
AD-A112 713 CARNEGIE-NELLON UNIV PITTSBURGH PA DEPT OF COMPUTER -ETC F/B 912
AUTOMATIC GENERATION OF RELIABILITY FUNCTIONS FOR PROCESSOR-MEM--ETC(U)
FEB 81 V KIMI MOOOI-77-C-OIO3

UNCLASSIFIED CMU-CS-81-121 M

13ffffffffffff

I 1.0.0

M. I I~ 1.8

S _____IL25__

Automatic Generation of Reliability Functions
for

P Processo r- Memo ry-Switch Structures

Department of Electrical Engineering
Carnegie-Mellon University

* Pittsburgh, PA. 15213
February 1981

Vitlal KInM

DEPARTMENT
of-

COMPUTER SCIENCE ;:j

A!

i,3

Ilk,

CMU-CS-81-121

Automatic Generation of Reliability Functions
for

P rocesso r-Memo ry-Switch Structures

Vittal Kini

Department of Electrical Engineering
Carnegie.Mellon University

Pittsburgh, PA. 15213

February 1981

Submitted to Carnegie.Mellon University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

This work was supported in part by the National Science Foundation under Grant
GJ 32758X and in part by the Office of Naval Research under Contract NR.048.645
and Contract N00014.77.C.01 03.

ABSTRACT

"Reliability computation is gaining much importance for computer system architectures with built in
redundancy, such as multiprocessors. The task of computing the reliability function for arbitrary

Processor.Memory.Switch (PMS) interconnection structures, however, is tedious and prone to human

error. Existing reliability computation programs make one of two assumptions: -

-That the case analysis of success states of the System has been carried out. Such
analysis must be done manually. In this instance the input to the program is usually in the
form of an intermediate representation (e.g. Fault Tree, Reliability Graph):',

- That the interconnection structure is a member of, or can be partitioned into, some
limited class of structures for which a parametric family of equations exists (e.g. N-
Modular Redundant systems, Hybrid Redundant systems).

This thesis represents a first step in the development of a methodology for automating the

computation of symbolic reliability functions for arbitrary interconnection structures at the PMS level.
The work reported here automates the task of case analysis and problem partitioning in the hard-

failure reliability computation for PMS structures. As a consequence attention is freed to focus

almost wholly on specifying the reliability computation problem. The advantages of such an approach
are (i) utility to a larger class of users, not necessarily expert in reliability analysis. and (ii) a lower
probability of human error in the computation.

A program named ADVISER (Advanced Interactive $ymbolic Evaluator of Reliability) was

constructed as a research vehicle. ADVISER accepts as inputs

1. The interconnection graph of the PMS structure, and

2. A succinct statement of the operational requirements on the structure in the form of a
regular expression.

Each component in the system, which may have internal redundancy, is represented by a symbol. The

operational requirements in the case of a multiprocessor architecture may be, for example, "two

processors and four memory boxes and one I/O channel". ADVISER considers the communication
structures in the PMS system (e.g. buses, crosspoint switches, etc.) in addition to the explicitly stated

requirements to determine how the interconnection structure affects the system reliability. The output

of the program is a symbolic reliability equation for the system subject to the given requirements. This
dissertation describes the ADVISER program and methodology in detail.

A .,.

Acknowledgements

I would like to express my deep gratitude to Dan Siewiorek who has nominally been my advisor

through my years of graduate study at CMU. As a good friend through hard times, and a patient and

ever-helpful mentor he has gone far beyond the call of tV't nominal duty. Without his continual

encouragement this thesis might truly never have been written.

I am much indebted to my present employers, USC-Information Sciences Institute, for being flexible

and understanding in allowing me to pursue thesis writing in conjunction with day-to-day tasks over

the better part of one and a half years. I am particularly grateful to Steve Crocker of USC.ISI in this

respect.

For taking the time out from their busy schedules to review this large document in such a short time

I extend my sincere thanks to my thesis committee: Mario Barbacci, Steve Director, both of CMU, and

Bob Swarz of Digital Equipment Corp.

An undertaking such as this is seldom accomplished without the encouragment, support and

contributions of good friends and colleagues; I am fortunate to have been blessed with many. I would

especially like to acknowledge Mario Barbacci, Bill Brantley, Steve Crocker, Gary Leive, Andy Nagle.
Alice Parker. and Don Thomas, all of whom, at one time or other, contributed ideas and acted as

sounding boards during enlightening discussions. My thanks to John Gaschnig, now at SRI, for an

introduction to the ideas which lead to the material of Chapter 4, and Rostam Joobbani .3r help in
resurrecting old programs for use in the experiments of Chapter 7. The camaraderie of the "Porter

Hole Gang" contributed to making the stimulating CMU environment that much more pleasant.

The Dunnoms, Jipps, Kerrs and Kondas provided homes away from home and affection beyond

measure to a student far from his family and country. They have helped perhaps more than they

realize. Last, but most of all, my eternal gratitude to my parents for their unwavering faith in my

abilities and trust in my judgement. Would that all toilers were blessed with such a loving family.

Table of Contents

1. Introduction 1

1.1 Background 2
1.2 Extant Reliability Calculation Programs 5

1.2.1 Reliability Estimation 6
1.2.2 Reliability Block Diagram representation 6
1.2.3 Hybrid-Redundant System analysis 7
1.2.4 PMSL 9
1.2.5 Automatic Fault Tree Synthesis 9

1.3 Statement of Goals and Discussion 10
1.4 Organization of Thesis 11

2. Overview of ADVISER 13

2.1 Underlying assumptions and concepts 13
2.2 Overview of program 18

2.2.1 Program Inputs 18
2.2.1.1 Declaration of Component Types 20
2.2.1.2 Declaration of the PMS structure 21
2.2.1.3 Declaration of Reliability Requirements 22

2.2.2 Program Algorithms 27
2.2.2.1 Detection of symmetries in the PMS interconnection graph 27
2.2.2.2 Segmenting of the PMS graph 28

2.2.3 The OVERLORD routine 31
2.2.3.1 Generation of feasible MCRSs 31
2.2.3.2 Satisfying the Communication Axiom 37
2.2.3.3 Representation of Reliability Expressions 38

2.2.4 Program Output 40
2.2.4.1 Printing of Results 40

2.3 Conclusion 41

3. Intermediate Representations 43

3.1 Introduction 43
3.2 Some commonly used representations 43

3.2.1 Probability Trees 45
3.2.2 Fault Trees 48
3.2.3 Reliability Graphs 49

3.2.3.1 Reliability Block Diagrams 51
3.3 The Series-Parallel RBD in ADVISER 52

3.3.1 The model underlying the SPRBD 54
3.3.2 The SPRBD Algorithms 55

3.4 A data structure for the SPRBD algorithm 58
3.4.1 Ordering of CRP terms 60

3.5 An implementation of the SMERGE algorithm 61
3.5 An implementation of the PMERGE algorithm 65

3. " Summary 65

4. Detection of symmetries in the PMS graph 67

4.1 A symmetry detection algorithm based on equivalence classes 69
4.2 Some properties of the NCER 77
4.3 Modification of EDS for labelled graphs 78
4.4 Some results in regard to the NCG and TNCG 82

4.4.1 Unequal class cardinalities 85
4.4.2 Equal class cardinalities 87

4.5 Symmetric trees 88
4.6 Conclusion 90

5. Tree Interconnection Structures 91

5.1 Generation of Pendant Tree Subgraphs (PTS) 94
5.2 Generation of Reliability Functions for PTSs 99

5.2.1 The TREEREL Algorithm 101
5.2.2 Analysis of Procedure PTREE 108
5.2.3 Extension of TREEREL to compound requirements 110

5.3 Current Deficiencies in Algorithm TREEREL 112
5.4 Summary 114

6. The OVERLORD routine in ADVISER 115

6.1 Overview 115
6.2 Detection of physical symmetries in PMS structures 118
8.3 Segmenting the PMS graph; PTSs and the Kernel 121
6.4 Requirements on the PMS structure 124

6.4.1 Atomic Requirements 125
6.4.2 Compound Requirements 128

6.4.2.1 Conjunctive Requirements 128
6.4.2.2 Disjunctive Requirements 130

6.4.3 Efficiencies in the handling of requirements 132
6.4.3.1 Pre.generation of partial results 132
6.4.3.2 Deferring the combining of partial results 133

6.5 Generation of Partial Results for PTSs 136
6.5.1 Symmetric PTSs 136

6.5.1.1 Unique identification of PTS partial results 137
6.5.1.2 The Templates Table 137
6.5.1.3 The Factors Table 138

6.6 The Communication Axiom and the Kernel 140
6.6.1 The Communication Axiom 140
6.6.2 The Kernel 141
6.6.3 Paths through the Kernel 143
6.6.4 The Path Algorithm 143
6.6.5 The generation of partial results for the Kernel 146
6.6.6 The utility of side-constraints on pathfinding 147

6.7 The Main Loop of the Overlord Routine 149
6.7.1 Generation of feasible compositions ISO
6.7.2 Computing the reliability contribution of the Kernel 154
6.7.3 Computing the reliability contribution of the PTS segments 156
6.7,4 Accumulating the result for a pure Conjunctive Requirement 157

iii

6.7.5 General case: a Disjunctive Requirement 157
6.8 Efficiency in the assembling of CRP's in Overlord 158

6.8.1 The CRPTree 159
6.8.2 Construction of the CRPTree 161
6.8.3 Use of the CRPTree 162

6.9 Side Constraints on Reliability Function generation 162
6.9.1 Intracomponent port connections 164

6.9.1.1 Need for constraint 164
6.9.1.2 Implementation 166
6.9.1.3 Effect of constraint on algorithms 167

6.9.2 Intra Component.Type Communication 168
6.9.2.1 Need for constraint 168
6.9.2.2 Implementation 168
6.9.2.3 Effect of constraint on algorithms 169

6.9.3 Bounded Clustering of Critical Components 170
6.9.3.1 Need for constraint 170
6.9.3.2 Effect on Algorithms 173

6.10 Simplification of Canonical Reliability Polynomials 174
6.10.1 NORMVEC processing 176
6.10.2 AUXVEC processing 176
6.10.3 Final algebraic simplification 178

6.11 Printing of Results 179
6.12 Summary 184

7. Examples and Results 187

7.1 Validation of ADVISER 187
7.2 Comparison to manual calculations 188

7.2.1 The DEC1 .PMS example 189
7.2.2 The DEC2.PMS and DEC3.PMS examples 198

7.3 Comparison to published results 20
7.3.1 The Cm* architecture 207
7.3.2 The C.mmp architecture 211
7.3.3 The Tandem architecture 212
7.3.4 The Global Bus architecture 219
7.3.5 The Pluribus architecture 222

7.4 Performance measurements on ADVISER 230
7.5 Application to classical Network Reliability problems 237
7.6 Summary and Conclusions 242

8. Summary, Conclusions, and Future Research 243

8.1 Recapitulation 244
8.2 Future Research 247

8.2.1 Unsolved problems in the present framework 247
8.2.1.1 Intermediate Representation 247
8.2.1.2 The CRPTree 248
8.2.1.3 Side Constraints 249
8.2.1.4 Enhancement of TREEREL algorithm 249
8.2.1.5 Further exploitation of symmetry 250

8.2.2 Relaxing of Underlying Assumptions 250
8.2.2.1 Directed Graphs 250
8.2.2.2 Statistically dependent component failures 251
8.2.2.3 Coverage factors 252

iv

8.2.2.4 Multi.state models of component reliability 253
8.2.3 Other research issues 253

8.2.3.1 Incorporating performance into system reliability 253
8.2.3.2 Other special solvers 254
8.2.3.3 Indefinite requirement specifications 254
8.2.3.4 Reliability models for repairable systems 255

8.3 Summary 256

Appendix A. A special case of inputs to PTS algorithms 257

A.1 Special case operation of Algorithm GROW 257
A.1.1 Connection densities all unity 258
A.1.2 Connection densities not all unity 260

Appendix B. Terminology 261

References and Bibliography 265

L . = " I

v

List of Figures

Figure 1-1: Reliability modeling at the PMS level. 3
Figure 2.1: Critical and Auxiliary components 15
Figure 2-2: The structure of the ADVISER program. 19
Figure 2-3: Example PMS structure for explanation of requirements input. 22
Figure 2-4: Example of a PMS structure in which clustering of CCTs occurs. 27
Figure 2-5: Effect of applying symmetry detection algorithm to an example PMS 29

structure. For details of this particular case see Page 83.
Figure 2.6: Examples of Pendant Tree Subgraphs, 30
Figure 2-7: An example of drawing critical components from segments of G. 33
Figure 2-8: Algorithm to generate all possible combinations of n-compositions. 36
Figure 3-1: The portion of the ADVISER structure discussed in Chapter 3. Also 44

see Page 18.
Figure 3-2: Probability Tree for 2-out-of-3 structure, (a) Complete (b) Reduced. 46
Figure 3-3: Fault Tree for 2-out-of.3 structure 48
Figure 3-4: Reliability Block Diagram for 2-out-of-3 structure 52
Figure 3-5: (a) A non series-parallel RBD, and (b) its stochastically equivalent 53

series-parallel RBD
Figure 3-6: Merging rules for SPRBDs 55
Figure 3-7: Data structure for CRP term 59
Figure 3-8: (a) The Bin Array (b) A representative bin. 62
Figure 4-1: The portion of the ADVISER structure discussed in Chapter 4. Also 68

see Page 18.
Figure 4-2: Application of the NCER to an example graph. 71
Figure 4-3: Examples of NCGs resulting from the application of NCER to various 75

graphs.
Figure 4-4: Non-symmetric but isomorphic PMS structures. 79
Figure 4-5: An example PMS graph with symmetries 82
Figure 4-6: Steps of the ETEDS algorithm applied to Figure 4-5 83
Figure 4-7: (a) The TNCAM for Figures 4-5 and 4-6 (b) The TNCG defined by the 84

TNCAM above.
Figure 4-8: A pair of vertices in an NCG. 85
Figure 4-9: Ambiguous origin of single NCG edge when n. a n 88
Figu re 4-10: A case where a leaf of G" is not a leaf of G. 89
Figure 5-1: Examples of Pendant Tree Subgraphs 92
Figure 5-2: The portion of the ADVISER structure discussed in Chapter 5. Also 93

see Page 18.
Figu re 5-3: Data structure for germinal trees 95
Figure 5-4: (a) All the 4-compositions of the integer 3. (b) All 3-partitions of the 101

integer 6.
Figure 5.5: First five terms of w(n) 110
Figu re 5-6: Parse tree of requirement expression (5.3). 111

vi

Figu re 5- 7: Example of TREEREL deficiency. 113
Figure 6-1: The position of the OVERLORD routine in the ADVISER structure. 116

Also see Page 18.
Figure 6-2: PMS structure used as a running example 119
Figure 6-3: Typed Neighbors Class Graph of the PMS structure in Figure 6.2. 120
Figure 6-4: Segmentation of PMS structure of Figure 6-2 into Pendant Tree 123

Subgraphs and the Kernel
Figura 6-5: Choosing N components from m segments; m-compositions of the 126

integer N.
Figure 6-6: Capacity vectors for the PMS of Figure 6.2 when segmented as in 127

Figure 6.4.
Figure 6-7: Derivation of partial and final results for a conjunctive requirement 131
Figure 6-8: CRPTree for the example of Figure 6.7 134
Figure 6-9: The relationship of important tables in ADVISER 139
Figu re 6-10: Three cases of paths through the Kernel 142
Figure 6-1 1: A dual-port bus-switch architecture 148
Figure 6-12: The logical organization of the Compositions Table 151
Figure 6-13: An example of a CRPTree 160
Figure 6-14: An example of a vertex with an Internal Port Connection Matrix 165
Figu re 6- 15: An example of a computed reliability function printed in FORTRAN 182
Figure 6-16: An example of a computed reliability function printed in SAIL 183
Figure 7-1: Example DEC1 .PMS -. PMS Diagram and Requirements. 190
Figure 7-2: Example DEC1.PMS -- Hand-constructed SPRBD for given 191

requirements.
Figure 7-3: Example DEC2.PMS -- PMS Diagram and Requirements. 199
Figure 7-4: Example DEC2.PMS .- Hand-constructed SPRBD for given 200

requirements.
Figure 7-5: Example DEC3.PMS .- PMS Diagram and Requirements. 201
Figure 7-6: Example DEC3.PMS -- Hand-constructed SPRBD for given 202

requirements.
Figure 7-7: Cm architecture used for ADVISER tist 207
Figure 7-8: Comparison of ADVISER and SENET results for Figure 7-7, Cmo, 5 P, 209

10 M required.
Figure 7-9: Comparison of ADVISER and SENET results for Figure 7-7, Cm*, 1 P, 210

2 M required.
Figure 7.10: C.mmp architecture for ADVISER test. 212
Figure 7-1 1: Comparison of ADVISER and SENET results for Figure 7-10, C.mmp, 213

lumped switch, 2 P, 2 M and 1 K.io required.
Figure 7-12: Comparison of ADVISER and SENET results for Figure 7-10, C.mmp, 214

distributed switch, 2 P, 2 M and 1 K.io required.
Figure 7-13: Tandem-16 architecture for ADVISER test. (a) PMS diagram (b) 215

Detail of Computer.
Figure 7-14: Comparison of ADVISER and SENET results for Figure 7-13, 217

Tandem, 2 C and 2 IOL required.
Figure 7-15: Comparison of ADVISER and SENET results for Figure 7-13, 218

Tandem, 1 C and 1 IOL required.
Figure 7-16: The Global Bus architecture used for ADVISER tests (a) Without I/O 220

lines (b) With I/O line.
Figure 7-17: Comparison of ADVISER and SENET results for Figure 7-16, Global 221

Bus, 2 P, 8 M and I IOL required.
Figure 7-18: Pluribus model for ADVISER test. 223

vii

Figure 7-19: Comparison of ADVISER and SENET results for Figure 7-18, 224
Pluribus, 2 P, 2 MX, 2 ML, 1 CLK, 1 PID, 1 IOL

Figure 7-20: (a) Simple version of Pluribus architecture (b) Hand-constructed 226
SPRBD for structure in (a) above: 1 P. 1 ML, 1 MX, 1 CLK, 1 PID anid
1 IOL required.

Figure 7-21: Graph of ADVISER runtimes in Table 7-1. 234
Figure 7.22: Graph of ADVISER runtimes in Table 7.2. 235
Figure 7-23: (a) Example network from [Hansler 74] (b) Translation into ADVISER 240

framework

ii

List of Tables

Table 2-1: Sample input component type-declarations. 20
Table 2-2: Sample inputs defining PMS inte~rconnections. 21
Table 7.1: ADVISER timings for 1 -cluster Cm" case. 232
Table7.: ADVISER timings for 2- cluster Cm *case.- 233
Table 7.3: ADVISER timings for architectures of Section 7.3. 237

Introduction 1

Chapter 1
Introduction

Recent years have seen the advent of practical multiprocessor architectures and

distributed computer systems of growing sophistication. Their growth has been assisted by

cheaper components, of far greater complexity and power than heretofore available, which

have been produced by the revolution in techniques of large scale circuit integration. As the

complexity and sophistication of computer systems grows, so does the importance of fault-

tolerance and of system reliability as a design parameter. Formerly the province mainly of

space-craft designers, fault-tolerance techniques are becoming commonplace due to the

rising ratio of maintenance costs to initial capital costs in typical computer system life cycles.

Thus computation of system reliability metrics have become part of the catalog of system

design tasks. Various efforts have been reported in the literature and are in progress to

provide designers with reliability design tools which will make the task of computing system

reliability metrics easier and more efficient.

The computing of system reliability for complex multiprocessor architectures can be very

tedious and quite prone to error, sometimes even for experienced reliability analysts. Software

tools which currently exist to help estimate or calculate system reliability usually assume an

understanding of reliability analysis techniques and are usually more in the nature of

computational aids once the preliminary system decomposition and analysis has been

manually achieved.

This dissertation describes the results of a feasibility study which was prompted by the

question "Is it possible to build reliability design aids which will assume the burden of a

significant portion of the system analysis effort leaving mainly the system reliability

specification task to the designer?". The result of the effort was the ADVISER (cLvanced

Interactive .ymbolic Evaluator of Beliabillty) program which accepts the interconnection

structure of the architecture at the Processor-Memory-Switch level and a simple set of

operational requirements on the architecture. It then produces the symbolic form of the

system hard-failure reliability function under the given requirements, The program attempts to

2 Introduction

analyze efficiently, using the divide.and-conquer paradigm, the various possible classes of

cases of system success using information gleaned from the interconnection structure of the

system. The program as it is currently constituted is not specific to computer systems per se

and is applicable to other problems which can be cast into the same framework of

assumptions. In other words, no semantics relating to the behavior of specific types of

computer system components are currently incorporated into the program. The current

scope and capabilities of the ADVISER program are modest but the methodology underlying

its design shows much promise for building more sophisticated future versions.

Following sections will present a brief background on reliability calculation and a survey of

some existing representative reliability calculation programs. The goals for ADVISER will be

stated and compared with those of previous efforts. The final section will present the

organization of this thesis.

1.1 Background

Computer systems may be studied at various levels of detail. Bell and Newell in their book

on computer structures [Bell 71] proposed four broad levels at which attention is usually

focused. These are respectively

- The gate level,

- the register. transfer level,

- the software level, and

- the Processor-Memory.Switch (PMS) level.

Reliability prediction studies at the gate and device level are concerned with large populations

of identical components and their failure characteristics in field use. A useful compendium of

such data on electronic components is to be found in [MIL.HDBK.217B 74). A typical use of

this data consists of deriving failure rates for components under various levels of

environmental stress, component quality, etc. starting from a base failure rate in a benign

environment. Some recent attempts in the development of reliability models for software are

compared and contrasted in [Schick 78]. The problem of reliability prediction at the register.

transfer level has traditionally been approached by considering individual gates, registers.

flip-flops etc. to be subject to Poisson failures and computing the failure rate of the system by

simply adding the failure rates of the constituent components. This sort of modeling is

inadequate in the case of fault.tolerant systems since they contain redundancy.

Introduction 3

PMS Reliability Analysis
Areas of interest

FMECA PI4S Availability PMWS Reliability Network
Fault-Trees Computation Computation Reliability

PMS Reliability Computation

Repairable Non-Repairable
Systems Systems

VF~-- I
Repair Periodic Maintenance failure to
Strategies and Repair Strategies Exhaustion

Figure 11:I Reliability modeling at the PMS level.

4 Introduction

WP shall be concerned here with the Processor-Memory-Switch or "system" level of detail

of computer systems. Figure 1-1 shows the areas of reliability assessment which are of broad

interest at the PMS level. These categories are not necessarily disjoint and serve only to

grossly characterize the distribution of work reported in the literature.

FMECA or Failure Modes, Effects and Criticality analysis ([Greene 68]) attempts to

enumerate and explicate aJI the failure modes of a complex system and seeks to understand

all the origins and manners of progression o! ;arious sequences of primal failures which

could lead eventually to system failure. This form of analysis is particularly useful in studying

systems whose failure can have disastrous consequences since it forces designers of

complex systems to consider unusual failure sequences which might otherwise have been

overlooked. Furthermore, once completed, the analysis serves as a form of detailed system

documentation. Fault Trees are a form of data representation which is invaluable in this class

of analyses. Though not dealing with computing systems, a well known example of the use of

FMECA and fault trees is the Rasmussen Report [USNRC 75). Lapp and Powers [Lapp 77]

describe a methodology for automatic synthesis of fault trees for chemical engineering

systems (see below).

Reliability analysis is concerned with obtaining the system reliability function [Shooman

68]. The reliability function for a system is a function of time and gives the probability that the

system wi(have survived U=to a given time without failure since time zero. If the system

reliability function is known the mean time before failure (MTBF) may be calculated by

integration. For non-repairable systems such as spacecraft the time to first failure is

effectively the lifetime of the system. The knowledge of the reliability of two non-repairable

systems allows the computation of the Mission Time Improvement (MTI) factor [Avizienis 75]

which serves as a comparative measure of system usefulness. The MTI is the ratio of the

mission times at which the two system reliabilities decay to some pre-specified minimally

tolerable value. Also of interest is the reliability importance [Barlow 75a] of a given system

component which is roughly the sensitivity of the system reliability to the component's

reliability.

Availability analysis is concerned with obtaining the system availability function [Shooman

68]. The availability function of a system is a function of time and gives the probability that the

system will be operational 41 a given time. The system may have been subject to earlier

failures and subsequent restoration to operation after repair. The introduction of a second

random variable into the picture (i.e. the repair time) complicates the mathematical analyses

and some sort of Markov analysis becomes essential in order to obtain the availability function

Introduction 5

of the system. Even the Markov models are not amenable to extraction of a closed-form

solution except in a limited number of cases. Usually, however, the limiting system svailability

is sought since it is possible to calculate it combinatonally from the limiting availabilities of the

individual components. The limiting availability serves as a measure of the fraction of time the

system will be available for use over its lifetime. For non-repairable systems the availability is

synonymous with reliability. Availability analyses are important in the computation of system

life-cycle costs.

The so-called "network reliability problem" 1 is concerned with calculating fairly simple

measures of reliability for a system. Typically the system is a computer communication

network and the vertices of the interconnection graph denote the computers while the arcs

denote the communication links. Either arcs or vertices, or both, are assumed to fail

stochastically. Typically, all vertices are considered homogeneous with identical probabilities

of failure. Arcs are also typically treated likewise. Two common reliability measures computed

for such a system are, for instance,

- The probability that some specific pair of vertices will have at least one
communication path between them at all times.

- The probability that the operative arcs always contain a spanning tree of the
network.

[Wilkov 72] is a good tutorial paper on the subject. Despite their seeming simplicity these

types of network reliability calculation problems have been shown to be NP-hard in the case

of general networks (see [Rosenthal 77] and [Ball 80]).

1.2 Extant Reliability Calculation Programs

In this section we shall review a few representative extant computer programs for system

reliability computation, Their characteristics and intent will be briefly discussed with a view to

setting up a framework within which to classify ADVISER.

1The term "network reliability problem" is applied in the literature to two distinct kinds of network problems The

first variety deals with graph models of computer communication networks n in [Wilkov 721 ad (Hensier 74). The
second variety addresses two-terminal directed networks which are essentially reliability graphs -Such a graph is not
necessarily a model of the physical interconnection structure of the system but rather a a representation of It whIch
characterizes the system' reliability. We shall use the term "network reliability problem" exclusively in the sense of
fWMkov 72).

6 Introduction

1.2.1 Reliability Estimation

Nelson, Batts and Beadles [Nelson 70] describe a program which computes the bounds on

system reliability given its reliability graph. An upper bound for the system reliability is given

as the sum of the probabilities of functioning of the path or tie sets of the reliability graph. A

lower bound for the system reliability is obtained by taking the first two terms of the finite

series which gives the probability of the union of several events, namely:

Pr(E1UE2LU....UE) IPr{E)-'KiPr{ElEi) + I',ikPr{EflEifEk)

..... + (-1)n-'Pr{E1nE 2 f) rE n}

where the event E. is in this case the functioning of all components in the itt tie set.

Increasingly tighter upper and lower bounds on the system reliability can be obtained by

taking more terms of the expression above. Similar bounds can be obtained on the

unreliability by considering E, to be the event that all components fail in the ith minimal cut set

of the reliability graph. The existence of the system reliability graph is assumed. Components

are assumed to have constant reliabilities. Matrix methods are used to generate the minimal

cut sets of the graph. Bounds based on the tie sets are recommended in the low reliability

region and those based on cut sets are recommended in the high reliability region.

1.2.2 Reliability Block Diagram representation

The exact combinatorial system reliability derived from the reliability block diagram

representation is the subject of [Fleming 71], [Chelson 71] and [Kim 72]. All these efforts

assume that the system reliability graph (in the form of a reliability block diagram) has been

previously derived by the analyst. Fleming [Fleming 71] describes a program named

RELCOMP which computes the system reliability and MTBF. The program accepts what is

essentially a purely series reliability block diagram. RELCOMP assumes that the system is

composed of independent subsystems which fall into one of eight categories provided for e.g.

standby redundant configuration, actively redundant configuration, etc. The corresponding

eight commonly used reliability equations are built into the program. Both exponential and

weibull failure distributions are represented in the equation repository.

Chelson [Chelson 71] describes a program which accepts a particular form of block

diagram able to represent systems with standby redundancy. More than one block may

represent a given system component and these are called equivalent blocks. Exponential

Introduction 7

failure distributions are assumed throughout and different failure rates may be assigned to

spares and active modules. The switches which represent the recovery capability of the

system may be modeled as being imperfect. The program constructs the probability tree

(Chapter 3) for the system and computes the reliability from it.

Kim et al. [Kim 72] describe a method for computing reliability from non series-parallel

reliability block diagrams. Their procedure consists of three steps: (i) Reduction of all series

and parallel connections until the block diagram cannot be reduced further ([Krishnamurthy

72] describes another reduction method), (ii) Enumeration of all paths from source vertex to

sink vertex in the block diagram, and (iii) Computation of system reliabilities from the path

reliabilities using an operation which amounts to counting the probability of a given

component only once in each product term. Matrix methods are used to compute the paths

sets for the block diagram.

More recently, work has been reported on the use of reliability graphs to produce symbolic

system reliability functions [Satyanarayana 78], [Aggarwal 78]). These results could be

applicable with modifications in the case of ADVISER as described in Chapter 7.

1.2.3 Hybrid-Redundant System analysis

Another class of programs for system reliability analysis focus on weak points of the purely

combinatorial analysis technique i.e. the inability to deal with systems containing varieties of

dynamic redundancy [Avizienis 75]. In such systems the switching in of spares to replace

failed modules is viewed as an imperfect process contrary to the assumptions of static

reliability models. In such "staged" systems the so called coverage factor, or the probability

of system recovery after a fault, is of central importance since the system reliability has been

shown to be very sensitive to the factor [Bouricius 69].

The early effort in this instance was the REL program which was succeeded by REL70

[Bouricius 713 written in APL. Bouricius, t al. derived basic equations for systems with

standby sparing largely under the assumption of constant failure rates for all system

components. The coverage factor, C, was included in these equations and it was shown that

assuming perfect coverage (C a 1) even when coverage was in fact "near" perfect (C - 0.99)

could produce gross errors. The results of this work were incorporated as an equation

repository into REL70 to analyze memory and processor subsystems of a typical computer.

Mathur [Mathur 72] describes a computer program named CARE which was an

8 Introduction

improvement on REL70. Systems being analyzed were viewed as cascades of independent

hybrid-redundant subsystems. Again, a repository of equations was built into the program for

the analysis of each of Such subsystems. Equations developed in (Bouricius 71] were also

included. The system reliability was taken to be the product of the independent subsystem

reliabilities. The latest version of the program, CARE III, developed by Raytheon Corp., is

considerably more complex. A Markov process approach has been incorporated into the

program along with decomposition methods which agglutinate states to reduce the large state

space of a complex model. Time-dependent parameters for transitions between the states of

the Markov model (i.e. a non-homogeneous Markov model) are handled in cases of non.

repairable systems. Since ultrareliable systems are the subject of CARE III much attention has

been paid to reducing numerical error.

More recently, Ng and Avizienis ([Ng 77], [Ng 80]) developed a unified reliability model for

fault-tolerant systems. This model is based on a Markov process view of the graceful

degradation process of dynamically redundant systems. Various earlier reliability equations

derived for different types of static and dynamic redundant systems are available as special

cases of the unified model [Ng 80). In addition the model is extended to derive the reliability of

repairable systems under a restricted model of the repair process. Degradation under

transient faults is also modeled by the same Markov techniques. The ARIES program

embodies the results of the unified model, However, the model is still restricted in its

applicability to those types of systems which are decomposable into cascades of independent

hybrid- redundant subsystems.

Landrault and Laprie [Landrault 78] describe the SURF program which views repairable

systems as being governed by non-exponential failure processes. The Coxian device of

stages [Cox 68] is used to judiciously introduce series of fictitious states with exponentially

distributed transition times among them so as to convert the non-Markov process to a

Markovian one in the cases where non-exponential distribution being considered is related to

the exponential (e.g. Gamma, Erlang etc.). For some problems semi-Markov processes are

also used which suppose the existence of a finite number of instants possessing the property

of independence on past history i.e. an imbedded Markov chain.

Introduction 9

1.2.4 PMSL

A quite different view of Processor. Memory-Switch (PMS) systems is contained in [Knudsen

73]. Knudsen describes PMSL, a language and a system to describe arbitrary PMS structures.

The notation developed in [Knudsen 73] is quite similar to its progenitor the PMS notation of

Bell and Newell [Bell 71]. PMSL was programmed in SNOBOL and was a powerful description

facility which allowed users to construct interconnection models of arbitrary PMS structures

with the program doing various attribute checks on the structure for legality of

interconnections. The PMSL system, although more in the nature of a PMS.database

manipulation system, also allowed the user to compute the combinatorial reliability of the PMS

structure input to it. However the program suffered from very rudimentary reliability

calculation facilities. Reliability calculation was applicable only to uniprocessor structures

and enumeration of system success states wg %t4i as the (inefficient) computation method.

PMSL is included in this survey of reliaNftv, &. .;Aion programs because the level of detail in

its model of PMS structures is similar -. VISER although the instruments provided to

manipulate PMS descriptions are more pP- J in PMSL. PMS structures are viewed as being

hierarchical and components in the.' we exa* described by a list of attribute-value pairs.

1.2.5 Automatic Fault Tree Synthesis

We end this brief survey of PMS reliability computation programs with a look at an example

from the field of Chemical Engineering. Although not entirely relevant to computer systems,

this example is important since it is a step toward the eminently desirable goal of easier and

less error-prone reliability computation for cor.iplex systems. Lapp and Powers ([Lapp 77],

[Powers 76]) describe the FTS program which constructs the fault-tree representation of a

complex chemical engineering process from a much simpler logical model of the process.

The program contains hazard models of commonly used pieces of equipment within the

process (e.g. valves, pumps, sensors, reactors etc.). The user constructs a logical flow

diagram of the process, labeled with various process parameters, and the program uses its

database of hazard models and information to synthesize the fault tree for the process. Using

cut set analysis the probability of the top event or system failure may be computed.

10 Introduction

1.3 Statement of Goals and Discussion

In the construction of ADVISER the goal was to produce a reliability calculation program

capable of computing the symbolic reliability function for an arbitrary PMS interconnection

structure given a simple statement of the operational requirements placed on it. Therefore,

the following ends were pursued.

- The program should require only a modicum of information from the user as input
i.e. the specification of the problem should be simplified.

-The program should attempt to assume the major portion of the analysis of the
interconnection structure preparatory to computing the reliability function. This
will make it attractive to the user who is less experienced in reliability analysis and
the chances c human error creeping into the computation will be reduced.

- The program output should be the symbolic system reliability function so that
arbitrary failure distributions for the individual component reliabilities may be
experimented with.

One of the major emphases in ADVISER was to avoid the manual construction of the reliability

graph or equivalent representation of the system thus making it preferable to programs such

as described in JChelson 71) and [Kim 72]. Also emphasized is the observation that since

knowledge of the physical interconnection structure provides information about the structural

dependence (as distinct from statistical dependence) of components in determining the

system reliability, the operational requirementr on the structure can be expressed very simply

in terms of a few key components in the system. Further information can then be deduced

from the interconnection topology. This leads to the succinct statement of minimal system

requirements in the ADVISER paradigm.

Of interest in the investigations were systems which could not be partitioned into

independent hybrid.redundant subsystems as assumed in [Mathur 72] and [Ng 80]. Examples

of such systems are the Pluribus [Ornstein 75). CmI [Swan 77), and Tandem. 16 [Katzman 77]

multiprocessors in which recovery from faults and reconfiguration is done largely by software

or firmware. This is not to exclude the possibility that, say, one of the processors within a

multiprocessor such as Tandem-16 could be constructed for reliable operation by using

hybrid redundancy internally. The difference is one of the level of detail at which the system is

being studied.

Network reliability analysis of the form addressed in [Hansler 741 and discussed above in

Section 1.1 was only of marginal interest. The reason is that PMS structures are more closely.

coupled than computer communication networks and the operational requirements on them

Introduction 11

are usually more complex than in the kinds of problems studied in [Hansler 74]; Chapter 7

shows that ADVISER can be used for a subclass of the latter kind of problem,

The ADVISER program was aimed more toward solving the common problem of deriving

the combinatorial reliability of complex interconnection structures under various operational

requirements, particularly in the context of comparative reliability studies of PMS

interconnection structures. A possible use of ADVISER is in an iterative design study of a

candidate PMS interconnection structure wherein the structure topology is perturbed,

components added or deleted, etc. until the appropriate reliability is achieved.

1.4 Organization of Thesis

This thesis is divided into eight chapters and two appendices. Chapter 2 presents an

overview of the ADVISER program and introduces some underlying concepts. defiritions and

terminology which are used in the remaining chapters of the thesis. In effect Chapter 2 is a

version of the thesis in miniature. It is provided so that the reader may have a backdrop

against which to understand the detail in subsequent chapters and as such it is recommenc.i-:d

reading. Chapter 3 describes the intermediate representation used by the program to maintain

the results of its intermediate computations. This is logically equivalent to the block diagram

representation described above, the difference is that it is not manually constructed. Chapter

4 discusses algorithms on the PMS interconnection structures for detecting symmetries which

could be of use in reducing extraneous computation. Chapter 5 describes a class of

subgraphs of PMS structures and the special reliability computation techniques which were

derived for them. Chapter 6 presents details about the Overlord routine within ADVISER. This

embodies the reliability evaluation paradigm and controls the rest of the program parts.

Chapter 7 describes experiments carried out with ADVISER in order to test the models tne

program generated. Chapter 8 summarizes this work and presents directions for future

efforts. Appendix A describes a special case encountered by the algorithms of Chapter 5.
Finally, Appendix B presents a list of terminology and acronyms used in the dissertation.

ADVISER Overview12

7 1121

ADVISER Overview 13

Chapter 2
Overview of ADVISER

2.1 Underlying assumptions and concepts

The general case of deriving reliability functions for arbitrary interconnection structures of

components is a task that is difficult to program. Much depends on the semantics of the

behavior of the components in the structure, the interrelations among their individual tasks

within it, whether their probabilities of functioning are statistically mutually independent, and

so on. Some idealizations become necessary in order to make the problem tractable.

One of the original and more important goals of the project was to produce a hardware

design tool. The desire was to be able to compare two PMS interconnection-structure designs

with fast turn-around time. As long as the metric used is consistent across the space of

designs being considered, the comparison is valid. For this reason it was decided to study the

hard-failure reliability of a system unencumbered by the effects of policy decisions regarding

manner of use, software reliability, transient failures, and statistical dependence of

component failures in any form. The comparisons would therefore take into account the best

possible reliability performance of each PMS structure being considered.

In order to set a reasonable goal for this thesis certain fundamental assumptions were

made and limitations set.

1. To begin with, failure processes in individual components in the structure were
assumed to be stochastically independent. Since Processor-Memory-Switch

structures are the focus of the study, there seems to be justification in making this
assumption. For example, the typical components we are considering, such as
processors, memories etc., are generally physically separated, Thus common-

mode failures caused by proximity, such as heat generated by one component

causing thermal runaway within another, would have lower likelihoods.
Dependency of failure mechanisms was considered a second-order effect. This,
however, does not imply that failures of different system components affect the
system uniformly. Clearly, the topology of the interconnection in the structure
has a bearing on this question.

14 ADVISER Overview

2. Only the hard-failure reliability function of the components is addressed. The
effect of variation in coverage (Bouricius 69] are not considered and neither are
transient failure mechanisms.

3. Components i,, the PMS structure will be assumed to be binary state objects, i.e.
either "failed" or "working". This assumption. by implication, once more
excludes consideration of transient failures. Furthermore, the emphasis will be
on probabilities of success of components so that all reliability functions will be
expressed in these terms.

4. The graph of the interconnections of the PMS structure will be modeled as a non-
directed graph. The vertices of the graph will correspond to the components in
the structure and the functionality of the components will be lumped into these
vertices. Each non-directed arc of the graph will be considered perfectly reliability
and will simply represent the capability of information to flow oetween its two end
vertices. The failure of a component is assumed to prclude its being able to
process, and, more important, retransmit any information sent towards it, when it
is in its failed state. This is equivalent to removing the corresponding vertex in the
graph and all arcs that are incident on it.

5. /t is assumed that in order for an assemblage of informatio,-p'ocessing
components to comprise a useful functioning system, some distinguisheo set of
critcal!y important system components will need to be able to comm-nicate
amongst themselves. In other words, information should be capable of flowing
between any two components from the distinguished set; whether via ot.her
distinguished components or any other components in the structure, or both.
This will be henceforth referred to as the Communication Axiom and is elaborated
upon below.

We first introduce some concepts basic to our discussion of the Communication Axiom.

Throughout the rest of this dissertation the terms "system success" and "component

success" will be used interchangeably with the terms "system is functional" and "component

is functiorial" respectively, i.e. to denote the state of not being failed. In any system that we

may consider, some subset of the total set of components in the system will be distinguished

in that their functioning correctly is of vital importance to system success, e.g. the CPU in a

uni-processor system. ,ore accurately, there will be a set of generic tye of components of

vital importance (e.g. processors and memories). Also, a certain mi'rmum numbe, of

components, drawn from each distinguished type will be required to be functional for system

success. The distinguished component types will be termed iia cCoonenC Qs

Each such type constitutes a class of identical components and the members of these classes

will be termed l components. All components that are not critical in the PMS structure

will be termed auiikar comoonents. For instance, consider the simple example of Figure 2.1

where we depict two processors which pass data back and forth over one of two links

provided to increase reliability of data transfer. We shall assume that the data links are very

ADVISER Overview 15

P P

Figure 2-1: Critical and Auxiliary components

different in their reliability behavior thereby essentially being members of different

components type classes. Assume the processors are vital to the task at hand and are thus

critical components, then links L1 and L2 are auxiliary components in that there are system

success states in which L1 is functional but not L2, and vice versa, and a system success state

in which both L, and L2 are functional. However, there are ng system success states in which

critical components are nWt functional.

A minimum number of critical components from each CCT are required for system success.

Together they constitute a minimal Qritical resource We (henceforth MCRS). The set is

minimal in the sense that, although the system Ma function if all components in an MCRS are

functional (depending on the status of the auxiliary components in the structure), the

structure is guaranteed to fail if any component of this MCRS fails. In other words, the

success of an MCRS is a necessary, though not sufficient, condition for system success. This

concept is not to be confused with a minimal system success state in which the failure of .vly

one functioning component, whether critical or auxiliary, causes system failure. The latter

would be a stronger condition on minimality.

If there is redundancy in the supply of critical components configured in the structure then
there will be more than one minimal critical resource set. Each such set will, in general, be

included in one or more system success states, again depending on the disposition of the

auxiliary components.

We now continue our discussion on the Communication Axiom. It seems fundamental that,
in order for an information processing system to do useful work, there need to exist pathways,

or channels, of information flow between components of an MCRS of that system. This is a

basic rule which is tacitly assumed during calculation of reliability of Processor.Memory.

Switch structures.

16 ADVISER Overview

Notation: In the rest of this dissertation the interconnection graph of the PMS
structure under study will be referred to as G(V,E).

The contention here is that the reliability of PMS structures may be computed by a program

using the following simple paradigm. The user inputs:

1. Component type classifications

2. Graph of the PMS interconnections, and

3. A Boolean statement of which component types are critical component types and
how these are related in determining system reliability.

The last of these three items is what we shall term the minima! requirements on the system. An

example of such a minimal requirement phrased in English might be "at least one processor

and at least one memory and (at least one disk or at least two tape units) must be functional"

where the "or" is an Inclusive-OR. Of course, the program would use some abbreviated or

encoded form of such a statement. The program would employ the minimal requirement and

the interconnection graph of the system in the context of the Communication Axiom. The

component types referred to in the minimal requirements would be labelled critical

component types by default and the rest labelled as auxiliary types. The minimal requirements

would be used to generate all the MCRSs of the system. For a given MCRS, the

Communication Axiom and the interconnection graph then identify sets of paths between

pairs of vertices in the graph which represent the components of the MCRS. A path is

deemed functional iff all the components along that path are functional. The Communication

Axiom implies that components in the MCRS must be part of a connected graph of functional

paths for a reliable system. A more precise statement of the Communication Axiom is given in

Section 6.6.1.

In order to gain an intuitive understanding of how the Communication Axiom is used each

MCRS may in essence be thought of as a skeleton of critical components which must be

"fleshed out" with a set of paths in the graph between the vertices of the skeleton so as to

form a connected graph. This will provide paths for communication between the components

in the MCRS. Each such possible fleshing out of the skeleton will correspond to one minimal

success state of the system. Furthermore, each set of paths cnosen to flesh c' t th'e sxelefrcr

will itent/fy the other (auxiliary) components along those paths whicl are aciditiona!/y

necessary for the vertices of the MCRS to communicate. This method of identifying the

additionally necessary components has an important and useful side effect from the olewpoint

of the user of the program. Consider a component in the structure whose component type is

not referred to in the requirements expression. It may be the case that this component is

required to be functional in every system success state, i.e. it is truly a "critical" component

ADVISER Overview 17

although it has been labelled auxiliary by default. An example of such a component might be a

memory controller which lies on the path to a memory required for system success by a

requirement of the type shown above. Although the memory controller is not referred to in the

requirements, thereby not explicitly making it critical, the strategy of "fleshing out" the MCRS

with paths from the graph will always find the memory controller to be necessary at all times

since all paths to the memory pass through it. Typically, therefore, few component types will

need to be explicitly labelled critical by including them in the requirements expression since

other critical components will be deduced from the interconnection structure via the path-

finding strategy.

On the basis of the foregoing discussion it is possible to see that each MCRS will be part of

possibly several system success states depending on how many combinations of paths can

be found which flesh out the skeleton it provides. For each MCRS a reliability expression

would be generated which accounts for all the probabilities of the all the functional states of

which the MCRS could be a part. These reliability expressions will henceforth be referred to

as Intermediat Results or Paria Result (see Chapter 6 for a more precise description of

these). The intermediate results relating to all possible MCRSs would finally be combined in

the appropriate fashion to generate the system reliability expression.

The use of the Communication Axiom, in the manner referred to in the paradigm outlined

above, seems to be sufficient to derive the reliability function for many cases of arbitrary PMS

interconnection structures. However, constraints beyond those implied by the

Communication Axiom are sometimes posed, during calculation of PMS system reliability, by

the special types of behavior exhibited by various system components. For example, a

crosspoint switch, unlike a bus, generally allows communication only between components

connected to distinct sides of the switch and not among the components connected to the

same side. It would be impractical to include in the program all the semantics of various types

of special behavior ever to be encountered, although this might be reasonable for a limited set

of special component types. However, it was postulated that the inclusion of three further

types of simple modeling information as additional si -nsrain as inputs would enable

the program to handle a majority of cases. This keeps the model and the required operations

simple while providing a useful tool in the program. The three types of additional information

are named below and will be explicated in detail in Chapter 6. However, a preliminary

discussion of them will ensue in Section 2.2.1.3

- The internal port.connection matrix of a component.

- The possibility of intra component.type information transfer.

18 ADVISER Overview

- The required clustering of functioning critical components in parts of the PMS
structure.

2.2 Overview of program

This section will present a fairly lengthy outline of the process by which a PMS description

and the associated reliability requirements upon it are operated on by the ADVISER program

to produce a symbolic reliability function. The process, of course, is subject to the

assumptions and limitations set forth in Section 2.1. This overview is intended to provide a

broad picture of the program within which its individual parts may be described in detail

without much repetition of information to set the context for the description. The material in

subsequent chapters of this thesis will elaborate on the various stages of the program and lay

out implementation issues and details. First. however, some insight into the structure of the

program and the nature of its input is desirable.

When calculating a reliability measure for a system of components, three items of

information are necessary, namely:

1. The reliabilities of the individual components in the system,

2. The physical or logical connection of those components which give the system its
particular existence and define its reliability, and

3. The operational requirements placed on that system which affect its perceived
reliability; for, clearly, a multiprocessor, say, would be less reliable in the case of a
task which requires any m of its processors to be functional as opposed to the
case where a task requires only any n<m.

Figure 2-2 illustrates the structure of the ADVISER program and its various phases. This

figure is reproduced in Figures 3-1, 4-1, 5.2 and 6-1 with enhancements to indicate which part

of the program structure is addressed by the corresponding Chapter. Subsequent sections in

this chapter will describe the above three kinds of input into the program and their eventual

use.

2.2.1 Program Inputs

ADVISER Overview.1

El

If1 1 0
a. j , E

-5 -g.U=C

V " 4 9

a. ,e IS
lo 5, 4M40

'L, T -----
U I

LV
0. L

03-% "1 :: .

C

g 40

b. 0.

Figure~~~ ~ ~~ 2-2 Th tutreo hDISRporm

20 ADVISER Overview

2.2.1.1 Declaration of Component Types

The first input to the program is a list of Wo- of components that will comprise the PMS

structure yet to be described and for which the reliability function is to be computed. Each

ty"e-declaration will contain information with respect to the reliability function for a

component of that type; whether ite * function type known to the program or whether it is

some user-defined function elsewhere The type-declaration will also contain a "print-name"

which is to be used to represent the component when the reliability function is printed out

The reader will have gathered by now that when the interconnection structure is defined the

components comprising it will each be assigned a type which may be selected only from this

list of type declarations. The outcome is that components of like type are assumed in the

current implementation to be identical in a reliability sense (see below for a discussion of

another option). In other words, they are drawn from the same population. As an example,

consider the following representative type declarations shown in tabular form (Table 2-1).

bons c iinnname rel fn 1. fn. arametefs

3 Cent.Proc PC Exponential Lambda = 200.1 /MHr
4 K0-proc PO Weibull Scale a 385.3/MHr, Shape a 0.86

6 O.Cont KIO Weibull Scale a 286.7/MHr, Shape z 0.92

Table 2-1: Sample input component type-declarations.

The unique type numbers in the first column are assigned by the program. Components

which are labelled as belonging to type 3 are of type Cent.Proc (central processors) whose

factors, in the reliability function produced eventually, will printout as PC. All "Cent.Proc"s

are declared to be identical and to have exponential reliability functions with a failure rate of

200.1/MHr. All type 4 components, likewise, are of the class IO.Proc (input/output

processors) and have Weibull reliability functions, each with a scale factor of 385.3/MHr and

a shape factor of 0.86.

Assigning a type to each component in a PMS structure may be viewed as imparting a label

to the vertex representing that component in the interconnection graph. This information is

used by the program as a constraint in detecting structurally symmetric subgraphs of the

interconnection graph (see Chapter 4). The motivation for detecting such symmetries is, of

course, the expectation that the amount of necessary computation can be reduced (see

Chapter 6).

ADVISER Overview 21

As stated above, the current implementation of ADVISER views all components classified

as belonging to a given component type as having identical reliability functions. Another

option is to relax this restriction and use the type-classification mechanism solely to classify

the system components to assist in symmetry detection. The reliability function of each

component would then be individually referred to, as and when it became necessary, rather

than inferring it from its component type class. Doing this would allow further flexibility in the

use of the system reliability function when it is generated (see Section 2.2.4). Trivial changes

are required in ADVISER software to effect this.

2.2.1.2 Declaration of the PMS structure

The next type of input to the program is the labelled graph which represents the

interconnection topology of the system components. The model of interconnections

underlying this work was described in Section 2.1 as representing all connections between

components as duplex, i.e. information may flow in both directions along a connection or arc

in the graph. Thus the model uses non-directed graphs. The description of the graph in the

program input is achieved very simply by means of an adjacency list. A section of a typical

graph description input is shown in tabular form below (Table 2-2). Again a description of the

actual syntax is deferred for reasons of clarity.

comnonent 0 component nme component M g c onn

3 P.10.1 fO.Proc Unibusl.KIO .1.IO2....
4 K.IO1 1O.Cont P.O.1 ,DISK1,ISK
5 K.IO.2 O.Cont P.I,1 ,TAPE.1 ,TAPF.2.

Table 2.2: Sample inputs defining PMS interconnections.

In the table the component named P.10,1 is declared to be of type IO.Proc, This

component type must have been declared during the first input phase when component types

were specified. K.10.1 and K.10.2 are seen to be declared identical components both with

reliability functions which are Weibull with scale factor of 286.7/Mhr and shape factor of 0.92

(refer to Table 2-1). It is possible to completely specify an arc in a non.directed graph by one

occurrence of one of the arc's two end vertices on the adjacency list of the other end vertex.

However, it will be noted that in the program input each arc must occur on two adjacency

lists. Thus, for instance, though it is enough for K.10.1, in the example above, to appear on

22 ADVISER Overview

the adjacency list of P.10.1 to deduce that an arc exists between them, P.101 must also

appear on K.1O.1 's adjacency list. The reason for this redundancy is twofold. Firstly, it ensures

that the underlying graph model is adhered to. It enables the program to discover instances

of errors in connections which manifest themselves as one-way links between a pair of

components. Also discovered, are errors wherein the name of a component, not explicitly

declared, appears on some adjacency list, thus representing a connection to a non-existent

component. Secondly, a reader of an input file is more easily able to understand the structure

of the interconnection graph if the connection is made quite explicit with two-way links.

However, this restriction is easy to remove if the underlying model were to be changed to use

directed graphs.

T.d.1 T.d.2I I!
K.d.1 K. .2

P.2I I
K.m.1 K.m.2 K.m.3I I I
M.1 M.2 M.3

Key

P Processor Km Memory Controller
S Processor Bus T.d Disk Drive
M Memory K.d Disk Controller

Figure 2.3: Example PMS structure for explanation of requirements input.

2.2.1.3 Declaration of Reliability Requirements

We now come to the third kind of information necessary to calculate system reliability; a

statement of what subsets of what types of system components need to be functional before

the system is considered functional. In other words, what subset of System resources are

required to be functional before the given task runs to completion on the system. This

ADVISER Overview 23

information can be supplied in a variety of ways and an example will help to make the

subsequent discussion clearer.

Figure 2-3 shows a dual-processor system. Each processor accesses memory and

peripherals over a bus (S). The perhipherals are dual-ported for access from both processors.

Let us assume, for a specific task, that at least one of the processors, at least two of the

memories and at least one disk drive, need to be functional for system success.

One way to convey these requirements is to explicitly enumerate the system states which

are success states. For instance, in our example, {P.1, S.1, K.m.1, M.1, K.m.2, M.2, K.l,

T.d.1) is a full specification of one system success state. The program then has only to sum

up the probabilities of occurrence of each state. This is objectionable for two reasons. Firstly,

the number of system success states can be large for systems of reasonable size. However,

an argument can be made that only that subset of the system success states which consists of

minimal success states need be considered.

Definition 2.1: A system is defined to be in a minimal succe when it is
functional even though some components are failed, however, the subsequent
failure of any one functioning component causes the system to fail, cf. the minimal
cut vector in the terminology of [Barlow 75a).

The probabilities of all states which are subsumed by the minimal success states will cancel in

the summation process. Even so, secondly, asking the user of the program to analyze and

supply the set of minimal success states is objectionable. It is tantamount to asking him to do

a major part of what is viewed as a task which ought to be done by the program to justify its

use. Furthermore, if the user is relieved of the burden of analyzing the system states, he need

not be experienced in the art of reliability computation. This opens up the use of the program

as a design tool to a larger base of users. Perhaps most important, it could help to eliminate

human error from the usually tedious PMS reliability calculation task,

On the other hand, referring to our example again, it is sufficient to supply a human being

the following brief statement for him to accomplish the task of reliability computation: "at least

1 P and at least 2 M's and at least 1 T.d need to be functional". He then proceeds to use his

knowledge of component behavior. He deduces that certain auxiliary components beyond

those explicitly specified will need to succeed in order to create a system success state. For

instance, if P.1, M.1, M.2 and T.d.1, in being functional, are to be part of a system success

state, then S,1, K.m.1, K.m.2, and K.d.1 will additionally need to succeed.

Most important, it appears that human beings are guided principally by the Communication

Axiom (see Section 2.1) in this process of deduction, in a large majority of cases. In other

24 ADVISER Overview

words, for P.1, M.1, M.2 and T.d.1 to be part of a successful system there must be some

pathways between them for information flow.2 This point was made earlier in Section 2.1

where the distinction was also drawn between critical components and auxilla components

The notion is that given the operational requirements on the system in terms of the critical

components in it, the information provided by the manner in which system components are

interconnected is sufficient in a large number of cases to deduce what subsets if :he auxiliary

components are necessary for each functional system state.

Modeling the style of the requirements input after what would be expected by a human

being, a modified Boolean expression form was chosen. The primitives in the expression are

operated upon by the standard logical AND and OR operators with the former having

precedence over the latter (modifiable with parentheses of course). The primitives are of the

form "at least N of X" where N is integral and N>1. "X" is the name of a previously declared

component type. This is taken to mean "at least N components of type X should be

functional". There are of course two other possible forms for the primitives, namely "Exactly

N of X" and "At most N of X". However, both of these, if allowed, lead to the conclusion that

the system will fail if N + 1 components of type X are functional. This implies that the system is

a non-coherent3 one and, therefore, out of our purview as unlikely to be rationally designed.

We shall refer to primitives such as "N of X" as Atomic Requirements and Boolean

combinations of them will be termed Compound Requirements. Atomic requirements such as

"N of X" will be represented by the symbol 4,(N,X). Within an atomic requirement 4(N,X), N

will be termed the Intee Recuirement and X will be termed the Reouired Component l or

simply the Reuiroe .The simple grammar for compound requirements is shown below:

<requirements.-expression>
:: i <conjunction> I <cOnjunction) OR <reQuirements-expression>

<conjunction> :: = <primitive> I <primitive> AND <conjunction> I (<requirements-expression>)

(Primitive> ::a <integer> OF <typename>

2we reiterate here that we are not considering "systems" which are assemblages of comoletely independent
subsystems with no information flow between them. Such "systems" are easily decomosabie to the case unde,
consideration.

3We use this term as defined by (Barlow 751 1.e, the structure function of the system a not ronotone.

ADVISER Overview 25

As alluded to in Section 2.1 there are three further forms of requirements input which

supplement the Boolean function and provide further constraints on the evaluation thus

allowing a larger space of PMS structures to be handled. These ad hoc side consrain strive

to include semantics of individual component behavior (of which there are none built into the

program) as completely and as generally as possible in the context of PMS structures. We

Shall consider them in turn next, however, their full impact as well as their input syntax will be

clarified later (Chapter 6 and Chapter 7).

1. ntrnal P Cnnetions: Components in the PMS structure under study are
represented by vertices in the interconnection graph. Arcs impinging upon a
vertex correspond to the connection ports of the component represented by it.
Since we are considering non.directed graphs, each arc implies that its
corresponding port could potentially be an input as well as output port for the
component. However, regardless of this, within the component, information that
has entered through any particular port may, after processing, leave through one
or more of the remaining ports. This internal relationship of ports in some
component, say C. may be a significant aid in discovering whether two critical
components, say A and B, may communicate through C. This is necessary in
correctly assessing whether the Communication Axiom is satisfied by an MCRS,
The default assumption in the ADVISER program in the absence of component
semantics is that information potentially flows from any port to any other port
inside any component. However, this is clearly not true, for instance, in the case
of a line.printer controller. The latter will not usually act also as a conduit for
information between two processors connected to it. The input to the program
describing this constraint upon a particular system component is conveyed by
means of a connectivity matrix of port "connections" within the component.

2. = Component-tv= Cgmmunication: In the blandest form of the model, since
no component semantics are included, the Communication Axiom leads to
finding K-edges between all pairs of critical components in any MCRS. However,
there are many cases when information never passes between two components
of the same type. For example, memories are passive components and usually
never communicate with each other. When such passive behavior is to be taken
into account, the use of the Communication Axiom must be modified if we are not
to evaluate a pessimistic system reliability due to having unnecessarily assumed
that some irrelevant inter-component paths needed to be functional. The default
assumption in this instance is that critical components of like type never actively
communicate information whereas critical components of unlike type will always
need to communicate. The extra "constraint" being considered in this paragraph
gives the user of ADVISER the ability to relax this default assumption in the case
of selected critical component types. The choice of this default was not entirely
arbitrary. Passive types of components such as memories of various sorts,
Input/Output transducers and buses usually outnumber active types of
components such as processors and device controllers in a typical PMS
structure.

3. CriaI CoQnfnt CIuJe The third type of side constraint on the model
considers the following phenomenon. In certain PMS structures, in order to have
a functional system it is not sufficient just to satisfy the lower bounds on the

26 ADVISER Overview

number of critical components of each critical component type (CCT). In addition,
these functioning critical components need to satisfy criteria regarding how they
are dispersed in the structure. The situation is best explained through an
example. For instance, consider Figure 2-4 which depicts a multiple processor
system with an inter-processor bus. Let us assume that the processors do not
share the same address space. Then, for any processor to be useful when
functional, at least some of its associated memory must be functional, Thus, if the
minimal requirements for the PMS structure in the figure are

4(Z,P) AND 4(4.M)

then the MCRS (PA,PBMEMFMG ,M.) should not be part of a system success
state. This kind of behavior is observable in multiprocessor systems such as
PLURIBUS [Ornstein 75]. This situation can be viewed as an association or
clustering of CCTs in substructures of the system. In other words, if the CCTs A
and B are associated or "clustered" in this fashion, then in order for any
functioning components of type A in a given substructure to play a useful role,
components of type B must also be functional in that same substructure. We
shall, therefore, refer to a cluster of critical component types wnich are related in
this manner.

The notion of clustering of CCTs is further refined in the following manner. In the
general -ase it is not sufficient to just cluster CCTs and satisfy minimal
requirements for system success. Some lower bounds are usually in force on the
number of components of each such clustered type which are to be functional in
a specific substructure. The bounds effectively derive from sets of inequalities
which relate the number of functioning components of various CCTs. Therefore,
for this cluster of CCTs, we may have, in addition, the following inequalities:

Number of P > 1 (2.1)

Number of M > 2 * Number of P

Thus for instance in Figure 2-4 (PA,MAPB,MEMF,MG) may not be a system

success state, even though the clustering constraint is satisfied, because it may
be necessary to have at least two local M's functional per functioning P to
achieve system success e.g. a processor may need a minimum of, say, 8K of
local memory for success and each M is a 4K board. Thus (PAMA,M BPB.MEM F)
is an MCRS which might be part of a system success state. This phenomenon of
inequality relationships on the number of functioning components belonging to a
set of clustered types in a substructure will be termed bounded clustering of
critical component types. A cluster constraint to the program will consist of a set
of CCTs and a set of inequalities which relate the number of functioning
components of each CCT in the cluster, as in Equation (2.1) above.

ADVISER Overview 27

PA MA M M

SA

I I sB
PB ME MF MG MH

Figure 2-4: Example of a PMS structure in which clustering of CCTs occurs.

2.2,2 Program Algorithms

2.2.2.1 Detection of symmetries in the PMS interconnection graph

Once the various inputs have been supplied, the program may be asked to compute the

reliability function. Its first act in doing so is to attempt to detect symmetric substructures, if

any, within the given PMS structure. The motivation for this, as noted earlier, is to explore the

resulting possibility of avoiding needless duplication of effort.

The symmetry detection proceeds by assigning vertices of the interconnection graph into

equivalence classes in three steps based on three equivalence relations as follows (see

Chapter 4 for details):

- Ste 1: All vertices representing components of like type are assigned to the
same equivalence class. Upon completion of this step there will be as many
equivalence classes as there are distinct component types, say T.

- Step 2 Each equivalence class generated in Step 1 is split into further
equivalence classes based on the equal-degree relation, i.e. two vertices fall into
the same class iff they have the same number of arcs impinging on them. At the
end of this step, the maximum number of equivalence classes present will be at
most Td M" , where d Na, is the maximum degree of any vertex in the graph.

- .The Neighbor Class Equivalence Relation (NCER) [Gaschnig 77] is next
applied to the classes resulting in Step 2 to finally detect symmetric subgraphs.
The NCER is elaborated on in Chapter 4. For the moment we shall roughly

28 ADVISER Overview

describe the nature of the NCER relation. Two vertices will be equivalenced by
ihe NCER iff their neighboring vertices are equal in number and their
:orresponding neighbor vertices fall correspondingly into the same set of
equivalence classes based on the NCER. At the end of this step there will be at
most N NCER classes. Here N is the number of vertices in the PMS
interconnection graph. This upper bound, N, on the number of classes generated
by the NCER will occur in the extreme case that there is no structural symmetry in
the graph and each component is of a distinct type.

The end result of this symmetry detection process is a set of equivalence classes into which

the vertex set V. of the PMS graph, G(VE.), is partitioned. Each class is related to other

classes in a connectivity sense that derives from the symmetric connection of the vertices in

that class to their neighbor vertices in their corresponding equivalence classes. The latter are.

therefore, neighbors of the former class. Thus, these equivalence or neighbor classes and

their connectivity relationships may be viewed as defining another graph called the Neighbor

s Graph £NQGJ. G'(V-,E'). The members of the vertex set V" of the NCG correspond

uniquely to the equivalence classes on V by virtue of the NCER relation. The edges in the set

E' map the connectivity of the vertices in V by the edges in E to the connectivity of the

equivalence classes that those vertices comprise. Unlike the basic non-directed graph.

without seff-loops, which was taken to be the model for G, G' may have vertices in V" which

have self-loops on them. This would be the result of a case in which vertices in the same

equivalence class are connected to each other in some symmetric fashion, thus making the

equivalence class its own neighbor. Figure 2-5 shows the effect of applying the symmetry

detection algorithm to an example PMS structure. This example will be described in greater

detail and more will be said about NCG's in Chapter 4.

2.2.2.2 Segmenting of the PMS graph

Having detected symmetries in the PMS graph the next step taken by the program is to

investigate whether it is possible to segment the original PMS interconnection graph. if this is

feasible then a divide-and-conquer appioach may be applicable. The segmenting' proceeds

by searching for what are termed Pendant Tree Suboraphs (PTS. These are maximal rooted

tree subgraphs of the PMS interconnection graph. Their roots are articulation vertices of the

graph. Furthermore, the simple path between any pair of vertices in these tree subgraphs is

the only path between those vertices in tite overall interconnection graph, G. It is common to

find PTSs in most PMS structures. In particular, input/output subsystems typically assume

this character, as in the examples of Figure 2.6.

4We prefer the term "segment of G" rather Mian "partition of G" since the latter implies the subdivision of the
vertex set induced by an equivalence relation.

ADVISER Overvew 29

K

K K G(V.E)K K

P S M P M P S

I I
I I SYMMETRY DETECTIONII

, \I 1/

I\

143)E [) TNCG G'(V E')

[4){ [43(m) 13({p) [3(M)

P,M,K,S Component Types
(K)[23 Equivalence Class of components of type K with

cardlnality of two.

Figure 2.5: Effect of applying symmetry detection algorithm to an example PMS structure.
For details of this particular case see Page 83.

30 ADVISER Omview

v~aps

MD~kMD.MD.k / \ IATWO pre / \ I * _ M

iTWO MTaTT -- "T "rI - II,

(a) (b)
Figure 2-6: Examples of Pendant Tree Subgraphs.

If arcs and vertices of such pendant trees, excluding their roots, are removed from the main

PMS interconnection graph G, then the remaining vertices and arcs form a subgraph of G that

is not tree-connected i.e. contains cycles5 . This will be referred to as the Kernel or QgZ.. The

root vertices of the PTSs are termed interface vertices by virtue of their task of serving as

communication "gateways" between components in the PTSs and the components in the

Kernel. The root of each PTS has dual status as member of the PTS as well as the Kernel.

Them interface vertices are accorded special treatment in the reliability calculation process

in view of this dual status.

Ths no w sracty true mince. oft tcome dews on th airion fr maximltw of V* p"ant V" e w
ntlire Pn4 G a trot am iMh no eyefe. See Secil U w4 7.41.

ADVISER Overview 31

The PTSs along w- . .he Kernel form a natural set of segments of G on the basis of which

the reliability computation task may be divided. The choice of this segmenting scheme was

motivated by the earlier development, during the course of this research, of an algorithm for

computing the reliability functions for PTSs (see Chapter 5). However, the scheme for making

use of these segments (see Chapter 6) does not depend on the segments being composed

entirely of PTSs and the Kernel. The development of special techniques for subgraphs of G

which are other then PTSs would allow an even finer segmenting of the graph without

affecting the algorithms which make higher level decisions in regard to the use of these

segments.

The program discovers the PTSs in a given PMS structure G(V,E) by starting with those leaf

vertices of G' which represent classes of leaf vertices of G. These "germinal trees" are then

grown" upward towards the root by adding on neighboring vertices of these leaves and at

each step merging the germinal trees which overlap. This process continues (subject to

termination conditions described in Chapter 6) until no more adding of vertices or merging of

trees is possible. At this point a set of tree subgraphs of G' have been generated. Each of

these trees in G" may represent one PTS of G or a set of PTSs. In the latter instance all PTSs

in the set will be symmetric.

2.2.3 The OVERLORD routine

2.2.3.1 Generation of feasible MCRSs

The OVERLORD routine in ADVISER is the heart of the program. In this routine critical

components are "drawn" from the various segments in various ways to try to satisfy the

various requirements. Each "draw" is then checked to see that requirements on G and other

side-constraints (Section 2.2.1.3) as well as the Communication Axiom are satisfied. The

partial results of each successful draw are stored away in a special data.structure. At the end

of the drawing process the partial results are retrieved and merged to provide the system

reliability function.

The sketchy explanation above may be clarified by evoking an analogy to drawing colored

balls from urns. Balls are analogous to critical components and urns to the segments of

G. The colors of the balls represent the various critical component types. Each urn contains a

6 t is pomible for leaf verticm of G' to represent clasms of vertices of G whitch are not leaves of G. See Section
4.5.

32 ADVISER Overview

certain number (possibly zero) of balls of each color. The requirements may then be

rephrased as the desire to choose balls from urns in such a way as to satisfy a minimum on

the total number of balls of each color that are chosen. This is further subject to side.

constraints such as (i) if some bails of color A are chosen from urn X then some balls of color

B must also be chosen from X or else neither. (Clustering of component types) or (ii) if colors

A and B are to be simultaneously chosen from urn X then a minimum of m balls of color A and

n balls of color B must be chosen from the urn (Bounded clustering of component types).

We may now examine the process of making a "draw". Let us consider the simple case of a

system where G has been segmented into five segments (urns) P, through P.. Let us assume

also that the only (atomic) requirement is 4(4,t). Furthermore, let us assume for a while that

each of the urns contains 4 or more balls of color t. Then the draw proceeds by generating the

5-compositions of the integer 4 as in Figure 2-7(a).7

Each integer-part of each 5-composition represents the number of components of type t

drawn form the corresponding segment of G. Since the preliminary assumption for the

purpose of the exposition was that each segment contained at least four t's all the 5-

compositions in this instance represent draws that are feasible. Once a draw is feasible, it may

be made and represents one possible alternative for satisfying the requirements. Of course,

the side-constraints and the Communication Axiom must be satisfied before the MCRS, so

drawn, constitutes part of a functioning system.

In general, not all of the segments of G will contain enough components of a given type to

support a given atomic requirement on that type. Figure 2-7(b) depicts an example of such a

case. In this instance, against the requirement of four t's, none of the segments P1 through P5

are able to supply all four, and P2 and P5 contain no t's at all. These upper bounds on the

number of components of type t which may be drawn from a particular segment can, in

general, drastically curtail the number of draws that are feasible. The program actually

generates all possibilities when the compositions of an integer are desired, testing each one

7A composition of the integer m into n parts, that is asn n-composition of m, is a representation of the form

m a kI +k2+ kn , N>0, ia 1,2....,n

with regard to the particular order of the ki'l. Thus, there are exactly four 2-compositions of the the integer 3. namely.
3* 0, 2 +1, 1 2 an 0 .3. In general there are (m ri) n-compositions of the integer m (for a derivation o this see
[Liu 081). The n-compositions are not to be confused with n-parttfions of the integer m. The latter take the same form
is above exceot that)0. ia 1....,n withou regard to the order of the ki'l. Thus there are only two 2-partitions of the
integer 3, namely. 3 an Il- 2.

ADVISER Overview 33

Graph Segments
P1 P2 P3 P4 PS

1. 4 0 0 0 0
2. 3 1 0 0 0

5-compositions 3. 3 0 1 0 0
(i.e. draws) 4. 3 0 0 1 0

5. 3 a 0 0 1
6. 2 2 0 0 0
7. 2 1 I 0 0

8. 2 0 01 0
.o.

(-.)=210. 0 0 0 0 4

Note, all graph segments here have four or more t's.
Hence, all compositions in this table are feasible.

(a)

Graph Segments
(max. t's available in segment, within parentheses)

P1 P2 P3 P4 PS
(3) (0) (2) (1) (0)

1. 4 0 0 0 0 (infeasible)
2. 3 1 0 0 0 (infeasible)

5-compositions 3. 3 0 A 0 0 (feasible)
(i.e. draws) 4. 3 0 0 1 0 (feasible)

5, 3 0 0 0 1 (infeasible)
6. 2 2 0 0 0 (infeasible)
7. 2 1 1 0 0 (infeasible)
8. 2 1 0 1 0 (infeasible)

('p s) 210. 0 0 0 0 4 (infeasible)

(b)
Figu re 2.7: Ant example of drawing critical components from segments of G.

34 ADVISER Overview

against the upper bounds dictated by the contents of each segment for the particular case.8

However, only those possibilities which represent the feasible draws emerge from the

generator function. This was deemed acceptable, as the overhead is very small compared to

the computing requirements of other portions of the program.

Thus tar in this section we have only considered atomic requirements of the type (m,t). In

the more usual case the requirements will consist of a boolean expression on such atoms.

These expressions may be naturally divided into two classes: those that contain only

conjunctions of atomic requirements (Coniunctive Reauirements) and those that contain at

least one disjunction in addition to possibly containing conjunctions (Diliunctive

Reauirements. Let us focus attention on the former class briefly.

In the worst case all the segments of G contain enough components of each critical

component type to satisfy each and every atom in the conjunctive requirement. In other

words, all possible draws will be feasible. Then the total number of feasible draws over the

entire conjunctive requirement

Ar 4(m.,t.)

is given by

m. + n-1
f = nt il

n. 1

where n is the number of segments of G and each segment contains at least m, components

of type tr In the purely disjunctive case (no conjunctions in the overall requirement) the

requirement is

Vr1

and the number of feasible draws is
In. .r-1

,

fd m (i) I'1-1
The numbers f. and fd represent the upper bounds on the number of cases to be analyzed in

the case of purely conjunctive and purely disjunctive requirements respectively. However, in

the more usual case of a mixture of conjunctions and disjunctions, the worst case bound can

arhe algohithm used by fie ADVISER program to generate feamble eomOOsitions s an adaptation of Ite
NEXTCOM aigorithm i [Nijenhuis 7811 See also Cater 8.

ADVISER Overview 35

be much higher. A cosed form solution for the worst case bound for this intermediate variety

of requirement expressions is unobtainable since it depends on the values of the m 's and n,

as well as the positions and precedence order of the conjunctions and disjunctions in the

expression.

The generation of all possible sets of compositions for a conjunctive requirement is a

backtrack procedure which uses a stack discipline. This may be observed by considering the

following example of a conjunctive requirement:

C(m1,t1) A 4(m 2,t2) A *(,(m3 ,t3) (2.2)

Let us assume there are n segments of G. Then for each n-composition of m1 all n-

compositions of m2 have to be generated. In turn for each of the latter, all n-compositions of

m 3 have to be generated. This may be done in a systematic manner for the general case of a

conjunctive requirement by the algorithm in Figure 2-8. The action of the agorithm is

analogous to the operation of an odometer. For instance in the example of the requirements

expression (2.2) above, the atoms are analogous to the wheels of the odometer. With the

given ordering of the atomic requirements in the expression (the order is not of concern due

to the commutativity of A) 4(m 3 ,t3) can be thought of as the fastest moving wheel of the

odometer and 4(m 1 ,t1) the slowest moving wheel. Each composition of the requirement

integer m3 over the n segments of G is analogous to a digit on the fastest wheel. Therefore, in

the algorithm the next n-composition of m2 (digit on the wheel) is generated (wheel

corresponding to ,(m 2,t2) is advanced one position) only when all n-compositions of m3 are

exhausted. Upon the generation of the next n-composition of m 2, the sequence of n-

compositions of m3 are sequentially generated once more. and so on. The process

terminates in the case of our example when all n-compositions of m have been exhausted.

Returning to the stack discipline for generating all possible sets of n-compositions, we may

liken each level of the stack to an odometer wheel. All the compositions at level r + 1 of the

stack are generated before the stack is "popped" one level and the next composition at level r

is generated. Following this the stack is once again "pushed" to level r + 1 to generate the

next cycle of n-compositions at that level.

It is apparent that in the worst case, at each level, k, of the stack all the n-compositions mk

are generated repeatedly in sequence. The number of times this sequence is repeated at that

level is given by

36 ADVISER Overview

begininteger r; composition array cstack[S]
Comment S-total number of atoms in conjunctive requirement

and each location of array cstack holds one n-composition
of an integer;

r-O cstack[l thru S]J-O;

loopa:
repeat

if r < S
then

cstack[r]4-(first n-composition of m,);
Comment i.e. (mr,O,....0;

else

loopb:
repeat

(use contents of array cstack as the next draw);
If

(next n-composition of ms cannot be generated)
Comment the last n-composition of mr is (0,....mr);

then
r,-r-1%;
leave loopb

else
cstack[S]4-(next n-composition of ms)

endrepeat
fi ;

until (it is possible to generate next n-composition of m,)
do

if (ri-r-1) a 0 thenleave loopa fi;
Comment until no more compositions to generate;

od;

cstack[r]-(next n-composition of m)

endrepeat

end;

Figure 2-8: Algorithm to generate all possible combinations of n.compositions.

Ir
ADVISER Overview 37

m +n-1
'r I ()

n.1

2.2.3.2 Satisfying the Communication Axiom

Each of the feasible draws generated constitutes an MCRS which may or may not be part of

a functional system state. This depends, of course, on whether side-constraints have been

met and the Communication Axiom has been satisfied. Checks are made with regard to these

by the OVERLORD routine. For a given feasible draw (MCRS) the critical components chosen

in that draw will be scattered in some fashion among the segments. In order to satisfy the

Communication Axiom the critical components in the pendant tree segments will have to

communicate with each other and to critical components drawn from the K6rnel, through

paths in the Kernel. Moreover, information may flow in and out of the Kernel only through the

root vertices of the pendant trees, since these are articulation vertices of G.

Thus the question whether the Communication Axiom may possibly be satisfied by a given

candidate draw may be separated into two concerns, namely:

1. Critical components in tree segments should be able to communicate with the
component represented by the root vertex of that tree, and

2. The root vertices, of the tree segments that contain the critical components of
this candidate draw, should be able to communicate with each other and critical
components drawn from the Kernel, via paths in the Kernel.

The former concern is addressed by the algorithm TREEREL developed for the PTSs (see

Chapter 5). The latter concern is the domain of the OVERLORD routine and is addressed in

Chapter 6.

For each draw, therefore, the OVERLORD routine performs checks on the Kernel. For each

such iteration, depending on which segments the critical components are drawn from. the set

of relevant root vertices (and therefore their respective PTSs) and the set of critical

components drawn from the Kernel is subject to change. This change is unpredictable and

depends on the requirement expression, the scattering of the avilable critical components in

various portions of the system and the nature of the side-constraints. It might appear.

therefore, that large amounts of computation e.g. deri. ig partial results for the pendant trees

etc. might have to be invested at each iteration. However, there are some unchanging aspects

of the situation which the program can use to good effect and so it does.

The reader will have noticed when the drawing process was described earlier that for any

level r in the stack the n-compositions of mr were generated repeatedly except in the case of

38 ADVISER Overview

r a 1. The program is thus able to anticipate that certain partial results will be needed in

several iterations. Such partial results are computed once initially and stored away in special

hash tables. In general, in a compound requirement, many atoms in the expressions may refer

to the same critical component type, say t. Let one such atom be 4,(mi,t). When compositions

of the various mi's are taken over the segments of G, the minimum number of critical

components of type t that may be drawn from some segment, say p, is one. The maximum

number of critical components of type t, say m.., which may be expected to be drawn from p

is the lesser of (i) the number of components of type t in p and (ii) the largest m, in any atom of

the form (mi,t) in the compound requirement. Thus,'the OVERLORD routine generates

partial results for each such segment p for the set of atomic requirements {'(j,t)} where

j= M. This is done for each critical component type. These stored partial results are

then later retrieved and used during the process of generating feasible compositions.

The Kernel is treated slightly differently, though even here such reusing of intermediate

results is possible; they are just of a different nature. The OVERLORD routine checks for the

existence of K-edges through the Kernel which lead among the pendant trees (or what is

equivalent, their root or interface vertices) and other critical components drawn from the

Kernel. Thus. in this case, it generates and stores away partial results for such K-edges

between all possible pairs of critical components and/or interface vertices in the Kernel.

In summary, all partial results which could possibly be used in the Computation are

generated once in the beginning and stored away in hash tables. For each iteration, then, the

OVERLORD routine retrieves and uses the appropriate partial results after ascertaining that

the draw for that particular iteration will satisfy the various side-constraints and the

Communication Axiom. The methods of representation and combination of the partial results

alluded to above are the subject of the next section.

2.2.3.3 Representation of Reliability Expressions

At all stages of the computation of the reliability function, the identity of each component in

the structure is retained in the reliability expressions which are the partial results and the final

reliability function. As a consequence, recalling that statistical independence of component

failure behavior has been assumed, the structure of the partial results and the final reliability

function will be very similar to that of a Boolean function in its minterm canonical form. Each

partial result will be a function of the reliabilities of some subset of the system components.

The expression which is the body of the function will consist of "minterms". Each minterm

will consist of the algebraic product of the probabilities of success (reliabilities) of a subset of

ADVISER Overview 39

components. Each of these factors of a minterm will appear only once in the minterm and will

be raised to the unit power. Each minterm will, in addition, be prefixed with a positive or

negative sign. We shall term such an expression a Canonical Reliability Polynomial. An

example of one is given below:

Rx .R 1 + R 2 R3 R 1R 2 R 2R 3-R 1 R3 + R1R2R3

R is the system reliability for a 1 -out-of-3 system. Such a system is functional only if at least

one of its three components is functional. R,R 2 and R3 are, respectively, the reliabilities of

the three components. The above function could have been reduced to a form that was not

canonical if, say, R1 M R2 a R, whereupon:

Rx 2R + R3 -2R 2.-R2 + R2R3 , R1 =R 2 .R

However, the canonical form is the most general and represents the reliability of a system

wherein no two components have identical reliability functions. All non-canonical forms may

be derived from the canonical form by appropriate algebraic substitution, although the

reverse is not possible in general.

This, then, is one of two primary motives for retaining partial results in canonical form. In

other words, the fact that two or more components in the system may have identical reliability

functions does not change the canonical form since its only proviso is that the components

have statistically independent failure behavior.

The other equally important motive for retention of canonical form concerns the robustness

and simplicity of the algorithm to combine the partial results in conjunction or disjunction. The

algorithm and its data structures are the subject of Chapter 3. It will suffice here to note two

simple points.

Firstly, factors in the minterms of a canonical reliability function are always raised to the

unit power and are never replicated within the minterm. Hence each minterm may be

represented by a string of (N + 1) bits (N system components + 1 sign bit) 9 wherein each of

the first N bits represents a unique factor (component). Furthermore, a canonical reliability

function may then be represented as an unordered list of bitstrings, each bitstring in the list

representing one minterm.

'rhis dee has been utilized before though not quite in the samne fashion. See (Gandhf 72

40 ADVISER Overview

Secondly, operations on pairs of such lists will be composed of simple logical operations on

pairs of bitstrings from the two lists. Thus the resultant list will contain bitstrings arising from

the Cartesian product of bitstrings from the two input lists using those logical operations.

These logical operations on bitstrings are available as hardware instructions on most

computers.

A price is paid, however, for the use of the canonical form of the reliability function since

the number of terms in the canonical form usually exceeds those in a simplified form for more

complicated problems. Indeed, it is in the code that processes these lists of btstrings where

the ADVISER program spends much of its computation time (see Chapter 7). This problem is

partially averted by assigning bits in the bitstrings for partial results which are statistically

independent. This results in smaller lists in the canonical form. The partial results which are

allotted bits in the bitstrings eventually become separate numeric calculations, the results of

which are substituted into the main reliability function when it is numerically evaluated.

2.2.4 Program Output

2.2.4.1 Printing of Results

The final stage in the operation of the program consists of reducing the canonical form of

the system reliability function which was generated and then printing it out appropriately.

The reduction proceeds by noticing, from the component-type and interconnection graph

declarations, which components are of the same type (i.e. have identical reliability functions).

Appropriate substitutions and algebraic simplification are then performed to obtain the

reduced function. The simplifications are rudimentary and limited to cancellation of like terms

of opposite sign and the gathering of like terms of like sign. Factoring is not attempted, for

example. The resulting non-canonical symbolic form is then a function of the symbolic

reliabilities of the component types and all individual component identities are lost as a result

of the reduction. The program does, however, keep a copy of the canonical form should

several printings be desired. The output of the program in its current state of development is a

text file. This file will, upon the user's option, contain the text of either a SAIL [Reiser 76]

program procedure, or a FORTRAN function, which computes the system reliability function

R s(t) for the input PMS structure under the input requirements. The procedure or function

will have as a single parameter the time t at which the reliability is to be computed. The file

may then be compiled with the appropriate compiler and used in numerical calculations using

the generated reliability function. The advantage of having the system reliability output as a

ADVISER Overview 41

program is that different reliabilities may be used for the individual component types by

editing the program rather than redoing the ADVISER computation. As a third option

ADVISER will generate an output file containing the partial result and system reliability

polynomials in a form suitable for input to the MACSYMA symbolic manipulation program

[Macsyma 77]. This makes it possible to carry out more advanced manipulations such as
factoring, symbolic differentiation etc. on the system reliability function.

2.3 Conclusion

This completes the overview of the ADVISER program and lays the foundation for more

detail on each of the computation phases to be described in the ensuing chapters. The reader

is urged to refer back to this overview to obtain a general context within which to understand

the more detailed discussions which are contained therein.

II

Intermediate Representation
42

Intermediate Representation 43

Chapter 3
Intermediate Representations

3.1 Introduction

The reliability of a system of components is a composite of many factors. The individual

component reliabilities are, naturally, important. However, so is the manner of physical or

logical interconnection of the components which comprise the system. The functional

behavior of an individual component may also contribute toward determining the system

reliability. Traditionally, a few methods have commonly been used to represent the

interdependence of all these contributing factors in a form that is amenable to the use of

formal methods to compute the reliability of the system from that of its component parts. The

methods in common use are generally based in graph theory and make use of the extensive

results derived in that field. Some frequently used methods will be briefly described and

contrasted in this chapter. The discussion will serve as the basis for the choice of a particular

representation, the Series-Parallel connected Reliability Block Diagram (SPRBO), or series.

parallel two-terminal network, for use in ADVISER. Subsequent sections will examine simple

algorithms and data structure for employing this representation to generate reliability

functions in symbolic form. Figure 3-1 shows the place, within the overall scheme of

ADVISER, of the SPRBD algorithm package to be discussed in this chapter.

3.2 Some commonly used representations

As has been pointed out in Chapter 2 three basic classes of data are required to generate

the reliability measures for a system, namely

1. The physical or logical interconnection structure of the system

2. The individual reliabilities of the components comprising the system.

3. The requirements or constraints on the system, In terms of sets of working
components, that define under what conditions the system is considered to be
operational.

44 lntermediate Representation

C

I C

CT a

*4

aw 0 a

'CU~ U*U

IL-I

r 4

40 06o a .4 1 1100

'C .,2,Ut*

1w, :-014C

01 - '

Figu to 3 -1: The portion of the ADVISER structure discussed inl Chapter 3.
Also aee Page 18.

Intermediate Representation 45

Thus far in practice the general paradigm of reliability computation has been as follows.

The human being uses the physical interconnection structure of the system and the

operational requirements on it, to generate a graph-theoretic data representation which

embodies the system's reliability characteristics. This representation is then typically

processed by a computer program which eventually computes the relevant reliability measure

for the system. We shall call such a data representation an nmm Representation. In

this chapter we shall be concerned with two basic types of Intermediate Representations,

namely Fault Trees and Reliability Graphs. A large part of the published literature, however,

also deals with a third type of representation, the network. A graph, G(V,E) is used to model,

say, a computer communication network wherein the homogeneous vertices {V) of the graph

represent computers and the homogeneous arcs {E) represent the communication links

between them. Reliability concerns are then of the type "What is the probability that any two

vertices of the graph are able to communicate at any time?" or "If the links are subject to

stochastic failures what is the probability that enough links will be operational at any time to

preserve at least a spanning tree of the network?", and so on. We shall leave a consideration

of such problems to a later chapter since although the model is an idealization it still closely

resembles the actual system interconnection structure and is thus further removed from being

an Intermediate Representation.

3.2.1 Probability Trees

According to two of the basic assumptions made in Chapter 2, failure processes in

components are s.independent and each component may be in one of two states, failed or

working. Thus a system consisting of n components will occupy one of the states Si E {S,

1_<i<2 n. Of these 2n states some subset {F) will consist of the failed states of the structure

whereas the subset {W) will consist of the working states. In addition {W) U (F) U {S). The

reliability of the system is then expressed by

R"s(t) a VF i{F.) Pr (Fi) 0 1 - TIEW Pr (W)

The 2n system states may be viewed as the leaves of a binary tree n levels deep wherein each

level corresponds uniquely to some one component in the system. For example, Figure 3-2

shows the probability tree for a system with n a 3 components which is functional iff at least

two out of the three components are functional (this is a so.called 2-out-of-3 structure). The

reliability function for the system may be symbolically derived from its probability tree with a

simple algorithm. Assign each state (tree leaf) a unique integer i, 1:5i52n . The probability of

occurrence of state i, Pr(S,), is the product of all the probabilities (labels of vertices in the tree)

46 Intermediate Representation

State Disposition

P3 123 Working

q3 123' Working
r, p3 12'3 Working

q3 12'3' Failed

p _2 P3 1"23 Working

q3 1"23" Failed

-p 3 1°2'3 Failed

q3 1"2'3' Failed

Key
I -- > Component I working pi "'> Probability component i works
V' --) Component 1 failed q1 -- > Probability component i fails

(a)

State Disoosition

- i P2 12X Working

q _ P3 12'3 Working

q P2 P3 123 Working

Key
X -- > *Don't Care" state
I --) Component 1 working P1 "'> Probability component i works
1' -- > Component I failed q-> Probability component i fails

(b)

Figure 3-2: Probability Tree for 2-out-of-3 structure,
(a) Complete (b) Reduced.

k . .4

Intermediate Representation 47

on the path from the root of the tree to the leaf representing state i, e.g. in Figure 3-2(a) Pr(S3)

a pICq2P3 If the vertices of the probability tree are labelled with probabilities as in Figure 3-2
then it is easy to see how a factored symbolic system reliability function may be derived. A

post-order traversal of the binary tree is done and the label of each node is multiplied into the

algebraic sum of the symbolic results returned by the traversal of the left and right subtrees.

For the leaves of the tree simply the label is returned.

For the complete binary probability tree this simple algorithm will examine all the 2n

possible states of the system since there will be 2n leaves in the tree. This is exactly equivalent

to state enumeration by running through the binary counting sequence for n-bit integers with

each bit uniquely representing a component and a binary 0 in a bit position implying

component failure while a binary 1 implies component success. For each state that is

examined in the worst case 0(n2) examinations of pairs of functioning components need to be

made. This is to ensure that, even though the required number and types of the necessary

components are functional, the appropriate connectivity requirements between those

components are met, for the state to be classified a functional one. Thus the algorithm will

take 0(n22n) operations to complete in the worst case.

That there is room for more efficient use of this representation is evident from examining

Figure 3-2. For instance consider the mutually exclusive states (123) and (123') in that figure.

Their associated probability function terms are p1 P2 P3 and PiP 2q3 which when added

produce plp 2 (p3 + q3) a piP2. In this instance the minimum requirements for system success

are available by the time the descent reaches the second level of the tree so the leaves 1 and

2 need not have been generated when the tree was constructed. Component 3, in this case, is

a "don't-care" component. Similarly, in the case of state (1 '2' 3') it is evident by the time the

second level of the tree is constructed that this state is going to be a failed system state. Thus,

the tree may be pruned here. The number of leaves in the tree be reduced by such

observations so that the algorithm has less leaves to examine. The pruned version of the tree

in Figure 3-2(a) is shown in Figure 3-2(b). [Chelson 71] describes a method of computing

system reliability which uses probability trees.

One advantage of using the probability tree representation for symbolic reliability function

generation is that the algorithm will always produce a factored version of the reliability

function. This is attractive when numerical computation is envisioned using the factored

reliability function since the accumulation of round-off and truncation errors is reduced. The

major disadvantage of the approach is its exponential time complexity which is very sensitive

to the ordering imposed on the system components. This restricts the method to small

problems.

48 Intermediate Representation

3.2.2 Fault Trees

Another Intermediate Representation widely used in system reliability studies is the EIult
Tree. A Fault Tree is in general an incomplete n.ary tree. There are two kinds of vertices in

such a tree, namely (a) failure events and (b) Boolean operators (e.g. AND, OR, XOR, etc.). All

vertices at any level of the tree are of the same type and the two kinds alternate between

alternate levels of the tree. The root vertex always represents the major failure event (e.g.

system failure) being studied and known, by convention, as the Io Event. The (usually)

independent failure events which are the leaves of the tree are known as the Bsi Evens.

Figure 3-3 refers to the same 2-out-of-3 structure analyzed in Figure 3-2, It may be seen that a

fault.tree is equivalent to stating the top event as a boolean function of the other failure events

at lower levels of the tree. An analysis of a fault tree for a system can also provide the

sequence of failure events that would lead to the occurrence of the top event or system

failure.

J

System Failure

1' 2' V" 3" 2" 3"

&x i" -- > Component i failed

Figu re 3-3: Fault Tree for 2.out.of.3 structure

Fault trees are specific instances of a more general representation called Et Tree. The

latter are similar but the events are not necessarily failure events. When the basic events and

the top event are failure events then the event tree is called a fault tree. Fault trees find their

most extensive application in the engineering reliability analysis methodology known as

FMECA (Failure Modes, Effects and Criticality Analysis). In this methodology, a fault tree is

Intermediate Representation 49

built for the complex system being engineered. The act of construction of the fault tree forces

the designer to consider all possible combinations of basic failure events. It is thus invaluable

in discovering all those specific combinations of failure events which would lead to system

failure. In this the fault tree, once constructed, also stands as documentation of the various

possible sequences of component failures which will lead to system failure.

A fault tree may also be analyzed to compute the probability of the top event given the

probabilities of the basic events. Since the top event is usually system failure, its probability of

occurrence is the system unreliability, i.e. the probability must be subtracted from 1 to get the

system reliability. Fault tree analysis usually proceeds by generating the minimal cut sets of

basic events. A minimal cut set is a minimal set of basic events such that their occurrence

insures system failure. A simple algorithm for generating the minimal cut sets for an event tree

is given in [Barlow 75a]. In the simplest case the basic events in a cut set are statistically

independent and the minimal cut sets are K1 ,K 2..., Kk for a given fault tree and are disjoint.

Then the probability of the top event is given by

Pr{Top Event)= 1 - w. (r'iEK P)
S 1 3

where, pi is the probability of occurrence of basic event I.

The literature on fault trees is vast but a good introduction to fault tree analysis is given in

(Barlow 75b]. (Bennetts 75] gives a procedure for computing a minimal sum.of.products

expression for the system reliability using a fault tree.

3.2.3 Reliability Graphs

The Reliabilit Graph is the third class of Intermediate Representation that we shall

consider in this chapter. Reliability Graphs are directed graphs with one vertex of zero in-

degree. or source vertex, and one vertex of zero out-degree, or sink vertex. Components. in

the system whose reliability is being calculated, are associated with the set of vertices and/or

the set of arcs in the reliability graph. More than one vertex (arc) of the reliability graph may

represent a given component in the system. Each simple path from source to sink in the

reliability graph then represents a set of system components. Each such set is one minimal set

of components which, If functional, ensure the functioning of the system. This may be stated

more formally as follows.

Ev (Evk s Eve, 1 <i<_m

where:

50 Intermediate Representation

- Evx is the event "entity x is functional",

- P is the set of components represented by path i in the reliability graph
from its source to its sink.

- m is the total number of simple paths in the Reliability graph from source to
sink

A path P, in the reliability graph is said to be functional iff the set of components

represented by all vertices along that path are functional. Since the event Ev will occur if at

least one of the paths Pi, 1<i<m, is functional, we'may make the following assertion

regarding the probability of system success.

Pr(Evsys) * Pr(LJm Ev.)

By the familiar expression from basic probability theory which relates the probability of a

union of events to the probabilities of the individual events we have

Pr(Evs I Pr(EvP Pr(Ev " Ev.

Sr YS,) I Pr(vl - Y'21il P1t2
+ 1i1<i2<i3 Pr(Evp l nEvP. r Evp.)

'1 '2 '3

..... + (-1)m'lPr(nl EVp

where 1 <i1<2<i <m.

If the probabilities we are concerned with are reliabilities, then the LHS of the above

equation becomes the system reliability. Using the assumption of s-independence of failure

processes of system components from one another and the fact that

Pr{EvP r)kEPi Ev d ' kEPi R(t)

where Rk(t) is the reliability function of component k as a function of time t, we have

RSs (t) a IiilkEP iRk(t)- il2C 2 kEPi UPi Rk(t)

* (-1)"P 1 PlU PMRk(t)

where 1 5i1 <i2 <i3 5M.

This result may be used as the basis for a simple algorithm to derive the reliability function of a

system from its reliability graph. [Gandhi 72] describes such an algorithm. In brief, the

Intermediate Representation 51

algorithm works as follows. The reliability of a path is the product of the reliabilities of the

vertices that lie along the path in the reliability graph. The first term in the equation above is

then the sum of the reliabilities of all simple paths in the reliability graph. The second term is

composed of the sum of products of reliabilities of components in the unions of pairs of

simple paths. Likewise the third term corresponds to unions of triples of simple paths, etc. The

algorithm in [Gandhi 72] uses bit vectors with one bit assigned uniquely to each system

component. Each simple path then consists of a bit vector with the bits corresponding to its

components set to one. Unions of path component sets is then are then constructed by OR-

ing together the corresponding bit vectors.

Recent work has been reported by [Satyanarayana 78] which uses the reliability graph to

compute the symbolic reliability function of the system whose reliability characteristics are

represented by that graph. [Aggarwal 78] describes how logical signal relations may be used

to manipulate reliability graphs to obtain symbolic reliability functions. In each case, however,

the reliability graph is presumed to exist and its construction is left to the designer after he has

analyzed the system being studied. In the ADVISER program the work of generating the

intermediate representation is assumed by the program itself which works directly with the

interconnection graph of the Processor.Memory-Switch structure being analyzed. ADVISER

uses a subclass of reliability graphs as a model for its intermediate representation and this is

the subject of Section below.

3.2.3.1 Reliability Block Diagrams

Reliability Block Diagrams (RBDs) as a class of intermediate representations are a subset of

reliability graphs. RBDs correspond to reliability graphs wherein the vertices represent system

components and thus are labelled with failure probabilities. The arcs are perfectly reliable and

serve only to indicate the connections between vertices. RBDs are conventionally drawn with

a box to represent each vertex of the reliability graph. Figure 3-4 is one possible RBD for our

running example in this chapter, the 2.out-of.3 system.

The RBD for the 2-out-of-3 system happens to be a series-parallel graph. Figure 3-5(a) is an

example of an R60 which is not series-parallel. However, the following theorem shows that an

RBO of any kind may be transformed into a stochastically equivalent series-parallel RBD.

Theorem 3.1: A non series-parallel RBD can always be transformed into
stochastically-equivalent series-parallel RBD.

Proof: The probability of success for any RBD, G, is the probability that at least
one simple path from source to sink is functional. Let P. be the ith simple path from
source to sink in G; where 1 <i:Sm and m is the total number of simple paths from

6-i

52 Intermediate Representation

Source Sink

Key
i --> Component i functions

Figure 3.4: Reliability Block Diagram for 2-out-of.3 structure

source to sink in G. These m paths may, or may not be composed of disjoint
comoonent sets. Construct another RBD, G', in which there are m disjoint paths
from source to sink. Furthermore, construct path i in G' to correspond uniquely to
the ith simple path in G, with the same number and kinds of vertices (this is called
the minimal path representation). Hence we see that

Pr{G' is successful) a Pr{Um= 1 {P, is successful))

= Pr{G is successful)

A stochastically equivalent RBD to the one in Figure 3-5(a) is shown in Figure 3-5(b)

3.3 The Series-Parallel RBD in ADVISER

The Series-Parallel Reliability Block Diagram (SPRBD) intermediate representation was

chosen for implementation in ADVISER for the following reasons:

-The RBD encodes the Boolean relationships between the successes of
components in the structure which yield the success of the system. It does this
without necessarily explicitly showing the intermediate success events in the
system. This achieves economy of space over the equivalent fault tree
representation ([Shooman 70] shows in an informal fashion that fault trees and
reliability block diagrams are equivalent in information content). Moreover, unlike
the probability tree the reliability block diagram does not show all posaible
success states of the system.

-The SPRBD is nicely recursive in structure and only two kinds of operations are

Intermediate Representation 53

(a)

(b)

Figure 3-5: (a) A non series-parallel RBD, and
(b) its stochastically equivalent series-parallel RBD

required to construct one, namely connection of blocks, or groups of blocks, in
series or in parallel. In addition any given block, rather than representing a single
component in the system, may indeed represent an SPRBD for an entire
subsystem of components. Hence it is easy to change the level of abstraction at
which the system SPRBD is viewed by "hiding" entire sub-RBDs in single blocks
in the main SPRBD.

-The simple series-parallel structure of an SPR8D suggests a simple method of
obtaining the system reliability from it. Since blocks are connected either in series
or in parallel one may consider "collapsing' single blocks in series (parallel) into
one block representing an event which is the intersection (union) of the events
represented by the two blocks individually. Thus, working from the inside out. an
SPRBD may be collapsed into a single block whose probability will then represent
the system reliability. Two simple rules were developed to use this collapsing
process to produce a symbolic reliability function. They are described below. The

54 Intermediate Representation

strong advantage of the algorithms using these rules is that they are very simple
and robust. By robustness here we mean the ability to tolerate logically redundant
event specifications and still compute the correct reliability function. Such
stability is very useful in the context of automatic reliability function generation
where the various subexpressions are generated by different parts of the program
at different times during the computation. It allows the various knowledge based
solvers in the reliability function generator to be independent of one another
since the robustness of the intermediate representation algorithms guarantees
that any redundancy in their generated subexpressions will be tolerated and
accounted for.

3.3.1 The model underlying the SPRBD

In this section we put forward the assumptions under which the SPRBD algorithms

described below will work. Components in the system are presumed to be binary state

devices, i.e. either a component is functional or it is failed. If the system is composed of N

components, therefore, there are 2N possible system states. We may view the system state as

an N-dimensional binary vector. If the set of N system components is supposed as ordered

then each component is assigned a unique bit position in the binary vector. If component i is

functional in some state of the system then bit-position i of the binary vector for that state will

contain a 1. Likewise, if component i is not functional in some system state then the ith bit-

position of the state vector will contain a 0. The sample space, on which our probabilities are

defined, is the set of 2N possible system states. The simplest events in this sample space
which are of interest to us are component successes. We shall term these Primitive n

The primitive event that component i is successful is composed of the set of system states (i.e.

outcomes in the sample space) for which bit-position i in the state vector contains a 1. By our

basic assumption in Chapter 2 components have statistically independent failure behavior.

Therefore. it is easy to see that our primitive events are all statistically independent. We shall

term as Complex Evnt those events which are composed of some function of unions and/or

intersections of primitive events. Clearly, two complex events can be stochastically dependent

if the subsets of primitive events which compose them overlap. We shall assume that all

events, whether primitive or complex, are assigned unique symbolic labels such as "Ev,"

from the countable set .The probability of occurrence of Ev. will then be the unique symbol

or label "RX from the countable set . It is evident that any complex event EvX is expressible

as a regular expression over . The symbolic probability RX will be expressible as a

polynomial over the symbolic probabilities of the primitive events constituting EvX. If the

complex event we are considering is system success then that polynomial is the symbolic

system reliability function. With these preliminaries we shall proceed to a description of the

SPRBD algorithms.

Intermediate Representation 55

3.3.2 The SPRBO Algorithms

In an SPRBO there are only two types of connections possible for blocks and these are

shown in Figure 3.4(a) and (b). Each of them may be "collapsed" or "merged" when

encountered 'u produce a single block with the appropriate symbolic labels computed as

shown in the figures. We shall explain the symbolic computations and in particular the "®"

operator in the following.

R A Re Rc C" A 9 RB a

(a)

R0 uRA + RB- RA 4 Re

(b)

Figure 3-6: Merging rules for SPRBDs

In Figure 3.6 the blocks connected in series or parallel may each represent either a

56 Intermediate Representation

primitive event or a complex event. In the former case the symbol RA' say, would just be the

syrinbolic probability of the primitive event. In the latter case the symbol RA would name a

symbolic expression which was the symbolic probability of the complex event. From the

foregoing discussion of Reliability Graphs it follows that a series connection of two blocks

implies the intersection of the corresponding events while a parallel connection implies the

union of them. The symbolic computations given in Figures 3-6(a) and (b) therefore compute

the symbolic probability of the intersection and union of two events respectively. They are

repeated here for convenience:

RC A @ Re (SMERGE= Serial Merge)

RD = RA + R B - RAR B (PMERGE=>Parallel Merge)

At least superficially these rules are very similar to basic expressions in probability theory for

computing the probabilities of intersections and unions of events. The ® operator is intended

to compute the symbolic probability of the intersection of two events given their individual

symbolic probabilities. For this reason we shall term the 0 operator the Symbolic Intersection

Probability or SIP operator. The "+ " and "-" operators in Figure 3-6 have their usual

algebraic meanings of addition and subtraction.

The symbolic expressions which represent the probability of the complex events will belong

to a restricted class of polynomials which we shall term Canonical Reliaoility Polynomials

(CRPs). We define them recursively thus:

Definition 3.1:

1. Individual atomic symbols such as RB, Rc,... are Canonical Reliability
Polynomials.

2. If R A and RB are Canonical Reliability Polynomials then so are

fs(RARB) a RAOR S, and (SMERGE)

fp(RA,RB) a RA + RB- RAORB (PMERGE)

3. A formula is a Canonical Reliability Polynomial iff it is formed in accordance
with 1 and 2.

We now define the SIP operation as follows:

Definition 3.2: The 0 (SIP) operator

-Ca 1 EvA aind Eve are primitive events and their unique probability
symbols RA and Re are atomic. The probability of the event (EvAr)Ev) is
then simply written RAORS and

,W - -. ,

Intermediate Representation 57

R AORE N A9 @R A (Commutativity)

It the events EvA arid Ev9 are primitive then R AR @RERAxRB

EVA' EvB and Evc are primitive events and their unique probability
symbols areR RB andRc respectively, then

(RA@RB)ORC - RA (RBeRC) a R OR OR (Associativity)

- : The 19 operator is idempotent, i.e.

R AOR = P (IdemootencvlA A A

Ev A and Eve are complex events which are composed purely of the
intersection of primitive events

EVA r~.1 Ev~ (Ev~ primitive)

Ev9 a fls Evb (Evak primitive)

Then their CRPs consist of one term each and are given by

R aCaR Aa2O.... ORdie.... Ra

A98 a C b Rbi OR b2 e OR bk~ e..R be

where C a + 1 and C b. + 1 are integer coefficients and M> and s>O. The
probabilit of the evert EvC = (EVAfl)Ev.) is given by

where C. aCa Cb' t:5r +s, D)O and {R {R a1U{Pbk)

Thus, for example'0

R A a ,RIR2 OR3 eRe

ReaR3 OR4 5 6e

Rc = AAORB a RA,@A 2 OR3 R4 OR 5 OR6

& fI~Ev A and Ev. are complex events composed of unions and/or
intersections of other simple or complex events. Each of them will have
CRPs with more than one term. In this case the CRP resulting from the

'heeffect c9 idempotency is similar to that of the operation defined in, (Kim 721. The difference is that in

ADVISEA the CRPs (which are analoues of reliability block diagramse) are constructed by the program instead of
manually.

58 Intermediate Representation

operation R A@R will consist of a set of terms which is the Cartesian
product of the individual sets of terms in R A and R . Thus if R A has m terms
and RB has n terms, RA ORB will have mxn terms each of which will result
from an application of Case 3 above. If two or more of these mxn terms
differ only in their integer coefficients then they may be replaced by one
term with the same factors and an integer coefficient which is the algebraic
sum of the coefficients of the replaced terms. (Distributivity'

It is evident from the definition of Canonical Reliability Polynomials and the SIP operator

that a representative term of such a polynomial is of the form

C a R81OR&2 RQ RNJ OR arI r0(3.1)

where Ca 00 is the integer coefficient of the term and R are the probabilities of occurrence of

the events aj which may or may not be complex events. If some event aj is complex then R

names a CRP which is the symbolic probability of aj in terms of the symbolic probabilities of

other primitive (or complex) events, In this case the CRP named by R in the expression (3.1)

must be substituted into the term in place of the symbol R- and the indicated @ operation

carried out.

It is also to be noted that if all the R8i in expression (3.1) represent the probabilities of

primitive events or complex events which are independent then the ® may be replaced by

simple multiplication. Note that two complex events in our scheme will be independent if their

sets of constituent primitive events have a null intersection. If two CRPs are in their simplest

form, i.e. all factors in all terms of the CRPs represent the probabilities of primitive events,

then independence of the corresponding two events may be deduced if the two CRPs have no

factors in common in any of their terms.

3.4 A data structure for the SPRBD algorithm

We describe in this section the data structure which was chosen to represent Canonical

Reliability Polynomials. Since the reliability expressions are in canonical form and due to the

idempotency of the SIP operator, none of the unique literal symbols in a CRP will be raised to

greater than unity power. In addition, literal symbols are either in a polynomial term or they are

absent (for instance they do not appear in complemented form). This naturally suggests that a

bit vector may be used to represent a term in a CRP. A unique bit position in the vector would

be assigned to each unique symbol. Then a factor is present in a term if its bit is set to 1 and

not present if its bit is set to 0. Furthermore, each term in the polynomial has a signed

coefficient and one extra bit would be taken to represent this sign. Finally, the rumber of

Intermediate Representation 59

primitive events is known to be the number of components in the system and the length of the

bit vector for representing primitive events is thus also known. After a certain point in the

calculation being performed by ADVISER it is also known how many complex event CRPs are

to be manipulated and thus unique bits may be assigned for them at that point also (see

Chapter 6).

Pr.,., u XotsAeT

Tm oicin MBIT ABIT VE AUVE m

MORMVEC Bivector

AUXVEC Bitvector

Figu re 3-7: Data structure for CRP term

Figure 3-7 shows the logical data structure that results for a single Canonical Reliability

Polynomial term. Since addition and subtraction are commutative the CRPs may be thought of

as unordered sets of terms each with a signed coefficient.1 Each such set of terms is

represented in ADVISER by a doubly-linked list in which each element is of the form shown in

Figure 3.7.

We now describe the fields in the data structure shown in Figure 3-7.

- The NORMVEC field of the term points to a bit vector which has as many bits as
there are system components. As discussed above, each of these bits
corresponds to one primitive event as we have defined it. Either the NORMVEC bit
vector or the AUXVEC bit vector (see below) or both must be present in any term.

11possibly multisfet i terms with identical factor% have not been replaced by a single like term whoee coeficient is
the sum of UteVr cweicent.

'4

60 Intermediate Representation

- Likewise, the AUXVEC field points to a bit vector which has as many bits as there

are CRPs which were generated as intermediate results in the computation. The
bits in the AUXVEC bit vector when set to I indicate that the corresponding CRP
must be back substituted in the final system CRP in order to get the system
reliability function. This process of back substitution must take into account any
intersection between the complex event represented by the CRP being
substituted and events represented by the other factors in the term (see Chapter
6). Either the AUXVEC bitvector or the NORMVEC bit vector (see above) or both
must be present in any CRP term,

-The NBITS and ABITS fields are used for efficiency and hold the count of 1 -bits
(i.e. the number of factors) in the NORMVEC and AUXVEC bit vectors
respectively. The need for these fields is described below.

- The MCONST field holds the signed integer coefficient of the of the term.

- The NEXTERM and PREVTERM fields point respectively to the next and previous
terms in the list of such terms which comprise a CRP.

3.4.1 Ordering of CRP terms

The SMERGE and PMERGE rules of Figure 3-6 involve generating the Cartesian product

set of the sets of terms of the two CRPs being merged. Thus the complexity of the 9

operation on two CRPs is 0(n2) where n is the number of terms in a CRP. Furthermore, if the

lists are unordered, the process of finding terms of like factors to add coefficients is 0(n2/2).

However, this latter cost is reduced if the lists of terms are kept ordered using some

precedence function which compares terms based on the factors they contain. Then terms

which will cancel or add will occupy adjacent positions in a list and these operations will cost

less.

The particular precedence function which is chosen for the ordering must of necessity be

simple to compute so as to minimize the time taken for doing ordered insertion of terms into

lists, etc. In this particular case the NBITS and the ABITS fields were used to compare terms.

For any two CRP terms a and b, a was taken to precede b if it had fewer factors than b. If a

and b have an equal number of factors then the precedence was left undefined. This imposes

a partial order on the CRP term lists such that terms in a CRP are arranged in order of

increasing numbers of factors. Terms of equal numbers of factors will be found adjacent to

one another but in order to distinguish among them a strict equality test must be performed

on their sets of factors. In the implementation the NBITS and ABITS fields were placed

adjacent to one another in the data structure thus allowing the precedence function to be

computed in at most two instructions. The equality test, however, depends on the length of

the NORMVEC and AUXVEC bitvectors.

Intermediate Representation 61

3.5 An implementation of the SMERGE algorithm

It may be observed from Figure 3.6 that the basic operation in the merging of both types of

primitive SPRBD connections into a single block is the 0 operation. This is all that is required

in the SMERGE operation shown below

Rc a RAeRG (SMERGE)

In this case the set of terms of the CRP Rc consists of the Cartesian product of the sets of

terms in RA and R under the 0 operation and after cancellation/adding of terms has taken

place. This is implemented as described below.

The precedence of a CRP term may be characterized by the values of its NBITS and ABITS

fields. Let these values be b and bA respectively. Assume that for a given system there are

N. components which is thus the length of the NORMVEC. Also assume that NA intermediate

result CRPs are generated by ADVISER. Then it is evident that 0<b <NN and 0 bA:_N A

although it is not permissible to have bN a bA a 0. Therefore, any term of any CRP generated

during the reliability computation for the given system may be cast, on the basis of its bN and

b A values as row and column indices, into one of an array of (N N + 1)x(NA + 1) bins as in

Figure 3-8(a). No term will fall into bin [0,0] and it is thus cross.hatched in the figure. Terms

which fall into the same bin all have the same number of factors and are not in any specified

order. When a term is inserted into a bin it is compared for strict equality of factor sets with

each term on the list in the bin. The process stops when either the end of the list has been

reached, in which case the new term is appended to the list, or the equality test succeeds. If

the latter, then the term in the list which matched is replaced by the algebraic addition of the

two terms. On the average the lists of terms in the bins are expected to be shorter than the

length of CRPs otherwise and the time complexity will correspondingly be reduced.

The bin array is used as a device to implement the SMERGE algorithm so that the resultant

CRP is an ordered list. This is done as follows. When the Cartesian product set of terms is

being formed, each resultant term is cast into its respective bin where an insertion is

performed as described above to put it in Its correct place in the list of terms in the bin. A

representative bin is shown in Figure 3-8(b). The algebraic addition of terms of equal factor

sets in a bin also serves to hold down the number of terms in lists in bins and in the final

output list. At the end of the croes-product process the bins are emptied out in order of

precedence which is determined by their row and column indices. Thus Row 0 is of highest

precedence followed by Row I etc. Bin [0,0] does not participate. Within each row the

62 InemdaeRepresen~tation

o0 1 2 N A

2

NN

BIN LL

CRP Terms

(b)

Figure 3-8: (a) The Sin Array (b) A representative bin.

Intermediate Representation 83

precedence decreases from left to right (we Section 3.4.1). As each bin is emptied, the

ordered list h eld within it is concatenated onto the end of the output list of the SMERGE

algorithm. Thus when the process concludes, the output list of CRP terms will be in

precedence order. The SMERGE algorithm is shown below.

Algorithm SMERGE

Terminology:

- N the number of components in the system; also the number
o1'rows in the Bin Array.

- N, the number of intermediate result CRPs generated by
ABVISER; also the number of columns in the Bin Array.

- RA' Re. RC. The algorithm computes RC x RA@RB.

- tk is the kth term of a CRP; ck is the integer coefficient of
tk; fk is the set of factors of tk , and bNk and bAk denote
the NITS and SBITS field values of tk*

- a. P. yare the sets of terms in the CRPs RA. RB and RC •
respectively.

- W[l,j] are the contents (set of terms) of the [i,j] " bin in
the Bin Array.

- +ins is a binary operation and denotes insertion of a CRP
term (right operand) into a list (left operand) as described
in the text above.

+ ,,c is a binary operation and denotes concatenation of a
list (right operand) to the end of another list (left
operand).

- 0 denotes the empty set.

64 Intermediate Representation

Procedure SMERGE

Begin

Incr i from 0 to NW do

*Incr j from 0 to NA do wi.j. 0 odod;

Comment make the bins empty.

Foreach i suchthat tiEa do

Foreach j suchthat tjiEA do

Ck -c i x C;

fk 4-f U fj;

w[bNk'bAk] , w[bNk'bAk] +Ins tk

od

od; Comment form Cartesian product set using

and insert terms into their bins;

Comment clear the output list;

Comment empty out each bin in precedence order and append its

contents to the output list. ignore w(0,0]:

Incr j from 1 to NA do

"7 1- 7 +conc w[O,J] od-,

Incr i from 0 to N. do

Incr j from 0 to NA do

o d

od

Od;

End; Comment end of algorithm SMERGE;

Intermediate Representation 65

3.6 An implementation of the PMERGE algorithm

The e operator is also fundamental to the PMERGE rule of Figure 3-6. The PMERGE rule is

shown below:

RD. RA + RB-P A®Ra (PMERGE)

It is evident that in order to PMERGE R A and R we must first compute the SMERGE of the

two CRPs. This is done exactly as described in the previous section. The only difference here

is that each of the terms resulting from the RAOR B operation must have its coefficient

negated. Subsequently, the sets of terms of the CRPs RA, RB and RA OR are all pooled to

form the set of terms for the result RD. This must be done so that the resulting list is also

ordered according to precedence order. For this purpose a simple three.way list merging

technique is used ([Knuth 75a]). Each of the three lists may be viewed as linked stacks. The

top elements of the three stacks are compared for precedence and the term with the highest

precedence is "popped" off its stack and concatenated to the end of the output list. If two, or

all three, terms at the tops of the stacks have identical factor sets then they are popped off

their respective stacks and algebraically added. The resulting single term is then

concatenated to the end of the output list.

3.7 Summary

This chapter introduced the Canonical Reliability Polynomial (CRP) as the basic

representation in ADVISER for the symbolic probabilities of occurrences of events in the

model. A list representation for CRPs was described, as were two simple algorithms to

manipulate this representation. These algorithms, named SMERGE and OMERGE,

respectively compute the symbolic probabilities of the intersections and unions of events in

the model, given their individual probabilities expressed in CRP form. The algorithms are

robust in that they are tolerant of overspecification. Thus ADVISER need not keep track of the

history of construction of any two CRPs which are merged using these algorithms. Even if

both CRPs state the probability of the same event, the idempotency of the SIP operator. 0,

ensures that the correct intersection, or union, probability will be computed. The algorithms

serve as straightforward tools for use in ADVISER during the incremental construction of the

symbolic system success probability from the reliability symbols of the individual system

components, and the operational requirements. The simplicity and ease of use of these

algorithms enabled the modular construction of ADVISER among other benefits. However,

Chapter 7 shows that the efficiency of these intermediate representation algorithms, though

66 Intermediate Representation

not dismal, could stand improvement. Although not suitable in their current state, algorithms

of the type described in [Satyanarayana 78], [Aggarwal 78], [Bennetts 75] and [Lin 76], could

possibly be candidates for replacing SMERGE and PMERGE. However, modification would

be necessary and it would have to be shown that the efficiency of the replacement is superior

to that of SMERGE and PMERGE.

Symmetry Detection 67

Chapter 4
Detection of symmetries in the PMS graph

We will be concerned in this chapter with the ability to discover symmetric subsystems

within computer systems. The discovery of such symmetric subparts allows economies in the

reliability calculation process. Figure 4-1 shows the portion of ADVISER which is described in

this chapter.

Current trends in the design of computer systems are toward multiple processor systems of

various kinds. From the point of view of ease of design as well as modularity and ease of

maintenance it is convenient to build such structures from symmetric subunits. For instance,

in the PLURIBUS multiprocessor [Ornstein 75] there are three kinds of symmetric subsystems,

namely, processor buses, memory buses, and input/output buses. There may be more than

one of each kind in a PLURIBUS multiprocessor and they may be connected together in semi-

arbitrary fashion. Another example is the Cm " multiprocessor [Swan 77] which is composed

of processor-memory pairs connected into clusters which in turn may be connected in some

arbitrary fashion. These types of structures, therefore, have interconnection graphs which

contain symmetric subgraphs. One also finds symmetric substructures within uniprocessor

systems which have replicated input/output subsystems for availability purposes. However,

the reverse is not true. Symmetric subgraphs in the interconnection graph do not necessarily

imply what we intuitively conceive physical symmetry to be. Two sets of completely different

types of components may each be connected in an identical interconnection pattern. See

Figure 4.4 for two PMS structures which, though isomorphic, do not satisfy our intuitive

notions of symmetry for physical structures. For this reason, the graph model of a PMS

structure is more appropriately viewed as a labelled graph. The label of each vertex in the

graph associates it with a component of a particular physical De. We suppose two

components to be identical, in their reliability behavior at any rate, if they are of the same type.

We shall, for instance, classify a PDP.1 1/4012 and a PDP. 1/45 to be two different types of

components since they presumably have different failure rates although they are both CPUs

12 PDP i a mragee tradm-amrk of D40W Equipment c .ponatio

58 Symmetry Detection~

C

- a

m i

&
i 1.

a.
I- U ccL

C ft
O_ 06W 4

Or V9 t b.

IL 0
'a I U

R C 6A

Cue

C C r

00

31 0

Alsoo SeeV Pae 8

Symmetry Detection 69

and PDP.11s in a functional sense. However, two PDP.11/40s will be considered to be

identical since they are of the same type. At any rate the goal is to have a basis whereby any

two components in a PMS structure may be compared, to be subsequently found to be either

identical or different in their reliability behavior. The component type mechanism and the

labelling of each interconnection graph vertex with the type of its component provides this

basis.

Definition 4.1: Physical Symmetry: We shall consider two graphs to be
"physically symmetric" iff they are isomorphic and the corresponding vertices of
the two graphs have identical component type labels.

Consequently, if the process of finding symmetric subgraphs in the PMS interconnection

graph takes vertex labels into account, the symmetries detected will correspond in unique

fashion to the physical symmetries in the system.

We are thus led to consider algorithms for generating the symmetric subgraphs of labelled

subgraphs. The next section introduces an algorithm for partitioning of the vertex set of an

unlabelled graph into equivalence classes based on structural symmetries within the graph. In

such graphs the vertices are homogeneous and any symmetries are thus based on

connectivity only. Subsequent sections will modify this algorithm for the case of a labelled

graph thereby introducing the labels of the vertices as an additional factor to determine

symmetry. Finally some properties of the partition into equivalence classes will be described.

We shall assume henceforth that the graphs being considered are finite and have no

multiple edges, ie. any two vertices which are immediate neighbors will not have more than

one edge connecting them. The definitions and results presented here refer to non-directed

graphs since these are the basis for our model. They may be extended to strongly connected

directed graphs (see [Gaschnig 77]).

I am deeply indebted to John Gaschnig, now at SRI International, Menlo Park, CA., for an

introduction to the ideas in this section. Results attributable to him are so marked. However.

the responsibility for any errors or omissions is entirely mine.

4.1 A symmetry detection algorithm based on equivalence
classes

In this section we shall consider unlabelled graphs i.e. those whose vertices are

homogeneous. Intuitively, the search for structural symmetries in graphs must begin with the

notion that two corresponding vertices of two symmetric subgraphs must have at least the 4

70 Symmetry Detection

same degree. It is then possible to begin by partitioning the set of vertices of a PMS

interconnection graph G(V,E) into equivalence classes based on this observation. We shall

subsequently introduce the Neighbor Class Equivalence Relation of Gaschnig and finally

modify it for the kinds of graphs we intend to study ie. labelled, non-directed graphs.

Henceforth, let the notation " x-y" man that x is equivalent to y under the equivalence

relation R, ie. x and y would fall into the same equivalence class in a partition induced by

R. Likewise, let "x 'y" mean that x is not equivalent to y under R.

Definition 4.2: (Gaschnig) Ejal Dear Ecuivalenc Relation LUI. Let G(VE)
be a non-directed graph and let R be an equivalence relation on V. R is said to be
an equal degree equivalence relation iff Vu,v E V, uEED V iff d(u) = d(v), where
d(x) is the degree of vertex x.

Regular graphs, wherein all vertices have the same degree, will have their vertices fall into

exactly one class by virtue of the ED relation. This is still not satisfactory from the point of view

of finding symmetries since, in general, it is possible for two vertices to be of equal degree and

still be connected to subgraphs which are not isomorphic. Thus we need to equivalence two

vertices if they are of equal degree and. in addition, the respective subgraphs to which they

are connected are isomorphic. This may be achieved by introducing an equivalence relation

on the vertices of G which has the property that two vertices are equivalent iff they are of

equal degree and the number of their neighboring vertices belonging to each equivalence

class due to the relation is the same.

Definition 4.3: (Gaschnig) Neighbors Q2M Eguivalence Relation fNCER). Let
G(V,E) be a non-directed graph and let R be an equivalence relation on
V. Arbitrarily name the equivalence classes of V due to R by the distinct symbols
c 1 .c2 Cm. Let c(v) denote the name of the equivalence class in which vertex vEV
belongs. Define the neighbors Qlas of a vertex v to be the set
NCM(v) =_ {c(w)l(v,w)EEI. Then, R is a Neighbors Class equivalence relation (or R
is NCER) under the following condition:

V u,v E V, v - u iff NCM(v) = NCM(u)

Several elementary properties of this relation are immediately apparent. For any graph the

partition wherein each vertex falls into its own equivalence class is trivially NCER.

Consequently, if symmetries exist, in general, it is possible for a graph to have more than one

partition which is NCER. For regular graphs the partition consisting of a single equivalence

class is NCER. Equal degree is a necessary condition for NCER equivalence of vertices so

that d(u)*d(v) zo u NC. v. We shall use a simple example to explain the effect of the NCER

and as an introduction to an algorithm to generate an NCER partition of a graph. Consider

the graph shown in Figure 4-2. It is evident to the eye that symmetries exist within it.

Symmetry Detection 71

6 7 8 9 10 11 12 13

Eaual Degree Partition

C1 {3 5),5, C2 - (1 2 4)d,4 C3 a {6 7 8 9 10 11 12 13)2,1

Iterative Splitting to achieve NCER oartition
S tto 21:

C1 - (3 5), Cj - (1 2), C" (4). C3 - (6 7 8 9 10 11 12 13)
Stec L.

Cl-a-(3 5). cj- b - (1 2). Cj - c - (4),

c; • d- 6 7 8 11 12 13), c; - ea (o10)
Neighbors Class Adjacency Matrix (NCAM)
Step 4:;

- a b c d e
a 0 2 03 0
b 2 1 1 0 0
c 0 2 0 0 2
d 1 0 0 0 0
* 0 0 1 0 0

Neighbors Class Graoh (NCG)
Steo 5:1

1 1

2 b 22 b 1
2 2

3 1 2 1 1 w
d1

Figure 4.2: Application of the NCER to an example graph.

72 Symmetry Detection

The detection of these symmetries proceeds as follows. The vertices of the graph are first

partitioned into classes based on the equal degree (ED) relation. We shall term this the equal

degree or ED partition. The ED partition for our example is shown at Step 1 in the figure. At

this stage the NCM& of the various vertices are as follows:

NCM(1) a NCM(2) a {C1 C2)

NCM(3) w NCM(4) w NCM(5) w {C2 C3)

NCM(9) a NCM(10) = {C2}

NCM(j) - {C1) j E {6,7,8,11,12,13)

It will be noticed, however, that this partition is not NCER since, for instance,

NCM(4)*NCM(1)=NCM(2) although vertices 1, 2 and 4 are in the same ED partition. This

demonstrates that equal degree is only a necessary condition for NCER equivalence of two

vertices. We now come to the notion of NC-consistency.

Definition 4.4: (Gaschnig) A class ci of a partition P a {c 1,c2 CmJ is said to
be NC-consistent iff V u,v E ci , NCM(u) a NCM(v). A class c, is said to be .
inconsistent iff it is not NC-consistent.

By these definitions, classes C2 and C3 in Figure 4-2 are NC-inconsistent whereas class C, is

NC-consistent.

Having generated the ED partition, the algorithm proceeds by iteratively splitting each NC-

inconsistent class into NC-consistent classes and then checking to see if any new NC-

inconsistencies have been introduced in previously NC-consistent classes due to this

,VpilttinT. The process continues until there are no more NC-inconsistent classes remaining.

The algorithm then terminates and the resulting set of clas form an NCER partition of the

graph. Referring to our example again, in Step 2 the NC-inconsistent clas C2 has been split

into two NC-consistent classes C; and Ci . However, this makes class C3 NC-inconsistent

(Note that class C3 is already inconsistent to begin with in our example, however, even had it

been consistent, this splitting of class C2 would have made it inconsistent). In Step 3 the class

C3 has been split into two NC-consistent classes C; and C;. At this point all classes are NC.

consistent and the algorithm terminates with the NCER partition P NCER C 'Cl1C;'C,C;).

We may characterize a clas ci in PNCER in terms of the number of arcs from each vertex in c

to its neighboring class. As for instance in the case of class Ci wherein each of the vertices 1

and 2 have two arcs proceeding to their neighbor vertices in class C1, one arc to class C;.,

and one arc to clas C; (vertices I and 2 have an arc joining them). For expository purposes

let us rename the classes {CC ,C;,C,C") as {a,b,c,d,e) respectively. We may then

m n m . .I = l i n - -- " I - Il i I . . . i. ..3

Symmetry Detection 73

construct a matrix as in Step 4 of Figure 4-2 which shows these connectivity relations. This is

termed the Neighbors Class Adjacency Matrix (NCAM).

Definition 4.5: (Gaschnig) The Neighbors ass Adiacenc, Matrix INCAM) of
an NCER partition P = {c1 ,c2 Cm)iS a square matrix of size m with one row and
one column corresponding to each class c1EP. NCAMJ = k if exactly k vertices of
class c, are connected to each vertex of class c,. & for reasons of symmetry
each vertex of class i will be connected to an identical number, NCAMi. of
neighbors in class j and the sets of neighbors in class j, of vertices in class i, may
overlap.

The definition of the NCAM very naturally leads' us to the notion of a directed graph with

weighted edges where the class names c , i a 1,2,...,m are its vertices and the NCAM is its

adjacency matrix. Furthermore, NCAMi.J>O is the weight of the edge joining the vertices

representing the classes c, and cJ respectively. This is termed the Neighbors Class Graph.

Definition 4.6: (Gaschnig) Let P a {c-,c 2,....C,} be an NCER partition of a
graph G(V,E). Then the egh bo s Gra h LNCG1 of G is the graph G'(V",E')
where V' a {c,c 2 cm and for all ordered pairs (u',v'). u'.v'EV', (u',v')EE" iff
NCAMU. V.>O. Furthermore, for all (u' ,v')EE the weight of the edge (u',v') is the
element NCAMU. V.

The NCG is a directed graph in which self-loops are allowed on vertices since it is quite

possible to have a class be one of its own neighbors, Let G' (V ,E") be the NCG of G(V,E) and

let e' - (s' .d') be an ordered pair such that (s' ,d')EE'. Recall that s" and d' are equivalence

classes of V. Then each directed arc such as e' in G' represents one or more arcs in G from

each vertex of G in s' to its neighbor vertices in d'. The weight of e' is the number of such

edges of G from a vertex in a' to its neighbors in d'. The NCG may alternatively be viewed as

having multiple edges between its own vertices, the multiplicity being given by the edge

weights. The NCG for our example is shown in Figure 4-2 on the left hand side of Step 5. On

the right hand side of Step 5 in Figure 4-2 is an alternative, more compact, representation of

the NCG. In this representation, the 112 on the edge between vertex b and vertex c implies that

there is one edge from nat vertex of class b to its neighbor vertices in class c. i.e. each

vertex of b has one neighbor in c (in this case the same vertex 4 is neighbor to both 1 and 2).

and, likewise, there are two edges from e#=h vertex of class c to its neighbors in class b. In

other words, the two weighted directed arcs between each pair of vertices in the original NCG

Dave been collapsed into one non-directed edge with a dual weight which has a component in

each direction.

Definition 4.7: The connection j p, of an NCER equivalence class X
with respect to its neighbor NCER equivalence class Y is the number of vertices in
Y that are neighbors of each vertex of X.

74 Symmetry Detection

The integer in brackets labelling each vertex of the NCG on the right hand side of Step 5 in

Figure 4-2 is simply the cardinality of the corresponding class in the NCER partition. We shall

derive some relations between these labels presently.

Returning to our algorithm for generating an NCER partition for a graph, we shall refer to

the partition formed by it as the "Equal Degree then Split" or EDS partition in view of its

nature. The algorithm for obtaining the EDS partition of G(V,E) is shown below. In addition,

Figure 4-3 shows the effect of applying Algorithm EDS to various unlabelled graphs.

Algorithm EDS, ("Equal Degree, then Split")

Terminology:

- The graph under consideration will be G(VE)

- Let n be the number of distinct classes into which the
vertex set V is split by the Equal Degree (ED) relation and
let the class names be the integers 1.2 n.

- NCM(x) will denote the neighbor class set of the vertex x.

- The function firstelement(x) will denote some arbitrarily
chosen "first" element of the unordered vertex class x.

- At the end of the algorithm the number of classes resulting
will be held in the variable "last". In other words if the
contents of the variable "last" is m upon termination, there
will be m classes named 1.2 m.

Procedure EDS
begin

integer last. newlast; Comment tc hold class names:
boolean done;

Symmetry Detction 75

G(V .E~) NCG a G(V,E')

414

>2 2

[9)

111

Flgu re 4-.3: Examples of NCGs resulting from the application of NCER to various graphs.

76 Symmetry Detection

Commnent declare a procedure within EDS

Procedure SplitAClass (tc.nc)

bgn booltan *akenewclass;
Integer thisciass, nowlastclass;

thisclass-tc;
nowi astcl assq-nc;

if
(cardinality of thisciass isijnity)

then
return thisciass

f I;

makenewclass-true;

while makenewclass
do

if (th isci ass is NC-inconsistent)
then

tiewiastcl ass-newl astcl ass~l;
Comment create a new class:

(initialize newlastclass to null set);
foreach uEV
do

If NCM(u) 0 NCM(f irstelement(thisclass))
then (moveutfrom the class thisclass

lo the class newlastclass) fi
od;
thisci £55newl astcl ass

*lse makenewclasso-fatso
fi

od:.
return newlastclass
end; Comment *no of Procedure SplltAClass

Symmetry Detection 77

Comment the EDS algorithm begins here;

nevil ast- ast-n;

done -false;

while not done
do

for j from I to last
do newlast -SplitAClass(j.newlast) od;

If last a newlast Comment no change;
then done*-true
else last'-newlast
fi

od

end: Comment end of Procedure EDS

4.2 Some properties of the NCER

This section presents some properties of the Neighbors Class Equivalence Relation. The

proofs here are informal and are included for the purposes of exposition. For further details

and a more rigorous treatment the reader is referred to [Gaschnig 77].

Theorem 4.1: [Gaschnig] In general an NCER partition of a non-directed
graph G(V,E) is not unique.

Proof: For any non-directed graph G(V,E) the one partition P0 wherein each
vEV is assigned its own class is trivially NCER. If in this trivial NCER partition, two
classes a and b exist such that NCM(a) a NCM(b) then a and b can be combined
into one class. The resulting more compact partition P" with one less class is still
NCER by definition. Likewise, if there exists an NCER partition. P" of G that is not
trivial, consider a class c" of P" whose cardinaity is greater than one. Then
assigning each of the vertices of c" to a class of its own, i.e. dividing c- into as
many classes as there are vertices in c °', will also generate an NCER partition.
Thus an NCER partition for G is not unique. I

Theorem 4.2: (Gaschnig] The EDS partition is the minimal NCEF partition.

Proof: The EDS algorithm will terminate as soon as all the classes produced
thus far are NC-consistent. At each iteration of splitting and checking, only as
many rfew classs are created from an NC-inconsistent class as are needed to
satisfy NC-consistency of the old class and the new classes created from it. This
happens in all but the final ft ration before termination of the algorithm. I

78 Symmetry Detection

Corollary 4.1: [Gaschnig] The EDS algorithm applied to the graph G(V,E)
terminates after at most N- 1 iterations, where N a lVJ.

Some more properties of the Neighbors Class Equivalence Relation, and the partition

induced by the EDS algorithm, are stated below without proof.

Theorem 4.3: [Gaschnig] If P a {c1 ,c2 Cm) is an NCER partition of G(V,E)
then Vu,vEV, usEEDSv = uppv

Theorem 4.3 implies that for each NCER partition P of G, each class of P is a subset of

some class of the EDS partition. Thus, the NCER partition with the fewest classes is the EDS

partition (cf. Theorem 4.2).

Theorem 4.4: [Gaschnig] Different graphs are mapped into isomorphic NCGs
by the EDS algorithm.

This leads to the fact that the EDS algorithm is an "information reducing" operation and it

is not always possible to deduce the graph which is the origin of an NCG. However, graphs

which share the same "image" by having the same NCG, share common aspects although

they may be very different in other ways. For instance all graphs which map into the same

NCG will have identical proportions of vertices in each class. That the same NCG is produced

implies that the same number of equivalences classes were produced by the partitioning of

those graphs. As a result the number of vertices in any graph which maps into a given NCG

will be an integral multiple of the number of vertices in the smallest graph which maps into the

same NCG.

As Gaschnig remarks, the behavior of the EDS algorithm is analogous to that of a standard

algorithm for sequential circuit state minimization, in which equivalent states are identified

and replaced by a single equivalence class [Hill 68], pp.201,213.

4.3 Modification of EDS for labelled graphs

In this section we modify the EDS algorithm described above for the case of labelled

graphs. Then we show the operation of the modified algorithm on the example PMS graph of

Chapter 2, Page 29. Thus far the graphs we have studied were not labelled. Hence, the

vertices of these graphs were all homogeneous. Accordingly, detecting structural symmetries

in the graphs amounted to detecting their isomorphic subgraphs. However, the consideration

of physical interconnection structures brings a new aspect to the meaning of symmetry. When

Symmetry Detection 79

we speak of two interconnection structures being physically symmetric we imply that in

addition to their interconnection graphs being isomorphic, they have identical te of

components in the corresponding places in the structure. Note, again, that in our study of

system reliability calculation we shall term two components to be of the same type if they are

identical components with the same reliability functions. Thus in Figure 4-4 we see that the

two structures are isomorphic in their interconnection graphs although they are not physically

symmetric.

-M

tY 10 database

Figure 4-4: Non-symmetric but isomorphic PMS structures.

This additional constraint which determines physical symmetry may be incorporated very

easily into the model by appropriately labelling each vertex of an interconnection graph by the

type of the component it represents in the interconnection structure. We then have to modify

Algorithm EDS for detecting symmetry in labelled graphs. The modification is simple and is

expressed by the following slightly enhanced version of the NCER definition.

Definition 4.8: e Euivalence Relation f . Let
G(V,E) be a non-directed graph with labelled vertices and let R be an equivalence
relation on V. Arbitrarily name the equivalence classes of V due to R by the distinct
symbols c1 ,c 2 C. Let c(v) be the name of the equivalence class to which vertex
vEV belongs. Let type(v represent the label affixed to vertex vEV. Define the
neigbors Mlaus of a vertex to be the set NCM(v) z (c(w)I(v,w)EE). Then R is a
Typed Neighbors Class Equivalence Relation (TNCER) under the following
condition:

Yu,vEV vu*u if NCM(u) a NCM(v) A (type(u) a type(v))

We also define the following relation:

DefinItion 4.9: aul T gyainc RIatin. Let G(V,E) be a non-directed

80 Symmetry Detection

graph and let R be an equivalence relation on V. R is said to be an Equal Type
Equivalence Relation (ET) iff Vu,vEV, u---ET v iff type(u) = type(v).

Then the modified EDS termed the ETEDS algorithm may be expressed as below. (Since it is

so similar to Algorithm EDS only the major differences in the overall structure are shown.)

Algorithm ETEDS ("Equal Type, Equal Degree then Split")

Terminology: identical to Algorithm EDS

Procedure ETEDS
begin

integer last, newlast:
boolean done;

Procedure SplitAClass (tcnc)
begin
... Comment identical to Procedure SplitAClass in

Algorithm EDS:

end;

Comment beginning of code for Procedure ETEDS

(Split V irto equivalence classes based on Equal Type equivalence
relation; let n classes c1 .c2 ... c, result);

Comment Step 1;

for i from I to n
do

(Split c, into equivalence classes based on Equal Degree
equivalence relation; let mn classes ca.C ,... cim
result)

od: Comment Step 2;

Comment at this point a total of I m, classes have been generated.
n

newlast'-last4-1 m ;
done-false; jul

Symmetry Detection 81

while not done Comment Stop 3;
do

for j from 1 to last
do newlast - SplitAClass(j,newlast) od:

If last - newlast
then done.-true
else last-newlast
fi

od

end: Comment end of Procedure ETEDS;

Theorem 4.5: The partition generated by Algorithm ETEDS is TNCER

Proof: After Step 1 in Algorithm ETEDS we have

Vu,vEc i, i - 1,2,...,n, type(u) = type(v)

After Step 2 in the algorithm we have

Vu,vEcii, j=1,2...im, i= 1,2,...,n,

(type(u) - type(v)) A (d(u) - d(v))

The splitting process in Step 3 of the algorithm terminates only when all classes
are NC-consistent. Thus for each class c at the end of Step 3

Yu,vEc (type(u) - type(v)) A (d(u) a d(v)) A (NCM(u) a NCM(v))

Therefore, the partition generated by algorithm ETEDS is TNCER. I

Analogous to the NCAM and the NCG in the case of the NCER we may define a TNCAM and

TNCG in the case of the TNCER. In other words since two vertices fall into the same class of a

TNCER partition iff their types are the same, we may label that class with the same type.

We now show the result of applying the ETEDS algorithm to the examp e PMS graph of

Chapter 2, Figire 2.5. The graph is reproduced for convenience in Fi ure 4-5 and the

symmetry detection steps applied to it are shown in Figure 4-6. In Step 1 of Figure 4-6 the

vertex set of the graph has been partitioned according to the Equal Type (ET) equivalence

relation. Step 2 shows the further partitioning according to vertex degree. Step 3 shows the

iterative splitting, of partitions achieved so far, to obtain the equivalem-e classes due to the

Typed Neighbors Class Equivalence Relation (TNCER). At each iteration an asterisk is used to

82 Symmetry Detection

mark those classes which are NC-inconsistent. Figure 4-7 shows the resulting TNCAM and

TNCG for the PMS graph of Figure 4-5.

P1 1S /4 P2 / 2

K
2

S Z 2 K 3

3\S 4 \/S

P3 3 4 M4 P5 M5

Figure 4-5: An example PMVS graph with symmetries

4.4 Some results in regard to the NCG and TNCG

This section will introduce some results regarding the N"Gs and TNCGs of non-directed

graphs which were derived by the author based on Gaschnig's work. We have seen in

Section 4.1 how a Neighbors Class Graph (NCG) may be simply represented by replacing the

two weighted directed arcs between each pair of vertices by a single, labelled non-directed

arc. A single integer (e.g. "[6]") labelled each NCG vertex and was the cardinality of the class

it represented. Likewise, a pair of integers (e.g. "211 ") labelled each non-directed arc and

stood for the original weightings of the directed arcs it replaced. These are the connection

densities of the two classes, represented by the vertices, with respect to each other. We shall

consider in this section some numerical relationships between these integer labels. The issue

of recovering information about the original from its NCG will also be addressed. This is not

possible in all cases since the derivation of the NCG is an information- reducing operation.

More will be said on this below.

Without loss of generality we shall consider two representative vertices X and Y of arn NCG

with the single non-directed arc between them and with appropriate positive non-zero integer

labels, m .,m , n ,n > 0, attached (see Figure 4-8). Note that mX a *X and my a * are the

Symmetry Detecion 83

Vertex Set of P14S graph in Figure 4-s:

(P1 P2 P3 P4 P5 M41 12 M43 M4 15 SI S2 S3 S4 S5 K1 K2 K3)

Partition by Egual Tvoe epuivalence relation:.

(PI P2 P3 P4 P5) (MI M42 143 14 M45) {S1 S2 S3 54I S5) (KI K2 K3)

Further partition by Eaual Degree eauivalence relatio2n
(Subscript "dan" indicates each vertex in class is of degree n)
(P1 P2 P3 P4 P51 d.1 (Mi 142 143 M4 M6)4.1 (Si S2 53 S4 Sb)d- 3 (KI K2)d.A

(K3)d.3

Iterative Splitting to achieve partition by NCER:
(0= NC-inconsistent class)

STEP I
{P1 P2 P3 P4 P5) (Ml 142 M43 M44 M5) (SI S2 S3 S4 S5)- {K1 K2)

(K3)

STEP 2
(P1 P2 P3 P4 P5)- (MI M42 143 MA4 M45)- (SI S2 S3 S4) (KI K2)

(S5) (K3)

STEP 3
(P1 P2 P3 P4) (M1 142 143 144) {S1 S2 S3 S4) (KI K2)
(P5) ([45) (SB) {K0)

NCER Partition:

I P {Pl P2.P3P4)
2 P (P5)
3 4 (M411M21431M4)
4 14 (1015)
5 S (Si S2 S3 S4)
6 S (S5)
7 K (KI K2)
8 K (K3)

Figure 4-6: Steps of the ETEDS algorithm applied to Figure 4-5

84 Symmetry Detection

1 Z 3 4 6 6 7 8
p p M M S S K K

I P 0 0 0 0 1 0 0 0
2 P 0 0 0 0 0 1 0 0
3 M 0 0 0 0 1 0 0 0
4M 0 0 0 0 0 1 0 0
5 S 1 0 1 0 0 0 1 0
6 S 0 1 0 1 0 0 0 1
7 K 0 0 0 0 2 0 1 1
8 K 0 0 0 0 0 1 2 0

(a)

iii

21

[Zj z i1

I II ,
[43 (S) {S) [I3

[43 (P) [43(M) P) M)P)

Note. Integers in brackets are the class cardinalities.

(b)

Figure 4.7: (a) The TNCAM for Figures 4-5 and 4-6
(b) The TNCG defined by the TNCAM above.

AO-A112 713 CARNE6IE-MELLON UNIV PITTSBURGHI PA DEPT OF COMPUTER -ETC F/6 9/2
AUTOMATIC GENERATION OF RELIABILITY FUNCTIONS FOR PROCESSOR-MEM--ETC(U)
FEB Al V KIN! NOOlI-77-C-0103

UNCLASSIFIED CMU-CS-81-121 ML

1.0
________2 2

11111.25 U I1

Symmetry Detection 85

[nix] (ni]
m. my

Figure 4-8: A pair of vertices in an NCG.

connection densities. We shall consider this single pair of representative vertices in isolation.

Of course, both X and Y may possibly be connected to other neighbor vertices in the NCG but

these connections will be symmetric, and results derived for a single pair of vertices X and Y

may be applied to all other pairs which contain either of X or Y, and thence to the rest of the

graph. The case that X and Y are the same vertex (class) is also considered in Section 4.4.2.

In what follows, the symbols X, Y, m., my, nx, n refer the reader to Figure 4-8. The results of

this section apply in general only to NCGs of non-dffected graphs and no attempt has been

made to extend them to directed graphs. We attempt to deduce in this section what structure

or set of symmetric structures in the original graph, G, caused the appearance of the single

arc in its NCG, G', as shown in Figure 4-8. For our purposes, the NCG and the TNCG are

identical except insofar as the latter has type labels for its vertices unlike the former.

Therefore, the following results apply to both.

Theorem 4.6: nxmx U nym

Proof: The proof is by conservation of arcs. Since each vertex of class X is
connected to mx vertices of class Y, there are a total of nxmx arcs incident on
vertices of class X from vertices in class Y. Likewise, for class Y there are n m
such arcs incident of vertices of Y from vertices in X. These two must be identica1
I

4.4.1 Unequal class cardinalities

We shall assume first that nxon Y. This implies from Theorem 4.6 that mx* my.

Theorem 4.7: If nx *n and n and n are relatively prime then the only possible
interconnection graph beween the ver~ces of class X and class Y is a complete
bipartite graph.

Proof: From Theorem 4.6 we know tMat

nx/my a n./m X

86 Symmetry Detection

Now n x,n ,m and m are positive integers, therefore this equality implies that n
and n have a common factor. By our assumption, however, they are relatively
prime and so this factor can only be unity. Hence, m x n and m a n as a resuit.
This result implies that each xEX is connected to n (i.e. all) ye'O. Likewise, as a
result, each yEY is connected to n. xEX. Hence, under the conditions of the
theorem a complete bipartite graph is the only possible graph joining the vertices
of X and Y. I

Note that under the conditions of Theorem 4.7 it is possible with the information from

Theorem 4.6 to compute any one of the four quantities (two m's and two n's) if all of the other

three are known. Likewise, if the ratio of the m's is known, one n calculated from the other and

vice versa. We shall see in the following section that if the condition nx:ny is not satisfied

then the former calculation will not be possible due to a many to one mapping.

Theorem 4.8: Assume the following notation

1 = GCD(nx,nY) (GCD =* greatest common divisor)

TXy a any factor of r XY (including 1 and XY)

nPx • n./r Y, and

n = n/rpy y XY

Then, if n xn and n and n have a common factor greater than one, then the
appearance A single edge oyf the form in Figure 4-8 may originp'e from one of the
following kinds of subgraphs in the original graph G(V,E):

1. Complete bipartite graph of nx and n y vertices. (qixy a 1)

2. r occurrences of symmetric complete bipartite graphs of nx and n
vextices. (4 rx

3. or in general, r /q) occurrences of complete bipartite graphs of (nxT Y)
and (n yrKxy) Ver6c) < vY)

Proof: The NCMs of all xEX (or all yEY) are identical due to the NCER. Hence, if
the single NCG edge in Figure 4-8 was the result of the "collapsing" together of
several subunits which were bipartite graphs, all those subunits must have been
symmetric. Since n and n have a common factor the smallest such subunit will
have boon a bipartite grapA of n., and nov vertices. Also, there will be r such
smallest subunits. From Theorem 4.7 this smallest subunit must be a complete
bipartite graph since n and n are relatively prime. This gives rise to case 2
above. Case 1 will triviallyv generate a single NCG edge.

Symmetry Detection 87

Now consider case 3. Symmetry conditions dictate that the number of subunits
must be r /q since the vertices in class X (or class Y) must be evenly divided
among the symmetric subunits. In other words, for each symmetric subunit, the
number of vertices in their X and Y classes will have to be the same integral
multiple (y)) of n., and npy respectively. Now from Theorem 4.6 we have the
constraint

M/m an/n an ,/nm/ y -n/x .nnpx

Hence for a subunit which has n xqp, vertices in class X and n vertices in
class Y, m. and my can only take the values n PXY and nXY respectively. This
leads to a complete bigraph of np xpxy and nPXY vertices. I

Note that under the conditions of Theorem 4.8 the number of symmetric complete bipartite

graphs which produced the single NCG edge will be completely determined by the values of

m. and m and, in fact will be GCD(mxmy).

The results of Theorem 4.8 may be used while doing an algorithmic "walk" of an NCG to

discover for each edge in the NCG the local structure of the original graph which was reduced

by the symmetry detection to that single NCG edge. A special version of these results is

embodied in Theorem 4.9 which is used to discover which parts of the NCG correspond to

symmetric collections Pendant Tree Subgraphs in the original PMS interconnection graph

(see Chapter 5).

4.4.2 Equal class cardinalities

We now consider the case wherein n, a i,. From Theorem 4.6 we see that nXa n

m=a my. It is not possible, however, to solve for the values of the m's since there is no unique

solution to the m's in the equation mxnx = mynY when n. a n Y. The only observation which can

be made is that the connection pattern between the vertices in class X and vertices in class Y

will be regular in some sense and constrained by the fact that the degr&, s .' all vertices in

both classes are equal (i.e. mX a my a m). For instance Figure 4-9 show .,ases which

"collapse" to an identical edge in the NCG.

An interesting special case is one in which the class X is identically class Y, i.e. there is a

self loop on a vertex in the NCG. In this case the connections are between vertices in the

same class and symmetry causes them to be cyclic. The connection density in this case

specifies the length of the cycle. If the connection density is equal to the cardinality of the

class with the self -loop (m. a m, na n ny * k) then the self-loop indicates the existence of a k-

i4

88 Symmetry Detection

X Y X Y X Y

M I 2 II I

[4 Y Y

X 2 I 2 Y m=2, nx=4

E4] [4)

Figure 4-9: Ambiguous origin of single NCG edge when n i n

clique13 subgraph in G. If m<n then we have a star polygon with a period of m in G.14

4.5 Symmetric trees

We now consider a scecial case wherein at least one of the connection densities in Figure

4.8 is unity. Without lofs of generality let us assume that m a 1. Then Theorem 4.6 informs us

that the number of vertices in class Y is exactly the number of vertices in class X divided by

m y. Under this condition it will be noted that the bipartite graphs must now be two level trees.

In our case, with m. a I the roots of these trees are the vertices in class Y and the leaves are

the vertices in class X. Also, each vertex (root) in Y has exactly m successors or sons in classy
X. Therefore, the number of trees which "collapsed" to provide the single edge in the NCG is

equal to n (i.e. the cardinality of the vertex ('ass which holds the root vertices). Hence wey

have

13 A A-€c4€Qui a a comle Waphrh on k naod,

14 A sat Olygon is a rgular graph which Is cyclically corwoected It can be compltely chIarecnrizs by an
dexed expreason which a a function of tfe ftgee of eAch vetmx in WV graph te peood of Oe cyclc
,ntrcon tOon (See [O8*mh 721).

Symmetry Detection 89

Theorem 4.9: The only condition under which the single NOG edge in Figure
48 represents the collapsing of tee subgraphs of G is when at least one of m or

m are identically unity.
yy

The proof od this Is obl:vious. A fact that follows from this is that if m. am y. I the t only

origin in G of the single NCG edge is the ollapsing of single edges of G which are n. w ny, n

in number. Note aso at it is possible to have leaves or pendant vertices in G" which do not

correspond to leaves in G. This may be seen by considering the case of Figure 4-10. Theorem

4.9 is made use of in Chapter 5 for discovering specific tree subgraphs of the PMS

interconnection graph G. These are then used as a basis for partitioning G in a divide-and.

conquer approach.

P1 S1 1\/l
F -M G(V,E)

P S 3

P3 S3 H- -13
I'
II SYMMETRY DETECTION'I

113 3111C3](p .. =,](V)_ 3s .) 31 (M)

2/ TNCG G'(V'.E')

Note: L1E(L); (L) is a leaf of G'; Ll is not a leaf of G.

Figure 4-10: A case where a leaf of G" is not a leaf of G.

90 Symmetry Detection

4.6 Conclusion

This section introduced an algorithm to discover symmetries in an unlabelled graph. This

algorithm was based on the Neighbors Class Equivalence Relation and gave rise to an

auxiliary graph called the Neighbors Class graph. Slight modifications to the algorithm

allowed the detection of symmetries in labelled graphs. The identification was drawn between

a PMS interconnection graph and a labelled graph and the algorithms were shown to be

useful in discovering physical symmetries in a PMS structure. Finally some properties of the

NCG were discussed which allowed the deduction from the NCG of the nature of the

symmetric subparts of the PMS graph.

In later chapters only symmetric subtrees of a specific kind in the PMS interconnection

graph G are used to reduce the amount of computation in the reliability calculation. This is

entirely due to the fact that special techniques were developed only for tree structures.

However, the information gleaned from the NCG regarding the nature of the symmetries in G

may allow the reducing of computation in the case of symmetric instances of other kinds of

subgraphs if special techniques for them are developed in the future, or their appearance in

PMS structures is sufficiently frequent to warrant special consideration.

I,

PTS Agorithms 91

Chapter 5
Tree Interconnection Structures

This thesis is an attempt to study the feasibility of generating system reliability functions

directly from the actual interconnection topology of a PMS system. Interconnection graphs of

tree form were a natural stauting point for such an investigation. The most important motive

for studying tree interconnection graphs is that PMS structures usually contain input-output

subsystems which are connected as trees. For instance, Figure 5-1(a) illustrates the case of a

disk storage subsystem, and Figure 5-1(b) shows a terminal controller with its network of

terminals. The roots of the two tree-interconnected subgraphs are the Knw~omxor.¢hnne1 and

K.,,,,,, respectively.

Another obvious, although secondary reason to begin by examining trees is that there

exists a large base of efficient algorithms, using trees as data structures, which have been

explored and described in the extant literature. During the course of research on this

dissertation, however, it was found that most of these algorithms were inapplicable except to

do minor subtasks in the reliability calculation process which was contemplated. This

situation is largely due to the fact that the reliability calculation problem is combinatorial

whereas extant algorithms address much simpler and more basic problems in manipulating

tree data structures. Algorithms derived for such classes of problems as the generation of

spanning trees of graphs, shortest path problems, tree searching etc. appeared irrelevant to

the particular task at hand.

Definition 5.1: A Pendant I= SgrA M, T, of a PMS structure
interconnection graph, G, s a maximal rooted tree subgraph such that the root
vertex of T is an articulation vertex of G and the simple path, p , between any pair
of vertices v and v in T, is unique in G. The root vertex of a ft shall be termed
an interface ;Izhi.

It may be een that the two tree In Figure & are Indeed PTSs and that their respective

root vertices are "Interface" vertices to the rest of the Interconnection graph. In order for any

component In a PTS to be useful to other subsystems not in that PTS, the component

92 PTS Algorithms

Computer Syfstem

1&allplzer.~iinellemi al .Conesnnra r]
Compr sskm.Conrolle

ITTY TTTY Tryl TTT TTTY

TdtSk Tdisk Tdisk

(a) (b)

Figu re 5- 1: Examples of Pendant Tree Subgraphs

represented by the root vertex of that PTS must be functional. This is so that a route may exist

for information to flow between the PTS subsystem and other parts of the PMS structure. Also

since the interface vertex is an articulation vertex of the PMS graph the PTS reliability may be

considered separately from the main graph. This is due to the sets of components in the PTS

being disjoint from the rest of the graph and the assumption of independence of failure

behavior. The functionality of the PTS when viewed from the rest of the system is dependent

on whether the interface vertex is funct-ning or not. The algorithm developed below for

calculating the reliability of tree structures depends on this fact.

Figure 5-2 shows the portion of ADVISER which is discussed in this chapter. In Section 5.1

we shall introduce and discuss an algorithm used for detecting Pendant Tree Subgraphs in

the graphs of PMS structures. The algorithm will employ symmetry information gained by the

use of the symmetry detection algorithms of Chapter 4. The following section, Section 5.2, will

PTS AfgOrihfs

z9

a E

49 .w w

0&

40
C -

L A,

164 L ~
a, 440i0 D

F gure 5-2: The portion Of the ADVISER structure discusg n hptr5Also see Page as.inC&tr$

94 PTS Algorithms

describe TREEREL algorithm for generating the symbolic reliability function for a Pendant

Tree Subgraph given a boolean requirements expression. The chapter will conclude with a

note on current known deficiencies of the TREEREL lgorthm.

5.1 Generation of Pendant Tree Subgraphs (PTS)

The reader will recall that the result of the symmetry detection process described in

Chapter 4 is a Typed Neighbors Class Graph (TNCG) which has as its vertices the equivalence

classes resulting from the ETEDS algorithm. These vertices are labelled with the type and

cardinality of the respective classes. The edge between any two vertices is labelled with the

pair of connection densities of the two classes with respect to each other. Theorem 4.9 in

Chapter 4 showed that in order for a subgraph of the NCG, G', to have originated from a tree

in G(V,E), the connection densities in the direction of the root should always be unity.

Capitalizing on this result and the additional obvious result that a pendant or leaf vertex in the

original graph G(V,E) must imply a leaf vertex in the NCG, 15 an algorithm may be generated to

discover the pendant tree subgraphs of G. We shall assume that the PMS interconnection

graph G is not a tree graph itself although it may have PTSs. Appendix A examines the

consequence of removing this restriction.

The algorithm proceeds by first collecting the set of pendant vertices in the NCG, G', of

G. These leaves of G' represent those vertex classes which have only one neighbor. From

this set of pendant vertices, those vertices are deleted whose connection density to their

single neighbor class is greater than one since they obviously cannot represent leaves of a

PTS in G. The set of remaining pendant vertices of G', which we shall denote V',, does

represent the set of leaves of the PTSs in G. We shall metaphorically term the members of V' p
germinal trees, and the process of constructing the PTSs from them as growing trees. The

reason for this me,4phor will become apparent.

Each member of V' is mapped into a data structure t as shown in Figure 5-3. The field tr

will hold a single vertex of NCG G'. The field t, will hold a set of vertices taken from G'. Let

T" be the set {tt), j{T' PdI - I{V' 1, where each t(')ET" Ot corresponds uniquely to a v' iEV"

The algorithm starts by assigning t6 - v'1 and t). - (v'i. This initializes the root tr)and the

vertex set t)of the itt germinal tree, to the NCG leaf vertex v"

16mthough not vice VerS in general SnC ft @OfonCtiOIn dW~tt CO il pondlant NCO vertex to t neighborsI
could be greater than unity

r
PTS Algorithms 95

I. v

Key

r-- root vertex, tW)rrr

v -- vertex set, W)

Figure 5-3: Data structure for germinal trees

The algorithm then iterates in two passes. It first examines each tPi in turn. If the root vertex
t()of the ith germinal tree has exactly one neighbor v" in G' which is not already contained in

the vertex set to) of any of the germinal trees and, in addition, the connection density of t(')with

respect to v" is exactly one then t(') 4- v" and t) - t0) U v". These conditions have to ber v v
imposed since G is a non-directed graph. If at any stage, t'i) has several neighbors. its

connection density to all of whom is unity, then there is no way to know which of them is at a

higher level in the PTS. Some of them may be "brother" vertices at the same level of the PTS

.s 0). Thus, any one of them could, from the point of view of t4l) be the next higher root to ber.
added. Of course, those neighbors of t(') in whose direction the connection density is greaterr

than one can never be added to t(i) and will most likely be part of another germinal tree.

Hence the growing process of the germinal tree t() may have to wait through several

iterations of the algorithm until all but one of those neighbors with unit connection density has

been consumed by other germinal trees growing upward from their leaves. Or else, if the

algorithm terminates before this happens, then tr' is the de facto root, or interface vertex, of a

PTS.

At the end of this first pass, each germinal tree may have "grown" by one more vertex

toward the root of the PTS of which it is a subtree. The next pass over the set of t0) checks to

see if there are any two germinal trees that have the same root vertex. If so, these are merged
or coalesced into one germinal tree i.e. 3ij such that tO- tG) then t) -t U tQ) and P is

deleted.

96 PTS Algorithms

Note that if, at any stage of the iteration, the root r. a t(iof any germinal tree i at that stage

has itself for a neighbor vertex, then no more vertices can be added on to that germinal tree at

any further stage (This is also in accord with Theorem 4.9 in Chapter 4). Such a tree is then

said to have stopped growing and is no longer considered in further passes except for

merging into other germinal trees that have grown toward the same root vertex.

When there is no further change during this iterative process i.e. when no more neighbor

vertices can be added and no more germinal trees can be coalesced, the process terminates.

The resulting trees are the PTSs of the NCG G'. It will be noted that due to the symmetries

detected during the construction of G', the cardinality of the class represented by the root

vertex of any PTS of G' gives the number of physically symmetric PTSs of G which are

represented by that PTS of G'. This fact has the obvious consequence that since symmetric

PTSs of G have been recognized and localized, the reliability function of one of a set of

symmetric trees will have the same form as all the others in the set, thus effecting some

computational savings. This issue is further discussed in Chapter 6. Algorithm GROW is

described below

PTS Algorithms 97

Algorithm GROW

Terminology:

- The symbol p'1 will be used whenever there is exactly one
neighbor, of a given vertex v, under consideration and will
stand for the connection density of vi with respect to that
one neighbor.

- The symbol v., will be used whenever there is exactly one
neighbor of a given vertex under consideration and will
represent that single neighbor (un=unique neighbor).

- The set V will be assumed to be initialized as follows:
P

Vp * {v'jjv'jEV',d(v',)= ,p'jw 1

- The function "MarkComplete" causes a germinal tree to be
labelled as not capable of further growth thus removing it
from consideration during the further iterations of the
algorithm. The function *MarkDead" removes a germinal tree
from further consideration once it has been coalesced with
some other germinal tree. The functions "MarkedAsComplete"
and "MarkedAsDead" check to see whether the germinal tree
given as their parameter has been respectively marked as
complete or dead.

98 PTS Algorithms

Procedure GROW
begin

for i from Ito I Comment IV, I =cardinal ity of set V
do t 1 , V' t~i) (v,,) ad;

Comment v'iEV P. t(')ETpt

changes-true.

while changes
do
BEGIN

changes-false;
for i from 1 to jTptI
do

If not MarkedAsDead(t(1')
then
if not tMarkedAsComplete(t(l))
then

neighbors *GetNCM(t('):

if t(1' E neighbors
then MarkComplete(t(')
else

neighbors 4-neighbors -neighbors t) W)~
V

if ineighbors1
then

if p'. -1
then

t('- onE neighbors;,

Comment single neighbor remaining in "neighbors"

else r o

MarkComplete(t(1')
fi

fi
f

fi
fi

od,

PTS Algorithms 99

Comment now merge germinal trees that have overlapped at the root;

for i from I to ITPt
do
If not MarkedAsDead(t(1)
then

for j from i+1 to JTPt1
do
If not MarkedAsDead(t(J)
then

it t~i) , * j
thend thent(i) - t (i) U t(j) •

If MarkevdAslComp 1et(t(J)
then MarkComplete(t (1)
flI;
MarkOead(t (J):
changes'-true

fl
fi

od
fi
od

END

end; Comment end of Procedure GROW;

5.2 Generation of Reliability Functions for PTSs

Previous sections in this chapter discussed the process of recognition of Pendant Tree

Subgraphs (PTSs) of a PMS interconnection graph. We now approach the question of

generating reliability functions for such tree structures. The methods developed in this

chapter for this task are used to generate partial results regarding such PTSs in the overall

interconnection structure. Such partial results along with others are operated upon to

produce the final result which is the reliability function of the entire PMS structure. The reader

will recall from Section 2.2.1.3 that an atomic requirement on a PMS structure is a clause of

the form "at least N of X", represented symbolically by +,(NX), where N is an integer and X is a

distinct type of component in the structure. In the following we shall initially indicate how

reliability functions for PTSs may be derived for such atomic requirements and then

generalize the result to a Boolean function on atomic requirements, i.e. compound

requirements.

-J

100 PTS Algorithms

The algorithm starts on the distinguished, or root, vertex of a PTS of G, the PMS

interconnection graph.16 This is an articulation vertex of G(V,E) and is termed an interface

vertex. The component represented by it must be functional in order for other functioning

vertices in the tree to be able to satisfy the Communication Axiom (see Sections 2.1 and 6.6.1)

for system reliability. To introduce the aiJ rithm we shall consider a complete m.ary tree of

infinite extent and composed of homogeneous vertices. In other words all the components

represented by the vertices of the tree are of exactly the same component type, say X. We

shall, in addition. assume an atomic requirement of (N,X). Starting from the root vertex of the

PTS the algorithm recursively descends into the tree keeping count of how many vertices of

type X have been encountered thus far. Since at least N components of type X are required to

be functional, a functional state of the tree is found as soon as N such vertices have been

encountered. There is then no need to descend farther into the tree since the requirement

has been met and the states (working or failed) of components lower in the tree are not of

consequence. The algorithm then accounts for this functional state in the partial result thus

far accumulated (we shall presently describe what is meant by accumulation of results) and

backs up to try the next possibility. In this sense the procedure is exhaustive but only

functional states of the PTS are examined. The algorithm will be described in detail below.

It is clear that in our example of a homogeneous tree the descent will encompass no more

than N levels of the tree including and starting from the root vertex. The following question

then comes to mind; If the homogeneous tree is N + 1 levels deep. say, then what of the

vertices that are the leaves of the tree at level N + 1? Since they are all also of the required

type X, may they not also contribute to some functional state? On a little reflection it is

apparent that the constraint that excludes such possibilities is that all communcation must

flow through the root vertex r into the rest of G(V,E). Thus, for any functioning vertex v at level

I to be part of a functional state, all vertices along the path of 1-1 edges from v to r must be

functional. In our instance, all of these vertices are of the required type. Hence it I<N then

each vertex of the tree will appear in one or more functional states. However, if I>N then there

will be at least one vertex whose functioning or non.functioning is irrelevant to the functioning

of the tree structure.17

6This is in contrast to the Algorithm GROW which dicovers PTSa of the NCG, G', of G thereby indicating
symmetric PTSs of G.

17 The concept of relevancy here is used in the sense of Barlow and Proschan [ulow 75a]

PTS Algorithms 101

5.2.1 The TREEREL Algorithm

The TREEREL algorithm uses the notion of the compositions of an integer into some

number of parts (for example see [Nijenhuis 78]).

Definition 5.2: A k.composition of a positive integer n is an ordered tuple of k
integer parts p, _O, i - 1,...,k, such that Ij pi. n.

This is to be contrasted with the following definition:

Definition 5.3: A k.partition of a positive integer n is an unordered tupe of k
integers parts pi>O, i a 1,...,k, such that 1i pi n.

PI P2 P3 P4
3 0 0 0
2 1 0 0
2 0 1 0
2 0 0 1
1 2 0 0

11 1 0
_.1 1 0 1

1 0 2 0
1 0 1 1

i1 0 0 2

S30300

0 2 1 0
0 2 0 1
0 1 2 0
0 1 1 1
0 1 0 2
0 0 3 0
0 0 2 1 6s4+1+1
0 0 1 2 6a3+2+1
0 0 0 3 Gw2+2+2

(a) (b)

Figure 5-4: (a) All the 4-compositions of the integer 3.
(b) All 3-partitions of the integer 6.

At any depth, within the tree operated upon by a recursive incarnation of the PTREE

procedure of algorithm TREEREL, lot n be the number of reqluired-type components

remaining to be found to satisfy the atomic requirement on the tree. Lot the root vertex of the

subtree currently being studied be r; . Furthermore, lt r; have m sons r ... rThe algorithm

first examines the root vertex r; for its component type. If it is the required type then the

.21 0 0 . I.... I"III -il J

102 PTS Algorithms

number of components of the required type remaining to be found is decremented by one.

The algorithm then proceeds to sequence through all the m.compositions of the integer n (or

n. 1 if the vertex r; was of the required type). For each such m-composition the algorithm is

called recursively on each son of r , ri', i= 1 -.... m, with the parameter p, as the number of

required-type components to be found in the subtree whose root vertex is r .Here p, is the ith

integer part of the m.composition.

For each m.composition of n the values (canonical reliability polynomials) returned by the

recursive calls of the PTREE procedure on each of the subtrees r" are SMERGEd. The

SMERGE procedure (Chapter 3) effects a coniunction of the probabilities represented by the

reliability functions returned by the various recursive ;;lls. After all the m-compositions of n

have been examined, their individual SMERGE results are then PMERGEd together. The

PMERGE operation (Chapter 3) produces a reliability function which represents the

disjunction of the probabilities represented by the results of the SMERGE operations. Finally,

if the results of this PMERGE operation were non-null, i.e. the subtree rooted on r0 was able to

meet the requirement of n, then the reliability of r' is SMERGEd into the results of the

PMERGE operationla. The results of this final SMERGE operation, if it is invoked, are returned

as the value of the current incarnation of procedure TREEREL operating on r;. Otherwise a

null result is returned indicating that no functional states could be found.

It is evident that for some subtrees in a PTS which is not homogeneous (i.e. components

within it are of different types) not all the compositions of the integer requirement over the

number of sons of the root of the subtree, will produce fruitful results. In other words, some

requirements on a particular component type may be greater than the number of components

of that type available in a given subtree. This implies that that subtree can never be functional

under that particular requirement. In order to decide whether or not a given requirement can

be met by a subtree it is necessary to know beforehand how many components of the

required type are available within it.

Definition 5.4: Let r be the root of some subtree t(V,E) within a PTS and let x
be the required component-type. Then the r resurce (RRS) aT, of
the tree t with respect to x is defined as

OT(rx) a jV'l such that V CV, VvEV' type(v) a x

"This is equivalent to stating that regardless of what combinations of components in the subtrees w , re

chosen to satisfy the requirements, the root vertex r; will always have to be functional for those combinations to be
Ueful

PTS Algorithms 103

The subscript T on the a indicates the applicability of the definition to rooted tree
subgraphs of the PTS. Such a tree t is represented by its root r and thus r is a
parameter of aT.

The quantity aT(r,x) of each vertex r in the PTS is gathered in an O(N) post-order traversal of

the PTS prior to running the PTREE algorithm.

Definition 5.5: Let r; be the root of some subtree t of the PTS which is being
operated upon by a recursive incarnation of Procedure PTREE. Let ri, i = 1,...,m, be
the m immediate successors vertices of r;. Let x be the required component type
and n be the remnant of the integer requirement to be applied toward the subtrees
of r0 after subtracting one in case type(ro) = x. Then an rn-composition c-{p} of n
over the ri, i 1, i = n, is said to be a feaible comoosition (or c is feasible)
iff

OT(r,*,x) > pi, i 1,...,.m

A composition c is said to be infeasible iff it is not feasible.

During each recursive call to the PTREE algorithm on the root vertex ro of some subtree of

the PTS, the m-compositions of n are generated as described above. A composition is

considered, and recursive calls to PTREE on rare initiated, only if the composition is feasible.

The procedure NEXTFCOM, described below, is used to generate the next feasible

composition at each step.

A further refinement of the algorithm is possible and was made in the following way. For a

given subtree rooted on some r;, and for a given required component type x, in general,

VT(rx)_0, i = 1 ,...,m

Now if 3 jEi ,1 a....m, such that aT(r, x) a0 then any composition which has p1>0 will be

infeasible. Thus, when generating compositions we need only consider those r such that

OT(r,x)>O. In such a case the number of parts in the composition will be equal to the number

of r 'whose oT(r,x))O. In view of this, an additional O(N) post-order traversal is made over the

PTS prior to the initiation of the PTREE algorithm to prune subtrees whose aT is equal to zero.

Furthermore, the remaining subtrees of each vertex of the PTS are ordered in ascending

order of their ov. This allows the generation of the compositions to be started directly at the

first feasible composition and is reflected in the procedures NEXTFCOM and PTREE below.

There are, thus, three stages in the TREEREL algorithm, namely

- Compute 0T for all vertices in the PTS for the required component type x.

104 PTS Algorithms

-Prune the subtrees with u.T = 0 (in other words we effectively reduce m) and
reorder the remaining subtrees in ascending order of their uT .

- Call the PTREE procedure on the root vertex of the PTS with the integer
requirement n.

The value returned by the PTREE algorithm is the canonical reliability polynomial (CRP) of

the PTS under the atomic requirement ,(n,x). Shown below are the four procedures that

comprise Algorithm TREEREL.

Algorithm TREEREL

Terminology:

- succ(r,i) is a function which returns the ith immediate successor vertex of r.

- nsucc(r) is a function which returns the number of immediate successors of
vertex r.

- SMERGE and PMERGE are algorithms described in Chapter 3. They respectively
return the symbolic reliability function of the event which is the conjunction or
disjunction of the two events represented by their parameters.

Procedure NEXTFCOM is a modified version of Algorithm NEXTCOM in [Nijenhuis
78]. The latter generates all m-compositions of the integer n in the order as shown
in Figure 5-4(a). The former only generates those m-compositicns which are
feasible.

-The names of the parameters to TREEREL are reasonably self-explanatory:
"ptsroot" is the root vertex of the PTS for which the reliability function is to be
generated, "reqtype" is the required resource type of the atomic requirement,
and "reqment" is the integer requirement of the atomic requirement.

Procedure TREEREL (ptsroot, reqtype, reqment)
begin

PTS Algorithms 105

Comment first declare four procedures which are used by TREEREL;

Procedure FINDSUPPLY (r,x)
Comment finds vTof subtrees of the given PTS;

begin
Integer supply;

If type(r)zx then supply-supply+l fi;
for i from I to nsucc(r)
do

supply-supply.FINDSUPPLY(succ(r. 1) x)A
od;
V.(r~x).-supply;
return supply
end. Comment end of Procedure FINDSUPPLY;

Procedure PRIJNEANDSORT (r~x)
Comment prunes those subtre~ -4s o,=Q and rearranges;

begin
for i from 1 to nsucc(r)
do
If 0,(succ(ri).x)nQ
then (prune subtree rooted on succ(r,i)

od;
(quicksort the remaining successors of r

into ascending order of vT~) ;
for j from 1 to nsucc(r)
do PRUNEANDSORT(succ(r~j).x) od
end; Comment end of Procedure PRUNEANDSORT;,

106 PTS Algorithms

Procedure NEXTFCOM
reference integer array com(t :m),
reference integer array sigmat[1:m],
integer n.
Integer m

Comment generates next feasible r-composition of n given
a vector in sigmat[l:m). Previous feasible r-composition
on resides in com[1:m];

begin
integer h, t:
label newcomposit ion:

do
begin
if com[m]zn then return false fi:
(h-com[i] where i is the smallest i 1 ,.... m such that comfiJ>O);
t-com~h); com~h)4-O;
comE 1)-0;
comE h+1)'-com~h.1)+1
end

until
newcomposition:
begin
for i from 1 to m
do

if sigmat[i] < com~i)
then leave newcomposition with false

od;
leave newcomposition with true
end

od
return true
end; Comment end of Procedure NEXTFCOM:

Procedure PTREE (r~n~x)
Comment recursively computes symbolic reliability function of

subtree rooted on r with requirement of /(n,x):
begin

If n > 0,(r,x) then return nil fi;
if type(r) a x then n-n-1 fi;
If n a0
then

return R. Comment symbolic reliability of
component represented by r;

else
begin Comment MAIN BLOCK

integer tosatisfy;
Iritegerarray com(1:nsucc(r)).sigmat[1:nsucc(r));
reliability function value, tempval ue;

tosatlsfy-n; Comment need to find n components of type x;

PTS Algorithms 107

Comment initialiZe for first feasible composition
for i from I to nsucc(r)
do

If sigmatji] < tosatisfy
then com~iJ-sigmat~i);

tosatisfy'-tosatlsfy-sigmat[i)
else com[i)@toati sfy;

tosatisfy.0 f!
od;

val ue-nil;

Comment for each feasible composition returned from NEXTFCOM
generate partial result for each subtree and accumulate;

do
tempval ue4-nil:
for i from 1 to nsucc(r)
do tempvalu.'-SMERGE(tempvalue.PTREE(succ(r, i),com[i).x)) od;
val uei-PIERGE(tempval uc,value)

until not NEXTFCOI(com,slgmat,n,nsucc(r))
od:

Comment if accumulated partial result is not nil then
root vertex of current subtree will also be required,
therefore. SMERGE in its reliability function;

If value a nil
then return nil
else return SMERGE(value.Rr) ft

and Comment end of MAIN BLOCK
fI

end; Comment end of procedure PTREE:
Comment Declarations for Procedure TREEREL end here;

Comment The code for the Procedure TREEREL begins here;

if FINDSUPPLY(ptsroot,reqtype) - 0 or reqment 0
then reaturn nil fi;.

PRUNEANDSORT(ptsroot. reqtype);

return PTREE(ptsroot. reqment, reqtype)

end;, Comment end of algorithm TREEREL;

108 PTS Algorithms

5.2.2 Analysis of Procedure PTREE

The analysis of the PTREE procedure is intractable for non-homogeneous trees and

incomplete' 9 m-ary trees. We shall use the infinite homogeneous complete m-ary tree to

investigate the nature of the algorithm. This kind of tree turns out to be a worst case example

since it offers the maximum number of possible functional states for a given requirement.

There is little doubt at the outset, however, that the algorithm is combinatorial in nature.

Fortunately, the sizes of trees expected to be dealt with by the ADVISER program is small; in

the order of 20 vertices or so at most for extant multiprocessor interconnection structures.

Moreover, in practice, the PTSs of a PMS graph are more likely to be non-homogeneous and

incomplete m-ary trees. Thus at each level, many of the compositions to be examined by

Procedure PTREE will turn out to be infeasible and therefore will not even be returned for

consideration by Procedure NEXTFCOM. This will speed up the algorithm on the average. At

any rate, concerns which arose early during the course of this work with regard to the

complexity of algorithm TREEREL were found in practice to be misplaced. The ADVISER

program expends the largest percentage of its computation time in the PMERGE and

SMERGE algorithms during the execution of the OVERLORD routine (see Chapters 3, 6 and 7

respectively).

We shall ignore the fact the pruning and sorting of subtrees is done before PTREE is

invoked since this will not happen for our worst case example. We approach the analysis of

the PTREE procedure by noting some facts in regard to all the possible m-compositions of an

integer. Specifically, consider the table of all possible 4-compositions of the integer 3 (i.e.

m = 4, n = 3) in Figure 5.4(a) and focus attention on the first column of figures (which contains

the values of the part p, of each composition). It will be noted that the number of times the

integer (n.k), k = 0,1.....n, n a 3, appears in the first of the four columns is equal to the number

of all possible (m-1)-compositions of the integer k. This number is

(n-k) - m-2
(5.1)

m-2

Also note that this is true of all of the other columns of Figure 5-4. All the other columns are in

addition, just permutations of the first column. Using the terminology above, Procedure

PTREE is called recursively on vertex r; with the integer p, as the requirement, unless p, = 0.

Thus, the number of times Procedure PTREE is called on vertex r; with an integer

requirement of (n.k) is given by expression (5.1) above, except when k a n. This is also true of

calls of PTREE on all the other successor vertices of r;, i.e. r;,r.r'.

191nornpiate trees are describde in [Knuth 7Sb], Pg.401.

PTS Algorithms 109

Let us define w(n) to be the work done by the PTREE algorithm in traversing, to the

necessary depth, an infinite, homogeneous and complete m-ary tree with an initial integer

requirement of n. We shall posit the initial condition to be w(1) a 1. In other words, one unit of

work is done by each recursive call to PTREE. Then w(n) also represents the total number of

recursive calls to PTREE under these conditions and we shall consider this to be a measure of

the time complexity of the algorithm.

In our idealized homogeneous tree, upon entry into a subtree by Procedure PTREE, the

requirement n will always be decremented by one since the root of any subtree is always a

component of the required type (see the pseudo-code for Procedure PTREE above). Hence,

the rn-compositions computed are of the integer (n-1). Thus the total work done on the

subtree rooted on r; is given by the sum:

i (# times integer (n.1)-j appears in column 1) • &,(n-1.j)

except that occurrences of 0 in the column are ignored. This sum then becomes:

i(m.1)-1 (n-1-j)i=0((m)-1

However, there are m-1 more columns which, except for having their elements permuted, are

identical to the first column. Furthermore, we must add one to represent the call of the

Procedure PTREE on the root of the subtree, r; itself. Hence, we may finally write the

expression for w(n) as

yn2 i~m-2

W(n) * 1 + m n-) w(n-j-1) (5.2)
jxO m-2

Equation (5.2) is an nth order difference equation in n (m is a constant and completely

characterizes the infinite, homogeneous, complete m-ary tree of our example). The problem

of obtaining a closed form solution for ,i(n) appears intractable. However, the first five terms

of the series w(n), n = 1,2,3.... are shown in Figure 5-5. It is clear that wo(n) grows as O(,n').

This is an interesting result insofar as it implies that for a fixed n the reliability calculation

procedure TREEREL is roughly polynomial in the number of components in the tree.

However, for fixed m, the algorithm is exponential in n, the requirement integer. It would be

expected, therefore, that more complex=° requirements should affect the computation time

2DThe complexity of requirements may be increased by taking one of three actions. namely (i) introduce more
term into the boolean requirement expression, (ill make each of the atomic requirements require closer to half of the
available components Of that required type in the structure. Since the number of functional possibilities for each
atomic requirement is given by a binomial coefficient, this action increases the number of possibilities to be
considered, and (lii) introduce more disjunctions into the boolean expression as opposed to coniunctions Since the
disjunctions are inclusive-OR• the number of cases to be considered can multiply raidly

110 PTS Algorithms

more substantially than more complex interconnection structures. This correlation has indeed

been borne out by experiencL. 'i using ADVISER. The observation seems also to apply

roughly to the PMS reliability calculation problem addressed in this thesis as a whole

W(1) = 1
M-2

,j(2) I + m{()=1}=M+1
m-2

w(3) I 1 + m{ j(2) + (m-I)w(1) }
* 2m2 + I

(4)= 1 + m(w.(3) + (m-1)w(2) + m(m-1)/2! wo(i))
7/2 m3 - 1/2 m2 + I

W(5)= 1 + m{ w(4) + (m-I)w(3) + m(m-1)/2! w(2) + (m+1)m(m-1)/3! wi(I)}
37/6 m - 15/6 m3 + 2/6 m2 + 1

Figure 5-5: First five terms of w(n)

5.2.3 Extension of TREEREL to compound requirements

Previous sections were concerned with the generation of reliability functions for PTSS on

the basis of atomic requirements. In this section we shall extend those techniques to the non-

atomic requirements. These are Boolean functions on the atomic requirements, as described

earlier in Chapter 2, wherein the individual atoms may have different integer requirements and

required types. An example of such a compound requirement is

#,(5,Processor) A (i(3,M.primary) V (4(1,M.disk) A 4(2,M.primary))) (5.3)

Such a Boolean function may be represented by its parse tree (see Figure 5-6) The latter,

which we shall term the recuirements t. is a binary tree wherein the leaf vertices represent

the atomic requiremerts and the non-terminal vertices represent the Boolean operators AND

and OR. The extension capable of handling such a compound requirement is simple. It

essentially involves a treewalk of the requirements tree with an invocation of Algorithm

TREEREL, on the given PTS, performed with the atomic requirement at each leaf of the

requirements tree. The extended version of the TREEREL algorithm is shown below

PTS Algorithms 111

A

+(5.Processor) V

4(3,M.primary) A

4(1.M.disk) (2.M.primary)

Figure 5-6: Parse tree of requirement expression (5.3).

Algorithm EXTREEREL

Terminology: As in Algorithm TREEREL with the following additions

- "rqtvertex" is a vertex of the requirements tree on which an incarnation of the
Procedure EXTREEREL has been invoked. The algorithm begins by call the initial
incarnation of EXTREER EL on the root of the requirements tree.

- ISOP is a function which returns TRUE if its parameter is an operator (i.e. a leaf)
vertex of the requirements tree.

- GETOP is a function which returns the operator represented by the non-terminal
vertex, of the requirements tree, which is its parameter

- GETREOMNT and GETREOTYP are functions which return, respectively, the
integer requirement and the required type of the atomic requirement represented
by the requirements tree vertex which is passed to them as a parameter.

- LEFTSON and RIGHTSON are functions which return the successor vertices of
any vertex in the binary requirements tree.

112 PTS Algorithms

Procedure EXTREEREL (rqtvertexptsroot)
begin

reliability function]eftr, rightr:

if
ISOP(rqtvertex)

then
leftr - EXTREEREL(LEFTSON(rqtvertex). ptsroot);
rightr EXTREEREL(RIGHTSON(rqtvertex), ptsroot);
if

GETOP(rqtvertex) v AND
then return SMERGE(leftr, rightr)
else return PMERGE(leftr, rightr)
fi

else
return TREEREL(ptsroot. GETREQTYP(rqtvertex), GETREQMNT(rqtvertex))

fi

end;

It is to be noted that Algorithm EXTREEREL is not used directly by the ADVISER program

and it is described here in the interest of completeness. The reason for this is that the

OVERLORD routine in the prograim deals with the input compound requirement and has the

responsibility for fragmenting it into its constituent atomic requirements. Then partial results

for each of the partitions of the graph are generated for these atomic requirements and stored

away in anticipation of later repeated use. It is the OVERLORD routine which carries out the

combining of the stored partial results. Hence it is only necessary for that routine to call

Procedure TREEREL for each PTS for the various atomic requirements in order to

pregenerate the partial results and compound requirements never filter down to the PTS

package.

5.3 Current Deficiencies in Algorithm TREEREL

In the previous section the algorithm TREEREL was described under the assumption that

the root vertex was always necessary for the functioning of the PTS as viewed from the rest of

the PMS graph. Thus if some required component was functional at some lower level of the

tree it was assumed that all components on the path from that required component to the root

vertex would be constrained to work. There are cases where this assumption is not

supportable and in this section we examine why.

In Figure 5.7 we show two PTSs in a hypothetical PMS structure. Let us assume that the

total overall requirement in computing the reliability of the PMS structure was

PTS Algorithms 113

Kt K

S1 S2

KI K2

P1 M1 M2 P2 M3 M4

Figu re 5-7: Example of TREEREL deficiency.

4,(1,P) A 4(2,M) (5.4)

where the only P and M components in the PMS are those shown in the figure. We see that

among other possible success states of the overall PMS structure there is one state in which

the components {P1 ,M1,M2) in Figure 5-7 completely satisfy the requirement expression (5.4)

which was imposed on the entire PMS structure. When it comes to deciding which

components are necessary for these three components to communicate we see that, in the

absence of other information, only K1 is necessary and the components {S1 ,K,) are not

necessary for communication. However, in this case the TREEREL algorithm will return the

following CRP as a partial result for the PTS containing {P 1,M 1,M2):

RK R OR OR OR RKs RsI KI P I M1 M2

This is a pessimistic reliability for this case.

Another possible success state of the PMS in Figure 5.7 under the requirements of

expression (5.4) will be that in which (P1 'M3 ,M4) are functional. In this case we note that the

current TREEREL strategy of requiring all components up to and including the root vertices

(KI and K. in this case) to be functional causes the correct reliability to be computed

(asuming that the reliabilities of other necessary components in the Kernel are properly

accounted for).

114 PTS Algorithms

Now assume that the requirement is raised to

(,(1P) A ,(3,M)-

In this instance all functional states of the structure will necessarily require that K5 , K6, S1'

and S2 be functional.

The TREEREL algorithm is seen, therefore, to be deficient currently in cases of

requirements on a PMS structure which may be completely satisfied by some subtree of a PTS

of that structure. The deficiency will make itself evident in such cases and the reliability

computed will be pessimistic. The Cm* example in Chapter 7 provides an instance where the

deficiency had an effect. Note that there is a possibility of the deficiency arising in the case

that the overall PMS structure is itself tree-structured (i.e. no Kernel exists). Appendix A

considers the operation of Algorithm GROW under such a circumstance. Some study of the

problem will be necessary before a variant of the TREEREL algorithm can be devised which

will remove this deficiency.

5.4 Summary

The concept of Pendant Tree Subgraphs (PTSs) was introduced in this chapter. These

subgraphs are frequently found in PMS structures in practice and were a natural place to start

an investigation into the feasibility of automatic reliability function generation. A procedure

was described to recognize symmetric PTSs in a PMS graph. An algorithm was described to

compute the reliability of a PTS under a given atomic requirement end a deficiency in this

algorithm was -'ted

Overlord Routine 115

Chapter 6
The OVERLORD routine in ADVISER

6.1 Overview

In this chapter we address the nucleus of the tasks performed in the ADVISER program

during the generation of symbolic reliability functions from PMS structures. The Overlord

routine constitutes the heart of the reliability evaluator. A diagrammatic representation of the
role of the Overlord routine is shown in Figure 6-1. The following broad outline of tasks, and

their sequence of occurrence as depicted in the figure, provides a perspective of the entire

program against which the Overlord routine is discussed. Following sections will elaborate on

these tasks or refer the reader to other chapters where more complete descriptions are

available. However, we appeal to the reader's intuition for the duration of this introduction.

In the first phase the input PMS structure is examined to discover physically symmetric

substructures within it. These symmetries may then allow some savings in computation at a

later phase of the process. Computations are performed with respect to one of a set of

symmetric substructures so discovered and then the results of the others in the set are taken

to be identical in form. The algorithm SYMMDET for symmetry detection is described in

Chapter 4.

The second phase in the process entails the subdivision of the interconnection graph of the

input PMS structure into subgraphs in the character of a divide.and.conquer approach.

Overall, the vertex set, V, of the interconnection graph G(V,E) is divided into two intersecting
subsets, Vknow and Vuno. The set V knwn represents the set of subgraphs for which

specialized techniques are known for calculating symbolic reliability functions. The other

vertices, i.e. those in V,*,w n, are treated as a single subgraph, termed the Kernel, nd

simple path.finding techniques are used for reliability computation in their case since special

techniques are unknown. The intersection set Vi ae, Vkno ("Vunknow! is the set of

"Interface" vertices between the two sets and these vertices are treated slightly differently

from other vertices as their situation demands. At present the ADVISER program has special

116 Overlord Routine

a 12

Ir'
IL

Q.0

LT , ai a

z . C K6 z

CL IL~ U.

F6 -

Figure~~~~~~~~~~~~ ~ 6-1 hCoiino teOELR otn in th DIE srcue

Also ~ ~ ~ se ag a

Overlord Routine 117

techniques only for pendant tree graphs and thus the subgraphs represented by Vk.own are all

trees. Furthermore, Vitedace consists of the root vertices of these pendant tree graphs.

In the third phase of the process, the OVERLORD routine operates on one of the program

inputs, the compound requirements on the PMS structure which determine its reliability. Its

task is then to fragment this compound requirement into various subcases depending on the

possibly several ways in which the requirements may be collectively satisfied by the sub-parts

of the structure obtained by the subdivision process outlined above. It then accounts for all

the various configurations or states of the PMS structure which constitute functional states

with respect to those subcases. Clearly, enumeration is involved here but the enumeration is

over functional substructures, as outlined above, rather than over individual components.

Partial Results, as we shall refer to them continually throughout this chapter, represent the

reliability contribution of parts of the PMS structure under some minimal requirements for

functionality. In form they are the Canonical Reliability Polynomials (CRPs) described in

Chapter 3. As described below (and briefly in Chapter 2) several partial results regarding each

of the substructures are required repeatedly during the enumeration process. The

OVERLORD routine anticipates this. It evaluates for each substructure all the partial results

that may ever be required in the process thereafter and stores them away in special hash

tables for quick access. The evaluation of partial results for a given kind of substructure is

done by agorithm(s) which have built-in knowledge of that kind of structure. The low-level

package which merges the partial results is called repeatedly during this phase.

In the next phase, the OVERLORD routine uses only the compound requirement and its

fragments and the stored partial results. It goes through an enumeration of possibilities in

which the substructures collectively satisfy the requirements. During this process the partial

results retrieved from the hash tables are merged in one of two possible ways (conjunctive or

disjunctive) depending on the structure of the requirements. This is done by calls to the low-

level reliability function term list package which operates on CRPs (Chapter 3). At the end of

this phase of repeated mergings the reliability function for the PMS structure emerges. For

each of the possibilities considered by the OVERLORD routine some subset of the previously

generated partial results are used. The generation of possibilities is controlled by the main,

and tacit, constraint in the form of the Communication Axiom outlined in Chapter 2. Further

pruning of possibilities is done on the basis of side constraints provided by the user of

ADVISER as input along with the requirements. The nature of these side constraints is defined

by the need to include, in a general though simplified fashion, as much as possible of the

semantics typically associated with components in PMS structures.

118 Overiord Routine

The system reliability function as generated up to this point is the most general one in

which the identity of each individual component in the system is maintained. In other words,

assume two identical components cX and c y, having identical reliability functions RX and RY

respectively, (R(t) - RY(t) a (t)), have their reliabilities juxtaposed as factors in some term

of the reliability function. Then the product will appear as RXRY rather than R2.The final

phase, therefore, carries out the task of simplifying the general reliability function on the basis

of the component types which identify each component in the structure as belonging to some

generic population of components. It is well to note at this stage that the "simplification"

referred to here is limited in nature. It consists of two types of operations, namely

1. the replacing of the product of the symbolic reliabilities of components of like
type by the appropriate power of the symbolic reliability of that generic type of
component, e.g. replacing RXRy by R2 in the example above, and

2. the algebraic adding of any like terms resulting from operations of the type in Item
I above, e.g. the set of terms

-5R1R2 R4+ RIR2R42+R PR
2R42

is replaced by -3R 1 R2R 4
2.

Thus, for instance, factoring of the final polynomial is not attempted. The techniques for

this and other more sophisticated operations were not considered to be the domain of this

thesis and the reader is referred to [Macsyma 77] for more information on such techniques.

In following sections we shall consider in turn each of the tasks of the Overlord routine

which were outlined in this overview. We shall use the PMS interconnection graph of a

Pluribus multiprocessor (Figure 6-2) as a running example at appropriate points in the

chapter.

6.2 Detection of physical symmetries in PMS structures

The first task to be performed by ADVISER is the detection of physically symmetric

substructures within the given PMS structure. By the physical symmetry of two substructures

we imply here not only isomorphism of interconnection graphs of those substructures but also
that each pair of corresponding components in the substructures are functionally and

statistically identical. We refer to all components coming from the same population as being

of the same =1, and thus identical in every aspect in which we are concerned during the

Ovedord Routine 119

P ML P M P M P

SP S P

K K:

Ms Ms Ms Ms Ms Ms Ms Ms

Key

P Processor ML Local Memory
MS Secondary Shared Memory SP Processor Bus
S 14 Memory Bus K Bus Coupler

Figure 6-2: PMS structure used as a running example

reliability calculation process.2 Hence two components of the same type are understood as

having identical reliability functions and otherwise being identical. We may then view the PMS

interconnection graph as having labelled vertices. The label for each vertex is the type of the

component which it represents.

Gaschnig (Gaschnig 771 explored the use of the Neighbors Class Equivalence Relation

(NCER) as a basis for determining graph isomorphism. His results were directed toward

graphs with homogeneous (i.e. unlabelled) vertices and were used in the study of graphs

representing problems in the Artificial Intelligence domain. The Algorithm EDS (Equal-

Degree-then-Split), proposed by Gaschnig, partitions the vertex set of a graph of

homogeneous vertices into equivalence classes such that two vertices are equivalent iff (1)

they have the same degree and (2) multlsts consisting of class names of their neighbor

vertices ar identical. He introduces the notion of the Neighbors Class Graph (NCG) whose

1One end opeou acepton 19 maidn Me promit ftWgntafon. Thi I daewri in Secti, S. 1.

-~/

- -,.

120 Overlord Routine

vertices have a one-to-one correspondence with the equivalence classes resulting from the

application of the NCER.

{PC 4) {ML)[4]

(SP)[2 1

-14]]

{K) C43

41

{Ms)[i3

Key

(X)n] --- > equivalence (symmetry) class of components of type X
with cardinality n

p~q
X}[,] (Y}m] "---> adjacent equivalence classes with

connection densities p and q; each X is
connected to p Y's and each Y is connected
to q X's; np a mq

Figure 6-3: Typed Neighbors Class Graph of the PMS structure in Figure 6-2

In Chapter 4 we extended the concept of NCER by introducing labelling of each vertex of

the PMS graph with the type-name of the component represented by that vertex. We then

defined the Typed Neighbor Class Equivalence Relation (TNCER) and introduced the ETEDS

(Equal.Type.Equal-Oegree-then.Split) algorithm. The latter places two vertices of the PMS

graph into the same equivalence class iff (1) their labels are the same, i.e. they represent

components of the same type, (2) they are of the same degree and (3) the multisets consisting

of the class names of their neighbor vertices are identical. We then defined a Typed

Neighbors Class Graph (TNCG) analogous to the NCG of Gaschnig. The inclusion of the

additional constraint of equality of component-types as one of the bases for deciding vertex

equivalence allows the detection of physically symmetriE subgrophs of the PMS graph. Figure

6-3 shows the TNCG for our running example of Figure 6-2.

Overlord Routine 121

The application of the ETEDS algorithm to the PMS interconnection graph, G(V,E),

prndt;,.s the TNCG, G', of G. Intuitively, one may view G' as the result of "folding" physically

symmetric subgraphs of G on top of one another. Thus discovering a subgraph, S', of some

special nature, e.g. a tree, in the TNCG is tantamount to discovering all physically symmetric

subgraphs of G that were "folded" to provide S'. Subsequently, if special techniques or

closed form solutions are known for the reliability calculation of those kinds of subgraphs,

results may be calculated ,or only one member of the symmetric set and then extended to the

others in the set. For instance, k-cliques22 of G can be deduced from vertices in G' which

have self loops such that the connection densitied in both directions on the self loop are equal

to k, the cardinality of the class represented by that vertex of G' (See page 87 in Chapter 4). It

is rare to find k-cliques in practical PMS structures but tree subgraphs of a special nature are

very often encountered and are thus worthy of study for generation of specific techniques.

The special kinds of tree subgraphs of G, referred to here, are what we term Pendant Tree

Subgraphs (PTSs). These are tree subgraphs of G such that the one simple path between any

one pair of vertices in each PTS is the only such path in G between them. And, in addition, the

PTS is separable from G at its root vertex which, therefore, is an articulation vertex ul G. This

is the only kind of subgraph for which ADVISER currently embodies any special techniques.

However, the structure of the program does not preclude the inclusion of special-techniques

for other varieties of subgraphs if and when they are developed.

6.3 Segmenting the PMS graph; PTSs and the Kernel

Having generated the TNCG G' of G, the ADVISER program goes on to segment G' into its

PTSs and Kernel. For each of the subgraphs of G' (and, by implication, of G) generated by

this segmentation, symbolic reliability functions will be computed using fragments of the

overall compound requirement on G. These constitute partial results which are then merged

appropriately to generate the desired symbolic reliability function for G. The motivation for

this approach is the anticipated savings in computation time due to the divide-and-conquer

paradigm. The segmenting process is seen as the detection of various special types of disjoint

subgraphs of G for which there are special techniques known which will generate their

symbolic reliability function. Some vertices of G will remain which are not part of any of these

special subgraphs. These are then treated by simple path-finding methods, to be described

later in this chapter, which will generate the reliability function of the subgraphs of G which

2-A 0clique isa complete graph on k nodes. In this instance we are interested in k-cliques which awe subgraphs
ofoG.

122 Overlord Routine

they collectively represent. This subgraph of "remaining" vertices is termed the Kernel. As

noted in the previous section, at this time the special techniques referred to above are known

only for the class of PMS interconnection graphs or suhgraphs which are Pendant Tree

Subgraphs.

The Pendant Tree Subgraphs of G are generated by Algorithm GROW which was described

in Chapter 5. This generation process incrementally adds neighbor vertices to each set of

vertices of G" which represent a subtree of some PTS eventually to be generated.

Overlapping trees at any stage are then merged into bne and the common vertex which

caused the overlap becomes part of the root vertex of the larger tree. The termination of the

growing process is governed by constraints which determine whether these tree subgraphs of

G' represent PTSs of G. After termination of the algorithm, each of the trees thus idr grown in

G' may represent a se of symmetric PTSs of G. Furthermore, the cardinality of this set of

symmetric trees will be the cardinality of the equivalence class which is represented by the

root vertex of the tree in G'.

The discovery of the symmetric PTSs of G establishes a basis for the subdivision of G into

PTSs and the Kernel. This subdivision or segmenting is shown diagrammatically in Figure 6-4

for our example PMS interconnection graph.

At this stage of the computation the ADVISER program builds a very important table, the

Sement able, which is the repository of information regarding the nature of the segments

of G. For the purposes of this table it is sufficient to store information regarding all of the

segments except for the Kernel. Information about the latter can be deduced from the former.

Thus, for instance, to find out what vertices in the vertex set V of G fall into the Kernel, it is

sufficient to subtract from V the union of the vertex sets of all the other segments. HenceforhI

we shall use the term "segment" to refer generically to the subdivisions of the graph G. Those

segments for which special techniques are known will be termed "known-segments" and the

remaining vertices and arcs of G will be collectively termed the "Kernel'.

in the current version of the program, all the known-segments are tree graphs since special

techniques have been developed only for these. Each known-segment as it is generated is

assigned a unique integer in the sequence starting from zero. Then information regarding the

known-segment is stored at the location in the Segments Table indexed by this integer. The

following major items (in addition to bookkeeping information) comprise that information:

- The vertex set of the known-segment

Overlord Routine 123

}41 (N1}[4)

I PT S2 2\ (Segment #1)

(SP)[2c

Interface Vertices

{P)[212

t 3 KERNEL

41 (Segment #0)
{K)[43
2

%

interface Vertices

{SM)[2) PTS

-21 (Segment #2){Ms5 ira)

Key

PTS Pendant Tree Subgraph

Segment On Arbitrary assigned indices into Segments Table

Figure 6-4: Segmentation of PMS structure of Figure 6.2
into Pendant Tree Subgraphs and the Kernel

-The set of indices of the equivalence (symmetry) classes, induced by the
symmetry detection algorithm of Chapter 4, such that the union of the classes
indexed by this set is the vertex W of the known.segment in G.

- The index of the symmetry class of vertices in this known.segment which are the
Interface vertices at which the known-segment is connected to the Kernel. In
general this should be a sef of symmetry class indices. However, since known.
megmens currently are tree structures only, each interface vertex symmetry class
will have only one member, the root of the tree.

The Segments Table along with the data structures which store the original graph G and the

equivalence classes on G In the form of the TNCG G', completely characterize the work done

124 Overlord Routine

by the program upto this phase. In addition, each known-segment, and information about it, is

accessible by means of a unique index into the Segments Table and, therefore, is completely

characterized by that index. This complete and unique cnaracterization of a known-segment

by its Segments Table index becomes very important in later phases (see Section 6.5. 1. 1)

6.4 Requirements on the PMS structure

In this section we shall discuss how the Disjunctive, Conjunctive and Atomic requirements

(see Chapter 2) are employed by ADVISER in producing the system reliability function. The

material in this section is complementary to a similar discussion in Chapter 2. It is also

prefatory in nature to the subsequent sections in this chapter. These latter sections deal with

the generation and combining of partial results on the way to achieving the final goal of a

symbolic reliability function for the PMS structure. The paradigm of fragmenting and

distributing these requirements into simple cases over the various segments of the

interconnection graph G is illustrated below This process effects the enumeration of the

gross cases of system functionality while lower levels of detail are subsumed within the

operation of the specialtechnique algorithms. These algorithms provide the partial results by

operating on the known-segments of G for the very simple cases of requirements generated

by the fragmenting of the overall requirements. The partial results are then recombined to

produce. the desired final result. This paradigm is used throughout the Overlord process and

is independent of the nature of the known-segments so long as special-technique functions

exist for those segments and are callable by Overlord.

A typical conjunctive requirement on our example PMS structure of Figure 6-2 could read;

(1 ,Ms) A #(1,P) A ,(1,ML)

Likewise, a typical disjunctive requirement might read:

0(1,P) A (0(1, ML) A 4(2,Ms) V J(2 ML) A (1.MS))

Each of these requirement expressions states the conditions under which the system in the

example is considered functional for some task. Note that these requirement expressions are

abbreviated statements of those conditions. In other words, not aJl components, which need

to function in order to insure system success, are referred to in these expressions. One such

unmentioned component is an S;, in Figure 6-2 which needs to function if its P needs to store

information into its ML , Thus a distinction arises between Critirn o ne (such as ML

and P by virtue of being referenced in the requirements above) and Auxiliary Component

Overlord Routine 125

(such as Sp). The ADVISER program assumes that all component types referred to in the

ato'.s of the input compound requirement are critical component types.

6.4.1 Atomic Requirements

Lot us first consider an atomic requirement 4(N,t), N O, and observe how it may be satisfied

by a PMS interconnection structure G to provide functional system states. Assume, for the

sake of argument, that the PMS structure under analysis has been segmented into m distinct

segments. Furthermore, assume that in each of these m segments of G there are present

&>N components of type t. Figure 6-5 shows the various ways in which the required N

components of type t may be chosen from the m partitions in order to satisfy the atomic

requirement. This procedure is analogous to assigning N balls to m distinct ordered urns so

that any urn contains zero or more balls when each urn has the capacity to hold at least N

balls. In other words, it is possible to assign all N balls to a single urn. There are

N m-1()
N

ways of doing this23 and these are shown in Figure 6-5. Each in-dimensional vector PN

(P1P2 Pm) such that

-M.i. Pi = N pi>0, integral

is called an m-comoosition gf the intecer N.

We next consider the possibility, which is indeed most probable, that some of the m

segments maj contain less than N components of type t and some segments may contain

none at all of type t. The effect of this restriction is to place upper bounds on the value of

integers in particular columns of Figure 6-5. Then each re-composition of N which does not

meet these upper bounds is removed from further consideration since there can never be a

functional system state which is composed of that particular distribution of components of

type t amongst the m segments.

Definition 6.1: Assume that the segmenting process of earlier sections leaves
the PMS interconnection graph divided into m>1 distinct segments. A Capacit
Vor of G with respect to some component type t is defined as

X (ci I a C rma)

239e Nijefhuis anid Will [Nijenhuis 781 for ai lucid explirvltion of this rmult.

126 Overlord Routine

Segments
Choices P, P2 P3 P4 PM

1 N 0 0 0 0
2 N-i 1 0 0 0
3 N-I 0 1 0 0
4 N-1 0 0 1 0

m N-1 0 0 0 1
m+1 N.2 2 0 0 0
m+2 N-2 1 1 0 0
m+3 N-2 1 0 1 0

2m-1 N-2 1 0 0 1
2m N-2 0 2 0 0

2m. 1 N.2 0 1 1 0

... N-2 0 0 0 2

... N-3 3 0 0 0

... N-3 2 1 0 0

... N.3 2 0 1 0

... ,

... N-3 2 0 0 1

... N-3 1 2 0 0

... N-3 1 1 1 0

... ,.....

(NN im.) 0 0 0 0 N

Figure 6.5: Choosing N components from m segments; m-compositions of the integer N.

Overlord Routine 127

where segment i of G contains c components of type t and c is the Cagacit of
segment i with respect to component type t.

Type Type Segment Number
Number Name 0 1 2

0 P 0 4 0

1 ML 0 4 0

2 SP 0 2 0

3 SM 0 0 2

4 Ms 0 0 8

5 K 4 0 0

Note: Interface vertices (e.g. SP,SM) are counted in the PTS segments for satisfying

requirements but are used in the Kernel for generating path reliabilities (see Section 6.7.2).

Figure 6.6: Capacity vectors for the PMS of Figure 6-2 when
segmented as in Figure 6-4.

Figure 6-6 shows the capacity vectors for the example PMS structure of Figure 6.2. On the

basis of the upper bounds, or capacity, of the segments we may divide the (N m-t) possible m-

compositions of N into two groups, namely Feaible Compositions and Ineaible

Comzositions.

Definition 6.2: An in-composition PN of the integer requirement N of an atomic
requirement #(N,t) over the m segments of G is said to be fuaikli iff24

PN ----Xt

An m-composition PN under the above conditions is said to be infeasible iff PN is

not feasible.

2di Ao(a.Ia 2... a) n4 B=(b1 ,b2 ,...Jbd) am two mr-dimersional vectors then we shall say that A:5 ef
wI. 1,..,, 5

128 Overlord Routine

Reverting to our urn model we find this above situation analogous to one in which the ith of

the m urns has a maximum capacity O<c <N. Then some of the ways of distributing N balls

among the urns as depicted in Figure 6.5 are impossible. These impossible distributions :.f

balls in urns correspond to infeasible compositions. The possible distributions correspond to

feasible compositions.

For each feasible composition, PN = (PP2......)' the requirement ,'(pt) is applied to

segment i and a partial result is generated for that segment under that requirement. We shall

term " (pi,t) a Fraament Reouirement of ,(N,t). Whatever special techniques are applicable

to the segment are applied at this point. For instance, Algorithm TREEREL is applied to

segments which are PTSs. Of course, if p, = 0 then segment i will not participate in the

satisfaction of this particular PN' The partial results for the individual segments under the

4' (p,,t) are then SMERGEd2 to generate a partial result for this particular feasible PN'

The process is repeated. and a partial result generated, for each feasible m-composition of

N in ,(N,t). Now, any one of the feasible compositions applied to the m segments of G satisfy

the atomic requirement 4,(N,t). Therefore, finally, the partial results for all the feasible m-

compositions are PMERGEd. 26 The result of this process is then a symbolic reliability function

(in internal term-list form) for G under the atomic requirement ,(N,t).

6.4.2 Compound Requirements

6.4.2.1 Conjunctive Requirements

We now broaden our scope to include compound requirements. To begin we shall consider

conjunctive requirements and later extend the conclusions to disjunctive requirements. The

former consist of atoms operated on solely by the conjunction operator AND. They imply that

for system success all the individual atomic requirements must be satisfied in conjunction by

G. We shall represent a conjunctive requirement as

K

18 1 J I(N I)
isa

1

25 TsgorIt- a f'ir r Chaotor 3 orid I may be briefly characterized a computing ft

probiabiiaty of a coriajnc*ior Y evilnmt It' ?his nsiarlce aii the r~~.)mst be st:shed in coniunction by the
sgetnts of G 'n Order for io 901110y (N t

2.PM.GE .i.oith a Je.cnbW mr Ceoter 3 my be cIaactened a forming te probability of a

dowuicb of e'vents

Overlord Routine 129

where the 4'j are atomic requirements of the type "at least N of componer! type t" Each

atom 4,j(Ntj), j - 1....K.O, in the conjunctive requirement is considered to refer to a .itterent

critical component type %.V

Again, returning to our ball and urn analogy we now have the same m urns ,oarti" of G)
but K sets of colored balls with balls in set j being of color t. Again we int.a ,y assa e that

each urn has an unlimited capacity for balls. We see that the different ways of assigning

N 1 + N2 + ... + N K balls to m urns so that each urn has zero or more balls of each color is

K N..m.1
n (I)N

This is the total number of ways of minimally satisfying the conjunctive requirement in G. It

assumes, of course, that each segment of G is individually capable of minimally satisfying

each of the atomic requirements of the conjunctive requirement. Again, we note that, in

general, this last statenront will not be true and that for each atomic requirement, +,i(Nilti),

there will be feasible and inieatsue . compositions of N..

The paradigm used by the ADVISER program in the case of conjunctive requirements is to

first compute the capacity vectors for G with respect to all the critical component types (i.e.

the component types t1 ...,tK referred to in the conjunctive requirement). Then, all the feasible

m-compositions of each Ni in 4'(Nj,tj), j - 1 ,...,K, are generated sequentially. However, the next

feasible rn-composition of any N. is generated only after cycling through all possible feasible

m-compositions of N), 1. Thus, all possible combinations of all feasible m-compositions of

each of the N are produced in sequence. For each such combination, a partial result is

computed in the manner of Section 6.4.1 for each m-composition within that combination.

These partial results are then SMERGEd to provide a partial result representing that

combination of m-compositions. The SMERGEing is indicated due to the conjunctive nature

of the requirement. The process of SMERGEing all the partial results for the atomic

requirements in a combination of m-composttions is carried out for all the possible

combinations of feasible m-compositions. Finally, since any one of the combinations

represents a possible way of satisfying the conjunctive requirement, the partial results for

combinations are then PMERGEd. What results from this final PMERGE operation is the

reliability function for G under the conjunctive requirement

27if ftis not trus. i.e. for soe i &nd i I. ti, then due to the concept of conjunction we may. without ffecting the
outconm, discard 0, end retain #j I N) and ice verse

130 Overlord Routine

KA i2 iNi,ti)

Figure 6-7 shows the sequence in which combinations of feasible m-compositions are

generated for an example case where G is subdivided into m r 3 segments and there are K = 3

atoms in the conjunctive requirement. Each group of three columns shows the sequence of

m-compositions for one of the atomic requirements. Each column, in each group of three,

represents one of the three segments of G. At the head of the jit group of three columns is the

capacity vector for G with respect to the critical component type tI, j w 1.2.3. Thus, for

instance, in the case of t3 (third group of columns), segment # 1 contains three components

of type t3 ' Likewise, segments #2 and #3 contain one and two components of type t3

respectively. In the case of critical component type t2, segment # 2 contains no components

of this -ype and thus no feasible 3-composition of N2 a 1 will have an integer greater than zero

in this column. The partial result for a combination in some row of the figure is obtained by the

SMERGE operation on the partial results obtained by applying the atomic requirements within

that row to the appropriate segment (see Figure 6-7 for the case of row 7). The final result is

obtained by the PMERGE function on the partial results for the combinations.

6.4.2.2 Disjunctive Requirements

The sequential generation of combinations of feasible m-compositions as depicted in

Figure 6-7 is inadequate in the case of disjunctive requirements. This is because not all of the

atomic requirements of a disjunctive requirement may need to be satisfied simultaneousty.

Take, for example, the following disjunctive requirement:

00 = *p(Nltl) A 42(N2,t2) V 43 (N3,t3)

Here, for G to satisfy 4'd' there are three possible cases, namely

1. satisfy 4', and #2 simultaneously but not 3'

2. satisfy #3 alone, and

3. satisfy 1' +2 and 43 simultaneously

However, the process of Figure 6-7 admits of the third case alone, thereby missing valid

possibilities. The tack taken to solving this problem in ADVISER is to convert every disjunctive

requirement received as input into a "sum-of-products" canonical form. In other words a

conversion is made to a disjunctive normal form. Then for each of the purely conjunctive

requirements in this canonical form. the process of section 6.4.2.1 is followed to generate a

partial result for the conjunctive recuirement. Finally, the partial results for the conjunctive

Overlord Routine 131

Atomic ... 4,, *(N 1 .t,).N1 2 ,(N 2 tN 2 . 1 #'N3 VN 3 1 Partial
Requirement Rimubt

'' i for

Segment ---..m 1 #2 #3 #1 #2 #3 #1 #2 83 Coanbiation
Index at
Capaciy --- a- 1 0 2 1 0 1 3 1 2 3-Co eiomn

11) (N12) (N 13) (N21) (N22) (N2) (N 31) (N32) (N 3)

1 0 1 1 0 0 1 0 0 R

1 0 1 1 0 0 0 1 0 R2

1 0 1 1 0 0 0 0 1 R3

1 0 1 0 0 I 1 0 0 R4

1 0 1 0 0 1 0 1 0 R5

1 0 0 1: 6

0 0 2 1 0 0 1 0 0

0 0 2 1 0 0 0 1 0 R8

0 0 2 1 0 0 0 0 1 I R9

0 0 2 0 0 1 1 0 0 R1

0 0 2 0 0 1 0 1 0 R 11 j

0 0 2 0 0 1 0 0 1 R 12

LEGEND:

Each +ji(N,. i) ir fragmented into (Nl 1 ,t '(), W V(N2 .t2). nd "N13 .t,3)1, where Ni2 .Nj3 Nj ndN N Ni3

ae the values in each row of the th 3-column group in the table above.

Let r(a.lA.i be the Partial Result CRP for segment a under I* atomic requirement +(b,e), obtained by algorithms

such a TREEREL. Then, for example, R above A given by

R7 a r(3.2.t ® r(l. 1.t2J 0 r0 . .t3)

ard

RFINAL RIOR2 OR3 0....OR12

i th CRP under the coNunc t requireent +,*(2.t) A * 2(1,t A *3 (1,Y

Figure 6.7: Derivation of partial and final results for a conjunctive requirement

132 Overlord Routine

requirements within the canonical form are operated upon by PMERGE to obtain the final

result for the original disjunctive requirement.

Hence, for example, the following disjunctive requirement

(4, V ,2) A (q'3 V *4)

is corwerted to the canonical form

(i A 3) V (, A 4) V ('P2 A 3) V (02 A V'4)

which is a pure disjunction of conjunctions. Then the individual conjunctive requirements,

e.g. (4 1A 4) are handled as described in Section 6.4.2.1.

6.4.3 Efficiencies in the handling of requirements

To conclude the discussion on requirements we shall consider two types of efficiencies

introduced in the design of the ADVISER program in the handling of requirements. They have

to do, respectively, with the a priori generation and storage of partial results for repeated later

use and the deferment of the combining of these partial results to a final phase of the program

where some savings in computation are possible.

There is a third type of efficiency introduced into ADVISER which only tangentially

impinges on the issue of requirements. It has more to do with the use of symmetries

discovered in the PMS interconnection graph and, as such, it is addressed in a subsequent

section.

6.4.3.1 Pre-generation of partial results

It will be noted from Figure 6-7 that the 3-compositions all occur repeatedly during the

enumeration process. This in turn manifests itself as the repetition of integers in any one of

the columns. Now, the occurrence of an integer, say k, in a column represents the application

of a fragment atomic requirement, ,'(k,t), on the segment of G represented by the column.

The critical component type t is the same one referred to in the atomic requirement of which

4' (k,t) is a fragment. In a simple-minded version of the OVERLORD procedure, the algorithms

to generate the partial results under 4' (kt), for the given segmentation of G, would be called

repeatedly to regenerate the same partial result each time. However, it is feasible to compute

this partial result once and store it away in a table, thereby avoiding such repeated calls. The

ADVISER program does precisely this.

Overlord Routine 133

Precomputation raises the question of predicting what partial results would ever be needed

in the course of computing the reliability function. A little thought shows that a simple solution

is as follows. For a given segment i and a critical component type t, say the capacity of the

segment is c,. Recall, also, that a component type t is labelled "critical" if it appears in some

atom 4(N,t) of the input compound requirement. If ci, a0 then 4"(N,t) is not applicable to

segment i and the question does not arise. If c1,)O then the fragments of 4V(N,t), which could

possibly be fruitfully applied to segment i, are

where

Nru c >Nn~

(see below)
Cit cit-<NMax

The appearance of Na x is explained by the fact that, in general, for some critical component

type t, there may be several atoms in the compound requirement which refer to t (this is true of

a disjunctive requirement). If these atoms are

(,(N t) 2,t) (Nr,t)

then

Nff x a MAX(N1 , N2. N,

It is necessary to use Nmax since we are concerned to develop ALI possible fragment

requirements which may ever be applied to segment i during the computation of the system

reliability function.

6.4.3.2 Deferring the combining of partial results

An examination of Figure 6-7 shows that (using the nomenclature of the figure) the partial

results R1 through R6 all share the same fragments of 4,(2,t1) in the first group of three

columns. Likewise, R7 through R, 2 . Furthermore, R1 through R3 additionally share the same

fragments of 42 (2,t2) in the second group of three columns in the ';gure. Likewise, R4 through

R8 , R7 through R. and R10 through R, 2. The figure suggests that each of the R's are

computed separately and then finally PMERGEd to obtain RFINAL. A more efficient way to

accomplish this, however, is to make use of the fact that the PMERGE and SMERGE

operations are distributive over each other. We may "factor" out common partial results and

merge them only at the appropriate time so that repetitious mergings of the same partial result

are avoided wherever possible. The information in Figure 6-7 may be represented equivalently

134 Overlord Routine

Column Group I Column Group 2 Column Group 3
q'lNl~1) 2(N2't2

)
#'3(N3,t3)

r'(1t.t 3

r(1.1.t
3)

r(1.1,t 2) r(2 1.t 3)
Lr(3 . 3

r(3 1 t 3)
r{ t,I.t)er(3.I. t,)

r(3.l.t
3)

r(3.1.t
3)

Dumy
Vertex

r(1.1,t 2) -- r(2.1.t 3)

r(3,1.t
3)

-r(3.2,t,)

L- r(3,1.t 2) -r(2 1.t 3)

-r(3,1.t
3)

LEGEND:

r(a.b.c) is the Partial Result CRP for segment a under the atomic requirement ,(b.c). This figure is to be reacd in

conjunction with Figure 6-7

Figure 6-8: CRPTree for the example of Figure 6-7

by the tree in Figure -8. Each level in the tree corresponds to a 3-column group in Figure 6.

7. However, partial results are displayed instead of the requirement fragments. Thus

information in a column group of Figure 6-7, which is common to several rows in the column

group to its right, is condensed into a single tree node. Since there are no columns to the

right of the last column, the tree will always have as many leaves as there are rows. We shall

term this a Caol Reliabilit Polynomial Tree CRPTr since the labels of its vertices are

Canonical Reliability Polynomials which were treated in Chapter 3. RFINAL may be calculated

from it using the following algorithm by calling the procedure CRPTREEMERGE on the root of

the CRPTree.

Overlord Routine 135

Algorithm CRPTREEMERGE

This effects the merging of partial results (Canonical Reliability Polynomials) stored in the

CRPTree.

Notation:

- PR(v) is a function which returns the partial result stored in vertex v of the
CRPTree.

- CRP is an abstract data type which holds a canonical reliability polynomial as a
value.

Procedure CRPTREEMERGE (treevertex)
begin CRP aggregate:

aggregate *- NIL ! recall that PMERGE and SMERGE of a null CRP
with a non-nul CRP A, returns A itself

foreach son in successors of treevertex
do aggregate,- PMERGE(aggregate, CRPTREEMERGE(son));
return SMERGE(aggregate, PR(treevertex))

end;

It may be noted in passing that the odometer analogy to the generation of combinations of

m-compositions mentioned earlier, is reflected in the CRPTree. Each level of the tree

corresponds to a wheel of the odometer with each vertex at that level holding one of the

values which appear on the wheel. Hence, the tree may be generated during the process of

generation of the combinations of m.compositions. The ADVISER program uses this strategy

and postpones most of the merging of the partial results in this fashion to a final phase of the

processing of any conjunctive requirements. The CRPTree, its construction and its use are

described more fully in Section 6.8.1.

Experience with ADVISER has shown that the largest part of the computation time used by

the program is spent in the phase where the partial results in the CRPTree are merged to

produce RFINAL for a conjunctive requirement. The simple algorithm CRPTREEMERGE given

above, though correct, is not nearly as efficient as could be desired. This issue will be

addressed in a subsequent section.

136 Overlord Routine

6.5 Generation of Partial Results for PTSs

Section 6.4.3.1 demonstrated that it was possible, a priori, to compute and store away all

the partial results which might be needed in later program phases. In this section we shall

examine this process of prior generation of partial results for PTSs, how these partial results

are hash coded away for later access, and what savings in computation are afforded by

existence of structurally symmetric PTSs in the system.

6.5.1 Symmetric PTSs

It will be recalled that each segment entered in the Segments Table is a PTS of G'. Hence

each known-segment can possibly represent several symmetric PTSs of G which were

equivalenced as a result of the NCER algorithm. Indeed, the cardinality of the equivalence

class represented by the root vertex of the known-segment is the number of such symmetric

PTSs of G (i.e. images of the PTS in G') which were equivalenced. It is emphasized here tma,

the underlying model supports known-segments which are arbitrary subgraphs of G'. T7,he

only requirement is that special techniques be available for the reliability computation of the

images in G of those types of subgraphs. Each such subgraph of G' would then potentially

represent a =t of symmetric images in G. Since these images are not necessarily tree graphs

they will, in general, have more than one interface vertex by which they are connected to the

Kernel. Then an analysis of the equivalence classes which hold the interface vertices of these

images, using Theorem 4.8 and related results of Chapter 4, will reveal the number of such

symmetric images in G of the segment of G'.

Returning to the current version of ADVISER in which the known-segments of G' will

always be PTSs of G', there are, therefore, two possibilities, namely: (1) a known-segment

represents a unique PTS of G and (2) a known-segment represents several symmetric PTSs of

G. The former case presents no problem and is handled directly in the manner of Section

5.2.1 using the TREEREL algorithm. In the latter case there now exists the possibility of

economizing on computation. By our definition of physical symmetry in Chapter 4 two PTSs of

G are symmetric iff their interconnection graphs are isomorphic and corresponding vertices in

the two PTSs represent identical components. Hence any reliability function derived under a

given requirement for one of a set of symmetric PTSs, will be an exemplar or template for the

reliability function under the same requirement for an member of the set.

It is evident that the sets of components represented by the symmetric images in G of a PTS

of G' are disjoint. Two conclusions of this are to be strongly emphasized here, namely

Overlord Routine 137

1 By the fundamental assumption of statistical independence of component failure
behavior, the reliability functions derived for two symmetric images represent
events which are statistically mutually independent. Although the two images are
symmetric they have two physically disjoint sets of components

2. Assume that two reliability functions are derived for the same image in G for two
different requirements. These functions provide the probability of two events
which may be mutually dependent since they may depend on intersecting sets of
components within the image. Hence it must be remembered that these
reliabilities cannot simply be multiplied in algebraic manipulations.

These two conclusions have strong ramifications later during the operation of the SPRBD

algorithm wherein the form of the result of the SMERGE operation on two canonical reliability

polynomials is dependent on whether those polynomials represent the probabilities of events

which are statistically dependent or statistically independent.

6.5.1.1 Unique identification of PTS partial results

The possibility of a given PTS of G' representing a set of two or more symmetric PTSs of G

raises the question of uniquely identifying each member of such a set. Note that within a set of

symmetric PTSs of G the unique identities, in G. of their root vertices are sufficient for such a

purpose. However, further information is required in ADVISER in the interest of efficiency.

Most of this information is precomputed once and stored in the Segments Table. Hence, any

given PTS of G is identified completely and uniquely by the following two items of information:

1. The index of its root vertex.

2. The index of the Segments Table entry which describes the known-segment of G'
which represents it.

6.5.1.2 The Templates Table

We noted above that it was sufficient to compute a partial result for a given atomic

requirement for any one of a set of symmetric PTSs in G. Since partial results for a set of

symmetric PTSs under the same requirement nave the same form, the template may be stored

instead of the individual CRPs. This is done using a special table termed the Templatt Table.

All unique templates ever generated during a run of ADVISER are assigned unique entries in

this table. Unique and complete specification of any partial result is achieved with the

following five items of information about it:

1. The unique index of the root vertex of the PTS for which this partial result was
derived.

138 Overlord Routine

2. The index of the Segments Table at which resides information about the known.
segment which represents the PTS in Item 1

3. The unique index of the component type specified in the atomic requirement for
which this partial result was computed (i.e. the y in ',(x,y)).

4. The number of components of the given type in Item 3 which are required to be
functional (i.e. the x in 4(x,y)).

5. The index in the Templates Table at which the template for this partial result is
stored. This index is, however, obtained going indirectly through the Factors
Table, the purpose of which is explained below.

The Items 1 and 2 identify a partial result as referring to a unique PTS of G within a known-

segment of G'. The Items 3 and 4 further identify the partial result as having been derived for

a given 4,(x,y). The last Item, 5 implements the space-saving device by pointing to the

appropriate template.

A partial result is thus uniquely specified by a five-tuple of integers corresponding to the

five items above. This five-tuple is also the key used during the hashing and retrieval process.

The interrelations between partial results, PTSs, the Segments Table and the Templates Table

are depicted diagrammatically in Figure 6-9.

As was described in Section 6.4.3.1, partial results may be used repeatedly during the

construction of the CRPTree indeed they usually are due to the combinatorial backtrack

nature of generating all possible compositions of requirement integers over all segments. The

CRPTree is eventually collapsed by merging the partial results stored in it at each node. from

the leaves up to the root and breadth-first at each level. However, in doing so, quite often two

copies of the same partial result could be SMERGEd or PMERGEd. Now, due to the

idempotence of the SMERGE and PMERGE operations. attempting to merge identical partial

results constitutes a waste of compute time. This problem is the subject of the following

subsection.

6.5.1.3 The Factors Table

A partial solution to the problem of multiple use of the same partial result arises from the

observation that each partial result can be uniquely characterized. This allows each partial

result to be assigned a unique bit positic, ,,' the AUXVEC bitvector of CRP terms (see Chapter

3) The partial result can then be assigned a literal and becomes a "factor" of the CRP term.

The association between such factor-polynomials and their assigned bit position is made in

the Factors Table. For ease of implementation the bit position of a particular factor.polynomial

Overlord Routine 139

20 a

IL 4c

- S

*" £

% a a

.6, C
a

10 0 lotU
o01 0 l

V) Iama

W12 ~

Figre6-9: hereatinsipof mprtnt abesin DVSE

140 Overlord Routine

is simply the index of its entry in the Factors Tabie. The reader is again referred to Figure 6-9.

Note that the arrangement allows factor polynomials to share the same template.

6.6 The Communication Axiom and the Kernel

In Chapter 2 we introduced the Communication Axiom which is the basis of the reliability

calculation paradigm used by the ADVISER program. We shall now restate the Axiom and

some associated definitions in order to clarify the discussion in regard to the computation of

partial results for the Kernel. The reader is referred to Chapter 2 for introductory remarks and

background context.

6.6.1 The Communication Axiom

In Sections 6.4.1 and 6.4.2.1 we discussed feasible and infeasible compositions of the

requirement integers and the computation of partial results for combinations of feasible

compositions. However, as was pointed out, a combination of feasible compositions is only a

necessary prerequisite to a case where the system is functional. In addition, the combination

of feasible compositions must be such that the Communication Axiom is satisfied in order for

the system to be functional under that particular choice of critical components In other

words. in addition to having a functional minimal critical resource set, the critical components

in that set must also have functional pathways in the structure in order to communicate

information amongst themselves. We state these ideas more formally in the following

Let T a {t,), iE{1,2 n), be the set of component types specified in the mfljm$

recuirements input. The set T is then, by default, the set of critical component types

Let 0, . (qi3. jE{1,2 mi be the set of all identical components of type t, present in the

structure.

Let T" ; T and let M k r=Ok, tiET".

If M a Uk Mk is a set of critical components such that the boolean statement of minimal

requirements is satisfied minimally then M' is a Minimal Critical Resource Set (MCRS).

A simple path p,, between any two vertices v. and vb in G is said to be a functional =jth iff

all components represented by vertices along that path are functional.

Overlord Routine 141

Let V. be the set of vertices in G that represent the components in M', an MCRS of G.

Definition 6.3: We define a CommUncabil Gran or K-Grah, GK(VKEK), for
M, as follows:

- There is a bilective mapping from the vertex set VK to the vertex set VM..

-A Communigability E or K-edoe, (v'K' vK)EIEK will exist iff at least one
functional path exists between the vertices in G which are the images,
under the bijective mapping, of V K and v- K in GK respectively.

Axiom 6.1: Communication Axiom: For any MCRS, M', of the system
represented by G, if the components in M" are all functional, then the system will
be functional iff the K.graph of M' is connected.

The Communication Axiom is used during the computation of partial results for the Kernel

which is the subject of attention in the following subsections.

6.6.2 The Kernel

As was described in Chapter 2, a symmetry detection process enables the identification of

segments of the PMS graph, G(V,E), for which special techniques are available for reliability

computation. These known-segments are treated separately, in isolation from the rest of

G. Each such known-segment is attached to the rest of G via a set of one or more interace

vrtices. At present pendant tree subgraphs (PTSs) are the only such known-segments

treated and, therefore, each will have only one interface vertex connecting it to the rest of

G. We shall limit our attention, therefore, to known-segments which are PTSs. The treatment

may be extended to other kinds of known-segments. -

Let the set of PTS segments be T a {T,(Vi,E,)) and let VF be the set of interface vertices (see

Section 6.1). We have IVFITt. If the T1ET are stripped away from G, while leaving the

vertices vEVF behind, we have a graph K(VkefeIEkernl), Vpossibly unconnected and perhaps

even null, whose vertex set is given by

V " V -VUrrTp Vi) U VF]

and edge set by

Ekaw s E- (U{-rMi E.)

The graph K(VNe 1 ,Ewr) is defined to be the Kernel.

142 Overlord Routine

/ Pendent Tree Subgraphs (PTSs)

Interface Vertex2

/, P
Kernel

(b)

Cc)

Flgu re 8. 10: Three cases of paths through the Kernel

Overlord Routine 143

6.6.3 Paths through the Kernel

While generating an MCRS, critical components are drawn from various known-segments

and perhaps also from the Kernel. In order to satisfy the Communication Axiom, all critical

components in the MCRS must be able to communicate amongst themselves. The TREEREL

algorithm computes the reliability of the PTSs with the assumption that all communication for

components within a PTS is through the root vertex of that PTS. Assume two critical

components, say c, and c2, of an MCRS are in different known-segments of G (Figure 6-10(a))

and that information needs to flow from c to C2 . Then it must first flow from c1 to the root

(interface) vertex of the PTS in which c1 is contained. Thence it will enter the Kernel and flow

via one or more paths through the Kernel to the interface vertex of the PTS which contains c2 .

Finally it will flow from the root of that PTS to c2 itself. If c2 is within the Kernel (Figure 6- 10(b))

the information will flow to it, after entering the Kernel, without passing into another known-

segment. If both c1 and c2 are in the Kernel (Figure 6-10(c)) then no interface vertices are

involved in the flow. Since no special techniques are known (by definition) for treating the

Kernel, a path-finding algorithm is used to compute its reliability contribution for a given

MCRS. The simple paths (without cycles) which are to be found are those which will enable

the Communication Axiom to be satisfied.

A path between two critical components, say c, and c2 , is said to be a functional path if and

only if each component along the path is functional. Thus the probability of a given simple

path between c, and c2 being functional is just the SMERGE of all the individual component

success probabilities along that path. In order to satisfy the Communication Axiom at least

one functional path must exist between c, and c2. The probability of this event is simply the

PMERGE of the probabilities of functioning of all the simple paths between c, and c2.

6.6.4 The Path Algorithm

We may now describe the simple algorithm which is used to compute the probability of

there being at least one functional path between a pair of components. The algorithm is

recursive depth-first, uses backtracking and is quite simple.minded. It is not particularly

efficient but its region of applicability, the Kernel, is a graph of fairly small size typically.

Hence, its use may be tolerated. For large Kernels It may be more appropriate to use more

144 Overlord Routine

sophisticated algorithms such as that described by [Fratta 75].28

We describe the algorithm in terms of two vertices c1 and c2 between which a path is to be

found. The vertex c, is the starting point, say, and c2 is the goal. Since the algorithm is

recursive, there is, at any recursive depth, one vertex on which attention is currently focused.

This is called the current vertex and in the beginning it is cI. At any step, the algorithm marks

the current vertex as having been visited. It then checks to see if any one of the immediate

neighbors of the current vertex is the goal vertex, c2. If so, then it immediately erases the

visitation mark on the current vertex and returns the (symbolic) success probability of the

current vertex.29 This probability consists of a single CRP term in whose bit vectors the bit

corresponding to the current vertex is set to one. If none of the immediate neighbors of the

current vertex are the goal vertex, then the immediate neighbors are checked for visitation

marks. If any are marked as having been visited then a looping path has just been completed

and so such neighbors are ignored. If no immediate neighbors are free of the visitation mark

then the visitation mark of the current vertex is erased and a NULL is returned indicating that

this was a "dead-end" and no simple paths were found. Otherwise, the algorithm is called

recursively on those immediate neighbors of the current vertex which do not have visitation

marks. Since each such neighbor is potentialy the first vertex on a different path frorn the

current vertex to the goal, each non-NULL value returned by recursive calls on these

unmarked neighbors represents the success probability of a simple path which has been

found. All such non-NULL returned values are PMERGEd since the functioning oi any one of

the corresponding paths would suffice to satisfy the Communication Axiom for c1 and c2.

Finally, the result of the PMERGE is SMERGEd with the symbolic success probability of the

current vertex. Then the visitation mark on the current vertex is erased and the results of the

SMERGE are returned as the value of the current recursive incarnation of the algorithm.

When the recursion completely unwinds until the current vertex is again c, the returned

value, if non-NULL, indicates the probability of the existence of at least one simple functioning

path between c1 and c2 (If the returned value is NULL then a Communicability Edge (K-edge)

2OThs reference describes an elegant method for finding all the simple paths in a graph. An algebra is defined on
set of Simple pathe in a graph along with three path operations. This leads to the definition of a set of simultaneous
linear equations the Solution of which. by a method similar to Jordan's method for matrix inversion, leads to the sets
of simple paths betwee all pairs of vertices in the graph. There appears to be a flaw in Algorithm ITER in [Fratta 75],
either due to typographical errors or oversight, and this author has not been able to successfully use the algorithm in
hand calculatons.

aNoe that although simple oaths to the goal vertex, other than the direct edge, may exist in this case, it makes no

difference whether or not they we functional if the current vertex and the goal vertex are functional Since the direct
edge a sufficient. Such extra pats are therefore irrelevant.

Overlord Routine 145

does not exist between the images of c 1 and c 2 in the K-graph G.). The returned vaJue is a

canonical reliability polynomial (CRP) which is associated with c and c2, and the unique

identities of c1 and c2 in G allow them to be used to derive a key to store the CRP in a hash

table for later retrieval.

The procedure presented above is described in the pseudo-code for algorithm PATHREL

below. The version actually used in ADVISER is slightly different in order to take into account

the side constraints (see Section 6.9). Also, our graph model is undirected and so the finding

oi paths from c1 to c 2 will give the same result as finding paths from c2 to c1 . Thus the

algorithm is called only once for the pair and the pair is considered unordered for computing

the hash key. However, if the underlying model were to change to accommodate directed

graphs, the component pair would be considered ordered and the algorithm would be used

twice for each vertex pair to compute the path probability in each direction. These differences

are unimportant, however, for the subject of the next section which discusses how path

reliabilities are stored and used.

146 Overlord Routine

Algorithm PATHREL

Notation and Notes

*The functions MarkVisited(v) and UnmarkVisited(v) respectively set and remove
the visitation mark on the vertex v.

*The function Neighbors(v) returns the set of neighbor vertices of vertex v.

*The function Visited(v) returns TRUE if the vertex vhas its visitation mark set,

FALSE otherwise.

-The function CRP(v) returns the CRP consisting of one term in which the bit
corresponding to v in the NORMVEC is set. This is the symbolic reliability of the
component represented by v.

*Note that the PMERGE and SMERGE functions when called with one NULL
parameter, simply return the value of the other parameter.

P roc a d u re PATHREL (currentvertex, goal)
Begin Local CRPaggregate:
MarkVisited(currentvertex);
If 3I E Neighbors(currentvertex) s.t. i a goal
then (UnmarkVisited(currentvertex);

return CRP(i)):
boreach i E Neighbors(currentvertex)
do

If not Visited(i)
then CRPaggregate -PMERGE(CRPaggregate, PATHREL(i,goal));

If CRPaggregate neq NULL
then CRPaggregate - SMERGE(CRPaggregate, CRP(currentvertex));
UnmarkVisited(currentvertex);
ret urn CAPaggregate
End;

6.6.5 The generation of partial results for the Kernel

Once G is segmented into PTSG and the Kernel, the interface vertex set VF is known.

Furthermore, when the compound requirements are provided, the number and identity of

critical components in the Kernel is also known. After a potentially feasible MCRS has been

chosen from the various critical components scattered over the various PTSs and/or the

Kernel, it is to be determined whether the MCRS satisfies the Communication Axiom. The

TREEREI. algorithm implicitly computes the functioning path probability between a critical

Overlord Routine 147

component in the PTS and its root or interface vertex. Thus it is to be shown that the

communicability graph for the interface vertices, and any critical components which happen

to be chosen from the Kernel. is connected. In other words, it must be shown for each pair of

critical components in the MCRS, which may be in any one of the three cases of Figure 6-10 in

relation to one another, that the requisite paths through the Kernel exist. This is equivalent to

showing the paths exist between (a) pairs of critical components chosen from the Kernel, and

(b) each critical component chosen from the Kernel and all interface vertices to any known-

segment from which other critical components have been chosen.

During the reliability computation process, all feasible compositions of the integer

requirements in the compound requirement will be generated over the set of known-segments

and the Kernel. Thus certain path probabilities may be used repeatedly. The ADVISER

program therefore computes, a priori, the probabilities of all necessary paths in the Kernel

between each pair of vertices in the set which is the union of (1) the set of all interface

vertices VP, and (2) the set of all critical components in the Kernel. These path probabilities

are hashed away in a manner very similar to the way in which PTS partial results are hashed.

(see Section 6.5). Since each path probability is uniquely identified by the identities of the end

vertices, it may be retrieved for use at the appropriate time. Unlike the PTS partial results the

path CRPs are no assigned unique bits in the AUXVECs of the terms in CRPs. The reason for

this is that since all the path CRPs refer to possibly intersecting sets of components (i.e. all

contained in the Kernel), the complex events represented by these CRPs are, without

exception, potentially dependent on one another. Furthermore, the Kernel in the case of most

systems is generally composed of just a few components. Thus CRPs for path probabilities

are generally short in length. It was deemed unnecessary to assign bits for these CRPs in

AUXVECs only to perforce have to SMERGE them in a later phase. The path CRPs, therefore.

are used directly in the generation of the system CRP.

6.6.6 The utility of side-constraints on pathftnding

It is pertinent to note at this juncture that the path-finding procedure described will, in the

case of some actual PMS structures, find a communication path between a pair of

components through a third component which in reality presents no such path. An example of

this is the bus switch of Figure 6-11. The buses SA and SB may communicate with bus Sc but

the bus switch, SS$w , admits no direct communication between S A and SB. The Kernel of

Figure 6-11 is composed of the set of components

{PAPBIMAI.MA2,MAJ.Ms1IM82.MB3,SASelSsw}

148 Overlord Routine

T 1 T2

M Al M A2 M A
- ' ' SA MS1 MS2 K, K2

I-
M Sh SSSW-S c

S -SI II sB
MB1 M8 2 Ms3

Key

Msh Dual-Ported Shared Memory
MMAZM A3 Local memory, Bus A
MAl,M 2 ,B M 3 Local memory, Bus B
SA.SB Processor Buses
Sc External Bus
S SW Bus Switch
Ms I.MSZ Secondary Store
K K2 Device Controllers
T ,Tz 2 Peripheral Devices

Figure 6-1 1: A dual-port bus-switch architecture

wherein SBSW is the sole interface vertex. We do not wish the path finding algorithm to find

the path (PA SA S SSW $ P.) between the critical components PA and P. in the general case.

In this particular case, since Sw is an interface vertex of the Kernel, if MS1 were a critical

component, then the finding of the path (P A SA S Sa PB) would not matter since Ses w

would appear in all system success states anyway. In Section 6.9 we shall propose a set of

side-constraints which may be imposed on the PMS structure to be analyzed so that

ambiguities of this and other sorts can be resolved.

Overlord Routine 149

6.7 The Main Loop of the Overlord Routine

The Overlord routine in ADVISER controls all of the actual assembling of the system

reliability functions for a given compound Boolean requirement expression. In general, the

compound requirement can be a disjunctive requirement. If this is so, the Overlord routine

expresses it as a disjunction of purely conjunctive requirements (i.e. the "sum-of-products"

canonical form for a Boolean expression). Then a CRP is derived for the PMS structure for

each of the conjunctive requirements in this sum-of.products form. Finally, the CRPs for all

the conjunctive requirements are PMERGEd to obtain the CRP for the disjunction.

The main loop of the Overlord routine accepts a purely conjunctive requirement and

returns a CRP which is the reliability function of the PMS structure under that conjunctive

requirement. Each conjunctive requirement is decomposed by the Overlord routine into the

atomic requirements which comprise it. In general, in the instance of any one of these atomic

requirements, say (rixi), the PMS structure may have u,>r, components of type x,. There are
U.

then (r') ways of satisfying 4'(ri,x,). There are, therefore,

U.

n(ri) u1 ri

ways of satisfying the conjunctive requirement. However, the ui components of type xi will, in

general, be scattered throughout the various known-segments and/or the Kernel of the PMS

structure. Hence there is an upper bound on the number of components of type x, that a given

segment can contribute toward satisfaction of the requirement. The Overlord routine calls the

TREEREL and PATHREL aigorithms to compute the reliability contributions, expressed as

CRPs, for each of the segments, for each atomic requirement in the conjunctive requirement.

for each possible number of components chosen from that segment to satisfy the

requirement. The number of components chosen from a segment varies from unity up to

either the upper bound alluded to above or to n,, whichever is smaller. The CRPs. thus

derived, are hash-coded away for later retrieval and use. Such hash-coding obviates the need

for repeated recomputation of the identical CRPs several times over the course of a program

run.

The main loop of the Overlord routine utilizes these hash-coded partial results while

constructing the CRP of the PMS structure under the conjunctive requirement. For each

iteration through the loop, the sequence of steps described below is executed. The results of

the iterations are accumulated and the accumulation, after the final iteration, represents the

CRP under the conjunctive requirement. The steps are first described broadly. Following

150 Overlord Routine

sections will provide details on the steps. Through the rest of this section (Section 6.7) we

shall interchangeably use "component" and "type" for "critical component" and "critical

component type" respectively.

1. Generate next composition of the requirement integers over the known-segments
and the Kernel (if no more compositions can be generated, go to Step 6):
Compositions were described on Page 125 and in Chapter 2. Each composition
here represents one possible case of satisfaction of the requirement. A

composition specifies what number of each required (critical) type of components
are to be chosen from each known-segment and the Kernel. Only feasible
compositions (see Page 127) emerge from the composition generating function.
Feasible compositions are those which do not demand that more components of

any type be chosen from any segment than are present of that type in the
segment.

2. Determine if the Kernel will satisfy the Communication Axiom for this feasible
composition. If not, go to Step 1: Computes the CRP which represents the
contribution of the Kernel for this feasible composition.

3. For each known-segment, and for each component type, retrieve the CRP from

the hash-tabies which represents the reliability contribution of the known-
segment in the case that the number of components of the type. specified by t*0e
current composition, are chosen from it.: The CRP may, of course, be null in the
case that there are no components of a particular type in the segment.

4. SMERGE the CRPs retrieved in Step 3 with the Kernel CRP of Step 2: The

SMERGE operation of this step accounts for the fact that all the known-segments
and the Kernel must simultaneously satisfy the various requirements imposed on

them by the current composition.

5. Accumulate the result of Step 4 by PMERGEing it into the accumulation thus far.
Then go to Step 1: This step accounts for the fact that the satisfaction of ay one

composition provides a reliable system. Hence we must take the disjunction of the
CRPs for satisfied compositions.

6. The accumulated CRP at the end of the iteration over Steps 1 throug,1 5
represents the reliability of the PMS structure under the conjunctive requirerne. ,

6.7.1 Generation of feasible compositions

The implementation of the process of generation of feasible compositions will be

summarized here. The process is also introduced in Chapter 2 and treated at length in Section

6.4.

The ADVISER program maintains a two-dimensional array called the Compositions TaLe

which it uses in the generation of compositions (see Figure 6-12). In addition, a one-

dimensional Recuirements AM is maintained parallel to the columns of the Compositions

Overlord Routine 151

Kernel Segments Requirement

1 2 n Integers

2 2

Critical 3 3

Component

Types

Requi rements
Compositions Table Array

Figu re 6.12: The logical organization of the Compositions Table

152 Overlord Routine

Table. The rows of the latter correspond to all the distinct critical component types which are

specified in the conjunctive requirement. Each column of the Composrtions Table

corresponds to a known-segment of the PMS graph, except the zeroth column which

corresponds to the Kernel. For a given conjunctive requirement

A 4 (r,t ,)

the contents of the ith cell of the Requirements Array will always hold the integer requirement

r,. The contents of the cells of the Compositions Table are subject to change each time a new

feasible composition is generated. It is always the case that the irm row of the Compositions

Table holds some (n+ 1)-composition of the requirements integer r. in cell i of the

Requirements Array. If each particular distribution of integers in the cells of the Compositions

Table is considered a sta of the Table, then each state of the Table is a set of feasible

compositions in the rows, after control emerges from the composition generator function.

Such a state will be termed a faibe stt of the Table. However, as was pointed out earlier

in this chapter even though a Compositions Table state is feasible, it will not contribute to

system reliability unless the Communication Axiom is satisfied. The contents, say c, of cell

[i,j] of the Compositions Table in any particular state, specifies that ci components of type i

must be chosen from known-segment j (or the Kernel if j=0). Thus in Step 3 above, for

known-segment j, j*O, the program advances down column j and for each ci it retrieves the

hash-coded CRP for the atomic requirement 4,(cirt) on that segment (i.e. PTS). Of course. if

cif = 0, then the CRP is null. Likewise, if no critical components are chosen from a given

known-segment then the corresponding column of the table will contain all zeroes and will be

ignored. The zeroth column of the Compositions Table is passed to the DoCore function

which computes the CRP for the reliability contribution of the Kernel and ensures that the

Communication Axiom is satisfied. This function ; described in Section 6.7.2.

As noted above, there may be an upper bound say u, on components of type t which can
be chosen from segment j such that u. <r. One may, therefore, think of an "upper-bound

II II

state" of the Compositions Table which constrains the ci, values. Some of the (n* 1).

compositions of a given r, may not be useful if some cell of the iti' row contains an integer

which is greater than u ,, its upper bound. Thus, a state of the Compositions Table is feasible if

and only if

Vij ci uii (6.2)

The generating routine for the next feasibie composition enumerates all the possible states of

the table but returns only those which satisfy condition (6.2) above. Since the it row of the

table will produce

Overlord Routine 153

(n. 1) + r..1

r.-1

separate (n + 1)-compositions of the integer r i, the total number of states (feasible or

infeasible) of the Compositions Table is

m (n . 1) + r.-1
Ri.i (r)

This can be a large number but the process of generating each state is incremental and thus

fast. The upper bound check does not add much more complexity. Moreover, as will be

described in Chapter 7, the largest fraction of compute time during a run of the ADVISER

program has been experimentally observed to be consumed in another portion of the

program.

As was noted in Section (6.1) there is a strong analogy between the action of an odometer

and the generation of feasible states of the Compositions Table. Each row of the Table

corresponds to a wheel of the odometer. The compositions which may occupy the cells of a

given row are analogous to the numbers on the corresponding odometer wheel. Therefore.

one complete revolution of the wheel corresponds to the generation of one complete cycle of

(n + 1).compositiors in the row. Row 1 of the Table corresponds to the slowest moving wheel

while row m corresponds to the fastest moving wheel of the odometer in our analogy.

However, since oniy feasible states of the 2.ompositions Table are ever used, the odometer

may be viewed as having slippage on same nf ts wheels. This would cause the odometer to

skip those positions which correspond to the infeasible states of the Table.

With this odometer analogy in mind we may view the actual generation of all possible states

of the Compositions Table which treats the table as a stack. Each row of the Table in the

implementation scheme corresponds to a level in the stack and the mth row (see Figure 6-12)

is at the top of the stack. In other words, the next (n + 1)-compositions of the requirement

integer ri at the it ' level of the stack (i.e. the it row) is computed olyf after all possible (n + 1).

compositions of the integer r. have been computed at the (i + 1)th level. Also, whenever the

row is advanced to the next (n + 1)-composition of ri,° all the rows (i + 1) through m are

reset to their initial (n + 1)-compositions. An initial composition for the ith row consists simply

OThe igorithm used to generate the next comlOsition a a variant o the one described in (Nijenhuis 781 with
modifications to do the upper bound checks and return only feasible compositions.

16 1 : __ -..... __ _ _ . _..... ._ - _

154 Overlord Routine

in putting the integer r in the zeroth cell of the row. 31 The process ends when all (n * 1).

compositions have been exhausted at row 1.

6.7.2 Computing the reliability contribution of the Kernel

The process of computing the reliability contribution of the Kernel, carried out by the

DoCore function in ADVISER, plays a critical part in deciding whether a feasible state of the

Compositions Table will actually produce system success. The decision is based primarily on

whether the Communication Axiom can be satisfied by the current state of the Compositions

Table (recall that each state of the table corresponds to one particular way of choosing

critical components from the various parts of the graph to satisfy the overall requirement). The

decision also depends on any side-constraints which may have been specified. The side-

constraints are not important to the elucidation at this time and a discussion of thern is

deferred to Section 6.9. Any feasible state of the Compositions Table which passes the check

by the DoCore function is termed a success st pf Ith Compositions Table.

The reason that the check for tne satisfaction of the Communication Axiom is localized to

the Kernel, and not the known-segments, lies in the difference between the algorithms used

on the two kinds of subgraphs. The TREEREL algorithm assumes that all communication

between components in the tree, and to other components in the rest of the graph. is through

the root vertex. The recursive descent nature of the algorithm starting from the root vertex

ensures that the probability of functioning of paths to the root is accounted for in the case of

all the critical components chosen from the tree. Hence the CRP returned by the TREEREL

algorithm also accounts implicitly for satisfaction of the Communication Axiom as far as

communication between the root and other components in the tree is concerned. As a result it

falls to the DoCore function, which treats the Kernel, to check whether the Axiom is satisfied

by the Composition Table state being considered.

We now digress to introduce terminology which will make a description of the DoCore

function clearer. For each state of the Compositions Table some fragment requirements will

be applied to some or all of the known-segments and the Kernel. Those known-segments

which do not have fragment requirements applied to them will be termed currentl dorman

known.segments in the given state. The other known-segments, against which fragment

311n practice, however, it a sometimes possible to start off a row with some intermediate composition, which it
would have ultimately reached in the normal course. because the constraints oaced on the compositions in that row
preclude pfrevious compositions from being feasible.

"1

Overlord Routine

requirements have been applied, will have some critical components chosen from them. Such

known-segments will be termed currently active segments. The Kernel will be currently active,

in the same sense, when either critical components are chosen from it, or paths must exist in

it which link the root vertices of active known-segments, or both these conditions hold. Note

that it is possible for the Kernel to be dormant in the above sense when some known-segment

by itself alone is able to satisfy the entire conjunctive requirement. Then the TREEREL

algorithm applied to that PTS will implicitly ensure satisfaction of the Communication Axiom

and provide the reliability contribution of the corresponding Compositions Table state 32 . The

DoCore function will not be invoked in such an instance since paths through the Kernel are

not involved.

In a given Compositions Table state, when the Kernel is currently active, attention is

directed toward two kinds of vertices within it, namely

1. Interface vertices of active known-segments, and

2. Critical components chosen from the Kernel in the current state.

The set of vertices in Items 1 and 2 together will be termed the Currently Chosen Kernel LI

(K. Note that for a given Compositions Table state there may be many CCKSs. The

reason for this is understood by considering the following example. Assume that b

components of critical component type ta are present in the Kernel and that the current state

of the Compositions Table requires that b2 components (O<b 2 _5b1) of type ta be chosen from

the Kernel. There are then (1) ways of doing this, each of which will produce a different
b

CCKS.33 It is important to note, however, that the set of interface vertices, contained in these

CCKSs of the same state, does not vary since the set of currently active known-segments

does not change. Also to be noted is that since the reliabilities of the interface vertices are

taken into account during the computation of the PTS reliabilities, they are not included in the

path reliability calculations.

Returning to our discussion of the DoCore function we now note the following important

point. Since the Communication Axiom is implicitly satisfied within known-segments due to

the action of the TREEREL algorithm, the test for satisfaction of the Axiom, by tte entire PMS

structure, may be confined to the CCKS.

321owever. we Section 5.3 for a current dWiciency in the TREEREL lgorthm which could cause an error here.

33This situation also arlm in known.sagmenti. ut the TREEREL algorithm returns a CRP whsch takes into
accOunt all the posible cases. In the Kernel, however, the enumeration must be done explicitly.

156 Overlord Routine

Using the terminology of Section 6.6.1 we may restate the above condition as follows: The

Communication Axiom is satisfied by the PMS graph G if there exists a connected K-graph on

the critical components chosen from the Kernel and the interface vertices of those known-

segments from which at least one critical component was chosen.

As was described in Section 6.6.4 the PATHREL algorithm returns a CRP if a K-edge exists

betw~en a pair of designated components and null otherwise. Each such CRP was then hash-

coded, keyed on the identities of its end vertices. Thus, for any given pair of components in

the Kernel. if the key is computed and no associated CRP is found in the hash table then no K-

edge exists between those two components. The task of the DoCore function then reduces to

examining all pairs of components in the CCKS and attempting to retrieve a CRP from the

hash table for each pair. The number of K-edges thus retrieved are counted and must number

at least one less than the cardinality of the CCKS: this is a necessary condition for

connectedness of the K-graph. Furthermore, each vertex in the CCKS must be connected in

the K.graph to at least one other component in the CCKS. This ensures connectedness of the

K-graph. Once connectedness is established, then the CRPs of all the K-edges are SMERGEd

together to give the CRP for the CCKS. If the K-graph is not connected then the next CCKS is

generated and the process continues until all possible ways of choosing the required number

of critical components from the Kernel have been considered for the current Compositions

Table state.

Since any'one of the CCKSs which satisfies the Communication Axiom will make for system

success, the CRP of the Kernel for a given state of the Compositions Table is the PMERGE of

all the CRPs of the CCKSs of that state and the DoCore function returns the result of this

PMERGE as the reliability contribution of the Kernel.

6.7.3 Computing the reliability contribution of the PTS segments

The contribution of the PTS segments (or known-segments) towards the system reliability

were precomputed and hash-coded away. They are now retrieved for use. It will be recalled

that the hash-code keys in this case were based on the requirement integer, the required

component type and the identity of the root vertex of the PTS. For any state of the

Compositions Table, a PTS segment j corresponds to column j of the table, the required

component type t, corresponds to row i and the integer requirement r, is the contents of the

cell at the intersection of that row and column i.e. c . Thus the key for the CRP of the segment

j under the atomic requirement 4(c,t) can be computed and the CRP may be retrieved for

use. Note that (i) if c. .0 then the CRP is null, and (ii) if c4 >0 then the process of generating
I"I

Overlord Routine 157

partial results for PTSs (see Section 6.4.3.1) guarantees that a CRP will have been hash-

coded away.

Since we are dealing with purely conjunctive requirements, all the atomic requirements

specified by the cells of the Compositions Table (other than in column 0, which refers to the

Kernel and is treated separately by the DoCore function) must be satisfied simultaneously.

The CRP for this event is obtained by SMERGEing all the PTS segment CRPs retrieved for the

current state of the Compositions Table.

6.7.4 Accumulating the result for a pure Conjunctive Requirement

We have seen above how CRPs are constructed for the reliability contribution of the Kernel

and the combined reliability contribution of the PTS segments, for each state of the

Compositions Table which is capable of satisfying the Communication Axiom. Since both the

Kernel and the active known-segments must simultaneously be functional, we must SMERGE

the final CRPs obtained as described in Sections 6.7.2 and 6.7.3 above. This gives the CRP for

the event that the current state of the Compositions Table is a success state of the table i.e.

gives rise to one or more system success states.

Now, any state of the Compositions Table which allows system success states will

contribute toward system reliability. Thus, finally, the CRPs for all success states of the

Compositions Table must be PMERGEd to obtained the CRP for the PMS structure under the

overall conjunctive requirement.

6.7.5 General case: a Disjunctive Requirement

Recall further that if the user of ADVISER supplies a general disjunctive requirement, then

this is rephrased as a disjunction of purely conjunctive requirements and the Overlord routine

main loop is called once for S= of these. For each of the conjunctive requirements a CRP

will be returned by the main loop as outlined in Section 6.7.4. Since the satisfaction of any one

or more of these conjunctive requirements implies system success, all the CRPs, returned by

the various cases to the main loop with conjunctive requirements, are PMERGEd to provide

the CRP which gives the system success probability under the general disjunctive

requirement expression.

158 Overlord Routine

6.8 Efficiency in the assembling of CRP's in Overlord

It will have been noted in the foregoing sections that the PMERGE and SMERGE operations

are frequently used. Furthermore, it was shown in Chapter 3 that the time complexity of the

SMERGE operation is O(N2) whereas that of the PMERGE operation is O(N2 + 2N) where N is

the length of the CRP lists being operated upon. Depending on the complexity of the PMS

structure, and the input requirements expression, the length of CRPs relating to states of the

Compositions Table begins to get rather large. Lengths on the order of 1000 and more terms

have been observed by the author in experiments. Hehce one may predict that ADVISER

would spend the largest part of its compute time in the PMERGE and SMERGE operations.

This is indeed strongly borne out by experience, so much so that in most reasonably complex

cases of PMS structures and requirements the percentage of compute time taken by the

PMERGE and SMERGE operations over the run of the program, largely outweighs all other

costs of other computations during the run. Chapter 7 shows that in a fairly typical case

runtime consumed in the merge package of the current ADVISER implementation could range

as high as around 88% of the total compute time. Hence it is imperative that the number of

PMERGE and SMERGE operation be reduced as much as is possible if the current

intermediate representation and its algorithms continue to be used.

Referring back to the Compositions Table we see that because of the stack discipline while

generating the states of the table, all rows in the table, except for row 1, cycle through their

(n + l).compositions more than once. Thus, the CRP corresponding to some (n + 1).

composition of some row i, 2<i ' m, will be used in an SMERGE operation more than once.

Each time, the accumulated CUPs of Steps 4, 5, and 6, on Page 150, may, and usually will,

grow in length. Thus each succeeding merge operation on the accumulated results takes

more and more compute time. There is clearly incentive here to keep the CRP term list lengths

as small as possible. The problem may be alleviated considerably by postponing the mergings

of Steps 4 and 5, on Page 150, until a later phase when some economies may become

apparent.

The stack discipline of the Compositions Table suggests a remedy. The PMERGE and

SMERGE operations are associate and commutative over one another. Thus the CRP for a

given state of the Compositions Table, may be arrived at by simply SMERGEing all the CRPs

for all cells, not in column 0 of the table, in any desired order. The result of this is then

SMERGEd with the Kernel CRP for the table state as computed by the DoCore function using

column 0 of the table and other criteria such as the Communication Axiom. However, due to

the stack discipline of the table, the CRPs for the cells of row i will not change until row i + I

Overlord Routine 159

has cycled through all of its (n + 1) Ycompositions. Thus, a savings might be effected by

postponing the SMERGEing of the CIZPs of row i to a later time so that it may be done only

once. We ignore the zeroth column of the table when speaKing of the rows at this time,

because of the special treatment accorded to it by the DoCore function, and concentrate on

columns 1 through n. We shall term as a Row-CRP that which is produced by SMERGEing the

CRPs retrieved by keying on the values of the cells of any row (column 0 cell excluded).

Similarly, we shall term as the Kemetl.CRP that which is produced by the DoCore function

operating on column 0. Clearly, the CRP of any state of the Compositions Table is the

SMERGE of all the R;ow-CRPs of the state, SMERGEd with the Kernel-CRP. However, the CRP

for the conjunctive requirement may be computed more efficiently than this as is described in

the following.

6.8.1 The CRPTfee

We now expand o~ t:.e notion of the CRPTree which was introduced in Section 6.4.3.2. The

CRPr-et is a rooted tree of (m + 2) levels where m is the number of critical component tynes

,efe-erced in, the conjunctive requirement. This is also the number of rows in the

z~''esc-'n; omposr'ions Table. The root vertex of the CRPTree is a dummy vertex. The

t4A sa-d Ic be at level zero of the CRPTRee. All vertices at level i. 1 <i<m, of the tree

i :-esoneto ro* t ot the Compositions Table (excluding column 0). The leaf vertices at

q.. - . orrespond to the Kernel (i.e. to column 0 of the table). Figure 6-13 shows a

a, -svae of a CRPTree. Each vertex at level i corresponds to some distinct (n + I)-

-s * of the Compositions Table and the vertex is labelled with the Row-CRP of

* - '. ositon Each vertex at level i, 1 <i<(m-1), can have at most

s: .ss:, .e :es f5, nurter is the total number of possible (n + l)-compositions (of the

't: e-- e;e' r- 0 which can occupy row i + 1. Thus the tree has, in the most genera;

case a AV~e'e-! rax-mun branching factor at each level, which is equal to the total possible

numbe' of (n * 40-compositions assumed by the row corresponding to the next lower levei.

Each path fromr the root velex of the CRPTree to a vertex at level rn, therefore represents a

set of CRPs whicM are the labels of the vertices along the path. Each such set of CRPs iS

precisely the set of all Pow-CRPs for a particular state of the Compositions Table. Finally,

each vertex at level m will have precisel) one poendant successoY vertex at level m + I whose

label is the Kernel.CRP for the state corresponding to the path from the root to that level-m

vertex, Therefore, each path in the CAPTree from the root vertex to a lea' vertex corresponds

to a unique success state of the Oompositions 'Table

160
Owerlord Routine

Dummy
Level 0

() Level I

,,II

Row CRP$ %
e t

Level (rn-1)

a- Lee m

b Level (m

4 ,".* L, vel (rnI

(CRP&

Figure 6.13: An example of a CRPTree

Overlord Routine 161

In the extreme case, every state of the Compositions Table will contribute to system

reliability, and the DoCore function will return a non-null CRP after some computations for

each such state which use column 0 of the table. Then the tree will be complete at each leve'

to the maximum branching factor at that level. If the (m - 1)t" level (i.e. Kernel-CRPs) are

ignored, this complete tree will also be symmetric in that the sets of labels (CRPs) of

successor vertices, for aJI vertices at a given level will be identical. Unfortunately, the Kernel.

CRPs may in general be distinct from each other thus destroying the symmctry of the tree.

However there may still exist some symmetric subtrees of the overall CRPTree when the

Kernel-CRPs at their corresponding leaf vertices are identical.

In a more typical case, not all states of the Compositions Table contribute to system

reliability. Excluded would be those states for which the Kernel-CRP is null due to the inability

of the Kernel to satisfy the Communication Axiom. The exclusion of a Compositions Table

state corresponds to removing the leaf vertex, which would have been labelled with the

Kernel-CRP for that state. and all vertices on the path to that leaf which are not shared with

other paths, e.g. vertices a and b in Figure 6-13. Thus. in the typical case, the tree may

become incomplete at all levels. The lack of symmetry in the tree is a hindrance to efficient

computation but it may be possible to use what little symmetry still exists.

6.8.2 Construction of the CRPTree

The CRPTree is quite simply constructed in a recursive fashion during the main loop

execution in the Overlord routine. For any row i, 1 <i<m, in the Compositions Table. a vertex

at level i of the CRPTree is produced when the contents of the row's cells advance to the next

(n 1)-compositions of r.. Each (n + 1)-composition is held constant in row i until rov. i + 1 has

cycled through aL its (n + 1-ompositions of r, 1' thereby producing a set of vertices at level

i+ 1. These vertices are made successors of the vertex generaed for t.he curre-,. (r - I)-

composition at level i. Once row i has cycled through all of its (n + 1)-compositions of r. the

set of level-i vertices generated during the cycle is passed upward to row .1- to become

successors to the current vertex at level i-1. The vertices generated for row 1 are made

successors of a dummy vertex labelled with a null CRP and designated the root vertex. Each

row may be viewed, therefore, as passing a set of subtrees of the CRPTree to the immediately

previous row each time it cycies through all its (n + 1).compositions.

The (m + 1)th level of the tree consists of vertices labelled with Kernel-CRps. A level.(m * 1)

vertex of the tree is generated whenever the DoCore function returns a non-null CRP a-ter

operating on the contents of column 0 in the current state of the Cornpcsitions Table. The

162 Overlord Routine

generation of a level.(m + 1) vertex signifies that the current state of the Compositions Table

satisfies the Communication Axiomi and contributes to system reliability.

6.8.3 Use c- the CRPTree

The purpose of building the CRPTree is to postpone the bulk of the PMERGE and SMERGE

operations to a phase after the completion of the main loop execution in the Overlord routine.

At that time, as explained above, using the CRPTree as the data structure fewer of the merge

operations need be done to complete computation of the system reliability function.

Furthermore, it may be possible to use any symmetry in the CRPTree to advantage by doing

the indicated merge operations for one of the symmetric subparts and using the resultant

CRP as a template for the rest.

The procedure for computing the CRP of any subtree t. of the CRPTree is simply stated in a

recursive fashion as follows:

1. The CRP of any subtree t. of a CRPTree is obtained by

a. PMERGEing the CRPs of the subtrees rooted on the successor vertices of
the root vertex of t., and then

b. SMERGEing the resultant CRP of Step 1 with the CRP which labels the root
vertex of ts.

2. The CRP of a one-vertex subtree is simply the CRP which labels that vertex.

A simple implementation of this is the recursive procedure CRPTREEMERGE which is shown

on Page 135.

6.9 Side Constraints on Reliability Function generation

We have seen that at least three basic items of information are necessary to compute

system reliability, namely

1. Reliabilities of individual components in the system,

2. The interconnection topology of the system, and

3. Minimum task requirements on component reliability which determine the system
reliability in relation to the task.

Thus far we have considered PMS structures to be mapped into undirected graphs with

labelled vertices. The implicit assumptions regarding possible paths of information flow in the

r-7-

Overlord Routine 163

structure have been precisely those which are made in classical network reliability analysis.

To wit, information may flow into a vertex (component) from any arc incident on the vertex

and exit it from any other of its incident arcs. Thus typical nezwork reitabiity analysis

examines concepts such as the probability that a particular vertex will always be able to

communicate with some other specific vertex for the duration of the mision: the probability

that a network of a certain diameter will be reliable over the mission time, etc.

The kinds of questions which arise out of the analysis of Processor.Memory-Switch

structures, however, concern themselves with a minimum working sel of components which

must be functional and able to communicate amongst themselves in order for the system to

be reliable. Qualitatively, a PMS network differs from general communication networks in the

degree of coupling between system components; the coupling is much tighter in PMS

structures. Another fundamental difference is the intuitive model of behavior of a node in a

communication network and a node in a PMS structure. In the latter case the nodes in the

structure cannot usually be considered to be homogeneous and their internal information

flow characteristics are not uniform . As was shown in Section 6.6.6, treating PMS nodes as

being able to transfer information from any incident arc to any other incident arc can lead to

incorrect reliability estimates. Furthermore, the behavior of actual PMS level components

such as buses, memories, processors, etc., is not adequately modeled.

It is clear, then, that further constraints beyond the three stated above must be imposed on

the problem in order to obtain an adequate reliability model. At the same time. in a program

that is viewed as an estimation tool for design, it is impossible to incorporate information

about every type of PMS component that exists or may exist in the future. Thus an effort was

made to distill those aspects of the information flow characteristics of PMS leve! components

and commonly occurring PMS substructures, which when combined with the Communication

Axiom would provide adequate reliability models in a majority of instances. For example, the

adoption of Pendant Tree Subgraphs as the sort of known-segments to achieve during the

problem partitioning, was driven by the observation that PTSs occur in a large number of PMS

structures; typically in the input/output subsystems and bussed architectures.

The PMS level of detail at which systems are studied (Bell 71] is characterized by a lack of

information specific to the behavior of each system component. Rather, the emphasis in

modelling at the PMS level is directed toward the system interconnection structure and broad

details on the rates and types of information flow among the system components To

paraphrase Bell and Newell, this is the chemical engineering view of computer systems in

keeping with this view, and in an attempt to preserve generality, the side constraints are based

164 Overlord Routine

on system interconnection structure and pathways of information flow among components

rather than the specific behavior of certain types of system components.

In succeeding sections we shall examine three kinds of side constraints on the reliability

function generation process which, when judiciously applied, will ease the task of the

program and provide more accurate models. For each case we discuss, in order

-the need for being able to specify the constraint,

- the implementation of the constraint, and

- the changes which are necessary to other algorithms to be able to deal with the
constraint.

6.9.1 Intracomponent port connections

6.9.1.1 Need for constraint

As was stated above, the classical model applied to a node in a communication network

constrains its behavior very weakly. In principle, such a node is deemed capable of accepting

incoming information flow from any in ident arc and transmitting it out over any other, or the

same, incident arc. Section 6.6.6 gave the Bus-Switch architecture as an example wherein

there is a component in the PMS structure which is incapable of such general behavior.

Consider the model in Figure 6-14(a) where a vertex v' is shown enlarged and its neighboring

vertices are vA, va, VC , vD. The Pi are the connection ports of the component represented by

v'. The broken lines inside the circle representing v' correspond to the possible paths of

information flow h the component. They, and the arrows on them, show the possible path

and direction of information flow between their end ports. Thus, for instance, information

flowing in from port P2 could, after processing within v', exit only via port P4, and vice versa.

The ports themselves do not act as intermediate stopping points on such paths i.e. the

existence of the paths (P1,P4) and (P2,P4) does no imply that information may flow from P, to

P2 via P4'

If the internal port connectivity of v' were not known, it would be surmised that information

could flow from say vA to V. although the component behavior does not support this. Thus, V

may become part of a "functioning" path even though vA and Y. are not allowed to

communicate directly through v'. Many cases of such behavior may be noticed in PMS

structures e.g. the Bus.Switch architecture of Section 6.6.6. The internal port connection

constraints attempt to account for such behavior in general fashion.

Overlord Routine15

Vs

2 -

VV

P1 1 0 1 1 Internal

PortP2 , Connection

P3 1 0 1 0 Matrix

(b)

Figure 6.14:. An example of a vertex with an Internal Pori Connection Matrix

166 Overlord Routine

6.9.1.2 Implementation

The most natural way of specifying the intra.component port connection constraint is in the

form of an Internal Er Connection MJ (IPCM). This is simply an adjacency matrix for the

ports of the component. The IPCM for the vertex v" of Figure 6-14(a) is shown in part (b) of the

figure. It may be noted that the matrix is symmetric. This is a direct consequence of our basic

model of the PMS structure as an undirected graph. Were the underlying model changed to

support directed graphs then the IPCM would not necessarily be symmetric. In the ADVISER

program, the absence of an IPCM associated with a vertex is assumed to imply that all

elements of the IPCM, were one to be appended to the vertex, are unity, i.e. that each port can

transfer information to and from any other port.

For the current version of ADVISER the IPCM for any given vertex is specified only after the

interconnection graph has been specified (a preferable method is described below). The

vertex is identified by naming the component it represents and the value of the [i,j]th element

of the IPCM for the vertex is set to 1 by naming the pair of neighboring components of the

vertex which are connected to the it ' and jth ports respectively. For the current graph model.

aJl diagonal elements of the IPCM default to 1 and all others Oefault to 0 if not set to one

Clearly, this approach of setting elements bf a given IPCM to unity can become tedious if the

number of elements to be so set is large or the number of IPCMs is large. Neither case may be

expected to be common in typical PMS structures. Furthermore, IPCMs need only be

specified for those components wherein the default complete internal interconnectivity of

ports would lead to erroneous paths being discovered by the path-finding algorithms. Thus,

the current method of specification was deemed adequate though tentative.

A better method of specification would be to allow the particular IPCM to be associated with

a generic component type. Then when a component of that type was instantiated in the PMS

structure the IPCM would be automatically declared. However, the connection of other

components to this component would have to be done more carefully, keeping port identities

in mind. There would also arise issues of what is to be done in case the user of the program

does not connect any components to a certain port. These questions are left to a future

implementation update of ADVISER.

Overlord Routine 157

6.9.1.3 Effect of constraint on algorithms

The Intra Component Port Connection constraint affects the operation of two of the

algorithms in ADVISER. The first, and most affected, is the PATHREL aJgorithm (see Section

6.6.4). It is no longer sufficient, at each recursive call to PATHREL, to simply check the

visitation mark on a neighbor vertex when deciding whether or not to recursively call the

procedure on that neighbor vertex. The reason for this is that the current vertex may not

internally allow a path from the previous vertex to the neighbor vertex being considered.

Returning to Figure 6-14. presume that a call of PATHREL on the vertex vA may ca!l a

recursive incarnation of the procedure on its neighbor v'. The incarnation on v' should

consider vB as a candidate for the next recursive call since there is no path from vA to ve

through v'. Thus an extra parameter is added to the PATHREL procedure which
"remembers" the identity of the vertex out of which the current recursive call arose, i.e. the

originating vertex. Going back to our example, the current incarnation of PATHREL on v,

would have an "originating vertex" parameter whose value is vA. The algoritnm when

considering a neighbor vertex for a recursive call will first look up the IPCM of the node being

currently visited. It will see if the element corresponding to the originating vertex and the

currently considered neighbor vertex can communicate through the currently visited vertex.

i.e. if the corresponding IPCM element is unity. If the IRCM element is zero then that neighbor

vertex is not visited even if it has no other visitation marks.

The other algorithm affected by this constraint is the GROWTREES algorithm described in

Chapter 5. The current version of the TREEREL algorithm (Chapter 5) assumes that all tie

vertices in the PTS belong to the default case, i.e. all of their IPCM elements are unity. Until

such time as the TREEREL algorithm is extended to handle this constraint, the PTSs may

have no vertex which has an explicit IPCM. This implies the addition of one more test to

Algorithm GROWTREES in Chapter 5. Thus the GROWTREES algorithm does not. at present.

include any vertex into a PTS when it has an explicit IPCM. Whereas the PTS may ordinarily

have "grown" past that vertex, the tree will now stop short of such a vertex. The introduction

of this constraint, consequently, will force all vertices with explicit IPCMs to be left as part of

the Kernel. The resulting PTSs may be smaller. The Compositions Table will not change

much but the DoCore function will have r-'.re work to do since the Kernel will contain more

vertices than otherwise. Note that this implementation restriction on the GROW7REES

aigorithm can be used at resent in an ad hoc fashion to force part:cular components to be in

!1e Kernel To do this it is sufficient to assign to the component an IPCM al! of whose

e.e-e-ts are unity. The only effect of this curre-ntly is to force that component to be

as ;art of the Kernel (see Section 7.3.1). The computation of path reliabilities in

* .--,eoer will not e affected.

168 Overlord Routine

6.9.2 Intra Component-Type Communication

6.9.2.1 Need for constraint

The second side-constraint deals with communication between components of like type. A

minimal critical resource set (MCRS) of components may be composed of various different

types of components. In the context of PMS structures some types of components are

typically active and originate control information in the structure. Examples of active

components are processors and direct-memory-access device contyallers and other "smart"

controllers. The remaining types of components are passive and accept control and

commands from the active components. Examples of passive components are memories and

input-output transducers. It is largely the case in typical PMS structures that active

components will exchange information amongst each other, or with passive components

while controlling them, or both. Thus, in general, paths for information flow will need to exist

between active components and passive components in the structure and amongst the active

components themselves. On the other hand paths need not be sought directly between

passive components. Thus, including the probability of existence of K-edges between passive

critical components during the Overlord main loop computations would lead to a pessimistic

system reliability estimate. This is because components along those paths would be required

to be functional which in reality are superfluous since the paths are never used for

communication between the passive components. This is not always true since an active

component might lie along one of the paths between the two passive components. However,

this in rn implies that the path probability would be considered during some other iteration

of the main loop when paths are being sought between the intermediate active component on

that path and each of the passive components at either end of the path. The general

constraint can be phrased as the directive "Do not attempt to account for K-edges between

passive components of an MCRS".

6.9.2.2 Implementation

A study of the common types of PMS structures by the author seems to indicate that a

weaker constraint might suffice. This weaker constraint, which was implemented, subsumes

the more specific one above and can be phrased as follows: "Do not attempt to account for K.

edges between components of ike type except when otherwise explicitly specified by the

user". Thus, for instance, paths should not be found between memories in one PTS and

memories in another PTS -through the Kernel. There were two reasons for requiring the user

of ADVISER to specify gereric component types, whose members dg communicate amongst

themselves in the operation of the PMS structure. The first is that the underlying graph model,

Overlord Routine 169

though it allows labels for vertices in the PMS graph, attaches no significance to these labels.

Thus the user must specifically identify those component types whose members are active.

The second reason is that in a typical PMS structure the majority of component types are

passive thus making it easier to identify active component types with less effort. The model,

therefore, assumes that communication between unlik component types is routine, that

members of any passive component type do not communicate with each other, and that all

component types are treated as though they were passive unless otherwise specified In short

the implemented constraint may be phrased: " Account for K-edges only between critical

components of unlike type in the PMS structure, and not between critical components of like

type unless specified by the user."

6.9.2.3 Effect of constraint on algorithms

The implementation of the Intra Component-Type communication constraint affects the

Kernel algorithms in two ways. First affected is the manner in which the PATHREL algorithm is

used in the initial path generation phase when path-CRPs are hash-coded away for later use.

The effect is in the way path-CRP computations are carried out for critical components in the

Kernel. Path-CRPs are generated with the PATHREL algorithm for a pair of critical

components in the KerneL if and only if they are of unlike types. Thus later, during the

Overlord main loop iterations, when in the DoCore function the path-CRPs are fetched for

some Compositions Table state, no CRPs will be found to exist for pairs of components of like

type. Thus the DoCore function will assume that no paths exist between such components.

which is. of course, the desired effect.

The second effect is in the way the DoCore function attempts to find paths from interface

vertices to other interface and/or critical components in a given CCKS. In each state of the

Compositions Table, for each PTS a set of component types is computed. This set specifies

what various distinct types of critical components have been chosen from the PTS for the

current Compositions Table state. Thus for each interface vertex it is always known which set

of component tys within its PTS are exchanging information with the critical components in

the Kernel and in other PTSs. There are two cases in which it would be superfluous to find a

path from that interface vertex to another vertex in the CCKS, namely:

1. Components of exactly one component type are currently active in the PTS of this
interface vertex. It is proposed to find a path from the interface vertex to a critical
component which is currenly active in the Kernel. The path ;s superflous, if the
component type of that critical comoonent is the same as the single component
type which is currently chosen in that PTS. Note component types explicitly
indicated by the user are exempt from this check.

170 Overlord Routine

2. Components of exactly one component type are currently chosen in the PTS of
this interface vertex. It is proposed to find a path from this interface vertex to the
interface vertex of a second PTS. The second PTS also has currently chosen
components of exactly one type. The path is superfluous if these two currently
chosen types in the two PTSs are identical. In other words according to the
constraints no paths must be considered between vertices which act as channels
between critical components of the same type. Note. Again, component types
explicitly indicated by the user are exempt from this check.

In all other cases, i.e. if components of more than one type are currently chosen in a PTS.

then there will be at least one critical component in the PTS and another in the Kernel, or

another PTS, which are of unlike type and thus the paths from the interface vertex of this PTS

to those other vertices are meaningful and must be considered for their reliability

contribution.

6.9.3 Bounded Clustering of Critical Components

6.9.3.1 Need for constraint

The reliability computation for PMS structures differs in yet another way from the classical

network reliability computation. We have seen that a major difference is that vertices of the

PMS interconnection graph are not homogeneous and are classified naturally according to

the distinct types of components present in the system. In addition to the Communication

Axiom, the PMS system reliability is predicated upon a minimum number of pivotal

components, termed critical components, being functional in the structure. Since there are a

variety of component types represented in the structure, this stipulation on the minimum

number of functional critical components requires to be strengthened to account for

component types. We thus arrive at the minimal reouirements w'ich stipulate non-zero lower

bounds on the number of components of each critical component te, which must be

functional as a precondition to system success.

There is, hov ver, a more subtle issue to be considered; one which forms the subject of

this section and the reason for this third side-constraint. In many cases of PMS structures, a

simple lower bound on the overall number of critical components of a particular type being

functional, provides insufficient information for reliability computation. It is necessary in these

cases to account in addition for the phenomenon that components of different types may be

interdependent on each other in some facet of their operation. For instance, if some number

of functional components of one such type occur in a particular substructure of the system.

then it may be essential that at least a certain other number of components of an

interdependent component type also be functional in the same substructure of the system to

- _ _ _ _ _ _

Overlord Routine 171

achieve system success. Thus in a functional system of this type, cluster of functional critical

components belonging to these interdependent types will be observed in the various

substructures of the system. Furthermore, there will usually be a lower bound on the number

of components of each critical component type in the cluster. We term this phenomenon

B Clusterin QfCritica Components.

As an example of this phenomenon consider a multiprocessor system composed of say

eight processor buses, each with two processors and, say, eight local memory cards, and a

bus-arbiter, amongst other components. Assume that these buses are connected together in

some fashion (which is not of importance at the moment) so that it is always possible to satisfy

the Communication Axiom if the minimum number of functional processors, memories and

bus-arbiters are available. There are then a total of 16 processors, 64 memories and 8 bus-

arbiters. Now say that a minimum requirement is

,(4,Processor) A 4,(8,LocalMemory) A 4(4,BusArbiter) (6.3)

This overall stipulation allows too much latitude. We do not, for instance, consider a

processor bus to be functional unless its bus-arbiter is functional. Additionally it may be

necessary to have, say, two functional local memories per functioning processor on the

processor bus. Therefore, it is useless to consider a system state wherein four processors are

functional, two each on buses A and B, say, eight memories functional on a third bus C, and

four bus-arbiters functional, one each on four other buses D, E, F and G. This would clearly

not be a system success state although it satisfies the overall requirement expression (6.3)

above.

On the contrary it is to be noted that a processor bus will be considered functional only if its

bus-arbiter is functional and at least one of the two processors and two of the eight local

memories on that bus are also functional. This represents a bounded clustering, in the

processor-bus substructure of the system, of the critical component types BusArbiter.

Processor and Memory. The lower bounds on the number of functioning components of each

of these three types in the cluster are conveyed by the following set of :nequalities:

Number of BusArbiter > I

Number of Processor > 1

Number of Memor' 2 ° Number of Processor

r-w

172 Overlord Routine

In general an arbitrary set of such inequalities may be specified which constrain the number

of functional components of the various critical component types which are specified in the

bounded-cluster constraint. Thus when the requirement integers in expression (6.3) above

are fragmented over the various processor buses, these inequalities must be kept in mind for

each processor bus.

The bounded clustering constraint, therefore, seeks to allow the user of ADVISER to

specify which critical component types will cluster in the system and what the inequalities are

which effectively place lower bounds on each critical component type in a cluster. Note that

there may be several different kinds of clusters each with its own subset of the set of critical

component types in the structure.

Two difficulties in handling the inequalities are to be noted here. First, if general sets of

inequalities are allowed then the program will have to check before it even begins

computation that these inequalities do have solutions. In other words an integer programming

problem has to be solved for each set of inequalities. Of course, a brute force approach could

be employed wherein all feasible states of the Compositions Table are checked against the

inequalities. If none satisfy the constraints then the constraints are unsatisfiable for the given

problem.

The second difficulty is arriving at an interpretation of the possibility that two user-specified

cluster constraints address non-disjoint sets of critical component types. The author's current

thinking is that if such intersecting cluster constraints are specified then a compound cluster

constraint should be considered instead which has respectively the union of the intersecting

sets of component types and the union of the sets of inequalities.

Note' At present the ADVISER program implements only a weaker version of the cluster

constraint. Instead of allowing inequalities in their full generality it allows only a lower bound

to be specified on the number of functioning components chosen from one of the cluster

types. It does not allow the relating of numbers of chosen components of different types. Thus

it is not currently possible to specify an inequality of the form

Number of Memory > 2 " Number of Processor

This deficiency had an effect during the experiment on ADVISER with the PLURIBUS

architecture which is described in Chapter 7.

Overlord Routine 173

6.9.3,2 Effect on Algorithms

The bounded clustering constraint in the ADVISER framework is applied to the

substructures of the PMS graph which are represented by the PTSs and the Kernel. The

bounded clustering constraint directly affects the main loop of the Overlord routine. In the

absence of this constraint, the process of generating the next feasible state of the

Compositions Table produced a candidate feasible state for evaluation by the DoCore routine

when the set of compositions in the rows of the Table satisfied the upper bounds placed on

them by the resources available in each segment of the PMS graph. In the case of the

bounded clustering constraint the inequalities effectively impose lower bounds as well. What

were previously feasible states of the Table may no longer be so,

The constraint is implemented simply by examining each candidate feasible state of the

Compositions Table as it is generated and before it is passed to the DoCore routine for the

Communication Axiom test. The inequalities are tested for satisfaction against the values of

cells in each column in the Table for the candidate Table state. Recall that if components of

one of the types specified in a cluster constraint are chosen from a given segment. then

components belonging to all of the other specified types must also be chcsen from that

segment. subject of course to the inequalities. Each column of the Compositions Table

represents one segment of the PMS graph. Each column in the candidate feasible state of the

Table is examined to discover whether the given cluster constraint applies to it. In other words

the constraint applies to the column if one or more of the non-zero cells in the column

represents one of the component types specified in the constraint. If the constraint applies to

the column and the non-zero cell values in the column do not satisfy the constraint

inequalities then the candidate is discarded and the next feasible state is generated.

There is one subtlety in these tests which must be kept in mind and is best explained

through an example. Suppose that some cluster constraint specified by the user of ADVISEP

contains the following inequality

Number of Processor > 2 (6.4

Assume that this constraint is applicable to a segment which has more than two critical

components of type Processor. In other words the segment is able to satisfy the inequality

(6.4). Now assume that one of the fragment atomic requirements imposed on the segmert,

during the fragmenting of the overall requirement on the PYAS graph, is 4(1 Processor) In

other words the cluster constraint is stronger than the atomic requirement "at least 1 of

Processor" which will also be satisfied by two or more functioning processors. However, if

174 C-v ar! ord R c jtin e

cell ;C the Z; or iient *f~e rzes .witnin zhC :oIL2mfl c,-rras:)fld:,g to the gier

segment, hiad a cne in. il, as %Ou a~Jae ese t~ c!c iai :

()wh . tshouid miot. .-ence- in s,',ch oases *ts c : e'zessar, to.--,g. -

fragment requirarri-nt to the mmianurm rauire-d o~the ieu>~:n tn ase we eac

4(I,Procesor) '-,I :(,rcsc. ~~ he .1ex: roe~ao ~ n y-'r'

occurs.

co'S:-ra ic . In !cd:.n he r'r e '.aoif i frcs m tze

6.10 Simplification of Canonical Reliability PolynornKals

n lhi;s sectioin we Joszcss tn;e 7~p:z:n ~ yno stm~eio't .:

An~ en r.zue CbM:j!- AD!i:)!S:E. Prio:r to t i ni pin ou:.'' .--

the arssr or;noe.'soez~ e -u- -, ,. '

Such johtao er~ -at~ ~ ~ A .

as fjndla-rerrIai unltO - ', ~ T--i- * -- - -. ,--

xeuo.in; Ih ~rodr~ ' ".z. &i:~ a o:,! c:n s as .

fcrrn Wve orlef y aei'.tent ' 2~~2~>~

comPonants in ,Ihe s,,,stenm. A unimque o;ctooa .- .. ~-..

wit 2 r i:ceo b;I pr a-,'~- h :r~u ~ ~ .

se niqii SOi OO pc- !,C:- m ... - -- : -

exps ien.XE"r, co's 7-he a' ,c' -,

Overlord Routine 175

represents the system reliability function. The section ends with a description of the way in

which the simplified system CRP is printed out.

The reader will recall from Chapter 3 that the juxtaposition of two factors in a CRP term

represents the SMERGE of the probabilities represented by the factors. In the case of

component probabilities, which are stochastically independent from each other by our

assumptions, this SMERGE degenerates to a simple multiplication of those individual

probabilities. However, as we have seen earlier, the probabilities recresented by a pair of

partial result CRPs can be interrelated if the subsets of the system components referenced by

them are not disjoint. Then the SMERGE operation must be carried out on the pair of partial

result CRPs to obtain the correct result. The method of generating these partial result CRPs

guarantees that two CRPs will represent dependent prodabilities only if they are parliai resujlts

for the same segment of the PMS graph. Use is made of this fact during the simplification

process. There are two important points to be made at this juncture, namely:

1. The SMERGE simplification will take place to a recursive depth of only one level.
This is because the partial result CRPs themselves are devoid of AUXVECs in
their terms.

2. The partial results for the PTS segments are all assigned bits in the AUXVECs of
system CRP terms. Thus any NORMVEC bits in any term of the system ZRP will
refer to only the reliabilities of components in the Kernel. 3

4 Hence during the
SMERGEing of CRPs represented by the AUXVEC bits of a term in the system
CRP. the NORMVEC bits do not come into play since they are guaranteed to
represent probabilities which are independent from those of the PTS partial
results.

Due to the above observations, the NORVEC and AUXVEC bit vectors of any given CRP

term may be treated independently. The results may then be simply multiplied. In the following

paragraphs the treatment of the AUXVEC and NORMVEC bit vectors are described separately

for a typical term which has both a NORMVEC and and AUXVEC bit vector. The goal is to do

any SMERGEs which are indicated thus leaving only those juxtapositions of bits whi,', enote

multiplication by virtue of their represented CRPs being independent probabilities Finally

the remaining multiplications are converted to exponentiations wherever two juxtaposed bits

represent CRPs. which though representing independent probabilities are similar in form (i.e

share the same template) and, therefore, numerically evaluate to equal quantities. After this

final simplification step the symbolic reliability function is printed Out,

34Excludni tne,'tce vertices The reliabiit,e3 of These are accoor,:ec for ir. ,,Ne ornDitation of the arta; 'esu'-
CRP for te pTss See Secton 5

176 Overlord Routine

6.10.1 NORMVEC processing

The bits in an,.. NO1RVi'.'EO bi: vector are nown to represent individua; comnpon-ent

probabilities which, by assumption, are stoch asti call y independent. Thus all juxtapositions of

1 -bits in the NORM\VEC simply denote multiplication of the appropriate probabilities. In view of

this, al! pairs of bits in the NORMVVEC are compared. If two bits represent components of the

same. type therf their reliability functions are identical 3 and, therefore, tne symbol for

reliability of the to which both the components belong, is raised to the power of two

IEvery- succee ding bit which represents another component of the same type simnply causes

this Dower to be in,-. emented by one. At the end of this processing, the simplified NORNA1VEC

will consist of a set of factors each of whic- is a symbol for a comp onent tvoe relitv raised
to a power. The Power of a factor is simply the number of bits in the vector which represented

a component of the same type as the factor represents. it is now obvious why part of th~e

description of each component N. pe. which was input by the user at the becinning of the

program run, consisted of a "print-name" for the component rype. T hese print names are thie

factor symbols referred 'o in this paragraph.

6.10.2 AUXVEC processing

During the simplification of the AUXVECs. for each pair of bits set to one in the AUXVEC of

the termn, the bits in the pair are compared on the basis of the partial result CRPs which they

represent. If the CR~s were derived from different segments of the PMS graph then the sets of

comnponents they reference will be disjoint. Thus identical numerical results wil be obtained if

they are

- SMVERGEd and the ,resulting CPP is numerically evaluated, or

-the indvidua; CRPs are numerically evaluated and the resulting numnbers
multi plied.

Hence, in such cases, the SMERGE is not performed and the bts are le_ t undisturbed,. If the

two bits being compared represent CRPs derived for the same segment of the PM1S graph

then the SMEAGE is per-formed to givs? a third CRP (devoid of AUXVECs) which is then) added.

to the Partial Results Hash Table and assigned- a unique symbol of its own. It *,. also latelled

with the identities of the rwo "parent" CRPs which were SMERGEd to form it This is done

since the same situation may occur in the simplification of another term in the CRP an, t,)e

3Asnoted in Criapter 2 q yo0 i((t~ prele-a!)te to a: i% a pas, of zoc -,en, .o tee :'ass fe.O- as :c '-,e

some type wMiO mirig I~era-: efiabfit funictions 1ths is a simcle ria!!er of c- angrg Vre furcins in AvI5E,:_
wmicn accept t-ie pro::Iern ciss&-'voon An-d Vie cn~ng, to the N3mPMVE: Drxessing tS 0~Otious and Irivia

Overlord Routine !77

cost of the SMERGE may be avoided if the result was computed earlier and can be founc in

the hash table,

For each pair of AUXVEC bits compared there will be eight possible cases to be considered

based on the hash keys of the pa"tial result CRPs represented by the bits. Recall from Section

6.5.1.1 that a partial result CRP for a given PTS was uniquely identified by three attributes

namely

(i) The PTS segment of the Neighbors Class Graph G' which represents ,ossibly

several symmetric PTSs of the PMS graph G of which the given PTS is a member

(ii) The root vertex of the given PTS of G which distinguishes it from its sywmmetric
"brothers", and

(iii) The atomic requirement for which the given CRP was derived.

The last item actually identifies a template in the Templates Table, and so two patal result

CRPs are :onsidered to be the same identical CRP if their PTS segments in G are in the same

PTS of G' (set of symmetric PTSs); their PTS segments in G have the same root vertex; and

they derive from the same template. The eight cases described below are based on equality

checks on these three attributes of two CRPs being compared:

Cate 0 Different segment of G'; Different root vertex; Different template;
These are two completely different CRPs. They, therefore, represent

independent probabilities and we may algebraically multiply them.

Case 1 Different segment of G'; Different root vertex; Same template
This is an impossible case. A template CRP will refer to the reliabilities of

components in one of a set of symmetric PTSs of G (see Section 6.5.1.2).
Therefore. if two CRPs are to have the same template they must also at

least be derived for the same segment of G' (i.e. the same set of

symmetric trees).

Case 2 Different segment of G'; Same root vertex; Different template:
This is an impossible case. Two PTSs cannot have the same root vertex

and belong to different segments.

Case 3 Different segment of G'; Same roct vertex: Same template
Impossible for the same reason as Case 2.

Case 4 Same segment ofG'; Different root vertex; Different template
The CRPs in this case were derived for different PTSs in tPe same set o!

symmetric PTSs. Thus, the CRPs represer, o' " es

since their referenced cor',oonent sets are dis/oin; The, ma De directly
multiplied in the simplified reliability function.

Case 5 Same segment of G'; Different root vertex; Same template

178 Overlord Routine

The PTSs are two symmetric trees in the same set. The fact that the
templates are the same implies that the CRPs compute the reliability of
physically symmetric PTSs under the same atomic requirement. Thus.
numerically, the two CRPs will evaluate to be equal. Consequently we may
algebraically square the template to get the equivalent value. More
precisely, the exponent count of the symbol for the template in the current
term is incremented by one. This is the power to which the template is to
be raised at the end of simplification of the given system CRP term.

Case 6 Same segment of G*; Same root vertex; Different template:
Both partial result CRPs in this case refer to the same PTS of G but were
derived for different atomic requirements, Therefore, they represe'l!
dependent reliabilities and must be SMERGEd. The result of the SMERGE
is entered into the Partial Results table with a new index.

Case 7 Same segment of G'; Same root vertex; Same template:
This is an "impossible" case. It implies that a given partial result was not
assigned a unique bit in the AUXVEC

6.10.3 Final algebraic simplification

During the first pass over the system CRP the NORMVEC and AUXVEC simplifications are

performed on each term in the CRP. The result of this first pass is that all SMERGEs which

needed to be performed have been carried out and only algebraic r.. '"olications remain.

Repeated occurrences of juxtapositions in different CRP terms of the same two bits which

require SMERGEing of their CRPs will cause the SMEGE to occur only once. Whereupon, the

resultant CRP will be inserted into the hash table and appended with the identities of its
"parent" CRPs. This enables avoidance of redundant SMERGE operations. Note that several

terms in the simplified system CRP so far may reference the same set of templates. The

numerical evaluation of the system CRP can take advantage of this fact by computing the

numerical values of the template CRPs just once and using them repeatedly for each term

which references the corresponding templates. In software terms, program statemen:s may

be gererated which evaluate each template CRP and store the result in a temporary var,a le

whicr bears as its name the unique symbol of the CRP.

A final O(N 2/2) pass is made over the simplified system CRP thus far to do algebraic

simplification. This consists in comparing each term in the system CRP to each of its

successors in the list of terms and, in case of equality, algebraically adding the signed

coefficients. Where the addition leads to zero, the terms have cancelled and may be

discarded At the end of this simplification process the resulting list of terms represents the

system reliability function and is ready for printing out.

Overlord Routine 179

At this point we also note that, preparatory to printing out the results, the template CRPs

also need to be simplified before they can be output. Since all the template CRPs generated,

during the initial phase of partial result generation have only NORMVECs, the simplification of

their terms is carried out in the manner of Section 6.10.1. Finally, they too undergo algebraic

simplification as above.

6.11 Printing of Results

At the present time, the ADVISER program is able to print out the computed symbolic

system reliability function as the text of a program .module wv.icn compLJes tie fc:., oT,

Currently the program text may be in either FORTRAN or SAIL 'Reiser 763. The module may

then be compiled and loaded along with other software which may make use of it to draw

plots, or for other numeric computation. An third output mode causes ADVISER to print the

function in a simple expression syntax. unencumbered by programming constructs, which will

make it suitable as input to the symbol manipulation system MACSYMA [Macsyma 77] (see

Chapter 7 for examples of how the MACSYMA option is used).

Figures 6.15 and 6-16 show the output for a simple reliability function in FORTRAN and

SAIL respectively. 36 The component type definitions. PMS structure definitions and the

requirements expression have been output a,! comments preceding the program statements.

Each prograrn module consists of a sub-program or procedure whose name may be supplied

by the user but defaults to RSYS if not supplied. The program. since it computes R s(t). takes

a parameter T which is the time at which the system reliability is to be determined. A single

floating point value. R Ss(T), is returned by the procedure. Another feature. which will be

noticed in these programs produced by ADVISER, is that variables are declared, one for each

component type, bearing as their names the print names declared for the respectve

cormporent type (see Table 2.1 in Chapter 2). Each variabie is initialized to the computed

reliability of a component o, the type representec by the variable. at time T spec;fied as a

parameter tc the program. "These values are then used ir the computation of the temorar'y

variables and the main reliability function.

The temporary variables introduced into the SAIL program (--ig re 6.16) are of the form .'1.

where n is an integer. Likewise, in the FORTRAN version (Figure 6.15) the ',emioraries are

named XXXrn, where m is also an integer. As was described earlier, all the simpiified CRPs

3A.s an aid to rea:!ni trio COPTRAN ersio. we rento-,er Male that a;: Onlna :. - -nes are pref,%eC in co;u ,.
mm ,aSigSn

180 Overlord Routine

which were referred to in the various terms of the system CRP, via the Partial Results Hack

Table, are computed first. Their values are assigned to the unique temporaries as may be

seen in the examples. These values are then used wherever required in the system CRP. A

question might arise as to whether the final simplified system reliability function would have

less terms if the templates were back.substituted into it and algebraic simplification were

carried out. This would be true in the case of completely symmetric PMS structures which

would yield algebraically simple, factored reliability functions. However, any slight asymmetry

will cause the final reliability function to be less easily factorable, or not at all. Thus, in most

cases, this "factorization" based on templates would seem to be at least somewhat beneficial

from the standpoint of numeric computation. If error magnitudes during numerical reliability

computation are a serious issue then the symbolic function may be factored using a symbol

manipulation program such as MACSYMA before the numeric computation is performed.

C ---
C FORTRAN module for Reliability Function evaluation
C as produced by ADVISER on Sun0ay, 25 Jan 81 at 22:09:45 for [4,1367]
C --

C "" Task Title: EXAMP.PMS -- Running example in thesis

C
C so Requirements on the Structure were:

C
C (1-OF-CPU AND I-OF-MPP AND I-0F-MSJH AND 2-OF-DSK)
C
C so Component-Type definitions for this task:

C
C INDEX TYPENAME PRINTNAME REL.FN. PARAMS
C -------------.---------------- -----

C 0 M.SHARED MSH Expon. Lambdas .00100C00

C 1 CPU CPU Expon. Lambdas .00200000

C 2 BUS BUS Weibull Lambdas .00010000

C Alphas .90000001
C 3 LINK LNK Wetbull Lambdas .00100000

C Alpha- .90000001

C 4 N.PRIMARY MPR Expon. Lambda: .00100000

C 5 DISK DSK Weibull Lambdae10.0000000C

C Alpha- .93000001

C 6 K.DISK KOK Weibu77 Lambda=6.0000000

C Alpha: .890C0001

AD-A112 713 CARNEGIE-NELLON UNIV PITTSBURGH PA DEPT OF COM4PUTER -ETC F/6 9/12
AUTOMATIC GENERATION OF RELIABILITY FUNCTIONS FOR PROCESSOR-MEN-ETC(U)

UCFEB 81 V KINI N0OOI-77-C-0103

UNCLASSIFIED CMU-CS-81-121 N

3. 2E~EEE

m~hhh~~EhEmFhLh.E 1h1.m~hh~h104h-V2mE~h~hh~hIEE

K20
1.25 IIIIIJ&__

Overlord Routine 181

C a, PMS Structure Definitions for this task:

C

C INDEX NAME TYPE NNEIG NEIGHBORS

C ----- - ----...... -

C 0 MSH.1 MSHARED 2 (P. I P .)
C 1 P.I CPU 2 (MSH. , S.I)

C 2 P.2 CPU 2 (MSH. S.2)
C 3 S.1 Bus 4 (P.1. L.I, MP.1. K I)

C 4 S.2 BUS 4 (P.2, L.1. MP.2. K.2)

C 5 L.1 LINK 2 (S.1, S.2)

C 6 MP.I M.PPIMARY I (S.1)

C 7 MP.Z M.PRIMARY I (S.2,

C 8 K.1 K.DISK 3 (S.I. D.1, 0.2)
C 9 K. 2 K.DISK 3 (S.2, 0.3. D 4)

C 10 D.1 DISK I t(K.I)

C 11 D,2 DISK I (K.I)

C 12 0,3 DISK I (K 2)

C 13 0.4 DISK I (K.?)

C

C ---
C
C *** Begin Reliatility Function evaluation code;

REAL FUNCTION RSYS (T);

IMPLICIT REAL (A-Z)

WEIBUL(LAOSDA,ALPHATIME),XP(-(LAMBDA-IE- TIME --ALPHA)

MSH - EXP(-C.00,100 IE-6 T)

CPU a EXP(-C.OC2000 0 IE-6 * T)
BUS t WEIBUL(0.00C100 0.90000 , T)
LNK - WEIBUL{ 0.001000 0.900000 T

MPR - EXP(-C.001000 - IE-6 - T)

DSK - WEIBUL(10.000000 0.930000 , 1

KDK - WEIBUL(6.000000 , 0.890000 T

C End of expressions for calculating individual reliabilities;

XXXO - BUS 6 MPR

XXXI - BUS 6 DSK'02 I KDK

XXXZ 2 2.C 0 BUS 0 DSK KDK - BUS " DSK "2 I KOK

XXX3 - BUS INPR 0 DSK*02 I KDK

XXX4 - 2.0 * BUS I NPP I DSK " KOK - BUS 0 MPR DSK-2

SKDK

C * nd of template evaluating expressions;

MODREL - C

MOOREL - 2.0 * MSH
•

CPU " XXX3 - MSH I CPU**2 XXX3*2

S2.0 " MSH 0 CPU'2 " LNK 9 XXX0 " XXI 2.0 * MSH " CPU*Q2 0

SLNK " XXX3 " XXX3 + 2.0 6 MSH * CPU,*2 LNK * XXXA I XXX2

S 2.0 " MSH " CPU642 I LNK
•

XXX3 * XXX2 2 0 1 MSH
SCPUI*Z 0 LNK " XX%4 G XXXI - MSH a CPU12 * LNK * XXX42

$2.0 0 MSH 0 CPU*Z
•

LNK I XXX4 9 XXX3 * MSH * CPU**2 L INK

SXXX3"'2

C 00 End of System Reliability computation:

182 Overlord Routine

RSYS - MOOREL
RETURN
END

Figure 6-15: An example of a computed reliability function printed in FORTRAN

COMME NT

SAIL Module for Reliability Function *valuation
produced by ADVISER on Sunday, 25 Jan 81 at 22:10:16 for [4.1367]

Task Title. EXAMP.PMS -- Running example in thesis

Requirements on the Structure were,

(1-OP-CPU AND I-OF-MPR AND 1-OF-MSH AND 2-OF-DSK)

Component-Type definitions for this task:

INDEX TYPENAME PRINTNAME REL.FN. PARAMS

0 M.SHARED MSH Expon. Lambda- .00100000
I CPU CPU Expon. Lambda- .00200000
2 BUS Bus Weibull Lambda- .00010000

Alpha- .90000001
3 LINK LNK Weibull Lambda* .00100000

Alpha- .90000001
4 M.PRIMARY MPR Expon. Lambda- .00100000

5 DISK 05K Welbull LambdatI0.00000000
Alphas .93000001

6 KODISK KDK Weibul) Lambda-6.000000DO
Alphas .89000001

PMS Structure Definitions for this task:

INDEX NAME TYPE NNEIG NEIGHBORS

0 MSH.1 M.SHARED 2 (P.1, P.2)
I P.1 CPU 2 (MSH.1, 5.1)
2 P.2 CPU 2 (MSH.1, S-2)
3 S.1 Otis 4 (P.1. L.1. MP.1, K.1)
4 S.2 BUS 4 (P.2, L.I, MP.2. K.2)
5 L.1 LINK 2 (S.I, S.2)
6 MP.I M.PRIMARY I (S.1)
7 MP.2 MPRIMARY I (S.2)
8 K.1 K.DISK 3 (S.1, 0.1. 0.2)
9 K.2 K.DISK 3 (S.2, 0.3. 0.4)

10 0.1 DISK 1 (K.1)
11 0.2 DISK I (K.1)
12 0.3 DISK 1 (K.2)
13 0.4 DISK I (K.2)

COMMENT Begin Reliability Function evaluation code;

ENTRY RSYS;

BEGIN *0eelaration!Block'

Overlord Routine 183

INTERNAL SIMPLE REAL PROCEDURE RSYS (REAL T),

BEGIN 'Calculation!of!RSYS'

REAL !System!Reliability;
REQUIRE "{}<>- DELIMITERS;
DEFINE WEIBULL(LAMBDAALPHA) - {EXP(- (LAMBDA 1 0-E T)!ALPHA-).

REAL
MSH.CPU.BUS.LNK,MPR .DSKKDK

; COMMENT End of individual Reliability Function variable declarations,

REAL
!T!0.!T1I.!T!2.!T!3.f!4

* COMMENT End of template variable oeclarations.

MSH - EXP(-0.001000 - 1@-6 * 7);
CPU - EXP(-0.002000 0 1@-6 T):
BUS - WEIBULL(0.000100 0.90000)
LNK - WEISULL(0.001000 0.90000);
MPR - EXP(-0.0O1000 0 1@-6 0 7);
DSK - WEIBULL(10.000000 0-930000);
KOK - WEIBULL(6.000300 0.89OOCC):

COMMENT End of expressions for calculating individual reliatilities,

T!O-
BUS " MPR

!T!I-

BUS 6 DSKt2 ' KDK

2,0 * BUS 0 OSK I KOK - BUS O CSK12 * KOK

!T 3-
BUS 0 MPR " OSKnZ I KDK

T!4-

2.0 0 BUS 0 MPR 0 OSK 0 KDK BUS 0 MPR 0 DSK2 * KDK

COMMENT End of template evaluating expressions;

!System!Reliability-O;

!System'Reliability-
2.0 " MSH * CPU " !T!3 - MSH I CPU 2 I !T'32 2.0
MSH * CPU2 * LNK " !T!O !T! - 2.0 0 MSH * CPU Z LNK
T!3 TO * 2.0 0 MSH I CPU*2 I LNK " !T14 * !T.2 Z.C
0 MSH

•
CPUn2 0 LNK " !T!3 !T-2 2.0 0 MSH a CPUIZ

LNK !T4 !T! - MSH * CPU!2 I LNK 0 !T!4t2 - 2.C
MSH 0 CPUtZ * LNK * !T!4 ! !T!3 # MSH " CPU2 * LkK " IT*3-2

COMMENT End of System Reliability compute icr.

RETURN (!System!Reliability);

END "Calculationof!RSYS*;

END "Oeclaration!BlockV

Figure 6-16: An example of a computed reliability function printed in SAIL

184 Overlord Routine

6.12 Summary

This chapter has provided an overall view of the ADVISER program while giving specific

details as regards the Overlord routine within it. The Overlord routine controls and

synthesizes the efforts of subordinate functions in the program.

The initial task is to input the problem specifications which, in order, consists of the PMS

component-type definitions, the PMS interconnection graph, the boolean requirements

expression, and side-constraints, if any. The PMS interconnection graph is then analyzed for

symmetries which might help in reducing the total amount of computation necessary. Any

pendant tree subgraphs of the PMS graph are then isolated and form the known-segments

apart from the Kernel. The basis for such a segmenting of the graphs is that special reliability

computation techniques are known for known-segments but only simple pathfinding methods

are applied to the Kernel.

The next step analyzes the boolean requirements expression to determine what atomic

requirements will ever be applied, during the course of the computation, to any given known-

segment or the Kernel. Partial results are computed for each of these known-segments for

each atomic requirement imposed. The partial results are then hash coded for quick recovery

during the several occasions in which each partial result is expected to be used. Any

symmetry in the PMS graphs is exploited here by computing partial results for one of a set of

symmetric subgraphs and extending them to the rest by storing the results as templates.

Requirements expressions containing disjunctions are converted to a disjunction-of-

conjunctions, or sum-of-products form and only pure conjunctive requirements are passed to

the Overlord routine main loop. The partial result CRPs resulting from these pure conjunctive

requirements are finally PMERGEd to provide the system CRP.

The Overlord routine then enters its main loop for each purely conjunctive requirement

passed to it. Here cases are generated of instances where the functional required

components are scattered in various ways throughout the structure. Each case is checked to

see if its particular scattering of components satisfies the Communication Axiom and the side-

constraints (if any). The computation of the reliability contribution of the Kernel is crucial in

this determination and is deputed to the function DoCore. Each case which satisfies the

Communication Axiom represents a subset of system success states. The contribution of

such cases is accounted for in disjunction by using the PMERGE algorithm, since any one of

them may provide a functional system.

Overlord Routine 185

Tie canonical reliability polynomial for the system, resulting from the PMERGE of the CRPs

,etur ned by the Overlord routine operating on the pure conjunctive requirements, is simplified

by taking into account the fact that identical components have identical reliability functions.

The ADVISER program finally prints out a program which computes the system reliability at a

time T which is passed to the program as a parameter. This program may be compiled and

loaded with other programs which desire to utilize the computed reliability function.

I

II

186 Examples and Results

Examples and Results 187

Chapter 7
Examples and Results

This chapter describes ex..eriments with the ADVISER program which were used to

validate the reliability functions produced by it. thereby raising confidence in its useability.

The ADVISER program is written in the BLISS.10 language (Wulf 71] for the Digital Equipment

Corp. POP-10 architecture. The program occupies approximately 40K 36-bit words of memory

and automatically expands to accommodate problem sizes.

7.1 Validation of ADVISER

In programming practice. programs of any reasonable size may usually be expected to

contain errors when initially constructed. Usual methods of program testing include

generating and using sets of test input data which will cause all paths of flow of control

through the program to be exercised. If the input data and output results are such that they

can be easily duplicated by hand or engender confidence of correctness upon simple

examination then the testing process is easier and can be made very thorough. Testing is

much harder in the case of a program such as ADVISER where the rationale for building the

program is to compute reliability functions which would otherwise be too tedious, complicated

and subject to error when produced manually. It is difficult in addition to cursorily examine a

polynomial and pronounce it as being the correct system reliability polynomial for the given

PMS structure under the given requirements. On the other hand. it is also the case tha

complex programs such as compilers are never fully debugged whereas user confidence in

them grows with prolonged use and with experience as to which types of input data are lire!

to cause errors in the output and should be avoided. It would appear that short of doing a full

scale formal verification of ADVISER its usefulness would have to be determined over a period

of time during which intensive use would expose most major errors. Until such time as

confidence in the program is sufficient its output would have to be viewed with at ieast mild

suspicion.

Under these conditions it was decided that initial tests of ADVISER should proceed aiong

two major avenues, namely

LJ

188 Examples and Results

- Compute the result for a set of representative PMS structures, both using
ADVISER and "by hand" (i.e. largely manually although assisted by machine in
some ways so as to relieve tedium). Choose the structures so that they represent
the major types of structures which are planned for in the program.

- Use the results of other efforts by independent researchers and compare them to
the output of ADVISER applied to the same problem.

In Sections 7.2 and 7.3 we describe both kinds of tests which were conducted with ADVISER.

In addition to inspection of the output of ADVISER, at least one other form of check proved

to be so useful during the debugging of the ADVISER program that it is now standardly

performed for each CRP which is ever manipulated in the program. For any reliability function

the following two properties hold true:

1. The setting of all the factors in all its terms to zero should cause the function to
evaluate identically to zero.

2. Likewise, the setting of all the factors in all its terms to unity should cause the
function to evaluate identically to unity.

In order for Property 1 to hold true the function must not have a constant term. This is already

true of CRPs as ADVISER uses them and thus the first property uniformly holds true for CRPs.

For Property 2 to hold true the sum of the coefficients of all the terms in the CRP must be 1.

This is so since all the polynomials manipulated by ADVISER are in canonical form. This

boundary-value test is simple to conduct and it is performed in ADVISER upon the result of

each SMERGE or PMERGE operation and, consequently, Pqn the final system reliability

polynomial. This very simple "go no-go" expedient was instrumental in trapping many errors

in the program during the various stages of its construction and testing.

7.2 Comparison to manual calculations

Three types of PMS structures were chosen for the test in which the output of ADVISER

was compared to manually derived results. By manually derived results we mean here that the

analysis of the PMS structure and its functional states was done manually in order to produce

an intermediate representation (which is the usual current practice) and then a program was

used to reduce the intermediate form to the final result. The output from ADVISER was then

com:ared with this result. The intermediate representation in the manual case was also

chosen to be the Series.Parallel Reliability Block Diagram. The program constructed as an

aid to hand calculation to help solve the intermediate representation was written in the

INTERLISP language [Teitelman 78] which is a variety of LISP. The outputs of ADVISER and

the LISP program are both symbolic expressions and thus may be compared.

Examples and Results 189

In most instances the compa,.son was too tedious to do by simple examinaticn. This was

true in particular because ADVISER introduces temporary variables which represent the

intermediate results generated during the computation Thus ir orde, to be atle to compare

the two expressions. the symoolic values of the temporary variabies ,have to De suostituted

back into the system reliability polynomial generated by ADVISER, and the latter algebraically

simplified, before comparison can begin. The MACSYMA program for symbol manipulation

[Macsyma 77] was an invaluable tool in this regard. Both ADVISER and the ;NTERLISP

programs were constructed to output command files which woud cause the results of their

respective computations to be loaded as polynomials into MACSYMA The atter could then

be invoked to comnpare them.

The series of figures and program output listings on the following pages will show the

results of three of the experiments. In these experiments three similar simple PNIS

architectures were chosen along with similar requirements expressions. The interconnection

schemes of these examples presented ADVISER with three cases which are dealt with each

quite differently in the program despite their superficial similarity. These three examples were

also chosen for inclusion here in part to display the way in which the number of functional

states of a structure, and consequently its reliabilit functior,, can change with a sinai change

in the interconnection scheme of the PMS architecture. Only the results of usinc a single

requirements expression per example are included here for purposes of exposit;on athough

other experiments were carried out with satisfactory results.

7.2.1 The DECI.PMS example

We now describe the first of the three experiments in detai!. The process for te other tw

experiments was very similar and for them only the results of the ADVISER run an" the hand

calculation are presented in Section 7.2.2.

Figure 7-1 shows the first of the three types of PMS structures cnosen for manal

evaluation. Two processors P.1 and P.2 can communicate through one or both of two

interprocessor buses (S.I and S.2) and each has its own local bus (S.3 and S.4) w!th two disN

memories apiece (M.1 through M.4). The requirements choser for this structure were "%(1 .P)

A (2,M)". Figure 7-2 shows the manually derived series-parallel reliability block diagram for

this set of givens.

The SPRBD of Figure 7-2 is explained as follows. Each path through the SPRED from

source to sink vertex describes one functional state of the PMS structure under the given

190 Examples and Results

PMS Diagram:

S.1

K
S.2

K.1 K.2 K.3 K.4

P.1 P.2

S.3 S.4

K.6 - M.2 M.4 -1.8 -

Requirements:

(1,P) A

Figure 7-1: Example DEC1.PMS .. PMS Diagram and Requirements.

requirements, both of which are shown in Figure 7.1. Appropriate arcs of the SPRBD are

numbered in Figure 7.2 so that the paths may be described. The single-arc path {1) indicates

that one functional state is achieved when the components in the set

{P.1 ,S.3,K.5,K.6,M.1,M.2) are functional. In other words the required one processor and two

disk memories are provided by the P.1 processor bus. Likewise the single.arc path {2}

indicates a functional state achieved when the requirements are met by he other processor

bus under P.2. The parallel combination of the arcs (4) and (5) in Figure 7.1 describes the

fact that ot least one of the interprocessor buses (and the associated bus interfaces) needs to

be functional. Likewise, the four arcs {7),{8),{9) and (10) in parallel describe the four

possible ways of having two disks memories functional from the four that are available in the

PMS structure. Thus, for instance, path {3,4,8,7) describes a functional state wherein the

interprocesaor bus S.1 is functional, P.1 and P.2 are both functional (thus satisfying the ip(I,P)

Examples and Results 191

P.1 S.3 K.5 K.6 M.1 M.2

P.2 S .4 K.?7 K.8 M.3 M.4

1-0 Q
S.. K. 1K .. 3 T& t . . K.8 M.4

-P1P.2 S.3 S4 K.6M.2 K. 7 M.3

SK2 K)~ K. 6 M.2 K.8 M.4

Figure 7-2: Example DEC1.PMS Hand-const, ucted SPRBC) for given re-,uirements.

atomic requirement) and the tw~o functional disks are M. an~d M-3. Note that, in a]! these fcour

cases botlh processors need to be functional so that both functioning disks a~e accesstble

The following listings of files show the process by which it was determin-ed tha! the

symbolic reliability function resulting as a solution of the SPRSD", in Figure 7-42 was identica t

that produced by ADVISER for the same problem. In all of these listings this first xapl is

referred to as DECl.PtvS. Preceding each listing are comments to aid in its interpretation

Listing 1, Example DECi .PMS

The following is a lWsing of the command file prepared for input to ADVISER in order to set

up the example problem DECi. Listing 2 for example DECi siarting on Page 192 shows rioA

it is used.

input title
DECI.PMS - A dual bus, 2 processor-bus architecture

192 Examples and Results

input types
dynabus dbus E 0.0001
k.dbus ks E 6.000
pdpll p W 8.00 0.89
unibus ubus [0.0001
disk Is w 10.000 0.91
k.disk lui 6.000 0.86

Input pas
5.1 dynabus k.1 k.3
s.2 dynabus k.2 k.4
k.1 k.dbus sA1 p.1
k.2 k.dbus s.2 p.A
k.3 k.dbus s.2 p.2
k.4 k.dbus s.2 p.2
p.A pdpll k.1 k.2 s.3
p.2 pdpll k.3 k.4 s.4
s.3 unlbus p.1 k.5 k.0
s.A untbus p.2 k.7 k.8
k.5 k.disk s.3 Ns.1
k.6 k.disk s.3 as.2
k.7 k.disk s.4 ms.3
k.9 k.disk s.d ms.4
ns,! disk k.6
ms.2 disk k.6
ms.3 disk k.7
05.4 disk k.8

input restriction slftalk
pdp11

set wstch run

Listing 2, Example DEC1 .PMS

This listing shows the teletype session with ADVISER which solved the problem and printed

out the solution. The characters typed in by the user for this problem are underlined. The

"@dec .pins" command causes the file shown in Listing 1 to be read and its lines executed

as a series of commands. The double asterisk prompt characters of the program indicate that

it is currently within a command file. The reading of the command file causes the PMS

structure and the component types to be defined. The command "input restriction selftalk"

implements the Intra Component-Type Communication side constraint discussed in Chapter

6. The command "set watch run" causes ADVISER to print run times of each command and

each computation phase during the reliability calculation process. In the declaration of the

component types the reliability function type "E" stands for the exponential distribution and

the following real number is the failure rate for the distribution. The reliability function type

'W" stands for the Weibull distribution and the following two real numbers are respectively

Examples and Results 193

the scale and shape parameters of the distribution. This information is no! ujsed jr the present

example in which only symbolic manipujations are intended. The commands set up in the

command file - --- lust as well be entered individually during the t1eletyDe session but th!e

command file option allows the user to think about and prepare an error free Input cff line with

an editor. During the reliability function computation ADVISE; prints messages indicating its

progress through various phases. The "print" command is use-d with thie "macsymna' optionl

to obtain the computed s-ymbolic function in a form s-. itabie for Input to MAOSVINA. The

resulting printout is shown in 'Z sting 3 startirg on Page 194.

&DDVISEF ZA(E) Wednesday 7Jan 81 1:52^2
Ote 1 pis

Oinput title
Title: DEC:.PMS -- A dua' bus, 2 r-ocessor-bus arcitectu~e

::input types
Input comp~nent types anc associated print-n'lnes; end %itrl blanK 14:,e
Types I prn:-naries IRel.Fri. I Lamtca (Alpha)

dytlabu5 opus E 0 C
k.dbus ks E
pdpll p 8.. .

uribus ubus E C.^ li
d is k Ms W I " >0 C C 0. 1
k .d i Sk km W E. 00C C . 5

**inpu~t pmus
Input g~aph in foct-at ;end witr blank line);
Corponent namre ITypenarue I eiqhoourNeiq9,iur ..

$A1 dynabus k I k.3
S.2 dynabus k..2 k,4

Ik.1 k.dbus $-I P.1
k 2 kdbus S-2 p.1
k.3 k.dbus S,11 p.2
k.4 k.dbus S.2 p.2
p.1 pdpI1 k.1 k.Z S.3
p 2 pdp11 k.3 k.- s.A,
s.3 unibus P-1 k,5 k.6
S.4 un".bL.S p. 2 k. 7 k.8
k.5 k.disk s. 1 ms I

kek.4isk S-3 ris 2
k .7 k . d1 sk S . irs ,

k.8k. di sk S. , s
ms .I isk k. 5
Ms. 2 disk
ms . adisk k. "
ms .4 disk K

96input restrictioni selftalk
Input list of Type names:

00set watcIi run

194 Examples and Results

C 03)
*Jngut reouirofnnts
Input boolean function (X of 9 AND/OR Y of M etc.):
I of adoli and 2 of disk

[.12)
oust reliabilitv
Generating symetries
[.07]
Hashing kernel term lists
C.05)
Hashing PTS term lists
[.os]
Setting up table space
Computing Reliability Function
CG: I

SC: 6
Collapsing CRPTree

[.23]
[.31]
Releasing table space
Reducing Reliability Function

Number of terms to be processed a 60. Here goes

Doing Algebraic Simplification

Terms remaining * 8
[.57]
Done!

[1.14)
eooeno docl mcs

[.103
*orint reliability macsyma

[.103
-closo

[.04]

EXIT

Listing 3, Example DEC1 .PMS

This listing shows the MACSYMA command file which was printed by ADVISER. In this file

character strings which are meant to be comments to MACSYMA are bracketed (as in the

PL/I language) by the delimiters "/'" and "O/". Semicolons are activating characters which

tell MACSYMA that a command has been completely typed. A colon is the assignment

Examples and Results 195

character which causes the symbolic value to its right to be assigned to the variable whose

name appears on its left The variables whose names begin with the characters "%%T" are

temporary variables which are introduced by ADVISER to hold the intermediate result CPPs

which were generated during the computation of the system reliability function. Listing 5

starting on Page 196 shows a teletype session with MACSYMA which uses the command file

shown in this listing.

/0

NACSYMA Module for Reliability Function manipulation
produced by ADVISER on Wednesday. 7 Jan 8! at 10-54:25 for [4,1367)

Task Title: DECI.PMS -- A Tandem/16-like architecture. Version I

Requirements on the Structure were:

(I-OF-P AND Z-OF-MS)
-------------------------------------.......................................

0/

%%Tl1:

P 0 UBUS " MS12 " KMtZ;
%%T2Z:

2 0 P " UBUS " MS 0 KM - P * UBUS * MS'Z * KM12.
/0 End of temporary variable initializations I/

System'Reliability: 0;

SystemnRel iability:
2 0 OBUS * KS2 6 %% -27 - 4 " DBUS * KS'2 * ".T1 * %7T2
+2 * OBUS * KS2 • UT112 DBUS 2 KSt4 %1.*2 + Z
* DBUS12 * KS'4 * %%T1 1 %%T DBUStZ * KS14 * %T1*2 +
2 %%TI %%Tl2

; /OEnd of System Reliability computationO/

FACTOR(%);

Listing 4, Example DEC1 .PMS

This listing is the output from the INTERLISP program which was writen to so!ve SPRBDs

such as the one in Figure 7.2. The listing is in the format of a MACSYMA command file which

sets the variable SYSREL to the symbolic expression which results from the soluton of the

hand-constructed SPRBD of Figure 7-2. The use of this command file is shown in Listing 5

below.

196 Examples and Results

/0 Reliability Function printed by LISP at 11-Jan-81 19:25:45 */
SYSREL:
.2*KMt 2@tSt2POUBUS. "KNt4eMSt4OPtUBU$2+8DBUSKMt2*KS2NSZP*2OU6US2
-18DBUSOKM3*KS,2.MSt3Pt29U8USt2 81DUSKNt4 2SKSt2St4Pt2SUBUt2-.ODBUSt2oKM
t2*KSt4MSt2Pt2SUBUS' 2+8DSUSt26KM,3*KST 4MS 3P',ZUBUSt2
-40D6USIZKMt dKSt4NStd4Pt24U8US2,

Listing 5, Example DEC1 .PMS

This listing shows the MACSYMA teletype session which confirms the equality of the

symbolic expressions generated by ADVISER for the DECl.PMS example and by the

INTERLISP program from the hand-constructed SPRBD of Figure 7.2. The outputs from

ADVISER and INTERLISP were shipped across the Arpanet to the host computer MIT-MC

where the MACSYMA program resides At MIT-MC the ADVISER output was kept in the file

KIN/ EGADV and the results of the hand.calculation were kept in the file KINI EGHND,

MACSYMA prompts for command lines with the characters "(Cn)" where n represents

consecutive integers. This allows the user to refer to previously typed commands. The

results of MACSYMA's computations are prefixed by the characters "(Din)" where m also

represents consecutive integers. Characters typed by the user during this session are

underlined. The "batch" function in MACSYMA causes a command file to be read. The first

command file read in was KIN/ EGADV and this set the variable "System%Reliability" to the

symbolic expression computed by ADVISER with all the temporary variables substituted in

and the result simplified (line (D5) in the listing below). The "FACTOR(%)" causes the

symbolic expression on the immediately previous "D" line (in this case the value of

System%Reliability) to be factored. The command file KINI EGHND was read in next with the

"batch" function and caused the variable "SYSREL" to be set to the symbolic expression

computed using INTERLISP. Finally, line (C9) requests MACSYMA to expand to its simplest

terms the expression resulting from the subtraction of the symbolic values of SYSREL and

System%Reliability. The result is zero indicating that the expressions are identical.

0:4

This is MACSYMA 293

FIX293 8 0SK MACSYM being loaded
Loading done

(CI) batch(kifl J.eoad):_

Examples and Results 197

(CZ) /0

MACSYPIA Module for Reliability Function manipulation

prOduced by ADVISER on Wednesday, 7 Jan 81 at 10:54:25 fo [:,13E']

task Title: DECI.PMS -- A Tandem/!IS-like architecture, Version I

Requirements on the Structure were:

(1-OF-P ANO 2-OF-MS)

P s UBUS 0 MS12 0 KM12;
2 2

(D2) KM MS P USUS

(C3) 4%T2:
2 * P " UBUS • MS I KM - P I UBUS I MStZ 0 KMi2;

2 2
(03) 2 KM MS P UBUS - KM MS P UBUS

(C4) /I End of temporary variable initializations 0/

Systern%Reliability: 0;
(04) 0

(CS) SystemReliab4 lity:
2 0 DBUS KS 2 * 2 %T2 4 • OBUS 0 KSt2 I %%TI "%TZ
+ 2 OBUS 0 KStZ " %%Tlt2 05US2 " KSt4 I %%T2'2 2
DBUS2 KSt4 6 %%TI %%T2 DBUS2 1 KS14 %%TI2 -

2 %%T1 %%TIt2

2 4 2 2 2
(05) - OBUS KS (Z KM MS P UBUS - KM MS P UBUS)

2 2 2 2 2 4 4 42 2
* 2 0BUS KS (2 KM MS P UBUS KM MS P UBUS) - 0BUS KM KS MS P UBUS

4 2 42 2 4 42 2
* 2 DBUS KM KS MS P UBUS - KM MS P UBUS

2 2 4 2 2 2
* 2 DBUS KM KS MS P UBUS (2 KM MS P U5US - KM MS P UBUS)

2 2 2 2 2
-4 DUS KM KS MS P UBUS (2 KM MS P UBUS -KM MS P UBUS)

2 2
2 KM MS P UBUS

(CS) /OEnd of System Reliability computation'/

FACTOR(%);
2 2 2 2 4 2 2 2 2

(6) - KM MS P UUS (4 OBUS KM KS MS P UBUS - 8 081S KM KS MS P U5US

2 2 2 4 2
+ KM MS ? UBUS - 8OBUS KM KS MS P UUS + 16 DBUS KM KS MS P UBUS

2 4 2
. 401US KS P UBUS -8 8BUS KS P1U51S - 2)

198 Examples and Results

(D7) BATCH DOME
(C7) batch(kin1.eahnd :

(CS) /0 Reliability Function printed by LISP at 11-Jan-82 19:25:45 0/

SYSREL:
2*ZKi NS * PSUBUS- 1 KM4*MSt4*P 2*UBUS,28DODBUSKN 2*KS2oMS 2 P,2*UBUSt2

- 1660 USSKM,30KSt26MSt3SP 2SUBUSt2+8 BUSOKM '4 KSt2 SSt4sP t2eUBUS2-40BUSt2Km
t2OKSt4SMSt2SPt2SUBUS 2+88DBUS'2 KMt3*KS4sMSt3"P2oUBUSt2
-4 DBUS,2K'4*KSt4NSt4 Pt2 UBUSt2;

2 4 4 4 2 2 4 2 4 2 2

(D8) -4 DBUS KM KS MS P UBUS + 8 DBUS KM KS MS P UBUS

4 4 2 2 2 3 4 3 2 2 -1

- KM MS P UBUS + 8 DBUS KM KS MS P UBUS

3 2 3 2 2 2 2 4 2 2 2
- 16 DBUS KM KS MS P UBUS - 4 OBUS KM KS MS P UBUS

2 2 2 2 2 2 2
* 8 OBUS KM KS MS P UBUS + 2 KM MS P UBUS

(og) BATCH DONE
(C9) rjtexoand(svsrel - svstemreliabilitvP
(DIo) 0

:KILL

7.2.2 The DEC2.PMS and DEC3.PMS examples

The DEC1 .PMS example shown in Figure 7.1 was a PMS structure with a Kernel composed

of the component set {S.1,S.2,K.1,K.2,K.3,K.4} with the interface vertices {P.1,P.2). P.1 and

P.2 were also the root vertices of their respective Pendant Tree Subgraphs. Under the given

requirements, i.e. "+(1,P) A t(2,M)" the Kernel contained no critical components. The

interface vertices were critical components but we have seen in Chapter 6 that these are

counted as part of the PTS subgraphs, rather than the Kernel, for the calculation of the

intermediate result CRPs.

The two other examples, DEC2.PMS and DEC3.PMS, in which the output of ADVISER was

compared against the results of manual analysis are shown in Figures 7-3 and 7-5 along with

requirements similar to those in Figure 7.1. The DEC2 example varies from the DEC1 example

in that the former consists of a PMS structure which is composed entirely of a Kernel without

any Pendant Tree Subgraphs. The DEC3 example on the other hand differs from the DEC1

example in that, although it has a similar structure with Kernel and PTSs, it also has critical

Examples and Results 199

PMS Diagram:

S.1

S.'

-J

K.1 K.2 K.3 K.4

P.I P.2

S.3 5.4

K. 5 M. I K.57-

_K 6 M.2 K.8

Requirements:

4(1.P) A ,(1,M)

Figure 7.3: Example DEC2.PMS .. PMS Diagram and Requirements.

components in its Kernel. The process of checking the output of ADVISER for these

examples is identical to that described above in detail for DECi .PMS. both ADVISER and the

INTERLISP program are used to obtain MACSYMA command files which are then read intc

the latter and the two symbolic expressions compared.

Figures 7.4 and 7.6 show the respective manually-constructed SPRBDs for the DEC2 and

DEC3 examples. These may be understood in the same manner as the SPPBD for the DECI

example. The two listings below show the MACSYMA sessions for the DEC2 and DEC3

examples in which it is demonstrated that the output of ADVISER tallies with the manual

construction.

200 Examples and Results

P. 1-S.3

..
j -1: 1
K. 6 -M.2 - -

r.K.N . I - "

.-- P.2-S. - K. 8-M.2 -

-S. 1 - K. 1-K. 3 - M.1I

K.7-S. 4
L ---P. I-P. 2

P 1-P l-K.-K. -K. 6-S. 341-
{S. 2-K.2-K. K - M.2-

K.8-S.4

Figure 7.4: Example DEC2.PMS .- Hand.constructed SPRBD for given requirements.

Listing 6, Example DEC2.PMS

This listing shows the MACSYMA teletype session during which it is shown that the

ADVISER output matches the manual construction for the DEC2 example. The ADVISER

output was in the file KINI EGAOV at the host MIT.MC on the Arpanet. The output of the

INTERLISP program was in the file KIN! EGHND. Characters typed in by the user are

underlined.

(C8) batch(kini.eoadv):

(C9) /0

MACSYMA Module for Rel iability Function manipulation
produced by ADVISER on Thursday. 8 Jan 81 at 15:38:44 for [4.1367)

Task Title: DEC2.PMS -- A Tendem/16-like architecture, Version 2

Requirements on the Structure were:

(1-OF-P AND 1-OF-MS)

a/

Systelfleliability: 0;
(DO)0

Examples and Results 201

PMS Diagram:

5.1

K.1 2 K.3 K.4 K.5 K.6

P.1 P.2 M.3

S. 3 S. 4 LKA I
L K.7- M. I M,2.

Requirements:

,(1,P' ,A 4(2,M)

Figure 7-5: Example DEC3.PMS -. PMS Diagram and Requirements.

(CIO) System%Rel iaoility:
4 0 P 0 UBUS MS • KM 2 * P ' UBUS ' MSt2 ' KM-2 - 2

PTZ * UBUST2 * MS " KM!2 2 * P'2 * UBUS 2 * MS'Z " KM2

+ 4 0 P12 * UBUS12 I MSIZ I KM-3 Pt2 * UBUS12 " MS2

KM 4

4 2 2 2 3 2 2 2 2 2 2 2
(DIC) - KM MS P UBUS - 4 KM MS P UBUS - 2 KM MS P UBUS

2 2 2 2 2
- 2 KM MS P UBUS - 2 KM MS P UBUS - 4 KM MS P UBUS

(Cl2) /*End of System Reliability computation*/

FACTOR(%);
3 2

(021) - KM MS P UBUS (XM MS P UBUS - 4 KM MS P UBUS - 2 KM MS P UBUS

- 2 KM P UBUS - 2 KM MS 4)

(012) BATCH DONE
(C1i, / Rl ri Sa N.ul

(C13) /0 Reliability Function Printed by LISP At 8-Jsft-S! le.:.15 8/

202 Examples and Results

P.1M.1 S.3 K.7..- S.1 K.5

[K.2 S.2K.6

P. SP.2[3 K .3 K.5 S.1

m.2 S.4 K.8 K.2 K4 K.6 S.2
14.4

aP.2 m.2 S.4 K.__[K
K.4 S.2 K.6

P.1 P.2 .1 M.2 S.3 S.4 K.7 K.8_0.1 S.1 K.3

K.2 S.2 K.4

1 S.1 K.5

S.2 K.6

M.3 M.4

K.4S.2 K.6

Figure 7-6: Example DECIPMS- Hand-constructed SPRBD for given requirements.

SYSREL:
*4*KNMSPUBUS-2KM2*MSpt2U8US2-2KM2eSt2epeUguS
-2s8KM2*MSt2sPt2* UST2+4eKM 3sMSt2*pt2 e UStZ-KMt44MSt2ept2*UBUSt2;

4 2 2 2 3 2 2 2 2 2 2 2
(013) - KM MS P USUS + 4 KM MS P UOUS - 2 KM MS P UBUS

2 2 2 2 2
- 2 KM MS P UUS - 2 KM MS P UUS + 4 KM MS P USUS

(014) BATCH DONE
(C14) Avsttlreliabilitv - Svarel
(015) 0

(CI5) it)

-Wftww

Examples an~d Results 203

KILL

Listing 7, Example DEC3.PMS

This listing shows trie MAC'SYMA teletype session during which it is shown that the

ADVISER output matches the manual construction. ADVISER output was in the file (

EGA3V and INTERLISP output was in K(NI EGHND. Characters typed by the user are

underlined.

(C11) batchlkini ecadv '

(C12) 1

MACSYMA Module for Reiiabi'iity Function manipulation
prolucec by ADVISER on Thursday. 8 Jan 81 at 2: !E:27 for [4.11E7]

Task Title: DEC3,PMS -- A Tandem/16-like architecture. Version 3

Requirements on the Structure were:

(1-OF-P AND 2-OF-MS)

a/

(012) P

(C13) WIT:
P 0 uSUS 0 MS 0 KM;

(D13) KW. MS P IJBUS

(C14) /0 End of temporary variable initializations S

System%4pel~atility. 0;

(C15) Systen%PAe labil 'ty.
2 * 0US *KS * %~1471 + 8 1 OBUS * KS-Z * MS I' %V1 4

D BUS *KS-? MS+2 W %C -8 ' OBUS I KSIZ * MS-2 *

-8 *DOBtS KS-3 MS 0 % -I* 2 * DOBtS IKS-3 0 MS-2
* %T0 2 -DBUSi2 *KS 4 * %TltZ + 6 6 DBuS I KSt3

MSZ* a %T1iZ - 4 *DBUStZ KS*4 *MS I %%Tj - 12 * DO5-s
2 * K514 * MS a %%T2'2 2 05U512 6 K514 0 MS-2 I * T

* 4 0 DBuSt2 0 KS*4 *MS, * %T1 - 2' * 6OUS Z 6 KS-5

MS * %%T1t2 *8 1 DBUS+2 9KSS4 0 MSZ2 0 * T, - 2 0
DBUSZ * KS*4 *MSIZ 8 WO2 - It * DBS?*Z KS*5 * MS-I
%%Tln2 4 DBUSZ * KS-I M*2 * %%T', 8 0 DB0U5-Z*

KSIE * MS * V%71*2 - OBUS*2 KS~e * MS*2 8 .T0IZ *

DBUS12 I KSt6 0 MSZ 0 %%T12

204 Examples and Results

2 2 6 4 2 2 2 2 5 42 2
(Di5) 5 DIUS KM KS MS P USUS -16 oBUS KM KS MS P UBUS

2 2 4 42 2 2 3 42 2
*8 DBUS KM KS MS P UGUS + 6 DBUS KM KS MS P UBUS

2 2 6 32 2 2 2 6 32 2
-a I US KM KS MS P UBUS + 24 DBUS KM KS MS P UBUS

2 2 4 32 2 2 3 32 2
- 12 DBUS KM KS MS P UBUS - 8 DBUS KM KS MS P UBUS

2 2 4 22 2 2 2 2 2 2
-DBUS KM KS MS P UBUS 2 DBUS KM KS MS P UBUS

2 4 3 2 3
*4 DBUS KM KS MS P UOUS- 8 DBUS KM KS 1S P UBUS

2 4 2 2 2 2 6 22
-4 DBUS KM KS MS P UBUS B DBUS KM KS MS P UBUS - DBUS KS MS P

2 5 22 2 4 22 3 22

+ 4 DBUS KS MS P -2 DBUS KS MS P -2 DBUS KS MS P

2 4 2 2 2
- 2 DBUS KS MS P 4 DBUS KS MS P

(C16) /-End of System Reliability computationf/

FACTOR(%);

2 2 2 4 2 2 2 3 2 2
(016) OBUS KS MS P (5 OBUS KM KS MS P UBUS - 16 DBUS KM KS MS P UBUS

2 2 2 2 2 2 2
*8 DBUS KM KS MS P UBUS + 6 KM KS MS P UBUS

2 4 2 2 3 2
S8 OBUS KM KS MS P UBUS + 24 DBUS KM KS MS P UBUS

2 2 2 2 2 2 2 2
- 12 DBUS KM KS MS P UBUS - 8 KM KS MS P UBUS - DBUS KM KS P UBUS

2 2 2 2
+ 2 KM P UBUS + 4 OBUS KM KS MS UBUS - 8 KM M5 UBUS - 4 D0US KM KS UBUS

4 3 2 2
4 8 KM UBUS - DBUS KS P # 4 DBUS KS P - 2 DBUS KS P - 2 KS P - 2 DBUS KS

* 4)

(D17) BATCH DONE
(C17) batchikini.aohndg:

(CIS) /0 Reliability Function printed by LISP at S-Jan-SI 17:46:30 0/

Examples and Results 205

SYSREL:
*408BUS5K5 Z'MS 2 P-ZDUSKS3MS!PZ2 *D6-'SZ*KS 4NS2*P
-2*D8US2KSMS2P2-4DBUSKS 5,MStZ2P!- I BS '~tM*'*-E ESIK
OKSt2OKSt2OPUBUS

MSt30P,ZOUBUST2-6DBUSMZKS3OMST4'PtZ*UBUS-2

MSt2*Pt26UBUSt2-12OD8USt2K2K~t4MS3PtZUUS,-2

-*DLSt2KM2eKSt 5*MST4*P.2*IU8US.Z,

2 2 6 4AZ 2 2 2 5 AZ 2
(018; 6 5 US KM KS MS P USLJS - 16 PB8uS XM XS MS P UBUS

2 2 4 4 2 2 2 3 4 2 2
- 8 DBUF, KM KS MS P UBUS - 6 OBUS KM KS MS P USI

2 2 6 3 2 2 2 2 5 3 2 2
8 B 0U KM KS MS P UBUS -24 OBUS KM KS MS P UBUS

2 2 a 3 2 2 2 3 3 2 2
-12 DBUS KM KS MS P UBUS - 8 OBUS KM KS MS P UBUS

2 2 4 2 2 2 2 2 2 2 2
-DEUS KM KS, MS P UBUS + 2 0BUS KM KS MS P U 8L'S

2 4 3 2 3
+4 DBUS KM KS MS P UBUS -8 OBUS KM KS MS P UBUS

2 4 2 2 2 2 6 2 2
4-DBUiS KM KS MS P UBUS 8 DBUS KM KS MS P UBUS -OBUS KS MS P

2 5 2 2 2 4 2 2 3 2 2
* . DBUS KS MS P -2 DBUS KS, MS P - 2 DEUS KS MS P

2 4 2 2 2
Z 2 BUS KS MS P +4 DBUS KS MS, P

(Dig) BATCH DONE

(C20' ratoeisnQ(swsel - system%reliabi'itv'
(020) 0

KILLou*.

206 Examples and Results

7.3 Comparison to published results

The work describe' ,'. (Siewiorek 78] provided a useful opportunity to test the output of

ADVISER for correctness. For convenience we shall henceforth refer to [Siewiorek 78] as

SENET which is the acronym for the subject of that report. SENET presented general

reliability functions derived by hand for each of a set of five multiprocessor architectures. In

the SENET work a Fortran program was constructed for each architecture to compute

numerica! values of its reliability given architectural parameters and operational requirements.

Assuming a very small chance of the exact same compCbtational error occurring in both the

SENET work and the output of ADVISER, a good test of the latter is to numerically evaluate its

output and compare it to the output from SENET programs. Although disagreement in the two

sets of results proves at best that one of the outputs is in error, agreement on the other hand

engenders substantial confidence in both. This is especially true since the methods of

arriving at the system reliability functions in the two cases are so different.

Following sections describe the results of the comparison. The results of only one or two

tests per architecture are actually included here but several tests were satisfactorily carried

out with each architecture. In those cases where the outputs of the two programs did not

match, the known or suspected reasons are provided. Mismatches in the case of the Global

Bus architecture (Section 7.3.4) were traced to errors in the SENET program for the

architecture and the ADVISER output was shown to be correct by comparing to manual

computation. Mismatches in the case of the Pluribus architecture (Section 7.3.5) and two test

cases of the Cm* architecture (Section 7.3.1) were caused by known deficiencies in the

ADVISER algorithms. It is to be emphasi2ed here that these are not serious deficiences., they

result from inccmplete implementation in ADVISER of the ideas discussed in Chapters 4 and 5

and manifest themselves in infrequent cases. A mismatch in two cases of the Tandem

architecture (Section 7.3.3) are strongly suspected to arise from errors in the SENET program

for the architecture since manual computation once more proved ADVISER to be correct. All

other tests resulted in successful matches.

NOTE:

- In the re.st of this chapter, the phrase "successful match" or "successful test" will
be used to mean that the absolute differences between the numerica. values of
the output of the two programs were within one percent of the SENET values.

- Each of the SENET programs was constructed to ccmoute tIe rei:ability of the
archrtec%.re it accresses for a range of valu!es aiong tve :ime axis. starng at
I = 20C hrs and 200 hrs. apar,. Comou:ation continues until 200 va!ues lave
been computed or the reliabiiity has falien below 10-4 . In disoiaying Uhe results of

Examples and Results20

the cornoarisor of ADVISER .znd SENET values in suicceeding oages, orly
represenitative sa"'pies wilt be s,,ovr ;! the foat nurrbe, of vab es !s ,oc,,ar~e.

-In all of vi~e comparison's, as in~ SENET. all comnpor~erts were presumec to have
ex~nena; 'stOuo !hi e.,r ies !o 'auluire, Tr'e la~tre rates ;seC as no .*s

to ADVISEP. were 'aken directly fromn SENET Ncte, ? owever, thiat re 4D'V!SECP
output can easily be modified for other failure distrioutions.

B8 B

L L L L

krnap Kmap Kmap

Slocal Slocal Slocal Slocal Slocal Slocal

P M M P M M P M M P MM P M M P M M

Key

B Interciuster Bus Slocal Local switch
L Intercluster Bus Interface P Processor
Krnap Mapping Controller M Memory

Figure 7-7: 0m* architecture used for ADVISER test

7.3.1 The Cm* architecture

The Cm' multiprocessor architecture is based on the LSI-11 microcomputer and is

described in [Swan 77]. Figure 7-7 shows the version of the architecture which was used for

the ADVISER test. It consists of three clusters of two computer modules (Cm's) each. Each

Cm is composed of one processor with two memories. The memories in the structure

collectively realize the virtual address space shared by the processors. The KMAPs in Figure

208 Examples and Results

7-7 are mapping controllers which allow processors in Cms to access memory elsewhere in

the cluster or in other clusters via the Intercluster Buses (B in the figure). The components

marked L in the figure are the interfaces from the KMAPs to Intercluster Buses.

In one test using the Cm architecture, from a total of six processors and 12 memories the

test imposed the requirement that five processors and ten memories be functional. For these

configuration parameters the SENET Cm* program was run to obtain numetkcal system

reliability values. ADVISER was then run on the same problem with the requirement

expression "J(5,P) A (10,M)" The Fortran output of ADVISER for the problem was

compiled and called repeatedly by a Fortran driver program to obtain reliability values for the

same points along the time axis as in the corresponding SENET case. Figure 7-8 shows the

results of the test, for samples of the time values, in five columns. The fifth and last column

lists the differences in the fourth column as a percentage of corresponding SENET values.

In this fashion all combinations of requirements up to a maximum of 6 processors and 12

memories were tried. The results matched SENET results except in two cases viz. the

requirements "4,(1,P) A 4,(1.M)" and "4i(1,P) A 0(2,M)". See Figure 7-9 which shows the

mismatch for the latter of these two requirements. The reason for this mismatch is a known

deficiency in the TREEREL algorithm of ADVISER. When the above two requirements are

imposed on the given Cm' structure there are functional states of the system in which the

requirements are satisfied by a single Cm which has one processor and two memories within

it. In this case, theoretically, no other components outside the Cm are necessary to cause the

system state to be functional. However, the TREEREL algorithm was used to generate partial

result CRPs before system CRP was computed. As described in Chapter 5 the TREEREL

algorithm assumes that all components on the path from any currently active critical

component in the PTS to the root of the PTS, upto and including the root vertex, need to be

functional in order to satisfy the Communication Axiom. If the requirements are entirely

satisfied by some subtree of a PTS, as in the case of the two simple requirements above, then

there is no need for components up to the root vertex of the PTS to be functional. In terms of

the Cm" example, since the requirements are met by a single Cm there is no need for the

Kmap to be functional. However, the TREEREL algorithm does take into account the Kmap

reliability even in this case and thus causes the reliability to differ from SENET results. This

situation was anticipated in Section 5.3.

Note, however, that this problem may currently be sidestepped in an ad hoc fashion by

forcing all the Kmaps to be part of the Kernel by assigning them trivial Internal Port

Connection Matrices (see Section 6.9.1.3 on Page 167; for this example all the links, L in

Examples and Results20

Time SENET ADVISER (SENET-A0ViSER, % 01
CC.C C.321-0 .9030333f-O0C 0.3822148E-Oz I

SOCC 07l~l~b-00 0.7131026E-00 0,815583EE-05
8CC 0 624C257E-00 0.62401E555-CC C.9246171E-05 1^

I2O1.C 0.5409821E-00 0.54C9721E-00 0., 1004338E-04 1 cC
120CC 0.464;715E.00 0.46496115-CO O.C38-0 CO
I14CC.^ 0.3985082E-CC 0.3964;7E-00 0. 1049787E-04 C C
16'.C.' 0.3257063E-00 .33569El5'00 0.10248275-C. 0C
180C. 0.28237285-01 0.2823521Ei0 0989OCO C
200,.3 C.2360i37E-0C 0.236C8485E'00 08140-5 CC
Z2CC. 0. 1963Z2255-01 0. 1963144E-0" C.8180737E-C5 c CC
24103.0 0.16243395OC' 0. 1624286E-00 0.7305294E-05 0 IVc
26C11C 0.1337768E-30 0.13377025-00 0.655C923E-O5 CC
Z8O1C.0 0.10,970855-Cl 0.1097008E-00 0.892-C 0 c"
3001I.0 0.8961F5485-01 0.89613375-01 0.5101UI7,-CS ,.Cl
3 0COC n.7Z942135-CI 0. 7293771E-01 0.44238E-05 C Cl
34CC 11 0.5916942E-Cl 0.59165605-31 0.3815:94E-05 0.12
3510.1 0.4791723E-01 0.4784397E-C^l 0.326058CE-05 C)I
3800.C C.38578685-01 0.3857615-1 C.2782265-05 C 1^1
4110.1 0.3102126E-Cl 3.138C5C .235554&E-CS 1.11
421 C 13.246806CE-01 0.246787:E-01 0. 1987ZICE-05 .12
4400C 0.19908005-01 0.199'06345-01 0.62450 .1
460c.1 0.15393-65-01 0.1c589Z'07E-01 0.13;2560E-05 C.":
480C0C 0.1266170E-Cl 0.1266,155E-01 0. 11542585-O5 c .01!
5000C.0 O.INC03E-01 0.10066CSE-00 0 9514624E-D6 0.1
52CC .7;89052E-02 0.7988264-CL 0.7878v^89,r-06 0 C,
540C3C 0.6328749E-02 0.63,8lOCE-02 0,549190CE-06 0 .01
5600. 0 0 .5005073E-02 0. 5004541E-02 0. 531727C5-05 Gel
580.0 0.3951945E-02 0.3951509E-02 0.4362082E-06 01
5 01^0.1C 0.3115689E-02 0.31153135E-02 0.3544847E-06 0CI
5210.0 0.2452862E-02 0.24525735-02 0.28924e65-06 0.01
54,,.3, 0.1926403E-02 0.1928158-v2 0.2345155-06 3. C',

550C . 0.15141075-02 0 .1139175-02 0 19C1391E-06 011
581O0 0.1187340E-02 0. 1187187E-02 .1534354E-CS, 0 C01
7000.1 0.9299902E-03 0 9298667E-03 0.1235312E-06 C cl
7211'.0 0.72759415-03 0.7274947E-03 0.994a3245-0^7 c1^1
7400. 0.55852875-03 0.5E854885-03 0. 7991912E-07 0.'

7501 0.443S3285-03 0 4438688E-03 60. 6397025E-D" c 1
760C C 0.3462370E-03 0.34518585E-03 ^0.512009!E-07 C :1
8110.1 0.2697834E-02 0. 2697425E-03 0. 40933915-07 c 12
820C.1 0.2100194E-03 0.20998665-03 0 3280012E-07 0 1 2
640C .0 0.1633507E-03 0. 1633246E-03 0 .26100585-07 0.1 2
8500.7 0.12594485-03 0.1269241E-03 0.20CS737E-07 0.02

Figure 7-8: Comparison of ADVISER~ and SENET results for Figure 7-7.
Cm*, 5 P. 10 M required.

210 Examples anid Results

Tim SENET ADVISER (SIEiIT-ADVISER) % 01ff,
200.0 0.999g730E.o0 0.9999722E+00 0.8344650E-06 0.00
400.0 0.9997945E+00 0.999790$E.00 0.1372397E-04 0.00
600.0 0.9993369E+00 0.9292698E+00 0.6711483E-04 0.01
800.0 0.9984970E+00 0.99829571.00 0.2013370E-03 0.02
1000.0 0.9271915E+00 0.9967242E+00 0.46735261-03 0.05
1200.0 0.9953656E+00 0.%)944353E-00 0.9202883E-03 0.09
1400.0 0.9929393E+00 0.9913239E.00 0.1615353E-02 0.16
1600.0 0.9899069E+00 0.9672989E+~00 0.2606966E-02 0.26
1800.0 0.98623001.00 0.9822867E.00 0.3944293E-02 0.40
2000.0 0.9818263E+00 0.9762253E+00 0.5689951E-02 0.55
2200.0 0.9768935E+00 0.9090743E#00 0.78191611-02 0.80
Z400.0 0.9712227E+00 0.960054E+00 0.1041731E-01 1.07
2600.0 0.9648860E*00 0.9514064E.00 0.1347962E-01 1.40
2800.0 0.9578912E+00 0.9408782E+00 0.1701299E-01 1,78
3000.0 0.9502490E+00 0.9292360E.00 0.21012981-01 2.21
3200.0 0.9419730E-00 0.9166066E+00 0.2546640E-01 2.70
3400.0 0.9330787E+00 0.9027279E+00 0.3035083E-01 3.25
3600.0 0.9235832E-00 0.8879471E+00 0.3563607E-01 3.86
3800.0 0.9135049E+00 0.8722199E+00 0.4128495E-01 4.62
4000.0 0.9028628E+00 0.8556089E+00 0.4725389E-01 5.23
4200.D 0.89167691.00 0.8381827E+00 0.534g422E-01 6.00
440C 0 0.8799678E-00 0.8200143E+00 0.5995355E-01 6.81
4600.0 0.8677563E+00 0.8011793E+00 0.6657703E-01 7.67
4800,0 0.6550640E+00 0.7817565E+00 0.7330754E-01 8.57
5000.0 0.8419129E+00 0.7618252E.00 0.8008774E-01 9.51
5200.0 0.9283256E-00 0.7414650E+00 0.8686066E-01 10.49
6400.0 0.8143252E+00 0.72075531.00 0.9356992E-01 11.49
5600.0 0.7999355Ei.00 0.6997733E+00 0.1001622E+00 12.52
5800.0 0.7851820E.00 0.6785947E.00 0.1065863E+00 13.57
600C.0 0.7700870E.00 0.6572924E+00 0.1127946E+00 14.65

1480C.0 0.16253391.00 0.74684581-01 0.7784932E-01 51.04
15000.0 0.1448945E+00 0.7032622E-01 0.7456828E-01 51.46
15200.0 0.13757261.00 0.6620502E-01 0.71367581-01 51.88
15400.0 0.13056041.0: 0.6230972E-01 0.68250681-01 52.28
15600 0 0.12384981.00 0.5862943E-01 0.6622037E-01 52.66
168U:.0 0.1174324E+00 0.5615366E-01 0.6227874E-01 53.03
16000.0 0.1112999E+00 0.5187227E-01 0.5942763E-01 53.39
16200.0 0.1064434E.00 0.4877551E-01 0.5666789E-01 63.74
16400.0 0.9985439E-01 0.465401E-01 0.64000381-01 54.08
16600.0 0.94524011-01 0.43098781-01 0.5142523E-01 54.40
16800.0 0.89443511-01 0.40601201-01 0.4894231E-01 54.72
17000.0 0.8460410E-01 0.3805299E-01 0.46551111-01 55.02
17200.0 0.79997101-01 0.3574626E-01 0.4425034E-01 55.32
17400.0 0.756133E-01 0.3357347E-01 0.4204036E-01 55.50
17500.0 0.72445761-01 0.31527381-01 0.3991838E-01 55.87
17800.0 0.6748447E-01 0.2960114E-01 0.3788333E-01 56.14
18000.0 0.6372169E-01 0.2778819E-01 0.3593350E-01 56.39
1820C.0 0.6014929E-01 0.26082281-01 0.34067011-01 56.64
18400.0 0.56759321-01 0.2447747E-01 0.32281851-01 56.87
18600.0 0.53544001-01 0.2296812E-01 0.3057581-01 57.10
18800.0 0.5049577E-01 0.2154886E-01 0.28946911-01 57.33
19000.0 0.47607251-01 0.2021460E-01 0.2739265E-01 57.54
19200.0 0.4A871281-01 0.18960501-01 0.25910781-01 67.74
19400.0 0.4228092E-01 0.17781981-01 0.2449894E-01 57.94
19600.0 0.3962942E-01 0.1667470E-01 0.2315472E-01 58.13
19800.0 0.3751029E-01 0.1563464E-01 0.21875751-01 58.32
20000.0 0.3631723E-01 0.1465761E-01 0.2065962E-01 58.50

Figure 7-9: Comparison of ADVISER and SENET results for Figure 7.7,
Cmn0, 1 P, 2M required.

Examples and Results 211

Figure 7-7, were forced into the Kernel). This is not always recommended with the current

version of ADVISER, however, since this usually results in a larger Kernel. the number of PTSs

in the graph is higher and thus the number of cases of feasible compositions rises thereby

causing a much higher computation time for the problem. In fact. although with high

likelihood the ADV!SER test would have succeeded if all Kmaps were included in the Kernel,

doing so generated so many cases to be analyzed that the current ADVISER version would

have used extreme amounts of CPU time for the solution.

7.3.2 The C.mmp architecture

The next of the SENET examples chosen for comparison with ADVISER was the C.mmp

architecture [Wulf 72]. The architecture consists of an N x M crosspoint switch which has IN

memory ports and M processor ports. Hence each processor is able to access each memory

port. In the original C.mmp architecture contention for access to the same memory por was

resolved by queueing requests at the port. Figure 7-10 shows the mode treated by SENET.

On the processor side of the crosspoint switch the switch ports may have I/O lines attached

to them through direct-memory-access I/O controllers. SENET also treats two cases of

switch reliability separately. In one case the individual crosspoint reliabilities are lumped and

the switch is considered an indivisible component. In the other case the individual crosspoirt

reliabilities and the actual distributed structure of the switch are taken into account. For

further details the reader is referred to [Siewiorek 78]. The particular example chosen for

testing here is shown in Figure 7.10 and consists of six memories, two on each of three

memory ports. and three processors and one I/O controller each on their own ports on the

processor side of the switch, The K.clock is a system wide clock used for processor

synchronization and its functioning is essential to the system. An IPCM (see Chapter 6) was

assigned to the crosspoint switch in the lumped case which allowed communication only from

processors to memories and vice versa.

Figure 7-11 shows parts of the comparison between ADV!SER and SENET results for the

architecture of Figure 7.10 with the switch treated as lumped and the requirement (2,P) A

4(2,M) A (1(,:.io) A i(1,K.clock). Similarly, Figure 7.12 shows parts of the comparison

between ADVISER and SENET results for the architecture of Figure 7.10 with the switch

treated as distributed and the same requirement as for the case of the lumped switch The

small differences of less than one percent in this case possibly arise from a slightly different

way of assigning the crosspoint failure rates to the switch multiplexers in the SENET program

versus ADVISER. The implementation of the switch actually realizes the conceptual NxM

.....

212 Examples and Results

SK,- Am

M -- - AN S

}K- Am

KP K KIP K10

III I
PPP IOL

Key

AM 4 Memory Arbiter Kil Memory Control
KP "Relocation Box" ICLOCK System Clock

IOL 1/0 Line P Processor
S Crosspoint, Switch M Memory

Flgu re 7- 10: C.mmp architecture for ADVISER test.

croSspoints, as a set of M N-to-1 multiplexers in the memory- to- processor paths and N M-to-1

multiplexers in the processor-to- memory paths (see [Siewiorek 781).

7.3.3 The Tandem architecture

The third example treated by SENET is the Tandem-lB NonStop 3 architecture which is

described in detail in [Katzman 77]. Figure 7-13(a) shows the version of the Tandem

37Tidem-16 "n NonStop are gmteed tralemarlia of Tandem Comutets Inc.

Examples and Resul'Us 213

T ine SEWET ADVI SERP (SEWET-ADVISER) % ~l
ZOC 0 C 9911113E-00 0.99,11,2E-03 0.8195A2E-C7 0
400 0 0 i8Z0786E-0 O.982278SE-OcC -0.163912SE-06 0C
600,C 0.%7!Sn2CE*CO 0.973t319E-00 0.9195639E-07 0 00
BCOC 0 0 94325E-0C, 0 36"5E-:C -0.2235174E-C7 0.30

100C ,C 0 .9561173E-00 O.WlltI;E-00 0.38743:ZE-06 0.0 0
120C C C.9475094E-00 C,;475n;EE.CO -. 1Z655;E-06 0-1c
1A0.0 O.i389579E-O^ 0.938958CE-SC -0.14 ^1116E-05 0.0c
160CC O.93C462gE-CO 0.93046:7E-00 0.238418EE-06 0.00
1801,' 0 .92202Z43E-0C 0 AZ2C24ZE.cc 0. 1117587E-06 0.00
200C.C 0.9136422E.I0 0.91364!gE-00 0.26SZ209E-Cf 0.00
2200 C 0 9053!56E-0C 0.905315SE-00 0 381E0 ~ 00
2400' C C.8913475E-00 C.8S7C4E.EOc 0. 1:85E-05 D.DC
2600.0 0.8888348E-00 0.S888329E-OC C.8515656E-C6 0.00
28'C0.0 C .8806785E-OC 0. 8806773E-00 C 0 214445E-05 0. 1.

1020C CM!73163E 00 0.5173:77E.OC 0, 8 G25!GE-05 0 00
10400.0 0.6:11867E+00 0,6111779E-00 0.877784E-05 C.0
1060C0,0 C.6C!!059f-0^C C. 6050;72f -00 0.870O'29E-098 C .14
10800 C 0.599C737E-00 C.5930646E-0 C^ 07l1E0 0.00:
21000 C 0.S930897E-00 0.5930806E-0C 0.907450E-05 0.cC
112%CC 0C.5871538E-00 0.5871444E-00 O.G3501479E-05 000)
104C0 C.581Z856E-00 C.5812561E-OC^ 0.95D524!;-O C.00

10.0 0.1754249E-00 0.5754152E-00 13.9693205E-Orz 0.00
11800.: 0.569t314E-00 0.5696217E-30 C.970056SEE-C5 00
1200C ^, C.5638848E-00 0. 5638751E-00 C.9737909E-05 0.03
12 2 000, C .55E1849E-00 0.5581748E+00 0. 10095:4E-04 C000
1Z40O.C C.55253E-cC 0.65Z5122ico 0.1008809E-C4 C.101
12600 C C.54EG:39E-0C0.J96E0 0. 2C33306E-0 C'^O
12 80. 0.5413523;E.'0 0.541351BE.OC 0. 1050B32E-04 0 .001

27500. C.229C987E+00 0.Z39DB96E-00 0'9100884C-0C 0. 10
2 7 80 0.23GZ578E-00 0.236267E-CC 0. 9C58.43E-0,$ 0.10
280":," 0.2334649E+00 0.2334559E+30 0.902537BE-05 0-0
28200.0 0,23C6897E+00 0.2306806E-00 0.8g36834E-C5 00
284^-0.: C.ZZ7G4Z0E+0O 0.227933ZE-00 0.8784235E-O! 0.00
Z8500^ C 0,2252217E+00 0.2252130E+00 C.867433PE-C! 0.00
28800.0 0.2225286E-00 0.222520OE01-C0.B95~ 5 00
2900:,C 0.219862SE-00 0.2198539E-'0 ,8610 00
2920oo.C 0.2172231E-00 C.2172145E-OC 0.6d108Z1E-05 0.001
29400 0 0.2146103E+00 0,2146019E-00 0,8353277E-05 C-3C
2 9 6 00,,0 0.2120238E+00 C.2120156E-00 0,8186325E-C5 CO1O I
2980^0.0 C 204636E.0C 0.2094554E-00 0,8180737E-05 0.00)
30000.0 0.2069293E*00 C.20692131+00 0.8026138E-CE 0.,0 0

37800.0 0.1Z63744E-O0C C.125370CE-00 0.4375353E-OE 0.00
38000 .0 0,.1247286E-00 0. 1247243E-00 0. 4314817E-0'5 000 1
3820% 0. 1231014E+00 0, 1220972E.00 0. 42254IIE-05 CCC
3840C. 0. 1214;27E-00 0,.1214885E-00 0. 4170462E-05t 0 .00
38500.0 0 11990Z3E1^ .292-C 0.412904CE1-05 0.00
388:00, 0.1833001-00 0.11832801-:0 0.4023314E-05 0.00
390^^00 0. 1167757E1.00 0. 115718f-CO C,.945:8ZE-05 CO
3^20: .0 0.15320 .112110 .3571 C.0

394C0.0 C.1137204E+00 0.1137166E.00 0.3615629f--0! 0.0
3960C C 0.1!221901.00 0.1122ME3100 O.35722051-OS 0 00
398%0.C C.110735CE-OC 0.11073:4E.00 0.3603287E-05 00
40000.0 0.1092682E1.00 C.1092647E.00 0.3537163E-06 .0

Figure 7-1 1: Comparison of ADVISER anid SENET results for Figure 7. 2
C.mmp, lumped switch, 2 P, 2 M and I K.io required.

214 Examples and Results

T ime SEWET ADVISER (SEMET-ADVISER) % Diff.
200.0 0.9975381E+00 0.997652$E+00 -0.1147017E-03 0.01
400.0 0.950695E+00 0.9952881E+00 -0.2280360E-03 0.02
600,0 0.9925644E+00 0.9929053E+00 -0.3409162E-03 0.03
800.0 0.9900534E+00 0.9905054E+00 -0.4519969E-03 0.05

1000.0 0.9675266E+00 0.9680890E*00 -0.5624220E-03 0.06
1200.0 0.9649844E+00 o.gs6559E*00 -0.6715357E-03 0.07
1400.0 0.98242721.00 0.9832067E*00 -0.7794574E-03 0.08
1600.0 0.9798553E+00 0.9807418E+00 -0.68652g7E-03 0.09
1800.0 0.9772690E+00 0.9782609E+00 -0.9919032E-03 0.10
2000.0 0.9746688E.00 0.9767664E.00 -0.1096606E-02 0.11
2200.0 0.9720648E+00 0.9732548E+00 -0.11999681-02 0.12
2400.0 0.9694274E+00 0.9707297E+00 -0.13022801-02 0.13
Z600.0 0.9667867E+00 0.9591900E+00 -3.1403287E-02 0.15

9200.0 0.8737929E.00 0.8778366E+00 -0.4043624E-02 0,46
9400.0 0.8708335E+00 0.9749353E-00 -0.4101843E-02 0.47
9600.0 0.8678675E-00 0.87202621.00 -0.4158720E-02 0.48
0800.0 0.8648948E+00 0.8691091E+00 -0,4214294E-02 0.49
10000.0 0.8529156E+00 0.8661845E+00 -0.4268914E-02 0.50
10200.0 0.8589303E+00 0.9632521E*00 -0.4321851E-02 0.50
10400.0 0.8559386E+00 0.96031Z1*00 -0.4373640E-02 0.51

16600.0 0.7762822E+00 0.7815654E+00 -0.5283Z22E-02 0.68
15800.0 0.7731680E.00 0.7784604E-00 -0.6302370E-02 0 69
16000.0 0.7700303E.00 0.7753506E.00 -0.5320296E-02 0.69
16200.0 0.7668991E+00 0.7722361E+00 -0.6335985E-02 0.70
16400.0 0.7637644E.00 0.7591172E-00 -0.5352832E-02 0.70
16600.0 0.7506265E.00 0.7659939E.00 -0.53673981-02 0.71

21400.0 0.6845764E+00 0.5900008E+00 -0.5424440E-02 0.79
21600.0 0.5813883E+00 0.68680419+00 -0.5415820E-02 0.79
21800.0 0.6781997E.00 0.5836061E+00 -0.5406417E-02 0.80
22000.0 0.6750106E+00 0.68040691.00 -0.6396277E-02 0.80
22200.0 0.67182111.00 0.6772065E*00 -0.5385429E-02 0.80
22400.0 0.6686315E+00 0.5740052E#00 -0.5373731E-02 0.80
22600.0 0.6654417E+00 0.6708030E.00 -0.5361326E-02 0.81

25200.0 0.6240197E+00 0.62916041.00 -0.5140752E-02 0.82
25400.0 0.6208412E.00 0.5259608E*00 -0.5119599E-02 0.82
26600.0 0.6176643E.00 0.6227623E.00 -0.5098045E-02 0.83
25800.0 0.6144894E+00 0.6195652E*00 -0.5075775E-02 0.83
26000.0 0.6113166E.00 0.6163595E1,00 -0.5053014E-02 0.83

28800.0 0.5671748E+00 0.5718629E-00 -0.4688144E-02 0 83
29000.0 0.5640468E.00 0.5587060E+00 -0.4659235E-02 0.83
29200.0 0.560922$E+00 0.5655528E+00 -0.4630029E-02 0.83
29400.0 0.5578030E.00 0.5624034E+00 -0.460043SE-02 0.82
29600.0 0,5546875E+00 0.5592580E+00 -0.4570462E-02 0.82

32200.0 0.5146284E+00 0.5187874E'+00 -0.4158989E-02 0.82
32400.0 0.5115862E+00 0.5157112E+00 -0.41259681-02 0.81
32600.0 0.5085482E+00 0.5126408E+00 -0.4092534E-02 0.80
32800.0 0.5056172E+00 0.6095765E*00 -0.40693001-02 0.8C
33000.0 0.50249261.00 0.5065184E+00 -0.40257801-02 0.80
33200.0 0.499474AE*00 0.5034665E.00 -0.3992125E-02 0.80
33400.0 0.4964627E+00 0,5004211E+00 -0.39583561-02 0.80
33600.0 0.49345771.00 0.4973822E+00 -0.3924429E-02 0.80

39000.0 0.4152083E+00 0.41820351.00 -0.2296219E-02 0.72
30200.0 0.4224301E+00 0.4153913E.00 -0.2961207E-02 0.72
39400.0 0.4096613E+00 0.4125885E.00 -0.2927266E-02 0.71

39600.0 0.4069020E.00 0.4097954E-00 -0.28934181-02 0.71
30800.0 0.4041523E#00 0.4070119E.00 -0.28596261-02 0.71
40000.0 0.4014123E*00 0.4042382E.00 -0.2825861-02 0 70

Figure 7.12: Comparison of ADVISER and SENET results for Figure 7.10.
C.mmp, distributed switch, 2 P, 2 M and 1 Kio required.

Examples and Results 215

B-

TB-.

C C C

/K Kc

IOL--S1 0 SIF-IOL

*1 Key

B Dynabus IOL 1/0 Line
C Computer S10 1/0 Switch

K Communications Control

(a)

KB

Kj1o P M M M' M M M M M

Key

K 10 I/0 Control P Processor
KB Dynabus Control H Memory

(b)

Figure 7.13: Tandem- 16 architecture for AD)VISER test.
(a) PMS diagram (b) Detail of Computer.

216 Examples and Results

architecture used for the test. There are three computers which communicate via a duplicated

fast bus termed the Dynabus. Each computer is composed of a processor, local memory, a

Dynabus control and an I/O channel (Figure 7-13(b)). The computers communicate with I/0

lines via dual-ported I/0 switches which are connected to dual-ported (possibly multi-ported)

communications controllers. This arrangement gives the architecture high availability.

Tht Tandem example provided an opportunity for using the facility in ADVSER where

independent symmetric sub-structures of the original PMS structure are submitted as

separate problems to ADVISER and the solutions are used in conjunction. In the Tandem

example, the computers were taken to be identical and each computer was taken by SENET

to have eight local memories of which at least six were required to function for a reliable

computer. In order for the architecture to be functional the requirement was that at least two

of the three computers and both the I/O lines should be functional. The Tandem example

was split into two problems for ADVISER. The first problem is to compute the reliability of a

single computer with the requirement that six of the eight available local memories, the

processor, the Dynabus control and the I/0 channel should function. The second problem

considers the Tandem architecture with the computers as indivisible entities and computes

the reliability assuming that two of the computers and both the I/0 lines need to function.

The reliability of components of type "computer" in the second problem is taken to be what

was obtained as a solution of first problem. ADVISER provides the capability of asserting that

the reliability of a component type will be provided by an external Fortran (or Sail) function.

Then, at the appropriate point in the Fortran (or Sail) output for the example, calls are

provided to the external function in order to obtain the reliability of the substructure, in this

case a computer.

Figure 7-14 shows the results of the comparison for the Tandem architecture of Figure 7-13

for the requirement "4,(2,C) A (2,1OL)". For each computer the requirement was "#(6.M) A

*(l.P) A I(1,IOC) A +(1,Kb)". The tests were also successful for the case of a four.

computer Tandem model which contained four computers and three I/0 lines connected in

regular fashion in extension of Figure 7-13(a).

There were two cases in which the output of ADVISER did not match that of SENET for the

example of Figure 7.13. The requirements in these cases were respectively "%(1,C) A

O(1,IOL)" and "i,(2,C) A 4(1,1OL)". Figure 7.15 shows the results of the comparison in the

first for the first of these two requirements. In both these, however, cases hand computation

using the LISP-MACSYMA combination described in Section 7.2 showed that the ADVISER

output was correct. Since SENET is not too clear on this point, the discrepancies are thought

Examples and Results 21,

Time SENET ADVISE R (SEMET-AOV!SEP, D 0f.
20C. 0 0.9871,584E-00 0 g87C56ZE-OC 0 !5Z-:6 : CC .
4^,C.C^ 0.9731240E.CC C.973123SE-OC 0.193771!!E-Ce C, OC
6CC C 0.9677239E.CC 0 9577239E-C,' -C 447zs48- -
Sri": 0.941:73E-DO 0.94IIC5CE.CC C 35C17C3!-Cf

I OC. O.;235914f.C 0. 9235;:CE-CC C.35:17731-CE c c c
I 2^C .C 0.905:732E-00 0. 905C734E-C' -0. 1713634E-C6 IV CC.1
14C 0 .885720CCE.30 OCb.5720'E-OC 0.745)56-C-8 C CC
16CC C B.855&16E-CC0 0.865625 7 E-),' -0.6705523E-07 0 C

ISC. 844879BE-0C0.84?5.C 05 H-C C
0OC. .8.35;583E-00 C.9235678E-OC 0.155622E-C6 C C

52C. .36;585!7E-30 0.3658517E-OC -. 1153ECC CC
64CC.. 0.341,,387E-30 0.3477387E-O 0.37'Z clC-CB C C
66C: 0.33018SIE-0CC.33C188IE-CC -C3,: C
6!1C., C.31321:E-3C 01.313Z1C!E-; -C.37Z5C;C;E-C- CCC,
7 31)cC. 1 0 .268:zZE-00 0 .268:23fC - .76.731:^E-37 C CC
72CC.C 0 .ZBC 94E.CC 0 .ZSC;93E-CC, 0 . 11z1;3r-OE 0C0
7. 0 L C.25!738EC C 0.2657737E-ZC1 C8 4C57CE -C C
760C.1 C 2511354--Cr C2511355E-CC -C148C-Z CC

InCC C2C81-C .3~CEC .48428521-CC 0C

122,C .C C. 5A1557GE-01 0 .541857SE1I 0. 12572CEE-07 C cc
1241c C C. 502WCIE-C1 0. 5024924E-0'. 7 45C5511-08 CC

2 6cC. C. 42322E-31 4213228E-Cl C . 587:2AE-CS C CC

13ZCCC- C3E;334EE--Cl 0.356234EE-C1 C.6662EC
134C.11 0.3414S35E-01 C .341-536E-:1 0 .37252^ZE-08 0 .
136C: C.315513-C-1 C.31455140E-CI -C 7S:62.ZE-C8 C ,-
i3eZc C 0 .291371.3E-^31 C.2;311 -C 76S34'IE-!CS 0 0
i4CicC c .268;264E-ci C .468325.1-C1! -0. 25 13C1-CP C.CC1

08C. 4882531E-CC 0 4S525S311-32 0. 1CCEC C.C
12CC 0.4463C34E-02 C.44153C34E-02 0.4 74536E-O; C C

18-CC C .407808SE-02 0 407683511-C2 -0, 465A5:3E-09 CCC 1
1860C S 0.3724;2Ci-02 C .37Z49Z!E-^C -0 6984919E-Cg C CC
ISSO:. 0. 34C1 C96: -02 C .34010C;5E -C C2C272E58E-C C, CC

ICCC 0.31:430?E-32 C.310043C9:-1C P-4C7452EE-Cc C C
1920^v,: 0.28324221-CZ 0.2832422E-CZ 0.37634;SE-0; 0.1.
194CC.C, 0.2563452E-02 0. 2583!52t-1'2 0 . 4r745!AE-.S 0c c
1960C C 0.23555f3E-02 0. 2355553E-C: -0 .29103131-C 0 CC1
198CCI.0 0.2147C58E-QCz 0.2147058E-.2 *C21C 1 iC

242CC.C 0. Z64z56E-CZ 0.25;.?55E-C37 C. 56e6E- :C c:
244CC z 0. 234956!E-03 0 234*5621-03 -C.55;5C 0cC
2 45CC C 0. 2!2764. -03 v'.21287-E-3 -3413651--C CC
2 4CC. 0 C25131-3 C1 191'5153E-CC 325415581- I CC

252CC C .1A54E5-CC 0.157754E1-3 -. 5-C CC
254cC 0.1 1237-C3 0. 1427337E-33 3 3E7v;s--C
256'^.C C. 1291C78E-03 0. 1291:79E-03 -0,582 71!65-C C
zSSCC.C 3. 1:57588E-03 0. IIA7588E-C3 O.24E56351- I
25CC 0 C. C55695E-03 .105595-03 0. 331C27E- 1C CC

Figure 7-14: Comparison of ADVISER and SENET results for Figure ~'13.
Tandem. 2 0- and 2 COL required,

218 Examples and Results

T ime SIMET ADVISER (SEWET-ADVISER) % if
200.0 0.9998223E-00 0.992985E*00 -0.1361519E-03 0.01
400.0 0.9992822E*O0 0.9995115E+00 -0.5293712E-03 0.05
600.0 O.998366SE4DO 0.9995273E+00 -0.116048SE-02 0.1Z
800.0 0.9970616E+00 0.9990740E+00 -0.2012357E-02 0.20
1000.0 O.9953511E400 0.9984210E-00 -0.3069895E-02 0.31
1200.0 0.9932191E+00 0.997538$E+00 -0.4319750E-02 0.43
1400.0 0.9906403E+00 0.9953988E+00 -0.57494&GE-02 0.58
1000.0 0.2876261E+00 0.9949736E*00 *0.734740SE-02 0.74
1800.0 0.9841342E-00 0.9932366E+00 -0.9102374E-02 0.92
2000.0 0.9801596E+00 0.9911631E+00 -0.1200352E-01 1.12
2200.0 0.9756894E+00 0.9887297E+00 -0.1304028E-01 1.34
Z400.0 0,9707126E+00 0.9859143E400 -0.1520169E-01 1.57
2600.0 0.9652199E+00 0.982696SE-00 -0.1747689E-02 1.81

9200.0 0.5522491E+00 0.6389382E+00 -0.86689IIE-01 15.70
9400.0 0.5369108E+00 0.624O145E*00 -0.8710366E-01 16.22
9600.0 0.5216915E+00 0.6090811E+00 -0.8738955E-01 16.75
9800.0 0.5066104E+00 0.5941603E+00 -0,8754990E-01 17.28
10000.0 0.4916856E+00 0.5792730E-00 -0.8758744E-01 17.81
10200.0 0.4769340E+00 0.5644397E+00 -0,8750571E-01 18.35

15800.0 0.1687120E+00 0.2243941E+00 -0.5568206E-01 33.00
15000.0 0.1617050E+00 0.2158566E-00 -0.5415158E-01 33.49
16200.0 0.1549461E+00 0.2075756E#00 -0.5263038E-01 33 97
16400.0 0.1484267E*00 0.1995476E+00 -0.5112094E-01 34.44
16500.0 0.1421441E+00 0.1917695E*00 -0.496254SE-01 34.91

21800.0 0.4279192E-01 0.6216241E-01 -0.1937049E-01 45.27
22000.0 0.4076578E-01 0.5935029E-01 -0.1968451E-01 45.59
22200.0 0.3883022E-01 0.5B655I0E-01 -0,178248SE-01 45.90
22400.0 0.3698268E-01 0.540725$E-01 -0,1709110E-01 46.22
22600.0 0.3521632E-01 0.5159896E-01 -0.1538265E-01 46.52

25200.0 0.1844592E-01 0.2766752E-01 -0.9221594E-02 49.99
25400.0 0.1753758E-02 0.263456E-02 -0,3808033E-02 50.22
25600.0 0.1667235E-01 0.2508355E-02 -0.8411204E-02 50.45
25800.0 0.1684828E-01 0.2387885E-01 -0.8030573E-02 50.67
26000.0 0.1506352E-01 0.22729115-01 -0,7666589E-02 50.89

28800.0 0.73319805-02 0.11252285-01 -0.3920299E-02 53.47
29000.0 0.6960301E-02 0.1069262E-01 -0.3732322E-02 53.62
29200.0 0.6605983E-02 0.1015962E-01 -0.3552836E-02 63.77
29400.0 0.5271152E-02 0.91552642E-02 -0.3381490E-02 53.92
29600.0 0.5951g71E-02 0.9169924E-02 -0.3217953E-02 54.07

32400.0 0.2844847E-02 0.44309885-02 -0.1586141E-02 65.75
32500.0 0.2697490E-02 0,4204167E-02 -0.1506677E-02 55.85
32800.0 0.2557619E-02 0.39886655-02 -0.1431046E-02 55.95
33000.0 0.2424864E-02 0.3783937E-02 -0.1359073E-02 56.05
33200.0 0.2298872E-02 0.3589462E-02 -0.1290690E-02 56.14
33400.0 0,2179307E-02 0.3404743E-02 -0.1225436E-02 56.23

39000.0 0.47877985-03 0.7565972E-03 -0.2778174E-03 58.03
39200.0 0.453263$E-03 0.7164731E-03 -0.2632093E-03 58.07
39400.0 0.4290907E-03 0.5784452E-03 -0.24935455-03 58.11
39600.0 0.40619085-03 0.6424061E-03 -0.2362153E-03 58.15
30900.0 0.38449805-03 0.6082538E-03 -0.2237558E-03 58.19
40000.0 0.3539497E-03 0.5758913E-03 -0.21194165-03 58.23

Figure 7-15: Comparison of ADVISER and SENET results for Figure 7.13,
Tandem, 1 C and 1 IOL required.

Examples and Results 219

to result from possible slight differences in the ADVISER rehaoil:tfy model of the architecture

as compared to the model assumed in the SENET program, especialy for io, values of the

requirements (see [Siewiorek 78]. Page 1)1.75).

7.3.4 The Global Bus architecture

The next example from SENET used as a test of ADVISER concerns the Global Bus

multiprocessor arch;*ecture Two cases of the PMS diagram of the architecture used in the

test are shown in Figure 7.16. The Globa B..s architecture is sim;lar to the arch!tecture cf a

single cluster of Cm' described in Section 7.3.1. The global bus shared by all the processors

is analogous to the Kmap of a Cm* cluster,. Each of the processors is able to access

memories in other clusters via the global bus and the failure of a processor does not preclude

accessing of its associated memories by processors in other clusters.

The attempts at matching results for the Global Bus architecture without 1/C lines (Figure

7-16(a)) were successful for all requirements for low values of the numoe, of memores

configured per processor 38. However. discrepancies appeared when the number of

memories per processor exceeded t'ree. All attempts to obtain a match with SENET resul:s

failed in the case of the Global Bus architecture with I/C lines (Figure 7-15(b})) Sibseque'tly.

manual construction was used to verify the correctness of ADVISER output in both cases of

Figure 7-16. Figure 7.17 shows the comparison of SENET and ADVISER results for the case

of Figure 7-16(b) with a requirement of "%(2,P) A .(8.M) A l,(1.10L", The mismatch is

obvious. The reliability for this example was derived b hand, using the success.state-table

method described in SENET, to be

R = RbsR RIoL(o2R ,3R 2 ., 6R 3 R 2P 5 2R6)sys b.'S 1 oL*R R13'R

where

, - 2 R3 R3 .RAjMR M
K .1i K PAJ

P1 R (1. -R 3 .R,3 ,7Kq =
R io l "K.10) K "P A GM

3Note here that the aefice icy in the TiEEPE'. aigonthm ,'hich :a .se3 AC\'LSE , t c'M.'te a ,.-ferenh
reiabiiitt Or the :,r ° structture for small a!.es of tre re.K, jr ents zces nct nave .zte e -elect .in ',e Glba. ..s
cse since the A-as - or:. to me r the hKe"ei wd . t #esc'ibe in Section 3) a-: :e us c:tntole .,

for a oroCess O is always -eces.sa r. a-) s),sem state ,n which the :rces.o' S 'uncticai

220 Examples and Results

P M M MM P M M MM P M MM M

Key

S Global Bus P Processor
K Bus Control M Memory

(a)

S

P M MM M P M M MMK 1 0 P M MM MK

SI0

IOL

Key

S Global Bus P Processor K10 1/0 Interface
K Bus Control N Momory S0 10Sic

IOL 1/0 Line ~IOSic

(b)

Figu re 7-16: The Global Bus architecture used for ADVISER tests
(a) Without 1/0 lines (b) With I/0 line.

Examples and Results 221

T ime SEW6 ADVISER (SENdET-ADVISEP) 7.Dif.
2CC 30.72-0 0.87 0 -0. 9058192E-03 0 09
4.0C 1.737.- C .968274:6-CC :.45Z3Z85E-CO 4
60C.O .507 0.941E4;94E-0. 0.1442794E-01 .6
8CC C 97578-C 11C7i5E-nC: Z3C1EC. 29
1001C C9C736C C.6756554.6-OC 0.4210385E-Cl 5
12CC, C .89e652E6-0c 0.8388458E-00 0.5780577[-C" 6 ~
140CC 0.6743814E-ZCC 0.800E5C26-D 0.7373115E-01 8 .2
160C , 0.85C;96860C 0. 7t167876-OC 0.8932312E-:l Ic 5
180 .3 C.S625544!E-00 0 .7224.027E.00 0. 1041414E-C'O 12 .60,

ZCCC C 0CICCIE-OC .583'9035--C 3.17566C 147
2ZC0 07746C32E-CO 0.64.13S!1,-OC 0. 1302681E-)0 16.82

200 .424E1 C CC56 0. 1411737E-:CC is8.:
25CO C 719C95C6-OC C .5EM86336-C 0. 151^4 8 E7 E-C 23 93
28 C.3 C.59C2589E-OC 05298-o 0851~C 22

320.3 C.31976-C C464886CC 0.5851456E-CC; 2 E;C
343 C 1C6-C 0. 429!856E-0: 0.2714939E-0', 28 E
361. .5C82- C 0.39807296-:CC C 172:636-C~c 3C: 28
3 8CC C 0.54C986SE-C 0. 368C003E-CC' 0 .17298E556-CC 31 9 8
40CC C C.6112325E-CO 0 .33r94101E-CC1 0.1718224E-0: 31. 1
42301.1 0.4818778E-00 O.1386C .15964916-CC 35.19
40C 0.5C36C 3.2867E716-1-C C1E626E-^ 3e
453. .486CC C 0.2527229E-11,C 0.15:56 36 :7
480 .0 0 .3;75545E-31 0.24018156-CC: C 1573730-C C 39. 59
50ccC. .3117156-3C 0.2191171E-C, 0.151964-6-CC 40. 9-5

13 50 .4 56-C .120c7C86-:Z 3. 3:5843E-: 73 f I

14 ̂ 0CC 3 0.3Z9E358E-02 0. 842125EE-03 C.2454243E-C2 74.
1420.,0 C29C153^96-CZ 0.7292--818E-C2 0.2172157E-CC 74.8t
14 40. 11c .v2552-e5E-02 0.e3129'.EE-C3 0.19210^74E-:2 75 .25
i4pc:. C.42244C7:E-ZC2 c.54627E06-c3-. c'15977;46-C2 75.ee
14800.3 C.19718046-C2 0.4723922E-03 0.1499A,2E-C2 760:4
150c1.7 0 c 17316C46-Cz C..89360 0.1321308-CE 7t -'
152c0, C 0.15i98366-02 0.352724.E-03, 0.1157112E-C2 7t 79
1540 c.0C .2333259E-CC 0.30451,",E-03 0. 102868S6-CC 77.15
15EO10. 0 1168874E-02 0.2528e64-23 0.9061C556-C3 7 7.51
1580CC.0 0. IC244186-02 0. 2267729E-03 0. 79764516-O03 77.85
1600C. 0.8972958E-03 .1;5545;E-013 0. 7017489E-O3 78^1
16200.0 .7855659E-03 0.1685475E-o3 C.617C2i4E-03 78.54
1640C.30 6874278E-03 0 .1452145;-01 C.5422133E-C3 78. 8
1560CC 0.6012693E-03 0.225C5986E-0 0.4762095E-03 79.C
158C:. C 5256767E-02' 0 .10596 C .416C1t7E-03 79 52
1700 C. C0 1.4530 3 L C 9Z142E16-0 c.5776 79 .E3
17200.0 30.40^127346-03 C0 79E;C32:-OC4 C.22:583:'-C2 8.1
17 4 C ..C 0.35:278H6-03 c .68396 0 .2:85556E-03 a04
17600.13 0.081--3 058859875E-04 0 4926C 80 7-
17800.0 0.26679736-03 0.50603136-04 0.21eis97E-13 810
18000.0O 0.232S742E-C3. C 43469196-04 C.6:C-C 13
18:00..1 0 .202834.66-03 0.37224-16E-C4 0.:E55C:6-C^ 81.5
18400C.3 0.21757576-:3 0.3203756E-34 CA4472DCE-C,3 81 -7
18600 C1 C 1!398126-0 3 0.2749C50E-:4 &Z2496-3 8 15
1880C .0 C. 1340881E-33 4.2358121E-C4 0 11050596-01 8, .11
I1;000.^ C. 115720SE-03 0.2022148E-04 0 9549^z3ZE-,4 82 EE
19200 .0 0 .101573SE-03 0.17335:CE-04 0.823Cc0 823

Figure 7.17: Comparison of ADVISEP and SENET results for Figure 7. 16,
Global Bus, 2 P, 8 M andl OL required.

222 Examples and Results

KI R2,O '21.R'R2 uR 2 ,1:13 , ,AGM2 K IO"K P"PR)'AGM

R3 RK.,o(1-RKbio) RKRP(1-RP)'RAG
R R o -R 23

R4 =R~,Q RK(1-RK) RR

R, R2,,o(RR2 KR 8R"RP

R5 Kjo(R Kic K K

R6 RK..o R2(1.R)R2"R8

and

R , = T4 002) -Mi " o1.R M) i

This reliability was compared to the output of ADVISER after substitution of Ro through R6
in the RPw polynomial by using MACSYMA as described in Listing 5 on Page 196. The

subtraction of the two polynomials resulted identically in zero, thereby showing that the

ADVISER output was correct for this case. A further test was made using a simpler version of

the architecture with only two memories per processor and the requirement "q'(2,P) A 4,(2,M)

A 4(1 ,IOL)". The reliability for this simpler case was computed with ADVISER as well as by

the LISP program of Section 7.2 working on a hand-constructed RBD for the case. When

symbolically compared with MACSYMA these two reliabilities were found to be identical.

7.3.5 The Pluribus architecture

The last of the five examples from SENET which were used to test ADVISER is the Pluribus

architecture which is described in [Ornstein 75]. The version of the architecture used to test

ADVISER is shown in Figure 7.18. Each of the processor buses has one or more processors

(P in the figure) and at least one local memory (ML) per processor has to function if a

processor bus is to be functional. On the memory buses are situated the shared memories

(MX) accessible by any processor on a processor bus. The I/O bus (there may be more than

one) connects to the I/O devices which are also accessible by any processor. The system

clock (CLK in the figure) and the Pseudo Interrupt Device (PID in the figure) are both essential

for system functioning and also reside on the I/0 bus.

For the test the architecture used had two processors and two local memories on each of

Examples and Results 223

ML ML P P MX NX

KS- S K K-S

ML ML P P MX MX

LSL -K -K-S i

K K K K

S

CLK PID IOL IOL

Key
P Processor K Bus Coupler

ML Local Memory CLK Clock
MX Shared Memory PID Pseudo-lnterrupt Device
S Bus IOL 1/0 Line

Figu re 7.18: Pluribus model for ADVISER test.

224 Examples anid Results

T ime SEMET ADVISER (SEMET-ADVISER) Di0ff
200.0 0.9945158E+00 0.9948578E.00 -0.3420487E-03 0.03
400.0 0.9881578E+00 0.9881006E+00 0.5715340E-04 0.01
600.0 0.9809476E+00 0.9797324E.00 0.1215190E-02 0.12
600.0 0.9729111E.00 0.2697837E-00 0.3127404E-02 0.32
1000.0 0.9640771E+00 0.2683o8zE*OC 0.5768895E-02 0.60
1200.0 0.9644773E+00 0.9453768E+00 0.9100489E-02 0.96
1400.0 0.9441460E+00 0.9310760E+00 0.1307096E-01 1.38
1600.0 0.9331194E+00 0.9154986E+00 0.1762076E-01 1.89
1800.0 0.9214355E+00 0.8987511E+00 0.2266440E-01 2.46
2000.0 0.9091336E*00 0.8309416E+00 0.2819197E-01 3.10
2200.0 0,8962542E+00 0.8621820E+00 0.3407221E-01 3.80
2400.0 0.8828383E+00 0.8425849E-00 0.4025344E-01 4.56
26000 0,8689275E-00 0.82226266.00 0.4666494E-01 5.37
2800.0 0.8545635E*00 0.8013255E+00 0.5323795E-01 6.23

10200.0 0.2989771E+00 0.1621089E+00 0.1368682E+00 46.78
10400.0 0.2880181E-00 0.1535380E+00 0.13448016.00 46.69
10600, 0.2773625E.00 0.1453676E+00 0.1319949E*00 47.59
10600.0 0.2670085E-00 0.1375836E+00 0,1294249E.00 £8.47
11000.0 0.2569537E+00 0.1301722E+00 0.12678166.00 49.34
11200.0 0.2471951E+00 0.1231193E+00 0.1240758E.00 50.19
11400.0 0.2377296E+00 0.1164113E+00 0.1213182E.00 51.03
11600.0 0.2285532E+00 0.1100346E.00 0.1185184E.00 51.86
11800.0 0.2196622E+00 0.1039763E.00 0.1156869E+00 52.67
12000.0 0.21106226.00 0.g822276E-01 0.1128294E6.00 63.46
1220C.0 0.20271856.00 0.9276142E-01 0.10996716.00 54.24
12400.0 0.1946564E+00 0.8757975E-C1 0.1070767E+00 65.01
12600.0 0.1868607E-00 0.82665686-01 0.1041951E.00 55.76
12800.0 0.1793263E+00 0.7800706E-01 0.1013193E+00 56.50

27400.0 0.5390093E-02 0.77672986-03 0.46133636-02 86.69
27600.0 0.5115320E-02 0.7273190E-03 0.4388001E-02 86.78
27800.0 0.4854218E-02 0.6810305E-03 0.4173187E-02 86.97
28000.0 0.46061306-02 0.6376685E-03 0.3968461E-02 86.16
28200.0 0.4370430E-02 0.59705006-03 0.3773380E-02 86.34
26400.0 0.41465186-02 0.55900286-03 0.3587515E-02 86.62
28600.0 0.39338266-02 0.5233657E-03 0.3410460E-02 86.70
28600.0 0.37318086-02 0.48998716-03 0.3241821E-02 86.87
29000.0 0.35399456-02 0.45872516-03 0.3081220E-02 87.04
29200.0 0.3357742E-02 0.4224468E-03 0.29282956-02 87.21
29400.0 0.3184727E-02 0.40202706-03 0.27827006-02 87.38
29600.0 0.30204506-02 0.3763489E-03 0.26441016-02 87.64
29800.0 0.2864483E-02 0.3623025E-03 0.2512181E-02 87.70
30000.0 0.27164166-02 0.3297848E-03 0.2386631E-02 87.86

37400.0 0.36943206-03 0.28297866-04 0.34113416-03 92.34
37600.0 0.34980836-03 0.26474686-04 0.32333366-03 92.43
37800.0 0.33121836-03 0.2476876E-04 0.3064495E-03 92.62
38000.0 0.3136080E-03 0.2317268E-04 0.2904364E-03 92.61
38200.0 0.2969265E-03 0.2167909E-04 0.27524746-03 92.70
38400.0 0.28112526-03 0.2028169E-04 0.26084386-03 92.79
38600.0 0.2661584E-03 0.1897423E-04 0.2471842E-03 92.87
38800.0 0.2519823E-03 0.17750926-04 0.2342314E-03 92.96
39000.0 0.2385656E-03 0.1660636E-04 0.2219492E-03 93.04
39200.0 0.2254392E-03 0.1553549E-04 0.2203037E-03 93.12
39400.0 0.213788-03 0.148336-04 0.1992622E-03 93.20
39600.0 0.2023902E-03 0.1369619E-04 0.1887940E-03 93.28
39800.0 0.19158896-03 0.12719186-04 0.1788697E-03 93.36
40000.0 0.1813601E-03 0.1189866E-04 0.1694614E-03 93.44

Figu re 7 -19: Comparison of ADVISER and SENET results for Figure 7-.18,
Pluribus, 2 P, 2 MX, 2 ML, 1 CLK, 1 PID, 1 IOL

Examples and Results 225

two processor buses, two shared memories on each of two memory ouses and two 1/O lines.

a clock and a PID on the single I/O bus. The requirements used were ",'(2,P) A 4(2,MX) A

,(2,ML) A 4,(1,CLK) A 4,(1,PID) A 4(1,1OL)". The results are shown in Figure 7-19. Again

the mismatch is unmistakable.

This mismatch, as in the case of the Cm* mismatches, was anticipated since it arose from a

known deficiency of ADVISER. This deficiency was the subject of Chapter 6, Section 6.9.3

which considered the side constraint dealing with bounded-clustering of critical components.

The deficiency is summarized here. In order to implement a complete form of the bounded-

clustering side constraint it is necessary to process a set of general inequalities which relate

the quantities of the different types of critical components to be chosen in a bounded cluster.

The current version of ADVISER allows only a weaker set of inequalities to be specified which

simply put an independent integer lower-bound on the numbers of each type of critical

component to be chosen in a bounded cluster. Relating this to the Pluribus example under

study. the number of local memories which need to be functional in order to insure that a

processor bus functions is bounded on the lower side by the number of processors which are

functional on tha: b-s. Thus the bounded-cluster constraint should be

(Number of ML) >. (Number of P) A (Number of P) _ 1

instead of which it was only possible to give ADVISER the weaker constraint

(Number of ML) >. 1 A (Number of P) > 1

In effect, therefore. the mismatch in Figure 7-19 reflects the fact that the SENET program

for the architecture and ADVISER were employing slightly different models of the

architecture. The question now arises, if one is to grant the correctness of the model

assumed by ADVISER, is the reliability it computes correct for that mode? It was decided to

investigate this by comparing to hand-computation. However, due to the complexity of the

architecture and the inability of the LISP program to cope with the size of the hand,

constructed RBD for Figure 7.18 it was decided to use a simpler form of the architecture. The

example actually used for comparison (Figure 7.20(a)) was similar to that of Figure 7.18

except that there was only one processor and a single local memory on each of two processor

buses, one shared memory on each of two memory buses, and one I/0 line. one clock and

one PID on the single I/O bus, The requirement used was "' (1 .P) A 4(1 .ML) A L (1 .MX) A

,(1,CLK) A 4(i.PID) A 4(1.1OL)", Figure 7-20(b) shows the hand-constructed RBD for the

simpler example with this requirement. Listing 8 shows the MACSYMA terminal session which

demonstrated that the two symbolic expressions were the same.

226 Examples and Results

ML 1 i MX,,

Sr- K--- ----- 3--

ML 2 P2 MX2

K:>I
-- K6---1 K 1-2--

CLK PID IOL

(a)

-PI MLI $1 K 3 K j3 KI K7 S 3 MX I K 9 K is

K K1o S4 MX2 K 1 K.

-, -S PID CLK IOL - L ----[-o

LP ML2 S K Kt K4 K8
S 3 MX, K, K

2 M 2 S2 K6

K6 Kit S4 MX2 K12 K'-

(b)

Figure 7-20: (a) Simple version of Plurlbus architecture
(b) Hand-constructed SPRBO for structure in (a) above;

1 P, 1 ML, 1 MX, 1 CLK, 1 PID and 1 IOL required.

Examples and Results 227

Listing 8, Simple Pluribus Example

This listing shows the MACSYMA session during which ADVISER output for the simple

Pluribus example was shown to be equal to the manual construction.

This is MACSYMA 294

FIX294 2 OSK MACSYM being loaded
Loading done

(C) tatch(kinieoacv)L

(C2) /
--

MACSYMA Module for Reliability Function manipulation
produced by ADVISER on Saturday. 17 Jan 81 at 21:52:35 for [4.1367]

--

Task Title: PLUPIPMS --- A simple Z-PcBus. 2-MBus. 1-1Ous Pluribus model

Requirements on the Structure were:

(1-OF-P AND I-OF-ML AND I-OF-MX AND I-OF-PIO AND I-OF-CLK AND I-OF-1O1)

Component-Type definitions for this task:

INDEX TYPENAME PRINTNAME REL.FN. PARAMS
.....--

0 BUS BUS Const. Relia.=I.00000000
I COUPLER K Expon. Lambdaz27.30C0D000

2 MEXT MX Expon. Lambda23.13900000
3 MLOCAL ML Const. Relia.-23.13900^00
4 ARBITERP AP Expon. Lambda-3.500000
5 ARBITERM AM Expon. Lambda=3.50000000
5 PROCESSOR P Expon. Lambda1Z.9G20.300
7 IOINT IC! Expon. Lembdae72.ZC0O0000
8 CLOCK CLK Expon. Lambda-1.70

4 O0000

9 PIO PID Expon. Lambda,7.00000003

PMS Structure Definitions for this task:

I

228 Examples and Results

INDEX MAM4E TYPE XWEIG NEIGHBORS

0 SM.1 Bus 4 (AM. K.1, K.2. K.3)
1 SM.2 BUS 4 (AM.Z. K.4, K.5, K.6)
2 SP.1 BUS 4 (API1. K.7. K.B, K.9)
3 SP.2 Bus 4 (AP.2, K.1. K-11, K.12)
4 SIO Bus 7 (T.I. PI0.1. CLK.1. K.13. K.14,

K.15, K.16)
5 AM.1 ARBITERM 2 (SM.!. MX.1)
6 AM.2 ARBITERM 2 (SM.2. WX3)
7 AP.1 ARBITERP 3 (SPI1. P.1, ML.1)
8 AP.2 ARBITERP 3 (SP.2, P.3, ML.3)
g MX.1 MEXT I (AM.!)

10 MX.3 ME XT I (AM.Z)
11 P.1 PROCESSOR I (API1)
12 P.3 PROCESSOR I (AP.2)
13 ML.1 MIOCAL 1 (AP.1)
14 ML.3 MLOCAL 1 (AP.2)
15 T.1 IOINT I (SIO)
16 PID.1 PID 1 (510)
17 CLK.1 :LOCK I (510)
18 K.1 COUPLER 2 (SM.1. K.7)
19 K.2 COUPLER 2 (SM.1. K.10)
20 K.3 COUPLER 2 (SM.1. K.14)
21 K.4 COUPLER 2 (5H. K.8)
22 K.5 COUPLER 2 (SM.2. K.11)
Z3 K.6 COUPLER 2 (SM.2, K.13)
24 K.7 COUPLER 2 (SPi1. K.1)
25 K.8 COUPLER 2 (SP.1, K.4)
26 K.9 COUPLER 2 (SP.1. K.16)
27 K.10 COUPLER 2 (SP.Z, K.Z)
28 K.11 COUPLER 2 (SP.2. K.5)
29 K.12 COUPLER 2 (SP.2. K.15)4
30 K.13 COUPLER 2 (SbO. K.6)4
31 K.14 COUPLER 2 (SID. X.3)
32 K.15 COUPLER 2 (SIb. K.12)
33 K.16 COUPLER 2 (SIb. K.9)

0/1

WO0:
BUS 0 MX 0AM;

(02) AM BUS MX

(C3) %%T6:
BUS 0 ML 0 AP 0P

(03) AP BUS ML P

(C4) WO8:
BUS 0 101 0CLK 0 P10;

(04) BUS CIK 101 PID

(CS) /6 End of temnporary, variable lnitializations/

Systei4Rollebillty: 0;
(DO) 0

(CO) SystomZRo11abt11ty:
4 0 Kt6 a WT0 =17T6 w %%T8 - 2 * KfbO W ~O =7~6t2
%%T8 2 *KtIO %%fTOt2 0 WT6 0 WS8 2 Kt12 %%T0t2
0 TMt2 %%UT8 *4 6KtJ4 *%T0 2 8 %T6t2 * %TB

Xt16 0 %TOt2 8 %%T~t2 * %%T8

Examples and Results 229

2 2 5 16 2 2 2
(D6 - AM AP BUS CLK 101 K ML MX P PID

2 2 5 14 2 2 2
+ 4 AM AP BUS CLK 101 K ML MX P PID

2 2 6 12 2 2 2
- 2 AM AP BUS CLK 101 K ML MX P PID

2 4 10 2 2
- 2 AM AP BUS CLK 101 K ML MX P PID

2 4 10 2
- 2 AM AP BUS CLK 101 K ML MX P PID

3 6

* 4 AM AP BUS CLK 101 K ML MX P PID

(C7) /14nd of System Reliability computation*/

FACTOR(%);
3 6 2 10

(D7) - AM AP BUS CLK 101 K ML MX P (AM AP BUS K ML MX P

2 8 2 6 4
- 4 AM AP BUS K ML MX P - 2 AM AP BUS K ML MX P + 2 AP BUS K ML P

4

2 AM BUS K MX - 4) PID

(Da) BATCH DONE

(Cg) batch(kini.eahnd)*

(CIO) /I Reliability Function printed by LISP at 17-3an-81 21:48-IC 0/

SYSREL:
+4'AM'AP'BUS-3"CLK'IOI'K* BML'MX'P'PID-2 AM'AP,2'BUST4'CLK'IOI K-IC ML'Z'MX'P.2

'PID-2'AMt2"AP'BUSo4"CLK' I01'KtICML'MXIZ'P'PID
-2*AMt2APt2BUSt5CLKXIO Ktl2MLt2*MXt2'PT2*PID+4*AM2 AP 2"BUS'IZ*LK'101'Kt

14MLt2"MX2'PZ'PID-I"AMtZ'APtZBUS 5'CLK'1OI'Kt6'ML 2ZMX2"PT2"PID.

2 2 5 16 2 2 2
(010) - AM AP BUS CLK 101 K ML MX P PID

2 2 5 14 2 2 2
* 4 AM AP BUS CLK 101 K ML MX P PID

2 2 5 12 2 2 2
- 2 AM AP BUS CLK 101 K ML MX P PID

2 4 10 2 2
- 2 v AP BUS CLK ICI K ML MX P PID

2 4 10 2
- 2 AM AP BUS CLK 101 K ML MX P PID

3 6

* 4 AM AP BUS CLK 101 K ML MX P PID

(011) BATCH DONE

(CII) rzq- n'sys~e' - sysemrelil tl.

(011) 0

(CI2; quit'

230 Examples and Results

:KILL
0

7.4 Performance measurements on ADVISER

The author's experience with the current version of ADVISER has generated some

intuitions regarding the capabilities of the program in terms of the size of problems it can

handle. This section describes some of those intuitions and presents some timing

measurements made on ADVISER using the Cm* architecture. Note: The timings in this

section are to be used as rough guides to the performance. They are not very accurate due to

unavoidable circumstances at the time of measurement. The run time totals include a small

part of the timing overhead. All timings are in seconds of CPU time on a Digital Equipment

Corp. KL.-10 processor.

The Cm* architecture was chosen because it embodies attributes which cause the current

version of ADVISER to exhibit some of its worst case behavior. Although ADVISER does

make use of some of the symmetry in the PMS structure there is room for it to do more. The

Cm* case offers an example of a structure with Pendant Tree Subgraphs which in addition to

being symmetric to each other also have considerable symmetry within themselves, Assume

that a single Cm* cluster has a total of 12 memories within it and the requirement is for six of

them to function. Currently ADVISER does not make use of the fact that the structure of the

cluster itself is very regular. It treats the problem as a 6-out.of.12 structure and goes through

considerable computation and use of the PMERGE and SMERGE algorithms to generate the

canonical-form solution whereas one would straightforwardly write down the expression

RKR c y6 (12) R12" (1-RM)1 (7.1)RKmap 'soca" . (=1 M

Note, however, that in a situation where this is a small portion of a bigger problem, the

expression (7.1) does not retain any of the individual identities of the memories involved and

therefore computing the symbolic probability of the intersection or union of this event with

other events dependent on it would not be easy. Furthermore, the TREEREL algorithm in

ADVISER works even when no symmetry exists although the price for this generality is paid

when there is a lot of symmetry internal to the PTSs which could be exploited.

The above example was provided to indicate that such problems would cause ADVISER to

do large amounts of computation especially if the requirement asks for roughly half of the

Examples and Results 231

configured components of each critical type to be functional. This is where the binomial

distribution of the number of functional cases reaches its peak. Experiments alsc provided the

intuition that PMS structures which have smaller Kernels for a given set of PTSs tend to do

better in terms of compute time consumed. Experimental results given below show that the

CRP algorithms are the biggest performance bottleneck. Kernel path CRPs are used directly

in the collapsing of the CRPTree. thus performance deteriorates when there are more of them

and they have more terms. The effect of increasing the number of PTSs n the PMS structure

is not as drastic in comparison, especially if the PTSs are symmetric. This is because CRPs for

the peendant tree subgraphs are allorted unique bits in the AUXVEC birvector and the number

of them and their lengths do not have a significant effect in the CRPTree co!lapsing process.

Increasing the complexity of the individual PTSs in a symmetric set. therefore, has a greater

effect than increasing the nuinber of them in the set. However, a larger number of PTSs

implies a larger number of segments of the PMS graph which implies an increased the depth

to the CRPTree. In turn, the number of compositions of the requirement integers in the

Compositions Table grows combinatorially with the number of segments. It is experimenta!l

observed that these two properties combine to have a significant adverse effect on the run

time after approximately six or eight segments have been introduced.

It appears that although compute time is necessarily sensitive to the number of components

in the structure per se, it is more sensitive to how many of the configured critical components

are required to be functional i.e. the complexity of the requirements (see Footnote on Page

109). ADVISER does best when the requirements demand that much less than half. or almcst

all. of the configured components of each critical type be functional. This is generally

expected to be the case in practical multiprocessor architectures. Tasks on multiprocessors

such as Cm" will probably require much fewer than half the total number of processors

configured. Likewise array-processor type SIMD archictectures will generall require all, or

a!most all processors to be functional.

It is to be noted that all of the above patterns of behavior do not in themselves affect the

compute time significantly: their effect is magnified by the poor performance of the CRP

algorithms. Experiments show that the outstanding consumers of computation time during a

typical ADVISER run are the CRP merging algorithms PMERGE and SMERGE The timing

measurements presented below show that overwhelming percentages of the ru, time are

spent in these algorithms despite all efforts to make them as efficient -as possiiie if, the

implementation. This is not entirely unexpected since dealing with canoncal forms of the

polynomials is known to be inefficient in a larger sense. On the other hand the versatit',.

simplicity and robustness of the PMERGE and SMERGE aigort'mS greatl i eased the

prI

232 Examples and Results

implementation of the program. It is clear that for more efficient versions of ADVISER some

more compact low level representation for the polynomials would have to be found which

allows greater use of existing symmetry in the structure while preserving the ease with which

the symbolic probabilities of the unions and intersections of dependent events may be

computed.

Requirements Total Run Total Time % Total No. CRP
Time (sec) in Merge Merge/ Terms processed

------------ Package Total
P M (sec)

1 1 1.41 0.427 30.28 198
2 1.89 0.776 41.06 581
3 2.59 1.255 48.46 1071
4 2.84 1.382 48.66 1353
5 2.97 1.440 48.48 1427
6 3.08 1.490 48.38 1439

2 1 1.32 0.293 22.20 225
2 1.84 0.684 37.17 608
3 2.47 1.146 46.40 1098
4 2.91 1.388 47.70 1380
5 3.08 1.487 48.28 1454
6 3.21 1.582 49.28 1466

... -- -.. - ---

3 1 1.26 0.189 15.00 234
2 1.74 0.574 32.99 617
3 2.46 1.114 45.28 1107
4 2.93 1.429 48.77 1389
5 3.21 1.554 48.41 1463
6 3.43 1.678 48.92 1475

Table 7-1: ADVISER timings for 1 -cluster Cm' case.

Two simple versions of the Cm* architecture were used to generate what is conceivably

worst case behavior for ADVISER. The first example is a simple single.cluster Cm* with three

Cm's each with one processor and two memories. This makes a total of three processors and

six memories. All possible combinations of requirements on processors and memories were

taken. The results are shown in Table 7.1. The first column gives the total run time for each

case. The second column gives the run time consumed by the PMERGE and SMERGE

algorithms for each case. The third column states the merge run time as a percentage of the

total run time. The last column shows the total number of CRP terms processed in the

intermediate representation package for each case.

The second example was a two cluster model wherein each cluster was identical to the

cluster in the first case and the two clusters were connected through a single intercluster bus.

This makes a total of six processors and twelve memories. Enough cases of requirements

E a -p-s an P-- ts 233

rer-.e,"ts Total Run Total Ti.e % To1l i, .CAp

Iip (so:) in we:-e mj;e/ 1 = .- ::+s

- (sz.3e TtA

1 1 5.20 0.;33 17, 36 42
2 43.91 42.449 86.79 252C
3 107.02 94.459 88 27 5E00

4 147.04 130.Z30 as 66 7;70

5 163.26 143. 802 as. C a 9E .
6 155.56 143.773 S5.32 1 c 8S,

7 158. Z7 13S .248 87. 8 012
8 64.55 5E.504 85 6 5 1 4

2 1 7.00 1. 34 28.34 ;2S

2 77.83 60 314 77.43 4 48
3 166.39 133.586 80 34 01
4 225.85 183.160 81 10 13322
5 254. 53 202.315 79. 48 15322
6 >244,.00 7 ? 7
7 241.55 198.788 82.29 16-;2
8 95.16 77.496 81..44 99-36

3 1 4.34 1.858 43.04 1 f 68
2 70.80 5p. 652 84.27 6274
3 150.28 137. 357 85. 70 12944
4 226.88 190.701 84. c5 19 2 Z
5 >253.00 7 ? ?

6 479 .51 326.610 68.10 2757Z
7 284 .8 217. 165 76. 23 22024
8 107.52 83.091 77.28 12674

4 1 3.61 1.670 45.26 123E
2 $4.89 55 688 8 .10 4"81
3 144.82 126. 736 87.61 10032
4 1 6.13 171.036 67.21 14655
5 222.9E 188 488 84.54 17755

6 272.82 215.022 78 81 2006
7 Z24.52 188. 400 83.91 17303
8 90.78 75.6584 83.37 10412

Table 7-2: ADVISER tmins for,.ch.s~e. Cm c,se.

were tri. out on this exa,., e to pass bey3,od the re"Wi...chineh eiateS ',he

n '-,e of sCCeS.S!u! s.tzes i.e (3p) A,' ,.). The resutn shzv. n Tat:e 7-2 Tne

expcsve gr,,,,th in the number of !yno m:! terms to b- pr :ess by- t e i

aigortnms is obvious, s-s is !he large parcenta:e of the totsa run time ta-.e" :

rnerging Cn e enCou',-a. ing noe is tha even in the most ccrn-.,;ex . SS ',-e "

-,.- f Ge r -L , r 7 e -,er
,

raitC oeta ~ O e ns fpce~z ieT~ 'm~r~

234 Examples and Resuts

Run 3.4 3

Tunt

3.2 2

3.0

2.8

2.6 No. Procesn required

2.4

2.2

2.0

1.A

• ~~1.2 I . 1I

2 3 4 S 6

No. Mcnons required

Figure 7-21 : Graph of ADVISER runtimes in Table 7,1.

Examples anid Results23

Run 500.0 Ezuapoaucd vsalue (we Table '-2

450.0

No. Prcesmi reqwntd

200.0 7

50.0

1 2 3 4 6

No. Mernones required

Figure 7.22: Graph of ADVISER runtimes in Table 7.2.

236 Examples and Results

In the cases where question marks appear in the table the program did not complete its run

due to exhaustion of memory space. This is not a serious problem necessarily inherent in the

size or nature of the example but :eflects inefficiency in the use and garbage collection of

allocated space within ADVISER which could be improved by more careful programming e . In

these cases the run-time figure is that which was recorded at the time of the error due to

space exhaustion.

Figure 7-21 plots the values of Table 7-1 and Figure 7.22 plots the values of Table 7-2.

There is a peak in the graphs of Figure 7-22 at the requirement of six memories out of a total

of 12. This corresponds to the maximum number of ways of choosing some size set of

memories from the 12 available. Also, the graph with the highest peak corresponds to the

requirement of three processors out of six; again half the number available. A peak is not

similarly visible in Figure 7-21. Since some unquantified part of the timing overheads is

included in the total run time figure the absence of the peak may be due to the timing

overheads being of magnitude comparable to the run time in the case of the 1-cludter Cm*

case. In the 2-cluster Cm" case the run times are evidently much greater than the timing

overheads and the peak is displayed. However, the timing overheads may be expected to

increase with the number of CRP terms being processed and this is borne out by skewing to

the right of the area under the curves in Figure 7.22.

Most of the problems chosen for the tests in Section 7.3 however were not as stressful on

ADVISER. Table 7.3 shows the ADVISER run times for the examples used in the tests. For the

Tandem example the table shows an additional time inside parentheses. This refers to the

separate problem provided to ADVISER to compute the reliability of a "computer" (see

Section 7.3.3). Although the second time is shown for both Tandem tests, the separate

calculation for the "computer" reliability was carried out only once and the results used in

both Tandem tests. The outstanding times in Table 7-3 are the ones for the case of C.mmp

(distributed switch) and the Global Bus. The C.mmp timing for the case of the distributed

switch is high since the Kernel in that case reflects the structure of the switch. This results in

the generation more Kernel path reliabilities and correspondingly more PMERGE and

SMERGE operations both during the computation of the path reliabilities as well as because
of the overall number of CRP operations necessitated. In the case of the Global Bus reliability

the example stresses the same weak point as shown above in the 2-cluster Cm* example

31it i possible a subtle programming error, which causes the Ion of pointers to deallocated Space. iay be
responsible since ADVISER has handled larger examples from the standpoint of lenguw and number of CAPs
involved

Examples and Results 237

Example Requirement Run T ime
(sec)

DECI.PMS 1 P. 2 M 1.14
DEC2.PMS I P. 1 M 0.36
DEC3.PMS 1 P. 2 M 3.14

Cme 5 P. 10 M 12.67

Cm" I P. 2 M 2.08
C.wmp (Lumped) 2 P, 2 M. 4.67

1 K.lo. I K.clock

C.mmp (Distributed) 2 P. 2 M. 170.51
1 K.io, I K.clock

Tandem 2 C. 2 IOL 1.84 (.18 71)

Tandem 1 C. 1 IOL 5.90 (.18.71)

Global Bus 2 P. 8 M 4015.5G

Pluribus 2 P. 2 ML. 2 MX. 3.52

I CLK. I PID, I IOL

Table 7.3: ADVISER timings for architectures of Section 7.3.

(Table 7.2). In addition the addressed Global Bus structure is not regular thus resu!ting in

fewer opportunities to simplify CRPs. Hence CRPs are in general longer in this example and

since the PMERGE and SMERGE algorithms are sensitive to CRP lengths the problem is

compounded.

7.5 Application to classical Network Reliability problems

In certain kinds of classical network reliability problems it is possible to use ADVISER for

computing the solution. By the phrase "classical network reliability problems" we refer here

to the class of problems discussed in papers such as [Wilkov 72]. The network is typically

viewed in such problems as a set of homogeneous ° processing elements or nodes
connected by a set of homogeneous non-directed arcs for transferring data. Either nodes or

arcs, or both, may be prone to failure with some probability. Traditional reliability measures

for such networks include the probability that two particular nodes are always able to

communicate, the probability that enough arcs are functional to preserve a spanning tree of

the network, and so on. We note in passing here, however, that ADVISER is not constrained

to the traditional assumption of homogeneity of arcs and nodes.

In order to convert such problems to the ADVISER model the treatment differs according to

whether nodes or arcs, or both, are failure-prone. If only nodes are prone to failure while arcs

40.i.e. having eientical probabilities of failure of success.

__ _JI

238 Examples and Results

are perfect then this is precisely the ADVISER model and no change is necessary to the

interconnection graph of the network. In the case that nodes are perfect while arcs are

failure-prone, or the case that both nodes and arcs may fail, it is necessary to convert the

interconnection graph into a probabilistically equivalent network by the following

transformation. If G(VE) is the interconnection graph and the edge (v,.v2)EE where v1,v 2EV

then replace the edge (v1 ,v2) by a new node va and two new edges (v1 ,v.) and (v,,v2) where v.

embodies the lumped reliability behavior of the original edge and the two new arcs are

perfect. In this manner at most n(n.1)/2 new failure-prone vertices are introduced (where n is

the cardinality of the original vertex set V). The new graph obtained in this fashion is

probabilistically equivalent to the original graph and is composed of perfect arcs, the original

nodes which continue to be perfect, and some new nodes which are failure-prone.

The kinds of requirements which ADVISER is capable of handling in such problems are any

that may reasonably be transformed into the boolean expression method of specifying the

reliability requirements. For instance, if it is desired to compute the probability that two

particular nodes, say vX and vy, will be functional and able to communicate, then it is

necessary to allot them distinct type names (in the ADVISER sense). Thus make v the only

node of type TYPEX, say, and vy the only node of TYPEY, say, in the graph. Then. to compute

the desired probability, the necessary requirement to be applied to the transformed graph will

be

a(1,TYPEX) A 4(1,TYPEY).

ADVISER will then compute the probability function using the Communication Axiom. It is

possible in the case of tree-connected PMS structures that ADVISER may compute a

pessimistic reliability. This case was referred to in Section 5.3.

In order to illustrate the contention of this section we choose the ARPANET example

described in [Hansler 74], Page 107. The network is shown in Figure 7.23(a) where the

objective is to compute the probability that vertices 1 anc 8 will always be able to

communicate. The vertices are homogeneous and perfect whereas the arcs are

homogeneous and failure-prone. [Hansler 74] gives the following expression as the solution:

p 1 ,e] 4q2 + 6q3-16q'-32q .+ 115q6-134q 7 + 79q8-24q 9 + 3q10 (7.2)

where P,[st] is the probability of faiLu of communication between nodes s and t and q is the

failure probability of an arc. (Hansler 74] also defines P,[s,t] to be the probability of successful

communication between s and t. Then Pf[s,t] - 1-Pjs't].

.. a - - a ,-.. _ __.. o , ,... '

Examples and Results 239

By the transformation outlined above we obtain Figure 7.23(b). Note that th~e probabilities

specified to ADVISER for the arcs and nodes will be suc probabilities and that the perfect

vertices will be given success probabilities of 1.0. Listing 9 shows a MVACSYMA session with

the ADVISER solution (i.e. P01' .81) to the problem. In line (06) the reliability (N) of the perfect

vertices in Figure 7-23(b) is set to unity. In line (07) the success probabilities of the failure.

prone vertices have been replaced by failure probabilities in order to convert. the expression

to the form in (Hansler 741. It is seen that the result of the MACSYMA manipulations in line

(08) is the complement of the expression in Equation (7.2) above.

Listing 9, A rpanet Example

This listing shows the MACSYMA manipulations on the ADVISER solution to the Arpanet

example of (Hansler 74] showing that it is the same solution as obtained by the latter.

This is I4ACSYMA 293

FIX293 6 OSK MACSYM being loaded
Loading done

(C1 batch(kinieoadvl:

(CZ) /0

MACSYMA Module for Reliability Function manipulation

produced by ADVISER on Monday. 12 Jan 81 at 12:39:21 for [4.13e
7
l

Task Title: ARPANT.PMS -- A small modified Arpanet problem

Requirements on the Structure were:

(1-OF-N AND 1-OF-N)

Component-Type definitions for this task:

INDEX TYPENAME PRINTNAME REL.FN. PARAMS

0 NODE N Const. Relia.-1.00COOOOO
I S NConst. Relia.'1.0OOQOCOC
2 T NConst. Relia 'I 00000000
3 ARC P Expcn. Lambda'I0.O00000000

PMS Structure Definitions for this task:

240 Examples and Results

3 04 f~ 7

c 9 8

2 d 5 h 6

(a)

N3 E N4 F N7

N 8N

NZ D N6 H N6

(b)

Figure 7.23: (a) Example network from [Hansler 74]
(b) Translation into ADVISER framework

Examples and Results 241

INDEX NAME TYPE NNEIG NEIGHBORS

0 NI S 2 (A, 8)
I N12 NODE 2 (8. D)
2 N3 NODE 3 (A. C. E)
3 N4 NODE 2 (E. F)
4 N5 NODE 4 (C. D, G, H)
5 N6 NODE 2 (H. J)
6 W7 NODE 3 (F. G, 1)
7 N8 T 2 (1. J)
8 A ARC 2 (Ni. N3)
9 8 ARC 2 (Wi. 12)

10 C ARC 2 (W3. N5)
11 0 ARC 2 (N2. N5)
12 E ARC 2 (NI. W4)
13 F ARC 2 (N4, W7)
14 G ARC 2 (W5, N7)
15 H ARC 2 (N5. N6)
16 I ARC 2 (N7, N8)
17 J ARC 2 (116. ME8)

a/

System%Reliability: O ;
(D2) 0

(C3) SystemRellab1lity:
5 * N.3 * N N 0 P4 - 5 * N14 $ N N Pi6 * 2 a N,5 a
N * N * P- 6 * NT5 * N * N I Pt7 * 6 * 5 " N * N

P18 3 N16 , N * N ' Pi8 + 6 0 N46 * N * N a Pt9 - 3

0N6 * N * N * Pilo

8 10 8 9 868 7 8 7 7 7 6 6 6 I

(03) - 3 N P "0' 6 N P - 3 N P + 5 N P - 6 N P 7 2 N p 6 N P

5 4
- 5 N P

(C4) /OEnd of System Reliability computatlon*/

FACTOR(%);

5 4 3 6 3 5 3 4 2 4 2 3 2 2
(04) - N P (3 N P - 6 Nt P + 3 N P - 6 N P + 6 N P 2 N P

2
- 5 N P - 5)

(OS) BATCH DONE

(C6) 04.N-1:
4 6 5 4 3 2

(06) - P (3 P - 6 P - 2 P * 6 P + 3 P - 5)

(C?) IP-(1-O)7
5 5 4 3 2

(07) - (3 (0 - Q) - 6 0 Q) - 2 (1 - Q) + 6 (1 - 0) + 3 (1 - Q) - 5)

(I - Q)

242 Examples and Results

(Ca) ratexoad('*
10 9 8 7 6 6 4 3 2

(08) - 3 0 + 24 Q - 79 Q * 134 Q - 115 Q * 32 0 * 16 Q - 6 0 - 4 Q

KILL

7.6 Summary and Conclusions

This chapter has described some of the results of testing ADVISER for correctness of its

output. In all of the cases so far studied, where ADVISER's deficiencies did not come into

play, it has been possible to show that the chance of ADVISER's output being correct is high.

In those cases where comparison to manual computation was feasible the program output

was indeed verified to be correct. Further testing using more complex and stressful examples

will be required before strong confidence in the program is justified, However, the prognosis

for the program's useability appears very good.

The major hindering factor at this stage of ADVISER's development is the inherent

inefficiency of its low level PMERGE and SMERGE algorithms for dealing with the

intermediate representation. These inefficiencies were partly to be expected with the use of

canonical forms of polynomials, however, what was quite unexpected was the large

percentage of the typical program run time consumed by these algorithms. The encouraging

thought is that the problem analysis time, preceding the collapsing of the CRPTree in the final

phase of the computation, appears to take typically around 15 percent of the solution time.

Improvement in the intermediate representations and algorithms can therefore be expected to

bring about signifcant improvements in the program's performance. Minimal forms instead of

canonical forms of expressions must be used. Improvements must be obtained to algorithms

such as those described in [Bennetts 75] and [Satyanarayana 78] so that they may be

incorporated into ADVISER and used at all stages of the computation rather than in a final

pass over a constructed intermediate representation.

A solution to the deficiency in the bounded-cluster side constraint specifiability is fairly

straightforward and requires mostly an implementation effort. However, the deficiency in the

TREEREL algorithm is more severe and will need more research to arrive at a satisfactory

solution. Despite these deficiencies the program can be useful for analyzing the reliability of

many types of PMS structures.

Conclusions, Future Research 243

Chapter 8
Summary, Conclusions, and Future Research

The work contained in this thesis has been an attempt to introduce a new and higher level

approach to the reliability modelling of computer structures at the ProcessorMemory-Sw'rch

(PMS) level of design. Traditionally, reliability calculation programs have addressed the

problem largely at the level of analysis of fault-trees and reliability graphs (for example see

[Misra 70a], [Barlow 75b], [Chelson 71], [Fleming 71], [Bennetts 75]). The fault-tree or

reliability graph is assumed to have been derived by hand from the program-user's knowledge

of the system being analyzed. In another branch of this endeavor, systems are viewed as

cascades of GM7 (General Modular Redundant) subsystems, for example see [Mathur 75a],

[Ng 80). In these cases the user of the reliability calculation tool is required to first

appropriately segment the system under consideration into such subsystems. Often this may

not be possible Much work has been done toward the calculation of what is commonly

termed "network reliability" in the literature in one of two senses. In one sense this term nas

been used to refer to computing of system reliability as encoded by reliability graphs. In the

other sense the term refers to the calculation of reliability of such loosely coupled systems as

geographically distributed computer communication networks (see [Wilkov 72]). The

underlying model in these latter instances has generally been a graph with homogeneous

vertices and arcs, where the vertices or the arcs, or both, are prone to failure. The reliability

measures of interest in these cases have tended to focus, for instance, on the probability that

certain key vertices in the network are able to communicate at all times. In the case of PMS

systems the vertices of the interconnection graph represent the non-homogeneous

components in the system and therefore must be labelled to reflect this non-homogeneity

Furthermore, the criteria for system functionality are more complex and require typically that a

certain minimum sized assortment of types of components be functional and capable of

intercommunication.

The main goal of the work has been to develop techniques which enable much more of the

PMS system reliability calculation process to be automated than has heretofore been

customary. The concomitant desirable result of achieving such a goal is the reduction of the

I/

244 Conclusions, Future Research

possibility of error which is ever-present in tedious hand calculation. Furthermore, relatively

unsophisticated modellers of PMS system reliability have access to a powerful tool which

relieves them of the burden of attending to many of the complexities of such modelling.

This dissertat., . describes significant progress toward such a goal. The ADVISER

program was constructed to provide a reliability calculation aid at the PMS level. The program

accepts as one of its inputs the interconnection structure of the PMS system in the form of a

graph in which the vertices are labelled with the generic type of the components they

individually represent. Another input is a set of requirements or criteria for system

functionality in the form of a modified Boolean expression. Further ad hoc side-constraints

may also be provided by the user. The output of the program is a text file which contains a

program to compute the reliability function of the described PMS system under the given

requirements and constraints.

The next section will recapitulate the material of the chapters of this thesis taken in

sequence and the final section will restate the problems which remained unsolved at the

conclusion of this investigation and propose areas for future research in the field.

8.1 Recapitulation

Chapter 2 reviewed earlier work on algorithms for reliability calculation and various efforts

towards building software design tools which calculate the reliability of various kinds of

systems. It was noted that while many such reliability calculation aids had been constructed

virtually every one of them has required the user of the program to do a partial analysis of the

system under consideratioR. Typically, then, some intermediate representation is generated

by the user which encodes the result of his system analysis. Depending on the type of system

reliability analysis desired this intermediate representation is usually either a fault or event

tree or a reliability graph. Having derived the intermediate representation the user then

proceeds to feed it to one of several commonly available reliability calculation aids which use

the intermediate representation to compute numerically, or symbolically, the system reliability.

This perspective lead to the posing of the question: Is it feasible to construct a design tool

which will compute the symbolic reliability of PMS level systems directly from their

interconnection graphs and a statement of the criteria by which they are Judged functiona,'

This investigation undertook to answer the question. The rest of Chapter 2 provided a broad

overview of the functioning of the ADVISER program which was the result of the investigation.

Conclusions, Future Research 245

The program operates on what are termed Canonical Reliability Polynomials (CRPs). These

are the equivalent of an intermediate representation mentioned above. It incrementally

generates CRPs as Partial Results for each class of functional system states which arises as a

result of its case analysis of the PMS system. The structure of a CRP bears a close

resemblance to the structure of a Boolean expression in disjunctive normal form except that

the literals in the CRP are the symbolic probabilities of success (reliabilities) of unique

components in the structure. CRPs can be "merged" in two ways which respectively

represent the computation of the probabilities of intersections (SMERGE) and unions

(PMERGE) of events. The primitive events under consideration are the successes of

components in the system and system success is a compound event. Chapter 3 described the

list data structure used to represent CRPs and algorithms for the SMERGE and PMERGE

operations. The algorithms are simple and robust in the face of overspecification. In other

words they will correctly merge two CRPs to form the appropriate CRP representing the

intersection or union of the events represented by the CRPs which were merged, regardless

of the exact set of events or antecedents of the merged CRPs. They are thus ideal for use in a

program such as ADVISER wherein CRPs are generated in several different phases during a

program run and no record is kept of how any particular CRP was generated. The drawback

with these algorithms is their time complexity which is O(n 2) if each of the list data structures

representing the two CRPs to be merged is of length O(n). Furthermore, the list resulting from

a merge has a length of O(n 2) thus making successive merge operations more and more

expensive. This is the major drawback of the ADVISER program as it is currently constituted

and some palliative measures are reported in Chapters 3 and 6. The SMERGE and PMERGE

operations are used throughout the rest of the program to appropriately combine partial

results in order to finally produce the system reliability function.

Chapter 4 described symmetry detection algorithms, based on the work of Gaschnig,

[Gaschnig 77], which are used to detect symmetric subparts of the PMS interconnection

structure. The motivation is to employ any existing symmetry to advantage by computing

results for only one of a set of several symmetric subparts and applying those results

identically to the rest of the members in the set. The result of processing the interconnection

graph of the PMS structure through the symmetry detection algorithms is a Typed Neighbors

Class Graph (TNCG) whose vertices are the symmetry classes induced by the Typed

Neighbors Class Equivalence Relation (TNCER). An examination of the TNCG reveals the

nature and number of symmetric substructures within the PMS system.

It was postulated that a divide.and.conquer approach to the system reliability calculation

would be fruitful if the program had a repertoire of special reliability calculation techniques for

kkbw i

246 Conclusions, Future Research

various kinds of substructures within a PMS system. Then the segmenting of the PMS

interconnection graph to provide the subproblems for the divide- and-conquer paradigm could

be done on the basis of substructures for which special techniques were known. Quite by

chance one of the most frequently occurring substructures in PMS systems is the tree

interconnection structure. Chapter 5 describes the GROWTREES algorithm whereby Pendant

Tree Subgraphs (PTSs) are recognized in the TNCG, thus providing a knowledge of

symmetric PTSs in the original PMS interconnection graph. The TREEREL algorithm is also

described and embodies the special techniques mentioned above for the case of tree
interconnection structures. Using the SMERGE and PMERGE algorithms of Chapter 3 it

computes the symbolic reliability for a PTS given the interconnection structure of the PTS and

criteria for its functionality. In this respect the TREEREL algorithm is a microcosm of the

ADVISER program.

Chapter 6 describes the OVERLORD routine in the ADVISER program which orchestrates

the functions of the various algorithms described in earlier chapters. After the PMS structure

has been input along with the requirements the OVERLORD routine takes control. It invokes

the SYMMDET algorithm on the PMS interconnection graph and then proceeds to discover

symmetric PTSs in the graph by calling the GROWTREES algorithm. It then invokes the

TREEREL algorithm a sufficient number of times on the discovered PTSs in order to

precompute all partial results (CRPs) for PTSs which may be expected to be used during the

remainder of the program run. Finally it proceeds to fragment the input requirement into all

possible subcases which the system can satisfy and, thus, be functional. Cases of interest are

those in which the functional components in the system satisfy the Communication Axiom and

other side-constraints which were specified by the user of the program. Each of these cases

actually represents a class of functional system states since the enumeration is done over

functional substructures of the PMS system rather than over individual components. For each

case it generates a partial result or CRP and finally merges these partial results to form the

CRP which represents the system reliability. During the last phase of the program run this

final CRP is algebraically simplified using what is known about the generic class of

components to which each component in the PMS system belongs; all components in the

same generic class are deemed to have identical reliability functions. The simplified reliability

function is then printed out as a file containing the text of a FORTRAN or SAIL procedure

which numerically computes the reliability function just derived.

Chapter 7 presents some experimental results obtained by using the ADVISER program

with some typical PMS structures. In an effort to engender confidence in the correctness of

ADVISER output the output was checked in two ways. The first check involved comparing the

Conclusions, Future Research 247

output for a PMS structure, which could be analyzed easily by hand, with the manually

computed reliability function. In the second form of check numerical values of system

reliability were obtained using the reliability function output by ADVISER. Programs written by

independent researchers to calculate the reliability specifically for those systems were used to

obtain a second set of values against which ADVISER values were compared. Both forms of

test were successful in showing that ADVISER output was correct with high probability and

that the program could be useful in analyzing a variety of architectures. Experiments in

analyzing the performance of ADVISER were not as satisfying, perhaps inevitably so, given

that the ADVISER software is of necessity not of production quality. Large percentages of the

compute time for a problem are spent in the low level aJgorithms which operate on the

intermediate representation. There is clearly much room for improvement in these algorithms

and the indications from the experiments are that modest improvements in them would result

in significant improvements in program performance.

8.2 Future Research

There are two general classes of topics for future research in the area addressed by this

dissertation. The first of these is the set of problems which were encountered while

constructing the ADVISER program as a test bed for the ideas developed here and for which

no solutions have yet been found. The other class of topics is generated by the systematic

elimination of the fundamental underlying assumptions which were made in order to

circumscribe this work. We shall discuss both these classes of problems in the following.

8.2.1 Unsolved problems in the present framework

8.2.1.1 Intermediate Representation

The Canonical Reliability Polynomial (CRP) as an intermediate representation in ADVISER

provided some attractive benefits from the point of view of the design and construction of the

program. The algorithms to process CRPs are simple and robust and will work to correctly

merge any arbitrary set of CRPs so long as the set of primitive events is fixed and CRPs for all

compound events are generated only by means of the merge algorithms themselves. Thus the

software package which handles CRPs as the primitive operands could be designed

completely independently of any other part of the program and be called during any phase of

the program run. Ironically this very simplicity gives rise to a combinatorial explosion in the

case that the input requirements expression is exceedingly complex or in the case that for any

critical component type the requirements demand that about half of the available components

248 Conclusions, Future Research

of that type in the structure be functional. In other words the program performs poorly when it

is operating near the peak of the binomial distribution of the number of functional subsets of

components in each critical component type.

The primary cause for this undesirable time complexity is that the reliability polynomials are

maintained in canonical form and the distinct identities of the individual components are

maintained in the symbols which express their reliabilities. The former fact implies that list

lengths will be longer than for the equivalent polynomials in factored or minimal form, thus

adding to the complexity. The latter fact implies that, for instance, cancellations of a pair of

terms will not take place even though this would happen if generic reliabilities were to be

substituted for the unique component reliability symbols in those two terms. However, it is

also to be noted that the retaining in the CRPs of the unique component reliability symbols

allows the easy computation of probabilities of unions and intersections of events. Factored

or minimal forms of the polynomials will not be so amenable.

Of the unsolved problems at hand, therefore, perhaps the most important is to devise a

suitable intermediate representation and algorithms to operate on it efficiently. Any such new

method for the manipulation of symbolic reliability expressions must be of some form which

does not have the above disadvantages, while it maintains the advantages of the CRP

approach. These advantages are

- Robustness in the face of overspecification in the input requirements

- Inherently simple algorithms, and

- May be used at any phase of the computation rather than once at the end.

The performance measurements of Chapter 7 indicate that if such a method can be found it

would drastically improve the useability of the ADVISER program. Of significant interest for

modification and adaptation to the ADVISE., framework are the kinds of algorithms described

in [Satyanarayana 78], [Bennetts 75], [Aggarwal 78] and [Lin 76].

8.2.1.2 The CRPTree

During the generation of the system CRP the various other CRPs, which were precomputed

and stored in hash tables by the program, are used several times in the merging process. As

we saw in Chapter 3, however, the amount of compute time consumed in the CRP package is

0(n 2) where n is the length of the CRP term list. The lengths of the lists also grow each time a

merge operation is performed. Hence the more merge operations are performed, the slower

the program runs.

Conclusions, Future Research 249

The CRPTree was used as a device to ensure that the merging of any given CRP would be

performed as late and as few times as possible in the process. This was achieved by delaying

the merging until after the CRPTree was built. Then for each node of the CRPTree, the CRP

which labels it would be merged only once with the CRP which results from the "collapsing"

of the subtree beneath that node. However, as the "collapsing" process reaches the upper

levels of the tree, the lists have typically already grown to an undesirably large size. There is

thus an incentive to process the CRPTree more efficiently than at present. It is possible in the

case of highly symmetric PMS structures such as Cm* that the CRPTree will itself contain

symmetries. These must be exploited. For instance if two subtrees of the same CRPTree node

are symmetric in the sense that they will produce identical CRPs after collapsing, then only

one of them need be collapsed since the other will be superfluous due to the idempotency of

the SMERGE and PMERGE operations. Even if two symmetric subtrees in the CRPTree do not

share the same immediate ancestor, a copy of the CRP resulting from one may be used for the

other. Other efficiencies may also be possible. Methods for efficiently collapsing the CRPTree

would add further to the efficiency and useability of ADVISER.

8,2.1.3 Side Constraints

The set of side-constraints suggested in Chapter 6 is ad hoc although it appears to be

sufficient for a wide class of examples. An open area of investigation is the determination of

whether this set of side-constraints can be extended or made more sophisticated or unified in

a theory of constraints.

8.2.1.4 Enhancement of TREEPEL algorithm

The TREEPEL algorithm described i. Chapter 5 expects a Pendant Tree Subgraph under

the implicit assumption that aif components within the PTS and the Kernel communicate

through the root vertex of the tree If the given input PMS structure is itself a tree to begin

with. then a possibly pessimistic reliability estimate results since, in order for two components

to communicate under the model, the communications are assumed to take place through the

root of the PTS even though the two components are in the same subtree of the PTS and can

communicate via a more direct path through the root vertex of that subtree As was seen in

the Cm* example of Chapter 7 this deficiency comes into play also in cases where the entire

requirements t.xpression can be satisfied by some subtree of a PTS segment of the overall

PMS st-ucture. Some variant of the current TREEREL algorithm needs to be devised to

eliminate this deficiency. This is not viewed as an exceedingly difficult task.

250 Conclusions, Future Research

8.2.1.5 Further exploitation of symmetry

At present the ADVISER program makes use of inherent symmetry in the PMS structure

only in order to discover symmetric PTSs so that redundant computations on such PTSs can

be avoided by doing them for only one of each symmetric set. However, as in the case of the

Cm* structure (Section 7.3.1), there may be considerable symmetry witfhin a PTS which could

be exploited and is currently not. In effect for simple cases of symmetry such as in the Cm*

architecture closed form solutions are readily available. The question is one of efficient

representation and storage of such closed forms. If such closed forms are to be used, then

related questions arise regarding the ease of computation of the probabilities of intersections

and unions of events reoresented by them. These impinge on the design of the intermediate

representation and efficient algorithms to manipulate it. Also to be answered is the question

whether ADVISER should be outfitted with an ad hoc collection of closed form solutions for

specific instances of symmetric structures; to be used whenever any such structure is

recognized. It would perhaps be preferable instead to devise and incorporate an algorithm

which would recognize cases for which a closed form solution could be constructed and do

the construction from first principles.

In a similar fashion inherent symmetry in the Kernel could be taken advantage of in the path

reliability computation. However, the advantage in this case may not be as pronounced since

the Kernel would tend to be small in most cases.

8.2.2 Relaxing of Underlying Assumptions

The relaxing of the assumptions, which underly the present work and which were stated in

Chapter 2, would be the next logical step in the continuation of the research effort in this field.

Some areas of investigation, spawned by such a loosening of assumptions, are mentioned in

the following.

8.2.2.1 Directed Graphs

The current model of PMS systems which is built into ADVISER is that of an interconnection

graph which is non.directed and having labelled vertices. One may seek to relax this

restriction and allow directed graphs to be introduced. Doing this does not have as great an

impact on the model as might be imagined. For instance, the path.finding algorithm

PATHREL. which computes the Kernel CRP, would change only very slightly. Potential paths

to the goal vertex would be sought only along arcs leading away from the current vertex. The

function of the Internal Port Connection Matrix (IPCM) would remain exactly the same as it is

Conclusions, Future Research 251

at present 4". The symmetry algorithms of Chapter 4 would generalize to the case of directed

graphs; the algorithm described in [Gaschnig 77] was in fact originally derived for the general

case.

One model which would change upon the introduction of directed graphs would be that of

Pendant Tree Subgraphs (PTSs). It would still be possible to generate these PTSs in similar

fashion if the direction of an arc connecting two neighboring vertices is disregarded. The

current model assumes, however, that all communication amongst components in the PTS

occurs through the root vertex of the PTS. This may not necessarily be the case in directed

graphs. One solution might be to let the GROW'TREES and TREEREL algorithms work exactly

as they do now and apply them only to those PTSs which are such that all pairs of vertices in

them are joined by dual directed arcs, one in each direction (this is essentially equivalent to

the directed case). However, a possible implication may be that at most times the program will

be incapable of generating any segments except a Kernel which contains essentially the

whole graph itself. This defeats the purpose of the special case solvers. The better alternative

then is to devise tree algorithms which construct symbolic reliability functions for trees which

are directed graphs.

8.2.2.2 Statistically dependent component failures

One of the underlying assumptions of the present framework was that the failure behaviors

in the PMS system components are statistically mutually independent. The relaxing of this

assumption, to include cases in which statistically dependent failure behavior is possible.

implies that the joint failure probabilities of pairs of components would have to be taken into

account. A possible initial solution to this problem is suggested by the nature of CRPs. Recall

that the juxtaposition of factors in a CRP term represents the SMERGE of the corresponding

probabilities and n just a multiplication; it is treated throughout this thesis as eventually

being a multiplication only because of the basic assumption of s-independent component

failure behavior. The SMERGE operation computes the probabilities of the intersection of

events and one can envision constructing an SMERGE algorithm on CPPs for the situation

where the joint failure probabilities of pairs of system components are non-zero. In this

situation one may find factors in a CRP term which represent such dependent components. If

the symbolic joint failure probabilities of these components are known then the intersection

probability (i.e. the probability of the simultaneous functioning of these components) may be

computed using the laws of probability.

41The current version of ADVISER does in fact allow non.symmetric IP..4s to be specified for compionents Atrir

the Kernel and the path reliability algonthrns do take this into account but directed graphs are not handled in their
generality

252 Conclusions, Future Research

Care needs to be exercised in dealing with CRPs in such a situation. For instance, many of

the procedures described in earlier chapters, such as the simplification of the system CRP,

assume implicitly that any CRPs derived for two disjoint sections of the PMS graph, are

independent. These would have to be modified to accommodate the general case. The

problem of handling dependent failure behavior is still open, however, and points out one

more attribute which must be possessed by any intermediate representation formalism which

is sought to replace the CRP.

8.2.2.3 Coverage factors

A major simplifying assumption of the current model has been that coverage of hard

failures of system components is perfect. In other words it has been assumed that the

conditional probability that the system will recover from component failures without loss of

information is unity. This is clearly optimistic. It has been shown by other investigators

[Bouricius 69] that overall system reliability is very sensitive to coverage. A more accurate

modelling of PMS system reliability would require that imperfect coverage be accounted for.

The CRP intermediate representation uses only the success probabilities of the system

components. Therefore, the inclusion of coverage factors into the CRPs being computed is

not straightforward since coverage factors apply upon the failure of system components. The

formulae described in Chapter 3 which form the bases for the current CRP algorithms may be

modified to include coverage factors as follows:

Pr(evA n ev.) - RA@RB (SMERGE)

Pr{evA U ev.) a RA(CB(1 -RB) + RAORB + RS&CA(-RA) (PMERGE)

where CA and C. are the coverage factors for the events -A and -B respectively. The second

of the two equations above reflects the fact tha the union of the events A and B is composed

of the three mutually exclusive events (A A -B), (A A B) and (-A A B) respectively. The

inclusion of the coverage factors causes the PMERGE to be explicitly a reliability computation

rather than just the computation of the probability of an intersection of two events as in

Chapter 3. In the above equations, however, it is also apparent that coverage factors will need

to be known for all possible compound events in the event space. Unfortunately, in general

systems the estimation of coverage factors is at best a difficult proposition since the factors

are so dependent on things other than the hardware of which the system is composed.

Coverage factors are more likely to be known in the case of failures of entire subsystems

Conclusions, Future Research 253

rather than at the individual component level. In addition the current data structure used for

CRPs will not suffice since it is oriented strictly toward representing success probabilities. The

devising of CRP algorithms, or algorithms on other intermediate representations, which

incorporate coverage factors in the computation of system reliability, is a research area of

prime importance.

8.2.2.4 Multi-state models of component reliability

The current model, on which the ADVISER program is based, assumes that any system

component may be in one of only two possible states, i.e. failed or working. No allowance is

made for components whose failure behavior is characterized by transit through a sequence

of states in which the component is successively more degraded. For instance it may be

possible that partial failure of a component manifests itself as degraded performance, which

in consequence similarly degrades the performance of the PMS network. If the PMS system

performance, according to some metric, is required to be greater than some minimum for the

system to be functional (see 8.2.3.1 below) then such partial failures of components are of

importance in determining system reliability. The adoption of a multi-state model of

component failure behavior, however, invalidates the simple boolean requirement

specification method along with the CRP representation which both depend on the binary

state model.

8.2.3 Other research issues

8.2.3.1 Incorporating performance into system reliability

As was mentioned above, one may consider the reliability of a PMS system to be a function

not only of the hard failure reliability of its individual components but also of their capability to

process information at rates above some decreed minimum necessary for system

functionality. Recent work has been reported in the construction of such compound models

([Beaudry 781. [Castillo 80]). Typically in such a model one would consider components

which degrade in their performance in several steps before failing completely. When the

reliability measure of a PMS system is to include performance issues, the flow rates between

components in the structure assume importance. In such situations, in addition to requiring

that a certain assortment of critical components be at least minimally functional and able to

communicate (as in the current ADVISER program), one would require not only that the

individual critical components support a certain minimum information processing rate but that

all the functional paths used for communication between them also sustain certain minimum

254 Conclusions, Future Research

data rates at all times. Thus the general max-flow.min-cut algorithms (see [Ford 62]) would

become applicable in the reliability analysis and, for instance, the path.finding strategy in the

Kernel (see Section 6.6) would have to be enhanced to use them. Such concerns would affect

the method of requirement specification in the ADVISER framework. It will no longer be

sufficient to require a minimum number of components of each critical type to be minimally

functional. Either by including a separate specification, or by modifying the current

specification method, a further requirement for minimum sustained information flow rate: per

critical component type perhaps, would need to be specified.

In addition to the above, once information on flow rates has been included in the PMS

structure which is described to the program it will also become possible to check for

inconsistencies in the way the system is structured in that the specified minimum required

information flow rates may not be supportable at all. Such "go-nogo" tests would be useful to

the designer trying to construct a PMS system from a database of components to specify

given design constraints on performance and reliability.

8.2.3.2 Other special solvers

Given the acceptability of the ADVISER method of generating reliability functions for PMS

structures. further research needs to be carried out into other kinds of substructures which

might appear with some regularity in extant systems. The nature and frequency of such

substructures might change with time and with the evolution of design principles and

systematic design methodology for PMS structures. Further algorithms on graphs need to be

developed to discover the existence of such substructures in the original PMS

interconnection graph. The greater the number of special-case structures for which solvers

are available, the SnMaI.er it is hoped the typical Kernel would become. Current practice in

ADVISER is to assigo unique single.symbol aliases to partial result CRPs emanating from the

special solvers. Adherence to this along with the simpler path.CRPs from a smaller Kernel

could act to cause CRPs to be shorter thus decreasing the time consumed in the CRP

algorithms.

8.2.3.3 Indefinite requirement specifications

The current specification of the requirements for system reliability use a constant

requirement integer. Thus, for instance, a typical atomic requirement of the form

#(10,Processor) requires that at least 10 Processors be functional. However, the truly general

case would imply the requirement of an indefinite number of Processors. Thus, for example.

4(q, Processors), where at least q Processors are required for some q. Naturally the lower

Conclusions, Future Research 255

bound on q is zero and the upper bound is the total number of Processors contained in the

PMS system under study. If the system reliability function were produced in terms of such

indefinite requirements, then parameterized studies of PMS system reliability would be

facilitated ever further. The problems in implementing such a capability in an ADVISER-like

program are difficult and would probably require a lot of the sophisticated symbol

manipulations available in a program like MACSYMA, [Macsyma 77).

An additional enhancement to the requirement specification, which could probably be of

much use to users of programs like ADVISER, would be the ability to refer in the requirements

expression to specific components in the PMS structure by name. This may be done in a

round about fashion in the current implementation by isolating the specific component of

interest into its own component-type category and then requiring at least one component of

that type to be functional. However, the ability to attach special significance to a member of

some component type would cause the treatment of the components of that type to be non-

homogeneous. This would probably necessitate the redesign of many of the algorithms

described in earlier chapters.

8.2:3.4 Relia .ility models for repairable systems

In the case of repairable systems the problem of reliability calculation is faced with two

random variables, namely the time to failure and the time to repair. This complicates the

mathematical analysis significantly. Several other issues which strongly affect the tractability

of such problems need to be addressed. For example, the sharing of repair facility amongst

components causes their reliabilities to depend on each other in complex ways. Generally,

Markov models are required to characterize the failure behavior of such systems and to

calculate their reliability and availability. Closed form solutions may or may not be available

depending on the complexity of the interdependence between components. It is not apparent

at present how the ADVISER framework may be modified to solve such problems or whether

the framework is adequate at all in the general instance.

It may be useful to point out, however, that ADVISER as it is currently constituted can be

used to compute PMS system availabilities in a very constrained case of repairable systems.

This case is one in which each individual system component is endowed with a dedicated

repair facility which is completely independent from all the other repair facilities of other

components. This assumption preserves the independence of the primitive events in the

current ADVISER framework. Consequently the symbolic probabilities in the final system CRP

computed by ADVISER may just as well be viewed as availabilities (transient or limiting) or as

reliabilities.

256 PTS Algorithm Special Case

8.3 Summary

This thesis has reported work towards developing a strategy for the automatic generation

of symbolic reliability functions for Processor-Memory-Switch structures. A program named

ADVISER embodying the resulting ideas was described and some details of its

implementation were given. Algorithms which were used during the various phases of the

computation in ADVISER were described and their advantages and disadvantages discussed.

The presentation ended with the description of example PMS structures which were run

through ADVISER and a discussion of some fruitful areas for future research.

.1

PTS Algorithm Special Case 257

Appendix A
A special case of inputs to PTS algorithms

Chapter 5 assumed that the PMS interconnection graph G was not a tree although that it

did possibly have PTSs. A question arises as to what the response of the PTS algorithms of

Chapter 5 will be if G is itself simply a tree graph. Under these circumstances there is no

Kernel (see Chapter 2) and computing the reliability of the system implies using the TREEREL

algorithm of Chapter 5 on G. However, this algorithm assumes the existence of a

distinguished or root vertex of the tree upon which it operates. In the case that G is simply a

tree there is no one vertex which can be termed an "interface vertex" to the Kernel (which

does not exist in this case) and the tree is not rooted. Likewise, Algorithm GROW attempts to

"grow" each germinal PTS towards a putative root vertex and one might question the result

when GROW is applied to an unrooted tree-structurbd PMS system. It so happens that

Algorithm GROW will work even in this case. It will, in fact, identify the entire tree graph G as

a "PTS" and choose a specific vertex as its "root". The properties of this vertex are the

subject of Section A.1. In the case of the TREEREL algorithm, however, the resulting

computed reliability could be pessimistic and a discussion of this possibility was provided in

Section 5.3.

A.1 Special case operation of Algorithm GROW

The GROW algorithm operates on G', the NCG of G, which in this case is also a tree graph.

For G" to be a tree graph it is sufficient (although not necessary) for G to be a tree graph. Two

cases can be identified here.

1. G has at least one vertex with two or more symmetric subtrees below it. This
allows the symmetry detection algorithms to equivalence, or "fold" them.

2. G has no vertices with symmetric subtrees below them.

In the former case, because of the equivalencing or "folding", there will be at least one

connection density in G' which is greater than one. In the latter case, all the connection

densities labelling the arcs in G' will be identically unity since each vertex of G will occupy its

own equivalence class alone due to the lack of any symmetry. We shall consider Case 2 first.

258 PTS Algorithm Special Case

A. 1.1 Connection densities all unity

As usual, the set of pendant vertices of G', which are also pendant vertices of G, are

chosen as the germinal trees. Then during each iteration of the algorithm some of the

germinal trees will grow by one edge toward some vertex which the algorithm will eventually

identify as the "rOOt" of the "PTS". This vertex will be the root of the tree (G as it turns out)

which is formed by the coalescing of the two or more germinal trees in the final iteration of th-e

algorithm. It is clear that none of the germinal trees will have the function "MarKComplete'

called on it42 because, for any t(? the connection density to all neighbors will be unity and

there are no self loops in G'. Hence the algorithm will only complete when all tha germinal

trees have merged into one.

Theorem 8.1: Let G(V,E) be a tree graph which is the interconnection graph of
a PMS structure. Let G be such that G'(V',E'), its TNCG, has all the connection
densities labelling edges in E' identically equal to one (i.e. G' is isomorphic to G).
Then Algorithm GROW will pick a root vertex vrEV with the following property. If qr
is the length of the longest path of which vr is one terminal vertex and if q is the
length of the longest path in G, then

q/2, qeven

rq/2"I, q odd

Furthermore, if there are m> 1 longest paths in G, each of length I, and composed
of vertex sets V;, V., VmC V respectively, then vrEV; nv2n.... nv.

We shall first introduce two necessary intermediate results.

Lemma 8.2: The end points of any longest path in a tree graph are leaves of
the tree.

Proof: The proof is obvious.

Lemma 8.3: If G(V,E) is a tree graph which has m)1 longest paths of length q
and vertex sets V', V.. V' C V respectively, then V1 "V2n...."V' * 0, i.e. they

have at least one vertex in commont.

Proof: The proof is by contradiction. Assume that there are two longest paths pi
and p2 in G, each of length q and having vertex sets V' and V' respectively.
Assume they have no vertices in common i.e. V; fl' V 0. Since G is a tree and is
connected there must be a path of at least one edge, e', between exactly one
pair43 of vertices (v,,vb), v EV, vbEV2 . In the worst case let us assume that v. and
v. occur exactly at the midpoints of the paths p, and p2 respectively. Then the
existence of e' assures that there is a path of length l/2 + q/2 + 1 a I + 1 in
G. Thus p, and p2 are not longest paths of G.

42 See peeudo-code for Procedure GROW.

43for OtWise G Wd not be a tree

PTS Algorithm Special Case 259

Proof: of Theorem 8.1. In any iteration Algorithm GROW adds exactly one
vertex v" and, therefore, exactly one edge to a germinal tree t" which is still
capable of growing. This vertex v' is added to the germinal tree if and only if the
connection density 12 it from the current root of t" is exactly unity. In addition, v'
must be the only neighbor vertex of the root of t" which has not already been
precluded from consideration by inclusion in tC or some other germinal tree. This
ensures that a vertex v of G which is eligible for inclusion, but not already
included in some germinal tree, will be included only when the following condition
is met: All germinal trees which will eventually coalesce into a germinal tree t" with
root vertex v' must have grown to within exactly one edge of V. Thus the inclusion
of vertex v' will be delayed until its germinal subtree of greatest height (i.e. path
length from that subtree's root vertex to its leaves) has grown to within one edge of
v'. This is because germinal trees grow by at most one edge every iteration.
Hence the number of iterations required to grow some germinal tree t' is equal to
the length of the longest path from its root v" to its leaves.

Assume initially that there is exactly one longest path p' of length I in G. Its end
vertices according to Lemma 8.2 are leaf vertices of G. Since germinal trees are
started with the leaf vertices of G there will be at least two germinal trees growing
toward each other from opposite ends of p' Since at most one edge is added
during each iteration to either of them, these two germinal trees will finally
coalesce after q/2 iterations if q is even. At that time the root vertex of the single
remaining germinal tree will be the center of the longest path in G i.e. the longest
path from the root will be q1/2 long. If q is odd then these two germinal trees will
approach each other until their root vertices are neighbors. Then, one of the two
vertices will have to be chosen over the other as the final root. Hence the longest
path length starting at the final root will be rq/21. Furthermore, by Lemma 8.3 the
final root will be on all the longest paths in G since those germinal trees would
have coalesced all together after q/2 iterations (rlq/21 if q is odd).

It will be seen from the above, therefore, that the algorithm will "deadlock" in its choice of a

root vertex just before the final iteration if the following conditions are met

- The longest path length, I, in G is odd. (Hence there can be at most two germinal

trees left to coalesce in the final iteration.)

-The connection densities between the roots of the two germinal trees before the
final iteration are both unity.

In this case, were the final iteration to follow, each germinal tree would include the root of

the other into itself thereby causing a situation that is contradictory since the final root is

indeterminate. This is resolved in the program by modifying Procedure GROW as follows. The

germinal trees during any iteration are treated as an ordered tuple. Then when making the

pass over the tuple which checks whether a vertex may be added to any of the trees, a further

check is made. For tree t(i' , if a suitable neighbor, vn, of tlias been found which may displace

t06'as the new root, the algorithm also checks to see that v is not already included in some tree

of lower order in the tuple than t(11. This check is suggested by the proof of Theorem 8.1

above. It will cause the "deadlock" to be broken in all cases of odd maximum path length

260 PTS Algorithm Special Case

A.1.2 Connection densities not all unity

In the other case mentioned above, the NCG of G when G is a tree may also contain

connection densities greater than one. When this happens it is possible that some germinal

tree will be prevented from growing because all of its connection densities to its neighbors

may be greater than unity. In this case Theorem 8.1 will no longer apply. It is difficult to predi-I

in the general case, which vertex of G will be chosen as the root by the algorithm since it

depends entirely on the distribution of the non-unity connection densities within G'.

I.

I,?

Terminology 261

Appendix B
Terminology

Page numbers refer to the page of definition or first use of the terms in this list.

Atomic Requirements
These are requirements which are clauses of the form "at least N components of
type X need to function". The clauses are abbreviated (NX). Page 24.

Conjunctive Requirements
These are requirements which are pure conjunctions of Atomic Requirements. Page
34.

Disjunctive Requirements
These are requirements composed of conjunctions and/or disjunctions of Atomic
Requirements Page 34.

RBD Reliability Block Diagram Page 51.

SPRBD Series.Parallel Reliability Block Diagram. Page 52.

SIP operator
Symbolic Intersection Probability operator, which is denoted in the thesis as "". It
computes the intersection probability of two events given their individual symbolic
probabilities of occurrence. Page 56.

CRPs Canonical Reliability Polynomials Page 56.

NORMVEC
The NORMVEC bit vector is one of two bit vectors which can be present in a term of
a Canonical Reliability Polynomial. Each bit in the NORMVEC represents a unique
component in the PMS structure for which the reliability function is being derived.
Page 59.

AUXVECThe AUXVEC bit vector is one of two bit vectors which can be present in a term of a
Canonical Reliability Polynomial. Each bit in the AUXVEC represents a unique
Partial Result which is generated during the initial phases of the program run and
stored away in a hash table. Page 60.

NCER Neighbors Class Equivalence Relation; used to detect the symmetry classes of a
graph. Page 70.

262 Terminology

NCG Neighbors Class Graph; its vertices correspond to the equivalence classes
generated by the NCER equivalence relation on the PMS graph G. Page 73.

EDS "Equal degree then split" partition; formed by the NCER equivalence relation on the
PMS graph G. Page 74.

TNCER Typed Neighbors Class Equivalence Relation; a modified version of the Neighbors
Class Equivalence Relation (NCER). Page 79.

ETEDS "Equal Type then Equal Degree then Split", this is the name of an algorithm to
discover symmetry classes of the PMS graph based on the Typed Neighbors Class
Equivalence Relation (TNCER) Page 80.

Pendant Tree Subgraph (PTS)
A Pendant Tree Subgraph is a maximal rooted tree subgraph of G such that the root
vertex of the tree is an articulation vertex of G and the simple path, pXY, between any
pair of vertices vX and v in the tree is unique in G. Page 91.

Kernel The Kernel is the subgraph of G which remains when the Pendant Tree Subgraphs
of G have been removed. Page 115.

Partial Results
Partial Results are Canonical Reliability Polynomials which are generated due to the
application of fragments of the original input requirements to the various Segments
of the PMS structure Page 117.

Segments Table
This is used to retain information about the various segments into which the PMS
graph G was divided. Page 122.

Critical Components
Components in the PMS structure whose component type appears in the
requirements expression. Page 124.

Auxiliary Components
All components in the PMS structure which are not Critical Components. Page 124.

m-composition of the Integer N
Page 125.

Capacity Vector
This conveys the number of components of some given type present in the various
segments of G. Page 125.

Feasible.Compositions
Page 127.

Infeasible Compositions
Page 127.

Terminology 263

Fragment Requirement
Page 128.

Canonical Reliability Polynomial Tree (CRPTree)
The CRPTree is a tree constructed by ADVISER during the running of the
OVERLORD routine. Its vertices are labelled with Partial Result CRPs and
"collapsing" it gives the System CRP. Page 134.

Templates Table
When symmetric substructures exist in the PMS structure, the application of a given
requirement to a symmetric group results in Partial Result CRPs which are also
similar. Such similar CRPs may be represented by a single template. The Templates
Table holds all such templates which were generated by ADVISER during a run.
Page 137.

Communicability Graph
Page 141.

Communicability Edge
See Communicability Graph. Page 141.

Compositions Table
The Compositions Table is very important in the operation of ADVISER and is used
to cycle through all possible compositions of the given minimal requirements in
order to determine the cases in which system success occurs. Page 150.

Requirements Array
This array holds those atoms of given minimal requirements which are currently
being processed together as a Conjunctive Requirement by the OVERLORD routine.
Page 150.

Currently Chosen Kernel Set (CCKS)
Page 155.

Row-CRP
Page 159.

Kernel-CRP
Page 159.

Internal Port Connection Matrix (IPCM)
The IPCM for a particular component in the structure describes for the purposes of
the Side Constraints which ports of the component are able to communicate
information throuah te i 2f t c Page 166.

Bounded Clustering of Critical Crmponents
Page 171.

264 References and Bibliography

References and Bibliograpohy 265

References and Bibliography

[Aggarwal 75a] Aggarwal, K.K., et al.
Computational time and absolute error comparisons for reliability

expressions derived by various methods.
Microeiectronics and Reliability 14:465-467,1975.

[Aggarwal 75b] Aggarwal, K.K.
A fast algorithm for reliability evaluation.
IEEE Transactions on Reliability R.24:83-85, April, 1975.

[Aggarwal 78] Aggarwal, K.K., and Rai, S.
Symbolic Reliability Evaluation Using Logical Signal Relations.
IEEE Transactions on Reliability R.27(3):202-205, August, 1978.

fAvizienis 75] Avizienis, A.
Architecture of Fault-Tolerant Computing Systems.
In Proceedings of the Fifth Annual International Symposium on Fault-

Tolerant Computing, pages 316. IEEE Computer Society, 1975.

[Ball 80] Ball, M.O.
Complexity of network reliability computations.
Networks 10:153-165,1980.

[Barlow 75a] Barlow, R.E., and Proschan, F.
Statistical Theory of Reliability and Life Testing.
Holt, Rinehart and Winston, 1975.

[Barlow 75b] Barlow, R.E., and Lambert, H.E.
Introduction to Fault Tree Analysis.
In Barlow, R.E. (editor), Reliability and Fault Tree Analysis: Theoretical and

Applied Aspects of System Reliability and Safety Assessment, pages 7-
35. Soc. Indust. and Appl. Math., Philadelphia, 1975.

[Barlow 76] Barlow, R.E., and Proschan, F.
Some current academic research in system reliability theory.
IEEE Transactions on Reliabiliy R-25(3):198, 1976.

[Beaudry 78) Beaudry, M.D.
Performance-related reliability measures for Computing Systems.
IEEE Transactions on Computers C-27(6):540-547, June, 1978.

266 Referencm and Bibliography

[Bell 71] Bell, C.G., and Newell, A.
Computer Structures: Readings and Examples.
McGraw-Hill, 1971.

[Bennetts 75] Bennetts, R.G.
On the analysis of fault trees.
IEEE Transactions on Reliability R-24:175, 1975.

[Boesch 72] Boesch, F.T., and Felzer, A.P.

A general class of invulnerable graphs.
Networks 2:261.283,1972.

(Bouricius 69] Bouricius, W.G, Carter, W.C. and Schneider, P.R.
Reliability Modeling Techniques for Self-Repairing Computer Systems.
In Proc. 24th. National Conference ACM, pages 295-309. Association for

Computing Machinery, 1969.

[Bouricius 71] Bouncius, W.G., Carter, W.C., Jessep, D.C., Schneider, P.R. and Wadia
A.B.
Reliability Modeling for Fault-Tolerant Computers.
IEEE Transactions on Computers C-20(11):1306-131 1, November, 1971.

(Brown 71] Brown, D.B.

A computerized algorithm for determining the reliability of redundant
configurations.

IEEE Transactions on Reliability R-20(3):108, August, 1971.

[Buzacott 67] Buzacott, J.
Finding the MTBF of repairable systems by reduction of the reliability block

diagram.
Microelectronics and Reliability 6:105.112, 1967.

[Buzacott 70] Buzacott, J.
Network approaches to finding the reliability of repairable systems.
IEEE Transactions on Reliability R.19(4):140, November, 1970.

(Camarda 78] Camarda, P., Corsi, F., and Trentadue, A.
An efficient simple algorithm for Fault Ti-.ie automatic synthesis.
IEEE Transactions on Reliability R-27(3):215-221, August, 1978.

[Castillo 80] Castillo, X. and Siewiorek, D.P.
A performance-reliability model for computing systems.
In Digest of Papers, FTCS- 10: Tenth International Symposium on Fault-

Tolerant Computing, pages 187-192. IEEE Computer Society, October,
1980.

[Chatterje 751 Chatterfee, P.
Modularization of Fault Trees: A method to reduce the cost of analysis.
In Barlow, R.E. (editor), Reliability and Fault Tree Analysis: Theoretical and

Applied Aspects of System Reliability and Safety Assessment, pages 37.
56. Soc. Indust. and Appl. Math., Philadelphia, 1975.

References and Bibliography 267

[Chelson 71] Chelson, P.O. and Eckstein, R.E.
Reliability Computation from Reliability Block Diagrams.
Technical Report 32.1543, National Aeronautics And Space Administration,

Jet Propulsion Laboratory, Pasadena, Ca., December, 1971.

[Chung 71] Chung, W.K.
Generalized reliability function for systems of arbitrary complexity.
IEEE Transactions on Reliability R.20(2):85, 1971.

[Cox 68] Cox, R.E., and Miller, H.D.

The theory of stochastic processes.
Methuen and Co., London, 1968.

[Creasey 67] Creasey, D.J.
Reliability predictions for repairable systems containing redundancy.
Microelectronics and Reliability 6:135-142, 1967.

[Fleming 71] Fleming, J.L.
RELCOMP: A computer program for calculating system reliability and

MTBF.
IEEE Transactions on Reliability R-20(3):102, August, 1971.

[Ford 62] Ford, L.K. and Fulkerson, D.R.
Flows in Networks.
Princeton University Press, Princeton, N.J., 1962.

(Frank 701 Frank, H., and Frisch, I.T.
Analysis and design of survivable networks.
IEEE Transactions on Communications Technology COM.18(5):501-519,

1970.

(Fratta 75] Fratta, L. and Montanari, U.
A Vertex Elimination Algorithm for Enumerating all Simple Paths in a Graph.
Networks 5:151.177,1975.

[Fussell 74] Fussell, J.B., Powers, G.J. and Bennetts, R.G.
Fault Trees -- A state of the art discussion.
IEEE Transactions on Reliability R-23:51, 1974.

[Fussell 75a] Fussell, J.B.
Computer Aided Fault Tree Construction for Electrical Systems.
In Barlow, R.E. (editor), Reliability and Fault Tree Analysis: Theoretical and

Applied Aspects of System Reliability and Safety Assessment, pages 37-
56. Soc. Indust. and AppI. Math., Philadelphia, 1975.

[Fussell 75b] Fussell, J.B.
How to hand calculate system reliability and safety characteristics.
IEEE Transactions on Reliability R-24:169, 1975.

jI

268 References and Blbliogr-1,y

(Ga~tdhi 72] Gandhi, S.L., Inoue, K., and Henley, E.J.
Computer aided system reliability analysis and optimization.
In Vl~tsta, J. and Wielrnga, R.F. (editors), Computer.Aided Design:. proc

IFIP Working Conference on Principles at Computer-Aided Design,
pages 283-308. IFIP, Eindhoven, Oct, 1972.

[Gaschnig 77] Gaschnig, J.
A "Neighbors Clas" Node Partitioning.Algorithm for Finding Symmetry

Classes in Graphs.
1977.
Draft, September 18, Unpublished.

[Greene 68] Greene, K. and Cunningham, T.J.
Failure modes, effects and criticality analysis.
In Proceedings, 1968 Annual Symposium on Reliability, pages 374. IEEE,

Boston, 1968.

[1-ansler 74] Hansler, E., McAuliffe, O.K. and Wilkov, R.S.
Exact Calculation of Computer Network Reliability.
Networks 4:95-112, 1974.

[Hill 68] Hill, F.J. and Peterson, G.R.
Introduction to Switching Theory and Logical Design.
John Wiley & Sons, New York, 1968.

[Hopcroft 73] Hopcroft, J. and Tarjan, R.
Algorithm 447: Efficient Algorithms for Graph Manipulation.
Communications Of The ACM4 16(6):372-378, June, 1973.

[Jenny 69] Jenny, J.A.
The effect of partial failure modes on reliability analysis.
IEEE Transactions on Reliability R-18(4):175, November, 1969.

[Katzman 77] Katzman, J.A.
A Fault-Tolerant Computing System.
Technical Report, Tandem Computers Inc., 1977.

[Kim 72] Kim, V.H., Case, K.E., and Ghare, P.M.
A method for computing complex system reliability.
IEEE Transactions on Reliability R-21 (2):21 5, May, 1972.

[Knight 75] Knight, L.
The measurement and prediction of the reliability of computing systems.
In Proc. lnternepcon (PMcroelectron.), pages 205. IEEE (?), October, 1975.

[Knudsen 73] Knudsen, M.J.
PA4SL. An Interactive Language for System-Level Description and Analynis

of Computer Structures.
PhD thesis, Carnegie-Mellon University, April, 1973.

[Knuth 69] Knuth, D.E.
The Art of Computer Programming. Volume 2: Seminumerical Algorithms.
Addison Wesley, 1969.

References and Bibliography 269

[Knuth 75a] Knuth, D.E.
The Art of Computer Programming. Volume 3: Sorting and Searching.
Addison Wesley, 1975.

[Knuth 75b] Knuth, D.E.
The Art of Computer Programming. Volume 1: Fundamental Algorithms.
Addison Wesley, 1975.
Second Edition.

[Koen 74] Koen, B.V. and Camino, A.
Reliability Calculation with a List Processing Technique.
IEEE Transactions on Reliability R.23:43, 1974.

[Krishnamurthy 72]
Krishnamurthy, E.V. and Komissar, G.
Computer-Aided Reliability Network Analysis.
IEEE Transactions on Reliability R-21 (2):86, May, 1972.

[Landrault 78] Landrault, C. and Laprie, J.C.
SURF -- A Program for Modeling and Reliability Prediction for Fault-

Tolerant Computing Systems.
In J. Moneta (editor), Information Technology,. North-Holland Publishing

Co., 1978.

[Lapp 77] Lapp, S., and Powers, G.
Computer-Aided Synthesis of Fault-Trees.
IEEE Transactions on Reliability R-26(1):2, April, 1977.

(Laprie 76] Laprie, J.C.
On the reliability prediction of repairable redundant digital systems.
IEEE Transactions on Reliability R-25(4):256, October, 1976.

[Lin 69] Lin, P.M. and Alderson, G.E.
Symbolic Network Functions by a Single Path-Finding Algorithm.
In Proc. of 7rh Allerton Conference on Circuit and Syster- Theory, pages

196. IEEE (?), 1969.

(Lin 76] Lin, P.M., Leon, B.J., and Huang, T.C.
A new algorithm for symbolic reliability analysis.
IEEE Transactions on Reliability R-25(1):2-15, April, A 976.

[Liu 68] Liu, C.L.
Introduction to Combinatorial Mathematics.
McGraw Hill, 1968.

[Locks 71] Locks, MO.
The maximum error in system reliability calculation by using a subset of the

minimal states.
IEEE Transactions on Reliability R-20(4):231, November, 1971.

270 References and Bibliography

[Locks 80] Locks, M.O.
Recursive Disjoint Products, Inclusion-Exclusion and Min-Cut

Approximstions.
IEEE transactions on Reliability R-26(5):368-371, December, 1980.

[Macsyma 77] The MathLab Group.
MACSYMA Reference Manual
Laboratory for Computer Science, Massachusetts Institute of Technology,

Cambridge, Mms., 1977. .
V ersion 9, Second Printing, December 1977.

[Mathur 72] Mathur, F.P.
Automation of reliability evaluation procedures through CARE. The

computer-aided reliability estimation program.
In Proceedings Fail Joint Computer Conference, pages 65-.77. AMIPS,

1972.

[Mathur 75a] Mathur, F.P. and deSouza, P.T.
Reliability modelling and analysis of general modular redundant systems.
IEEE Transactions on Reliability R-24(5)2%6, December, 1975.

[Mathur 75b] Mathur, F.P. and deSouza, P.T.
Reliability models of NMR systems.
IEEE Transactions on Reliability R-24:108, 1975.

[MIL.HDBK.2178 74]
Military Standardization Handbook: Reliability Prediction of Electronic
Equipment
,September 1974.

[Misra 70a] Misra, K.B.
An Algorithm for the Reliability Evaluation of Redundant Networks.
IEEE Transactions on Reliability R-19,146-151, 1970.

[Miara 70b] Misra, K.B., Rao, T.M.S.
Reliability Analysis of Redundant Networks using Flowgraphs.
IEEE Transactions on Reliability R- 19: 19, February, 1970.

(Nelson 70] Nelson Jr., A.C., Batts. J.R., Beadles, R.L.
A corfiputer program for approximating system reliability.
IEEE Transactions on Reliability R. 19:61 -65, May, 1970.

[Ng 77] Ng, V.W., and AvIzienis, A.
ARIES.-- An Automated Reliability Estimation System for Redundant Digital

Structures.
In Proceedings 1977 Annual Reliability and Maintainability Symposium,

pages 108-.113. IEEE, January, 1977.

(Ng 801 Ng, Y.W. and Avlzienis, A.
A Unified Reliability Model for Fault-Tolerant Computers.
IEEE Transactions on Computers C-29(11):1002-1 011, November, 1980.

References and Bibliography 271

[Nijenhuis 78] Nijenhuis, A. and Wilt, H.S.
Combinatorial Algorithms for Computers and Calculators, 2"d Edition.
Academic Pres, New York, 1978.

[Ornstein 75] Ornstein, S.M., Crowther, W.R., et al.
Pluribus .- It reliable multiprocessor.
In AFIPS Conference Proceedings, pages 551-559. AFIPS, 1975.

[Osaki 76] Osaki, S. and Nakagawa, T.
Bibliography for reliability and availability for stochastic systems.
IEEE Transactions on Reliability R.25(4):284, October, 1976.

[Powers 76] Powers, G., and Lapp, S.
Computer-Aided Fault-Tree Synthesis.
Chemical Engineering Progress, April, 1976.

[Reiser 76 Reiser, J.F. (ed.).
SAIL
Stanford University, Stanford, California, 1976.
Computer Science Department Report No. STAN.CS-76.574, August 1976.

Also available from the National Technical Information Service,
Springfield, Virginia, 22161.

[Rosenthal 77] Rosenthal, A.
Computing the reliability of complex networks.
SIAM J. Appl. Math. 32(2):384.393, March, 1977.

(Satyanarayana 781
Satyanarayana, A., and Prabhakar, A.
New Topological Formula and Rapid Algorithm for Reliability Analysis of

Complex Networks.
IEEE Transactions on Reliability R-27(2):82-100, June, 1978.

[Schick 78) Schick, G.J., and Wolverton, R.W.
An analysis of competing software reliability models.
IEEE Transactions on Software Engineering SE-4(2):104.120, March, 1978.

[Schroeder 70] Schroeder, R.J.
Fault Trees for Reliability Analysis.
In Proceedings, 1970 Annual Symposium on Reliability, pages 198. IEEE,

February, 1970,
Los Angeles, 1970, IEEE: Cat. # 70C2-R.

(Sharma 763 Sharma, J.
Algorithm for reliability evaluation of a reducible network.
IEEE Transactions on Reliability R-25(5):337, December, 1976.

[Shooman 68] Shooman, M.L.
Probabilistic Reliability: An Engineering Approach.
McGraw-Hill, New York, 1968.

272 References and Bibliography

[Shooman 70] Shooman, M.L.
The equivalence of reliability diagrams and fault-tree analysis.
IEEE Transactions on Reliability R-19(2):74.75, May, 1970.

[Siewiorek 78] Siewiorek, D.P. and Thomas, D.E. (eds.).
The Analysis of the Performance, Reliability and Life Cycle Cost of Multi-

Processor Architectures and their Impact on SENET.
Research Report CMU-CS-78. 126, Carnegie-Mellon University, Pittsburgh,

PA, May, 1978.

[Staley 74] Staley, J.E. and Sutcliffe, P.S.
Reliability Block Diagram Analysis.
Microelectronics and Reliability 13(1):33-47, 1974.

[Stoffel 68] Stoffel, R.W.
System Analysis via Probability Diagrams.
In Proceedings, 7th. Annual Reliability and Maintainability Conference,

pages 234. 1968.
San Francisco, CA, 1968.

[Swan 77] Swan, R.J., Fuller, S.H. and Siewiorek, D.P.
Cm": A modular, multi- microprocessor.
In AFIPS Conference Proceedings, pages 637.644. AFIPS, 1977.
Volume 46.

[Tarian 72] Tarian, R.
Depth-First Search and Linear Graph Algorithms.
SIAM Journal of Computing 1(2):146-160, 1972.

[Teitelman 78] Teitelman, W. et al.
INTERLISP Reference Manual
Xerox Palo Alto Research Center, Palo Alto, CA., 1978.

[Tung 761 Tung, S.S.
Reliability of a tree network.
IEEE Transactions on Reliability R-25(5):333, December, 1976.

[USNRC 75) U.S.N.R.C.
Reactor Safety Study -- An Assessment of Accident Risks in U.S.

Commercial Nuclear Power Plants, WASH 1400 (NUREG- 751014).
Technical Report, U.S. Nuclear Regulatory Commission, Washington, D.C.,

1975.
Available from NTIS, Springfield, VA, 22161.

tWidawsky 71] Widawaky, W.14.
Reliability and maintainability parameters evaluated with simulation.
IEEE Transactions on Reliability R-20(3):158, August, 1971.

[Wiesen 67] Wiesen. J.M.
Statistical methods in Reliability Analysis.
Elect ro-Technology -57, May, 1967.

References and Bibliography 273

[Wilkov 72] Wllkov, R.
Analysis and design of reliable computer networks.
IEEE Transactions on Communication COM.20(3):660, 1972.

(Worrell 76) Worrel, R.B. and Burdick, G.R.
Qualitative analysis in reliability and safety studies.4
IEEE Transactions on Reliability R-25(3):164, August, 1976.

TNulf 71] Wulf, W.A., of al.
BLISS Reference Manual: A Basic Language for Implementation of System

Software for the PDP-10
Carnegie-Mellon University, 1971.

[Wulf 72] Wulf, W.A. and Bell, C.G.
C.mmp -- a multi-mini-procesaor.
In Proc. AFIPS Fall Joint Computing Conference, pages 75-777. AFIPS

Press, Montvale, N.J., 1972.
Volume 41.

SECURITY CL.ASSI':V :- IC O 0r $-'S S ,',.M Dolt s

REPORT DOCUMENTATION PAGE READ 1,SSTRUCT:CNS
I R.FORE C'% -'

0
'

ET:NZ F Rkl
I. REPORT NUMBER 2. GOVI ACCESSION NO.1 3. RECIPiENT*S CATALCG NuMBER

CMU-CS-81-121• 1

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD CCVEREO

AUTOMATIC GENERATION OF RELIABILITY FUNCTIONS Interim
FOR PROCESSOR-MEORY-SWITCH STRUCTURES

6. PERFORMING ORG. REPORT NUMBER

7. AUTMOR(s) B. CONTRACT OR GRANT NUMBER(s)

Vittal Kini N00014- 77-C-0103

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM EME.%. PJ ET. TASK
Carnegie-N'ellon University AREA & WORK UNIT NUMBERS

Computer Science Department
Pittsburgh, PA. 15213

I. CONTRO'LINS OFFICE NAME AND ADDRESS 12. REPORT DATE

February 1981
13. NUMBER OF PAGES

286
4. MONITORING AGENCY NAME & AODRESS(Il dilferent Ie Controlling OticeJ IS. SECURITY CLASS. (ol r17a report)

iUNCLASSIFIED

15s. DECLASSIFICATION, DOWNGRA ING
SCHEDULE

1.)ISTRIBUTION STATEMENT (of this Report)

-w

17. DISTRIBUTION STATEMENT (o the abstract entered in Block 20, It dillereut from Report)

Approved for public release; distribuL.on unlimited

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue an *ves sods it necessary mid Identity by block nomor)

206 ABSTRACT (Continue an roorse side It nec.e..ar and idenitty by block nlmber)

DD 1473 E C NOV 11 IS OSOLTE UNCLASSIFIED
S1ECURITY CLASSIFICATION OF TmIS PAGE (eon Vote 8~leoed)

~I

