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I.  INTRODUCTION
‘ Slow growing fatigue cracks subjected to very low stress intensity -factor
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ranges (AK) comprise a major component of fatigue 1life in notched structural

' members. These near-threshold growth rates represent early stages of crack
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formation and propagation where remedlal measures can be instituted. To
implement aireraft durability life requirements, fatigue crack growth (FdG)
rate information in the low AK regime ‘is needed, and yet this is the regime

where little aluminum alloy data are available. This shorthming is attributed -

T AT

to the complexity and expense of near-threshold FCG ra’ée data acquisition. (1)
Test results obtained at intermediate and high FCG rateé on aluminum
alloys (2-7) show that coarse intermetallic constituent particles, intermediate

size dispersoids, and fine precipitates influénce crack gropagaﬁion resistance
and fracture toughness. Recent work on Fe-base and Ti-base alloy systems (8~10)
suggests that microstructure has a stronger influence on FCG resistance at
near-threshold AK levels than at moderate to high AK values. ‘Should a parallel
observation apply to aluminum alloys, opportunity would exist for sighifica.nt
gains in the economlc 1life of aircraft through improved alloy selection.

‘ji . Utilization of FCG-resistant materials to obtain an optimum balance between
durability and damage tolerance needs requires better understanding of how

microstructure influences behavior at all AK levels. This understanding
includes a knowledge of crack growth mechanisms, which vary with stress intensity
range (11, 12). Changing fracture processes reflect competition among various
mechanisms, and the dominance of a particular mechanism is deperdent on both

' the magnitude of &K (5-7) and alloy microstructure. Since the predominant , .
fracture mechanism is not a unigue function of AK, potential "ecrossovers" in
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alloy performance ranking may develop as one compares FCG resistance established
at various levels of AK. The first phase of this program characterizes the
effect of 7TXXX aluminum alloy microstructure, as influenced by composition and
temper, on propagation rates established under constant-amplitude cyclic
loading conditions, Behavior at intermediate to low AK estabiished in this
investigation is compared to known behavlor at higher AK magnitudes.

Constant load a;nplitude fatigue behavior can be regarded as the "steady-state"
response of a material to cyclic loading. However, cyclic loading in service
is seldom constant load amplitude, but rather is comprised of a spectrum of
variable-amplitude load excursions. FCG behavior under variable-amplitude

loading conditions includes transient response characteristics not addressed

in constant amplitude tests. In particular, the ability of a material to retard

crack growth following overloads is not characterized by a constant load
amplitude test. Thus, the relative rankings of alloy FCG resistance under
spectrum lcading can be opposite to rankings obtained from constant load

amplitude tests.(13, 14)

The second phase of this study evaluates the effect of 7XXX aluminum alloy
microstructure on transient FCG response to simple tensile overloads, and is
intended to link the un‘dersta.nding of steady state and transient FCG response
a’ relatively low AK. This phase complements earlier work (5-7) which evaluated
overload-microstructure interaction of 7XXX alloys tested at moderate to high
stress intensity factor levels. Since FCG performance depends upon detalls of
the loading history, the clarification of transient alloy response to elements
of variable cyclic load histories represents an additional step toward knowing
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which alloy, component design or test procedure is optimum for a particular
class of application; e.g., fighters as opposed to transport aircraft.

II. OBJECTIVES
The role of high strength aluminum alloy microstructure on steady state

and overload-related transient FCG resistance at low applied stress intensity

factors is not well established. Consequently, the objectives of this

investigation are:

(1) Clarify the role of 7XXX aluminum aircraft alloy microstructure,

as influenced by composition and temper, on (a) near-threshold corstant load -

amplitude FCG rates, and (b) crack growth retardation characteristics for

single periodic overloads superimposed on low AK constant load amplitude

cycles.

(2) Consolidate results of this investigation with previous work on
identical alloys and tempers (5-7) to clarify the role of microstructure on

steady state and transient FCG response over a broad range of applied stress

intensity factors.

III. PROGRAM PLAN
3.1 Materials

The alloys chosen for study are laboratory-fabricated variants of 7075 and
7050-type high strength aluminum aircraft alloys. These precipitation hardening
alloys contain three types or second-phase particles which influence properties

such as strength, toughness, and vesistance to FCG at moderate to high AK (2-7):
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(a) large (v 1 to 30 yum) insoluble constituent particles formed during
solidification by the combination of the impurity elements Fe and S1 with Al
and solute elements; (b) smaller (0.02 to 0.3 wum) dispersoid particles formed
by solid state przecipitation of Cr or Zr at temperatures above about 425°C; and

Mt .
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(c) fine (0.00? to 0.0 wm,; Lrecipitates containing Zn, Mg, and Cu formed during
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quenching and aging. Relative tc alloy 7075, alloy 7050 contains: f‘a) a lower
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volume fraction of AL{CuZFe and g 2.51 . ~efituent particles because of restricted

Fe and Si contents; (b) a lower ~lum- fraction of dlspersoids (Al3Zr in 7050,

~
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AluMg2Cr i1 7045,5 and () a different composition and higher volume fraction
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of n°y, Mg \Z, Cu, Al) prcui ‘tate because of the higher Cu content. Figure 1

ety

compares the observed rarge >f crack growtl rates for constant-ampllitude loading
er with tr2 «lze* of micrcoiructural features in these alloys. Growth rate measur:-
ments or~avlished unfer oase L 0. this program primarily correspond to those
5 where the averags crack eitensi.a per cycle is assumed to be on the order of

precipitate size or less.

Materlals selec’ed ror study in this investigation are identlcal to those

fabricated to study FCG resistance of 7XXX microstructures at intermediate and

o e St A AR AL ATy s

nign AK in a previous Navy contract (5). The alloys (Table 1) have the same Zn
and Mg concents with variation in Si, Fe, Cu, Cr, and Zr contents, and were
selected to examine the effect on FCG behavior of two levels of MgZSi and A17Cu2Fe
constituents, M12Mg20r vs. Al3Zr dlsporsoids, and high and low Cu variants of

n N b sttt b o < £

n~ precipitate. The Zn content averages near maximum for alloy 7075 and near
nominal for alloy T050, wrile Mg content is within the allowable range for both

‘ ¥ Tt would be more metallurgically accurate to use interparticle spacing
normalized by particle size (i.e., A/R) rather than solely particle size for
this comparisoi. In the absence of this information, however, the size of
the particles is used as qualitative indicator of the scale of these features.




alloys. The nominal compositions of the eight alloys were selected to
approximate bounds of commercial high strength 7XXX aircraft alloys. For
descriptive purposes, the alloys are labeled and coded as shown in Table 1.
The composition of one of the alloys falls within the limits for the European

alloy 7010.

A1l of the alloys were hot rolled from 15 em thick laboratory-cast ingots
to 6.35 m (0.25 in.) thickness plave. For the materials aged to a T7-type
(overaged) temper, the target yield strength was U455 MPa (66 ksi). This is
typical for 7050-T73651 plate up to 51 mm (2 in.) thick. In additicn, portions
of alloys 705G and 7075 plate were aged to a T6-type (peak strength) temper.
Heat treatment practices for all alloys are shown in Table 2. Subseguent to
solution heat-treatment and quenching, and prior to aging, all alloys received
a 1.5% permanent stretch in the longitudinal direction (i.e., parallel to the

rolling direction) for residual stress relief. Extensive metallurglcal examina-
tion was conducted to characterize the morphology of grain structure and identify

; the relative size and distribution of insoluble particles in the subject alloys.

’ This characterization is reported in Ref. 5 and includes results from complimentary
technlques of electron microprobe analysis, Guinier-DeWolff X-ray diffraction,
optical metallography, and transmission electron microscopy. Table 3 shows the
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secondary phases identified and their computed relative amounts.
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A summary of mechanical properties for the subject alloys and tempers is
shown in Table 4. Unit propagation energy values from Kahn tear tests provide
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9 _‘ff a relative indix for alloy fracture toughness (higher index values denote higher

toughness) (15). Smooth-specimen fatigue properties and characterization of
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constant amplitude and simple overload FCG resistance at intermediate to high ] ”‘g
;-f: AK levels for these alloys are contained in Ref. 5. g
;: :
3.2 Constant Ioad Amplitude FCG Tests -~ Phase 1 §
; Constant load amplitude crack growth rate data were obtained using a standard g
‘ : ASTM E6U47 compact tension (CT) specimen (B = 6.35 mm, W = 63.5 mm) in the LT %

’ orientation. Testing was performed on 1 kip capacity MIS servo-hydraulic

equipment at a stress ratio (R = Kmin/Kmax) equal to 1/3 and a frequency of 25 Hz.
The test enviromment was high humidity (relative humidity > 90%), room temperature
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laboratory air; this was provided by bubbling air through a series of beakers

containing water, and then into an air tight chamber surrounding the specimen.
The R value and environmental conditions are identical to those used in previous

JUUR—

FCG tests of the same materials at high AK, Ref. 5. The 25 Hz frequency

represents about a three-fold increase over that used in previous work, (5) and
was selected as the optimum balance between reduction of test time and stable
machine control, thereby requiring minimm operator surveillance. The absence

of an observed frequency effect in the range 10 to 150 Hz on near~threshold

rates in room temperature air for aluminum alloy 2219-T851 (16) suggests that
the three-fold difference 1in applied frequency will cause a negligible difference

S5

z ' in FCG rate measurementvs for each of the subject alloys.

1;: Specimen precracking was conducted by a schedule of stepped load reductions
f/j with Increasing crack extension. Upon attaining the desired value of da/dN, the
‘93

A -

precrack phase was terminated and then FCQ rate measurements made as AK increased
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with crack extension under fixed amplitude loading. Crack length was measured
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visually using photo-etched grids apniied to both sides of each CT specimen.
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Test procedures strictly adhered to the proposed ASTM Standard test practice (1)
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for measurement of very low growth rates (da/dN < lO-8 m/cycle). For the T6

and T7-type tempers of alloys 7075 and 7050, replicate FCG tests were conducted,

while all other alloys were subjected to single tests.
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3.3 Simple Overload Tests - Phase 2

For this phase of the program, specimens of the four key microstructures

(7075-T6 and T7, 7050-T6 and T7) were tested in a loading sequence consisting of

AP TRTRR AR 15 Py Firty
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a pericdic overload spike occurring once every 8000 constant-amplitude cycles

7 (OCR = 1:8000). The magnitude of the overload spike was 1.8 times the maximum

2 peak load of the constant load amplitude cycles (OLR = 1.8). The nomenclature
%;5 | . for overload tests is shown in Figure 2. The stress ratio, R, for the constant
if? amplitude cycles was 1/3, and the applied freguency 20 Hz. All testing was

s . conducted in high humidity air (> 90% R.H.). The targeted crack growth rates
31\ correspond to about a 1.5 to 2 orders of magnitude decrease over those rates
obtained in Ref. 5 under comparable loading conditiors (OLR = 1.8, OCR = 1:8000)

at a higher baseline AK.

g Center-crack-tension {CCT) specimens of identical width (102 mm), thickness
(6.35 mm), and orientation (L-T) to those of Ref. 5 were used in the overload

tests. Precracking was accomplished without load-shedding, using the same

N N e ey

load range as that for the constant load amplitude portion of the simple overload
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spectrum. Programmed loads were provided by an MIS load profiler interfaced
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with the electrohydraulic test system.

o

Crack growth in the overload tests was monitored electronically using grack
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propagation gages, as described in Ref. 5. 1In addition, crack length was measured-

visually using grids applied to one side of each CCT specimen. Test data were
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A description of data

in the form of crack length vs. cycles (a vs. N) curves.

analysis procedures and their precision is included in Ref. 5.

3.4 Fractographic Examination
The scanning electron microscope (SEM) was selected as the primary tool for

characterization of fracture appearance, with the objective of identifying
variations in fracture topography which correspond to observed differences in

mechanical behavior c. Lne suhjew. alloys.

IV. RESULTS AND DISCUSSION - PHASE 1

4.1 Constant Load Amplitude FCG Tests
Constant-amplitude FCG rate (da/dN vs. &K) data for the eight laboratory-

fabricated 7XXX alloy compositions in the T7 temper are shown in Figures 3 to 10.
Results for alloys 7075-T6 and T050-T6 are compared, respectively, to their T7
temper counterparts in Figures 11 and 12. In Figures 3-12, circles represent
the data established in the current investigation, and squares represent data
established on the identical materials from prior work (5). Where crack growth
rates of the current and p.'evious investigation overlap, the agreement is
excellent, as shown in Figures 8 through 12. Replicate tests conducted at low
AK on alloys 7075-T7, 7050-T7, 7075-T6 and T050-T6 are also in good agreement,

as shown in Figures 3, 10, 11 and 12, respectively.

The FCG rate data band for all subject materials, Figure 1, illustrates
that the traditional smooth transition with AK decrease from the linear (power-law)
regime (da/dN > 2 X 10-8 m/cycle) to the near-threshold regime as reported for
steel (2, 16, 17), titanium (18), and 2219-T851 aluminum.plate (14, 16) alloys:
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is not typical of the 7XXX-type plate alloys invest’ jated herein. A similar

' ! observation is made by Mackay (19) for 2024-T3 and Alelad 7075-T6 aluminum

AT

sheet alloys. The indicated shape of the FCG rate relationship for high strength-

aluminum alrcraft alloys suggests that extrapolation to rates below about 10"8

o T R
. o

m/cycle (4 X 1077 in/cycle) based solely on data obtained at higher growth
= rates should be avoided. Extrapolation may lead to nonconservative approximations
of low growth rate performance and likely contributes to the variance of threshold

. AK values reported in the literature for high strength aluminum alloys.

The effect of metallurgical variants on FCG resistance covering four decades
of growth rate in high humidity room temperature air is summarized in Figures 13
through 16. Data in Figure 13 indicate the AK level required to sustain crack

growth at a specified rate. Increased FCG resistance is indicated by a higher
AK required to sustain growth at the prescribed rate. Since stress intensity
factor (K) is directly proporticnal to applied stress, and approximately
proportional to the square root of crack size, the indicated improvements in

o S S AP § ¢ T TS K RN ot R - h o

FCG resistance can be directly correlated to increases in load-carrying capability
and tolerable flaw size, or to a decrease in cross-sectional area (which correlates

to weight saving in a structural member).

The effect of alloy type (7075 vs. 7050) and temper (T6 vs. T7) on FCG
resistance is summarized in Figure 13. At AK greater than about 5.5 MPaym
(5 ksivin.) alloy 7050 performance in superior to that of alloy 7075, and the
overaged T7 temper performance is superior to that of the ;->ea.k stx;ength T6 temper.

These observations are consistent with reported (3-7, 20, 21) and unpublished

Alcoa constant-amplitude FCG data generated on comparable materials at rates

o
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greater than about 10"8 m/cycle (4 X 1077 in/cycle). At intermediate 4K, an
increase in resistance to degradation of FCG performance by molisture. is the

major reason cited for advantages of alloy 7050 over alloy 7075 and for

overaged TT-type tempers over the peak strength (T6) and underaged tempers (3-7).

Higher toughness with an acceptable reduction in strength from that of the T6
!gf'i temper also improves high AK FCG resistance in a T7-type temper (3, 4, 14).

In contrast, at near-threshold growth rates (< 10‘9 m/cycle) the T6 temper

! exhibits greater resistance to crack growth than does the T7 temper for both

alloys 7075 and 7050. Ofher near-threshold data from commercially produced
T075-T651 and 7075 -T7351 plate, established in separate investigations at Alcoa
and by Kirby and Beevers (11), likewise confirm the superiority of the peak
strength temper to overaged tempers at exiremely low growth rates. Knott and

] Pickard (21) investigated the effect of degree of aging on FCG resistance of an
experimental Al-Zn-Mg ternary alloy. They found that progressive aging from '
underaged, to peak aged, to overaged conditions decreased near-threshold FCG
resistance; conversely, at moderate to high AK levels greater aging time

increased FCG resistance.

Figure 14 partitions the performance of these alloys by purity (Fe, Si)
level. The effect of alloy purity is assessed by comparing the band which

encompasses all FCG data for low purity alloys to the data band for high purity
alloys. At high crack growth rates, a modest improvement in FCG resistance V{j.th

increased purity is evident; this observation agrees with findings in prior

srearsacyso
SN

il

work (3~7). However, no effect of purity on FCG resistance at intermediate

XY

v

5 and low rates is apparent (Figure 14).
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A comparison of the response of high (2.2%) Cu alloys to low (1.5%) Cu
alloys in Figure 15 shows that increasing Cu content reduced FCG rates modestly

in the range of 1077 to 10'6 m/cycle. This observation was made previcusly by

Sanders and Staley (6). In contrast, near-threshold FCG performance of these
TXXX-type alloys appears to be Insensitive to an increase in Cu content
from 1.5% to 2.2%.

The comparison of r'esponses' of alloys containing Cr vs. Zr, shown in

Figure 16, shows no evidence of a main effect of dispersoid type at any level

of growth rate. This is consistent with results of Selines and Pelloux (22),

who observed that substituting Zr for Cr in alloy 7075 did not influence FCG

rates.

4.2 Fractography

f f The changing relationship between crack growth rates and the size of
:;:f microstructural features (Figure 1) suggests that fatigue mechanisms and fracture

surface appearances will vary with constant-amplitude FCG rate. In fact, this

has been well-documented in 7XXX alloys for crack growth rates exceeding 10'9
m/cycle (3). It is observed that, at high FCG rates, fatigue fracture occurs
by initiation and growth of voids from the larger second phase particles
{primarily constituents). Intermediate growth rate crack extension in Al alloys
usually takes place through fatigue striation formation, while crack growth at
low FCG rafies appears to be a complex crystallographic mechanism. More detailed

discussions of these various fatigue fracture mechanisms will follow. To

facilitate this discussion, detalls of the T075-~T6 and T7 test specimen fracture

Nl obeno cnien sy

surfaces will be described first. The fracture topography of the remaining
alloys will then be examined in the context of observations made on alloy 7075.
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7075-Type Alloys

In the present work, the lowest crack growth rates measured are more than
an order of magnitude smaller than those reported in Ref. 5 for the same alloys.
At these very low FCG rates, concurrent fracture modes are observed on specimens
of both alloys 7075-T6 and 7075-T7 - one mechanism which appears ., at and
featureless, the other having a crystallographic (i.é., faceted) texture.

These details are marked as A and B, respectively, in Figures 17(a) and (b).

The step-like markings of faceted (crystallographic) regions indicate variation

in local crack propagation direction from one faceted region to the next, and

have besn attributed to slip plane decohesion (12, 23). As will be discﬁssed

in the next section, strain localization in the crack tip plastic zone is

believed to promote this slip plane fracture mechanism. Unlike faceted growth;
however, the nature of non-crystallographic fracture is not well understood.

At present, this mechanism is believed to be a manifestation of some envirormental

interaction with the crack growth process at very slow FCG rates (23, 24).

An additional feature occasionally observed, predominantly at low growth
rates, is oxide contamination, denoted as detail C in Figurc 17(b). This debris
can be a result of elther general corrosion or repeated rubbing of the mating
fracture surfaces. In addition, a general oxide layer covers the entire surface.
Using secondary ion mass spectrometry (SIMS), oxide thiclkness was measured as a
function of crack growth rate for 7075-T6 and T7. A uniform oxide depth of 5-10 nm
covers the fracture surface of 7075-T6 at all FCG rates. In contrast, oxide
thickness on the fracture surface of 7075-T7 rises to 100 nm as da/dn decreases
to near-threshold rates, while a layer only 5-10 nm thick covers the fracture

surface for da/dn > 1 X 1072 m/cyele (U X 10_8 in/cycle). These oxide layers,
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particularly the ten-fold increase in thickness for 7075-T7, irdicate some

environmental interaction with the FCh process. At this time, however, the B

nature of this interaction is not known.

Youron ot

Stereographic observation was perforned to establish other subtle differences
in topography which may exist on fracture sxarfaces of constmt—mrblitude FCG
specimens. In particular, the low AK fracture surface of 7075-T6 seems to be
rougher than that of T075-T7. Figures 17(a) and 18 compare, respectively, the . A
fracture appearance of 7075-T6 and 7075-T7 at the same near-threshold growth

rate of 3.5 X 10710 m/cycle (1.4 X 10"8 in/cycle). The flat appearance of the

overaged T7 fracture surface is in marked contrast to the rougher topography of

the peak aged specimens; this difference was confirmed by stereofractography for
both alloys 7075 and 7050. The flatter T7 fracture surface was generated at

MK = 1.9 MPavm (1.7 ksi/If.) while the rougher T6 topography was produced at

AK = 2.2 MPavm (2 ksivin.). This suggests that the flat fracture topography
represents a lower-energy fracture mechanism than the rougher cryst“éll_og;r'aphic

fracture.

At AK of 3.3 MPaym the fracture surfaces of both 7075 tempers (T6 and T7)
are predominantly faceted in nature (Figure 19). Figufes 17 and 19 show little
evidence of large constituent particles and isolated occurences ‘of smaller \
particles on the low AK fracture surfaces. In contrast, the fPracture topography
at intermediate AK values of 5.5 and 6.6 MPa/m, Figures 20 and 21 respectively,
shows some evidence of }ocal fracture around‘large secornd phase particles
(denoted as detail P) in additién to predomirantly Faceted growth and indications
of local secondary cracicing (detail SC). At AK = 11 MPaym the fracture mode
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is completely dimpled rupture, with many of the voids having beén nucleated

N

by second phase particles, as shown in F‘igure. 22, Limited fréc’cogr'aphy at

higher magnification (10,000 X) reveals traditional fa‘c:igue striations at- AK

ievels greater than about 4 MPavi. Tt is expected that more closely spaced

e m A——n

striations would be present at lower AK had these fractures been studied at
greater magnifications.
Exam;i.na'c_ion of SEM fractographs (~ 200 ?() of Figures 17 tmouéh 22 shows
little difference between fhe topography of 7075-T6 and T7 specimens at comparable .
AKX values, other than the difference in ffactizre surface roughness at low AK. ‘
This is consistent with the observation that variations in cirack é‘oﬁth rates
are generally modest at intermediate and high AK. The difference in fracture
; surface roughness at ;low AK is not great, considering the large variaf;ion in

: FCG performance with temper. Unfertunately, at near-threshold AK levelé s cyciic

deformation and fracture processes occur within such smail zones that it is

doubtful whether other variations in topography with temper could be resolved
A\

\

i at the indicated magnifications.

There appears to be a subtle influence of Cu content on the fracture
topography of alloy 7075-17, primarily at low AX, even though an effect of Cu
content on FCG performance is not noticeable at low growth rates. A camparison

between the fractograph in Figure 23(a) and those in Figure 17(a) and (b)
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indicates that the high Cu 7075-T7 fracture surface at AK of 2.2 MPaym contains

OB

relatively more flat (non-crystallographic) areas than does the base alloy.

The fracture appearance of the base and high Cu 7075 alloys are si;nilar at AK
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of 3.3 MPavm, as shown in Figure 23(b) and Figures 19(a) and (b), and at higher
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The fracture surface of alloy TUTS~T7 at AK = 2.2 MPavm, Figure 2l4(a), shows

a mixture of faceted and flat fracture modes as does its lower purity coun’cer'par"c,
alloy 7075-T7 shown in Figure 17(b). The somewhat lower FCG resistance of

alloy TUTS5-TT7 relative to that of alloy TO75-T7 at moderately low rates is
consistent with the higher percentage of flat fracture in alloy 7U75 at AK

of 2.2 MPavin. Whether this characteristic can be attributed to purity differences
between‘alloy 7075 und TUT5 remains ambiguous, as little influence of constituent
particles on fracture appearance is detectable at low AK. Although fracture
associated with second phase particles in alloy TAT5 also becomes more apparéent
with increasing AK, the development and coalescence of volds is less noticeable,
Figure 24(b), than in alloy 7075-T7, Figure 22(b); this corresponds to the
greater constituent volume fractioﬁ of the base alloy. The suppression of

void coalescence with increasing purity results in superior FCG resistance,
predominantly at hign AK approaching the material toughness. At moderate AK
little or no effect of purity on FCG performance is evident. As in alloy 7075,
secondary cracking in alloy 7475-T7 is also apparent at AK of 11 MPaym, and is
denoted as detail SC in Figure 24(b).

1075-Type Alloys
The 7050-type alloy compositions contain Zr-bearing dispersoids instead of

a Cr~bearing second phase. In general, the fracture topography of 7050-type
alloys are similar to those of the T075-type alloys at comparable AK levels.
As shown in Figure 25, both the base and low purity variants of alloy 7050-T7
exhibit mixed faceted and flat fracture modes at AK of 2.2 MPaym. Like alloy
T075~T7, 1ittle or no effect of the larger second phase particles on fracture

is evident at low AK. Progressive AK increases to 5.5 and 11 MPaym, Figures 26

aAPrde pokaurn 1




and 27 respectively, show a rising level of vold formation in proportion vo
the relative constituent amounts of the high and low purity 7050 alloy
counterparts. At high AK secondary cracking ls also noted in both alloys;
detail SC in Figure 27.

Low purity alloy 7010-T7, which is similar in composition to alloy T050-T7
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except for a lower Cu content, likewise is characterized by faceted and flat

IR

i fracture modes at AK of 2.2 MPaym, and void coalescence with some secondary
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cracking at AK of 11 MPavm, Figure 28. Comparison of fractures from 7075~type

PN

alloys containing Cr with 7050-type alloys containing Zr suggests that Zr-~bearing
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alloys suppress microvoid coalescence at AK of 11 MPa/m; compare Figures 22
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and 24(b) with Figures 27 and 28(b). However, at AK of 2.2 MPa/m differences

in fracture appearance with dispersoid type cannot be detected at the indicated

Rey,
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magnifications.

4.3 Discussion of Phase 1 Results

At near-threshold crack growth rates, alloy tempsr has a much greater
effect on FCG resistance in these TXXX-type alloys than does purity, Cu content,
or dispersoid type. As noted in section 4.1, other investigators also have
reported that the near-threshold FCG resistance of 7TXXX-type alloys in a T6
temper 1s greater than in the overaged T7 temper. In one case, Knott and
Pickard (21) correlated increased near-threshold FCG resistance with higher
cyclic flow stress. They observed that a peak-aged TXXX-type alloy had a

greater threshold AK and a higher cyclic flow stress than did the overaged T7
temper alloy. Furthermore, these investigators noted an even higher threshold
: AK for the underaged 7XXX alloy, which also has the highest cyclic flow stress

of all three temper conditions.
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Figure 1 shows that near-threshold FCG rates correspond to an average

e

increment of crack advance per cycle which 1s appreciably less than the size

of the smallest precipitates. Alsc, at these near-threshold AK levels the

crack tip plastic zone size can be on the order of subgraln dimensions or less.
N When crack tip plastic deformation occurs on such a small scale, the accumulation
- of cyclic damage which precedes crack extension should be particularly sensitive
to dislocation motion within individual grains or subgrains.(25) Furthermore,

slip processes are influenced more by the fine precipitate microstructure than

by the presence of larger, less frequently-encountered second phase particles
(constituents and dispersoids). Thus, fine precipitates are expected to have

a greater effect on near-threshold behavior than other second phase particles.

The decrease in precipitate/matrix coherency as aging time increases is
believed to contribute to the degradation of low AK FCG resistance (20, 21). ‘
Coherent precipitates will shear as crack tip deformation cccurs, constraining
’ i dislocation motion to a few slip systems in the crack tip plastic zone. This
% strain localization creates preferred paths for crack propagation along the few
active slip systems where slip damage has occurred. However, because these slip

systems may not be perpendicular to the axis of applied tensile loading, the

S crack is forced to follow a tortuous path through the microstructure, r"educing
the macroscopically-determined FCG rate. In contrast, dislocations can loop
around incoherent precipitates in overaged alloys, so that the crack tip strain
distribution is homogeneous and no preferred paths for crack growth are created.

In this case, crack extension occurs without ‘significant deviation from a}plane

wr b

normal to the tensile axis, and macroscopic crack growth rates are higher'thgn,

A e 8 bt

in underaged material tested at the same AK level. Recall from the discussion




of Figure 18 that, indeed, the fracture surface of 7075-T6 at very low FCG
rates is rougher than that of 7075-T7 at simlilar growth rates.

In addition to changes in precipitate/matrix coherency, precipitate size
and spacing increase with pru -~zssive aging from an underaged, through T6, to
a T7 temper conditlion. Since these second phase particles represent obstacles
to crack propagzation, an increase in interparticle spacing should reduce FCG
resistance, particularly when crack growth rates are on the order of precipitate
dimensions (Figure 1). Thus, both precipitate coherency and spacing arguments

suggest that near-threshold FCG resistance improves with decreased aging time;

therefore, underaged tempers snould have optimum FCG performance at low AK.
Because of the stress corrosion cracking senslitivity of underaged TXXX-type
aluminum alloys, however, such tempers have little commerclal viability.

As crack tip plasticity and incremental crack advance per cycle increase
with AK, improvements in FCG resistance attributed to reduced precipitate spacing
and increased coherency would be expected to vanish. This is consistent with
TXXX alloy data at intermedlate and high AK which show improved FCG resistarice

in overaged tempers.

The greatest effect of alloy purity on fatigue performance is at high,
not low, FCG rates. High purity alloys with a low volume fraction of insoluble
Fe and Si constituents have superior toughness in comparison to low pufity alloys
contalning greater amounts of Fe and Si. At high AK, voids form at constituent

particles ahead of the crack, and then link up with the main crack front by

ductile tearing when the crack tip plastic zone is of the order of mean void
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spacing (e.g., Figure 22). The modest improvement in high AK FCG resistance
with increased purity relates to a reduction in constituent volume fraction,
and hence, a reduced number of void origins to link up with the main crack.
Recall that this was illustrated in Figure 27. This observation agrees with
both the calculated volume (%) of particles in these alloys, Table 5, and with
findings in prior work (3-7). However, no effect of purity on FCG resistance
is evident at intermediate and low growth rates (Figure 14). Previous results
(3-7) also have shown that an effect of Fe and Si-bearing constituent particles
on FCG resistance 1s unlikely at intermedlate AK. Since the plastic zone size.
is on the order of constituent dimensions at intermediate and low AK levels
(Figure 1), crack tip deformation is insufficient to cause frequent secondary
particle fracture. Figures 20 and 21 ¢> show that constituent fracture and

subsequent void growth occur only cccasionally at intermediate FCG rates. .

The observation that increased Cu content reduces FCG rates modestly at
intermedlate AK (Figure 15) is consistent with studies reported by Truckner,
et al (3) and Lin and Starke (23). In both of these investigations, an increase
in Cu content from about 1.0 to 2.3% in 7050-type alloys result in progressive
improvements 1n intermediate AK FCG resistance in moist environment. Unpublished
Alcoa test data iIndicate that a further increase in Cu content to 3,2% in an
Al-Zn-Mg-Cu~Zr alloy (beyond the 2.6% commercial limit for 7050), continues to
improve FCG resistance over the da/dN range of 1072 to 1077 m/cycle when moisture

1s present.
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g In contrast, near-threshold FCG performance of these 7XXX-type alloys was

insensitive to an increase in Cu content from 1.5% to 2.2% (Figure 15). And

% : yet, other studles have shown that FCG performance in 7050-type alloys is

g degraded by Cu additions. Starke and co-workers (23, 2U) have shown that

s crack growth rates for 7050-T651 and ‘I7351 type alloys containing a broad Cu
range (0.01-2.1%), when tested in distilled water, are lowest for the alloys
containing 0.01% Cu. Starke and Sanders (2U4) have suzgested that the kinetics
of electrochemical reactions at the crack tip change with Cu content in these

alloys, causing a degradation in near-threshold FCG performance with increasing ;

Cu content. Apparently, the variation in Cu content examined in the present
study (1.5 to 2.2%) was not sufficient to cause u noticeable change in low AK
FCG response. 1In any event, it seems that the effect of Cu conten: on FCG
periormance at low growth rates is much less significant than the effect of

temper.

P
o
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The substitufion of Zr for Cr also does not aprear to influence near-threshold
- FCG rates in thece alloys (Figure 16). However, Filler (26) recently has

reported that substituling Zr for Cr in a TXXX series alloy increased AKth from

1.7 MPa/m to 2.1 MPavm for tests in dry argon at R = 0.05. Filler rationalized

é‘; this observation by noting that A13Zr is conerent with the matrix, while AllQMgZCr
is incoherent. Since the present work was performed in high humidity air at

R = 0.33, &« couparison between these results and those of Filler is not straight-
forward. The effect of dispersold type on FCG resistance requires further

investigetior..
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4.4 Sumary of Phase 1 Results

The work presented to this point characterlzes the role of 7XXX aluminum
alloy microstructure (viz. temper, purity, Cu content and dispersoid type) on
constant load amplitude FCG reslstance at low to intemedia’ce AK in high
humidity (> 90% R.H.) room temperature air. Test results have been consolidated
with those previously obtained on identical alloys at intermediate and high AK
to provide a more thorough characterization over a wide range of growth rates.
Based on these data and review of relevant literature (3, 11, 21, 23, 24, 26),
several conclusions are appropriate for 7075 and 7050-type aluminum aircraft

alloys. These conclusions are enumerated below and summarized in Table 6.

(1) Differences in FCG resistance among these aluminum alloys are
greatest at near-threshold crack growth rates, which have the greatest impact
on fatigue life. This is consistent wlth observations that the interaction
between an extending fatigue crack and a microstructural feature is greatest
when characteristic dimensions of the latter are of the same order or greater

than the average increment of crack advance per cycle.

(2) PFor near-threshold FCG behavior established in the presence of
moisture, there are two major (and perhaps competing) cr'ack growth mechanisms.
One is a predominantly microstructure-dependent process (crystallographic
fracture), while the other, characterized by a flat featureless appearance s
appears to be dependent upon the inveraction of "dcmstructure with enviromnent.
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(3) Alloy temper has a major effect on near-threshold fatigue perfo‘nﬁé‘nce’,‘ .

Eiszree
S

where increased aging time reduces FCG resistance. This change in low AK
behavior is believed to be linked to changes in cyclic slip processes with

T
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increased aging, which occur as a result of (a) increased precipitate spacing,

T,

N
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and (b) decreased precipitate/matrix coherency. Also, increased aging may

S
‘l -

alter envirommental interactions at the crack tip for these high humidity tests,
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further contributing to a change in near-threshold FCG resistance.
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| (1) At intermediate and high AK levels where the ratio of crack tip

plasticity to subgrain size becomes large, changes in the slip process within

subgrains are less lmportant in influencing FCG performance. Overaging beyond
peak strength increases FCG resistanc.. primarily by reducling the acceleration

of crack growth by envirommental intzaractions (intermediate AK) and by increasirig
alloy toughness (high AK). For growth rates greater than 2.5 X 10"9 m/cycle

(L X 10"7 in/cycle), overaged T7 temper alloys have greater FCG resistance than
T6 temper alloys, which is in direct contrast to the ranking observed at

near-threshold rates.

(5) In a moist air enviromment, FCG resistance at intermediate and high AK
increases with Cu content. In contrast, the present results do not suggest an

influence of Cu content (1.5 to 2.2%) on near-threshold FCG resistance. Since,

however, other studies (23, 2l) have reported a decrease in near-threshold FCG
resistance with increasing Cu content over a greater range (0.0l to 2.1%),
further work 1s necessary to confirm the effect of Cu content on FCG performance
at low AK.
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(6) Purity (Fe, Si content) has little or no main effect on constant
amplitude FCG resistance at low and intermediate growth rates within the
composition range studied. Rather, this effect of alloy purity is most

pronounced when the maximum cyclic stress intensity approaches the material

toughness.

(7) Dispersoid type (Cr vs. Zr) did not appear to influence near-threshold
FCG rates when these alloys were tested in high humidity air. Other data (26)
in the literature, however, have indicated that AKth in 7XXX-type alloys is
Increased when Zr is substituted for Cr for tests in argon. Therefore, additional

study is required.

V. RESULTS AND DISCUSSION ~ PHASE 2

5.1 Simple Overload FCG Tests

The four principal microstructural variants (7075-T6 and T7, T050-T6 and T7)
were examined in this phase of the contract to evaluai_;e overload-induced transient
FCG performance of 7TXXX aluminum alloys at low crack growth rates. 'lest resultg
are presented in Figure 29 in the form of total crack length vs. total number
of cycles (constant-amplitude plus simple overload) for each. alloy and temper.
Data for both alloys in the T7 temper represent the average response of
duplicate tests, while the data for each alloy in the T6 temper represent the
results of single tests. |

5

Two observations are apparent when examining the data in Figure 29. Most

[T

striking is the three-fold increase in 1ife for the T6 over the T7 temper for
both 7075 and 7050. Less dramatic, but also significant, is the longer 1ife
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of 7075 vs. 7050 for eguivalent tempers, an increase of approximately-50%. =
The superior FCG resistance of both alloys in the T6 temper over the T7 temper
for an overload (OL) history‘of OLR = 1.8, OCR = 1:8000 (see Figure 2) is ~
consistent with constant load amplitude (CA) data for these alloys at near-

8 in/cycle), Figures 11 -

and 12. Since near-threshold rates are slower for the T6 temper than for T7,

threshold rates below about 1 X 10"9 m/cycle (4 X 10™

longer fatigue lives would be expected for the T6 condition if a significant

fraction of the total cyclic life is spent at these very slow crack growth;‘,,rf‘a'té's.
It appears that overload-induced retardation suppressed the effective 4K, and .
hence FCG response, into the near-threshold regime where the T6 temper is '

advantageous over T7

The superior FCG performance at low growth rates of the T6 temper-o'\‘rér'ﬁ
is not consistent with alloy rankings, either CA or OL, previously reportéé for
these same materials tested at higher growth rates (5, 7). In these earlier
studies, the T7 temper of both alloys had longer FCG lives than T6 for both
CA and OLR = 1.8, OCR = 1:8000 (QOL) histories. However, the OL tests desc’r‘ib'ed’
in Refs. 5 and 7 were conducted at applied load levels about 1.9 times greater
than those for the present tests. The minimum AK for CA testing reported ’
previously was about 6.6 MPavm (6 ksiv/im.) as compared to about 2.2 MPavin
(2 ksi/In.) from Phase 1 of the present work. From Figures 11 and 12, it 18 ‘
clear that AK = 6.6 MPaym is well above the crossover point and info the region
where the T7 temper has su'perior FCG resistance ;’pr both 7075 and 7050. This
observation implies that the CA and OL FCG test results of this study and of
Refs. 5 and 7 are self-consistent. That 1s. alloy rankings for the OLR = 1."8{
OCR = 1:8000 OL spectrum are identical to those for CA loading at similar

3
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growth rates. However, this may not be true for all OL spectra (e.g., Refs. 5
and 7), particularly when dominant FCG mechanisms change. This point will be

clariflied in later discussion.

The increase in FCG life for 7075 over 7050 of comparable temper has been

noted previously for an identical OLR = 1.8, OCR = 1:8000 OL sequefice at higher

applied stress levels (5, 7). Conversely, Refs. 5 and 7 show that 7050 eXh:},‘b‘its

3
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superior FCG resistance in comparison to 7075 at high growth rates when an
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OLR = 1.4, OCR = 1:4000 spectrum is employed. In this case, FCG lives of these
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alloys are controlled by intermediate and high AK CA behavior for which alloy
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. 7050 is superior. The low AK CA data shown in Figure 13 do not suggest-that

variable load history near-threshold performance of 7075 consistently will be
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better than that of 7050, regardless of temper. Furthermore, the superior FCG

resistance of 7075 over 7050 at low AK levels for the OLR = 1.8, OCR = 1:8000
load history does not agree with data in the literature on spectrum ‘I?‘CG 5 in
which 7050 generally is superior to 7075 (13, 27, 28). The referencéd studigs
have used load spectra more complex than a single pericdic OL sequence, and

often were conducted at significantly higher applied stress than the present

work. In one case, the FCG resistance of 7075 was better than 7050 in comparable
temper for an aircraft fighter spectrum, while 7050 FCG resistance was superiof
for CA loading. Thus, it should not be expected that CA and spectrum FCG alloy
rankings will be identieal, nor will all spectra result in the same perfom?nce
rankings. This was summarized in a recent paper (7), where ranking of glloy FCG
resistance was shown to depend updn two ‘intéractive crack growth characteristics:

(a) the ability of a given microstructure to resist crack extension under
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constant amplitude loading; and (b) the ability of the material to retard FCG
following a high tensile load excursion. The relative contributions of these
two mechanisms toward determining spectrum FCG resistance will be discussed

later.

Analytical Model fer FCG Performance

It is not evident from Figure 29 to what extent crack growth was retarded
in alloys 7075 and 7050 as a result of the simple OL sequence. To eiamirie ’chis
question, a modifled version of the computer program EFFGRO was used to sepéféﬁé
the linear damage and retardation components of FCG life for the variab's load
history. The EFFGRC program is based on the Vromar. retardation model¥* (29), and
has previously been used to predict experimental lives for these alloys under
spectrum loading conditions at higher AK levels (5, 7).

A For each alloy and temper, the fatigue life of a CCT test specimen was
predicted for 3 conditions: (1) the actual OLR = 1.8, OCR = 1:8000 OL spectrum
incorporating OL~induced retardation; (2) the identical loading sequence as (l),
but assuming no retardavion; and (3) the OL history with a constant amplitude
sequence consisting solely of the overloads. The second case assumes that crack
extension is a linear damage summation of the indeperdent contributions of O'LA
and CA cycles in the spectrum without load interaction effects. Conversely, ﬁhe

third case removes the baseline CA cycles and assumes that crack extension takes

-

Y

* The Vroman model reflects "state of the art" FCG life pr:ediction ‘methodology,
and accounts for retardation through the use of effective stress intenslty
factor concepts based on crack tip plasticity (e.g., see ASTM STP 687).

- -~
B .4

’
N

ekt




v ———

27~

place only during the OL cycle in each load block.

Table 7 and Figure 30 show predictions for the growth of a crack from a
half-crack length of 8.9 to 27.9 mm (.35 to 1.1 in.) in a 102 mm (4 in.) wide
CCT panel. In these predictions, one block represents 8000 CA cycles + 1 OL
cycle, as defined in Figure 2. Several observations can be made with regard to
the data in Figure 30. The actual experimental iives of these alloys are much
longer than predicted by the linear damage assumption (no retardation), with
actual FCG lives greater than those predicted by a factor of 5 for 7050-T7 to
a factor of 46 for 7075-T6. Clearly, the periodic OL (OIR = 1.8, OCR = 1:8000)
causes a slgnificant retardation of crack growth during baseline CA cycles. In
contrast, actual lives of all 4 alloys are orders of magnitude shorter than
predicted for FCG during only the OL cycles. This suggests that crack extension
cccurring during the CA portion of each loading block comprises a significant
fraction of total spectrum life.

When retardation was considered, the accuracy of the EFFGRO predictions
varied with alloy and temper (see Figure 30). Whereas the predictions for both
alloys in the T7 temper were conservative and within 75% of actual lives, the
predictions for T6 temper alloys were non-conservative and as much as 700%

greater than actual lives. Upon first examination, this inaccuracy seems

_surprising. As will be discussed in later sections, there are multiple crack

growth retardation mechanisms operating during variable amplitude loading.
However, one mechanism is expected to dominate spectrum FCG behavior at low

stress intensities: overload-induced localized plastic deformation reduces
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the effective stress intensity factor (AK ef‘f') during subsequent baseline CA
cycles. Since this is the retardation mechanism on which rfFFGRO is based, it
was anticipated that these life predictions would be reasonably accurate. This

was not the case for alloys in the T6 temper.

One clue to the inaccuracy of EFFGRO for the T6 temper alloys appears when
a detailed examination of the Vroman model calculations 1s made. The model
determines a value of AKeﬁ. for CA cycles followlng each overload excursion,
and then uses CA FCG data (Figures 11 and 12) to determine a growth rate (and,
thus, a crack growth increment) for each cycle. For CA cycles immediately
following the first OL, AK .. is calculated to be 2.0 MPaym (1.8 ksivim.),
whereas the applied stress intensity (AKapp) is 3.3 MPay" m ). This value for
AKeff is below the range of near-threshold FCG data for both T5 alloys (Figure 11
and 12), but not outside the measured range for either T7 alloy. Thus, EFFGRO
is forced to extrapolate CA FCG data for 7075-T6 and 7050-T6 to make life
predictions. The non-conservative life predictions for both alloys in the T6
temper seem to imply that extrapolated growth rates are lower than they actually
were. On the other hand, no extrapolation of FCG data was necessary for either

T7 temper alloy, so the life estimations are relatively accurate.

To confirm that these inaccuracies are a result of extrapolating FCG data,
a second set of life predictions were made, this time using a longer initial
half crack length of 12.7 rm (9.5 in.). In this case, the lowest value of AKeﬁ.
calculated by EFFGRO was 2.4 MPavm (2.2 ksivin.), which is rithin the measured
range of FCG data for all 4 alloys (Figures 11 and 12). The results of these
life estimations are presented in Table 8 and show that all predictions were
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within a factor of 2 of the experimental lives. The improved accuracy of these
latter estimations in comparison to those in Table 7 confirms that the extrapo-
lation of CA FCG data is a major contributor to inaccuracy of predicted T6 temper
lives starting from the shorter initial crack length.

It has been shown in this section that the growth of a crack subjected to
simple overload spectra at low stress intensities can be reasonably simulated
by using a plasticity-based retardation model like EFFGRO. However, accurate
low AK CA data are critical for predicting crack growth 1ife for load spectra
in which appreciable retardation is involved (i.e., AK of is very low). For
this reason, factors which affect near-threshold FCG behavior (e.g., precracking
test procedures, environmental influences, short crack effects, etc.) must be

better understood if these life prediction tools are to be used accurately.

Crack Growth Retardation

While the data in Figure 30 indicate the degree to which FCG lives in 7XXX
alloys were increased by an OLR = 1.8, OCR = 1:8000 OL spectrum, the actual .
retardation of crack growth rates relative to CA loading camnot be ascertained
from this information. To do so, we must compare da/dN from CA and OL tests
for equivalent loading conditions. For each OL test this is accomplished by
calculating AK corresponding to the baseline CA cyeles in the OL spectrum
(Figure 2). Figures 31-3Y4 present CA and OL crack growth rate data vs. baseline
AK for each alloy and temper. From these figures, it is clear that the periodic
1.8P max OL has caused substantial retardation of crack growth rates in subsequent
baseline CA cycles.
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The data in Figures 31-34 also suggest that the degree of retardation is

not the same for all aluminum allc,s and tempers. The amount of retardation

by TEe
.

can be measured conveniently by using a retardation ratio, RR, which is defined

gh
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as the ratio of CA da/aN to OL da/dN at equivalent base AK levels. Thus, a
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larger RR indicates greater retardation at comparable applied AK. Values of

L )

RR at several AK levels are presented in Figure 35; they show that the T6 temper
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alloys exhlbit greater retardation than T7, while alloy 7075 has greater
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retardation capability than 7050 for equivalent temper. It 1is important to
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note, though, that high values of RR do not guarantee superior spectrum FCG

U R LT an TN

resistance if, for example, CA FCG performance is extremely poor.

5,2 Fractography :
All OL crack growth experiments were conducted by first precracking each ;

| CCT specimen under constant amplitude loading using the same load range as for

baseline CA cycles of the spectrum. After a well-established fatigue crack

1L ¢ M S Ao sy a7 0 g

was developed, the periodic overlcad spectrum was applied. The application
of this OIR = 1.8, OCR = 1:8000 spectrum caused an immediate and dramatic

o

~

change in fracture surface topography, as shown in Figures 36 and 37 for T050-T7
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and 7075-T7, respectively. The texture of the CA fracture surfaces in these

o /‘
ot
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figures is crystallographic, much 1like that noted previously for low AK ‘

POy DR

)
iy
s constant-amplitude loading (see Figure 19). This is to be expected, since the

e

stress Intensity range at the end of CA precracking was approximately 3.3 MPaym
(3 ksivIn.). However, the distinctly different fracture topography-after
beginning the OL sequence (Figure 36a and 37a) suggests that crystallographic

fracture has been suppressed in favor of some other crack growth mechanism.
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This, in turn, suggests that different microstructural features may control
crack growth under a simple overload spectrum in comparison to growth under

A

constant amplitude loading. Closer inspection of this initial 'OL region
(Figure 36b) reveals regularly-spaced lines oriented perpendicular to the crack

growth direction. Another observation is the presence of fractured second

phase particles in the OL region of 7075-T7 (denoted by arrows in Figure 37b)~
but not in 7050-T7 (Figure 36a). The subject of constituent pai'ticle fracture

+

will be discussed later.

Examination of test specimen fatigue surfaces at various crack lengths
reveals that these fracture surface 1lines dominate the topography of both 7075 s

and 7050 in the T5 and 7 tempers regardless of AK levels, and that spacings

of these lines increase with AK magnitude. For example, Figures 38 and 39

illustrate this fracture mechanism at various AK levels for 7075-T6 and 7050-T7,

respectively. To confirm the origin of these markings, measurements of line

spacings were made at a series of crack lengths (i.e., various AK levels) for

each alloy and temper. The fact that these measurements are much larger than.

macroscopic growth rates per cycle for the OL FCG tests confirms that this

fracture mechanism is not classical fatigue striation formation. However, when

the line spacing measurements are divided by 8001 cycles/block and plotted along .

with éi:rxple OL crack growth rate data (Figure 40a-d), a close correspondence is_

seen. This confirms thHat these markings represent the inerement of crack advance i

" 1n each load block. _ Unfortunately, it is not possible to distﬁ:guish the
fraction of each block band produced during an OL cycle from that part created ‘

by a segment of 8000 CA cjcles.
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No evidence of classical fatigue striations was fourd within each block
band at any crack length. Indeed, no discernable features within a band could
be seen for macroscopic growth rates less than 2.5 X 105 m/cycle (1 X 1077 in/cycle)
(see especially Figure 38b). By contrast, the distinctive feathery sppearance
of crystallographic fatigue fracture was evident where measured OL growth
rates exceeded 2.5 X 10"9 m/cycle. This is particularly noticeable in
Figures 39c¢ and 39d; however, it is important to point out that this
crystallographic fracture has been created ut AK = 8.1 MPaym (7.4 ksivin.).
At an equivalent AK in CA specimens, crystallographic fracture is already being
superseded by void coalescence (Figures 21 and 22). Thus, although crystallographic
fatigue fracture is a mechanism common to both CA and OL tests (OLR = 1.8,
OCR = 1:8000), it occurs at significantly higher AK levels for the OL spectrum
than for CA loading.

Another interesting contrast in fracture topographies between CA and OL
FCG specimens relates to the appearance of second phase particles on the fracture
surfaces. As discussed previously (section 4.2), the presence of secord phase
particles on CA fracture surfaces is limited to higher AK wheve vold coalescence
is the dominant fracture mechanism. However, Figures 37b and 38a~d clearly show
an abundarnce of constituent particles on the OLR = 1.8, OCR = 1:8000 OL fractures
at applied baseline CA stress Iintensities for which little or no constituent

particle frac.ure is seen in CA specimens. In fact, most of the ccnstituents

appear to be fractured, which certainly must be a result of the periodic OL spikes,
This evidence suggests that second phase particles play a different role in the
fatigue fracture process during this OLR = 1.8, OCR = 1:8000 OL spectrum than
during CA loading.
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The density of fractured constituent particles varies among the four
allry/temper combinations. For example, a comparison of Figures 37b and 36a
show a greater density of fractured constituent particles on the OL fracture
surface of 7075-T7 than 7050-T7. This is not surprising, since 7050 is a
higher purity alloy than 7075. Temper also appears to influence constituent
particle fracture, since particle density is much higher for 7075-T6 (Figures 38c
and d) than for 7075~T7 (Figures Ula and b). These observations will be
discussed in the next section.

A final point with regard to constituent particles is that they do not
appear to contribute to the fracture process itself for this OLR = 1.8,
OCR = 1:8000 spectrun. This statement is based on two observations: 1) The
OL fracture surface is relatively flat; thus, the main crack does not seem to
be deviating from a straight path through the material in an effort to find
previously~-fractured particles; 2) As can be seen particularly well in Figure 38b,
crack growth in the vicinity of a fractured constituent is not significantly
perturbed. Thus, while large second phase particles do influence OL retardation,
they do not appear to affect the actual fracture process. This is in marked
contrast to CA behavior at moderate to high AK, where void coalescence from

constituent particles 1s a major crack growth mechanism.

5.3 Discussion of Phase 2 Results

In previous discussions, it was noted that there are several crack growth
retardation mechanisms which may operate concurrently in these alloys. It is
now appropriate to examine retardation characteristics of each of the 2 alloys

in T6 and T7 tempers in velation to these various mechanisms.
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The traditional view of FCG retardation is based on an observation that,
following an overload excursion, crack growth rates will be attenuated as long
as the crack tip remains within the monotonic OL plastic zone (30-32). ‘
Therefore, retardation should be enhanced by a larger plastic zone size, since
greater crack extension would have to occur to grow out of the region of OL
plasticity. Because plastic zone size is inversely relsed to yield strength
(Figure 1), greater retardation 1is expected in low strength materials., This is
clearly not the case for the data shown in Figure 35, where 7075 and 7050 in
the low strength T7 tempor exhibited much less retardation than these alloys
in the high strength T6 temper.

The key to this apparent inconsistency lies in the fact that, at low
stresses such as were used in this study, AKeff within the OL plastic zone 1s
suppressed to near-threshold magnitudes. For example, if a 1.8 OL is superimposed
on a baseline AKa of 3.3 MPavm (3 ksivin.), AKef

pp f
after the OL will be less than 2.2 MPa/m (2 ksiv/in.), according to the Vroman

for the first CA cycle

model. At these AKeff values, Figures 11 and 12 indicate that growth rates will
be much smaller for the T6 temper than for T7. Thus, even though AKeff may be
slightly lower for a T7 temper than for 16 because of the smaller yield strength
in the overaged temper, the much lower crack growth vates for a peak-aged alloy
result in greater retardation of crack growth in comparison to the T7 temper

when AKeff is reduced t¢ near-threshold values.

Fatigue crack growth retardation 1s also expected when OL excursions cause
local fracture of coarsz second phase particles within the OL plastic zone (5, T,

33). '"hese secondary fractures relieve some of the crack tip strain energy,
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thereby lowering AKeff and reducing crack growth rates. Since the degree to
which crack tip strain energy is relieved is related to the number of fractured
partinles, greater retardati-m is expected in alloys containing a large amount
of coarse second phase particles. This was observed in previous studies (5, 7)
in which low purity 7075 exhibited greater retardation than higher purity 7050
for the OLR = 1.8, OCR = 1:8000 OL spectrum at high stress levels. Similarly,
greater retardation was observed in 7075 when compared to higher purity TUT5

in both aircraft spectra and simple high-low block tests (33).

In the present results, it again is apparent that 7075 exhibits longer FCG
lives (Figure 29) and greater retardation (Figure 35) than 7050 in the same
temper. If this ranking were due to differences in strength level, then 7075
should have a lower yleld strength than 7050 in both T6 and T7 tempers. Table 4

shows that this is not the case for the T7 temper, since the yield strength of 7075

is about 3% higher than that for 7050. This FCG performance ranking could,
however, be due to the higher constituent volume fraction in 7075, and is
reflecrved in the higher constitueni particle density on the fracture surface
of 7075 (Figure 37b) as compared to 7050 (Figure 36a). It is also evident in
Figure 35 thas the crack growth retardation advantage of 7075 over 7050 is
greater in the T6 temper than in the overaged temper. Since the matrix in a
higher-strength T6 temper is less able to accommodate hard constituents by
plastic flow during crack tip deformation, fracture of these second phase
particies is more likely than in the lower-strength T7 temper. Thus, a greatzr
relative attenuatlon of crack growth rates would be expected for an alloy in
the T6 temper than in a T7 condition. This hypothesis also is supported by the
observation of great :r constituent density on the fracture surface of 7075-T6

(Figures 38¢ and d) than of 7075-T7 (Figures 4lc and d).
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Knott and Pickard (21) recently discussed the effect of cyclic yleld
strength on OL fatigue crack growth retardation in an Al-Zn-Mg alloy. These
authors observed that delay periods during which erack growth is retarded
following overloads are greatest for the underaged condition and decrease with
progressive aging to T6 and T7 conditions. The high cyclic work-hardening
characteristics of the underaged temper cause a large elevation of cyclic
yield strength during an OL excursion, and this yleld strength increase must
be relieved by cyclic softening prior to crack advance at lower baseline
alternating stresses. The relatively small increase in cyclic yield strength
for T6 and T7 tempers is relieved more quickly, so crack growth retardation is
less in these tempers than in an underaged alloy. However, their data also
indicate that delay periods are slightly greater for the T6 temper than for T7
in this aluminum alloy. In a separate investigation of the fatigue properties
of various aluminum alloys (34), it was determined that 7075-T651 cyclically
hardens to a small degree, while 7075-T7351 is cyclically stable. According
to Knott and Pickard's arguments, this would be expected to result in greater
post-OL retardation for the peak~aged alloy relative to an overaged condition.

The influence of cyclic yield strength on FCG retardation contributes to
some fraction of the increase in fatigue life for alloys in the T6 temper over
T7 in the present investigation. However, we believe that the observed temper
effect on simple OL FCG retardation is primarily due to higher AKth in the T6
temper. As previously discussed, CA crack growth rates are ten times lower
for alloys in the T6 temper than for those in the T7 temper at the stress

intensity levels to which AKeff is suppressed initially by the 1.8 OL excursions.

N S T
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Surely this difference in near-threshold CA crack growth rates has a greater
effect on simple OL FCG 1lives than does the modest difference in cyclic

5 tensile properties between T6 and T7 tempers.

5.4 Summary of Phase 2 Results

Periodic single overload tests were employed to evaluate retardation
characteristics of slowly propagating (near-threshold) fatigue cracks in
alloys 7075 and 7050 for both the T6 and T7-type tempers. Under the applied

load spectrum, ranking of alloy performance was not always the same as rankings
from constant load amplitude tests at similar applied AK levels. Comparison

- ) of this work with results on identical alloys tested under a similar load

| history, but at twice the applied stress (5, 7), indicated that retardation
characteristics and fatigue performance rankings are highly dependent on the
applied stress intensity factor magnitude. Variations in rankings generally
indicate that crack growth retardation and propagation mechanisms change with
different combinations of stress magnitude, load history, and flaw size. For
this reason, the alloy microstructure which optimizes FCG resistance is

éi application-dependert.

The retardation process involves a reduction of the effective crack tip

stress intensity factor (AKeff) during low amplitude stress cycles following
an overload. These simple overload experiments and a previous study (5, 7)

have identified two retardation mechanisms which can reduce AKe The first

ff’
is a result of overload plasticity, which increases crack closure forces (35)

and promotes clamping forces developed by elastic constraints surrounding the

A b e ol oo i e R s o4 b e St e 3
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oversized plastic zone of the overload. This retardation mechanism is yield

strength dependent; i.e., lower strength leads to larger overload plasticity

and pr=ater retardation. The second mechanism involves local cracking at
constituent particles, which occurs during high tensile overloads. FCG
retardation during subsequent lower stress cycles occurs bhecause part of the

main crack tip AKe is distributed among the local fractures. Since this

ff
mechanism is controlled by constituent volume fraction, a greater second phase

particle density increases FCG retardation. Of course, if the OL AK approaches

- alloy toughness, crack growth can actually be accelerated by constituent fracture

during overloads.

Comparison of results from CA and OL studies indicates that the same alloy
microstructural characteristics may not optimize both CA FCG resistance and
spectrum retardation oehavior. For this reason, it is helpful to consider
variable load amplitude crack growth as a two-stage process (Figure 42). In
the first stage, a combination of load history and microstructural variables
such as yield strength and constituent volume fraction control retardation and

define AKe Crack extension for each load cycle is then specified in stage 2

g
by the CA da/dN vs. AK relationship, where AK now equals AKeff for each load
v excursion. Because retardation can reduce AKeff to very small values, near-

threshold FCG behavior may contribute significantly to spectrum fatigue

performance. Therefore, the sensitivity of near-threshold fatigue resistance
to alloy microstructure can carry over to FCG under variable amplitude load

spectra.
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General statements about the variable amplitude FCG resistance of a
certain alloy microstructure are difficult to formulate, since metallurgical
effects on both retardation and crack growth characteristlics must be considered
simultaneously. Nevertheless, the understanding of fatigue mechanisms acquired
from simple overload history experiments does permit certain generalizations
to be made. Such statements describe microstructural characteristics which
enhance FCG resistance for classes of simple load sequences typical of many
applications. Table 9 summarizes the statements listed below, which are the

result of this study and prior work (5, 7) on the Al-Zn-Mg-Cu alloy system.

1. When prior overload cycles force effective AK values for numerous
baseline cycles to near-threshold levels, longer fatigue crack growth lives
may be expected for alloys in the T6 temper than those in a T7 temper. This
is due to the greater constant load amplitude FCG resis‘cgnce of the T6 temper
at near-threshold crack growth rates. Load spectra for which a T6 temper should
exhibit better FCG performance than T7 includes those histories where intermediate
AK overloads are imposed at moderate to low frequencies on low to moderately low

MK base cycles.

2. When frequently-applied overloads or baseline cycles at intermediate AK
levels are the cycles in the load history ducing which most crack growth dccurg,
maximum spectrum fatigue life is achieved through optimizing intermediate AK

FCG resistance. In this case, a T7 temper is favored over T6 because of the

greatew resistance to envirormental degradation of FCG performance in the overaged

condition.
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3. One primary mechanism of overload-induced FCG retardation is contrpiled.
by the scale of overload plasticity. Crack growth retardation increases with 4
crack tip plastic zone size, which itself varies inversely with yleld strength. -
Therefore, overaging to a lower strength (T7) condition generally provides
increased FCG resistance over the T6 temper when retardation is both significant
(actual life appreciably greater than predicted by linear damage models) and
controlled by crack tip plasticity. This retardation mechanism dominates whgn
overload plastic strains are too small to cause appreclable secondary cracking

at constituents (see statement U4 below).

4, When applied AK is high (i.e., approaching alloy KIC’) secondary
cracking at coarse constituents contributes to reduced toughrie'ss and lower FCG
resistance. Therefore, greater alloy purity (lower Fe, Si content) improves FCG

resistance when baseline cycles are at high AK or when extremely high overloads

cause appreciable crack extension. In contrast, secondary cracking at constituents.
can reduce AKeff by lowering strain energy at the main crack tip. This in

turn reduces crack growth rates during baseline load cybies following an

overload excursion. As long as no appreciable growth occurs during an overioad,
the net effect can be to lower overall FCG rates. When this occurs, (e.g., high
overloads applied with moderate frequency on low to medium AK base cycles),
increasing alloy constituent volume fraction can increase fatigue 1life. This
retardation mechanism is more effective in increasing FCG 1ife when matrix ’

yield strength is high, which favors the T6 temper over T7 for greater FCG

resistance.
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5. The effects of dispersoid type (Cr vs. Zr) and Cu content on simple
overload FCG behavior were not examined for a low baseline stress level. However,
based on constant load amplitude data (Phase 1) and simple overload results
at a higher stress (5, 7), the influence of Cu and dispersoid type on FCG
retardation is expected to be much less than the effects of temper and purity.

It is presumed that the influence of Cu and dispersoid type on spectrum FCG
behavior will be a result of their modest influence on constant load amplitude

behavior at intermediate AK levels.

VI. CONCLUDING REMARKS AND RECOMMENDED FUTURE WORK

The ¥CG results for both constant amplitude and variable amplitude loading
presented in this report include data for growth rates two orders of magnitude
lower than those most often found in the literature and in handbooks (i.e.,
da/dN > 10"8 m/cycle). These results suggest that the effect of alloy micro-
structure on FCG performance is different for low vs. high AK magnitudes, and
for constant amplitude vs. spectrum loading. It appears that alloy selection
for high fatigue resistance can be improved by considering low AK behavior;

however, to do this. we must look beyond our present means for ranking FCG

performance.

The study of near-threshold behavior points out that significant increases
in fatigue 1ife may be possible through the use of alloys which can restrict
the growth of small flaws during early stages of crack propagation; i.e., when
AKX is small. However, the present low AK fracture mechanics tests characterzie

growth of long, well-established cracks, as has been done in this study. The
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1ink between short and long crack behavior at near-threshold rates has not

et

i been established, nor are the mechanisms of microcrack and early macrocrack

growth well understood. Therefore, it is not clear that alloy resistance to

the growth of small flaws can be optimized with present techniques and knowledge.

PP

In addition, alloy performance targets and their integration with design

: philosophy should be reconsidered. We cite 7XXX alloy temper as an example:

; damage tolerant requirements dictate the use of a T7 temper for higher fracture
h toughness and a concurrent decrease in intermediate FCG rates by a factor of
about 2 over the T6 temper. However, this choice may decrease fatigue life by
an order of magnitude, compared to the 'I6 temper, because of substantially

poorer near-threshold FCG resistance in the overaged alloy. Damage tolerant

philosophy bypasses an appreciable fraction of fatigue life; namely, initiation

and early crack growth.

This raises an interesting question - does alloy selection for FCG resistance

based on damage tolerance requirements exact too great a penalty, either economic
; (e.g., excessive maintenance costs) or weight, when performance is projected
over the expected service 1life of an aircraft fleet? Let us suppose that the
requirements of damage tolerance (safety) can be guaranteed by design, inspection,
and assurance of initial metal quality (e.g., minimum toughness guarantees).
If so, then it is 1likely that alloy selection for fatigue resistance based on
initiat’on and early crack growth will have greater impact on life cycle costs

than selection based on damage tolerant characteristics.

N ————— - ————ra e 1
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Other examples of CG performance tradeoffs based on load history-microstructure
interactions can be cited readily; e.g., the effect of alloy purity on variable
amplitude fatigue behavior. Because these interactions, and thus alloy selection -
for optimum fatigue performance, will be application deper-lent, it must be
verified that laboratory test results can reliably predict alloy behavior in
service. To this end, the generalizations in Tables 6 and 9 represent a basic

level of understanding regarding effects of microstructure-load history

interactions on Al-Zn-Mg~Cu alloy FCG resistance. Such generalizations, in

conjunction with the rationale in Figure 42, represent a first step toward
knowing which alloy microstructure produces optimum fatigue performance for a
given "class" of application. These service classes need to be more clearly

delineated through the development and use of standardized load spectra. Better

alloy selection also will result if life prediction tools can incorporate
understanding of microstructural interactions with variable amplitude load

histories.
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- TABLE 7
-
A
h“ COMPARISON OF EXPERIMENTAL AND PREDICTED FCG LIVES
FOR AN OLR = 1.8, OCR = 1:8000 SIMPLE OVERLOAD
FROM AN INITIAL CRACK LENGTH OF 8.9 m
Initial Half Crack Length = 8.9 mu (0.35 in.)
i Final Half Crack Length = 27.9 mm (1.1 in.)
¥ 1 Block = 8000 CA + 1 OL Cycles
Specimen Geometry - 102 X 6.4 mm (4 X 0.25 in.) CCT Panel
o 7075 7050
T6 7 T6 7
s Experimental 5,684 1,810 3,928 1,254
s Life* (Fig. 29)
Predicted Life¥* 11,500 1,309 28,212 1,135
Actual Spectrum
Predicted Life¥* 124 236 223 266
Nc Retardation
Predicted Life* 46,500 120,500 89,000 129,600
. Complete Retardation
;4
¥ Life = Number of loading blocks
2
T \
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TABLE 8

COMPARISON OF EXPERIMENTAL AND PREDICTED FCG LIVES
FOR AN OLR = 1.8, OCR = 1:8000 SIMPLE OVERLOAD
SPECTRUM FROM AN INITIAL CRACK LENGTH CF 12.7 mm

Initial Half Crack Length = 12.7 m (0.5 in.)
Final Half Crack Length = 27.9 mm (1.1 in.)
1 Block = 8000 CA + 1 OL Cycles
Specimen Geometry 102 X 6.4 mm (4 X 0.25 in.) CCT Panel

7075 7050
T7 T6 7
Experimental
Life¥ 2,982 902 2,013 sliY
Predicted 1,535 557 2,475 674
Life¥

¥ Life = Number of loading blocks
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| 1CYCLIC____|
l' BLOCK
o E !Nox.
{.‘ N —fr.-—q
g |
' 5
102mm —s 6.4mm TMAX
j/ OMIN 1 4
A NUMBER OF CYCLES
|..2_a.| APPLIED STRESS HISTORY
Vﬁ—// STRESS —
CENTER CRACK INTENSITY Koy T
TENSION SPECIMEN FACTOR | | 8K} Koy
(L-T ORIENTATION) K Kmax |
: Kmin ~ 1
-
TIMEORN
INSTANTANEOUS STRESS
INTENSITY FACTOR (SEE NOTE)
owax = {2500 own ={ S5 M0 SURESTAWCSTOATON

R = CONSTANT AMPLITUDE STRESS RATIO = oyinomax = Kyn/Kmax = 1/
OLR = OVERLOAD RATIO = oo/omax = Kol/Kmax

N = NUMBER OF CONSTANT AMPLITUDE CYCLES

NoL =NUMBER OF OVERLOAD CYCLES (=1)

OCR = OCCURRENCE RATIO = Ng/N

NOTE: APPLIED STRESS HISTORY CONSTANT FOR DURATION OF TEST. NOMINAL K
VALUES, THEREFORE, INCREASE WITH CRACK EXTENSION

FIG.2 DESCRIPTION OF PERIODIC SINGLE SPIKE
OVERLOAD TESTS
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FI6. 13 EFFECT OF TEMPER ON CONSTANT-AMPLITUDE FATIGUE CRACK GROWTH RESISTANCE OF ALUMINUM ALLgYS ;
7050 AND 7075 IN HIGH HUMIDITY /- J% R.H.) AIR AT ROOM TEMPERATURE AT AN R-RATIO OF 0.33

g
Metric (SI) conversion factors:

1 in. = 0.0254 m
1 ksiv/In. = 1.1 MPa/m
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(a)
7075-T6

da/dN = 3.5 x 10~10 m/cycle
(1.4 x 10-8 in./cycle)

(b)
7075-T7
da/dN = 6.4 x 10~10 m/cycle

(2.5 x 10~8 in./cycle)

Typical fracture surface appearance of alloys
7075-T6 and 7075-T7 at AK = 2.2 MPa \/m

(2 ksi -/ in.).
Figure 17. .
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- .
Propagation direction

Typical fracture surface appearance of alloy
7075-T7 at a growth rate of

3.5 x 10-10 m/cycle (1.4 X 10-8 in./cycle).
Figure 18.
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(a)
7075-T6

Typical fracture surface appearance of alloys
7075-16 and 7075-T7 at AK = 3.3 MPa /m

(3 ksi /in.).

Figure 1.
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(a)
7075-T6

(b)
7075-T7

Typicai fracture surface appearance of alloys
7075-T6 and 7075-T7 at AK = 5.5 MPa /' m

(5 ksi /in.).
Figure 20.
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(b)
7075-T7

Typical fracture surface appearance of alloys
7075-T6 and /075-T7 at AK = 6.6 MPa ./ m

(6 ksi -/in.).

Figure 21,
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(a)
7075-T6

(b)
7075-T7

%
Typical fracture surface appearance of alloys
7075-T6 and 7075-T7 at AK =11 MPa /m
(10 ksi ./ in.).
Figure 22.

N

3

Ja ot N

. L e

e B P DRI e e
R A TS ek

LIRS e
[




-

,GA 12028

(a)
AK = 2.2 MPa /T

(2 ksi /in.)

(b)
AK = 3.3 MPa /T
(3 ksi ,/in.)

Typical fracture surface appearance of High Cu
7075-T7 alloy at AK = 2.2 and 3.3 MPa ./ m

(2 and 3 ksi \/In.).
Figure 23.
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(a)
AK = 2.2 MPa /™

(2 ksi /in.)

(b)
AK = 11 MPa /m

(10 ksi ./in.)

B T

Typical fracture surface appearance of alloy
7475-T7 at AK = 2.2 and 11 MPa / m

(2 and 10 ksi -/ in.).
Figure 24.
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(a)
7050-T7

(b)
Low Purity
7050-T7

Typical fracture surface appearance of alloy
7050-T7 and Low Puiity 7050-T7 at
AK = 2.2 MPa ./ m (2 ksi /in.).
Figure 25.

S Tk XL e 2




e ST ARSIy

T TS e I

ST

(b)
Low Purity
7050-T7

Typical fracture surface appearance of alioys
7050-T7 and Low Purity 7050-T7 at

AK = 5.5 MPa \/_61_ (5 ksi \/_ii.).
Figure 26.
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(a)
7050-T7

(b)
Low Purity

7050-T7
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Typical fracture surface appearance of alloys
7050-T7 and Low Purity 7050-T7 at
AK = 11 MPa ./ m (10 ksi /in.).
Figure 27.
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(a)
AK = 2.2 MPa /m

(2 ksi /n.)

(b)
AK =11 MPa /' m
(10 ksi /in.)

Typical fracture surface appearance of Low Purity
7010-T7 alloy at AK = 2.2 and 11 MPa ./ m

(2 and 10 ksi /in.).
Figure 28.
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_in the transition region from CA to a simple
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Variation in simple OL fracture surface
lineage spacing with crack growth rate in
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(d)
2.5 x 102 m/cycle
(1 x 10”7 in/cycle)

Variation in simple OL fracture surface
lineage spacing with crack growth rate in
7075-T6 (continued)

Figure 38
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(a)
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Two Stage Process of Variable-Load

Amplitude Fatigue Crack Growth Resistance

of 7XXX-Type Aluminum Alloys

Load spectrum determines AKetf

AKett = f (load history, plastic zone
size, alloy purity)

Constant amplitude behavior defines FCG resistance

da/dN = f (AKeff)

Low AK: Temper

Moderate AK: Environmental resistance
(composition, temper) -

High AK: Toughness (temper, purity)

Spectrum
Fatigue
Crack ‘Growth
Performance.|

FIGURE 42. SCHEMATIC DIAGRAM SHOWING THE INFLU‘ENCE OF METALLURGICAL VARIANTS
ON BOTH RETARDATION AND FATIGUE CRACK GROWTH DURING SPECTRUM
FATIGUE LOADING
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