
quq-I which is known to be approximately uncoupled. There are also
various lower order terms in the expansion of QHQ_I. These are due
partly to the effect of the composition law and partly to the lower
order terms in the expansion for Q-l. The composition law is stated
in the Appendix.

Let G be the pseudo differential operator whose symbol is the
diagonal part, or block diagonal part, of quq_l, and let R be
the operator whose svmbol is the rest of quq-l. G and R both

have order one. Because ol the approximate uncoupling in SRATEN
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the effect of R 1is small except near tangential incidence. If we
let Wg = Qw, (3.16) becomes

ow

2 0 _
(3.17) il GwO + Zwo + Rw0 + Ezwo.

Here I is the pseudo differential operator associated with the zero-
order terms appearing explicitly in (3.16) and with the terms of order
zero or less which arise in the expansion of QHQ-I. E2 is equal to
QElQ-l, and its symbol is equal to a smoothing term when ¢ = 1. The
svstem (3.17) is uncoupled near normal incidence, up to terms of order
Zero.

The coupling in the lower order term can be reduced by using the
same technique that was used in Chapter 2 for systems in one space
dimension. That is, we can apply to (3.17) an operator of the form
1+K, where 1 is the identity operator and K is an operator of

order -1 which is to be determined. When we apply the operator

I+ K, the result is

(3.18) ;% [(1+K)wy) = (I+K)G(I+K)'1w1

. (1+K)(:+R+Ez)(1+x)’1wl £ K w0y

where w, = (I+K)w, = ‘I+K)Qw. The parametrix (I«»K)“1 has the

el
asymptotic expansion I-~K+K"-... . This follows easily from the
fact that the order of K 1is negative. The system (3.18) can there-

fore be written




ow

1 .
K{— = Gwl + (KG - GK + Z)hl

(3.19) + (terms of order -1 or less)

. (K+K)(R+E2)(I+K)-1w1.

The zero-order coupling in (3.19) is caused by the operator

KG - GK + Z. TIts leading svmbol is

2 -
(3.20) o495 g

where oy and ¢, are the symbols of K and G, and 2y is the
leading symbol of Z. In order to eliminate the coupling of order

zero, we will need to determine o so that the svmbol (3.20) is

K
diagonal (or block diagonal). In Chapter 2 we did this calculation
for a special case, and in the next section we will give a more

general treatment as part of a general perturbation lemma. There we

will find that it is possible to find a suitable o provided that

the diagonal blocks of o have disjoint spectra. This condition can

be satisfied here since we are trying to separate slow, incoming fast,

and outgoing fast components of the solution.

The technique given here can be used to uncouple the system
further. To reduce the coupling from order -n+1 to order -n, we
would use an operator of the form I+ Kn’ where Kn has order -n.

After m uncouplings the dependent variable would be

W = (I+Km) L (I+K1)Qw.
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where K1 is the operator K discussed above.

Boundary conditions for the system can be generated and then
analyzed using ideas which are similar to those used in the case
of one space dimension. To do the analysis we would localize the
solution to a neighborhood of a bicharacteristic and then find energy
estimates involving Sobolev norms. These estimates would give informa-
tion about the behavior of the solution at high frequencies. The fact
that the solution can be localized to a bicharacteristic means that
we can study the effects of the boundary conditions for various angles

of incidence to the boundary. This gives meaning to the use of the

approximations about normal incidence which were mentioned earlier.
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3.3 A Perturbation Lemma

In this section we present a method for reducing the coupling
found in matrices which are perturbations of block diagonal matrices.
This method can be used to partially uncouple the leading symbol in
the system (3.13), and it is essentially the method which has already
been used to reduce the coupling caused by lower order terms. We pre-
sent it as a separate lemma for the sake of clarity and generality.
Various versions of this method have been used in [4], [8], and

{1071 for 2 < 2 block matrices.

Proposition 3.2. Let A and B he sguare matrices of equal

dimension. Suppose that- A is block diagonal, and let Al,...,An

denote the blocks on the diagonal. If no two of the Aj have any

n

eigenvalues in common, then for small ¢ the sum A + ¢€B can be

5
uncoupled to order €~. More precisely, there exists a matrix M

such that for ¢ sufficiently small,

(I+5M)(A+€B)(I+€M)'1= A+ e-* (block diagonal matrix) + € (€7)

A method for constructing M will he given in the proof.

Proof. For small € the inverse (I'eem_I exists and is equal

LR
to T-+M+e™™M - ... . We can therefore write

1

- 3
(I+eM) (A+£B) (T+eM) (T+EM) (A+=B) (L-EM + ¢ (€7}

A + €(MA-AM+B) + R
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Our goal is to choose M so that
(5.21) MA - AM + B

is block diagonal. For the sake of notation we will partition M and
B into block structures which match the block structure of A. Mij
and Bij will denote the blocks in the (i,j) position. They are
not necessarily square, since we are not assuming that A.1 and Aj
have the same dimensions. The (i,j) block in (3.21) can then be
written as MijAj - AiMij + Bij' For i # j. we want this to be equal

to zero. We are therefore faced with the problem of solving the

equation

(3.22) M..A. - AM.. =-B..
13 ] 11 1]

for Mij' Once we have done this, the proof is complete. There are
no conditions imposed on the diagonal blocks Mii’ so these may be
chosen arbitrarily.

If Ai and Aj are both 1 x 1 matrices, i.e., scalars, then
we obviously need to have A.1 # Aj in order to be able to solve (3.22
for arbitrary Bij' In the general case the system (3.22) is solvable
if and only if A and Aj have disjoint spectra. Proofs of this
fact can be found in several different references. We give one here
for the sake of ‘completeness.

In order to simnlifv the notation we will write (3.22) in the form
XS - TX =Y, where S, T, and Y are given and X 1is to be deter-
mined. We are assuming that S and T are square matrices which do

not have anyv eigenvalues in common. There is no need to assume that

da

et aibiatite s e x e o




they have the same dimension. We will denote the columns of X and

Y by X; and yi, and we will denote the entries of S by Sij.

We can assume that S is upper triangular, since otherwise we
can use a similarity transformation to reduce the problem to that case.
We will solve for the columns of X, starting from the left. We first

have $11%1 ” Tx1 =¥ The matrix slll - T 1s nonsingular since

511 is an eigenvalue of S and therefore not an eigenvalue of T.

The column x, 1is therefore determined uniquely. We next have

1
SaaXy - TXy = v, - Sl’xl' This system has a unique solution X5

since S14 is not an eigenvalue of T. We can continue in this
manner to solve for all of X. We note that the condition on the
eigenvalues of S and T 1is necessary as well as sufficient, since
it 1s equivalent to the statement that SiiI - T is nonsingular for

all 1. This completes the proof of the lemma, and theretore the

proot of the main proposition.
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CHAPTER 4

AN EXAMPLE IN TWO SPACE DIMENSIONS

In this chapter we will use the methods of Chapter 3 to derive
boundary conditions for the linearized shallow water equations. The
calculations will follow the outline given in Section 3.2. When we
uncouple the leading symbol of the system we will use the perturba-
tion method given in Section 3.3. This process and the one used to
reduce the lower order coupling will each be applied one time. Cer-
tain portions of the calculations are specific to the shallow water
equations, but other portions are more generally applicable. For
much of the chapter the spatial domain we consider will be the half-
space x > 0, but later we will discuss the effect of rotation of
coordinates on the form of the boundary conditions. In the last sec-
tion we will present the results of some numerical tests of these

conditions.

4.1 VUncoupling the System

The linearized shallow water equations can be written in the form

u & -Cc u B u
(4.1) 3 v = 51 2 v + g -c 2 \
S St 3x 3y
-c o P -¢ 5 p
u
+ (v.. v
({”

e
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In this notation, (-a,-83) 1is the velocity of the flow about

which the system has been linearized, and ¢ 1is a speed associated
with the propagation of gravity waves. We will assume |a,,|8]<<c
and o # 0. The dependent variables are given by u = cu', v = cv',
and p = ¢', where u' and v' are the perturbations in the com-
ponents of velocity and ¢' 1is the perturbation in the geopotential.
The coefficients Yij in the undifferentiated term are due partly to
Coriolis effects and partly to the process of linearization. For the
time being we will consider the system on the domain x > O.

The first step is to diagonalize the coefficient matrix of the

in (4.1). To do this we use the matrix

)
v Io%)
Kl

normal derivative

(+.2)

The columns of this matrix are normalized eigenvectors of the co-
efficient matrix in question. When we multiply (4.1) on the left by
the inverse of (4.2) and make the appropriate change of dependent

variable, the result is the system

4.3 wt = a-c wx + Dwy + Ew ,
a+c
where
v
(4.9 w = L (u+p)
V2
L uep)
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D and E can be written explicitly, but we will wait until we solve
for W
We can use (4.3) to make a preliminary identification of the
slow, incoming fast, and outgoing fast parts of the solution. Since
la| << ¢, we can say roughly that the first component v is a slow
component and that u+p and u-p are incoming and outgoing fast

components, respectively. In order to suppress the incoming fast
part of the solution we could therefore require u+p = 0 at the
boundary x = 0. If o < 0, then we would also prescribe a value
for v 1in order to have a well-posed problem. The trouble with this
approach is that it ignores the effect of the terms Dwy and Ew.
Our identification of the various parts of the solution is therefore
not very accurate. The purpose of the uncoupling process is to pro-
duce a more accurate identification and thereby enable us to find
boundary conditions which are more effective at suppressing the in-
coming fast part.

We need to solve for Wy in (4.3). When we do this the result

is

where




——————
5=
1
v
‘- L
A=C
1
A+C
-8 c -C
2 a2 a2
-R
(4.6) B = _— = 0
v2 (a-c) Qa-c
L
; —_-c 0 -2
v 2 {a+c) +C
/
22 1t s 217 s
] ; o LT
E coo | =tsr TuT™isTsiM'ss o i3t sss
v2 (a-¢) 2(x-¢c) 2(a-¢)
12750 Y5173 11T 51755
V2 () 2(u+0) J(a+ch

As in Section 3.2 we write the system (3.5) in the form

(4.7 w_ = Hv + Cw + E.w,
X 1

where H 1is the operator whose svmbol is given by

(4.8) oy = 184 + iwwB,

and El ts the operator with symbol iw(l-¢¥)5. In order to uncouple

the leading order part of (4.7) we need to find a symbel  such that
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quq-l is closer to diagonal form than Oys at least for small
;ﬁ . To do this we will use the ideas of sections 3.2 and 3.3 to

>

find a matrix M such that

+ = + 8 + L oM -1
(1 SWM)(A g‘pB)(I E50)
(1.9

= diagonal matrix + ((/(g-sa)z)

We will then let q =1 + %«m.

Satisfving the condition (4.9) amounts to solving the equation

MA - AM + B =0 for M. A calculation shows that M can be taken
to be
0 -(a-¢) - (a+c)
M= ‘l: e 0 0
v'2
o 0 0

and that (I +eM)(A+eB)(I+ EM)-1 is then equal to

Q|+

3
a

(4.11) 1 + € S + /'\’gz)

+C Q+C

The off-diagonal elements in (4.10) are determined uniquely by the
condition (4.9), but the diagonal elements may be chosen arbitrarily.

For convenience we have set these equal to :zero.
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We now define the syvmbol q by

(4.12) q = 1+§¢M,

where M 1is given in (4.10), and we let Q be the pseudo differen-
*ial operator with symbol q. When the operator Q 1is applied to

the system (4.7), the result is
- -1 -1 -1 .
(4.13) (Qw), = (QHQ ")Qw + (QCQ = + Q.Q JQw + QE w .

Here Q‘ denotes the operator with symbol q-

1

We saw in Section 3.2 that the leading syvmbol of OHQ ' is

qCHq-l. According to (4.8) and (4.12) this is given by

qGHq_l = (1 +

| g

¢M) (1ZA + 1weB) (T + F ¢M)

L .
If we factor out if and identify §¢7 with € 1in (4.11}), we can
2

- el 2
conclude that SEAT 1 is equal to 9 * (%T-v’), where

|-

-8
a

(4.14) g4 = i3 — + dwy —

.
——a i L
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We will let G denote the operator whose symbol is 9 The system

(4.13) can then be written in the form

3wO wz 2
(4.15) e IR AT (7(jf-w“)w + Cw(l-9))w,

where Wy = Qw.

The operator I 1is associated with the zero-order terms appearing
explicitly in (4.13) and with the terms of order zero or less which
arise in the expansion of the symbol of QHQ'I. In a moment we will
discuss this further. The term ((Q%T-wi)w denotes the effect of an
operator whose svmbol is dominated by %;-vz and which is a result
of the error in uncoupling the leading order part of the system (4.7).
The term (¢'(w(l-¢))w represents the effect of the operator E1 which
appears in (4.13). 1Its symbol is equal to zero on almost all of the
set  , which is the only part of the (w,f) space in which fast
waves can be found. In T 1it is nonzero only near the edge, which
for fast waves corresponds to nearly tangential incidence. This term
is therefore of no consequence.

The system is now partially uncoupled near normal incidence, since

the syvmbol of G 1is diagonal. We next need to reduce the coupling

caused by the :zero-order operator I, which is given by

I = QCQ_1 + Q‘(Q-1 + (terms of order zero or less

(4.16) a
arising from the expansion of QHQ )

[ S PSSP
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The coupling can be reduced by the method presented in Chapters

-~

2 and 3, but we will first have to identify the leading symbol of Z.

A

We first consider the first two terms in (4.16). The leading
symbol of QCQ~1 is

1

qcq” ! = (1 + %m;cu + %q:m'
=Cx 029,
and the leading symbol of QxQ-l is
qxq°1 = (%’wMX)(I + ‘%f—mn'l
= ((F9)

The expression for ¢ is taken from (4.12). We will regard terms

. (W] .
¢ as error terms since ¢ 1s no larger than the

of order
3

5
W

term — ¢
S

SIS

which has already appeared in (4.15). The first two

terms in (4.16) are then given by
- -1 -1 @
4.17) QCqQ "~ -+ Q‘Q = C + order (-1} + ¢ (z»w)

. . -1 .
In order to consider the expansion of QHQ we must first

find the symbol of the parametrix Q'l. We start by assuming that

the symbol has an asvmptotic expansion of the form ry .

and £. The choice

where Ty is homogeneous of order -k in w

of orders will turn out to be appropriate, since Q has order zero.

- ..
LS Sy S



We will then solve for the r, one by one.

Let Ry be the operator with symbol T According to the

composition law for pseudo differential operators, the symbol of

QRo is

+ order (-2)

The composition law is stated in the Appendix. If we choose
Ty = q_l, then the leading term is I. We note that r, really
-2

is of order zero and that the error term really is of order 2.

We now have

(4.18) QR0 = I + order (-1) .

Now choose r so that

1
ar ar
1 0 0
(4'19) qu = = T(qg It + qw _5)’— )'

The leading symbol of QRl therefore cancels the leading symbol of

the error in (4.18). This gives
Q(RO+ Rl) = I + order (-2) .
This process can be continued indefinitely to find any Ty At each

step we would need to know the leading symbol of the error in the

equation

QRy+ -+ +Rk_1) = I + order (-k) .




This can be calculated from the expansions of the symbols of QRi

for j < k.
In the present problem we really only need the terms T, and k
T Q has order zero and H has order one, so the terms Ty, Tg,.en

1’ 2

must contribute terms of negative order in the expansion of QHQ-l.

e fashe

These lower order terms are of no interest to us here.

The leading symbol r, of Q_1 is given by

0

(4.20 ry=q = (I+ % vM)-l =1+ (¥'¢).
> <

We will see later that in this case it is not necessary to keep anv

. . . . -1
more terms in this expansion of Ty The second term r, in Q

is defined in (4.19) to be

Equations (4.12) and (4.20) can be used to obtain

T, = i(1 s Lo - oM (L)« (Lo Lo
4.0 S r- < < &
(4.21 ?
,
= (5S¢
g-—

In (4.21) we have omitted derivatives of ¢ since these are nonzero

only near the edge of I and cannot be of any consequence. From the

above work we can conclude that the symbol of Q-I has the expansion
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H r\+r

0 y order (-2)

= q'l + v, + order (-2) ;

[

I+ (’(%w) +'(/(-;—2¢2) + order (-2) .

We are now ready to calculate the expansion for QHQ~1. We

will begin by finding the symbol of HQ-I. According to the composi-

tion law, this is ]
1 % 3
= -2 S e — -
OHQ'I oylry+ ry +order(-2)) + 7 HET: (r, +order(-1))
1 %% 3 !
* T30 3}' (r0+order(-1)) + order (-1) . i
Since Ty = q-l and oy = i£A + iwyB, this can be written as
-1 Sro 31‘0
c = g,q + (1A + iwgB)r, + A ~— +¢B —~—+order (-1} .
HQ-I H 1 at dy

We have again omitted derivatives of y. (4.20) and (4.21) now imply

- 2
ALY e wen (et
+ A(f(’gm . ¢B(:('§¢) + order (-1) ,
or
(4.22) o q° qu'l + 6"(%¢) + order (-1) .
HQ




The symbol of QHQ'l is given by

2, T

1 3g
O _,=Q0 _; *+ T =7 _
QHQI HQ1 1ag,tHQ1 f
1 3q
+ = = O + order (-1) 1
dw 3y -1
w 3 “ho ]
We now use (4.22) and the fact that q 1is equal to 1 + E’-«:M. 1
k
-1 W b
¢ _y=aloy@” * ((F¢) + order (-1) ] ]
QHQ N 3
1 W 3
(4.23) + = (- ¢oMl = ¢
+ —;—(é-spM) % c q* order (-1) .
7 HQ k
A short calculation shows that
3 _ s . w
¢ 1° (1£At + umth)([ - E’gpM)
HQ
+ (iEA + iwpB) (- F wM,)
2 2
+ ('(%—\P") + (’(gp) + order (-1).
The same relation holds when we replace t with y. The second term .

in (4.23) is therefore ('(%\a) + order (-1), and the third is

~pMAV + /(i::\p) + order (-1). Equation (4.23) can then be simplified to
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(4.23) o -1

= quq°1 + vMAV + O % ¢) + order (-1) .
QHQ -

The first term is the term of order one which we have already used,
and the second is the term of order zero which we have been seeking.
The point of all of this work was to find the symbol, at least
to leading order, of the operator Z which represents the zero-order
coupling in the system (4.15). According to (4.16), this operator is

given by

= QCQ_1 + Q‘(Q-l + (terms from QHQ'l of order zero or less) .
Our results in (4.17) and (4.24) imply that its symbol is
(4.25) C+wMA, + C(% ) + order (-1) .

The system (4.15) can therefore be written in the form

w 2
> 0 _ R N T
14.26) =< ° G“O + Zg%p * o 3 eIw + ( (5 Iw

(P24

+ (((W(l-p))w + (order -lIw,

“0

the matrix C into the sum ¢C + (1-9¢)C in order to give a neater

where is the operator whose svmbol is ¢(C + MAV). We have split
form to certain formulas which will appear later.
We are finally ready to uncouple the term of order zero. To do

this we will use the method given near the end of Section 3.2. That

is, we will apply an operator of the form T+K to (4.26), where KX

— A e




has order -1, and then make the corresponding change of dependent

variable. We will choose K so that the :tero-order operator in
the transformed syvstem has a diagonal leading symbol. According to
the work in Section 3.2, this operator is KG - GK + :O‘ We there-

fore need to choose K so that

(4.27) .0~ - T

%G + ¢(C + MAy) = diagonal matrix.

¢k
Here Ok and 5, are the symbols of K and G, respectively,
and the third term is the symbol of 20. o is given in (4.15),
A and C are given in (4.6), and M 1is given in (4.10).
We can solve (4.27) using the method of Proposition 3.2. After

a certain amount of labor we obtain

12 13
bl bl
(4.28) S = —_— K 0 | - ,
K . 2 K
ig(1 - ? vB)c 1 i
- koo k., O
31 32
where
k., = -L'[( +v,)(a-e) - ala, -c )]
127 5 Y2 T Y23l 0 Aty = Gy
1 .
le == [(-y:1+ st)(x+c) + a(ay-rcy)]
Y -
K, = = [-a(Y,a* ¥Yza) = o (a-C)]
21 ST 12 32 v
ko, = 1 [2(¥, 4 = Y=s) + 2 (a+c)]
3517 5 2T sl Ty
Kyo = 4 (¥ g * ¥y5 - Yaq * Yg3) (0c)
23 4 11 13 31 3537

1 . o
K32 =3 Oy *vp3- vz - Y30 (00

i




Equation (4.27) does not impose any conditions on the diagonal
elemnets of K. For convenience we have set these equal to zero.
The operator I+ K transforms the system (4.26) into the form

Aw
(4.29) = Gw, + (diagonal operator of order zero)w1+ (order(-2))w

1
3IX 1
-

. ('(%\P]w . ("(%V’)w + C(w(1-9))w,

where wy = (I+K)w0 = (I+K)Qw. The symbol of K 1is given in (4.28),
the svmbol of Q 1is given in (4.12), and the components of w are
given in (4.4). This represents all of the uncoupling which we will

do for this system.




4.2 Boundary Conditions

[t is now time to use the results of the uncoupling process
to derive boundary conditions for the system (4.1). It is necessary
to identify the incoming fast component for the partially uncoupled
system (4.29) and then find conditions which suppress this component
at the boundary x = O,

The symbol of the operator G which appears in (4.291 is given

in (4.14) and is equal to

x+C J+C

Since ja=c >>:a', the second and third components of w,oin

(4.29) are the rapidly moving portions of the solution. The second

is the incoming component, since x-c¢ < 0. We need to use the identity

\\"1

we need to use this formula to find suitable boundary conditions for

(4.1).

The dependent variable Wy is given by

wy, = (I+K1Qw
(4.30

i

TI+T )" o (T o+ R oM
k N

Here we have used the expression (4.12) for the svmbol of Q. The

quote marks denote pseudo differential operators having the stated

99

= (I+K)Qw to find an explicit formula for this component, and then

b




symbols, and the small circle denotes composition of operators.

{4.30) can be written
(4.31) Wy @ 0 )" e @ e T+ (1)
S

In order to produce cleaner formulas later on we have used the cut-
off function ¢ to restrict the solution to the set T 1in the
(w,%) space in which the fast waves can be found.

According to the composition law, the svmbol of the composition

in (4.31) is

- . X 1 3 . 3 w
(f + T+ F¥M ¢ 2w (¥ 2 D) s (P e TN

K
(4.32)
1 > . 3. W
e (v T,) + = ¢M) + order (-2).
T g W k) v - ) + or -2
The derivatives of ¢ + &, with respect to w and I are of order -2,

K

since Sk has order -1 and we are ignoring derivatives of . (4.32)

is therefore

(¢ + T )¢ + £ oM) + order (-2)
o
<= 2 w 2 W
(4.339) = LT H T+ T M 4 eo M o+ order (-2)
=0T e ¢ FOTM s (55 97) 4 order (-2)
- \.:-
To obt.in the last line we used (4.28) to conclude o, = (( é A
)

(4.3 and 1335 now imply
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(X4 I ) " mn W 2
1.3 Wy o= (¢~ + o+ iw"m W+l (:—;sp ) +¢(1-¢) +order (-2) .

The error terms in (4.34) can be ignored in the system (4.29),
since their only contributions in that equation are error terms

having the same order as terms which are already there. In particular,
. L 2 . w2 w 2 W2
620 (Z7 97 = (@) + () 2€(5597) = C(E9) + ((5¢7). The

ra

Jy

system (4.29) can therefore be written

-

1.35) 7% = Gz + (diagonal of order zero)z + (order(-1)iw
__A;- ) N
A L 5 2L R A 1R S B
where
- v 2 W 2o
r31.30) 1= rpo, + T Y)W

>

% is given in (4.28) and M 1is given in (1.10).

The second component of =z is the incoming fast component which

we need to suppress. According to (4.36) and the expressions for K

and M, this component is

2, (x,v.t) =
s - 2V +vL,) + Lt-c\—. .
; _i(qj'\’+£t)¢2 y(' (ﬁ)_‘:_‘_ - (_l,:) 12 - “.(1,,
i WlEl T 3 i5(1 - £ :
(4.37) - {:_ R .,¢ -
)
. (a+e) (Y, =Yy *Y oy =V 22)
A (IIT’ 11 1; 51733 \m:» dds
¢ iE(1 - 7 ¥3) ;
s )
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Here w(l), w(”], and w(a) denote the components of w. These are
ki
given explicitly in (4.4). We note that (4.37) is a perturbation of w(').

This expression can be simplified somewhat. The factor

(1 - ? ¢5)-1 can be approximated by 1 + ('(%-w). When this is
5
multiplied by (ii)—l the result is ('15,)-1 + ( (f% ¢). For reasons

=

stated earlier, terms of order ﬁ%-¢ can be omitted without affecting
[
£
the order of the error terms in the system (4.35). We can therefore
replace (1.37) with a new fast quantity

D — —
4
i
|

VL) ex (a-e)) gt
1o 52 Ty :

[N RN Sy SR

cvl

Llay+it) 2

O \(l —_— lk
bj -y V: ~ :
(3.38) L |

3

(2 11 , \ v - N &
— 53\ (u+c)(Y11-{13+131 Y333W dunds,

A
We need to find a condition which suppresses (4.38) at the boundary
x = 0. If the cvoefficients are independent of vy and t, then the
bracketed quantity in the integrand is the Fourier transform of (4.38),
give or take a fuctor ¢2, and we can accomplish what we want by
setting this quantity equal to zero at the boundary. If we do this,

clear Jdenominators, and then invert the Fourier transform, we obtain

() - (D .
v Y oW 1 ) X (1)
3t * : Y - o [0’«(\12“ YSZ) + Cly((‘t‘&.)]h
V- Cv o
(4.3M
RE T . _ : (3) B ;
- ,lc ) ('ll 14 ’31 Yss)w =0 for X 0

If the coefficients depend on vy or t this derivation is not




valid. However, we can show that (4.39) is still useful in this
case. Suppose that this condition holds, and write it in the simpler
form

() 3w(l) (1

P + Fow + F.w = 0.
—~ d

1.4
(4.40) - 75 .

L9

v

If we apply the operator having the symbol %g to (4.40), the result

— h) " ~ " 2y )
0 o= ﬁ:' L ”ii”w(') + (iw =+ F)) w(l) + F-wta} !
1L = 1 3 »
b V o
$ — F —_ )
) b ~
-"~"',,("+ 0" [“_:)—‘-+——}—+ A I A “(”
s 5 13 [ Te
- ¥V - >
" ,"‘F.. " .
(4.3 R APV SR B )
L_l; ‘:;-
_ dtoy+it) :f'{ Sy X, El.}ﬁ(l’ . “(2)+ Li W(:]‘fi i
ot AR S i (Hwes
A— Vo= ——d

¢ (2w + (order(-2))w.

According to (4.38) and the definitions of F, and F., implied by

1 3

(4.40), the integral in the last line is our approximation to the in-
coming rast part of the solution. The entire last line is equal to
lero, so this tast part must be equal to

(% wz)w + order(-2lw

B
s

M)

at x = 0. The incoming fast part is therefore small compared to w

for large frequencies and for angles near normal incidence.

is
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The boundarv condition (4.39) is written in terms of the com-
ponents of the vector w which appears in the system (4.3). We
can use the definition (4.4) of w to write the condition in terms
of the variables wu, v, and p in the original system (4.1). When

we do this the result is

-

S v 1
7 (W) * o W [a(‘rlz*YSZ) + uy(a-C)]v

(4.40) - (

It may be worthwhile to compare (4.40) with the boundary condition

(4.41) W ey p=0

which we mentioned early in Section 4.1. This condition was derived
from the system (4.3), in which the coefficient of the x-derivative

is a diagonal matrix. The newer condition (4.40) is based on the
incoming fast variable (4.37) which was obtained from a more extensive
uncoupling of the syvstem. An inspection of (4.37) shows that this
variable can be considered a perturbation of w(z) =u+p, soin
some sense (4.40) is a refinement of (4.41). One obvious difference
between the two is the presence of derivatives in (4.40). This is a
result of the need to clear denominators in the Fourier transform

of the incoming fast part. The other difference is the presence of

terms which do not involve u + p. The term o %% is a result of

uncoupling the leading symbol, and the other terms in (4.40) are the




result of reducing the coupling caused by terms of order zero. The

term Jy(a-c) corresponds to the part of the zero-order coupling
which resulted from the prior uncoupling of the leading symbol. If
we had not carried out the lower-order uncoupling, then the boundary

3 W
condition would have been é%—(u+p) + 0 l% = 0.

Up to now we have discussed boundary conditions only for the in-
coming fast part of the solution. If the boundary x = 0 1is an in-
flow boundary, i.e., if o < 0 1in (4.3), then we must also specify
a condition for the slow part. One possibility is to use the svstem

(4.3) to obtain the condition

(4.42) w (1)

v = given function, for x = 0.

Another possibility is to try to base a boundary condition on the
more extensively uncoupled system (4.35). We could presumably pre-
scribe a value for the Fourier transform of the slow component in
(4.35), clear denominators, and then apply an inverse transform to
obtain an inhomogeneous boundary condition analogous to (4.40).

The first approach suggested here is acceptable, but the second
one is not. Our use of the cutoff function ¢ means that we have

-

uncoupled the system only on the wedge in the (w.3) space
which corresponds to rapidly moving waves. This is clearly no re-
striction when we are seeking boundary conditions which suppress the

incoming fast part of the solution. But in the present case it is

a major restriction, since the slow part of the solution is associated

with the entire (w,3) space. The partially uncoupled system (4.35)

e v

J
i
t
|
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cannot give a full description of the slow part, so there is no
point in trying to use this system to find an improvement of the
condition (4.42).

We will therefore prescribe the conditions

3 1
3¢ (utp) +a % - ¢ lalyprygy) « oy lae)]v
(a)
a+c

(4.43) B IR VRS E RS TR E T YA 2l

(b) v = given function, for x =0,

U ¥ - VP SRV S

if x = 0 defines an inflow boundary. 1In the case of an outflow

S

boundary we will use only the first condition.
We need to discuss whether these conditions define a well-posed
initial-boundary value problem. We will first consider the special

case in which the zero-order terms in (4.43)(a) are not present. This 1

would be the situation if we were to uncouple the leading svmbol but
do nothing about the zero-order coupling in the system. In this case

the boundary conditions at inflow have the form

v =g i
"
u+p = (u+p)t=0 - JO & 5y (v,1)dt, for x =0, i
where g 1is a given function of y and t. Simple energy estimates §

for the system (4.3) show that this defines a well-posed problem. The

a priori estimates for the solution involve a time integral of a

tangential derivative of the data.




In the general case we must do something different in order to
properly handle the incoming fast part of the solution. This is
really no problem, since in principle it has already been done. In
Section 2.6 we described a process for estimating the incoming fast
part for systems in one space dimension, and at the end of Section
3.2 we indicated that this process extends to the multi-dimensional
case with little modification. These estimates were derived in order
to show that our boundary conditions are effective at suppressing the

incoming fast part. One would expect that they also imply that the

conditions give well-posed problems,

107




108

4.3 Effects of Orthogonal Changes of Spatial Coordinates

The spatial domain considered in the previous sections was the
half-plane for which x > 0. In order to treat slightly more general
regions we will now consider the effects of linear orthogonal changes
of coordinates. We will first derive some general formulas, and we
will then use these formulas to derive boundary conditions for the
four sides of the unit square 0 < x <1, 0 <y < 1. These conditions
will be used for the test problem which will be discussed in the next
section.

We first need to establish some notation. Let R denote an
orthogonal transformation on R:, i.e., either a rotation or a flip

of coordinates. This is illustrated in Figure 4.1 for the case where

\ L 4

-
-
-

\ -

|- R N

= »
- - \ I3
\ y
\

\

Figure 4.1
R is a rotation. Suppose that f 1is a function which is defined
with respect to the old coordinates (solid axes), and let ; be a
function Jdefined in the new coordinates (dotted axes}. From the
figure we can see that if f 1is evaluated at point : = (x,v¥), then
-1

the numbers plugged into f must be given by 2 =R z. We there-

fore have the relation
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(4.44) f£(z) = £(2) = R 2)

for scalar functions. For vector-valued functions the dependent ]

variables must also be transformed. In this case the vector

£ = (fl,fz)T describes a direction relative to the solid axes,
and the vector f describes the same direction relative to the

dotted axes. The correct change of coordinates is therefore given by
Zn-1
(4.45) f(z) = Rf(R "2).

We will need to use the fact that ths ‘:idient of a function and
the divergence of a vector field are i~ -~. 1ni in the sense implied
by (4.44) and (4.45). We will give ehi:.  [eofs of these in order
to help establish our notation.

First consider the gradient. If f(z) = %(R-lz), then

£1(2) = £ R ORTY,

or

N B PR |

Here the subscripts 1 and 2 denote differentiation with respect to

the first and second arguments, respectively. (4.46) can be written

3,£(2) al?(R‘lz)
(4.47) =r{

Bzf(Z) azf(R 2)
Here we have used the fact that the transformation is orthogonal, i.e.,
R'1 = RT. The invariance of the gradient follows from the observation




110

that (4.47) is a special case of the formula for changes of coordinates
given in (4.45).
We now consider the divergence. If f and f are vector-valued

functions such that f(z) = R%(R'lz), then f'(z) = R%'(R-I:)R-l, or

(3,£,3,0) = R(al%,az?)k‘l.

In this case (Blf,3,f) is the Jacobian matrix of f. The divergence

of f, 31f1+ 3,f,, 1s equal to the trace of this Jacobian. The fact

that the trace of a matrix is invariant under similarity transformations
implies

(div £)(z) = (div £) (R 12) .

We will now study the effect of the transformation R on the
svstem (4.1,

5 (U a -C 3 u & e u
\‘—t v = a % v ]+ 3 -¢ wiv) e (‘fi v
Ap - af *\p -« &) T\p 7 \p

In order to make it fit our notation for changing coordinates, we will

write this svstem in the form

Py 0
' - - R - - -
(3.48) W (z,t) = (W ,W,) ( B) cf pr, c 0 + (\ij)w‘
0 up+v,

where W = (u,v,p)T. The numerical subscripts on u, v, p, and W

denote partial derivatives. The 3 x 2 matrix (wl,w,) is the




11l

Jacobian matrix of W with respect to the spatial variables. It can
be denoted by W',

We will define the change of coordinates by

e

R ~ _

(4.49) W(z,t) = ( ) WRz,) . |
1

The matrix in (4.49) is a 3 x 3 matrix in which the 2 x 2 matrix

appears in the upper left. This matrix is present because it is 4

necessary to transform the velocity components when the spatial co-

ordinates are changed. If (4.49) is inserted into (1.48), the result is

R R .
( ) wt(R‘lz,t) - ( ) W ts e rE (f
1 1

PPN Y

Ty =
~—~——

4.50
(4.50) 5, 0 )
-clp, - ¢ 0 +(,1‘)( ) W
1
0 u, + v,

In the first term on the right we used the chain rule to evaluate the ]

Jacobian matrix W'. (4.50) can also be written

-1
N - - _ R p,(z,t)
W= (W) ,H,) R ! (Z) - c( ) ( L )
- - 1/ \p,(z,0)
(4.51)
0 R™L R .
- ¢ 0 + ) (v. ) W,
1 t 1
Up*tva

According to the formula (4.47) for the invariance of the gradient, the

second term on the right is c(ﬁl(R-lz,t\,ﬁ,,O)T. The form of the

|




third term is invariant under the transformation, since Uy +v,

is the divergence of the velocity field. The system (4.51) is

therefore the same as
. P,
(4.52) W =(w1,w:)(98‘) -elp, ) -
0

where

—
Uttt

(4.353) and

~—
-
o
“../
i
—
=
—
S
—
<
o
't
-
—
el
—
e

Equation (4.53) represents the transformation of the velocity field
of the flow about which the system has been lineari:zed.

Equation (4.52) shows that the form of the syvstem (4.13) does
not change under orthogonal transformations of spatial coordinates.
This result depends on the fact that spatial derivatives appear only
as gradients and divergences. The value of this result is that our
previous calculations immediatelv give boundary conditions along any
straight boundary. Suppose that our spatial domain is the region to
the upper right of the line £ 1in Figure 4.2. Choose a coordinate
svstem so that the v axis coincides with 1 and so that the positive
X direction points into the region. We can now apply our earlier
calculations regarding boundary conditions which suppress the in-

coming fast part of the solution.
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—

X

Figure 4.2

If this is an inflow boundary, then (4.13) implies that we can usec

¢
Q)
<l

- ~ g 1 .o o~ -
(u+p) + & 3F - B ,+vg2) + 5

(4.54) a+c ~ ~ ~ ~
(55) Oy Yiz*Y¥s1 7Y

v = given function, for X = O.

If this is an outflow boundary, then we would use only the first con-
dition. The conditions (4.54) can be expressed in terms of the co-
efficients and components of the original svstem (4.1) through the

relations
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We will now use these general formulas to derive boundary
conditions for the sides of the unit square 0 < x <1, 0<vy < 1.

These conditions will be needed for the test problem which will be

discussed in the next section.
Denote the sides of the squares in the manner indicated in

Figure 4.3. For segment A we can use the conditions (4.43) which

v}

Figure 4.3

were derived earlier since this part of the boundary corresponds to
x = 0. The inward normal direction for segment B is the positive ¥
direction, so for this segment we need to use the transformation X = v,

v = x. The matrix R 1is then given by

For segment C the transformatien is X = -x, ¥ =y, and foi seg-

~

ment D it is X = -v, ¥ = x. The matrices for these transforma-

tions are
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respectively.

Routine calculations produce the following boundary conditions:

Segment A (x = 0):

3 av 1
3¢ (WP ra Sy g lalnytvg) ¢ oyleo)y
(4.55) (A} A tC .
- (G Oz tysy o vsg)upd = 0

v = given function.

Segment B (v = 0):
R (v+p) + 8 ELN S [B(Y4, *Yzq) *+ 8, (3-c)]u
Tt 3 T ¢ 217 V31 x
(4.55) (B) B+c i
~(3E) trgg = Y23+ V57 Y530 (VP) = O

u = given function.

Segment C (x = 1):

3 v 1
B - S CPRR F PR VA
(31.55) (C - O
N - ( 4cc) (v *Y¥y5° Y597 Y33) (-u-p) = 0

v = given function.

_——




1ie

Tt (-v+p) - B X ['L(-Yzl*'YSI) - Sx(-B-C)]U
(4.35Y (M -3+¢C
= (—46-.) (Yzz*YZS-Ysz-‘Yss)(-v-p) =0

u = given function.

For each segment the first condition is the one which is intended
to suppress the incoming fast part of the solution. The second con-
dition prescribes a value for the slow variable, and it should be

imposed only when the segment is an inflow boundary.
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4.4 Numerical Computations

In this section we present the results of some numerical compu-
tations involving the boundary conditions which have just been derived.

We consider the system

u -1 -3 u 0 u u

d = 3 g P ,
(4.56) Tt v |= -1 X v |+ 0 3 5y v+ (yij) v
P -3 -1 P =50 P P

on the unit square 0 < x <1, 0 <yv < 1. This system is a special
case of the system (4.1). We will use two different choices for the
matrix (\ij\.

We wish to compare three types of boundary conditions for this
system. The first of these is obtained by diagonalizing the coeffi-
cient of the normal derivative and then defining boundary conditions
in terms ot the dependent variables in the new system. These variables
will be referred to as 'characteristic variables". This was discussed
early in Section 4.1, immediately after equation (4.4). For the four
sides of the unit square the incoming fast characteristic variables
are the quantities in (4.55) which are differentiated with respect to
time. The second set of conditions is obtained by uncoupling the
leading svmbol in the manner described earlier, but then doing nothing
about the :zero-order coupling in the system. These conditions can be
obtained by deleting the zero-order terms in the derivative conditions
appearing in (4.55). The third set of boundary conditions is obtained
by also uncoupling the zero-order terms in the svstem of differential

equations. These ave the conditions (4.55).
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We present two separate tests of these conditions, one to demon-

strate the effect of uncoupling the leading symbol, and the other to
demonstrate the effect of uncoupling both the leading symbol and the
zero-order term. In the first case we let Yij = 0 for all 1i,i and
use the first two sets of boundary conditions. In the second case we

use all three sets of conditions, and we let (yij) be the matrix

0 10 0
(4.57) -10 0 0
0 0 0

In the computations we set the solution equal to zZero when 1t =0.
At the boundary x = 0 we set v (see (4.55)(A)) equal to a pulse
consisting of half a sine wave in t multiplied by half a sine wave
in the tangential variable y. We use homogeneous conditions on the
other boundaries. The nonzero part of the solution is due entirely
to the nonzero data at the boundary x = 0, so it is possible to
study the influence of these data by examining the size of the solu-
tion in various parts of the (x,y) plane at various times.

In our computation the system is approximated by the leap frog
difference scheme. The derivative boundary conditions in (4.55) are
approximated by centered differences in the time and tangent variables.
The outgoing fast characteristic variables are extrapolated at the
boundary using the given differential equation. For this we use
centered differences in the time and tangent variables, and we approxi-

mate the normal derivative with a forward difference which uses a time
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average at the back point. At an outflow boundary the slow character-
istic variable is extrapolated in the same manner.

The boundaries y = 0 and y = 1 are characteristic for the
system (4.56). At these boundaries we integrate the slow character-
istic variable in the boundary using a centered difference approxima-
tion. This is an experiment to see if the incoming fast modes can be
activated at a characteristic boundary. In our earlier discussion we
always assumed that our boundary was noncharacteristic.

The surfaces pictured in Figures 4.5 and 4.6 are graphs of

o) 5 » 1/2

(U™ + v7 + p7) as functions of x and y for fixed t. The

configuration is shown in Figure 4.4.

, 172
9

2 2
(u” +v~ +p

_ nonzero data given here

R |

Figure 4.4

We show solutions at times t = .125, .25, and .375. The fast mode
entering through the boundary x = 0 has normal velocity 4 since

a = -1 and ¢ = -3. Pulses entering on this mode should therefore




be visible near the nearest boundary (x = 1) in the graphs for t=.25.

In Figure 4.5 we show the effect of uncoupling the leading symbol.
In this case Yij = 0 for all 1i,j. Figure 4.5(a) shows the solution
corresponding to the boundary conditions defined in terms of character- i

istic variables. The solution in Figure (4.5)(b) corresponds to the

more refined boundary conditions. The second set of conditions is
clearly more effective at suppressing the incoming fast part of the
solution.

In Figure 4.6 we show the effect of uncoupling both the leading

ttte sk o A s

symbol and the term of order zero. In this case the matrix (Yij)
is given by (4.57). The simplest boundary conditions are used in

part {a). In part (b) we use the boundary conditions obtained by

B4 ek e ek e et

uncoupling the leading symbol oniy. The boundary conditions for part
(c) are obtained by uncoupling both the leading symbol and the term

of order zero. The third set of conditions is clearly the most effec-

tive.

e thae -
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e o aa




Figure 4.5. Effect of uncoupling the leading symbol,

(a) Solution using boundary conditions based i
on characteristic variables. ool
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{b) Solution using boundary conditions based
on uncoupling the leading symbol.
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APPENDIX
PROPERTIES OF PSEUDO DIFFERENTIAL OPERATORS 1
?
In this appendix we will define pseudo differential operators ,
1
and state without proof of some of their basic properties. More
extensive treatments can be found in Nirenberg [ 6], Taylor { 9],
and Treves [11 ].
We must first establish some notation. Partial derivatives in
R" will be denoted by 3%, where a = (yse-ea ), and ]
4
3
] % “n
0 -1 n 3 3 1
3 ¢ = - - Q = . . ——
~ al "n (’5)( ) ( \x ) 1
1 n
The aj are nonnegative integers. Differential operators can then 1
be written in the form ]
P=71a
o
The coefficients a  are functions on Rn, and the sum is taken
over finitely many multi-indices a. We will allow the possibility
that P may act on vector-valued functions. In that case the a,
may be either scalars or matrices.
The Fourier transform on R" will be denoted by
a(g) = —= - f Le T uxadx,
(2m) R
where x * & = E?=1 xiaj' The inverse Fourier transform is then given by




1‘7"1 j

f ] X8 Geyde .
R

Differential operators can be represented in terms of the Fourier

transform. For suitable functions u, we have

(Pu)(x) = % aa(x)a“u(x)

X8 S(eyde

z aa(x)ai f e

okl nduis

= [ e a0 an ace)e .

. o
Here (if)" denotes the product (i)
1

X

L, . -(iin) n. The equation

can be written in the form

X

(A1) (Pu) () = [ % pex, 06 (8)dE,

where p(x,§) = L aa(x)(iﬁ)a. The function p 1is sometimes called
the symbol of the operator P.

Pseudo differential operators are obtained by allowing a larger
class of svmbols to be used in (A.1). Every differential operator
is a pseudo differential operator, but not vice versa. One fairly
general symbol class is the class 52,6’ 0 <38 <0< 1, which was
introduced by Hormander. This is defined to be the set of all c”

functions p which satisfy estimates of the form

N

(A.2) IBE Bsp(x,EWI SCy o gl |E|)m-ola‘+618l . xe K, E£eR"




for all «,R and for every compact subset K of R". The constant
is allowed to depend on &, 3, and K. The svmbol of a differential
operator of order m having smooth coefficients clearly belongs to

the class S This class will also be denoted by S™. For the

m
1,0°
operators considered in this paper we always have p =1 and & = 0.
In general, the number m appearing in (A.2) is called the order of
the operator P whose symbol is p. The order need not be positive,
and it need not be an integer.

If ue C., then Pue C°. It is possible to extend P so

OJ

that Pu is defined for any distribution wu having compact support.

In this case Pu 1is a distribution.

A useful concept is that of an asymptotic expansion of a svmbol.
Suppose that {mi}f ) is a sequence of real numbers such that
Joast

meo>me) for all j and m.o>-e o as j o+ e Let {pi1 be a

m .
sequence of symbols such that p; € s ' for each i. A syvmbol is

said to be an asvmptotic sum of the pi, written

m
?=0 pj €S kel for all k. That is, the error in

each partial sum must have the same order as the first term omitted

provided p - L

from the partial sum. This concept is analogous to the usual concept

of asymptotic expansion. In fact, if a function p(S) of one

variable has an asymptotic expansion




o a,
p(g) ~ ¥ L as g+
j=0 g’

in the usual sense, then this expansion is also asymptotic in the
sense described above.

Pseudo differential operators can be composed. Let P and Q
be operators with symbols p(x,£) and q(x,£), respectively, and
suppose that q has compact support in x. The composition P(Qu)
is then well-defined and is given by a pseudo differential operator
whose symbol has the asymptotic expansion
Ip(x, D)o (x,2) .

_1
lal

(A.3) Cnn ~
PO 30 il

The sum is taken over all multi-indices o = (11,...,xn) having non-
negative components. The order of o is given by ' = Zai, and
the factorial «! denotes the product alla,! <. -gni

It follows from (A.2) that when a symbol is differentiated with
respect to 5, the result is a symbol of lower order. This implies
that the leading order term in (A.3) corresponds to l!a; = 0 and is
equal to p(x,£)q(x,8). The symbol of the product of two operators
is therefore equal to the product of their svmbols, up to certain
terms of lower order.

This makes sense when we consider the special case of differential
operators. The composition of two operators a(x)3” and b(x)a3

is equal to




S B s e

eI 8 o A i b 5.4 s S . W

g

aa“(baB) = ab3®*" + lower order terms involving derivatives of b.

In this case the composition law can be derived using Leibniz' rule.
For general pseudo differential operators the derivation is much more
complicated.

It is sometimes necessary to discuss adjoints of pseudo differen-
tial operators. The adjoint of an operator P 1is a pseudo differen-

tial operator P* whose symbol has the asymptotic expansion

1

lat 30 il

Aalt
~ 3 * £
Tp+ vgaxp (x,%

The leading order term in this expansion is the adjoint of the syvmbol

of P.
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