AD=A112 713 CARNEGIE-MELLON UNIV PlTTSéLIlGH PA DEPT OF COMPUTER ~~ETC F/|
AUTOMATIC GENERATION OF RELIABILITY FUNCTIONS FOR MOCESSO!-;E:-%#C(U)
FEB 81 V KINI N00016=77=C-0103
UNCLASSIFIED CMU~CS-81-121

[l

L

s 22

I

N

e
i

L2 flis nie

WALl 13

=

-

BTiS FILE COPY

QMU-CS-81-121 (E g)

Automatic Generation of Reliability Functions
for
Processor-Memory-Switch Structures

Department of Electrical Engineering
Carnegie-Mellon University
Pittsburgh, PA. 15213
February 1981

Vittal Kini

DEPARTMENT
of

COMPUTER SCIENCE

L]

Thi- dei- 3. ot hee been approved
S, o el s
Gictinwi g b vadiocied }

Carneqgie-Mellon University

U3 22 o1p

Automatic Generation of Reliability Functions
for
Processor-Memory-Switch Structures

Vittal Kini

Department of Electrical Engineering
Carnegie-Mellon University
Pittsburgh, PA. 15213
February 1981

Submitted to Carnegie-Mellon University
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

This work was supported in part by the National Science Foundation under Grant
GJ 32758X and in part by the Office of Naval Research under Contract NR.048.645

and Contract N00014-77.C-0103.

IS
N

CMU-CS-81-121 ?

ABSTRACT

Reliability computation is gaining much importance for computer system architectures with built in
redundancy, such as multiprocessors. The task of computing the reliability function for arbitrary
Processor-Memory-Switch (PMS) interconnection structures, however, is tedious and prone to human
error. Existing reliability computation programs make one of two assumptions: -

-That the case analysis of success states of the system has been carried out. Such
analysis must be done manually. In this instance the input to the program is usually in the
form of an intermediate representation (e.g. Fauit Tfee. Reliability Graph): .

- That the interconnection structure is a member of, or can be partitioned into. some
limited class of structures for which a parametric family of equations exists (e.g. N-
Modular Redundant systems, Hybrid Redundant systems).

This thesis represents a first step in the deveiopment of a methodology for automating the
computation of symbolic reliability functions for arbitrary interconnection structures at the PMS level.
The work reported here automates the task of case analysis and problem partitioning in the hard-
failure reliability computation for PMS structures. As a consequence attention is freed to focus
aimost wholly on specitying the reliability computation problem. The advantages of such an approach
are (i) utility to a larger class of users, not necessarily expert in reliability analysis. and (ii) a iower
probability of human error in the computation. -

A program named ADVISER (Advanced Interactive Symbolic Evaluator of Reliability) was
constructed as a research vehicle. ADVISER accepts as inputs

1. The interconnection graph of the PMS structure, and

2. A succinct statement of the operational requirements on the structure in the form of a
regular expression. :

Each component in the system, which may have internal redundancy, is represented by a symbol. The
operational requirements in the case of a multiprocessor architecture may be, for example. “two
processors and four memory boxes and one 170 channel”. ADVISER considers the communication
structures in the PMS system (e.g. buses, crosspoint switches, etc.) in addition to the explicitly stated
requirements to determine how the interconnection structure affects the system refiability. The output
of the program is a symbolic reliability equation for the system subject to the given requirements. This
dissertation describes the ADVISER program and methodology in detail. -

s i e e

Acknowledgements

| would like to express my deep gratitude to Dan Siewiorek who has nominally been my advisor
through my years of graduate study at CMU. As a good friend through hard times, and a patient and
ever-helpful mentor he has gone far beyond the call of fiiut nominal duty. Without his continual
encouragement this thesis might truly never have been written.

! am much indebted to my present employers, USC-information Sciences Institute. for being fiexible
and understanding in allowing me to pursue thesis writing in conjunction with day-to-day tasks over
the better part of one and a half years. | am particularly gratefut to Steve Crocker of USC-iS! in this
respect. ’

For taking the time out from their busy schedules to review this large document in such a short time
| extend my sincere thanks to my thesis committee: Mario Barbacci, Steve Director, both of CMU, and
Bob Swarz of Digital Equipment Corp.

An undertaking such as this is seldom accomplished without the encouragment, support and
contributions of good friends and colleagues; | am fortunate to have been biessed with many. { would
especially like to acknowledge Mario Barbacci, Bill Brantley, Steve Crocker, Gary Leive, Andy Nagle.
Alice Parker, and Don Thomas, all of whom, at one time or other, contributed ideas and acted as
sounding boards during enlightening discussions. My thanks to John Gaschnig, now at SRI, for an
introduction to the ideas which lead to the material of Chapter 4, and Rostam Joobbani .57 help in
resurrecting old programs for use in the experiments of Chapter 7. The camaraderie of the “"Porter
Hole Gang" contributed to making the stimulating CMU environment that much more pleasant.

The Dunnoms, Jipps, Kerrs and Kondas provided homes away from home and affection beyond
measure to a student far from his family and country. They have heiped perhaps more than they
realize. Last, but most of all, my eternal gratitude to my parents for their unwavering faith in my
abilities and trust in my judgement. Would that all toilers were blessed with such a loving family.

Table of Contents

1. Introduction

1.1 Background

1.2 Extant Reliability Calculation Programs
1.2.1 Reliability Estimation
1.2.2 Reliability Block Diagram representation
1.2.3 Hybrid-Redundant System analysis
1.2.4 PMSL
1.2.5 Automatic Fault Tree Synthesis

1.3 Statement of Goals and Discussion

1.4 Organization of Thesis

2. Overview of ADVISER

2.1 Underlying assumptions and concepts
2.2 Overview of program
2.2.1 Program Inputs
2.2.1.1 Declaration of Component Types
2.2.1.2 Declaration of the PMS structure
2.2.1.3 Declaration of Reliability Requirements
2.2.2 Program Algorithms
2.2.2.1 Detection of symmetries in the PMS interconnection graph
2.2.2.2 Segmenting of the PMS graph
2.2.3 The OVERLORD routine
2.2.3.1 Generation of feasible MCRSs
2.2.3.2 Satisfying the Communication Axiom
2.2.3.3 Representation of Reliability Expressions
2.2.4 Program Output
2.2.4.1 Printing of Results
2.3 Conclusion

3. intermediate Representations

3.1 Introduction
3.2 Some commonly used representations
3.2.1 Probability Trees
3.2.2 Fault Trees
3.2.3 Reliability Graphs
3.2.3.1 Reliability Block Diagrams
3.3 The Series-Parallel RBD in ADVISER
3.3.1 The mode! underlying the SPRBD
3.3.2 The SPRBD Algorithms
3.4 A data structure for the SPRBD algorithm
3.4.1 Ordering of CRP terms

-l
B5B8LLUBNNRNUBEon W “ovo~Noann -

F 3
-

BLRER2EE588 &

3.5 An implementation of the SMERGE aigorithm
3.# An implementation of the PMERGE algorithm
3." Summary

4. Detection of symmetries in the PMS graph

4.1 A symmetry detection aigorithm based on equivalence classes
4.2 Some properties of the NCER
4.3 Modification of EDS for labelled graphs
4.4 Some results in regard to the NCG and TNCG
4. 4.1 Unequal class cardinalities
4.4 2 Equal class cardinalities
4.5 Symmetric trees
4.6 Conclusion

S5. Tree Interconnection Structures

5.1 Generation of Pendant Tree Subgraphs (PTS)
5.2 Generation of Reliability Functions for PTSs
5.2.1 The TREEREL Algorithm
5.2.2 Analysis of Procedure PTREE
5.2.3 Extension of TREEREL to compound requirements
5.3 Current Deficiencies in Algorithm TREEREL
5.4 Summary

6. The OVERLORD routine in ADVISER

6.1 Overview
6.2 Detection of physical symmetries in PMS structures
6.3 Segmenting the PMS graph; PTSs and the Kerne!
6.4 Requirements on the PMS structure
6.4.1 Atomic Requirements
6.4.2 Compound Requirements
6.4.2.1 Conjunctive Requirements
6.4.2.2 Disjunctive Regquirements
6.4.3 Efficiencies in the handling of requirements
6.4.3.1 Pre.generation of partial results
6.4.3.2 Deferring the combining of partial results
6.5 Generation of Partial Results for PTSs
6.5.1 Symmetric PTSs
6.5.1.1 Unique identification of PTS partial results
6.5.1.2 The Tempiates Table
6.5.1.3 The Factors Tabie
6.6 The Communication Axiom and the Kernel
6.6.1 The Communication Axiom
6.6.2 The Kernel
6.6.3 Paths through the Kernel
6.6.4 The Path Algorithm
6.6.5 The generation of partial results for the Kernel
6.6.6 The utility of side-constraints on pathfinding
6.7 The Main Loop of the Overlord Routine
6.7.1 Generation of feasibie compositions
6.7.2 Computing the reliability contribution of the Kernel
6.7.3 Computing the reliability contribution of the PTS segments
6.7.4 Accumuiating the result for a pure Conjunctive Requirement

8L 288388 IIB I AR2

101
108
110
112
114

115

118
118
121
124
125
128
128
130
132
132
133
136
136
137
137
138
140
140
141
143
143
148
147
148
150
154
156
157

] iii
' 6.7.5 General case: a Disjunctive Requirement 157 %
6.8 Efficiency in the assembling of CRP's in Overlord 158
6.8.1 The CRPTree 159
6.8.2 Construction of the CRPTree 161 :
6.8.3 Use of the CRPTree 162
6.9 Side Constraints on Reliability Function generation 162 1
6.9.1 intracomponent port connections 164
6.9.1.1 Need for constraint 164
6.9.1.2 implementation 166 :
6.9.1.3 Effect of constraint on algorithms 167
6.9.2 Intra Component-Type Communication 168
6.9.2.1 Need for constraint 168
6.9.2.2 implementation 168
6.9.2.3 Effect of constraint on algorithms 168
6.9.3 Bounded Clustering of Critical Components 170
6.9.3.1 Need for constraint 170]
, 6.9.3.2 Effect on Algorithms 173
] 6.10 Simplification of Canonical Reliability Polynomiais 174 :
6.10.1 NORMVEC processing 176
6.10.2 AUXVEC processing 176]
6.10.3 Final aigebraic simplification 178 .
] 6.11 Printing of Results 179 |
b . 6.12 Summary 184
F 7. Examples and Results 187
7.1 Validation of ADVISER 187
7.2 Comparison to manual calculations 188
7.2.1 The DEC1.PMS example 189
7.2.2 The DEC2.PMS and DEC3.PMS examples 198
7.3 Comparison to published resuits 206
7.3.1 The Cm* architecture 207
7.3.2 The C.mmp architecture 211
7.3.3 The Tandem architecture 212
7.3.4 The Global Bus architecture _ 219
7.3.5 The Pluribus architecture 222
7.4 Performance measurements on ADVISER ' 230
7.5 Application to classical Network Reliability problems 237
7.6 Summary and Conclusions 242
8. Summary, Conclusions, and Future Research 243
8.1 Recapitulation 244
8.2 Future Research 247
8.2.1 Ungolved problems in the present framework 247
8.2.1.1 Intermediate Representation 247
8.2.1.2 The CRPTree 248
8.2.1.3 Side Constraints 249
8.2.1.4 Enhancement of TREEREL algorithm 249
8.2.1.5 Further exploitation of symmetry 250
8.2.2 Relaxing of Underlying Assumptions 250
8.2.2.1 Directed Graphs 250
8.2.2.2 Statistically dependent component failures 251
8.2.2.3 Coverage factors 252

PR Aot 50 . 220 i3

8.2.2.4 Multi-state models of component reliability
8.2.3 Other research issues
8.2.3.1 Incorporating performance into system reliability
8.2.3.2 Other special solvers
8.2.3.3 Indefinite requirement specifications
8.2.3.4 Reliability models for repairable systems
8.3 Summary

Appendix A. A special case of inputs to PTS algorithms

A.1 Special case operation of Aigorithm GROW
A.1.1 Connection densities all unity
A.1.2 Connection densities not all unity

Appendix B. Terminology
References and Bibliography

253

254

255

257
257

260
261
265

NPT TR e

o i A ¥

List of Figures

Figure 1-1: Reliability modeling at the PMS level.

Figure 2-1: Critical and Auxiliary components

Figure 2-2: The structure of the ADVISER program.

Figure 2-3: Example PMS structure for explanation of requirements input.

Figure 2-4: Example of a PMS structure in which clustering of CCTs occurs.
Figure 2-5: Effect of applying symmetry detection algorithm to an example PMS
structure. For details of this particular case see Page 83.

Figure 2-6: Exampies of Pendant Tree Subgraphs.

Figure 2-7: An example of drawing critical components from segments of G.

Figure 2-8: Algorithm to generate all possible combinations of n-compositions.

Figure 3-1: The portion of the ADVISER structure discussed in Chapter 3. Also
see Page 18.

Figure 3-2: Probability Tree for 2-out-of-3 structure, (a) Complete (b) Reduced.

Figure 3-3: Fault Tree for 2-out-of-3 structure

Figure 3-4: Reliability Block Diagram for 2-out-of-3 structure

Figure 3-5: (a) A non series-parallel RBD, and (b) its stochastically equivalent
series-parallel RBD

Figure 3-6: Merging rules for SPRBDs

Figure 3-7: Data structure for CRP term

Figure 3-8: (a) The Bin Array (b) A representative bin.

Figure 4-1: The portion of the ADVISER structure discussed in Chapter 4. Also
see Page 18.

Figure 4-2: Application of the NCER to an example graph.

Figure 4-3: Examples of NCGs resulting from the appiication of NCER to various
graphs.

Figure 4-4: Non-symmetric but isomorphic PMS structures.

Figure 4-5: An example PMS graph with symmetries

Figure 4-6: Steps of the ETEDS algorithm applied to Figure 4-5

Figure 4-7: (a) The TNCAM for Figures 4-5 and 4-6 (b) The TNCG defined by the
TNCAM above.

Figure 4-8: A pair of vertices in an NCG.

Figure 4-9: Ambiguous origin of single NCG edge whenn_= n,.

Figure 4-10: A case where a leaf of G’ is not a feaf of G.

Figure 5-1: Examples of Pendant Tree Subgraphs

Figure 5-2: The portion of the ADVISER structure discussed in Chapter 5. Also
see Page 18.

Figure 5-3: Data structure for germinal trees

Figure 5-4: (a) All the 4-compositions of the integer 3. (b) All 3-partitions of the
integer 6.

Figure 5-5: First five terms of w(n)

Figure 5-8: Parse tree of requirement expression (5.3).

2RBB BRESE RBEB BRRoow

N~
N -4

8 88888 RBRI

-
o
purd

-
P
- 0O

Sibvaitiieiiohinma it aby

Figure 5-7:
Figure 6-1:

Figure 6-2:
Figure 6-3:
Figure 8-4:
Figure 6-5;
Figure 6-6:
Figure 6-7:

Figure 6-8:
Figure 6-9:

Figure 6-10:
Figure 6-11:
Figure 6-12:
Figure 6-13:
Figure 6-14:
Figure 6-15:
Figure 6-16:

Figure 7-1;
Figure 7-2:

Figure 7-3:
Figure 7-4;

Figure 7-5:
Figure 7-6:

Figure 7-7:
Figure 7-8:

Figure 7-9;

Figure 7-10:
Figure 7-11:

Figure 7-12:
Figure 7-13:
Figure 7-14:
Figure 7-15:
Figure 7-16:
Figure 7-17:

Figure 7-18:

Example of TREEREL deficiency.

The position of the OVERLORD routine in the ADVISER structure.
Also see Page 18.

PMS structure used as a running example

Typed Neighbors Class Graph of the PMS structure in Figure 6-2.
Segmentation of PMS structure of Figure 6-2 into Pendant Tree
Subgraphs and the Kernel

Choosing N components from m segments; m-.compositions of the
integer N.

Capacity vectors for the PMS of Figure 6-2 when segmented as in
Figure 6-4.

Derivation of partial and final results for a conjunctive requirement
CRPTree for the example of Figure 6-7

The relationship of important tables in ADVISER

Three cases of paths through the Kernel

A dual-port bus-switch architecture

The logical organization of the Compositions Table

An example of a CRPTree

An example of a vertex with an Internal Port Connection Matrix

An example of a computed reliability function printed in FORTRAN
An example of a computed reliability function printed in SAIL

Example DEC1.PMS .. PMS Diagram and Requirements.

Example DEC1.PMS .. Hand-constructed SPRBD for given
requirements.

Example DEC2.PMS .- PMS Diagram and Requirements.

Example DEC2.PMS .- Hand-constructed SPRBD for given
requirements.

Example DEC3.PMS .. PMS Diagram and Requirements.

Example DEC3.PMS .. Hand-constructed SPRBD for given
requirements.

Cm* architecture used for ADVISER test

Comparison of ADVISER and SENET results for Figure 7-7, Cm*, 5 P,
10 M required.

Comparison of ADVISER and SENET results for Figure 7-7, Cm*, 1 P,
2 M required.

C.mmp architecture for ADVISER test.

Comparison of ADVISER and SENET results for Figure 7-10, C.mmp,
lumped switch, 2 P, 2 M and 1 K.io required.

Comparison of ADVISER and SENET results for Figure 7-10, C.mmp,
distributed switch, 2 P, 2 M and 1 K.io required.

Tandem-16 architecture for ADVISER test. (a) PMS diagram (b}
Detail of Computer.

Comparison of ADVISER and SENET results for Figure 7-13,
Tandem, 2 C and 2 I0L required.

Comparison of ADVISER and SENET results for Figure 7-13,
Tandem, 1 C and 1 10L required.

The Global Bus architecture used for ADVISER tests (a) Without 170
lines (b) With 170 line.

Comparison of ADVISER and SENET results for Figure 7-16, Global
Bus, 2 P, 8 M and 1 1OL required.

Pluribus model for ADVISER test.

113
116

118
120
123
126
127
131
134
139
142
148
151
160
165
182
183
190
191
189
201
202

207

210

212
213

214

215

217

218

220

21

223

L

Figure 7-19:
Figure 7-20:
Figure 7-21:

Figure 7-22:
Figure 7-23:

Comparison of ADVISER and SENET results for Figure 7-18,
Pluribus, 2P, 2MX, 2ML, 1 CLK, 1 PID, 1 IOL

(a) Simple version ot Pluribus architecture (b) Hand-constructed
SPRBD tor structure in (a) above; 1 P, 1 ML, 1 MX, 1 CLK, 1 PID and
1 10L required.

Graph of ADVISER runtimes in Table 7-1.

Graph of ADVISER runtimes in Table 7-2.

(a) Example network from [Hansler 74] (b) Translation intc ADVISER
framework

vii

224

888

Table 2-1:
Table 2-2:
Table 7-1:
Table 7-2:
Table 7-3:

List of Tables

Sampie input component type-declarations.
Sampie inputs defining PMS interconnections.
ADVISER timings for 1-ciuster Cm* case.
ADVISER timings for 2-cluster Cm* case.

ADVISER timings for architectures of Section 7.3.

21
232

237

introduction 1

Chapter 1
Iintroduction

Recent years have seen the advent of practical multiprocessor architectures and
distributed computer systems of growing sophistication. Their growth has been assisted by
cheaper components, of far greater complexity and power than heretofore available, which
have been produced by the revolution in techniques of large scale circuit integration. As the
complexity and sophistication of computer systems grows, so does the importance of fault-
tolerance and of system reliability as a design parameter. Formerly the province mainly of
space-craft designers, fault-tolerance technigues are becoming commonpiace due to the
rising ratio of maintenance costs to initial capital costs in typical computer system life cycles.
Thus computation of system reliability metrics have become part of the cataiog of system
design tasks. Various efforts have been reported in the literature and are in progress o
provide designers with reliability design tools which will make the task of computing system
reliability metrics easier and more efficient.

The computing of system reliability for complex multiprocessor architectures can be very
tedious and quite prone to error, sometimes even for experienced reliability analysts. Software
tools which currently exist to help estimate or calculate system reliability usually assume an
understanding of reliability analysis techniques and are usually more in the nature of
computational aids once the preliminary system decomposition and analysis has been
manually achieved.

This dissertation describes the results of a feasibility study which was prompted by the
question "lIs it possible to build reliability design aids which will assume the burden of a
significant portion of the system analysis effort leaving mainly the system reliability
specification task to the designer?”. The resuft of the effort was the ADVISER (Advanced
interactive Symbolic Evaluator of Reliability) program which accepts the interconnection
structure of the architecture at the Processor-Memory-Switch level and a simple set of
operational requirements on the architecture. It then produces the symbolic form of the
system hard-failure reliability function under the given requirements. The program attempts to

e

2 Introduction

analyze efficiently, using the divide-and-conquer paradigm, the various possible c/asses of
cases of system success using information gieaned from the interconnection structure of the
system. The program as it is currently constituted is not specific to computer systems per se
and is applicable to other problems which can be cast into the same framework of
assumptions. In other words, no semantics relating to the behavior of specific types of
computer system components are currently incorporated into the program. The current
scope and capabilities of the ADVISER program are modest but the methodology underlying

its design shows much promise for building more sophisticated future versions.

Following sections will present a brief background on reliability calcutation and a survey of
some existing representative reliability calculation programs. The goals for ADVISER will be
stated and compared with thase of previous efforts. The final section will present the

organization of this thesis.

1.1 Background

Computer systems may be studied at various levels of detail. Bell and Neweli in their book
on computer structures [Bell 71] proposed four broad levels at which attention is usually
focused. These are respectively

- The gate level,

- the register-transfer level,

- the software level, and

- the Processor-Memory-Switch (PMS) level.

Reliability prediction studies at the gate and device level are concerned with large populations
of identical components and their failure characteristics in field use. A useful compendium of
such data on electronic components is to be found in [MIL-HDBK.217B 74]. A typical use of
this data consists of deriving failure rates for components under various levels of
environmental stress, component quality, etc. starting from a base failure rate in a benign
environment. Some recent attempts in the development of reliability models for sottware are
compared and contrasted in {Schick 78], The problem of reliability prediction at the register-
transfer level has traditionally been approached by considering individual gates, registers.
flip-flops etc. to be subject to Poisson failures and computing the failure rate of the system by
simply adding the failure rates of the constituent components. This sort of modeling is
inadequate in the case of fault.tolerant systems sinpe they contain redundancy.

S i - i [NV N

e e

Introduction 3
PMS Reliability Analysis
/ Areas Of interQSt \
FMECA PMS Availability PMS Reliability Network
Fault-Trees Computation Computation Reliability
PMS Reliability Computation
Repairable Non-Repairable
Systems \ Systems
T -==- 1 T ---=-1
Repair Periodic Maintenance failure to
Strategies and Repair Strategies Exhaustion

(no maintenance)

Figure 1-1: Reliability modeling at the PMS level.

4 Introduction

We shall be concerned here with the Processor-Memory-Switch or "system" ievel of detail
of computer systems. Figure 1-1 shows the areas of reliability assessment which are of broad
interest at the PMS level. These categories are not necessarily disjoint and serve only to
grossty characterize the distribution of work reported in the literature.

FMECA or Failure Modes, Effects and Criticality analysis ([Greene 68)]) attempts to
enumerate and explicate all the failure modes of a complex system and seeks to understand
all the origins and manners of progression o' .arious sequences of primal failures which
could lead eventually to system failure. This form of analysis is particularly useful in studying
systems whose failure can have disastrous consequences since it forces designers of
complex systems to consider unusual failure sequences which might otherwise have been
overiooked. Furthermore, once completed, the analysis serves as a form of detailed system
documentation. Faull Trees are a form of data representation which is invaluable in this class
of analyses. Though not dealing with computing systems, a well known example of the use of
FMECA and fault trees is the Rasmussen Report [USNRC 75). Lapp and Powers [Lapp 77]
describe a methodology for automatic synthesis of fault trees for chemical engineering
systems (see below).

Reliability analysis is concerned with abtaining the system reliability function [Shooman
68]. The reliability function for a system is a function of time and gives the probability that the
system will have survived ypto a given time without failure since time zero. If the system
reliability function is known the mean time before failure (MTBF) may be calculated by
integration. For non.repairable systems such as spacecraft the time to first failure is
effectively the lifetime of the system. The knowledge of the reliability of two non-repairable
systems allows the computation of the Mission Time improvement (MTI) factor [Avizienis 75]
which serves as a comparative measure of system usefulness. The MT! is the ratio of the
mission times at which the two system reliabilities decay to some pre-specified minimaily
folerable value. Aiso of interest is the reliability importance [Bariow 75a) of a given system
component which is roughly the sensitivity of the system reliability to the component's
reliability.

Availability analysis is concerned with obtaining the system availability function [Shooman
68]. The availability function of a system is a function of time and gives the probability that the
system will be operational gt a given time. The system may have been subject to earlier
failures and subsequent restoration to operation after repair. The introduction of a second
random variable into the picture (i.e. the repair time) complicates the mathematical analyses
and some sort of Markov analysis becomes essential in order to obtain the availability tunction

m

e e

introduction 5

of the system. Even the Markov models are not amenable to extraction of a closed-form
solution except in a limited number of cases. Usually, however, the limiting system availability
is sought since it is possible to calculate it combinatoriaily from the limiting availabilities of the
individual components. The limiting availability serves as a measure of the fraction of time the
system will be available for use over its lifetime. For non-repairable systems the availability is
synonymous with refiability. Availability analyses are important in the computation of system
life-cycle costs.

The so-called “network reliability problem"1 is concerned with calculating fairly simple
measures of reliability for a system. Typically the system is a computer communication
network and the vertices of the interconnection graph denote the computers while the arcs
denote the communication links. Either arcs or vertices, or both, are assumed to fail
stochastically. Typically, all vertices are considered homogeneous with identical probabiiities
of failure. Arcs are aiso typically treated likewise. Two common reliability measures computed
for such a system are, for instance, -

~The probability that some specific pair of vertices will have at least one
communication path between them at all times.

- The probability that the operative arcs aiways contain a spanning tree of the
network.
[Wilkov 72} is a good tutorial paper on the subject. Despite their seeming simplicity these
types of network reliability calculation problems have been shown to be NP-hard in the case
of general networks (see [Rosenthal 77] and [Ball 80)).

1.2 Extant Reliability Calculation Programs

in this section we shall review a few representative extant computer programs for system
reliability computation. Their characteristics and intent will be briefly discussed with a view to
setting up a framework within which to classity ADVISER.

1TM term "network reliability problem™ i applied in the literature to two distinct kinds of network probiems. The
first variety deals with praph models of computer communication networks as in [Wilkov 72] and [Hansier 74). The
second variety addresses two-terminal directed networks which are essentially reliability graphs. Such a graph is not
necessarily 8 model of the physical interconnection structure of the system but rather ia a representation of t which
characterizes the system's reliability. We shall use the term "network reliability problem™ exciusively in the senge of
{Wikkov 72].

6 Introduction

1.2.1 Reliability Estimation

Neison, Batts and Beadles [Nelson 70) describe a program which computes the bounds on
system reiiability given its reliability graph. An upper bound for the system reliability is given
as the sum of the probabilities of functioning of the path or tie sets of the reliability graph. A
lower bound for the system reliability is obtained by taking the first two terms of the finite
series which gives the probability of the union of several events, namely:

Pr{E,UE,U...UE } = IiPr{Ei)-IKiPr{EIﬂE‘.} + 2z Pr{EiﬂEl.ﬂEk}

KKk

..... + (()"'Pr{E,NE,N...NE }

where the event E is in this case the functioning of all components in the i™ tie set.
Increasingly tighter upper and lower bounds on the system reliability can be obtained by
taking more terms of the expression above. Similar bounds can be obtained on the
wnreliability by considering E. to be the event that all components fail in the i™ minimal cut set
of the reliability graph. The existence of the system reliability graph is assumed. Components
are assumed to have constant reliabilities. Matrix methods are used to generate the minimal
cut sets of the graph. Bounds based on the tie sets are recommended in the low reliability
region and those based on cut sets are recommended in the high refiability region.

1.2.2 Reliability Block Diagram representation

The exact combinatorial system reliability derived from the reliability block diagram
representation is the subject of [Fleming 71}, [Chelson 71] and [Kim 72]. All these efforts
assume that the system reliability graph (in the form of a reliability biock diagram) has been
previously derived by the analyst. Fleming [Fleming 71] describes a program named
RELCOMP which computes the system reliability and MTBF. The program accepts what is
essentially a purely series reliability block diagram. RELCOMP assumes that the system is
composed of independent subsystems which fall into one of eight categories provided for e.g.
standby redundant configuration, actively redundant configuration, etc. The corresponding
eight commonly used reliability equations are built into the program. Both exponential and
weibull failure distributions are represented in the equation repository.

Chelson [Chelson 71] describes a program which accepts a particular form of block
diagram able to represent systems with standby redundancy. More than one biock may
represent a given system component and these are called equivalent blocks. Exponential

i .

ERRS

Introduction 7

tailure distributions are assumed throughout and different failure rates may be assigned to
spares and active modules. The switches which represent the recovery capability of the
system may be modeled as being imperfect. The program constructs the probability tree
{Chapter 3) for the system and computes the refiability from it.

Kim et al. [Kim 72] describe a method for computing refiabifity from non series-paraiiel
reliability block diagrams. Their procedure consists of three steps: (i) Reduction of ail series
and parallel connections until the block diagram cannot be reduced further ([Krishnamurthy
72] describes another reduction method), (i) Enumeration of alf paths from source vertex to
sink vertex in the block diagram, and (iiij) Computation of system reliabilities from the path
reliabilities using an operation which amounts to counting the probability of a given
component only once in each product term. Matrix methods are used to compute the paths
sets for the biock diagram.

More recently, work has been reported on the use of reliability graphs to produce symbolic
system reliability functions ([Satyanarayana 78], [Aggarwal 78]). These results could be
applicable with modifications in the case of ADVISER as described in Chapter 7.

1.2.3 Hybrid-Redundant System analysis

Another class of programs for system reliability analysis focus on weak points of the purely
combinatorial analysis technique i.e. the inability to deal with systems containing varieties of
dynamic redundancy [Avizienis 75). In such systems the switching in of spares to replace
failed modules is viewed as an imperfect process contrary to the assumptions of static
reliability models. In such "staged” systems the so called coverage factor, or the probability
of system recovery after a fault, is of central importance since the system reliability has been
shown to be very sensitive 1o the tactor {Bouricius 69).

The early effort in this instance was the REL program which was succeeded by REL70
[Bouricius 71] written in APL. Bouricius, et al. derived basic equations for systems with
standby sparing fargely under the assumption of constant failure rates for all system
components. The coverage factor, C, was included in these equations and it was shown that
assuming perfect coverage (C = 1) even when coverage was in fact "near” perfect (C = 0.99)
could produce gross errors. The results of this work were incorporated as an equation
repository into REL70 to analyze memory and processor subsystems of a typical computer.

Mathur {(Mathur 72] describes & computer program named CARE which was an

8 . Introduction

improvement on REL70. Systems being analyzed were viewed as cascades of independent
hybrid-redundant subsystems. Again, a repository of equations was built into the program for
the analysis of each of such subsystems. Equations deveioped in [Bouricius 71] were also
included. The system reliability was taken to be the product of the independent subsystem
reliabilities. The latest version of the program, CARE Iil, developed by Raytheon Corp.. is
considerably more complex. A Markov process approach has been incorporated into the
program along with decomposition methods which agglutinate states to reduce the large state
space of a complex mode!l. Time-dependent parameters for transitions between the states of
the Markov mode! (i.e. a hon-homogeneous Markov model) are handled in cases of non-
repairable systems'. Since ultrareliable systems are the subject of CARE |l much attention has
been paid to reducing numerical error.

More recently, Ng and Avizienis ([Ng 77]. [Ng 80]) developed a unified reliability mode! for
fauit-tolerant systems. This model is based on a Markov process view of the graceful
degradation process of dynamically redundant systems. Various earlier reliability equations
derived for ditferent types of static and dynamic redundant systems are availabie as special
cases of the unified model [Ng 80). In addition the model is extended to derive the reliability of
repairable systems under a restricted model of the repair process. Degradation under
transient faults is also modeled by the same Markov techniques. The ARIES program
embodies the results of the unified model. However, the model is still restricted in its
applicability to those types of systems which are decomposable into cascades of independent
hybrid-redundant subsystems.

Landrault and Laprie [Landrauit 78] describe the SURF program which views repairable
systems as being governed by non-exponential failure processes. The Coxian device of
stages [Cox 68] is used to judiciously introduce series of fictitious states with exponentially
distributed transition times among them so as to convert the non-Markov process to a
Markovian one in the cases where non-exponential distribution being considered is related to
the exponential (e.g. Gamma, Erlang etc.). For some problems semi-Markov processes are
also used which suppose the existence of a finite number of instants possessing the property
of independence on past history i.e. an imbedded Markov chain.

N

bR e e it A e n e

pEY

EERT V. AT PUPIPR BEPVY SN

introduction 8

1.2.4 PMSL

A quite different view of Processor-Memory-Switch (PMS) systems is contained in [Knudsen
73]. Knudsen describes PMSL, a ianguage and a system to describe arbitrary PMS structures.
The notation developed in {Knudsen 73] is quite similar to its progenitor the PMS notation of
Bell and Newell [Bell 71]. PMSL was programmed in SNOBOL and was a powerfui description

. facility which allowed users to construct interconnection modeis of arbitrary PMS structures
with the program doing various attribute checks on the structure for legality of

interconnections. The PMSL system, although more in the nature of a PMS-database
< manipulation system, also allowed the user to compute the combinatorial reliability of the PMS
structure input to it. However the program suffered from wvery rudimentary reliability
calculation facilities. Reliability calculation was applicable only to uniprocessor structures
and enumeration of system success states wai i as the (inefficient) computation method.
PMSL is included in this survey of reliatisity <s <.iion programs because the level of detail in
its model of PMS structures is simifar & % ~ AAVISER although the instruments provided to

manipulate PMS descriptions are more . %, in PMSL. PMS structures are viewed as being
hierarchical and components in thes sire 82 described by a list of attribute-value pairs.

1.2.5 Automatic Fault Tree Synthesis

We end this brief survey of PMS reliability computation programs with a look at an example
from the field of Chemical Engineering. Although not entirely relevant to computer systems,

this example is important since it is a step toward the eminently desirable goal of easier and
less error-prone reliability computation for corapiex systems. Lapp and Powers ([Lapp 77],
[Powers 76)) describe the FTS program which constructs the fauit-tree representation of a
complex chemical engineering process from a much simpler logical model of the process.
The program containg hazard models of commonly used pieces of equipment within the
process (e.g. valves, pumps, sensors, reactors etc.). The user constructs a logical flow
diagram of the process, labeled with various process parameters, and the program uses its
database of hazard models and information to synthesize the tault tree for the process. Using
cut set analysis the probability of the top avent or system failure may be computed.

10 Introduction

1.3 Statement of Goals and Discussion

in the construction of ADVISER the goal was to produce a reliability calculation program
capable of computing the symbolic reliability function for an arbitrary PMS interconnection
structure given a simple statement of the operational requirements placed on it. Therefore.
the following ends were pursued.

- The program should require only a modicum of information from the user as input
i.e. the specification of the probiem shouid be simplified.

- The program should attempt to assume the major portion of the analysis of the
interconnection structure preparatory to computing the refiability function. This
will make it attractive to the user who is Jess experienced in refiability analysis and
the chances ¢ human error creeping into the computation will be reduced.

- The program output should be the symbolic system reliability function so that
arbitrary failure distributions for the individual component reliabilities may be
experimented with.

One of the major emphases in ADVISER was to avoid the manual construction of the reliability
graph or equivalent representation of the system thus making it preferable to programs such
as described in [Chelson 71] and [Kim 72]. Also emphasized is the observation that sirce
knowledge of the physical interconnection structure provides information about the structural
dependence (as distinct from statistical dependence) of components in determining the
system reliability. the operational requirements on the structure can be expressed very simply
in terms of a few key components in the system. Further information can then be deduced
from the interconnection topology. This leads 10 the succinct statement of minimal system
requirements in the ADVISER paradigm.

Of interest in the investigations were systems which could not be partitioned into
independent hybrid-redundant subsystems as assumed in [Mathur 72] and {Ng 80]. Examples
of such systems are the Pluribus [Ornstein 75), Cm* [Swan 77), and Tandem-16 [Katzman 77]
multiprocessors in which recovery from fauits and recontiguration is done largely by software
or firmware. This is not to exclude the possibility that, say, one of the processors within a
multiprocessor such as Tandem-16 could be constructed for reliable operation by using
hybrid redundancy internally. The difference is one of the level of detail at which the system is
being studied.

Network reliability analysis of the form addressed in [Hansler 74} and discussed above in
Section 1.1 was only of marginal interest. The reason is that PMS structures are more closely.
coupled than computer communication networks and the operational requirements on them

o

Introduction 1

are usually more complex than in the kinds of problems studied in [Hansler 74]; Chapter 7
shows that ADVISER can be used for a subciass of the latter kind of problem.

The ADVISER program was aimed more toward solving the common problem of deriving
the combinatorial reliability of complex interconnection structures under various operational
requirements, particularly in the context of comparative reliability studies of PMS
interconnection structures. A possible use of ADVISER is in an iterative design study of a
candidate PMS interconnection structure wherein the structure topology is perturbed.
components added or deleted, etc. until the appropriate reliability is achieved.

1.4 Organization of Thesis

This thesis is divided into eight chapters and two appendices. Chapter 2 presents an
overview of the ADVISER program and introduces some underlying concepts. defiritions and
terminology which are used in the remaining chapters of the thesis. In effect Chapter 2 is a
version of the thesis in miniatyre. 1t is provided so that the reader may have a backdrop
against which to understand the detail in subsequent chapters and as such it is recommencad
reading. Chapter 3 describes the intermediate representation used by the program to maintain
the results of its intermediate computations. This is logically equivalent to the block diagram
representation described above, the difference is that it is not manually constructed. Chapter
4 discusses algorithms on the PMS interconnection structures for detécting symmetries which
could be of use in reducing extraneous computation. Chapter 5 describes a class of
subgraphs of PMS structures and the special reliability computation techniques which were
derived for them. Chapter 6 presents details about the Overlord routine within ADVISER. This
embodies the reliability evaluation paradigm and controis the rest of the program parts.
Chapter 7 describes experiments carried out with ADVISER in order to test the models the
program generated. Chapter 8 summarizes this work and presents directions for future
efforts. Appendix A describes a speciai case encountered by the aigorithms of Chapter 5.
Finally, Appendix B presents a list of terminology and acronyms used in the dissertation.

12

ADVISER Overview

ADVISER Overview 13

-+ e

k Chapter 2
Overview of ADVISER

2.1 Underlying assumptions and concepts

The general case of deriving reliability functions for arbitrary interconnection structures of
components is a task that is difficult to program. Much depends on the semantics of the ;
behavior of the components in the structure, the interrelations among their individual tasks

within it, whether their probabilities of functioning are statistically mutually independent, and
s0 on. Some idealizations become necessary in order to make the problem tractable.

One of the original and more important goals of the project was to produce a hardware
design tool. The desire was to be able to compare two PMS interconnection-structure designs
with fast turn-around time. As long as the metric used is consistent across the space of
designs being considered, the comparison is valid. For this reason it was decided to study the
hard-failure reliability of a system unencumbered by the eftects of policy decisions regarding
manner of use, software reliability, transient failures, and statistical dependence of
component failures in any form. The comparisons would therefore take into account the best

possible reliability performance of each PMS structure being considered.

In order to set a reasonable goal for this thesis certain fundamental assumptions were
made and limitations set.

1. To begin with, failure processes in individual components in the structure were
assumed to be stochastically independent. Since Processor-Memory-Switch
structures are the focus of the study, there seems to be justification in making this
assumption. For exampie, the typical components we are considering. such as 1
processors. memories etc., are generally physically separated. Thus common-
mode failures caused by proximity, such as heat generated by one component

’ causing thermal runaway withia another, would have lower likelihoods.

Dependency of failure mechanisms was considered a second-order effect. This,

however, does not imply that failures of different system components affect the

system uniformly. Clearly, the topology of the interconnection in the structure
has a bearing on this question.

14 ADVISER Overview

2. Only the hard-failure reliability function of the components is addressed. The
effect of variation in coverage [Bouricius €8] are not considered and neither are
transient failure mechanisms.

3. Components i.. the PMS structure will be assumed to be binary state objects. i.e.
either "failed” or "working". This assumption. by implication, once more
excludes consideration of transient failures. Furthermore, the emphasis will be
on probabilities of success of components so that all reliability functions will be
expressed in these terms.

4. The graph of the interconnections of the PMS structure will be modeled as a non-
directec graph. The vertices of the graph will correspond to the components in
the structure and the functionality of the components will be lumped into these
vertices. Each non-directed arc of the graph will be considered perfectly reliability
and will simply represent the capability of information to flow between its two end
vertices. The failure of a component is assumed to preclyde its being able to
process, and, more important, retransmit any information sent towards i, when it
is in its failed state. This is equivalent to removing the corresponding vertex in the
graph and ail arcs that are incident on it.

5.1/t is assumed that in order for an assemblage of informatior-processing
components to comprise a useful functioning system, some distinguisheo set of
critically important system components will need to be able to communicate
amongst themselves. In other words, information shouid be capable of fiowing
between any two ccemponents from the distinguished set; whether via other
disiinguished components or any other components in the structure, or both.
This wiil be henceforth referred to as the Communication Axiom and is elaborated
upon below.

We first introduce some concepts basic to our discussion of the Communication Axiom.
Throughout the rest of this dissertation the terms “system success” and "component
success” will be used interchangeably with the terms “system is functional” and “"component
is functional” respectively, i.e. to denote the state of not being failed. In any system that we
may consider, some subset of the total set of components in the system will be distinguished
in that their functioning correctly is of vital importance o system success, e.g. the CPU in a
uni-processor system. -lore accurately, there will be a set of generic fypes of components of
vital importance (e.g. processors and memories). Also, a certain miniraum number of
components, drawn from each distinguished type will be required to be functional for system
success. The distinguished component types will be termed ¢ritical cemponent types (CCTs)
Each such type constitutes a class of identical components and the members ot these classes
will be termed gritical components. All components that are not critical in the PMS structure
will be termed guxiliary components. For instance, consider the simple example of Figure 2.1
where we depict two processors which pass data back and forth over one of two links
provided to increase reliability of data transfer. We shall assume that the data links are very

o

ADVISER Overview 15

P P

Figure 2-1: Critical and Auxiliary components

different in their reliability behavior thereby essentially being members of different
components type classes. Assume the processors are vital to the task at hand and are thus
critical components, then links L1 and L2 are auxiliary components in that there are system
success states in which L, is functional but not Lz. and vice versa, and a system success state
in which both L, and l.2 are functional. However, there are ng system success states in which
critical components are ngt functional.

A minimum number of critical components from each CCT are required for system success.
Together they constitute a minimal critical resource get (henceforth MCRS). The set is
minimal in the sense that, although the system may function if all components in an MCRS are
functional (depending on the status of the auxiliary components in the structure), the
structure is guaranteed to fail if any component of this MCRS fails. In other words, the
success of an MCRS is a necessary, though not sufficient, condition for system success. This
concept is not to be confused with a minimal system success state in which the failure of sy
one functioning component, whether critical or auxiliary, causes system failure. The latter
would be a stronger condition on minimality.

If there is redundancy in the supply of critical components configured in the structure then
there will be more than one minimal critical resource set. Each such set will, in general, be
included in one or more system success states, again depending on the disposition of the
auxiliary components.

We now continue our discussion on the Communication Axiom. It seems fundamental that,
{ in order for an information processing system to do useful work, there need to exist pathways,
or channels, of information flow between components of an MCRS of that system. This is a
basic rule which is tacitly assumed during calcufation of reliability of Processor-Memory-
Switch structures.

16 ADVISER Overview

Notation: In the rest of this dissertation the interconnection graph of the PMS
structure under study will be referred to as G(V.E).

The contention here is that the reliability of PMS structures may be computed by a program
using the foliowing simple paradigm. The user inputs:

1. Component type classifications
2 Graph of the PMS interconnections. and

3. A Boolean statement of which component types are critical component types and

how these are reiated in determining system reliability.
The last of these three items is what we shall term the minima! requirements on the system. An
example of such a minimal requirement phrased in English might be "at least one processor
and at least one memory and (at least one disk or at least two tape units) must be functional”
where the "or" is an Inclusive-OR. Of course, the program would use some abbreviated or
encoded form of such a statement. The program would employ the minimal requirement and
the interconnection graph of the system in the context of the Communication Axiom. The
component types referred to in the minimal requirements would be labelied critical
component types by default and the rest labelled as auxiliary types. The minimal requirements
would be used t0 generate all the MCRSs of the system. For a given MCRS, the
Communication Axiom and the interconnection graph then identity sets of paths between
pairs of vertices in the graph which represent the components of the MCRS. A path is
deemed functional iff all the components along that path are functional. The Communication
Axiom implies that components in the MCRS must be part of a connected graph of functional
paths for a reliable system. A more precise statement of the Communication Axiom is given in
Section 6.6.1.

in order to gain an intuitive understanding of how the Communication Axiom is used each
MCRS may in essence be thought of as a skeieton of critical components which must be
"fleshed out” with a set of paths in the graph between the vertices of the skeleton so as to
form a connected graph. This will provide paths for communication between the components
in the MCRS. Each such possibie fleshing out of the skeleton will correspond to one minimal
success state of the system. Furthermore, each set of paths chosen 10 flesh cu! the skeleror
will igentily the other (auxiliary) components along those paths which are additionally
necessary for the vertices of the MCRS to communicate. This method of identitying the
additionally necessary components has an important and useful side effect from the viewpoint
of the user of the program. Consider a component in the structure whose component type is
net referred 10 in the requirements expression. It may be the case that this component s
required to be functional in every system success state, i.e. it is truly a "critical™ component

Ea———

ADVISER Overview 17

although it has been labelled auxiliary by default. An example of such a component might be a
memory controller which lies on the path to a memory required for system success by a
requirement of the type shown above. Although the memory controller is not referred to in the
requirements, thereby not explicitly making it critical, the strategy of "fleshing out" the MCRS
with paths from the graph will always find the memory controller to be necessary at al! times
since ali paths to the memory pass through it. Typically, therefore, few component types will
need to be explicitly labelled critical by including them in the requirements expression since
other critical components will be deduced from the interconnection structure via the path-
finding strategy.

On the basis of the foregoing discussion it is possible to see that each MCRS will be part of
possibly several system success states depending on how many combinations of paths can
be found which flesh out the skeleton it provides. For each MCRS a reliability expression
would be generated which accounts for all the probabilities of the all the functional states of
which the MCRS could be a part. These reliability expressions will henceforth be referred to
as Intermediate Resylts or Partial Results (see Chapter 6 for a more precise description of
these). The intermediate results relating to all possible MCRSs would finally be combined in
the appropriate fashion to generate the system reliability expression.

The use of the Communication Axiom, in the manner referred to in the paradigm outlined
above. seems to be sufficient to derive the reliability function for many cases of arbitrary PMS
interconnection structures. However, constraints beyond those implied by the
Communication Axiom are sometimes posed, during caiculation of PMS system reliability, by
the special types of behavior exhibited by various system compcnents. For exampie, a
crosspoint switch, unlike a bus, generally allows communication onily between components
connected to distinct sides of the switch and not among the components connected to the
same side. It would be impractical to include in the program all the semantics of various types
of special behavior ever 10 be encountered, although this might be reasonabie for a limited set
of special component types. However, it was postulated that the inclusion of three turther
types of simple modeling information as additional gide-constraints as inputs would enable
the program to handle a majority of cases. This keeps the model and the required operations
simple while providing a useful tool in the program. The three types of additional information
are named beiow and will be explicated in detail in Chapter 6. However, a prefiminary
discussion of them will ensue in Section 2.2.1.3

- The internal port-connection matrix of a component.

~ The possibility of intra component-type information transfer.

18 ADVISER Overview

- The required clustering of functioning critical components in parts of the PMS
structure.

2.2 Overview of program

This section will present a fairly lengthy outline of the process by which a PMS description
and the associated reliability requirements upon it are operated on by the ADVISER program
to produce a symbolic reliability function. The process, of course, is subject to the
assumptions and limitations set forth in Section 2.1. This overview is intended to provide a
broad picture of the program within which its individual parts may be described in detail
without much repetition of information to set the context for the description. The material in
subsequent chapters of this thesis will elaborate on the various stages of the program and lay
out implementation issues and details. First. however, some insight into the structure of the
program and the nature of its input is desirable.

When calculating a refiability measure for a system of components, three items of

information are necessary, namely:

1. The reliabilities of the individual components in the system,

2. The physical or logical connection of those components which give the system its
particular existence and define its reliability, and

3. The operational requirements placed on that system which affect its perceived
reliability; for, clearly, a multiprocessor, say, would be less reliable in the case ofa
task which requires any m of its processors to be functional as opposed to the
case where a task requires only any nim,

Figure 2-2 illustrates the structure of the ADVISER program and its various phases. This
figure is reproduced in Figures 3-1, 4-1, 5-2 and 6-1 with enhancements to indicate which part
of the program structure is addressed by the corresponding Chapter. Subsequent sections in
this chapter will describe the above three kinds of input into the program and their eventual

use.

2.2.1 Program Inputs

19

ADVISER Overview

vajsung Ayqensy
wejsig onoquig

(€ Je1dwy)) s ejwoukiogd

A3 L1Qo L0y L9IjuOUE) dau)
9 8 2 sJserday) oeg tousoy
{9 s01dey))
sydeabqng eeu) 1uvpuey Sld
(9 9 2z sunidey)) SUO0} IV} 518804)
Juewe s | nbey djwoly 4 odk; jusuodwo) +
(9 493dBy)) sIueaIsu0) 094 s ydei9 Lo} IINWU0IINV] Shid
{0 3 7 ss01d8y)) SWd Indu} wo #0)§ 104360) -o--o-
MW | AbEY Y8V PUAOIWO) [1]'W) a0L§ 0180
Aoy
jousey)
wiypoliy
FYHIYd P
A dud* 4
daud A
]
swypobiy
dw ,
uoneaindwi 02l aeuds _._ aud
!
3 san-‘“ Y
] | (SIAULMOUD)
@ uojjdejeQ
] w08y Slid uopeiuewdeg Ly——d Syewwig
| TauauL Hp— ydeio oML snd
i N 11 W N
aud - ..al.o....o
N 26+ 0D
i
s8I0\
ooy

. {—

wejeig

Figure 2-2: The structure of the ADVISER program.

20 ’ ADVISER Overview

2.2.1.1 Declaration of Component Types

The first input to the program is a list of fypes of components that will comprise the PMS
structure yet 10 be describec and for which the reliability function is to be computed. Each
type-declaration will contain information with respect to the reliability function for a
component of that type; whether it he a function type known to the program or whether it is
some user-defined function elsewhere. The type-declaration will also contain a “print-name”
which. is 10 be used to represent the component when the reliability function is printed out.
The reader will have gathered by now that when the interconnection structure is definec the
components comprising it will each be assigned a type which may be selected only from this
list of type declarations. The outcome is that components of like type are assumed in the
current implementation to be identical in a reliability sense (see below for a discussion of
another option). In other words, they are drawn from the same population. As an example,
consider the following representative type declarations shown in tabular form (Table 2-1).

troe & froengme pringngme mlin rel. tn. parpmetery

3 Cent.Proc PC Exponentia! Lambda = 200.1/MHr

7! 10.Proc PIO Weibull Scale = 385.3/MHr, Shape = 0.86
6 10.Cont KIO Wweibutl Scale = 286.7/MHr, Shape = 0.92

Table 2-1: Sample input component type-declarations.

The unique type numbers in the first column are assigned by the program. Components
which are labelled as belonging to type 3 are of type Cent.Proc (central processors) whose
factors, in the reliability function produced eventually, will printout as PC. All "Cent.Proc"s
are declared to be identical and to have exponential reliability functions with a tailure rate of
200.1/MHr. All type 4 components, likewise, are of the class IO.Proc (input/output
processors) and have Weibull reliability functions, each with a scale factor of 385.3/MHr and
a shape factor of 0.86.

Assigning a type to each component in a PMS structure may be viewed as imparting a label
to the vertex representing that component in the interconnection graph. This information is
used by the program as a constraint in detecting structurally symmetric subgraphs of the
interconnection graph (see Chapter 4). The motivation for detecting such symmetries is, of
course, the expectation that the amount of necessary computation can be reduced (see
Chapter §).

L ik it

ADVISER Overview 21

As stated above, the current implementation of ADVISER views all components classified
as beionging to a given component type as having identical reliability functions. Another
option is to relax this restriction and use the type-classification mechanism solely to classify
the system components to assist in symmetry detection. The reliability tunction of each
component would then be individually referred to, as and when it became necessary, rather
than inferring it from its component type class. Doing this would allow further flexibility in the

- use of the system reliability function when it is generated (see Section 2.2.4). Trivial changes

are required in ADVISER software to effect this.
2.2.1.2 Dectaration of the PMS structure

The next type of input to the program is the labelled graph which represents the
interconnection topology of the system components. The model of interconnections
underlying this work was described in Section 2.1 as representing aif connections between
components as duplex, i.e. information may fiow in both directions along a connection or arc
in the graph. Thus the model uses non-directed graphs. The description of the graph in the
program input is achieved very simply by means of an adjacency list. A section of a typical
graph description input is shown in tabular form below (Table 2-2). Again a description of the
actual syntax is deferred for reasons of clarity.

gomponent # somponent ngme gomponent type neighbor components
3- P.IO.1 B.Proc iJnibusJ.K.lO.\,K.lO.Z....
4 K.10.1 10.Cont P.1O.1.DISK.1,DISK 2, ..

5 K.I0.2 10.Cont P.IO.1,TAPENTAPE2....

Table 2.2: Sample inputs defining PMS interconnections.

In the table the component named P.IO.1 is declared to be of type I0.Proc. This
component type must have been declared during the first input phase when component types
were specified. K.10.1 and K.IO.2 are seen to be declared identical components both with
reliability functions which are Weibull with scale factor of 286.7/Mhr and shape tactor of 0.82
(refer to Table 2-1). !t is possible to completely specify an arc in a non-directed graph by one
occurrence of one of the arc's two end vertices on the adjacency list of the other end vertex.
However, it will be noted that in the program input each arc must occur on two adjacency
lists. Thus, for instance, though it is enough for K.IO.1, in the example above, to appear on

] 22 ADVISER Overview

the adjacency list of P.IO.1 to deduce that an arc exists between them, P.IO.1 must also
appear on K.JO.1's adjacency list. The reason for this redundancy is twofoid. Firstly, it ensures
that the underlying graph model is adhered to. It enables the program 1o discover instances
of errors in connections which manifest themselves as one.way links between a pair of
components. Also discovered, are errors wherein the name of a component, not explicitly

declared, appears on some adjacency list, thus representing a connection to a non-existent
component. Secondly, a reader of an input file is more easily able to understand the structure
of the interconnection graph it the connection is made quite explicit with two-way finks.
However, this restriction is easy to remove if the underlying model were to be changed to use

directed graphs.

T.<|1. 1 T.t|1.2 1
1
K.d.1 K.d.2
P.1 S.1 l l 7
P.2 S.2 1 []
K.m.1 K.m.2 Kim.a
I
M.1 M.2 M.3
Key
P Processor K.m Memory Controller
S Processor Bus T.¢ Disk Drive
M Memory K.d Disk Controlier

Figure 2-3: Example PMS structure for explanation of requirements input.

2.2.1.3 Declaration of Reliability Requirements

We now come to the third kind of information necessary 1o calculate system reliability;, a
statement of what subsets of what types of system components need 1o be functional before
the system is considered functional. in other words, what subset of system resources are
required to be functional before the given task runs to completion on the system. This

h—..._.._...._________________r o

_M

ADVISER Overview 23

information can be supplied in a variety of ways and an example will help to make the
subsequent discussion Clearer.

Figure 2-3 shows a dual-processor system. Each processor accesses memory and
peripherals over a bus (S). The perhipherals are dual-ported for access from both processors.
Let us assume, for a specific task, that at least one of the processors, at least two of the
memories and at least one disk drive, need to be functional for system success.

One way to convey these requirements is to explicitly enumerate the system states which
are success states. For instance, in our example, {P.1, 8.1, K.m.1, M.1, Km.2, M.2, K.d.1,
T.d.1) is a tull specification of one system success state. The program then has only to sum
up the probabilities of occurrence of each state. This is objectionable for two reasons. Firstly,
the number of system success states can be large for systems of reasonable size. However,
an argument can be made that only that subset of the system success states which consists of
minimal success states need be considered.

Definition 2.1: A system is defined to be in a minimal success state when it is
functional even though some components are failed, however, the subsequent
failure of any one functioning component causes the system to fail, cf. the minimal
cut vector in the terminology of [Barlow 75a).

The probabilities of all states which are subsumed by the minimal success states will cancel in
the summation process. Even so, secondly, asking the user of the program to analyze and
supply the set of minimal success states is objectionable. It is tantamount ta asking him to do
a major part of what is viewed as a task which ought to be done by the program to justity its
use. Furthermore, it the user is relieved of the burden of analyzing the system states, he need
not be experienced in the art of reliability computation. This opens up the use of the program
as a design tool to a larger base of users. Perhaps most important, it could help to eliminate
human error from the usually tedious PMS reliability caiculation task.

On the other hand, referring to our example again, it is sufficient to supply a human being
the foliowing brief statement for him to accomplish the task of reliability computation: "at least
1 P and at least 2 M's and at least 1 T.d need to be functional”. He then proceeds to use his
knowiedge of component behavior. He deduces that certain auxiliary components beyond
those explicitly specified will need to succeed in order to create a system success state. For
instance, if P.1, M.1, M.2 and T.d.1, in being functional, are to be part of a system success
state, then S.1, K.m.1, K.m.2, and K.d.1 wilt additionally need to succeed.

Most important, it appears that human beings are guided principally by the Communication
Axiom (see Section 2.1) in this process of deduction, in a large majority of cases. In other

e ————

24 ADVISER Overview

words, for P.1, M.1, M.2 and T.d.1 10 be part of a successful system there must be some
pathways between them for information flow.? This point was made earlier in Section 2.1
where the distinction was also drawn between ¢ritical components and ayxiliary components.
The notion is that given the operational requirements on the system in terms of the critical
components in it, the information provided by the manner in which system components are
interconnected is sufficient in a large number of cases to deduce what subsets ot the auxiliary
components are necessary for each functional system state.

Modeling the style of the requirements input after what wouid be expected by a human
being, a modified Boolean expression form was chosen. The primitives in the expression are
operated upon by the standard logical AND and OR operators with the former having
precedence over the latter (modifiable with parentheses of course). The primitives are of the
form "at least N of X" where N is integral and N> 1. "X" is the name of a previously declared
component type. This is taken to mean "at least N components of type X should be
functiona!l”. There are of course two other possibie forms for the primitives. namely "Exactly
N of X* and "At most N of X". However, both bf these, it allowed, lead to the conclusion that
the system will fail if N+ 1 components of type X are functional. This implies that the system is

a non-coherent® one and, therefore, out of our purview as unlikely to be rationally designed.

We shall refer to primitives such as "N of X" as Atomic Requirements and Boolean
combinations of them will be termed Compound Requirements. Atomic requirements such as
“N of X" will be represented by the symbol ¢(N.X). Within an atomic requirement 4 (N.X), N
will be termed the Integer Reguirement and X will be termed the Reguired Component Type or
simply the Requireq Type. The simple grammar for compound requirements is shown below:

{requirements-expression>
= Ceomunction) | <conjunction> OR {requirements-expression>

<econjunclion> o= {primitive) | <primitived> AND {conjunction) | (<requirements-expressiond)

<primitive) : & integer> OF typename>

2\Ne reiterate here that we are not considering "systems”™ which are assembiages of completely independent
subsystems with no information flow between them. Such “systems” are easily decomposabie to the case unde”
consideration.

3w¢ use this term as defined by [Bariow 75a] 1.2, the structure tunction of the system & not monotone.

¥ *—M

ADVISER Overview 25

As alluded to in Section 2.1 there are three further torms of requirements input which
supplement the Boofean function and provide further constraints on the evaluation thus
allowing a iarger space of PMS structures to be handled. These ad hoc gide gonstraints strive
to include semantics of individual component behavior (of which there are none built into the
program} as complietely and as generally as possible in the context of PMS structures. We
shall consider them in turn next, however, their full impact as well as their input syntax will be

. clarified later (Chapter § and Chapter 7).

1. Internatl Port Connectiong: Components in the PMS structure under study are
represented by vertices in the interconnection graph. Arcs impinging upon a
vertex correspond to the connection ports of the component represented by it.
Since we are considering non.directed graphs, each arc implies that its
corresponding port could potentially be an input as well as output port for the
component. However, regardiess of this, within the component, information that
has entered through any particular port may, after processing, leave through one
or more of the remaining ports. This internal relationship of ports in some
component, say C, may be a significant aid in discovering whether two critical
components, say A and B, may communicate through C. This is necessary in
correctly assessing whether the Communication Axiom is satisfied by an MCRS.
The default assumption in the ADVISER program in the absence of component
semantics is that information potentially flows from any port to any other pon
inside any component. However, this is clearly not true, for instance, in the case
of a line-printer controlier. The latter will not usually act also as a conduit for
information between two processors connected to it. The input to the program
describing this constraint upon a particular system component is conveyed by
means of a connectivity matrix of port "connections” within the component.

2. intra Component-type Communicatipn: In the blandest form of the model. since
no component semantics are included., the Communication Axiom ieads to
finding K-edges petween all pairs of critical components in any MCRS. However,
there are many cases when information never passes between two components
of the same type. For example, memories are passive components and usually
never communicate with each other. When such passive behavior is to be taken
into account, the use of the Communication Axiom must be modified if we are not
to evaluate a pessimistic system reliability due o having unnecessarily assumed
that some irrelevant inter-component paths needed to be functional. The defauit
assumption in this instance is that critical components of like type never actively
communicate information whereas critical components of uniike type will aiways
need to communicate. The extra “constraint” being considered in this paragraph
gives the user of ADVISER the ability to relax this defautt assumption in the case
of selected critical component types. The choice of this default was not entirely
arbitrary. Passive types of components such as memories of various sorts,
input/Qutput transducers and buses usually outnumber active types of
components such as processors and device controllers in a typical PMS
structure.

3. Critical Component Clustars: The third type of side constraint on the model
considers the {oliowing phenomenon. in certain PMS structures. in order to have
8 functional system it is not sufficient just to satisfy the lower bounds on the

26 ADVISER Overview

number of critical components of each critical component type (CCT). In agdition,
these functioning critical components need to satisty criteria regarding how they
are dispersed in the structure. The situation is best explained through an
example. For instance, consider Figure 2-4 which depicts a multiple processor
system with an inter.processor bus. Let us assume that the processors do not
share the same address space. Then, for any processor 10 be useful when
functional, at least some of its associated memory must be functional. Thus, if the
minimal requirements for the PMS structure in the figure are

¥(2,P) AND ¢ (4.M)

then the MCRS (pA‘pB‘ME'MF'MG‘MH) should not be part of a system success
state. This kind of behavior is observabie in multiprocessor systems such as
PLURIBUS [Ornstein 75). This situation can be viewed as an association or
clustering of CCTs in substructures of the system. In other words, if the CCTs A
and B are associated or “clustered” in this fashion, then in order for any
functioning components of type A in a given substructure to play a usefu! role.
components of type B must also be functional in that same substructure. We
shall, therefore. reter to a gluster of critical component types wnich are related in
this manner.

q B e

The notion of clustering of CCTs is further refined in the following manner. In the
general case it is not sufficient to just cluster CCTs and satisfy minimal
requirements for system success. Some lower bounds are usually in force on the
number of components of each such clustered type which are to be functional in
a specific substructure. The bounds effectively derive from sets of inequalities
which relate the number of functioning components of various CCTs. Therefore, {
for this cluster of CCTs, we may have, in addition, the following inequalities:

Number of P > 1 ' (2.1)

Number of M > 2 * Number of P :

Thus for instance in Figure 2.4 (P, M,.P. M. M_ M) may not be a system 1
success state, even though the clustering constraint is satisfied, because it may
be necessary to have at least two jocal M's functiona! per functioning P to
achieve system success e.g. a processor may need a minimum of, say, 8K of
jocal memory for success and each M is a 4K board. Thus (PA.MA.MB,PB.ME,M;)
is an MCRS which might be pant of a system success state. This phenomenon of
inequality relationships on the number of functioning components belonging to a
set of clustered types in a substructure will be termed bounded clustering ot
critical component types. A cluster constraint to the program will consist of a set
of CCTs and a set of inequalities which relate the number of functioning
components of each CCT in the cluster, as in Equation (2.1) above.

ADVISER Overview 27

L

AN

<

— T T T T >
M M,

F MG

Figure 2-4: Example of a PMS structure in which clustering of CCTs occurs.

2.2.2 Program Aigorithms

2.2.2.1 Detection of symmetries in the PMS interconnection graph

Once the various inputs have been supplied, the program may be askec to compute the
reliability function. Its first act in doing so is to attempt to detect symmetric substructures. if
any, within the given PMS structure. The motivation for this, as noted earlier, is to explore the
resulting possibility of avoiding needless duplication of effort.

The symmetry detection proceeds by assigning vertices of the interconnection graph into
equivalence classes in three steps based on three equivalence relations as follows (see
Chapter 4 for details):

- Step 1: All vertices representing components of like type are assigned to the
same equivaience class. Upon completion of this step there will be as many
equivalence classes as there are distinct component types, say T.

~Step 2. Each equivalence class generated in Step 1 is split into further
equivalence classes based on the equal-degree relation, i.e. two vertices fall into
the same class iff they have the same number of arcs impinging on them. At the
end of this step. the maximum number of equivalence classes present will be at
most T'dm. where d max is the maximum degree of any vertex in the graph.

- Step 3: The Neighbor Class Equivalence Relation (NCER) [Gaschnig 77] is next
applied to the classes resulting in Step 2 to finally detect symmetric subgraphs.
The NCER is elaborated on in Chapter 4. For the moment we shall roughly

28 ADVISER Overview

describe the nature of the NCER relation. Two vertices will be equivalenced by
the NCER iff their neighboring vertices are equal in number and their
sorresponding neighbor vertices fall correspondingly into the same set of
equivalence classes based on the NCER. At the end of this step there will be at
most N NCER classes. Here N is the number of vertices in the PMS
interconnection graph. This upper bound, N, on the number of classes generated
by the NCER wili occur in the extreme case that there is no structural symmetry in
the graph and each component is of a distinct type.

The end result of this symmetry detection process is a set of equivalence classes into which
the vertex set V., of the PMS graph. G(V.£), is partitioned. Each class is related to other
classes in a connectivity sense that derives from the symmetric connection of the vertices in
that class to their neighbor vertices in their corresponding equivalence classes. The latter are.
therefore, neighbors of the former class. Thus, these equivalence or neighbor classes and
their connectivity relationships may be viewed as defining another graph called the Neighbor
Class Graph (NCG), G"(V',E"). The members of the vertex set V' of the NCG correspond
uniquely to the equivalence classes on V by virtue of the NCER relation. The edges in the set
E’ map the connectivity of the vertices in V by the edges in E to the connectivity of the
equivalence classes that those vertices comprise. Unlike the basic non-directed graph,
without seif-ioops, which was taken to be the model for G, G' may have vertices in V' which
have self-loops on them. This would be the result of a case in which vertices in the same
equivalence class are connected to each other in some symmetric fashion, thus making the
equivalence class its own neighbor. Figure 2.5 shows the effect of applying the symmetry
detection algorithm to an example PMS structure. This example will be described in greater
detail and more will be said about NCG's in Chapter 4.

2.2.2.2 Segmenting of the PMS graph

Having detected symmetries in the PMS graph the next step taken by the program is to
investigate whether it is possible to segment the original PMS interconnection graph. if this is
feasible then a divide-and-conquer apgioach may be applicable. The segmenting‘ proceecs
by searching for what are termed Pendant Tree Sybgraphs (PTS). These are maximal rooted
tree subgraphs of the PMS interconnection graph. Their roots are articulation vertices of the
graph. Furthermore, the simple path between any pgir of vertices in these tree subgraphs is
the only path between those vertices in tiie overall interconnection graph, G. It is common to
find PTSs in most PMS structures. In particular, input/output subsystems typically assume
this character, as in the examples of Figure 2-6.

“We prefer the term "segment of G* rather than “partition of G* since the iafter implies the subdivision of the
vertex set nduced by an equivaience relation.

P\\s//,ﬂ Q\\s//’"
~.
K/__—\K G(V.E)
/N \

S S S
P/ \M P/ \M P/ \M

SYMMETRY DETECTION

r27{2 (K313
{s {s}
(43 / (1] INGG = G'(V .E')
[4]{ } [4](") [1]{P) [1]{M}
Key
P.M.X,S --> Component Types
{K)[u -=> Equivalence Class of components of type K with

cardinality of two.

Figure 2-5: Effect of applying symmetry detection algorithm to an example PMS structure.
For details of this particular case see Page 83.

bl

X ADVISER Overview

{a) (b)
Figure 2-6: Examples of Pendant Tree Subgraphs.

if arcs and vertices of such pendant trees, excluding their roots, are removed from the main
PMS interconnection graph G, then the remaining vertices and arcs form a subgraph of G that
is not tree-connected i.e. contains cycles®. This will be referred to as the Kerne! or Gore. The
root vertices of the PTSs are termed interface vertices by virtue of their task of serving as
communication "gateways” between components in the PTSs and the components in the
Kernel. The root of sach PTS has dual status as member of the PTS as well as the Kernel.
These interface vertices are accorded special treatment in the reliability caiculation process
in view of this dual status.

S7his is not strictly true since the outcome depends on the critarion for maximality of the pendant tres when the
entire PMS gragh G is 8 tree and thus has no cycles. See Sections 83 and 73.1.

|

ADVISER Overview 31

The PTSs along w.* :he Kernel form a natural set of segments of G on the basis of which
the reliability computation task may be divided. The choice of this segmenting scheme was
motivated by the earlier development, during the course of this research, of an algorithm for
computing the reliability functions tor PTSs (see Chapter §). However, the scheme for making
use of these segments (see Chapter 6) does not depend on the segments being composed
entirely of PTSs and the Kernel. The development of special techniques lor subgraphs of G
which are other than PTSs would allow an even finer segmenting of the graph without
affecting the aigorithms which make higher level decisions in regard to the use of these
segments.

The program discovers the PTSs in a given PMS structure G(V,E) by starting with those leat
vertices of G° which represent classes of leat vertices of GS. These “germinal trees" are then
"grown" upward towards the root by adding on neighboring vertices of these ieaves and at
each step merging the germinal trees which overlap. This process continues (subject to
termination conditions described in Chapter 6) until no more adding of vertices or merging of
trees is possible. At this point a set of tree subgraphs of G° have been generated. Each of
these trees in G may represent one PTS of G or a set of PTSs. In the latter instance all PTSs
in the set will be symmetric.

2.2.3 The OVERLORD routine

2.2.3.1 Generation of teasible MCRSs

The OVERLORD routine in ADVISER is the heart of the program. In this routine critical
components are "drawn" from the various segments in various ways to try to satisty the
various requirements. Each "draw" is then checked to see that requirements on G and other
side-constraints (Section 2.2.1.3) as well as the Communication Axiom are satisfied. The
partial results of each successful draw are stored away in a special data-structure. At the end
of the drawing process the partial results are retrieved and merged to provide the system
reliability function.

The sketchy explanation above may be clarified by evoking an analogy to drawing colored
balls from urns. Balls are analogous to critical components and urns to the segments of
G. The colors of the balls represent the various critical component types. Each umn contains a

‘n is possibie for leaf vertices of G' 1o represent classes of vertices of G which are ngt leaves of G. See Section
45

32 ADVISER Overview

certain number (possibly zero) of balls of each color. The requirements may then be
rephrased as the desire to choose balls from urns in such a way as to satisty a minimum on
the total number of balls of each color that are chosen. This is further subject to side-
constraints such as (i) if some balls of color A are chosen from urn X then some balls of color
B must also be chosen from X or else neither. (Clustering of component types) or (ii) if colors
A and B are to be simultaneously chosen from urn X then a minimum of m balls of color A and
n balls of color B must be chosen from the urn (Bounded clustering of component types).

We may now examine the process of making a "draw". Let us consider the simple case of a
system where G has been segmented into five segments (ums) P, through Pg- Letus assume
also that the only (atomic) requirement is y(4,t). Furthermore, let us assume for a while that
each of the urns contains 4 or more balls of color t. Then the draw proceeds by generating the
5-compositions of the integer 4 as in Figure 2-7(a).’

Each integer-part of each 5-composition represents the number of components of type t
drawn form the corresponding segment of G. Since the preliminary assumption for the
purpose of the exposition was that each segment contained at least four t's all the 5.
compositions in this instance represent draws that are feasible. Once a draw is feasible. it may
be made and represents one possible alternative for satisfying the requirements. Of course,
the side-constraints and the Communication Axiom must be satisfied before the MCRS, so
drawn, constitutes part of a functioning system.

In general, not all of the segments of G will contain enough components of a given type to
support a given atomic requirement on that type. Figure 2-7(b) depicts an example of such a
case. In this instance, against the requirement of four t's, none of the segments P1 through Ps
are able to supply ail four, and P2 and P5 contain no t's at ail. These upper bounds on the
number of components of type t which may be drawn from a particular segment can. in
general, drastically curtail the number of draws that are feasible. The program actually
generates all possibilities when the compositions of an integer are desired, testing each one

7A composition of the integer m into n parts, that is an n-composition of m, s a representation of the form
ms k1 * kz ‘... kn‘ n,go. iz12..n

with regard to the particuiar order of the k.'s. Thus, there are exactly four 2-compositions of the the integer 3. namely.
340,2+1,1+2mnd0+3. In general ther. are (T‘ 1") n-compositions of the integer m (for a derivation of this see
[Liu 88]). The n-compositions are not 10 be confused with n-partitions of the integer m. The latter take the same form
.nbovcoxcootmtk.» ind,. .nmp_\nmgnrdtothcordordmk s. Thus there are onily two 2-partitions of the
integer 3, namaely, 3¢0w1¢2

ADVISER Overview 33

Graph Segments
P, P, P, P, P,

5.compositions
{i.e. draws)

(SIESINIARN AN AN A R N
- SO0 -0
O~00O0-s00
- 000000
000~ 0000

@NoOOAOD A

(‘;15").210. 0 0 0 0 4

Note: ali graph segments here have four or more t's.
Hence, all compositions in this table are feasible.

(a)

Graph Segments

{max. t's available in segment, within parentheses)
P, P, P, P, Pg
3} @ @ (1) (©

(infeasibie)

{infeasible)

{feasible)

{feasible) !
(infeasible)
(infeasible)
(inteasible)
(infeasibie)

(gl Sl

5-compositions
{i.e. graws)

NP O b

NN SN ANANAN AR S
“~ 2O O0OD O
O~000~+00
-~ 000-+600
000 -0000

=210 0 0 0 0 4 (infeasible)

(b)
Figure 2-7: An example of drawing critical components from segments of G.

34 ADVISER Overview

against the upper bounds dictated by the contents of each segment for the particular case®

However, only those possibilities which represent the feasible draws emerge from the
generator function. This was deemed acceptabie, as the overhead is very small compared to
the computing requirements of other portions of the program.

Thus tar in this section we have only considered atomic requirements of the type ¥(m.1). In
the more usual case the requirements will consist of a boolean expression on such atoms.
These expressions may be naturally divided into two classes: those that contain only
conjunctions of atomic requirements (Conjunctive Reguirements) and those that contain at
jeast one disjunction in addition to possibly containing conjunctions (Qigjunctive
Beguirements). Let us focus attention on the former class briefly.

In the worst case all the segments of G contain enough components of each critical
component type to satisty each and every atom in the conjunctive requirement. in other
words, all possible draws will be feasible. Then the total number of feasible draws over the

entire conjunctive requirement

A::1 ‘P(mi'!i)

is given by
p n' ﬂ‘\i +n-1
¢ T Mist b

where n is the number of segments of G and each segment contains at least m, components
of type t. In the purely disjunctive case (no conjunctions in the overall requirement) the
requirement is

Al ¥(m,t)

iz1
and the number of feasible draws is

r mi-bn-*l
fd = }:is1 n1

The numbers f c and fa represent the upper bounds on the number of cases to be analfyzed in
the case of purely conjunctive and purely disjunctive requirements respectively. However, in
the more usual case of a mixture of conjunctions and disjunctions, the worst case bound can

‘Thc agorithm used by the ADVISER program to generste feasible compositions i an adaplation of the
NEXTCOM aigorithm in [Nijenhuis 78]. See aiso Chapter 6.

. el

o

ADVISER Overview as

be much higher. A closed form solution for the worst case bound for this intermediate variety
of requirement expressions is unobtainabie since it depends on the values of the m's and n,
as well as the positions and precedence order of the conjunctions and disjunctions in the
expression.

The generation of all possible sets of compositions for a conjunctive requirement is a
backtrack procedure which uses a stack discipline. This may be observed by considering the
foliowing example of a conjunctive requirement:

¥(m,) A d(myt) A yimgity) 22

Let us assume there are n segments of G. Then for each n-composition of m, al/l n-
compositions of m, have to be generated. In turn for each of the latter, a/l n-compositions of
m, have to be generated. This may be done in a systematic manner for the general case of a
conjunctive requirement by the algorithm in Figure 2-8. The action of the algorithm is
analogous to the operation of an odometer. For instance in the exampie of the requirements
expression (2.2) above, the atoms are analogous to the wheels of the odometer. With the
given ordering of the atomic requirements in the expression (the order is not of concern due
to the commutativity of A) ‘“"‘3"3) can be thought of as the fastest moving wheei of the
odometer and \P(m,ﬂ,) the slowest moving wheel. Each composition of the requirement
integer m, over the n segments of G is analogous to a digit on the fastest wheel. Therefore, in
the algorithm the next n-composition of m, (digit on the wheel) is generated (wheel
corresponding to 4«(m2,t2) is advanced one position) only when all n.compositions of m, are
exhausted. Upon the generation of the next n-composition of m,, the sequence of n-
compositions of m, are sequentially generated once more, and so on. The process
terminates in the case of our example when all n.compositions of m, have been exhausted.

Returning to the stack discipline for generating all possible sets of n-compositions, we may
liken each level of the stack to an odometer wheel. All the compositions at level r+ 1 of the
stack are generated before the stack is "popped” one level and the next composition at level r
is generated. Following this the stack is once again "pushed” to level r+ 1 to generate the
next cycie of n-compositions at that levei.

it is apparent that in the worst case, at each level, k, of the stack gl the n-compositions m,
are generated repeatedly in sequence. The number of times this sequence is repeated at that
level is given by

36 ADVISER Overview

begin integer r; composition array cstack[S]:

Comment S=total number of atoms in conjunctive requirement
and each location of array cstack holds one n-composition
of an integer;

r~0; cstack[1 thru S]«0;

loopa:
repeat .

ite<S
then

Fer+l;

cstack[r]=(first n-composition of m) ;
Comment i.e. (m_,0.0,...,0);

AL sl a4

loopb:
repeat

(use contents of array cstack as the next draw) ;
it
(next n-composition ot m cannot be generated)
Comment the last n-composition of m_ is (0.0,....m)):
then
rer-1;
leave loo0pb

eise
cstack[S}« (next n-composition of mg)

ik ol .

fi
endrepeat
fi;
until (it is possible to generate next n-composition of m)
do

it (rer-1) = 0 thenleave loopa fi;
Comment until no more compositions to generate;

od;

cstack(r]«(next n-composition of m)

endrepeat

end;

2

Figure 2-8: Algorithm to generate ail possible combinations of n-compositions.

r—

‘ ADVISER Overview 37
X m +n-1 ;
R

’ m.s nf*l

2.2.3.2 Satistying the Communication Axiom

Each of the teasible draws generated constitutes an MCRS which may or may not be part of

a tunctional system state. This depends. of course, on whether side-constraints have been

_ met and the Communication Axiom has been satisfied. Checks are made with regard to these

by the OVERLORD routine. For a given feasibie draw (MCRS) the critical components chosen

in that draw will be scattered in some fashion among the segments. In order to satisfy the

Communication Axiom the critical components in the pendant tree segments will have to

communicate with each other and to critical components drawn from the Kérnel, through

paths in the Kernel. Moreover, information may flow in and out of the Kernel only through the
root vertices of the pendant trees, since these are articulation vertices of G.

Thus the question whether the Communication Axiom may possibly be satisfied by a given
candidate draw may be separated into two concerns, namely:

1. Critical components in tree segments should be able to communicate with the
component represented by the root vertex of that tree, and

2. The root vertices, of the tree segments that contain the critical components of
this candidate draw, should be able to communicate with each other and critical
components drawn from the Kernel, via paths in the Kernel.
The former concern is addressed by the algorithm TREEREL developed for the PTSs (see
Chapter 5). The latter concern is the domain of the OVERLORD routine and is addressed in

Chapter 6.

i For each draw, therefore, the OVERLORD routine performs checks on the Kernel. For each
such iteration, depending on which segments the critical components are drawn from, the set
of relevant root vertices (and therefore their respective PTSs) and the set of critical
components drawn from the Kernel is subject to change. This change is unpredictable and

depends on the requirement expression, the scattering of the aveilable critical components in

various portions of the system and the nature of the side-constraints. It might appear.
therefore, that large amounts of computation e.g. deri. 1Q partial results for the pendant trees
etc. might have 1o be invested at each iteration. Nowever, there are some unchanging aspects
of the situation which the program can use to good effect and so it does.

The reader will have noticed when the drawing process was described earlier that for any
level r in the stack the n-compositions of m, were generated repeatedly except in the case of

R e—

38 ADVISER Overview

r=1. The program is thus able to anticipate that certain partial resuits will be needed in
several iterations. Such partial resuits are computed once initially and stored away in special
hash tables. In general, in a compound requirement, many atoms in the expressions may refer
to the same critical component type, say t. Let one such atom be 4«(mi,t). When compasitions
of the various m's are taken over the segments of G, the minimum number of critical
components of type t that may be drawn from some segment, say p, is one. The maximum
number of critical components of type t, say m max' which may be expected to be drawn from p
is the lesser of (i) the number of components of type t in p and (i) the largest m, in any atom of
the form y(m.t) in the compound requirement. Thus,'the OVERLORD routine generates
partial results for each such segment p for the set of atomic requirements {¥(jt)} where
i=t..me . This is done for each critical component type. These stored partial results are
then later retrieved and used during the process of generating feasible compositions.

The Kernel is treated slightly differently, though even here such reusing of intermediate
resulits is possible; they are just of a different nature. The OVERLORD routine checks for the
existence of K-edges through the Kernel which lead among the pendant trees (or what is
equivaient, their root or interface vertices) and other critical components drawn from the
Kernel. Thus. in this case, it generates and stores away partial results for such K-edges
between all possibie pairs of critical components and/or interface vertices in the Kernel.

in summary, all partial results which could possibly be used in the computation are
generated once in the beginning and stored away in hash tables. Far each iteration, then, the
OVERLORD routine retrieves and uses the appropriate partial results after ascertaining that
the draw for that particular iteration will satisfy the various side-constraints and the
Communication Axiom. The methods of representation and combination of the partial results
alluded to above are the subject of the next section.

2.2.3.3 Representation of Reliability Expressions

At all stages of the computation of the refiability function, the identity of each component in
the structure is retained in the reliability expressions which are the partial results and the final
reliability function. As a consequence, recalling that statistical independence of component
failure behavior has been assumed, the structure of the partial results and the final reliability
function will be very similar 10 that of a Boolean function in its minterm canonical form. Each
partial result will be a function of the reliabilities of some subset of the system components.
The expression which is the body of the function wiil consist of "minterms”. Each minterm
will consist of the aigebraic product of the probabilities of success (reliabilities) of a subset of

ADVISER Overview 39

components. Each of these factors of a minterm will appear only once in the minterm and will
be raised to the unit power. Each minterm will, in agdition, be prefixed with a positive or

negative sign. We shall term such an expression 8 Canonical Reliability Polynomial. An
example of one is given below:

Ry = R, +R,+R,RR-R,R,-R R, +R RR,

R, is the system reliability for a 1-out-of-3 system. Such a system is functional only if at least
one of its three components is functional. R1.R2 and Rs are, respectively, the reliabilities of
the three components. The above function could have been reduced to a form that was not
canonical if, say, R, = R2 =R, whereupon:

2 2 n2
R, = 2R+R2R*-R2+R%R,;, R =R, =R

However, the canonical form is the most general and represents the reliability of a system
wherein no two components have identical reliability functions. All non-canonical forms may
be derived from the canonical form by appropriate algebraic substitution, aithough the
reverse is not possibie in general.

This. then, is one of two primary motives for retaining partial results in canonical form. in
other words, the fact that two or more components in the System may have identical reliability
functions does not change the canonical form since its only proviso is that the components
have statistically independent failure behavior.

The other equally important motive for retention of canonical form concerns the robustness
and simplicity of the algorithm to combine the partial results in conjunction or disjunction. The
aigorithm and its data structures are the subject of Chapter 3. It will suffice here to note two
simple points.

Firstly, factors in the minterms of a canonical reliability function are always raised to the
unit power and are never replicated within the minterm. Hence each minterm may be
represented by a string of (N + 1) bits (N system components + 1 sign bit)? wherein sach of
the first N bits represents a unique factor (component). Furthermore, a canonical reliability
function may then be represented as an unordered list of bitstrings, each bitstring in the list
representing one minterm.

71 idea has been utiiized before though not quite in the same fashion. See {Gandhi 72].

e ——— e _

it

i i

40 ADVISER Overview

Secondly, operations on pairs of such lists will be composed of simple iogical operations on
pairs of bitstrings from the two lists. Thus the resultant list will contain bitstrings arising from
the Cartesian product of bitstrings from the two input lists using those logical operations.
These logical operations on bitstrings are available as hardware instructions on most
computers.

A price is paid, however, for the use of the canonical form of the reliability function since
the number of terms in the canonical form usually exceeds those in a simplified form for more
complicated problems. indeed, it is in the code that processes these lists of bitstrings where
the ADVISER program spends much of its computation time (see Chapter 7). This problem is
partially averted by assigning bits in the bitstrings for partia/ resuits which are statistically
independent. This results in smaller lists in the canonical form. The partial resuits which are
allotted bits in the bitstrings eventually become separate numeric calculations, the results of
which are substituted into the main refiability function when it is numerically evaluated.

2.2.4 Program Output

2.2.4.1 Printing of Results

The final stage in the operation of the program consists of reducing the canonical form of
the system reliability function which was generated and then printing it out appropriately.

The reduction proceeds by noticing, from the component-type and interconnection graph
declarations, which components are of the same type (i.e. have identical reliability functions).
Appropriate substitutions and algebraic simplification are then performed to obtain the
reduced function. The simplifications are rudimentary and limited to cancellation of like terms
of opposite sign and the gathering of like terms of like sign. Factoring is not attempted, for
example. The resulting non-canonical symbolic form is then a function of the symbolic
reliabilities of the componrent types and all individual component identities are lost as a result
of the reduction. The program does, however, keep a copy of the canonical form should
several printings be desired. The output of the program in its current state of development is a
text file. This file will, upon the user's option, contain the text of either a SAIL [Reiser 76]
program procedure, or a FORTRAN function, which computes the system reliability function
Rm(t) for the input PMS structure under the input requirements. The procedure or function
will have as a single parameter the time t at which the reliability is to be computed. The file
may then be compiled with the appropriate compiler and used in numerical calcuiations using
the generated reliability function. The advantage of having the system reliability output as a

T

ADVISER Overview a1

program is that different reliabilities may be used for the individual component types by
editing the program rather than redoing the ADVISER computation. As a third option
ADVISER will generate an output file containing the partial result and system reliability
polynomials in a form suitable for input to the MACSYMA symbolic manipulation program
[Macsyma 77]. This makes it possible to carry out more advanced manipulations such as
factoring, symbolic differentiation etc. on the system reliability function.

2.3 Conclusion

This completes the overview of the ADVISER program and lays the foundation for more
detail on each of the computation phases to be described in the ensuing chapters. The reader
is urged to refer back to this overview to obtain a general context within which to understand
the more detailed discussions which are contained therein.

N N

r | D T

intermediate Representation

e

Intermediate Representation 43

Chapter 3
Intermediate Representations

3.1 Introduction

The reliability of a system of components is a composite of many tactors. The individual
component reliabilities are, naturally, important. However, $¢ is the manner of physical or
logical interconnection of the components which comprise the system. The functional
behavior ot an individual component may also contribute toward datermining the system
reliability. Traditionally, a few methods have commonly been used to represent the
interdependence of all these contributing factors in a form that is amenable to the use of
formal methods to compute the reliability of the system from that of its component parts. The
methods in common use are generally based in graph theory and make use of the extensive
results derived in that field. Some frequently used methods wili be briefly described and
contrasted in this chapter. The discussion will serve as the basis for the choice of a particular
representation, the Series-Parallel connected Reliability Block Diagram (SPRBD), or series:
paraliel two-terminal network, for use in ADVISER. Subsequent sections wil! examiﬁe simple
algorithms and data structure for employing this representation to generate reliability
functions in symbolic form. Figure 3-1 shows the place, within the overall scheme of
ADVISER, of the SPRBD aigorithm package to be discussed in this chapter.

3.2 Some commonly used representations
As has been pointed out in Chapter 2 three basic classes of data are required to generate
the reliability measures for a system, namely
1. The physical or logica!l interconnection structure of the system
2. The individual reliabilities of the components comprising the system.
3. The requirements or constraints on the system, in terms of sets of working

components, that define under what conditions the system is considered to be
operational.

e

(£ 2910my)) syvjwoukiog

Also see Page 18,

The portion of the ADVISER structure discussed in Chapter 3.

3 A311)99) 08 (EIjuocue) PT's)
= 9§ Z saeidey) eeS feusey
g (9 se1d8y3)
& sydeabqng ees| \uspueqd Sid
m (9 9 2 sasrdwyd} SUO}I9I} 188047
& Juswea nbey Jjwoly 4 odki{ juevodwo) o
am {9 Js1duy)) syuivaysuo) ep)s s (ELFT T TR E LTS FY T3 SWd
o (0 9 2 ss01dey)) Sud Indy; uo M0} (0I3UO0) ..
.m Judmesnbey 3883 punodwa’) 042 a0y 4 wIeg
.m Aoy
touron
wypobly
vonsungy Aigeney L L papven
weledg IOQWiAg
uis ouoq ¢ ok AMALH ¥ A N *
* pry ”*
*] swaipodyy
92} 310w
uonetMows | aauss [¥ e
N %k % *kvm,”* * *
1 L] {SIAYIMOHD) Sono1g
1 wyipiotiy Y Sid wopEuewses e g Aijowwig
! 1363341 deip OINL SWd
'
{ N ! AN .
eoiqey ysop Jet-——-————==boool quinoy S U
Snesy (wii8d P10y 8AQ i
a4 J
N 2§ +08D
Iy
228)10V)
80}
. {_—_ ~

Figure 3-1

Iintermediate Representation ' 45

Thus far in practice the general paradigm of reliability computation has been as follows.
The human being uses the physical interconnection structure of the system and the
operational requirements on it, to generate a graph-theoretic data representation which
embodies the system's reliability characteristics. This representation is then typicaily
processed by a computer program which eventually computes the relevant reliability measure
for the system. We shall call such a data representation an !ntermediate Representatipn. In

- this chapter we shall be concerned with two basic types of intermediate Representations,

namely Fault Trees and Reliability Graphs. A large part of the published literature, however,
also deals with a third type of representation, the network. A graph, G(V,E) is used to model,
say, a computer communication network wherein the homogeneous vertices {V} of the graph
represent computers and the homogeneous arcs {E} represent the communication links
between them. Reliability concerns are then of the type "What is the probability that any two
vertices of the graph are able to communicate at any time?" or "If the links are subject to
stochastic failures what is the probability that enough links will be operational at any time to
preserve at least a spanning tree of the network?", and so on. We shall leave a consideration
of such problems to a later chapter since although the model is an idealization it still closely
resembles the actual system interconnection structure and is thus further removed from being
an intermediate Representation.

3.2.1 Probability Trees

According to two of the basic assumptions made in Chapter 2, failure processes in
components are s-independent and each component may be in one of two states, failed or
working. Thus a system consisting of n components will occupy one of the states S, € {S}.
1<i<2". Of these 2" states some subset {F} will consist of the failed states of the structure
whereas the subset {W} will consist of the working states. In addition {W} U {F} = {S}. The
reliability of the system is then expressed by

Rm(t) = }:VFie{F} Pr(F) = 1-szi€{w) Pr (Wi)

The 2" system states may be viewed as the leaves of a binary tree n levels deep wherein each
level corresponds uniquely to some one component in the system. For example, Figure 3-2
shows the probability tree for a system with n = 3 components which is functional iff at least
two out of the three components are functional (this is a so-called 2-out-of-3 structure). The
reliability function for the system may be symbolically derived from its probability tree with a
simple aigorithm. Assign each state (tree leaf) a unique integer i, 1<i<2". The probability of
occurrence of state i, Pr(Si). is the product of all the probabiiities (labeis of vertices in the tree)

46 Intermediate Representation

State Disposition

Py 123 Working
L
q, 123’ Working

Py
F_ — P, 12°3 Working
qz——-r— ,
——q, 1273 Failed
. ‘[___ps 1°23 Working
Po— -
L_q3 1723 Failed
qu .
~—P3 1°2°3 Failed
9 —— Cmrme
q, 1°2°3 Failed
Key
1 --> Component 1 working p; --> Probability component i works
1" --> Component 1 failed q, --> Probability component i fails
(a)
State Disposition
—P, 12X wWorking
Py —d
I q, Ps 12°3 Working
q, P, Py 1723 working
Key
X ==> "Don’t Care” state
1 --> Component 1 working p; --> Probability component i works
1" -=> Component 1 failed qQ; --> Probability component i fails
(b)
Figure 3-2: Probability Tree for 2-out-of-3 structure,
(a) Compiete (b) Reduced.

intermediate Representation 47

on the path from the root of the tree to the leaf representing state i, e.g. in Figure 3-2(a) Pr(Ss)
= D,Q,P, If the vertices of the probability tree are labelled with probabilities as in Figure 3-2
then it is easy to see how a factored symbolic system reliability function may be derived. A
post-order traversal of the binary tree is done and the label of each node is multiplied into the
algebraic sum of the symbolic results returned by the traversal of the left and right subtrees.

For the ieaves of the tree simply the (abel is returned.

For the complete binary probability tree this simple algorithm will eiamine all the 2"
possible states of the system since there will be 2" leaves in the tree. This is exactly equivaient
to state enumeration by running through the binary counting sequence for n-bit integers with
each bit uniquely representing a component and a binary 0 in a bit position implying
component failure while a binary 1 implies component success. For each state that is
examined in the worst case O(nz) examinations of pairs of functioning components need to be
made. This is to ensure that, even though the required number and types of the necessary
components are functional, the appropriate gconnectivity requirements between those
components are met, for the state to be classified a functional one. Thus the aigorithm will
take O(n®2") operations to complete in the worst case.

That there is room for more efficient use of this representation is evident from examining
Figure 3-2. For instance consider the mutually exclusive states (123) and (123°) in that figure.
Their associated probability function terms are P,P,P, and p,p,0, which when added
produce 9192(93 + qa) = p,P, In this instance the minimum requirements for system success
are available by the time the descent reaches the second level of the tree so the leaves 1 and
2 need not have been generated when the tree was constructed. Component 3, in this case. is
a "don't-care” component. Similarly, in the case of state (1°2°3") it is evident by the time the
second level of the tree is constructed that this state is going to be a failed system state. Thus,
the tree may be pruned here. The number of leaves in the tree be reduced by such
observations so that the algorithm has less leaves to examine. The pruned version of the tree
in Figure 3-2(a) is shown in Figure 3.2(b). [Chelson 71] describes a method of computing
system reliability which uses probability trees.

One advantage of using the probability tree representation for symbolic refiability function
generation is that the algorithm will always produce a factored version of the reliability
function. This is attractive when numerical computation is envisioned using the factored
reliability function since the accumulation of round-off and truncation errors is reduced. The
major disadvantage of the approach is its exponential time complexity which is very sensitive
to the ordering imposed on the system components. This restricts the method to small
problems.

48 intermediate Representation

3.2.2 Fault Trees

Another Intermediate Representation widely used in system reliability studies is the Fault
Tree. A Fault Tree is in general an incomplete n-ary tree. There are two kinds of vertices in
such a tree, namely (a) failure events and (b) Boolean operators (e.g. AND, OR, XOR, etc.). All
vertices at any level of the tree are of the same type and the two kinds alternate between
alternate levels of the tree. The root vertex always represents the major failure event (e.g.
system failure) being studied and known, by convention, as the Top Event. The (usually)
independent failure events which are the leaves of the tree are known as the Basic Events.
Figure 3.3 refers to the same 2-out-of-3 structure anaiyzed in Figure 3-2, It may be seen that a
fault-tree is equivalent to stating the top event as a boolean function of the other failure events
at lower ieveis of the tree. An analysis of a fault tree for a system can also provide the
sequence of failure events that would lead to the occurrence of the top event or system

failure.

System Failure

OR

o o g

1’ 2 b R 2’ ¥

Key i =-=> Component i failed

Figure 3-3: Fault Tree for 2-out.of-3 structure

Fault trees are specific instances of a more general representation called Event Traes. The
latter are similar but the events are not necessarily failure events. When the basic events and
the top event are failure events then the event tree is called a fault tree. Fault trees find their
most extensive application in the engineering reliability analysis methodology known as
FMECA (Failure Modes, Effects and Criticality Analysis). in this methodology, a fault tree is

S e et s

Semmm—— B V,_W.,..“’..@W"'

intermediate Representation 49

buiit for the complex system being engineered. The act of construction of the fault tree forces
the designer to consider all possible combinations of basic failure events. it is thus invaluable
in discovering all those specific combinations of failure events which would lead to system
failure. in this the fault tree, once constructed, also stands as documentation of the various
possible sequences of component failures which will lead to system failure.

A fault tree may also be analyzed to compute the probability of the top event given the
probabilities of the basic events. Since the top event is usually system failure, its probability of
occurrence is the system ynreliability, i.e. the probability must be subtracted from 1 to get the
system reliability. Fault tree analysis usually proceeds by generating the minimal cut sets of
basic events. A minimal cut set is a minimal set of basic events such that their occurrence
insures system failure. A simple algorithm for generating the minimal cut sets for an event tree
is given in [Barlow 75a]. In the simplest case the basic events in a cut set are statistically
independent and the minimal cut sets are K1 .K,‘,,...,Kk for a given fauit tree and are disjoint.
Then the probabiiity of the top event is given by

Pr{Top Event} = 1-TI} . (1- ni€Ks p)

where, p, is the probability of occurrence of basic event i.

The literature on fault trees is vast but a good introduction to fault tree analysis is given in
[Barlow 75b]. [Bennetts 75] gives a procedure for computing a minimal sum-of-products
expression for the system reliability using a fauit tree.

3.2.3 Reliability Graphs

The Reliability Graph is the third class of Intermediate Representation that we shall
consider in this chapter. Reliability Graphs are directed graphs with one vertex of zero in-
degree, or source vertex, and one vertex of zero out-degree, or sink vertex. Components, in
the system whose reliability is being calculated, are associated with the set of vertices and/or
the set of arcs in the reliability graph. More than one vertex (arc) of the reliability graph may
represent a given component in the system. Each simple path from source to sink in the
reliability graph then represents a set of system components. Each such set is one minimai set
of components which, if functional, ensure the functioning of the system. This may be stated
more formally as follows.

EvPi = ﬁkepi Ev, = Evm
where.

1<€i€<m

Intermediate Representation

- Ev_ is the event "entity x is functional”,

- P, is the set of components represented by path i in the reliability graph
from its source to its sink.

- m is the total number of simple paths in the Reliability graph from source to
sink

A path P, in the reliability graph is said to be functional iff the set of components
represented by all vertices along that path are functional. Since the event vas will occur it at
least one of the paths P, 1<i<m, is functional, we ‘may make the following assertion

regarding the probability of system success.

m
Pr(Evsys) = Pr(U7 Evpi)
By the familiar expression from basic probability theory which relates the probability of a
union of events to the probabilities of the individual events we have 1

Pr(Evsys) = Ii1 Pr(EvPi) - Zi1<i2 Pr(Evpi NEv,)

1 2
+ 2 aa Pr(Evy ﬂEvp ﬁEvP) + .
4M2%M3 iy iy ia
1
e+ EN™PHATEv,),
K

where 1<i,<i,<iy..... KM

If the probabilities we are concerned with are reliabilities, then the LHS of the above
equation becomes the system refiability. Using the assumption of s-independence of failure

processes of system components from one another and the fact that
Pr{Evpi} = p"mkepi Evk) = I‘ikepi Rk(t)
where Rk(t) is the reliability function of component k as a function of time t, we have

Ryalt) = zi1nk€Pi Ry () - “:’.1<i2nke|='.I upiznu(t) S
1 1 4

1
4o+)™ np1u92u...upmax(t)

where 1<i,<,<iy.....Sm.

This result may be used as the basis for a simple algorithm to derive the reliability function of a
system from its reliability graph. [Gandhi 72] describes such an algorithm. In brief, the

'Y

Intermediate Representation 51

algorithm works as follows. The reliability of a path is the product of the reliabilities of the
vertices that lie along the path in the reliability graph. The first term in the equation above is
then the sum of the reliabilities of all simple paths in the reliability graph. The second term is
composed of the sum of products of reliabilities of components in the unions of pairs of
simple paths. Likewise the third term corresponds to unions of triples of simple paths, etc. The
algorithm in [Gandhi 72] uses bit vectors with one bit assigned uniquely to each system
component. Each simple path then consists of a bit vector with the bits corresponding to its
components set 1o one. Unions of path component sets is then are then constructed by OR-
ing together the corresponding bit vectors.

Recent work has been reported by [Satyanarayana 78) which uses the reliability graph to
compute the symbolic reliability function of the system whose reliability characteristics are
represented by that graph. [Aggarwal 78] describes how logical signal relations may be used
to manipulate reliability graphs to obtain symboli¢ reliability functions. in each case, however,
the reliability graph is presumed to exist and its construction is left to the designer after he has
analyzed the system being studied. In the ADVISER program the work of generating the
intermediate representation is assumed by the program itselt which works directly with the
interconnection graph of the Processor-Memory-Switch structure being analyzed. ADVISER
uses a subclass of reliability graphs as a model for its intermediate represeantation and this is
the subject of Section below.

3.2.3.1 Reliability Block Diagrams

Reliability Block Diagrams (RBDs) as a cfass of intermediate representations are a subset of
refiability graphs. RBOs correspond to reliability graphs wherein the vertices represent system
components and thus are labelled with failure probabilities. The arcs are perfectly reliabie and
serve only to indicate the connections between vertices. RBDs are conventionally drawn with
a box to represent each vertex of the reliability graph. Figure 3-4 is one possible RBD for our
running example in this chapter, the 2-out-of-3 system.

The RBD for the 2-out-of-3 system happens to be a series-paralflel graph. Figure 3-5(a) is an
example of an RBD which is not series-parafiel. However, the following theorem shows that an
RBD of any kind may be transformed into & stochastically equivalent series-paralle! RBD.

Theorem 3.1: A non series-parallel RBD can always be transformed into
stochastically-equivalent series-parallel RBD.

Proof: The probability of success for any RBD, G, is the probability that at ieast
one simple path from source to sink is functional. Let P, be the i™ simple path from
source to sink in G; where 1<i<m and m is the total number of simple paths trom

i
1

52 Intermediate Representation

.Source - 2 — 3 Sink

Key
i ==> Component i functions

Figure 3-4: Reliability Biock Diagram for 2-out-of-3 structure

source to sink in G. These m paths may, or may not be composed of disjoint
gomponent sets. Construct another RBD, G', in which there are m disjoint paths
from source to sink. Furthermore, construct path i in G’ to correspond uniquely to
the i™ simple path in G, with the same number and kinds of vertices (this is called
the minimal path representation). Hence we see that

Pr{G" is successful} = Pr{U" . {P.is successful}}

= Pr{G is successful} . 1

A stochastically equivalent RBD to the one in Figure 3-5(a) is shown in Figure 3-5(b)

3.3 The Series-Parallel RBD in ADVISER

The Series-Paraliel Reliability Block Diagram (SPREBD) intermediate representation was
chosen for implementation in ADVISER for the following reasons:

-The RBD encodes the Boolean relationships between the successes of
components in the structure which yield the success of the system.)t does this
without necessarily explicitly showing the intermediate success events in the
system. This achieves economy of space over the equivaient fault tree
representation ([Shooman 70] shows in an informal fashion that fauit trees and
reliability block diagrams are equivalent in information content). Moreover, uniike
the probability tree the reliability block diagram does not show all possible
success states of the system.

- The SPREBD is nicely recursive in structure and only two kinds of operations are

I AP

Intermediate Representation
A 1 B8
O— E ——0
4
1 C D
(a)
A B -
A E D
4 C D
C E B
(b)

Figure 3-5: (a) A non series-paraliel RBD, and
(b) its stochastically equivalent series-paraliel RBD

required to construct one, namely connection of biocks, or groups of blocks, in
series or in parallel. In addition any given block, rather than representing a single
component in the System, may indeed represent an SPRBL for an entire
subsystem of components. Hence it is easy to change the level of abstraction at
which the system SPRBD is viewed by "hiding" entire sub-RBDs in single blocks
in the main SPRBD. -

- The simple series-paralief structure of an SPRBD suggests a simple method of
obtaining the system reliability from it. Since biocks are connected either in series
or in parallel one may consider "collapsing’ single blocks in series (parallel) into
one block representing an event which is the intersection (union) of the events
represented by the two blocks individually. Thus, working from the inside out, an
SPRED may be collapsed into a singie block whose probability will then represent
the system reliability. Two simple rules were developed to use this collapsing
process to produce a symbolic reliability function. They are described below. The

54 intermediate Representation

strong advantage of the algorithms using these rules is that they are very simple
and robust. By robustness here we mean the ability to tolerate logically redundant
event specilications and still compute the correct reliability function. Such
stability is very useful in the context of automatic reliability function generation
where the various subexpressions are generated by different parts of the program
at different times during the computation. It allows the various knowledge based
solvers in the reliability function generator to be independent of one another
since the robustness of the intermediate representation aigorithms guarantees
that any redundancy in their generated subexpressions will be tolerated and
accounted for. »

3.3.1 The model underlying the SPRBD

in this section we put forward the assumptions under which the SPRBD algorithms
described below will work. Components in the system are presumed to be binary state
devices. i.e. either a component is functional or it is failed. If the system is composed of N
components, therefore. there are N possible system states. We may view the system state as
an N-dimensional binary vector. If the set of N system components is supposed as ordered
then each component is assigned a unique bit position in the binary vector. If component i is
functional in some state of the system then bit-position i of the binary vector for that state will
contain a 1. Likewise, if component i is not functional in some system state then the i bit.
position of the state vector will contain a 0. The sample space, on which our probabilities are
defined, is the set of 2" possible system states. The simplest events in this sample space
which are of interest to us are component successes. We shall term these Primitive Events.
The primitive event that component i is successful is composed of the set of system states (i.e.
outcomes in the sample space) for which bit-position i in the state vector contains a 1. By our
basic assumption in Chapter 2 components have statistically independent failure behavior.
Therefore. it is easy 10 see that our primitive events are all statistically independent. We shail
term as Complex Events those events which are composed of some function of unions and/or
intersections of primitive events. Clearly, two complex events can be stochastically dependent
if the subsets of primitive events which compose them overiap. We shall assume that all
events. whether primitive or compiex, are assigned unique symbolic labels such as “Ev "
from the countable set . The probability of occurrence of Ev‘ will then be the unique symbol
or label "R‘" from the countable set . It is evident that any complex event va is expressible
as a regular expression over . The symbolic probability Rx will be expressible as a
polynomial over the symbolic probabilities of the primitive events constituting Evl. if the
compiex event we are considering is system success then that polynomial is the symbolic
system reliability function. With these preliminaries we shall proceed to a description of the
SPRBO aigorithms.

s

intermediate Representation g5

3.3.2 The SPRBD Aigoarithms

In an SPRBD there are only two types of connections possible for blocks and these are
shown in Figure 3-6(a) and (b). Each of them may be "collapsed” or "merged” when
encountered *u produce a singie block with the appropriate symbolic labels computed as
shown in the figures. We shall explain the symbolic computations and in particular the "®"
operator in the following.

PR RA RB < = [| Rc g
Re = "A®Ry
(a)
RA

Ry = R, + Rg-R, @R,

(b)

Figure 3.6: Merging rules for SPRBDs

in Figure 3.6 the blocks connected in series or parallel may each represent either a

= ewEeseso ey w=ssesesesemy

56 intermediate Representation

primitive event or a compliex event. In the former case the symbol R a S3Y, would just be the
symbolic probability of the primitive event. In the latter case the symbol R would name a
symbolic expression which was the symbolic probability of the complex event. From the
foregoing discussion of Reliability Graphs it follows that a series connection of two blocks
impiies the intersection of the corresponding events while a parallel connection implies the
union of them. The symbolic computations given in Figures 3-6(a) and (b) therefore compute
the symbolic probability of the intersection and union of two events respectively. They are
repeated here for convenience:

c =R, B (SMERGE=> Seriat Merge)

Ry =R, + RB-RA®RB (PMERGE =>Parallel Merge)

At least superficially these rules are very similar to basic expressions in probability theory for
computing the probabilities of intersections and unions of events. The ® operator is intended
to compute the symbolic probability of the intersection of two events given their individual
symbolic probabilities. For this reason we shall term the @ operator the Symbolic Intersection
Probability or SIP operator. The "+ " and "-" operators in Figure 3-6 have their usual
algebraic meanings of addition and subtraction.

The symbolic expressions which represent the probability of the complex events will belong
to a restricted class of polynomials which we shall term Canonica! Reliability Polynomials
(CRPs). We define them recursively thus:

Definition 3.1:

1. Individual atomic symbols such as R A RB. RC,... are Canonical Reliability
Polynomials.

2. 1f R, and Ry, are Canonical Retiability Polynomials then so are

fs(R,Rg) = R, @Ry, and (SMERGE)

foR,Rg) = R, + Rg-R, @R, (PMERGE)

3. A formuia is a Canonical Reliability Polynomial iff it is formed in accordance
with 1 and 2.

We now define the SIP operation as foliows:
Definition 3.2: The ® (SIP) operator
-Cage 1. EvA and EvB are primitive events and their unique probability

symbols R » and FlB are atomic. The probability of the event (EvAﬂEvB) is
then simply written R A@Ra and

.~ | N i

s o o e

Intermediate Representation 57
RAQRB = FIBGFQA mmytativi
It the events Ev, and EvB are primitive then R A@RBER A"Ra'

-Case 2: EVA‘ EvB and Evc are primitive events and their unique probability
symbols are R, RB and RC respectively, then

(R,®R®R, = R,®(R,®R,) = R,@R ®R, Associativi

- Case 3: The ® operator is idempotent, i.e.
A

R,@R, = R, idempoten

Ev, and EvB are complex events which are composed purely of the
intersection of primitive events

r Y el
Ev, = ﬂjﬂ Ev.j (Ev.i primitive)
Evg = N} .4 Evy, (Ev,, primitive)
Then their CRPs consist of one term each and are given by

R, = C,R,®R,®...8R, ®..8R,
Rg = C,R,,®R,®...0R,, &..8R

where C_= + 1 and Cb' + 1 are integer coefficients and r>0 and s>0. The
probability of the event Ev, = (Ev ANEvy) is given by

Re = CR,,®R ,@..8R ®..8R

(A3]
where C_>=C,C, t<r+s, D0 and R} = {R.‘.}U{Rbk}
Thus, for example™
R, = R,®R,8R,®R,
Rg = R,®R,BR,®R,
R = R,®Rg = R,®R,8R,®R,®R,®R,

-Case 4; EvA and EvB are complex events composed of unions and/or
intersections of other simple or complex events. Each of them will have
CRPs with more than one term. In this case the CRP resulting from the

10rne effect of idempotency is similar to tHat of the operation defined in [Kim 72] The ditterence i that in
ADVISER the CRPs (which are analogues of reliability block diagrams) are constructed by the program instead of
manuaily.

b

b hadad o s

N T

N

el AR

58 Intermediate Representation

operation R A@RB will consist of a set of terms which is the Cartesian
product of the individual sets of terms in R, and Rs' Thus if R , has mterms
and R has n terms, R, ®R will have mxn terms each of which will result
from an application of Case 3 above. It two or more of these mxn terms
differ only in their integer coefficients then they may be replaced by one
term with the same factors and an integer coefficient which is the algebraic
sum of the coefficients of the replaced terms. istributivity)

It is evident from the definition of Canonical Reliability Polynomials and the SIP operator
that a representative term of such a polynomial is of the form

C,Ry®R,®R, 8..8R ®..®R , 1O (3.1)

where C .:0 is the integer coefficient of the term and R o e the probabilities of occurrence of
the events aj which may or may not be complex events. If some event aj is complex then R.,
names a CRP which is the symbolic probability of aj in terms of the symbolic probabilities of
other primitive (or complex) events. in this case the CRP named by R " in the expression (3.1)
must be substituted into the term in place of the symbol Riu and the indicated ® operation
carried out.

It is also to be noted that if all the Rai in expression (3.1) represent the probabilities of
primitive events or complex events which are independent then the @ may be replaced by
simple multiplication. Note that two complex events in our scheme will be indgpendent if their
sets of constituent primitive events have a null intersection. if two CRPs are in their simplest
form, i.e. ail factors in all terms of the CRPs represent the probabilities of primitive events,
then independence of the corresponding two events may be deduced if the two CRPs have no
factors in common in any of their terms.

3.4 A data structure for the SPRBD algorithm

We describe in this section the data structure which was chosen to represent Canonicai
Reliability Polynomials. Since the reliability expressions are in canonical form and due to the
idempotency of the SiP operator, none of the unique literaf symbols in a CRP will be raised to
greater than unity power. In addition, literal symbols are either in a polynomial term or they are
absent (for instance they do not appear in complemented form). This naturally suggests that a
bit vector may be used to represent a term in a CRP. A unique bit position in the vector would
be assigned to each unique symbol. Then a factor is present in a term if its bit is set to 1 and
not present if its bit is set to 0. Furthermore, each term in the polynomiai has a signed
coefficient and one extra bit would be taken 10 represent this sign. Finally, the riumber of

Intermediate Representation 59

primitive events is known to be the number of components in the system and the iength of the
bit vector for representing primitive events is thus also known. After a certain point in the
caicuiation being performed by ADVISER it is also known how many complex event CRPs are
to be manipuiated and thus unique bits may be assigned for them at that point also (see

Chapter €).

Previous Next
P — ot
™ Torm Coefficient | WBITS | ABITS | NORMVEC | AUXVEC | Term 7

éED:DIUID::I:I

NORMVEC Bitvector

AUXVEC Bitvector

Figure 3-7: Data structure for CRP term

Figure 3-7 shows the logical data structure that results for a single Canonica!l Reliability
Polynomial term. Since addition and subtraction are commutative the CRPs may be thought of

as unordered sets of terms each with a signed coefficient.'’ Each such set of terms is
represented in ADVISER by a doubly-linked list in which each element is of the form shown in

Figure 3-7.

We now describe the fieids in the data structure shown in Figure 3-7.

- The NORMVEC field of the term points 10 a bit vector which has as many bits as
there are system components. As discussed above, each of these bits
corresponds to one primitive event as we have defined it. Either the NORMVEC bit
vector or the AUXVEC bit vector (see below) or both must be present in any term.

11po.ibly multisets if terms with identical factors have not been replaced by a singie like term whose cosfticient &
the sum of their cosfficients.

——

60 Intermediate Representation

- Likewise, the AUXVEC field points to a bit vector which has as many bits as there
are CRPs which were generated as intermediate results in the computation. The
bits in the AUXVEC bit vector when set to 1 indicate that the corresponding CRP
must be back substituted in the final system CRP in order to get the system
reliability function. This process of back substitution must take into account any
intersection between the complex event represented by the CRP being
substituted and events represented by the other factors in the term (see Chapter
6). Either the AUXVEC bitvector or the NORMVEC bit vector (see above) or both

_Mmust be present in any CRP term.

- The NBITS and ABITS fields are used for efficiency and hoid the count of 1-bits
(i.e. the number of factors) in the NORMVEC and AUXVEC bit vectors
respectively. The need for these fields is described below.

- The MCONST field holds the signed integer coefficient of the of the term.

~ The NEXTERM and PREVTERM fields point respectively to the next and previous
terms in the list of such terms which comprise a CRP.

3.4.1 Ordering of CRP terms

The SMERGE and PMERGE rules of Figure 3-6 involve generating the Cartesian product
set of the sets of terms of the two CRPs being merged. Thus the complexity of the @
operation on two CRPs is O(nz) where n is the number of terms in a CRP. Furthermore, if the
lists are unordered, the process of finding terms of like factors to add coefficients is O(n2/2).
However, this latter cost is reduced if the lists of terms are kept ordered using some
precedence function which compares terms based on the factors they contain. Then terms
which will cancel or add will occupy adjacent positions in a list and these operations will cost
less.

The particular precedence function which is chosen for the ordering must of necessity be
simple to compute so as 1o minimize the time taken for doing ordered insertion of terms into
lists, etc. in this particular case the NBITS and the ABITS fields were used to compare terms.
For any two CRP terms a and b, a was taken to precede b if it had fewer factors than b. If a
and b have an equal number of factors then the precedence was left undefined. This imposes
a partial order on the CRP term lists such that terms in a CRP are arranged in order of
increasing numbers of factors. Terms of equal numbers of factors will be found adjacent to
one another but in order to distinguish among them a strict equality test must be performed
on their sets of factors. in the implementation the NBITS and ABITS fields were placed
adjacent to one another in the data structure thus allowing the precedence function to be
computed in at most two instructions. The equality test, however, depends on the length of
the NORMVEC and AUXVEC bitvectors.

intermediate Representation ' 61
3.5 An implementation of the SMERGE algorithm

it may be observed from Figure 3-6 that the basic operation in the merging of both types of
primitive SPRBD connections into a single block is the © operation. This is all that is required
in the SMERGE operation shown below

Re = R,®R, (SMERGE)

In this case the sat of terms of the CRP nc consists of the Cantesian product of the sets of
terms in R, and Ry under the & operation and after cancellation/adding of terms has taken
place. This is implemented as described below.

The precedence of a CRP term may be characterized by the values of its NBITS and ABITS
fields. Let these values be bN and b A respectively. Assume that for a given system there are
N, components which is thus the length of the NORMVEC. Also assume that N » intermediate
result CRPs are generated by ADVISER. Then it is evident that 0<b <N, and 0<b,<N,
although it is not permissibie to have t:N -bA-O. Therefore, any term of any CRP generated
during the reliability computation for the given system may be cast, on the basis of its bN and
b, vaiues as row and cofumn indices , into one of an array of (N\ + 1)x(N, + 1) bins as in
Figure 3-8(a). No term will fall into bin [0,0] and it is thus cross-hatched in the figure. Terms
which fall into the same bin all have the same number of factors and are not in any specified
order. When a term is inserted into a bin it is compared for strict equality of factor sets with
each term on the list in the bin. The process stops when either the end of the list has been
reached, in which case the new term is appended to the list, or the equality test succeeds. If
the fatter, then the term in the list which matched is repiaced by the aigebraic addition of the
two terms. On the average the lists of terms in the bins are expected to be shorter than the
length ot CRPs otherwise and the time complexity will correspondingly be reduced.

The bin array is used as a device to implement the SMERGE algorithm so that the resuitant
CRP is an ordered list. This is done as follows. When the Cartesian product set of terms is
being formed, each resultant term is cast into its respective bin where an insertion is
performed as described above 1o put it in its correct place in the list of terms in the bin. A
representative bin is shown in Figure 3-8(b). The algebraic addition of terms of equa! factor
aets in a bin aiso serves to hoid down the number of terms in lists in bing and in the final
output list. At the end of the cross-product process the bins are emptied out in order of
precedence which is determined by their row and column indices. Thus Row 0 is of highest
precedence followed by Row 1 etc. Bin [0,0] does not participate. Within each row the

ST

BIN

intermediate Representation
o 1 2 N,
o & . . .
1
2
NN [] . . 3
(a)
— Il |41 1~
L .
CRP Terms
(b)

Figure 3-8: (a) The Bin Array (b) A representative bin.

[I S NN

e

intermediate Representation 63

precedence decreases from left to right (see Section 3.4.1). As each bin is emptied, the
ordered list held within it is concatenated onto the end of the output list of the SMERGE

aigorithm. Thus when the process concludes, the output list of CRP terms will be in
precedence order. The SMERGE algorithm is shown below.

Algorithm SMERGE

Terminology:

- N,, the number of components in the system; also the number
o? rows in the Bin Array.

- the number of intermediate result CRPs generated by
ABVISER a1so the number of columns in the Bin Array.
- R

Rg. R.. The algorithm computes R. = R,®R;.

A'
-t is the k*" term of a CRP; ¢, is the integer coefficient of
t, is the set of factors of t,. and b, and b, denote
the uﬁns and SBITS field values of t,

- a. B. y are the sets of terms in the CRPs R,, Ry and R,
respectively.

- w[i.j] are the contents (set of terms) of the [i,j]*" bin in
the Bin Array.

- *+..s 1S 8 Dbinary operation and denotes insertion of a CRP
term (right operand) into a list (left operand) as described
in the text above.

< *eon is a binery operation and denotes concatenation of a
1ist (right operand) to the end of another 1list (left
operand).

@ denotes the empty set.

64 Intermediate Representation

Procedure SMERGE
Begin

H Incr i from 0 to "n do
-Incr j trom 0 to N, do ui_jﬁﬁ odod;

Comment make the bins empty.

Foreach i suchthat t .€a do
Foreach j suchthat tJGﬁ do

Ck"C.iXCJ:
f,ef,Uf

It
Wby D3 ¢ wiby 0,3 +4ps b
od
od; Comment form Cartesian product set using ®
and insert terms into their bins;
Yy - 2

Comment clear the output list;

Comment empty out each bin in precedence order and append its

contents to the output list, ignore w{0,0]:

Incr j from 1 to N, do
YTy +ccnc “’[O'j] od;

Incr i from 0 to N, do
~ Incr j from 0 to N, do
Y *Y *eone @li43]
od
od;

End; Comment end of algorithm SMERGE;

o

2k

dichlis i,

2

Intermediate Representation . 65
3.6 An implementation of the PMERGE algorithm

The & operator is also fundamental to the PMERGE rule of Figure 3-6. The PMERGE rule is
shown below:

Ry = R, + Rg-R,®R, (PMERGE)

* It is evident that in order to PMERGE R, and RB we must first compute the SMERGE of the

two CRPs. This is done exactly as described in the previous section. The only difference here
is that each of the terms resulting from the RAQRB operation must have its coefficient
negated. Subsequently, the sets of terms of the CRPs RA. l-'(B and R AQRB are all pooled to
form the set of terms for the result R,. This must be done so that the resulting list is also
ordered according to precedence order. For this purpose a simple three-way list merging
technique is used ([Knuth 75a]). Each of the three lists may be viewed as linked stacks. The
top elements of the three stacks are compared for precedence and the term with the highest
precedence is "popped” off its stack and concatenated to the end of the output list. if two, or
all three, terms at the tops of the stacks have identical factor sets then they are popped off
their respective stacks and aigebraically added. The resuiting single term is then
concatenated to the end of the output list.

3.7 Summary

This chapter introduced the Canonica! Reliability Polynomial (CRP) as the basic
representation in ADVISER for the symbofic probabilities of occurrences of events in the
model. A list representation for CRPs was described, as were two simple algorithms to
manipulate this representation. These algorithms, named SMERGE and PMERGE,
respectively compute the symbolic probabilities of the intersections and unions of events in
the model, given their individual probabilities expressed in CRP form. The algorithms are
robust in that they are tolerant of overspecification. Thus ADVISER need not keep track of the
history of construction of any two CRPs which are merged using these algorithms. Even if
both CRPs state the probability of the same event, the idempotency of the SIP operator. ®,
ensures that the correct intersection, or union, probability will be computed. The algorithms
serve as straightforward tools for use in ADVISER during the incremental construction of the
symbolic system success probability from the reliability symbols of the individual system
components, and the operational requirements. The simplicity and ease of use of these
aigorithms enabled the modular construction of ADVISER among other benefits. However,
Chapter 7 shows that the efficiency of these intermediate representation aigorithms, though

. _ban oL

66 intermediate Representation

not dismal, could stand improvement. Although not suitable in their current state, algorithms
of the type described in [Satyanarayana 78], [Aggarwal 78], [Bennetts 75) and [Lin 76], could
possibly be candidates for replacing SMERGE and PMERGE. However, modification would
be necessary and it would have to be shown that the efficiency of the replacement is superior ;
to that of SMERGE and PMERGE. ‘

Mt e b

Ahiimita LY

'

Symmetry Detection €7

Chapter 4
Detection of symmetries in the PMS graph

We will be concerned in this chapter with the ability to discover symmetric subsystems
within computer systems. The discovery of such symmetri¢ subparts aliows economies in the
reliability calculation process. Figure 4-1 shows the portion of ADVISER which is described in
this chapter.

Current trends in the design of computer systems are toward multiple processor systems of
various kinds. From the point of view of ease of design as well as modularity and ease of
maintenance it is convenient to build such structures from symmetric subunits. For instance,
in the PLURIBUS multiprocessor [Ornstein 75] there are three kinds of symmetric subsystems,
namely, processor buses, memory buses, and input/output buses. There may be more than
one of each kind in a PLURIBUS multiprocessor and they may be connected together in semi-
arbitrary fashion. Another example is the Cm*® multiprocessor [Swan 77] which is composed
of processor-memory pairs connected into clusters which in turn may be connected in some
arbitrary fashion. These types of structures, therefore, have interconnection graphs which
contain symmetric subgraphs. One aiso finds symmetric substructures within uniprocessor
systems which have replicated input/output subsystems for availability purposes. However,
the reverse is not true. Symmetric subgraphs in the interconnection graph do not necessarily
imply what we intuitively conceive physical symmetry to be. Two sets of completely ditferent
types of components may each be connected in an identical interconnection pattern. See
Figure 4-4 for two PMS structures which, though isomorphic. do not satisty our intuitive
notions of symmetry for physical structures. For this reason, the graph mode! of a PMS
structure is more appropriately viewed as a labelled graph. The labe! of each vertex in the
graph associates it with a component of a particular physical fype. We suppose two
components to be identical, in their reliability behavior at any rate, if they are of the same type.
We shali, for instance, classity & PDP-11/40'2 and a PDP-11/45 to be two different types of
components since they presumably have different failure rates aithough they are both CPUs

200 i 2 registerad trademark of Digital Equipment Corporation.

ol

Symmetry Detection

uofioung Ajqeney
weleAg 2oquiig

o v v -

(¢

sdvyy) sivrweukiog

K34 14994 L8y {83juous) a4
0 % Z saeldey) seg Lovaey
{9 401d%y))
sydealaqng ses) uspusy Sid
(3 8 2 ssmidey)) CuC) 18} S} SERLD
Juewe. | nDoy Swoly] od4) jueVOdWO) +
(g 401doy)) $IU}BIISVO) #PIS s Gdua9 U0y 1I0UY0IIeTU] SHd
(0 7 T 3s0109y2) SWd nduy uo a0p4 L0JIWO) ------
1uswesjnbey %EW) Punodwo) [\ 1'H) "oy BI8Q
Aoy
OUI)
usyiisobiy
JAYHLVD P
) ﬂ
ddd Y
[
swyipodiy |1
Uoesfjdus [*
WAwIS 0| aeuas [T awo
M 4
3 4a4d | ¢ y 3 %k %k %k %K k %k %k k ¥
1 ¥ (SI3UIMOUD) * wonoe »*
' wytrodiy Sid uojisjuswbes uw.nsh..m
t 1auaaul desg poma | Aiewwis [%nd
f * diwjeis
{ ok sk %k ok ok KON %k Xk
so1any yseH l.rll.lllillll—..lll supnoy Tlllllll/.uflllll...lllllll/
s)ine L7191] — pIoIeAQ
jinesey 19184 prery a
' J$+ OO
'
8985384}
ses(]
1

—~

welsig
o

The portion of the ADVISER structure discussed in Chapter 4.

’
.

Figure 4.1

Also see Page 18.

e

Symmetry Detection 69

and PDP-11s in a functional sense. However, two PDP-11/40s will be considered to be
identical since they are of the same type. At any rate the goal is to have a basis whereby any
two components in a PMS structure may be compared, to be subsequently found to be either
identical or different in their reliability behavior. The component type mechanism and the
labelling of each interconnection graph vertex with the type of its component provides this
basis.

Definition 4.1: Physical Symmetry: We shall consider two graphs to be
"physically symmetric" iff they are isomorphic and the corresponding vertices of
the two graphs have identical component t\(pe labels.

Consequently, if the process of finding symmetric subgraphs in the PMS interconnection
graph takes vertex labels into account, the symmetries detected will correspond in unique
fashion to the physical symmetries in the system.

We are thus led to consider algorithms for generating the symmetric subgraphs of labelled
subgraphs. The next section introduces an algorithm for partitioning of the vertex set of an
uniabelied graph into equivaience classes based on structural symmetries within the graph. In

such graphs the vertices are homogeneous and any symmetries are thus based on
connectivity only. Subsequent sections will modify this algorithm for the case of a labelled
graph thereby introducing the labels of the vertices as an additional factor to determine
symmetry. Finally some properties of the partition into equivalence classes will be described.

We shall assume henceforth that the graphs being considered are finite and have no
multiple edges, ie. any two vertices which are immediate neighbors will not have more than
one edge connecting them. The definitions and resuits presented here refer to non-directed
graphs since these are the basis for our model. They may be extended to strongly connected i
directed graphs (see [Gaschnig 77]).

| am deeply indebted to John Gaschnig, now at SRI International, Menio Park, CA,, for an
introduction to the ideas in this section. Results attributable to him are so marked. However.
the responsibility for any errors or omissions is entirely mine.

4.1 A symmetry detection algorithm based on equivaience
classes

In this section we shall consider unlabelled graphs i.e. those whose vertices are
homogeneous. Intuitively, the search for structural symmetries in graphs must begin with the
notion that two corresponding vertices of two symmetric subgraphs must have at least the

e

70 Symmetry Detection

same degree. it is then possible to begin by partitioning the set of vertices of a PMS
interconnection graph G(V.E) into equivalence classes based on this observation. We shall
subsequently introduce the Neighbor Class Equivaience Relation of Gaschnig and finally
modify it for the kinds of graphs we intend to study ie. labelled, non-directed graphs.
Henceforth, let the notation "x=oy" mean that x is equivalent to y under the equivalence
relation R, ie. x and y would fall into the same equivalence class in a partition induced by
R. Likewise, let "x;ay" mean that x is not equivailent to y under R.

Definition 4.2: (Gaschnig) Equal Deqree Equivalence Relation (ED). Let G(V.E)
be a non-directed graph and let R be an equivalence refation on V. R is said to be
an equal degree equivalence relation iff Yu,v € V, USyv iff d(u) = d(v), where
d(x) is the degree of vertex x.

Reguiar graphs, wherein ail vertices have the same degree, will have their vertices fall into
exactly one class by virtue of the ED relation. This is still not satisfactory from the point of view
of finding symmetries since, in general, it is possible for two vertices to be of equal degree and
still be connected to subgraphs which are not isomorphic. Thus we need to equivalence two
vertices if they are of equal degree and. in addition, the respective subgraphs to which they
are connected are isomorphic. This may be achieved by introducing an equivalence relation
on the vertices of G which has the property that two vertices are equivalent iff they are of
equal degree and the number of their neighboring vertices belonging to each equivalence
class due to the relation is the same.

Definition 4.3: (Gaschnig) Neighbors Class Eguivalence Relation (NCER). Let
G(V.E) be a non-directed graph and let R be an equivalence relation on
V. Arbitrarily name the equivalence classes of V due to R by the distinct symbols
CyChrnnCiy Let c(v) denote the name of the equivalence class in which vertex v€V
belongs. Define the neighbors clagss of a vertex v to be the set
NCM(v) = {c(w)l{v\w)EE}. Then, R is a Neighbors Class equivalence relation (or R
is NCER) under the foliowing condition:

YuveEV v =gu iff NCM(v) = NCM(u)

Several elementary properties of this relation are immediately apparent. For any graph the
partition wherein each vertex falls into its own equivalence class is trivially NCER.
Consequently, if symmetries exist, in general, it is possibie for a graph to have more than one
partition which is NCER. For regular graphs the partition consisting of a single equivalence
class is NCER. Equal degree is a necessary condition for NCER equivalence of vertices so
that d(u)=d(v) = u &, ..o v. We shall use a simple example to explain the effect of the NCER
and as an introduction 10 an aigorithm to generate an NCER partition of a graph. Consider
the graph shown in Figure 4.2, It is evident to the eye that symmetries exist within it.

Symmetry Detection 71

6 7 8 8 10 11 12 13
1 Degree Partiti
Step 1: .
C, * {3 5)gus. €, = {1 24),,.C,= {6789 10111213}, '
rativ 1ittin hi NCER rtition
Cl-{:fS}. Czt{lz}.":z = (4}. C, = (67869101112 13)
C,=a={3 5}, Cé- b = {1 2}, C; = ¢c = (4},

kil

C; =ds= (678 11.12 13}, C; e {9 10}
n AM

johbors Class A Mair ‘
Step 4:
la b ¢ ¢ e
aljJo 2 ¢ 3 O
bl2 1 1 0o o]
cJ]0 2 0 0 2]
d|1 0 0 0 O 1
el 0 0 1 0 O ,1
Neighbor 1 raph (N

Figure 4-2: Application of the NCER to an exampie graph.

72 ' Symmetry Detection

The detection of these symmetries proceeds as foliows. The vertices of the graph are first
partitioned into classes based on the equal degree (ED) relation. We shall term this the equal
degree or ED partition. The ED partition for our example is shown at Step 1 in the figure. At
this stage the NCMs of the various vertices are as follows:

NCM(1) = NCM(2) = {C, C,)

.NCM(3) = NCM(4) = NCM(5) = {C,C,)
NCM(9) = NCM(10) = {C,}

NCM() = {C,} i€ {6.7.8.11,1213)

it will be noticed, however, that this partition is not NCER since, for instance,
NCM(4)=NCM(1) = NCM(2) although vertices 1, 2 and 4 are in the same ED partition. This
demonstrates that equal degree is only a necessary condition for NCER equivaience of two
vertices. We now come to the notion of NC-consistency.

Definition 4.4: (Gaschnig) A class ¢, of a partition P = {c,c,....c} is said to
be NC-consistent iff V uv € ¢, NCM(u) = NCM(v). A class c, is said to be NC-
incongistent iff it is not NC-consistent.

By these definitions, classes C, and C, in Figure 4-2 are NC-inconsistent whereas class C, is
NC-consistent.

Having generated the ED partition, the algorithm proceeds by iteratively splitting each NC-
inconsistent class into NC-consistent ciasses and then checking o see if any new NC.
incongistencies have been introduced in previously NC-.consistent classes due to this
spltting. The process continues until there are no more NC-inconsistent classes remaining.
1ne aigorithm then terminates and the resulting set of classes form an NCER partition of the
graph. Referring to our example again, in Step 2 the NC-inconsistent class C2 has been split
into two NC-consistent classes C; and C;' . However, this makes class C, NC-inconsistent
(Note that class Ca is already inconsistent to begin with in our example, however, even hac it
been consistent, this splitting of class Cz would have made it inconsistent). In Step 3 the class
C, has been split into two NC-consistent classes C, and C;. At this point all classes are NC.
consistent and the aigorithm terminates with the NCER partition P\ ... = {C,.C;.C; Cacs).
We may characterize a class ¢ in PNCER in terms of the number of arcs from sach vertex in ¢,
to its neighboring class. As for instance in the case of class C, wherein each of the vertices 1
and 2 have two arcs proceeding to their neighbor vertices in class C,, one arc to class C;'.
and one arc 1o Class C; (vertices 1 and 2 have an arc joining them). For expository purposes
let us rename the classes {C,.C,.C, C3Cq) as {abcd.e} respectively. We may then

enacthie

Symmetry Detection 73

construct @ matrix as in Step 4 of Figure 4-2 which shows these connectivity relations. This is
termed the Neighbors Class Adjacency Matrix (NCAM).

Definition 4.5: (Gaschnig) The Neighbors Class Adiacency Matrix INCAM) of
an NCER parntition P = {c,.cz,....cm}is a square matrix of size m with one row and
one column corresponding to each class c.€P. NCAMM. =k if exactly k vertices of
class ¢. are connected to each vertex of class C,. Note: for reasons of symmetry
each vertex of class i will be connected to an identical number, NCAM of
neighbors in class j and the sets of neighbors in class j, of vertices in class i, may
overiap.

The definition of the NCAM very naturally leads' us to the notion of a directed graph with
weighted edges where the class names ¢, i=1,2,...m are its vertices and the NCAM is its
- adjacency matrix. Furthermore, NCAM”.)O is the weight of the edge joining the vertices
g representing the classes c,and ¢ respectively. This is termed the Neighbors Class Graph.

Definition 4.6: (Gaschnig) Let P = {c .c,...c} be an NCER partition of a
graph G(V,E). Then the Neighbors Ciass Graph (NCG) of G is the graph G' (V' E”)
where V' = {c,.C,.....c,,} and for all ordered pairs (u".v'). u" v EV’, (u'.v')€E' iff
NCAM, . .>0. Funhermore. for all (u' v’)EE the weight of the edge (u'.v') is the
element NCAM

The NCG is a dnrected graph in which seif-loops are allowed on vertices since # is quite
possibie to have a class be one of its own neighbors. Let G’ (V' E’) be the NCG of G(V.E) and
lete =(s’ .d’) be an ordered pair such that (s’ ,d")EE’. Recall that s” and d° are equivalence
classes of V. Then each directed arc such as ¢’ in G’ represents one or more arcs in G from

each vertex of G in 8" t0 its neighbor vertices in d”. The weight ot e’ is the number of such
edges of G from a vertex in 8™ to its neighbors in d°. The NCG may alternatively be viewed as
having myitiple edges between its own vertices, the multiplicity being Qiven by the edge
weights. The NCG for our example is shown in Figure 4-2 on the left hand side of Step 5. On

the right hand side of Step 5 in Figure 4-2 is an alternative, more compact, representation of
the NCG. In this representation, the 1|2 on the edge between vertex b and vertex ¢ implies that
there is one edge from each vertex of class b to its neighbor vertices in class ¢, i.e. each
vertex of b has one neighbor in ¢ (in this case the same vertex 4 is neighbor 10 both 1 and 2).
and, likewise, there are two edges from gach vertex of class ¢ to its neighbors in class b. In
other words, the two weighted directed arcs between each pair of vertices in the original NCG
rave been collapsed into one non-directed edge with a duai weight which has a component in
each direction.

Definition 4.7: The connection density p_ of an NCER equivalence class X
with respect to its neighbor NCER equivalence class Y is the number of vertices in
Y that are neighbors of each vertex of X.

L-'_.________________________ﬁ

74 Symmetry Detection

The integer in brackets labelling each vertex of the NCG on the right hand side of Step 5 in
Figure 4-2 is simply the cardinality of the corresponding class in the NCER partition. We shail
derive some relations between these labels presently.

Returning to our algorithm for generating an NCER partition for a graph, we shall refer to
the partition formed by it as the "Equal Degree then Spiit" or EDS partition in view of its
nature. The algorithm for obtaining the EDS partition of G(V,E) is shown below. In addition,
Figure 4-3 shows the effect of applying Algorithm EDS to various uniabelled graphs.

L}

Algorithm EDS, ("Equal Degree, then Split")

Terminology:

- The graph under consideration will be G(V,E)

- Let n be the number of distinct classes into which the
vertex set V is split by the Equal Degree (ED) relation and
let the class names be the integers 1,2,....,n,

- NCM(x) will denote the neighbor class set of the vertex x.

- The function firstelement(x) will denote some arbitrarily
chosen "first"” element of the unordered vertex class x.

- At the end of the algorithm the number of classes resulting
will be held in the variable "last”. In other words if the
contents of the veriable "last™ is m upon termination, there
will be m classes named 1,2,.....m.

Procedure EDS

begin
integer last., newlast: Comment tc hold class names:
boolean done;

Symmetry Detection 75
G(V.E) NCG = 6°(V'.E')
o
""" > 6]
2|2
[3))
----- > T
3]
----- >
sls
""" > (s)

Figure 4-3: Exampies of NCGs resulting from the application of NCER to various graphs.

76 Symmetry Detection

Comment declare a procedure within EDS

Procedure SplitAClass (tc,nc)
begin
boolean makenewclass:
integer thisclass, newlastclass:
thisclassetc;
now'lgsthass‘-nc;

if 1
(cardinality of thisclass isunity) i
then
return thisclass
fi;
makenewclass~true;
while makenewclass {
do 4
it (thisclass is NC-inconsistent) .
then "
newlastclass~newlastclass+i:
Comment create 2 new class; 4
(initialize newlastclass to null set); :
foreach u€v
do
it NCM(u) = NCM(firstelement(thisclass))
then (move u from the ciass thisclass
fo the ciass newlastclass) fi
od;
thisclassenewlastclass
oise makenewclass~false
fi
od:
return newlastclass
end; Comment end of Procedure SplitAClass

Symmetry Detection 77

Comment the EDS algorithm begins here;

newlastelasten:
done+false;

while not done

do
for j from 1 to last
do newlasteSplitACiass(j.newlast) od;
it 1ast = newlast Comment no change;
then done«true
else lastenewlast
fi
od
end: Comment end of Procedure EDS

4.2 Some properties of the NCER

This section presents some properties of the Neighbors Class Equivalence Relation. The
proots here are informal and are inciuded for the purposes of exposition. For further details
and a more rigorous treatment the reader is referred to [Gaschnig 77].

Theorem 4.1: [Gaschnig] In general an NCER partition of a non-directed
graph G(V,E) is not unique.

Proof: For any non-directed graph G(V,E) the one partition Po wherein each
vEV is assigned its own class is trivially NCER. If in this trivial NCER partition, two
classes a and b exist such that NCM(a) = NCM(b) then a and b can be combined
into one class. The resulting more compact partition P’ with one less class is still
NCER by definition. Likewise, il there exists an NCER partition. P” of G that is not
trivial, consider a class ¢ of P” whose cardinality is greater than one. Then
assigning sach of the vertices of ¢ to a class of its own, i.e. dividing ¢” into as
many classes as there are vertices in ¢”, will aiso generate an NCER partition.
Thus an NCER partition for G is not unique. §

Theorem 4.2: [Gaschnig] The EDS partition is the minimal NCEF. partition.

Proof: The EDS algorithm will terminate as soon as all the classes produced
thus far are NC-consistent. At each iteration of splitting and checking, only as
many rew classes are created from an NC.inconsistent class as are needed to
satisfy NC-consistency of the old class and the new classes created from it. This
happens in ail but the final it ration before termination of the algorithm. §

L-'—...._____________________w

78 Symmetry Detection

Corollary 4.1: [Gaschnig] The EDS algorithm appiied to the graph G(V.E)
terminates after at most N-1 iterations, where N = |V].

Some more properties of the Neighbors Class Equivalence Relation, and the partition
induced by the EDS aigorithm, are stated below without proof.

Theorem 4.3: [Gaschnig] I P = {c,.c,.....c_}is an NCER partition of G(V.E)
then VuvEV, ugEpov = UV

Theorem 4.3 implies that for each NCER partition P of G, each class of P is a subset of
some ciass of the EDS partition. Thus, the NCER partition with the fewest classes is the EDS
partition (cf. Theorem 4.2).

Theorem 4.4: [Gaschnig] Different graphs are mapped into isomorphic NCGs
by the EDS algorithm.

This leads to the fact that the EDS aigorithm is an “information reducing” operation and it
is not always possible to deduce the graph which is the origin of an NCG. However, graphs
which share the same "image" by having the same NCG, share common aspects although
they may be very different in other ways. For instance all graphs which map into the same
NCG will have identical proportions of vertices in each class. That the same NCG is produced
implies that the same number of equivalences classes were produced by the partitioning of
those graphs. As a result the number of vertices in any graph which maps into a given NCG
will be an integral muitipie of the number of vertices in the smallest graph which maps into the
same NCG.

As Gaschnig remarks, the behavior of the EDS algorithm is analogous to that of a standard
algorithm for sequential circuit state minimization, in which equivalent states are identified
and replaced by a single equivalence ¢lass [Hill 68], pp.201.213.

4.3 Modification of EDS for labelled graphs

in this section we modify the EDS algorithm described above for the case of labelled
graphs. Then we show the operation of the modifiec algorithm on the example PMS graph of
Chapter 2, Page 29. Thus far the graphs we have studied were not labelled. Hence, the
vertices of these graphs were all homogeneous. Accordingly, detecting structural symmetries
in the graphs amounted to detecting their isomorphic subgraphs. However, the consideration
of physical interconnection structures brings a new aspect to the meaning of symmetry. When

Symmetry Detection 79

we speak of two interconnection structures being physically symmetric we imply that in
addition to their interconnection graphs being isomorphic, they have identical types of
components in the corresponding places in the structure. Note, again, that in our study of
system reliability calcutation we shali term two components to be of the same type if they are
identical components with the same reliability functions. Thus in Figure 4-4 we see that the
two structures are isomorphic in their interconnection graphs although they are not physically

symmetric. -
" M |
P S/M P S /M ‘
AN AN |
KTy P Mubase]

Figure 4-4: Non-symmetric but isomorphic PMS structures.

This additional constraint which determines physical symmetry may be incorporated very
easily into the mode! by appropriately labelling sach vertex of an interconnection graph by the
type of the component it represents in the interconnection structure. We then have to modity
Algorithm EDS for detecting symmetry in labelled graphs. The modification is simple and is
expressed by the following slightly enhanced version of the NCER definition.

Definition 4.8: Typed Neighbors Class Eguivalence Relation (TNCER). Let
% G(V.E) be a non-directed graph with iabelied vertices and let R be an equivaience
f relation on V. Arbitrarily name the equivalence classes of V due to R by the distinct
symbols €, CqreeniCp. Let c(v) be the name of the equivaience class to which vertex
vEV belongs. Let type(v) represent the labe! affixed to vertex vE€V. Define the
peighbors class of a vertex to be the sat NCM(v) = {c(w)l(v,.w)EE}. Then R is a
Typed Neighbors Class Egquivalence Relation {TNCER) under the following
condition:

Yu,vev vELU itf NCM(u) = NCM(V) A (type(u) = type(v))

We aiso define the following relation:

Definition 4.9: Equal Type Equivalence Relation, Let G(V.E) be a non-directed

L—_...___________________-__%

80 Symmetry Detection

graph and let R be an equivalence relation on V.R is said to be an Equal Type
Equivalence Relation (ET) iff Yu,v€V, US v iff type(u) = type(v).

Then the modified EDS termed the ETEDS algorithm may be expressed as below. (Since it is
so similar to Algorithm EDS only the major differences in the overall structure are shown.)

Algorithm ETEDS ("Equal Type, Equal Degree then Split")
Term.inology: identical to Algorithm EDS

Procedure ETEDS
begin

integer last, newlast;
boolean done;

Procedure SplitAClass (tc,nc)

begin

Comment identical to Procedure SplitAClass in
Algorithm EDS;

end;
Comment beginning of code for Procedure ETEDS

(Split Virto equivalence classes based on Equal Type equivalence
relation; let n classes ¢ ,.C,,....C, result);

Comment Step 1:

for i from { to n

do
(Split ¢, into equivalence classes based on Equal Degree

equivalence relation; let m; classes €ipCiz-Cim.
result) f
od: Comment Step 2;

n
Comment at this point a total of X m, classes have been generated.
=1

n
newlastelaste m
done~false: ie1

i

2 [AW Vot QPN

PR T

bbb et it

Symmetry Detection 81

while not done Comment Step 3:
do

for j from 1 to last
do newlast « SplitAClass(j,newlast) od:

if last = newlast
then done+~true
else lastenewlast
fi

od

end; Comment end of Procedure ETEDS;

Theorem 4.5: The partition generated by Algorithm ETEDS is TNCER
Prooft: After Step 1 in Algorithm ETEDS we have

Vuyv€ce,i=1,2,...,n, type(u) = type(v)
After Step 2 in the algorithm we have

Vu.vecﬁ. j=1 ,2....,mi, i=1.2,...n
(type(u) = type(v)) A (d(u) =d(v))

The splitting process in Step 3 of the algorithm terminates only when all classes
are NC-consistent. Thus for each class ¢ at the end of Step 3

Vu,v€c (type(u) = type(v)) A (d(u) = d(v)) A (NCM(u) = NCM(v))

Therefore, the partition generated by algorithm ETEDS is TNCER. §
Analogous to the NCAM and the NCG in the case of the NCER we may define a TNCAM and
! TNCG in the case of the TNCER. In other words since two vertices fall into the same class of a
| TNCER partition iff their types are the same, we may label that c/ass with the same type.

We now show the result of applying the ETEDS algorithm to the examp e PMS graph of
Chapter 2!, Figure 2.5. The graph is reproduced for convenience in Figure 45 and the
symmetry detection steps applied to it are shown in Figure 4-6. In Step 1 of Figure 4-6 the
vertex set of the graph has been partitioned according to the Equal Type (ET) equivaience
relation. Step 2 shows the further partitioning according to vertex degree. Step 3 shows the
iterative splitting, of partitions achieved so far, to obtain the equivalence classes due to the
Typed Neighbors Class Equivalence Refation (TNCER). At each iteration an asterisk is used o

82 Symmetry Detection

mark those classes which are NC-inconsistent. Figure 4-7 shows the resulting TNCAM and
TNCG for the PMS graph of Figure 4-5.

1 M1 2 2
\/ \/

NS
PaN
S

S5
N\
P3 M, M

AN
/

4

Figure 4-5: An example PMS graph with symmetries

4.4 Some results in regard to the NCG and TNCG

This section will introduce some results regarding the N™.Gs and TNCGs of non-directed
graphs which were derived by the author based on Gaschnig's work. We have seen in
Section 4.1 how a Neighbors Class Graph (NCG) may be simply represented by replacing the
two weighted directed arcs between each pair of vertices by a single, labelled non-directed
arc. A single integer (e.g. "[6]") labelled each NCG vertex and was the cardinality of the class
it represented. Likewise, a pair of integers (e.g. "2{1") labelled each non-directed arc and
stood for the original weightings of the directed arcs it replaced. These are the connection
densities of the two classes, represented by the vertices, with respect 10 each other. We shall
consider in this section some numerical relationships between these integer labels. The issue
of recovering information about the original from its NCG will aiso be addressed. This is not
possible in all cases since the derivation of the NCG is an information-reducing operation.
More will be said on this beiow.

Without loss of generality we shall consider two representative vertices X and Y of an. NCG
with the single non-directed arc between them and with appropriate positive non-zero integer
labels, m,.m.n.n > 0, attached (see Figure 4-8). Note that m =P, and m =p, are the

G n s e

P

Symmetry Detection

P! r i -5.
{P1 P2 P3 P4 P5 M1 M2 M3 M4 M5 S1 S2 S3 S4 S5 K1 K2 K3)
Partition bv Egual Type egquivalence relation:
{P1 P2 P3 P4 P5} (M1 M2 M3 M4 M5} {51 S2 S3 S4 S5} {K1 K2 K3)

Further rtition 1 r ival lation
(Subscript "d=n" indicates each vertex in class is of degree n)
{P1 P2 P3 P4 P} ., (M1 M2 M3 M4 MS)C_1 {S1 S2 S3 S4 S58}4.4 {K1 K2},

de3

iv littin hi rtition R:
(* = NC-inconsistent class)
STEP 1
{P1 P2 P3 P4 PS5} {M1 M2 M3 M4 M5} {S1 S2 S3 S4 S5}* {Ki K2}
{x3}
STEP 2
{P1 P2 P3 P4 P5}* (M1 M2 M3 M4 M5}* (S1 52 S3 S4) {K1 K2}
{85} {k3)
STEP 3
{P1 P2 P3 P4} {M1 M2 M3 M4} {S1 S2 S3 54) {K1 K2}
{P5} {M5} {56} . {k3}
Class No, Class Iype Llass
1 P {(P1 P2 P3 P4)
2 P {Ps)
3 M {M1 M2 M3 M4}
4 M {m5)
5 S {S1 S2 53 s4&)
6 S {55}
7 K {x1 x2)
8 K {x3)

Figure 4-6: Steps of the ETEDS algorithm applied to Figure 4.5

84 Symmetry Detection

XRULVNWLEXVO

OO OOOOO0 -
oo»c':oooovrv
COOOOOOXW
Y- E-X-X-X-X- 1 ¥S
omoocuo»—Lo
N OQOOMOMMOWMO
N OMOOOOX
Ommoo00O0olxm®

W DO WN -

(a)

1]1

()

(27t K,
2

1
[43{S} {syl

1 1 1 1
0 G > G

Note: Integers in brackets are the class cardinalities.

(b)

Figure 4-7: (a) The TNCAM for Figures 4-5 and 4-6
(b) The TNCG defined by the TNCAM above.

AD=AL12 713

UNCLASSIFIED

CARNEGIE~MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER ==ETC F/¢ 9/2
AUTOMATIC GENERATION OF RELIABILITY FUNCTIONS FOR PROCESSOR=MEM==ETC (U}
FEB 81 V KINI N00G14=77=C=0103
CMU=CS=81-121 TN

i

|.0
= -
|| Jj20
== Nis
L2s e pe

ﬂ

e

Symmetry Detection 85

Figure 4-8: A pair of vertices in an NCG.

\

connection densities. We shall consider this single pair of representative vertices in isolation.
Of course. both X and Y may possibly be connected to other neighbor vertices in the NCG but
these connections will be symmetric, and resuits derived for a single pair of vertices X and Y
may be applied to all other pairs which contain either of X or Y, and thence to the rest of the
graph. The case that X and Y are the same vertex (class) is also considered in Section 4.4.2.

in what follows, the symbols X, Y, m,m.n, ny refer the reader to Figure 4-8. The results of

this section apply in general only to NCés of non-dicecied graphs and no attempt has been
made to extend them to directed graphs. We attempt to deduce in this section what structure
or set of symmetric structures in the origina! graph, G, caused the appearance of the singie
arc in its NCG, G°, as shown in Figure 4-8. For our purposes, the NCG and the TNCG are
identical except insofar as the latter has type labels for its vertices unlike the former.

Therefore, the following results apply to both.

Theorem 4.6: nm = nymy

Proof: The proof is by conservation of arcs. Since each vertex of class X is
connected to m_ vertices of class Y, there are a total of nm._arcs incident on
vertices of class X from vertices in class Y. Likewise, for ciass Y there are nm
such arcs incident of vertices of Y from vertices in X, These two must be identicaﬂ
|

4.4.1 Unequal class cardinalities
We shall assume first that n - n, This implies from Theorem 4.6 that m‘:my.

Theorem 4.7: If nxatn and n, and n_ are relatively prime then the only possible
interconnection graph be‘wecn the ver{ices of class X and class Y is a complete
bipartite graph.

Proof: From Theorem 4.6 we know that

n‘/my = ﬂy/m,l

e . .

86 Symmetry Detection

Now n_n m and m are positive integers, therefore this equality implies that n_
and n_have a common factor. By our assumption, however, they are relatively
prime and so this factor can only be unity. Hence. m _=n _and m =n_as a resuit.
This resutt implies that each x€X is connected to n_(i.e. all) yEV. Likewise. as a
result, each y€Y is connected to n_ x€X. Hence, under the conditions of the
theorem a compiete bipartite graph is the only possible graph joining the vertices
of XandV.}

Note that under the conditions of Theorem 4.7 it is possible with the information from
Theorem 4.6 to compute any one of the four quantities (two m's and two n’s) if all of the other
three are known. Likewise, if the ratio of the m's is known, one n calculated from the other and .
vice versa. We shall see in the following section that if‘the condition n_* n, is not satisfied
then the former caiculation will not be possible due to a many to one mapping.

Theorem 4.8: Assume the foliowing notation

r o™ GCD(n,.ny) (GCD => greatest common divisor)
Py = BNY factorof T’ xy (including 1and I’ xy)
Mok ™ n’/I'xy. and

npy = l'ly/r)(y

Then, it n #n and n_and n have a common factor greater than one, then the
appearance o(a single edge of the form in Figure 4-8 may origina*e from one of the
following kinds of subgraphs in the origina!l graph G(V,E):

1. Complete bipartite graph of n_ and n, vertices. (q)xy = 1)

2.T_ occurrences of symmetric complete bipartite graphs of Mox and n oy
vertices. (¢ o™ rxy)

3. orin general, I'_ /@ __ occurrences of complete bipartite graphs of (n_ ¢ _)
Xy px ¥ xy
and (n_ ¢,) vertices. (1<, <T)

Proof: The NCMs of all x€X (or all yEY) are identical due to the NCER. Hence, if
the single NCG edge in Figure 4-8 was the result of the "collapsing” together ot
several subunits which were bipartite graphs, all those subunits must have been
symmetric. Since n, and n_have a common factor the smallest such subunit will
have been a bipartite graph of n . and n__ vertices. Aiso, there will be T such
smallest subunits. From Theorem 4.7 this smailest subunit must be a complete
bipartite graph since n x and n_ are relatively prime. This gives rise to case 2
above. Case 1 will trivialry generate a singie NCG edge.

D

I

Symmetry Detection 87

Now consider case 3. Symmetry conditions dictate that the number of subunits
mustbe I' /@ since the vertices in class X (or class Y) must be evenly divided
among the symmetric subunits. in other words, for each symmetric subunit, the
number of vertices in their X and Y classes will have to be the same integral
multiple (pw) of n x and r\‘w respectively. Now from Theorem 4.6 we have the

4 (4
constraint

m“/my = ny/nx = npy/npx

Hence for a subunit which has n ox® vertices in class X and n_@__ vertices in
class Y, m_and m_can only take the vaiues Moy Pxy and n Py respectively. This
leads to a complete bigraph of Nox®xy andn vertices.

oy Pxy

Note that under the conditions of Theorem 4.8 the number of symmetric complete bipartite
graphs which produced the single NCG edge will be completely determined by the values of
m_and m, and, in fact will be GCD(m‘,my).

The resuits of Theorem 4.8 may be used while doing an algorithmic "walk" of an NCG to
discover for each edge in the NCG the loca! structure of the original graph which was reduced
by the symmetry detection to that single NCG edge. A special version of these results is
embodied in Theorem 4.9 which is used to discover which parts of the NCG correspond to
symmetric collections Pendant Tree Subgraphs in the original PMS interconnection graph
(see Chapter 5).

4.4.2 Equal class cardinalities

We now consider the case wherein n_= n,. From Theorem 4.6 we see that n_= n, =
m =m. It is not possible, however, to solve for the values of the m'’s since there is no unique
soiution to the m's in the equation mn = myny when n = n,. The only observation which can
be made is that the connection pattern between the vertices in class X and vertices in class Y
will be regular in some sense and constrained by the fact that the degre2s ~7 all vertices in
both classes are equal (i.e. m = my-m). For instance Figure 4-9 show. cases which

"collapse” to an identical edge in the NCG.

An interesting special case is one in which the class X is identically class VY, i.e. there is a
self loop on a vertex in the NCG. In this case the connections are between vertices in the
same class and symmetry causes them to be cyclic. The connection density in this case
specifies the length of the cycle. If the connection density is equal to the cardinality of the

class with the self-loop (Mm,=m =n = ny = k) then the self-loop indicates the existence of a k-

y

88 Symmetry Detection

\
[
\
]
\
)
,

'
-~
| S

- -
P L T e
[S g ——2
P N e N
S e s . .-

.
[}
AR

/)
N

X 2} 2 Y m =2, n =4
o= 0 my=2. ny=4

(4] [4]

Figure 4-9: Ambiguous origin of single NCG edge when n =N,

clique™ subgraph in G. If m<n then we have a star polygon with a period of m in G.™

4.5 Symmetric trees

We now consider a scecial case wherein at least ane of the connection densities in Figure
4-8 is unity. Without lo=s of generaiity iet us assume that m =1 Then Theorem 4.6 informs us
that the number of vertices in class Y is exactly the number of vertices in class X divided by
my. Under this condition it will be noted that the bipartite graphs must now be two level trees.
In our case, with m_= 1 the roots of these trees are the vertices in class Y and the leaves are
the vertices in class X. Aiso. each vertex (root) in Y has exactly m, SUCCesSOors or sons in class
X. Therefore, the number of trees which “collapsed” to provide the single edge in the NCG is
equal to n, (i.e. the cardinality of the vertex :ass which hoids the root vertices). Hence we
have

134 w-clique @ & complete graph on k nodes.

Y4 star polygon @ 8 reguiar graph which s cyclically connected It can be compistely characterized by an
indexec expression which & 8 function of the degree of each vertex in the graph and the period of the cyclic
interconnection (See (Boesch 72)).

Symmetry Detection

Theorem 4.9: The only condition under which the singie NCG edge in Figure i
4-8 represents the collapsing of tree subgraphs of G is when at least one of m_or i
m, are identically unity. :

The proof of this is obvious. A fact that foliows from this is that if ml-myn then the onty
origin in G of the single NCG adge is the collapsing of single edges of G which are n,=n =n
in number. Note aiso that it is possible to have leaves or pendant vertices in G° which do not
correspond to leaves in G. This may be seen by considering the case of Figure 4-10. Theorem
" 49 is made use of in Chapter 5 for discovering specific tree subgraphs of the PMS
interconnection graph G. These are then used as a basis for partitioning G in a divide-and-
conquer approach.

\/

1h—;r’-—4——-r'-ﬂl
N!

G(V.E)
/ \ L3
o s, —
i
1 SYMMETRY DETECTION
i
N}/
\/
1]a s 1)1
f3]{P} (u{V} tﬂ{S} 'Tj("))
K TNCG = G (V' ,E")

[3]{L}

Note: L,€(L); {L) is a Yeaf of G'; L, is not a leaf of G.

Figure 4-10: A case where a leaf of G’ is not a leaf of G.

o AmblmeaEGe

90 Symmetry Detection
4.6 Conclusion

This section introduced an algorithm to discover symmetries in an uniabelied graph. This
aigorithm was based on the Neighbors Class Equivalence Relation and gave rise to an
auxiliary graph called the Neighbors Class graph. Slight modifications to the aigorithm
aliowed the detection of symmetries in labelled graphs. The identification was drawn between
a PMS interconnection graph and a labelied graph and the algorithms were shown to be
useful in discovering physical symmetries in a PMS structure. Finally some properties of the
NCG were discussed which allowed the deduction from the NCG of the nature of the
symmetric subparts of the PMS graph.

In later chapters only symmetric subtrees ot a specific kind in the PMS interconnection
graph G are used to reduce the amount of computation in the reliability calculation. This is

SO BNPIN

entirely due to the fact that special techniques were developed only for tree structures.
However, the information gleaned from the NCG regarding the nature of the symmetries in G
may aliow the reducing of computation in the case of symmetric instances of other kinds of
subgraphs it special techniques for them are deveioped in the future, or their appearance in
PMS structures is sufficiently frequent to warrant special consideration.

L"‘ e, S camion

PTS Algorithms 81

Chapter 5
- Tree Interconnection Structures

This thesis is an attempt to study the feasibility of generating system reliability functions
directly from the actual interconnection topology of a PMS system. Interconnection graphs of
tree form were a natural starting point for such an investigation. The most important motive
for studying tree interconnection graphs is that PMS structures usually contain input-output
subsystems which are connected as trees. For instance, Figure 5-1(a) illustrates the case of &
disk storage subsystem, and Figure 5-1(b) shows a terminal controller with its network of
terminalis. The roots of the two tree-interconnected subgraphs are the K

KWn a respectively.

multiplexor channe! 3N

Another obvious, although secondary reason to begin by examining trees is that there
exists a large base of efficient algorithms, using trees as data structures, which have been
explored and described in the extant literature. During the course of research on this
dissertation, however, it was found that most of these algorithms were inapplicable except to
do minor subtasks in the reliability calculation process which was contemplated. This
situation is largely due to the fact that the reliability caiculation problem is combinatorial
whereas extant algorithms address much simpler and more basic problems in manipulating
tree data structures. Algorithms derived for such classes of problems as the generation of
spanning trees of graphs, shortest path probiems, tree searching etc. appeared irreievant to
the particular task at hand.

Delinition 5.1: A Pandant Jree Subgraph (PTIS) T, of a PMS structure
interconnection graph, G, is a maximal rooted tree subgraph such that the root
vertex of T is an articuiation vertex of G and the simpie path, p_ , between any pair
of vertices v_and vy in T, is unique in G. The root vertex of a FTS shail be termed
an jnterface vertex.

it may be seen that the two trees in Figure 5-1 are indeed PTSs and that their respective
root vertices are “interface” vertices 1o the rest of the interconnection graph. In order for any
component in a PTS to be useful to other subsystems not in that PTS, the component

PTS Algorithms

‘llulﬂp\uor Channe? ‘Toninn .Coacentrator

‘Nn Controller "out Controller \

Tery Trry Yoy = === Ty Trry

Tﬁsk

Oflt

¢1Sk ¢1lk Msk

(a) (b)

Figure 5-1: Examples of Pencant Tree Subgraphs

represented by the root vertex of that PTS must be functional. This is so ihat a route may exist
iér information to flow between the PTS subsystem and other parts of the PMS structure. Aiso
since the interface vertex is an articulation vertex of the PMS graph the PTS reliability may be
considered separately from the main graph. This is due to the sets of components in the PTS
being disjoint from the rest of the graph and the assumption of independence of failure
behavior. The functionality of the PTS when viewed from the rest of the system is dependent
on whether the interface vertex is functicning or not. The algorithm deveioped below for
caicuiating the reliability of tree structures depends on this fact.

Figure 5-2 shows the portion of ADVISER which is discussed in this chapter. in Section 5.1
we shall introduce and discuss an algorithm used for detecting Pendant Tree Subgraphs in
the graphs of PMS structures. The aigorithm will employ symmetry information gained by the
use of the symmetry detection aigorithms of Chapter 4. The following section, Section 5.2, will

———

% (¢ 483dwy)) $tvjwoukog
Au.:a-:oz 193juoun)
092 $401dvy) e
(9 se1duy))
S$ydeulgng $84) Jumpuey Sid
(o392 $J03dwy)) g AL TUTS I TR
lusweanhey Jjwoyy 4 odAy 1Uouodwoy)
(9 481dwy)y) 35:.25... P s ['T.L FTY __o:uo:eou..oa.: SKd
(9 3 2 si01duyy) SWd 1nduy wo 8013 toaywoy .
1ueweu nbey ¥8%, punodwoy ou3 %0(4 w30g -
Aoy
tousoy
Wyipadyy
- -
Uolaung Ayyqepey Jumivd 40+ 4
wejsig dgoquiig 4o \
]
!
L LTI T
Yoneumdung “wa| awas [FTo5
(] **********
J LR T L E R T P,
'R Y 1%
I » Wylotyy Sid
| * TAYIys
| * WD+ $
{ *kkkgpxg %
, N
oaeL youy Jeb oo i Sutinoy e e e
S04 OAQ
Slinsey 19y <uo piroy
m ._ A8+ 04D
h a2
¥ 4 LELJTT T
o jesn
< i >
v
&

e L T e e e -

Cture discussed in Chapter 5.
Also see Page 18,

The portion of the ADVISER stry

.
.

Figure 5.2

84 . PTS Algorithms

describe TREEREL algorithm for generating the symbolic reliability function for a Pendant
Tree Subgraph given a boolean requirements expression. The chapter will conclude with a
note on current known deficiencies of the TREEREL algorithm.

5.1 Generation of Pendant Tree Subgraphs (PTS)

The reader will recall that the result of the symmetry detection process described in
Chapter 4 is a Typed Neighbors Class Graph (TNCG) which has as its vertices the equivalence
classes resuiting from the ETEDS aigorithm. These vertices are labelled with the type and
cardinality of the respective classes. The edge between any two vertices is iabetied with the
pair of connection densities of the two classes with respect to each other. Theorem 4.9 in
Chapter 4 showed that in order for a subgraph of the NCG, G, to have originated from a tree
in G(V.E), the connection densities in the direction of the root should always be unity.
Capitalizing on this resuit and the additional obvious result that a pendant or leaf vertex in the
original graph G(V,E) must imply a leaf vertex in the NCG.'® an algorithm may be generated to
discover the pendant tree subgraphs of G. We shall assume that the PMS interconnection
graph G is not a tree graph itself although it may have PTSs. Appendix A examines the
consequence of removing this restriction.

The algorithm proceeds by first collecting the set of pendant vertices in the NCG, G, of
G. These leaves of G* represent those vertex classes which have only one‘ neighbor. From
this set of pendant vertices, those vertices are deleted whose connection density to their
single neighbor class is greater than one since they obviously cannot represent leaves of a
PTS in G. The set of remaining pendant vertices of G', which we shall denote V’ o does
represent the set of leaves of the PTSs in G. We shall metaphorically term the members of V' 0
germinal trees, and the process of constructing the PTSs from them as growing trees. The
reason for this me’aphor will become apparent.

Each member of V’ 0 is mapped into a data structure t as shown in Figure 5-3. The field t,
will hold a single vertex of NCG G'. The fieid t will hold a set of vertices taken from G'. Let
T’ 5 be the set ™y, Kt o)l = (V"), where each et o COrTesponds uniquely toa v’ €V°
The algorithm starts by assigning t'> v’ and tfl- {v'). This initiaiizes the root t"'and the
vertex set t'of the i™ germinal tree, to the NCG leaf vertex v’

‘slmmwh not vice verss in Qeneral since the connection density of that pendant NCG veriex to its neighdors

couid de greater than unity

oo

L

PTS Aigorithms 85

¢

Key

r -- root vertex, t(r‘)

v -- vertex set, t‘(,”

Figure 5-3: Data structure for germinal trees

The algorithm then iterates in two passes. It first examines each t) in turn. If the root vertex
tfi) of the i germinal tree has exactly one neighbor v™ in G* which is not already contained in
the vertex set tf’ of any of the germinal trees and, in addition, the connection density of t(ri)with
respect to v" is exactly one then t'« v and t! « U v". These conditions have to be
imposed since G is a non-directed graph. If at any stage, tf) has several neighbors. its
connection density to all of whom is unity, then there is no way to knbw which of them is at a
higher level in the PTS. Some of them may be "brother” vertices at the same level of the PTS
«s 1) Thus, any one of them could, from the point of view of) be the next higher root to be
added. Of course, those neighbors of tf) in whose direction the connection density is greater
than one can never be added to) and will most likely be part of another germinal tree.
Hence the growing process of the germinal tree t@ may have to wait through several
iterations of the algorithm until all but one of those neighbors with unit connection density has
been consumed by other germinal trees growing upward from their leaves. Or else, if the
algorithm terminates before this happens. then tis the de facto root, or interface vertex. of a
PTS.

At the end of this first pass, each germinal tree may have "grown" by one more vertex
toward the root of the PTS of which it is a subtree. The next pass over the set of tf) checks to
see if there are any two germinal trees that have the same root vertex. If so, these are merged
or coalesced into one germinal tree i.e. 3ij such that tP = t0 then t!) e U P ang 19 is
deleted.

96 PTS Algorithms

Note that if, at any stage of the iteration. the root s tfbf any germinal tree i at that stage
has itself for a neighbor vertex, then no more vertices can be added on to that germinal tree a!
any further stage (This is also in accord with Theorem 4.8 in Chapter 4). Such a tree is then
said to have stopped growing and is no longer considered in further passes except for
merging into other germinal trees that have grown toward the same root vertex.

When there is no fturther change during this iterative process i.e. when no more neighbor
vertices can be added and no more germinal trees can be coalesced, the process terminates.
The resulting trees are the PTSs of the NCG G’. It will be noted that due to the symmetries
detected during the construction of G', the cardinality of the class represented by the root
vertex of any PTS of G’ gives the number of physically symmetric PTSs of G which are
represented by that PTS of G”. This fact has the obvious consequence that since symmetric
PTSs of G have been recognized and localized. the reliability function of one of a set of
symmetric trees will have the same form as all the others in the set, thus effecting some

computational savings. This issue is further discussed in Chapter 6. Algorithm GROW is
described below

PTS Algorithms

97

Algorithm GROW

Terminology:

The symbol p'1 will be used whenever there is exactly one
neighbor, of a given vertex v,, under consideration and will
stand for the connection density of v, with respect to that
one neighbor,

The symbel v, will be used whenever there is exactly one
neighbor of & given vertex under consideration and will
represent that single neighbor (un=>unique neighbor).

The set Vp will be assumed to be initialized as follows:
Vp*{v}W}GVﬂdWﬂ)st]=1}

The function “MarkComplete" causes a germinal tree to be
Yabelled as not capable of further growth thus removing it
from consideration during the further iterations of the
algorithm. The function “"MarkDead™ removes a germinal tree
from further consideration once it has been coalesced with
some other germinal tree. The functions "MarkedAsComplete-”
and "MarkedAsDead™ check to see whether the germinal tree
given as their parameter has been respectively marked as
complete or dead.

98

PTS Algorithms

Procedure GROW

begin

tor i from 1 to |Vp|

do tiVe v

changes~true;
while changes
do

BEGIN

changes«false;

Comment]Vp]=cardina11‘ty of set vp;

¢ e vy od:

. 5 .
Comment v’ ,€v . t("er ;

for i from 1 to |Tp‘|

do

if not MarkedAsDead(t('))

then

if not MarkedAsComthe(t‘ ” }

then
neigh

it ¢

bors « GetNCM(t('):

) € neighbors

then MarkComplete(t!!))

fi
fi
fi
od;

neighbors « neighbors - neighbors N t{%);
if |neighbors|=1

then
it p° =1
then
t{Ve v =€ neighbors:
Comment single neighbor remaining in "neighbors”
t’\sfﬂﬁ tﬁj)U Vun
else
MarkComplete(t(‘))
fi
ti

PPV

ke e At b ot

PTS Algorithms)

Comment now merge germinal trees that have overlapped at the root:

for i trom 1 to IT"I

do
if not MarkedAsDead(t('))
then
for j from i+1 to lT“]
do
it not MarkedAsDead(t(3))
then (1) (3)
ift s t
thet{ r
t‘('”‘ tsi)u t(“:
i’ MarkedAsCompiete(t(d))
then MarkComplete(t('))
fi;
MarkDead(t‘d));
changes«~true
fi
fi
od
fi
od
END
end; Comment end of Procedure GROW;

5.2 Generation of Reliability Functions for PTSs

Previous sections in this chapter discussed the process of recognition of Pendant Tree
Subgraphs (PTSs) of a PMS interconnection graph. We now approach the question of
generating reliability functions for such tree structures. The methods developed in this
chapter for this task are used to generate partial resuits regarding such PTSs in the overall
interconnection structure. Such partiali resuits along with others are operated upon to
produce the final resuilt which is the reliability function of the entire PMS structure. The reader
will recall from Section 2.2.1.3 that an atomic requirement on a PMS structure is 8 clause of
the form "at least N of X", represented symbolicaily by ¥(N,X), where N is an integer and X is a
distinct type of component in the structure. (n the following we shail initiaily indicate how
refiability functions for PTSs may be derived for such atomic requirements and then
generalize the result to s Boolean function on atomic requirements, ie. compound
requirements.

100 PTS Algorithms

The algorithm starts on the distinguished, or root, vertex of a PTS of G, the PMS
interconnection graph.‘° This is an articulation vertex of G(V.E) and is termed an interface
vertex. The component represented by it must be functional in order for other functioning
vertices in the tree to be able to satisty the Communicatior. Axiom (see Sections 2.1 and 6.6.1)
for system reliability. To introduce the aigorithm we shall consider a complete m-ary tree of
infinite extent and composed of homogeneous vertices. In other words all the components
represented by the vertices of the tree are of exactly the same component type, say X. We
shall, in addition. assume an atomic requirement of y(N,X). Starting from the root vertex of the
PTS the algorithm recursively descends into the tree keeping count of how many vertices of
type X have been encountered thus far. Since at ileast N components of type X are required to
be functional, a functional state of the tree is found as soon as N such vertices have been
encountered. There is then nc need to descend farther into the tree since the requirement
has been met and the states (working or failed) of components lower in the tree are not of
conseguence. The algorithm then accounts for this functional state in the partial resuit thus
far accumulated (we shall presently describe what is meant by accumulation of results) and
backs up to try the next possibility. In this sense the procedure is exhaustive but only
functional states of the PTS are examined. The algorithm will be described in detail below.

it is clear that in our example of a homogeneous tree the descent will encompass no more
than N levels of the tree including and starting from the root vertex. The following question
then comes to mind; If the homogeneous tree is N+ 1 levels deep. say, then what of the
vertices that are the leaves of the tree at level N+ 1? Since they are ail also of the required
type X, may they not also contribute to some functional state? On a little reflection it is
apparent that the constraint that excludes such possibilities is that all commun:cation must
flow through the root vertex r into the rest of G(V,E). Thus, for any tuncticning vertex v at level
| to be part of a functional state, all vertices along the path of I-1 edges from v to r must be
functional. In our instance, ail of these vertices are of the required type. Hence it I<N then
each vertex of the tree will appear in one or more functional states. However, if DN then there
will be at least one vertex whose functioning or non-functioning is irrelevant to the functioning
of the tree structure.’’

"S7his is in contrast 1o the Algorithm GROW which discovers PTSs of the NCG, G, of G thereby indicating
symmetric PTSs of G.

7 1he concept of reievancy here is used in the sense of Bariow and Proschan [Bariow 75a)

PTS Algorithms 101

5.2.1 The TREEREL Algorithm

The TREEREL algorithm uses the notion of the compositions of an integer into some
number of parts (for exampie see [Nijenhuis 78}).

Definition 5.2: A k-composition of a positive integer n is an grdered tupie of k
integer parts p,.>0,i=1,..k, suchthat I, p, = n.

This is to be contrasted with the foliowing definition:

Definition 5.3: A k-partition of a positive integer n is an ynorgered tuple of k
integers parts pi>0, i=1,..k suchthat X, B, = n.

Py Py P3 Py

6=4+1+1
633+2+1
6=2+2+42

(a) {b)

0DO0OO0OOOODDOOOOHKKEMEMBEMEHNNNW
COOCOR M ERNNWOOOR R NOO RO
O NWORNOMOOSMNORSRODO»OO
W R ONMOROONRMOROO»OOO

Figure 5-4: (a) All the 4-compositions of the integer 3.
(b) All 3-partitions of the integer 6.

At any depth, within the tree operated upon by a recursive incarnation of the PTREE
procedure of algorithm TREEREL, let n be the number of required-type components
remaining to be found to satisfy the atomic requirement on the tree. Let the root vertex of the
subtree currently being studied be r",. Furthermore, let '6 have m sons r;.....r;n. The algorithm
first examines the root vertex r, for its component type. If it is the required type then the

102 PTS Algorithms

number of components of the required type remaining to be found is decremented by one.
The algorithm then proceeds to sequence through all the m-compositions of the integer n (or
n-1 if the vertex r('J was of the required type). For each such m-composition the algorithm is
called recursively on each son of r, r, i=1,..m, with the parameter p; as the number of
required-type components to be found in the subtree whose root vertex is rI Here p, is the ith
integer part of the m-composition.

For each m-composition of n the values (canonical reliability polynomials) returned by the
recursive calls of the PTREE procedure on each of the subtrees ri' are SMERGEd. The
SMERGE procedure (Chapter 3) effects a coniunction of the probabilities represented by the
reliability functions returned by the various recursive calls. Alter all the m-compositions of n
have been examined, their individual SMERGE resuits are then PMERGEJ together. The
PMERGE operation (Chapter 3) produces a reliability function which represents the
gdisiynction of the probabilities represented by the results of the SMERGE operations. Finally,
if the results of this PMERGE operation were non-null, i.e. the subtree rooted on r6 was able to
meet the requirement of n, then the reliability of ré is SMERGEd into the results of the
PMERGE operation’s. The results of this final SMERGE operation, if it is invoked, are returned
as the value of the current incarnation of procedure TREEREL operating on ré. Otherwise a
null result is returned indicating that no functional states could be found.

It is evident that for some subtrees in a PTS which is not homogeneous (i.e. components
within it are ot different types) not all the compositions of the integer requirement over the
number of sons of the root of the subtree, will produce fruitful results. In other words, some
requirements on a particular component type may be greater than the number of components
of that type available in a given subtree. This implies that that subtree can never be functional
under that particular requirement. in order to decide whether or not a given requirement can
be met by a subtree it is necessary to know beforehand how many components of the
required type are available within it.

Detinition 5.4: Let r be the root of some subtree t(V,E) within a PTS and let x
be the required component-type. Then the required resource supoly (RRS) o, of
the tree t with respect to x is defined as

o4(rx) = [V isuchthat V'CV, YvEV’ type(v) = x

18Tm- i equivaient 10 stating that regardiess of what combinations of components in the subtrees r’r ware
chosen to satisty the requirements, the root vertex rb will siways have to be functionai for those combinations 10 be
useful

st e s

be

PTS Algorithms 103

The subscript T on the ¢ indicates the applicability of the definition 10 rooted tree
subgraphs of the PTS. Such a tree t is represented by its root r and thus r is a
parameter of o

The quantity o(r,x) of each vertex r in the PTS is gathered in an O(N) post-order traversal of
the PTS prior to running the PTREE algorithm.

Definition 5.5: Let '6 be the root of some subtree t of the PTS which is being
operated upon by a recursive incarnation of Procedure PTREE. Let ri', i=1,..m,be
the m immediate successors vertices of r&. Let x be the required component type
and n be the remnant of the integer requirement to be applied toward the subtrees
of ré after subtracting one in case type(r")) = x. Then an m-composition cs{pi} ofn
over the rl i=1,.m Z ,P;=n,issaidtobe a feasible compaosition (or ¢ is feasible)
ift

aT(ri'.x) 2p,i=1..m

A composition ¢ is said to be infegsible iff it is not feasible.

During each recursive call to the PTREE algorithm on the root vertex r{, of some subtree of
the PTS, the m-compositions of n are generated as described above. A composition is
considered, and recursive calls to PTREE on ri' are initiated, only if the composition is feasible.
The procedure NEXTFCOM, described below, is used to generate the next feasible
composition at each step.

A turther refinement of the algorithm is possible and was made in the following way. For a
given subtree rooted on some r",, and for a given required component type x, in general,

a,(r;,x)go, i=1,..,m

Now if 3 j€i=1,...m, such that a.l.(ri',x)-o then any composition which has p‘.>0 will be
infeasible. Thus, when generating compositions we need only consider those ri’ such that
oT(ri',x)>0. In such a case the number of parts in the composition will be equal to the number
of r; whose o.(r.x)>0. In view of this, an additional O(N) post-order traversal is made over the
PTS prior to the initiation of the PTREE algorithm to prune subtrees whose o, is equal to zero.
Furthermore, the remaining subtrees of each vertex of the PTS are ordered in ascending
order of their o,. This allows the generation of the compositions to be started directly at the
first feasible composition and is reflected in the procedures NEXTFCOM and PTREE below.

There are, thus, three stages in the TREEREL algorithm, namely

- Compute oy for all vertices in the PTS for the required component type x.

104 PTS Aigorithms

- Prune the subtrees with o, =0 (in other words we effectively reduce m) and
reorder the remaining subtrees in ascending order of their oy

~Call the PTREE procedure on the root vertex of the PTS with the integer
requirementn,

The value returned by the PTREE algorithm is the canonical reliability polynomial (CRP) of
the PTS under the atomic requirement ¥(n,x). Shown below are the four procedures that
comprise Algorithm TREEREL.

Algorithm TREEREL

Terminology:
- succ(r.i) is a function which returns the it immediate successor vertex ofr.

- nsucc{r) is a function which returns the number of immediate successors of
vertex r.

- SMERGE and PMERGE are algorithms described in Chapter 3. They respectively
return the symbolic reliability function of the event which is the conjunction or
disjunction of the two events represented by their parameters.

- Procedure NEXTFCOM is a modified version of Algorithm NEXTCOM in {Nijenhuis
78]. The latter generates all m-compositions of the integer n in the order as shown
in Figure 5-4(a). The former only generates those m-compositicns which are
feasible.

- The names of the parameters to TREEREL are reasonably self-explanatory:
"ptsroot” is the root vertex of the PTS for which the reliability function is to be
generated, "reqtype” is the required resource type of the atomic requirement,
and "reqment” is the integer requirement of the atomic requirement.

Procedure TREEREL (ptsroot,reqtype.reqment)
begin

il

PTS Aigorithms ' 105]

ki Comment first declare four procedures which are used by TREEREL;

! Procedure FINDSUPPLY (r,x) {

| Comment finds o, of subtrees of the given PTS;

begin ‘
integer supply:

it type(r)=x then supply~supply+1l fi;

for i from 1 to nsucc(r)]

do

supply~-supply+FINDSUPPLY(succ(r,.i),.x)

od;

e;(r.x)esupply:

return supply

end; Comment end of Procedure FINDSUPPLY;

Procedure PRUNEANDSORT (r,x)
Comment prunes those subtreys w -+ o.*0 and rearranges;

Aeatthiin s hande

begin
for i from 1 to nsucc{r)
do
it o;(succ(r,i).x)=0
then (prune subtree rooted on succlr,il}
fi
od;
(quicksort the remaining successors of r
into ascending order of 0,)
for j from 1 to nsucc(r)
do PRUNEANDSORT(succ(r.,j).x) od
end; Comment end of Procedure PRUNEANDSORT;

NI PO A R

1086 PTS Algorithms

Procedure NEXTFCOM (
reference integer array com[1:m],
reference integer array sigmat[1:m],
integer n,
integer m

Comment generates next feasible m-composition of n given
o, vector in sigmat[1:m]. Previous feasible m-composition
o} n resides in com[1:m];

begin

integer h, t;

label newcomposition:
do

begin

it com[m]=n then return false fi;
(hecom[i] whereiis the smallesti=1,.....m such that com(i]>0) ;
tecom[h]: com[h]«0;
com{1]«0;
com[h+1]~com[h+1]+1
end
until
newcomposition:
begin
for i from 1 tom
do
if sigmat[i] < com{i]
then leave newcomposition with faise

od:
leave newcomposition with true
end
od
return true
end; Comment end of Procedure NEXTFCOM;

Procedure PTREE (r,n,.x)
Comment recursively computes symboli¢c reliability function of
subtree rooted on r with requirement of ¢(n,x);
begin
it n > o,(r,x) then return nil fi;
if type(r) = x then nen-1 fi;
itnso0
then
return R Comment symbolic reliability of
component represented by r:

olse
begin Comment MAIN BLOCK
integer tosatisfy;
integer array com{1:nsucc(r)].sigmat[i:nsucc(r)]:
reliability function value, tempvalue:
tosatisfyen; Comment need to find n components of type x;

r S T S————
PTS Algorithms 107
Comment initialize for first feasible composition
for i from 1 to nsucc(r)
do
sigmat{i)eo,(succ(r,i).x);
if sigmat[i] < tosatisfy
then com[i]esigmat[i]:
tosatisfy-tosatisfy-sigmat[i)
else com[i]-tosatisfy:
. tosatisfy«0 fi
od;
valuee«nil;
Comment for each feasible composition returned from NEXTFCOM
generate partial result for each subtree and accumulate;
do
tempvalue«nil;
for i from 1 to nsucc(r)
do tempvalue~SMERGE(tempvalue ,PTREE{succ(r,i),com[i].x)) od;
value+PMERGE(tempvalue,value)
until not NEXTFCOM(com,sigmat,n,nsucc(r))
od;
Comment if accumulated partial result is not nil then
root vertex of current subtree will also be required,
therefore, SMERGE in its reliability function;
it value = nil
then return nil
eise return SMERGE(value,.R) fi
end Comment end of MAIN BLOCK
fi
end; Comment end of procedure PTREE:
Comment Declarations for Procedure TREEREL end here;
Comment The code for the Procedure TREEREL begins here;
it FINDSUPPLY(ptsroot,reqtype) = 0 or reqment = (
then return nil fi;
PRUNEANDSORT(ptsroot,reqtype):
return PTREE(ptsroot,reqment, reqtype)
end; Comment end of algorithm TREEREL;
L..‘ N
. tdnidtionn, "

r—

108 PTS Algorithms

5.2.2 Analysis of Procedure PTREE

The analysis of the PTREE procedure is intractable for non-homogeneous trees and
incomplete"9 m-ary trees. We shall use the infinite homogeneous complete m-ary tree to
investigate the nature of the algorithm. This kind of tree turns out to be a worst case example
since it offers the maximum number of possible functional states for a given requirement.
There is little doubt at the outset, however, that the aigorithm is combinatorial in nature.
Fortunately, the sizes of trees expected to be dealt with by the ADVISER program is small; in
the order of 20 vertices or so at most for extant multiprocessor interconnection structures.
Moreover, in practice, the PTSs of a PMS graph are more likely to be non-homogeneous and
incomplete m-ary trees. Thus at each level, many of the compositions to be examined by
Procedure PTREE will turn out to be infeasible and therefore will not even be returned for
consideration by Procedure NEXTFCOM. This will speed up the algorithm on the average. At
any rate, concerns which arose early during the course of this work with regard to the
complexity of algorithm TREEREL were found in practice to be misplaced. The ADVISER
program expends the largest percentage of its computation time in the PMERGE and
SMERGE algorithms during the execution of the OVERLORD routine (see Chapters 3, 6 and 7
respectively).

We shall ignore the fact the pruning and sorting of subtrees is done before PTREE is
invoked since this will not happen for our worst case example. We approach the analysis of
the PTREE procedure by noting some facts in regard to all the possible m-compositions of an
integer. Specifically, consider the table of all possible 4-compositions of the integer 3 (i.e.

m = 4, n = J3) in Figure 5-4(a) and focus attention on the first column of figures (which contains
the vaiues of the part P, of each composition). 1t will be noted that the number of times the
integer (n-k), k=0,1,...,n, N = 3, appears in the first of the four columns is equal to the number
of all possible (m-1)-compositions of the integer k. This number is

(n-k) e m-2
(5.1)

m-2

Aiso note that this is true of all of the other columns of Figure 5-4. All the other columns are in
addition, just permutations of the first column. Using the terminology above, Procedure
PTREE is called recursively on vertex r; with the integer p, as the requirement, unless p, =0.
Thus, the number of times Procedure PTREE is called on vertex r, with an integer
requirement of (n-k) is given by expression (5.1) above. except when k = n. This is also true of

calls of PTREE on all the other successor vertices of ré, i.e. rz,r:‘r"1

19

Incompiete trees are described in [Knuth 75b), Pg.401.

PTS Algorithms ' 109

Let us define w(n) to be the work done by the PTREE aigorithm in traversing, to the
necessary depth, an infinite, homogeneous and compiete m-ary tree with an initial integer
requirement of n. We shall posit the initial condition t0 be «w(1) = 1. in other words, one unit of
work is done by each recursive call to PTREE. Then w(n) also represents the total number of
recursive calls to PTREE under these conditions and we shali consider this to be a measure of
the time complexity of the algorithm.

In our idealized homogeneous tree, upon entry into a subtree by Procedure PTREE, the
requirement n will always be decremented by ore since the root of any subtree is ailways a
component of the required type (see the pseudo-code for Procedure PTREE above). Hence,
the m-compositions computed are of the integer (n-1). Thus the total work done on the
subtree rooted on r; is given by the sum:

2 i (# times integer (n-1)-j appears in column 1) * w(n-1.j)
except that occurrences of 0 in the column are ignored. This sum then becomes:

gn2 i+(m-1)-1

j=0) w(n-1-j)

{m-1)-1

However, there are m-1 more columns which, except for having their elements permuted, are
identical to the first column. Furthermore, we must add one to represent the cali of the
Procedure PTREE on the root of the subtree, ré itself. Hence, we may finally write the
expression for w(n) as

wimy =1+ mE™2 (%) oingn) (5.2)

|so m-2

Equation (5.2) is an n™ order difference equation in n (m is a constant and completely
characterizes the infinite, homogeneous, compiete m-ary tree of our example). The problem
of obtaining a closed form solqtion for w(n) appears intractable. However, the first five terms
of the series w(n). n= 1,2,3,... are shown in Figure 5-5. It is clear that w(n) grows as O(m™').
This is an interesting resuit insofar as it implies that for a fixed n the reliability calculation
procedure TREEREL is roughly polynomial in the number of components in the tree.
However, for fixed m, the algorithm is exponential in n, the requirement integer. It would be
expected, therefore, that more com;:;lexzu requirements should affect the computation time

”m complexity of requirements may be increased by taking one of three actions. namely (i) introduce more
tarms into the boolean requirement expression, (if) make sach of the atomic requirements require closer to haif of the
svailable components of that required type in the structure. Since the number of functional possibilities tor each
stomic requirement i8 given by a binomial coefficient, this action increases the number of possibilities to be
considered. and (jii) introduce more disjunctions into the boolean expression &s opposed to conjunctions Since the
disjunctions are incfusive-ORs the number of cases to be considered can multiply rapidly.

U K Y

110 PTS Algorithms

more substantially than more complex interconnection structures. This correlation has indeed
been borne out by experienc. 1 using ADVISER. The observation seems also to apply
roughly to the PMS reliability calculation problem addressed in this thesis as a whole.

w(1) 1

w(2)

1+ m{(m-i)w(l)} = mel

w(3) = 1 + m{ w(2) + (M- 1D(1))} .
2m? + 1

o(4) = 1+ m{ 0(3) + (M1)e(2) + m(m-1)/2! ©(1))

772 m® - 72 m? 4+ 1

w(5)= 1 + m{ «(4) + (Mm-1)w(3) + m(m-1)/2! w(2) + (M+1)m(m-1)/3¢ (1))}
£ 37/6 m* - 15/6 m® + 2/6 m? + 1

Figure 5-5: First five terms of w(n)

5.2.3 Extension of TREEREL to compound requirements

Previous sections were concerned with the generation of reliability functions for PTSs on
the basis of atomic requirements. In this section we shall extend those techniques to the non-
atomic requirements. These are Boolean functions on the atomic requirements, as described
earlier in Chapter 2, wherein the individual atoms may have different integer requirements and

required types. An example of such a compound requirement is
¥(5,Processor) A (y(3,M.primary) V (¢(1,M.disk) A y(2,M.primary))) (5.3)

Such a Boolean function may be represented by its parse tree (see Figure 5-6). The latter,
which we shall term the requirements ree. is a binary tree wherein the leaf vertices represent
the atomic requiremenrts and the non-terminal vertices represent the Boolean operators AND
and OR. The extension capable of handling such a compound requirement is simple. it
essentially involves a treewalk of the requirements tree with an invocation of Algorithm
TREEREL, on the given PTS, performed with the atomic requirement at each leat of the
requirements tree. The extended version of the TREEREL algorithm is shown below

PTS Algorithms 111

A
/ \
¥(5,Processor) / \"

y(3,M.primary) A
/ \

¢{1.M.disk) V(2.M.primary)

Figure 5-6: Parse tree of requirement expression (5.3).

Algorithm EXTREEREL

Terminology: As in Aigorithm TREEREL with the foliowing additions

- "rqtvertex” is a vertex of the requirements tree on which an incarnation of the
Procedure EXTREEREL has been invoked. The algorithm begins by call the initial
incarnation of EXTREEREL. on the root of the requirements tree.

- ISOP is a function which returns TRUE if its parameter is an operator (i.e. a leaf)
vertex of the requirements tree.

- GETORP is a function which returns the operator represented by the non-terminai
vertex, of the requirements tree, which is its parameter

- GETREQMNT and GETREQTYP are functions which return, respectively, the
integer requirement and the required type of the atomic requirement represented
by the requirements tree vertex which is passed to them as a parameter.

- LEFTSON and RIGHTSON are functions which return the successor vertices of
any vertex in the binary requirements tree.

112 PTS Algorithms

Procedure EXTREEREL (rgtvertex,ptsroot)
begin

reliability function leftr, rightr;

if
ISOP(rqtvertex)
then
leftr « EXTREEREL(LEFTSON(rqtvertex). ptsroot):
rightr « EXTREEREL(RIGHTSON(rqtvertex), ptsroot):
if
GETOP(rqtvertex) = AND
then return SMERGE(leftr, rightr)
else return PMERGE(leftr, rightr)
fi
else
return TREEREL(ptsroot, GETREQTYP(rqtvertex), GETREQMNT(rgtvertex))
ti

end;

It is to be noted that Algorithm EXTREEREL is not used directly by the ADVISER program
and it is described here in the interest of completeness. The reason for this is that the
OVERLORD routine in the program deals with the input compound requirement and has the
responsibility for fragmenting it into its constituent atomic requirements. Then partial results
for each of the partitions of the graph are generated for these atomic requirements and stored
away in anticipation of later repeated use. it is the OVERLORD routine which carries out the

combining of the stored partial results. Hence it is only necessary for that routine to call
Procedure TREEREL for each PTS for the various atomic requirements in order to
pregenerate the partial results and compound requirements never filter down to the PTS
package.

5.3 Current Deficiencies in Algorithm TREEREL

In the previous section the algorithm TREEREL was described under the assumption that
the root vertex was always necessary for the functioning of the PTS as viewed trom the rest of
the PMS graph. Thus if some required component was functional at some lower level of the
tree it was assumed that all components on the path from that required component to the root
vertex would be constrained to work. There are cases where this assumption is not
supportable and in this section we examine why.

In Figure 5.7 we show two PTSs in a hypotheticali PMS structure. Let us assume that the
total overall requirement in computing the reliability of the PMS structure wes

)

PTS Algorithms 113

Kernel

2

N\~

S
|
K
N>

2

Figure 5-7: Example of TREEREL deficiency.

Y(1.P) A ¢ (2M) (5.4)

where the only P and M components in the PMS are those shown in the figure. We see that
among other possible success states of the overall PMS structure there is one state in which
the components {P‘.MVM,‘,} in Figure 5-7 completely satisfy the requirement expression (5.4)
which was imposed on the entire PMS structure. When it comes to deciding which
components are necessary for these three components to communicate we see that, in the
absence of other information, only K, is necessary and the components {S, K} are not
necessary ior communication. However, in this case the TREEREL algorithm will return the
following CRP as a partial result for the PTS containing {P, M, M,}:

Re,"Rs, "R, “Ps Ry 'R

K 1 1

M

5 1

2

This is a pessimistic reliability for this case.

Another possible success state of the PMS in Figure 5.7 under the requirements ot
expression (5.4) will be that in which {P,.Ms.M ‘} are functional. In this case we note that the
current TREEREL strategy of requiring all components up to and including the root vertices
(K, and Kg in this case) to be functional causes the correct reliability to be computed
(assuming that the reliabilities of other necessary components in the Kernel are properly
accounted for).

114 PTS Algorithms

Now assume that the requirement is raised to
¢(1.P) A ¢ (QM).

In this instance a/! functional states of the structure will necessarily require that Ks‘ Ks, 81.
and S, be functional.

The TREEREL algorithm is seen, therefore, to be deficient currently in cases of
requirements on a PMS structure which may be completely satisfied by some subtree of a PTS
of that structure. The deficiency will make itself evident in such cases and the reliability
computed will be pessimistic. The Cm*® example in Chapter 7 provides an instance where the
deficiency had an effect. Note that there is a possibility of the deficiency arising in the case
that the overall PMS structure is itsell tree-structured (i.e. no Kernel exists). Appendix A
considers the operation of Algorithm GROW under such a circumstance. Some study of the
problem will be necessary before a variant of the TREEREL aigorithm can be devised which
will remove this deficiency.

5.4 Summary

The concept of Pendant Tree Subgraphs (PTSs) was introduced in this chapter. These
subgraphs are frequently found in PMS structures in practice and were a natural place to stant
an investigation into the feasibility of automatic reliability function generation. A procedure
was described to recognize symmetric PTSs in a PMS graph. An algorithm was described to
compute the reliability of a PTS under a given atomic requirement ond a deficiency in this
aigonthm was - ~ted.

Overiord Routine 115

Chapter 6
The OVERLORD routine in ADVISER

6.1 Overview

in this chapter we address the nucleus of the tasks performed in the ADVISER program
during the generation of symbolic reliability functions from PMS structures. The Overiord
routine constitutes the heart of the reliability evaluator. A diagrammatic representation of the
role of the Overiord routine is shown in Figure 6-1. The following broad outline of tasks, and
their sequence of occurrence as depicted in the figure, provides a perspective of the entire
program against which the Overlord routine is discussed. Following sections will elaborate on
these tasks or refer the reader to other chapters where more complete descriptions are
available. However, we appeal to the reader's intuition for the duration of this introduction.

In the first phase the input PMS structure is examined to discover physically symmetric
substructures within it. These symmetries may then allow some savings in computation at a
later phase of the process. Computations are performed with respect to one of a set of
symmetric substructures so discovered and then the results of the others in the set are taken
to be identical in form. The aigorithm SYMMDET for symmetry detection is described in
Chapter 4.

The second phase in the process entails the subdivision of the interconnection graph of the
input PMS structure into subgraphs in the character of a divide-and.conquer approach.
Overall, the vertex set, V, of the interconnection graph G(V.E) is divided into two intersecting
subsets, V, . and V The set Vinown TePresents the set of subgraphs for which
specisalized techniques are known for caioulating symbolic reliability functions. The other
vertices, i.e. those in wa. are treated as a single subgraph, termed the Kernel, and
simple path-finding techniques are used for reliability computation in their case since special
techniques are unknown. The intersection set VWM-VW mnv“ nknown 8 the set of
"interface” vertices between the two sets and these vertices are treated slightly differently

from other vertices as their situation demands. At present the ADVISER program has special

Overiord Routine

116

{t s8yduy)) siejwoukyoy

L3119 L0y ted4uoUe) 443
9 9 2 sJ401dBy) #eS fovsey
(9 se1duyr}
sydualqng essl juspued Sid
(9 g 2 saendey)) . $U0}193)5)559,)
Jusudinbey Jjwoly 3 odk) 1ueyoduo] «
(9 491d94)) sjupvaIsvO) #piS 1S Yd¥s9 uo; 3200u03083u] SHd
(0 ¥ 7 ss03dey)) Swd 1nduy uo 80L4 {04360 ------
uowesAbey JS¥1 punodwd) [1Y'h) 2044 "30Q
Loy
eusey
unppobiy
TFIHHLY -
woljaunyg Ajigensy d dud+ 4
weisig ajjoquuig dyd N
¢
swyipobyy |t
GOHE (D,
TS P awa] asues T ewo
L
)} .Eu«)
' 1} {SIUAMONYD) wore
t wypoliy Y o uojinjuswbes A .n..:...o%
‘ AL UEE LTS ey ooNL \ $ | swa
' e A N weeis
] ‘ * * ~
[N ~ h
voiqey yooy feb—mmmm—m———mbeoel sunnoy B SR NSRS
syne el e, df PIOPIAQ *
neey (siped aud * .‘ *
* % %k %k k
* +Jok 2ot
838101V}
1e8(}

" -~

o4

Figure 6-1: The position of the OVERLORD routine in the ADVISER structure,

Also see Page 18.

Overiord Routine 117

techniques only for pendant tree graphs and thus the subgraphs represented by Vnown 8re all
trees. Furthermore, Vam.mc. consists of the root vertices of these pendant tree graphs.

In the third phase of the process, the OVERLORD routine operates on one of the program
inputs, the compound requirements on the PMS structure which determine its refiability. its
task is then to fragment this compound requirement into various subcases depending on the

. possibly several ways in which the requirements may be collectively satisfied by the sub-parts

of the structure obtained by the subdivision process outlined above. It then accounts for all
the various configurations or states of the PMS structure which constitute functional states
with respect to those subcases. Clearly, enumeration is invoived here but the enumeration is
over functional substructures, as outlined above, rather than over individual components.
Partial Results, as we shall refer to them continually throughout this chapter, represent the
reliability contribution of parts of the PMS structure under some minimal requirements for
functionality. In form they are the Canonical Reliability Polynomials (CRPs) described in
Chapter 3. As described below (and briefly in Chapter 2) several partial results regarding each
of the substructures are required repeatedly during the enumeration process. The
OVERLORD routine anticipates this. it evaluates for each substructure ail the partial results
that may ever be required in the process thereafter and stores them away in special hash
tables for quick access. The evaluation of partial resuits for a given kind of substructure is
done by algorithm(s) which have built-in knowledge of that kind of structure. The low-level
package which merges the partial results is called repeatedly during this phase.

in the next phase, the OVERLORD routine uses only the compound requirement and its
fragments and the stored partial results. it goes through an enumeration of possibilities in
which the substructures collectively satisty the requirements. During this process the partial
results retrieved from the hash tables are merged in one of two possibie ways (conjunctive or
disjunctive} depending on the structure of the requirements. This is done by calis to the low-
level reliability function term list package which operates on CRPs (Chapter 3). At the end of
this phase of repeated mergings the reliability function for the PMS structure emerges. For
each of the possibilities considered by the OVERLORD routine some subset of the previousfy
generated partia! results are used. The generation of possibilities is controlled by the main,
and tacit, constraint in the form of the Communication Axiom outlined in Chapter 2. Further
pruning of possibilities is done on the basis of side constraints provided by the user of
ADVISER as input along with the requirements. The nature of these side constraints is defined
by the need t0 include, in a general though simplified fashion, as much as possible of the
semantics typically associated with components in PMS structures.

118 Overiord Routine

The system reliability function as generated up to this point is the most general one in
which the identity of each individual component in the system is maintained. in other words.
assume two identical components c, and <, having identical reliability functions Rl ancd Ry
respectively, (Rx(t) = Ry(t) = R(t)), have their reliabilities juxtaposed as factors in some term
of the reliability function. Then the product will appear as Rny rather than R?. The final
phase, therefore, carries out the task of simplifying the general reliability tunction on the basis
of the component types which identity each component in the structure as belonging to some
generic population of components. 1t is well to note at this stage that the "simplification”
referred 1o here is limited in nature. it consists of two types of operations, namely

1. the replacing of the product of the symbolic reliabilities of components of like

type by the appropriate power of the symbolic reliability of that generic type of
component, e.g. replacing R R, by R? in the example above, and

2. the algebraic adding of any like terms resulting from operations of the type in item
1 above, e.g. the set of terms

2 2 2
-5R,RR,2+RRRZ+RRR,
is replaced by -3R R,R 2.

Thus, for instance, factoring of the finafl polynomial is not attempted. The techniques for
this and other more sophisticated operations were not considered to be the domain of this
thesis and the reader is referred to [Macsyma 77] for more information on such techniques.

In following sections we shall consider in turn each of the tasks of the Overlord routine
which were outlined in this overview. We shall use the PMS interconnection graph of a
Pluribus multiprocessor (Figure 6-2) as a running example at appropriate points in the
chapter.

6.2 Detection of physical symmetries in PMS structures

The first task to be performed by ADVISER is the detection of physically symmetric
substructures within the given PMS structure. By the physical symmetry of two substructures
we imply here not only isomorphism of interconnection graphs of those substructures but also
that each pair of corresponding components in the substructures are functionally and
statistically identical. We refer to all components coming from the same population as being
of the same {ype. and thus identical in every aspect in which we are concerned during the

Overlord Routine 119

S

[4
‘_K K
K

K

S" ' s"
R b
Mg Mg Mg N Mg Mg Mg ¥
Key
P Processor M Loca) Memory
Mg Secondary Shared Memory Sy Processor Bus
S Memory Bus K Bus Coupler

Figure 6-2: PMS structure used as a running example

reliability calculation xmn:ess.21 Hence two components of the same type are understood as
having identical reliability tunctions and otherwise being identical. We may then view the PMS
interconnection graph as having labelled vertices. The label for each vertex is the type of the
component which it represents.

Gaschnig (Gaschnig 77] expiored the use of the Neighbors Class Equivaience Raiation
(NCER) as a basis for determining graph isomorphism. His resuits were directed toward
graphs with homogeneous (i.e. uniabelied) vertices and were used in the study of graphs
representing problems in the Artificial intelligence domain. The Algorithm EDS (Equal-
Degree-then-Split), proposed by Gaschnig, partitions the vertex set of a graph of
homogeneous vertices into equivalence classes such that two vertices are squivaient iff (1)
they have the same degree and (2) multisets conaisting of class names of their neighbor
vertices are identical. He introduces the notion of the Neighbors Class Graph (NCG) whose

210ne smelt oparstional excegtion is mede in the preasnt implementation. This is described in Section 8.9 1.1.

120 | Overiord Routine

vertices have a one-to-one correspondence witn the equivalence classes resuiting from the
application of the NCER.

{P}[l] ("L)[ll

1 1
/2 z\

»x 3
ot
[on]
o~
[WV

Sn}[z]
Msdrs)
Key
{X)[“:| --=> equivalence (symmetry) class of components of type X
with cardinality n
Plq
{x}ﬁﬁ*"_""{Y}[m] -=+«> adjacent equivalence classes with

connection densities p and q; each X is
connected to p Y's &and each Y is connected
to q X's: np = mq

Figure 6-3: Typed Neighbors Class Graph of the PMS structure in Figure 6-2.

in Chapter 4 we extended the concept of NCER by introducing labelling of each vertex of
the PMS graph with the type-name of the component represented by that vertex. We then
defined the Typed Neighbor Class Equivalence Refation (TNCER) and introduced the ETEDS
(Equal-Type-Equai-Degree-then.Split) aigorithm. The latter places two vertices of the PMS
graph into the same equivalence class iff (1) their labels are the same, i.e. they represent
components of the same type, (2) they are of the same degree and (3) the multisets consisting
of the class names of their neighbor vertices are identical. We then defined a Typed
Neighbors Class Graph (TNCG) analogous to the NCG of Gaschnig. The inclusion of the
additional constraint of equality of component-types as one of the bases for deciding vertex
equivalence allows the detection of physically symmetric subgraphs of the PMS graph. Figure
6-3 shows the TNCG for our running example of Figure 6-2,

Overlord Routine 121

The application of the ETEDS aigorithm to the PMS interconnection graph, G(V,E),
produces the TNCG, G, of G. Intuitively, one may view G as the resuit of “folding"” physically
symmetric subgraphs of G on top of one another. Thus discovering a subgraph, $’, of some
special nature, e.g. a tree, in the TNCG is tantamount to discovering all physically symmetric
subgraphs of G that were "folded” to provide S°. Subsequently, if special techniques or
closed form solutions are known for the reliability calculation of those kinds of subgraphs,

- results may be calculated or only one member of the symmetric set and then extended to the

others in the set. For instance, k-cliques? of G can be deduced from vertices in G° which
have self loops such that the connection densities in both directions on the se!f loop are equal
to k, the cardinality of the class represented by that vertex of G* (See page 87 in Chapter 4). It
is rare to find k-cliques in practical PMS structures but tree subgraphs of a special nature are
very often encountered and are thus worthy of study for generation of specific techniques.
The special kinds of tree subgraphs of G, referred to here, are what we term Pendant Tree
Subgraphs (PTSs). These are tree subgraphs of G such that the one simple path between any
one pair of vertices in each PTS is the only such path in G between them. And, in addition, the
PTS is separable from G at its root vertex which, therefore, is an articulation vertex of G. This
is the only kind of subgraph for which ADVISER currently embodies any special techniques.
However, the structure of the program does not preclude the inclusion of special-techniques
for other varieties of subgraphs if and when they are developed.

6.3 Segmenting the PMS graph; PTSs and the Kerne!

Having generated the TNCG G’ of G, the ADVISER program goes on to segment G’ into its
PTSs and Kernel. For each of the subgraphs of G° (and, by implication, of G) generated by
this segmentation, symbolic reliability furctions will be computed using fragments of the
overall compound requirement on G. These constitute partial resuits which are then merged
appropriately to generate the desired symbolic reliability function for G. The motivation for
this approach is the anticipated savings in computation time due to the divide-and-conquer
paradigm. The segmenting process is seen as the detection of various special types of disjoint
subgraphs of G for which there are special techniques known which will generate their
symbolic reliability function. Some vertices of G will remain which are not part of any of these
special subgraphs. These are then treated by simpie path-finding methods, to be described
later in this chapter, which will generate the reliability function of the subgraphs of G which

A k-clique ® a complete graph on k nodes. in this instance we are interestad in k-cliques which are subgraphs
of G.

e 0 i .

122 Overlord Routine

they collectively represent. This subgraph of “remaining” vertices is termed the Kernel. As
noted in the previous section, at this time the special technigues referred to above are known
only for the class of PMS interconnection graphs or suhgraphs which are Pendant Tree
Subgraphs.

The Pendant Tree Subgraphs of G are generated by Algorithm GROW which was described
in Chapter 5. This generation process incrementally adds neighbor vertices to each set of
vertices of G° which represent a subtree of some PTS eventually to be generated.
Overlapping trees at any stage are then merged into bne and the common vertex which
caused the overtap becomes part of the root vertex of the larger tree. The termination of the
growing process is governed by constraints which determine whether these tree subgraphs of
G’ represent PTSs of G. After termination of the algorithm, each of the trees thus iar grown in
G’ may represent a get of symmetric PTSs of G. Furthermore, the cardinality of this set of 4
symmetric trees will be the cardinality of the equivalence class which is represented by the
root vertex of the tree in G”.

The discoyery of the symmetric PTSs of G establishes a basis for the subdivision of G into
PTSs and the Kernel. This subdivision or segmenting is shown diagrammatically in Figure 6-4
for our example PMS interconnection graph.

At this stage of the computation the ADVISER program builds a very impontant table, the
Segments Table. which is the repository of information regarding the nature of the segments
of G. For the purposes of this table it is sufficient to store information regarding all of the
segments except for the Kernel. Information about the latter can be deduced from the former.
Thus. for instance, to find out what vertices in the vertex set V of G fali into the Kernel, it is
sufficient to subtract from V the union of the vertex sets of all the other segments. Henceforth
we shall use the term “segment” to reler generically to the subdivisions of the graph G. Those
segments for which special techniques are known will be termec "known-segments” and the

remaining vertices and arcs of G will be collectively termed the “Kernel".

In the current version of the program, all the known-segments are tree graphs since special
techniques have been devefoped oniy for these. Each known-segment as it is generated is
assigned a unique integer in the sequence starting from zero. Then information regarding the
known-segment is stored at the location in the Segments Table indexed by this integer. The
following major items (in addition t0 bookkeeping information) comprise that information:

- The vertex set of the known-segment

L-A_......_.________._______________

Overiord Routine 123
Pa M
1 f P1S
/} 2\ (Segment #1)
{Spd (2
[}
Interface Vertices :
(55)
2 P’2]
1
{x}
RNt KERNEL
1 (Segment #0)
{x}
a {41
2
(S}
Interface Vertices E" (2]
{Su}
4 n2] PTS
1 {Segment #2)
{”s}[n
Key
PTS Pendant Tree Subgraph
Segment #n Arbitrary assigned indices into Segments Table

Figure 6-4: Segmentation of PMS structure of Figure 6-2
into Pendant Tree Subgraphs and the Kernel

-The set of indices of the equivaience (symmetry) classes, induced by the
symmetry detection aigorithm of Chapter 4, such that the union of the classes
indexed by this set is the vertex set of the known-segment in G.

- The index of the symmetry class of vertices in this known-segment which are the
interface vertices at which the known-segment is connected to the Kernel. In
general this should be a set of symmetry class indices. However, since known-
segments currently are tree structures only, each interface vertex symmetry class
will have only one member; the root of the tree.

The Segments Table along with the data structures which store the original graph G and the
equivalence classes on G in the form of the TNCG G', completely characterize the work done

e

124 Overiord Routine

by the program upto this phase. In addition, each known-segment, and information about it, is
accessibie by means of a unique index into the Segments Table and, therefore, is completely
characterized by that index. This complete and unique cnharacterization of a known-segment

by its Segments Table index becomes very important in later phases (see Section 6.5.1.1)

6.4 Requirements on the PMS structure

In this section we shall discuss how the Disjunctive, Conjunctive and Atomic requirements
(see Chapter 2) are empioyed by ADVISER in producing the system reliability function. The
material in this section is complementary to a similar discussion in Chapter 2. it is also
prefatory in nature to the subsequent sections in this chapter. These latter sections deal. with
the generation and combining of partial results on the way to achieving the final goal of 2
symbolic reliability function for the PMS structure. The paradigm of fragmenting and
distributing these requirements into simple cases over the various segments of the
interconnection graph G is illustrated below. This process effects the enumeration of the
gross cases of system functionality while lower levels of detail are subsumed within the
operation of the special-technigue algorithms. These algorithms provide the partial results by
operating on the known.segments of G for the very simple cases of requirements generated
by the fragmenting of the overall requirements. The partial resuits are then recombined to
producec the desired final result. This paradigm is used throughout the Overlord process and
is independent of the nature of the known-segments so long as special-technique functions

exist for those segments and are callable by Overlord.

A typical conjunctive requirement on our example PMS structure of Figure 6-2 could read:
$(LMI A VAP AYOM)
Likewise, a typical disjunctive requirement might read:
YLPYA (WOIM) A H2MI V (2M) A ¥(1. M)

Each of these requirement expressions states the conditions under which the system in the
exampie is considered functional for some task. Note that these requirement expressions are
abbreviated statements of those conditions. in other words, not all components, which need
to function in order to insure system success, are referred to in these expressions. One such
unmentioned component is an Sp in Figure 6-2 which needs to function if its P needs to store
information into its ML. Thus a distinction arises between Critical Components (such as ML
and P by virtue of being referenced in the requirements above) and Auxiliary Components

Overlord Routine 125

such as Sp). The ADVISER program assumes that all component types referred to in the

ato.ns of the input compound requirement are critical component types.

6.4.1 Atomic Requirements

Let us first consider an atomic requirement ¥(N,t), N>0, and observe how it may be satisfied

. by a PMS interconnection structure G to provide functional system states. Assume, for the

sake of argument, that the PMS structure under analysis has been segmented into m distinct
segments. Furthermore, assume that in each of these m segments of G there are present
a2>N components of type t. Figure 6-5 shows the various ways in which the required N
components of type t may be chosen from the m partitions in order to satisfy the atomic
requirement. This procedure is analogous to assigning N balls 10 m distinct ordered urns so
that any urn contains zero or more balls when each urn has the capacity to hoid at least N
balls. In other words, it is possible to assign all N balls to a single urn. There are

N+ m-y

N
ways of doing this® and these are shown in Figure 6-5. Each m-dimensional vector P, =
(PP 1Py} SUCh that

", P, =N p>0 integral (6.1)

is called an m-composition of the integer N.

We next consider the possibility, which is indeed most probable, that some of the m
segments may contain less than N components of type t and some segments may contain
none at all of type t. The effect of this restriction is to place upper bounds on the value of
integers in particular columns of Figure 6-5. Yhen each m-composition of N which does not
meet these upper bounds is removed from further consideration since there can never be a
functional system state which is composed of that particular distribution of components of
type t amongst the m segments.

Definition 6.1: Assume that the segmenting process of earlier sections leaves
the PMS interconnection graph divided intc m>1 distinct segments. A Capacity
Yector of G with respect to some component type 1 is defined as

X = (€44 Copre+iCopy)

2 40¢ Nijenhuis and Wit [Nijenhuis 78] for & lucid expianation of this result.

r T

126 Overlord Routine
]
Segments
Choices P, P, Py P, P
] N 0 0 o .. 0
P N-1 1 0 o .. 0
3 N-1 0 1 o .. 0
4 N-1 0 0 T 0
m N-1 0 0 o .. 1
me+1 N-2 2 0 0 0
ms+2 N-2 1 1 o .. 0
m+3 N-2 1 0 | 0
2m-1 N-2 1 s} o .. 1
2m N-2 0 2 o .. 0
2m«+1 N-2 () 1 1 0
N-2 0 0 o .. 2
N-3 3 o] o .. 9]
N-3 2 1 o .. 0
N-3 2 o] L E 0
N-3 2 0 o .. 1
N-3 1 2 o ... 0
N-3 1 1 1 0
M) 0 0 0 0 N

Figure 6-5: Choosing N components from m segments; m-compositions of the integer N.

Overiord Routine 127

; where segment i of G contains ¢, components of type t and ¢, is the Capacity of
i segment i with respect to component type t.

Type Type Segment Number
Number Name 0 1 2
o P 0 4 0
1 M, 0 4 0
2 Sp 0 2 0
3 Sy 0 o 2
4 Mg 0 0 8
5 K 4 0 0

Note: interface vertices (e.g. SP.SM) are counted in the PTS segments for satisfying
requirements but are used in the Kernel for generating path reliabilities (see Section 6.7.2).

Figure 6-6: Capacity vectors for the PMS of Figure 6—2 when
segmented as in Figure 6-4.

Figure 6-6 shows the capacity vectors for the example PMS structure of Figure 6-:2. On the
basis of the upper bounds, or capacity, of the segments we may divide the (NN’ m-1) possible m-
compositions of N into two groups, namely Feasible Compositions and Infeasibie
. Hions .
Definition 6.2: An m-composition P of the integer requirement N of an atomic
requirement Y(N,t) over the m segments 'of G is said to be feasible iff2¢

Pu< X
An m-composition P under the above conditions is said to be infeasibie iff P, is
not feasible.

¥4 Ae(8yay..a,) 800 Be(byby...by) &6 two m-dimensional vectors then we shall say that ASB
Vis1..m, ‘;Sb,

128 Overiord Routine

Reverting to our urn mode! we find this above situation analogous to one in which the i of
the m urns has a maximum capacity 05c|5N. Then some of the ways of distributing N balls
among the urns as depicted in Figure 6-5 are impossible. These impossible distributions uf
balls in urns correspond to infeasible compositions. The possible distributions correspond to
feasible compositions.

For each feasible composition, PNa(p‘,pF...,pm). the requirement ¢'(pi,t) is applied to
segment i and a partial result is generated for that segment under that requirement. We shall
term ¢'(pi.t) a Fragment Reguirement of ¥ (N,t). Whatever special techniques are applicabie
to the segment are applied at this point. For instance, Algorithm TREEREL is applied to
segments which are PTSs. Of course. if p,=0 then segment i will not participate in the
satisfaction of this particular P,,. The partial results for the individual segments under the
¥'(p,1) are then SMERGEG? to generate a partial result for this particular feasible P,

The process is repeated. and a partial result generated, for each feasibie m-composition of
N in ¢(N.1). Now, any one of the feasible compositions applied to the m segments of G satisty
the atomic requirement Y (N,t). Therefore, finally, the partial results for all the feasible m-
compositions are PMERGEJ.? The result of this process is then a symbolic reliability function
(in internal term-list form) for G under the atomic requirement Y(N.t).

6.4.2 Compound Requirements

6.4.2.1 Conjunctive Requirements

We now broaden our scope to include compound requirements. To begin we shall consider
conjunctive requirements and later extend the conclusions to disjunctive requirements. The
former consist of atoms operated on solely by the conjunction operator AND. They imply that
for system success all the individua! atomic requirements must be satisfied in conjunction by
G. We shall represent a conjunctive requirement as

K
AN

ER

aTM SMERGE aigortnm g dJescrbed «n Chapter 3 anc 1 may be brefly characterized as computing the
probadidity of g comunctior of everts Ir s nstance ail the v'(pl.l) must be satsfied 1n conjuncion by the
segments of G in Orger tor 5 to satisty (N I

'TM PMERGE agorthr @ Jacnbed v Chapter 3 may be Charactenzed &s forming the prodability of a
dsunchion of events

Overiord Routine ' 129

where the J«i are atomic requirements of the type “at least Ni of componer! type tj" Each
atom npj(Nj.tj). j=1,...K>0, in the conjunctive requirement is considered to refer to a .itterent
critical component type tj.”

Again, returning to our ball and urn analogy we now have the same m urns 'parti- ot G)
but K sets of coiored balls with balls in set j being of color tl Again we init.a 'y assu. e that
. each um has an uniimited capacity for balls. We see that the different ways of assigning
N, +N,+...+ N, balls to m urns so that each urn has zero or more balls of each color is

K N. +m-1
n (!

= N
This is the total number of ways of minimally satisfying the conjunctive requirement in G. It
assumes, of course, that each segment of G is individually capable of minimally satisfying
each of the atomic requirements of the conjunctive requirement. Again, we note that, in
general, this last stater:nt will not be true and that for each atomic requirement, ‘P;(Ny‘j)~
there will be feasible and inicaswie . -compositions of Ni'

The paradigm used by the ADVISER program in the case of conjunctive requirements is to
first compute the capacity vectors for G with respect to all the critical component types (i.e.
the component types byt referred to in the conjunctive requirement). Then, all the feasible
m-compositions of each Ni in \p‘.(Ni,ti). j=1,..K, are generated sequentially. However, the next
feasible m-composition of any N'. is generated only after cycling through all possible feasibie
m-compositions of N, .. Thus, all possible combinations of all feasible m-compositions of
each of the Ni are produced in sequence. For each such combination, a partial resuit is
computed in the manner of Section 6.4.1 for each m-composition within that combination.
These partial results are then SMERGEd to provide a partial resuit representing that
combination of m-compositions. The SMERGEing is indicated due to the conjunctive nature
of the requirement. The process of SMERGEing all the partial results for the atomic
requirements in a combination of m.compositions is carried out for all the possible
combinations of feasible m-compositions. Finally, since any one of the combinations
represents a possible way of satistying the conjunctive requirement, the partial results for
combinations are then PMERGEd. What results from this final PMERGE operation is the
reliability function for G under the conjunctive requirement

ﬂlﬂhb s not true. i.e. for some i Indili-t , then due to the concept of conjunction we may. without sffecting the
outcome, discard "'i and retain npj " Ni>mi and vice verss

130 Overiord Routine

K
A ¢ING

j=1

Figure 6-7 shows the sequence in which combinations of feasible m-compositions are
generated for an example case where G is subdivided into m = 3 segments and there are K=3
atoms in the conjunctive requirement. Each group of three columns shows the sequence of
m-compositions for one of the atomic requirements. Each column, in each group of three,
represents one of the three segments of G. At the head of the it group of three columns is the
capacity vector for G with respect £o the critical component type ti‘ j=1.23. Thus, for
instance. in the case of ta (third group of columns), segment # 1 contains three components
of type ty Likewise, segments #2 and #3 contain one and two components of type t,
respectively. In the case of critical component type t,, segment # 2 contains no components
of this rype and thus no feasible 3-composition of N,=1 will have an integer greater than zero
in this column. The partial result for a combination in some row of the figure is obtained by the
SMERGE operation on the partial results obtained by applying the atomic requirements within
that row to the appropriate segment (see Figure 6-7 for the case of row 7). The final result is
obtained by the PMERGE function on the partial resuits for the combinations.

6.4.2.2 Disjunctive Requirements

The sequential generation of combinations of feasibie m-compositions as depicted in
Figure 6-7 is inadequate in the case of disjunctive requirements. This is because not all of the
atomic requirements of a disjunctive requirement may need to be satisfied simultaneously.

Take, for example, the following disjunctive requirement:
Vg = V(NS ANyt V v g(Ngty)
Here, for G to satisty ¥ p there are three possible cases, hamely
1. satisty ¥, and ¢2 simultaneously but not “’3'
2. satisty ¢ 3 alone, and

3.satisty ¢, \P2 and 4«3 simuitaneously

However, the process of Figure 6.7 admits of the third case alone, thereby missing valid
possibilities. The tack taken to solving this problem in ADVISER is to convert every disjunctive
requirement received as input into a "sum-of-products” canonical form. In other words a
conversion is made to a disjunctive normal form. Then for each of the purely conjunctive
requirements in this canonical form. the process of section 6.4.2.1 is followed to generate a
partial result for the conjunctive requirement. Finally, the partial results for the conjunctive

Jonprn

BRI T S Y B

Overlord Routine 131
AOMIC g] V(N LN =22 WN,1,)N =1 N, =1 Partial
Requirement LR 2 2) 2 “Nada) 3 Results
\ & 'u
Segment ——- &1 2 23 1 &2 ®23 21 22 #3] Combinations
index of
Capacity c——w 1 0 2 1 1] 1 3 1 2 3Compositions
Vectors l
(Nyy) | (Ngp) | (Nga) (N21) (Nop) | (Nog) | (Ng,) (N&) (Noyy)

2
1 0 1 1 0 0 0 0 1 RS
1 0 1 0 0 1 1 0 0 R‘

FINAL

LEGEND:

Each 4!](Ni.!i) is fragmented into ‘V(Ni‘ ,tn). #'(Niz.tiz). and #'(Nn.tn). where N“ ‘Ni2 #NisazNi and N“. Np, Nis

are the vaiues in each row of the i‘h 3-column group in the table sbove.

Let rfa.0.c) be the Partial Result CRP for segment 2 under the atomic requirement ¥(b.c), obtained by aigorithms
such a8 TREEREL. Then, for exampie, R, sbove is given by

R, =r3.21,)® r(1.1.ty) ® r(1, 1,13)

and

RenaL ® n,cazense....cam

RF!NAL is the CRP under the conjunctive requirement #1(241) A *2(1 12) A 03(1 '3)
Figure 6.7: Derivation of partial and final results for a conjunctive requirement

e

132 Overlord Routine

requirements within the canonical form are operated upon by PMERGE to obtain the final
result for the original disjunctive requirement.

Hence, for example, the following disjunctive requirement
W,V IAW,V Y
is converted to the canonical form
W AV VI AYIV AV, A YY)

which is a pure disjunction of conjunctions. Then the individual conjunctive requirements.
eg. (¢1/\¢") are handled as described in Section 6.4.2.1.

6.4.3 Etficiencies in the handling of requirements

To conclude the discussion on requirements we shall consider two types of efficiencies
introduced in the design of the ADVISER program in the handling of requirements. They have
to do. respectively. with the a priori generation and storage of partial results for repeated later
use and the deferment of the combining of these partial resuits to a final phase of the program
where some savings in computation are possible.

There is a third type of efficiency introduced into ADVISER which only tangentiaily
impinges on the issue of requirements. It has more to do with the use of symmetries
discovered in the PMS interconnection graph and. as such, it is addressed in a subsequent

section.

6.4.3.1 Pre-generation of partial results

it will be noted from Figure 6-7 that the 3-compositions all occur repeatedly during the
enumeration process. This in turn manifests itself as the repetition of integers in any one of
the columns. Now, the occurrence of an integer, say k, in a coiumn represents the application
of a fragment atomic requirement, ¥ (k,t), on the segment of G represented by the column.
The critical component type t is the same one referred to in the atomic requirement of which
¥’ (k.t) is a fragment. in a simpie-minded version of the OVERLORD procedure, the algorithms
to generate the partial results under ¥’ (k.1), for the given segmentation of G, would be called
repeatedly to regenerate the same partial result each time. However, it is feasible to compute
this partial result once and store it away in a table, thereby avoiding such repeated calls. The
ADVISER program does precisely this.

.

e ———

NG PPN

Overlord Routine 133

Precomputation raises the question of predicting what partial resuits wouid ever be needed
in the course of computing the reliability function. A little thought shows that a simple solution
is as follows. For a given segment i and a critical component type t, say the capacity of the
segment is Cy Recall, also, that a component type t is labelled "critical” if it appears in some
atom Y(N,t) of the input compound requirement. If c“-O then ¢ (N,1) is not applicable 10
sagment i and the question does not arise. I cu>0 then the fragments of y(N.t), which couid

- possibly be fruitfully applied to segment i, are

VLD @2, . (1)
where

N c.)N
p= { max it" max (seebe‘ow)
Cn Cn=Nmax
The appearance of Nm is explained by the fact that, in general, for some critical component
type t, there may be several atoms in the compound requirement which refer to t (this is true of

a disjunctive requirement). If these atoms are
YN B INLD) e, BN

then
Noax = MAX(N{ Ny, o N}

it is necessary to use Nw since we are concerned to develop all possible fragment
requirements which may ever be applied to segment i during the computation of the system
reliability function.

6.4.3.2 Deferring the combining of partial resulits

An examination of Figure 6-7 shows that (using the nomenclature of the figure) the partial
results R, through R, ail share the same fragments of ¢,(21,) in the first group of three
columns. Likewise, R, through R, Furthermore, R, through R, additionally share the same
fragments of ¥,(2,1,) in the gecond group of three columns in the ‘qure. Likewise, R, through
Ra. R, through F!9 and R, through R12' The figure suggests that each of the R's are
computed separately and then finally PMERGEJ to obtain R, ., . A more efficient way to
accomplish this, however, is 10 make use of the fact that the PMERGE and SMERGE
dperations are distributive over each other. We may "factor” out common partial results and
merge them only at the appropriate time so that repetitious mergings of the same partial result
are avoided wherever possible. The information in Figure 6-7 may be represented equivaiently

134 Overiord Routine

Column Group 1 Column Group 2 Column Group 3
w,(u,.t,) 'Ifz(ﬂz-tz) *3('13.!3)

F(1.1,1,)
—r(1.1.1,) f(2.1.t4)
f(3.1.1,)

— r(l,l.txjﬁl‘(3.1.11) ——

r(l.l.v.s)

.._r(3.1.1.2) r(2.1.13)
r(3.1.t3)

Oummy
Vertex

r(1.1.ty)
—r(1.1.t,) r(2.1.t

r(3.1.¢

L r(3.2.t1)

r(l.l.ts)

—-r(3.!.tz)

L

r(3.1,13)

LEGEND:

r(a.b.c) « the Partial Result CRP tor segment a under the stomic requirement ¥(b.c). This figure is to be read in

conjunction with Figure 6-7

Figure 6-8: CRPTree for the example of Figure 6-7

by the tree in Figure 6-8. Each level in the tree corresponds to a 3-column group in Figure 6.
7. However, partial results are displayed instead of the requirement fragments. Thus
information in a column group of Figure 6-7, which is common to several rows in the column
group to its right, is condensed into a single tree node. Since there are no columns to the
right of the last column, the tree will always have as many leaves as there are rows. We shall
term this a Cangnical Reliability Polynomial Tree (CRPTres) since the labels of its vertices are
Canonical Reliability Polynomials which were treated in Chapter 3. er AL May be calculated
from it using the following algorithm by calling the procedure CRPTREEMERGE on the root of
the CRPTree.

[P PP

Overiord Routine 135

Algorithm CRPTREEMERGE

This effects the merging of partial results (Canonical Reliability Polynomials) stored in the
CRPTree.

Notation:

- PR(v) is a function which returns the partial result stored in vertex v of the
CRPTree.

- CRP is an abstract data type which holds a canonical reliability poiynomial as a
value.

Procedure CRPTREEMERGE (treevertex)
begin CRP aggregate;
aggregate « NIL ! recall that PMERGE and SMERGE of a nult CRP
with a non-nul! CRP A, returns A itself
foreach son in successors of treevertex
do aggregate « PMERGE(aggregate, CRPTREEMERGE(son));
return SMERGE(aggregate, PR(treevertex))
end;

it may be noted in passing that the odometer analogy to the generation of combinations of
m-compositions mentioned earlier, is reflected in the CRPTree. Each level of the tree
corresponds to a wheel of the odometer with each vertex at that fevel hoiding one of the
values which appear on the wheel. Hence, the tree may be generated during the process of
generation of the combinations of m-compositions. The ADVISER program uses this strategy
and postpones most of the merging of the partial results in this fashion to a final phase of the
processing of any conjunctive requirements. The CRPTree, its construction and its use are
described more fully in Section 6.8.1.

Experience with ADVISER has shown that the largest part of the computation time used by
the program is spent in the phase where the partial results in the CRPTree are merged to
produce RHN AL for a conjunctive requirement. The simple algorithm CRPTREEMERGE given
above, though correct, is not nearly as efficient as could be desired. This issue will be
addressed in a subsequent section.

P

TP

136 Overiord Routine

6.5 Generation of Partial Results for PTSs

Section 6.4.3.1 demonstrated that it was possible, a priori, to compute and store away all
the partial results which might be needed in later program phases. in this section we shall
examine this process of prior generation of partial results for PTSs, how these partial resuits
are hash coded away for later access, and what savings in computation are afforded by
existence of structuraily symmetric PTSs in the system.

6.5.1 Symmetric PTSs

it will be recalled that each segment entered in the Segments Table is a PTS of G'. Hence
each known-segment can possibly represent several symmetric PTSs of G which were
equivalenced as a result of the NCER algorithm. indeed, the cardinality of the equivalence
class represented by the root vertex of the known-segment is the number of such symmetric
PTSs of G (i.e. images of the PTS in G') which were equivalenced. /t is emphasized here tha:
the underlying mode! supports known-segments which are arbitrary subgraphs of G'. The
only requirement is that special techniques be available for the reliability computaticn of the
images in G of those types of subgraphs. Each such subgraph of G° would then potentiaily
represent a set of symmetric images in G. Since these images are not necessarily tree graphs
they will, in general, have more than one interface vertex by which they are connected to the
Kernel. Then an analysis of the equivalence classes which hold the interface vertices of these
images, using Theorem 4.8 and related results of Chapter 4, will reveal the number of such
symmetric images in G of the segment of G'.

Returning to the current version of ADVISER in which the known-segments of G* wiil
always be PTSs of G’, there are, therefore, two possibilities, namely: (1) a known-segment
represents a unique PTS of G and (2) a known-segment represents severai symmetric PTSs of
G. The former case presents no probiem and is handled directly in the manner of Section
5.2.1 using the TREEREL algorithm. In the latter case there now exists the possibility of
economizing on computation. By our definition of physical symmetry in Chapter 4 two PTSs ot
G are symmetric iff their interconnection graphs are isomorphic and corresponding vertices in
the two PTSs represent identical components. Hence any reliabiiity function derived uncer a
given requirement for one of a set of symmetric PTSs, will be an exemplar or template for the
reliability function under the same requirement for any member of the set.

itis evident that the sets of components represented by the symmetric images in G of a PTS
of G* are disjoint. Two conclusions of this are to be strongly emphasized here, nametly

Overlord Routine 137

1. By the fundamental assumption of statistical independence of component failure
behavior, the reliability functions derived for two symmetric images represent
events which are statistically mutually independent. Although the two images are
symmetric they have two physically disjoint sets of components

2. Assume that two reliability functions are derived for the same image in G for two
different requirements. These functions provide the probability of two events
which may be mutually dependent since they may depend on intersecting sets of
components within the image. Hence it must be remembered that these
reliabilities cannot simply be multiplied in algebraic manipulations.

These two conclusions have strong ramifications later during the operation of the SPRBD
algorithm wherein the form of the result of the SMERGE operation on two canonical reliability
polynomiais is dependent on whether those polynorials represent the probabilities of events
which are statistically dependent or statistically independent.

6.5.1.1 Unique identitication of PTS partial results

The possibility of a given PTS of G™ representing a set of two or more symmetric PTSs of G
raises the question of uniquely identifying each member of such a set. Note that within a set of
symmetric PTSs of G the unique identities, in G. of their root vertices are sufficient for such a
purpose. However, further information is required in ADVISER in the interest of efficiency.
Most of this information is precomputed once and stored in the Segments Table. Hence. any
given PTS of G is identified completely and uniquely by the following two items of information:

1. The index of its root vertex.

2. The index of the Segments Table entry which describes the known-segment of G’
which represents it.

6.5.1.2 The Templates Table

We noted above that it was sufficient 10 compute a partial result for a given atomic
requirement for any one of a set of symmetric PTSs in G. Since partial results for a set of
symmetric PTSs under the same requirement nave the same form, the template may be stored
instead of the individual CRPs. This is dore using a special table termed the Templates Table.
All unique tempiates ever generated during a run of ADVISER are assigned unique entries in
this table. Unique and complete specification of any partial result is achieved with the
following five items of information about it:

1. The unique index of the root vertex of the PTS for which this partial result was
derived.

138 Overiord Routine

2. The index of the Segments Table at which resides information about the known.
segment which represents the PTS in ltem 1

3. The unique index of the component type specified in the atomic requirement for
which this partial result was computed (i.e. the y in y(x,y)).

4. The number of components of the given type in ltem 3 which are required to be
functional (i.e. the x in y(x.y)).

5. The index in the Templates Table at which the template for this partial result is
stored. This index is. however, obtained going indirectly through the Factors
Table, the purpeose of which is explained below.

The items 1 and 2 identity a partial result as referring to a unique PTS of G within a known-
segment of G'. The ltems 3 and 4 further identity the partial result as having been derived for

a given y¥(x,y). The last item, 5§ implements the space-saving device by pointing to the

appropriate template.

A partial result is thus uniquely specified by a five-tuple of integers corresponding to the
five items above. This five-tuple is also the key used during the hashing and retrieval process.
The interrelations between partial results. PTSs, the Segments Table and the Templates Table
are depicted diagrammatically in Figure €-9.

As was described in Section 6.4.3.1, partial results may be used repeatedly during the
construction of the CRPTree. indeed they usually are due to the combinatorial backtrack
nature of generating all possibie compositions of requirement integers over all segments. The
CRPTree is eventually collapsed by merging the partial resulits stored in it at each node. from
the leaves up to the root and breadth-first at each level. However, in doing sc. quite oiten two
copies of the same partial result could be SMERGEd or PMERGEJ. Now. due to the
idempotence of the SMERGE and PMERGE operations. attempting to merge identical partial
resuits constitutes a waste of compute time. This problem is the subject of the following
subsection. ’

6.5.1.3 The Factors Table

A partial solution to the problem of multiple use of the same partial result arises from the
observation that each partial result can be uniquely characterized. This allows each partial
result to be assigned a unique bit positic. . the AUXVEC bitvector of CRP terms {see Chapter
3). The partial result can then be assigned a literal and becomes a "factor” of the CRP term.
The association between such factor-polynomials and their assigned bit position is made in
the Factors Table. For ease of implementation the bit position of a particuiar factor-potynomial

m.w *J0390ATLq JIAXNY 84D
v} —.a soqunu 14q peuliysse s§ Loquis syyji
TALNSoY (9)1404 gaq Jueteades 01 UESOYd
LoquAs endjun S0 9(qQe| SJOYIRJ U§ YepU) _.,.
- | gl
ea0qy (113 ﬂ. mn._
0
o quy sjusubes W
*La%] 8103983 eLas1 soivgdwe 0yl ¥} q. xepu} Jo juewbBes eyl uo pesodwy M
A:.q:: Juemeainbes #y) 40, peindwold .M
. (1]
sea YILya 1 1nses (uaed [0y Jejujog _... e
" m
' ' g
avh.—lv * W Oh.—. h.vl
et 1 e | NNoAmne T
y Juewesnbey 3jwory (K-n)4 an
. s
.9 J0 tuenbes .y s a
.9 90ML Jo .m
-y £
¥ jvemBeg Ul 9 0 Sid psr10mmfs cut I -
e
Aoy .M
T
sIynsey v
ﬂu, ISV Y ﬂ b SRR L LIS P *®
91%J0U0g o]
. » . ®
-
3
o
(e
®
< , L}
-] e1qv) yswy (K:x)4
2 1insey vjany
3
5 :
]
m o1qe) tiveubes
|
m

140 Overiord Routine

is simply the index of its entry in the Factors Tabie. The reader is again referred to Figure 6-9.
Note that the arrangement aliows factor polynomiais to share the same template.

6.6 The Communication Axiom and the Kernel

In Chapter 2 we introduced the Communication Axiom which is the basis of the reliability
calcuiation paradigm used by the ADVISER program. We shall now restate the Axiom and
some associated definitions in order to clarify the discussion in regard to the computation of
partial resutts for the Kernel. The reader is referred to Chapter 2 for introductory remarks and
background context.

6.6.1 The Communication Axiom

in Sections 6.4.1 and 6.4.2.1 we discussed feasible and infeasible compositions of the
requirement integers and the computation of partial results for combinations of feasible
compositions. However, as was pointed out, a combination of feasible compositions is only a
necessary prereguisite 10 a case where the system is functional. In addition, the combination
of teasible compesitions must be such that the Communication Axiom is satisfied in order for
the system to be functional under that particular choice of critical components. in other
words. in addition to having a functional minimal critical resource set, the critical components
in that set must aisc have functional pathways in the structure in order to communicate
information amongst themselves. We state these ideas more formaily in the tollowing:

Let T = {t} i€{1.2...n}, be the set of component types specified in the minimal
requirements input. The set T is then, by default, the set of critical component types.

LetQ = {qﬁ}. j€{1.2....m } be the set of ail identical components of type t present in the

structure.
LetT" CTancletM, CQ L ET".

M = U, M, is8set of critical components such that the boolean statement of minimal
requirements is satisfied minimally then M’ is a Minimal Critical Resource Set (MCRS).

A simple path p_, between any two vertices v, and v, in G is said to be a functional path ift
all components represented by vertices along that path are functional.

Overiord Routine 141

Let V,, be the set of vertices in G that represent the components in M", an MCRS of G.
Definition 6.3: We define a Commynicability Graph or K-Graph, GV Ey). for
M’ as follows:
- There is a bijective mapping from the vertex set vK to the vertex set VM,)

-~ A Communicability Edge or K-adge, (v',.v" J€E will exist iff at least one
functional path exists between the vertices in G which are the images,
under the bijective mapping, of v’ K and v” x in G, respectively.

Axiom 6.1: Communication Axiom: For any MCRS, M’, of the system
represented by G, if the components in M” are all functional, then the system will
be functional iff the K-graph of M’ is connected.

The Communication Axiom is used during the computation of partial results for the Kerne!
which is the subject of attention in the foliowing subsections.

6.6.2 The Kernel

As was described in Chapter 2, a symmetry detection process enables the identification of
segments of the PMS graph, G(V,E), for which special techniques are available for reliability
computation. These known-segments are treated separately, in isolation from the rest of
G. Each such known-segment is at;ached to the rest of G via a set of one or more intertace
vertices. At present pendant tree subgraphs (PTSs) are the only such known.segments
treated and, therefore, each will have only one interface vertex connecting it to the rest of
G. We shall limit our attention, therefore, to known-segments which are PTSs. The treatment
may be extended to other kinds of known-segments. -

Let the set of PTS segments be T = {T (V,.E,)} and let V,_ be the set of interface vertices (see
Section 6.1). We have |V |=[T|. If the T,€T are stripped away from G, while leaving the

vertices v€V, behind, we have a graph KV, qrmeiExarmer): POSSIDly unconnected and perhaps
even null, whose vertex set is given by

Viemel = V- [(U(iIT.IGT} VU V]

and edge set by

The graph K(VW|.EW) is defined to be the Kemel.

142 Overiord Routine

intertace Vertex

Kemel

(a)

(b)

(e)

Figure 8-10: Three cases of paths through the Kemel

Overlord Routine 143

6.6.3 Paths through the Kernel

While generating an MCRS, critical components are drawn from various known-segments
and perhaps also from the Kernel. in order to satisfy the Communication Axiom, all critical
components in the MCRS must be able to communicate amongst themseives. The TREEREL
algorithm computes the reliability of the PTSs with the assumption that all communication for
components within a PTS is through the root vertex of that PTS. Assume two critical
components, say ¢, and Cy of an MCRS are in different known-segments of G (Figure 6-10(a))
and that information needs to flow from ¢, toc,. Then it must first flow from ¢, to the root
(interface) vertex of the PTS in which ¢, is contained. Thence it will enter the Kerne! and flow
via one or more paths through the Kernel to the interface vertex of the PTS which contains c,.
Finally it will flow from the root of that PTS to c, itself. if C,is within the Kernel (Figure 6-10(b))
the information will flow to it, after entering the Kernel, without passing into another known-
segment. If both <, and c, are in the Kernel (Figure 6-10(c)) then no interface vertices are
involved in the flow. Since no special techniques are known (by definition) for treating the
Kernel, a path-finding algorithm is used to compute its reliability contribution for a given
MCRS. The simple paths (without cycles) which are to be found are those which will enable
the Communication Axiom to be satisfied.

A path between two critical components, say c, and Cy is said to be a functional path if and
only if each component along the path is functional. Thus the probability of a given simple
path between c, and c, being functional is just the SMERGE of ali the individual component
success probabilities along that path. in order to satisfy the Communication Axiom at least
one functional path must exist between ¢, and c,. The probability of this event is simply the
PMERGE of the probabilities of functioning of all the simpie paths between c,andc,,

6.6.4 The Path Algorithm

We may now describe the simple aigorithm which is used to compute the probability of
there being at least one functional path between a pair of components. The aigorithm is
recursive depth-first, uses backtracking and is quite simple-minded. It is not particularly
efficient but its region of applicability, the Kernel, is a graph of fairly small size typically.
Hence, its use may be tolerated. For large Kernels it may be more appropriate to use more

144 Overiord Routine

sophisticated algorithms such as that described by [Fratta 75).2

We describe the aigorithm in terms of two vertices c,and c, between which a path is to be
found. The vertex ¢, is the starting point, say, and c, is the goal. Since the algorithm is
recursive, there is, at any recursive depth, one vertex on which attention is currently focused.
This is called the current vertex and in the beginning it is c,. At any step, the aigorithm marks
the current vertex as having been visited. it then checks to see if any one of the immediate
neighbors of the current vertex is the goal vertex, ¢, It so, then it immediately erases the
visitation mark on the current vertex and returns the (symbolic) success probability of the
current vertex.®® This probability consists of a single CRP term in whose bit vectors the bit
corresponding to the current vertex is set to one. If none of the immediate neighbors of the
current vertex are the goal vertex, then the immediate neighbors are checked for visitation
marks. If any are marked as having been visited then a looping path has just been compieted
and so such neighbors are ignored. If no immediate neighbors are free of the visitation mark
then the visitation mark of the current vertex is erased and a NULL is returned indicating that
this was a "dead-end” and no simple paths were found. Otherwise, the algorithm is called
recursively on those immediate neighbors of the current vertex which do not have visitation
marks. Since each such neighbor is potentiaily the first vertex on a different path fron. the
current vertex to the goal, each non-NULL vaiue returned by recursive calls on these
unmarked neighbors represents the success probability of a simpie path which has been
found. All such non-NULL returned values are PMERGEG since the tunctioning of any one of
the corresponding paths would suffice to satisty the Communication Axiom for ¢, and ¢,
Finally, the result of the PMERGE is SMERGEd with the symbolic success probability of the
current vertex. Then the visitation mark on the current vertex is erased and the resuits of the
SMERGE are returned as the value of the current recursive incarnation of the algorithm.

When the recursion completely unwinds until the current vertex is again c,, the returned
value, if non-NULL, indicates the probability of the existence of at least one simple functioning
path between c, and <, (If the returned value is NULL then a Communicability Edge (K-edge)

aT'his reference describes an elegant method for finding all the simple paths in a graph. An aigebra is defined on
sets of simpie paths in a graph along with three path operations. This ieads to the definition of a set of simuitaneous
linsar equations the solution of which, by a method similar to Jordan's method for matrix inversion, ieads to the sets
of simpie paths between all pairs of vertices in the graph. There appears to be a tlaw in Aigorithm ITER in {Fratta 75).
either due to typographical errors or oversight, and this author has not been able to successfully use the algorithm in
hand caiculations.

8Nt'm that aithough simpie paths to the goal vertex, other than the direct adge. may exist in this case. it makes no
difference whether or not they are functional if the current vertex and the goai vertex are functional since the direct
sdge i sufficient. Such extra paths are therefors irrelevant.

o = A -

— R - -

r—r———— s

Overiord Routine 148

does not exist between the images of ¢, and ¢, in the K-graph G,). The returned value is a
canonical reliability poiynomial (CRP) which is associated with ¢, and €, and the unique

identities of ¢, and ¢, in G allow them to be used to derive a key to store the CRP in a hash
table for iater retrieval.

The procedure presented above is described in the pseudo-code for algorithm PATHREL
. below. The version actually used in ADVISER is slightly different in order to take into account
the side constraints (see Section €.9). Alsg, our graph model is undirected and so the finding
oi paths from ¢, toc, will give the same result as finding paths trom ¢, toc,. Thus the
algorithm is called only once for the pair and the pair is considered unordered for computing
the hash key. However, if the underlying modet were to change ta accommodate directed)
graphs, the component pair would be considered ordered and the algorithm would be used «
twice for each vertex pair to compute the path probability in each direction. These differences 1
are unimportant, however, for the subject of the next section which discusses how path
reliabilities are stored and used.

e LT .

146 Overiord Routine

Algorithm PATHREL

Notation and Notes

- The functions MarkVisited(v) and UnmarkVisited(v) respectively set and remove
the visitation mark on the vertex v.

- The function Neighbors(v) returns the set of neighbor vertices of vertex v.

- The function Visited(v) returns TRUE if the vertex v has its visitation mark set,
FALSE otherwise.

- The function CRP(v) returns the CRP consisting of one term in which the bit
corresponding to v in the NORMVEC is set. This is the symbolic reliability of the
component represented by v.

- Note that the PMERGE and SMERGE functions when called with one NULL
parameter, simply return the value of the other parameter.

Procadure PATHREL (currentvertex, goal)
Begin Local CRPaggregate:
MarkVisited(currentvertex);
it 3i € Neighbors(currentvertex) s.t. i = goal
then (UnmarkVisited(currentvertex);
return CRP(i));

foreach i € Neighbors(currentvertex)
do

if not Visited(i)

then CRPaggregate - PMERGE(CRPaggregate, PATHREL(i.goa!});
it CRPaggregate neq NULL
then CRPaggregate ~ SMERGE(CRPaggregate, CRP(currentvertex)).
UnmarkVisited(currentvertex);
return CRPaggregate
End:

6.6.5 The generation of partial resuits for the Kernel

Once G is segmented into PTSs and the Kernel, the interface vertex set Vg is known.
Furthermore, when the compound requirements are provided, the number and identity of
critical components in the Kernel is also known. After a potentially feasible MCRS has been
chosen from the various critical components scattered over the various PTSs and/or the
Kernel, it is to be determined whether the MCRS satisties the Communication Axiom. The
TREEREL algorithm implicitly computes the functioning path probability between a critical

PRI

-y

Overlord Routine 147

component in the PTS and its root or interface vertex. Thus it is to be shown that the
communicability graph for the interface vertices, and any critical components which happen
to be chosen from the Kernel. is connected. In other words, it must be shown for each pair of
critical components in the MCRS, which may be in any one of the three cases of Figure 6-10 in
relation to one another, that the requisite paths through the Kernel exist. This is equivalent to
showing the paths exist between (a) pairs of critical components chosen from the Kermnel, and
{b) each critical component chosen from the Kernel and all interface vertices to any known-
segment from which other critical components have been chosen.

During the reliability computation process, all feasible compositions of the integer
requirements in the compound requirement will be generated over the set of known-segments
and the Kernel. Thus certain path probabilities may be used repeatedly. The ADVISER
program therefore computes. a priori, the probabilities of all necessary paths in the Kernel
between each pair of vertices in the set which is the union of (1) the set of all interface
vertices VF, and (2) the set of all critical components in the Kernei. These path probabilities
are hashed away in a manner very similar to the way in which PTS partial resuits are hashed.
{see Section 6.5). Since each path probability is uniquely identified by the identities of the end
vertices. it may be retrieved for use at the appropriate time. Unlike the PTS partial resuits the
path CRPs are not assigned unigue bits in the AUXVECs of the terms in CRPs. The reason for
this is that since all the path CRPs refer to possibly intersecting sets of components (i.e. all
contained in the Kernel), the complex events represented by these CRPs are, without
exception, potentially dependent on one ancther. Furthermore, the Kernel in the case of most
systems is generally composed of just a few components. Thus CRPs for path probabilities
are generally short in length. It was deemed unnecessary to assign bits for these CRPs in
AUXVECs only to perforce have to SMERGE them in a later phase. The path CRPs, therefore,
are used directly in the generation of the system CRP.

6.6.6 The utility of side-constraints on pathtinding

it is pertinent to note at this juncture that the path-finding procedure described will, in the
case of some actuali PMS structures, find a communication path between a pair of
components through a third component which in reality presents no such path. An example of
this is the bus switch of Figure 6-11. The buses S A and Sa may communicate with bus Sc but
the bus switch, S, admits no direct communication between S, and S,. The Kerne! of
Figure 6- 11 is composed of the set of components

{PoPaM My Mg M Mg Mg Mg, S, S Spew’

o At

T e g = —
- -

r o S er s aayeers

148 Overiord Routine

81

/PA
Msh\ sasw'sc
Tj
T 1
M91 Maz Maa
Key
Msn Dual-Ported Shared Memory
Ma1 Mao My Local memory, Bus A
"ax‘"az'Msa Local memory, Bus B
S,. S Processor Buses
SC External Bus
Sgsw Bus Switch
Mo, Mg, Secondary Store
K. K, Device Controllers
T1'T2 Peripheral Devices

Figure 6-11: A dual-port bus-switch architecture

wherein SBSW is the sole interface vertex. We do not wish the path finding algorithm to find
the path (P, S, Sasw
In this particuiar case, since sasw is an interface vertex of the Kernel, it M$1 were a critical
component, then the finding of the path (PA SA Sssw Ss Pa) would not matter since SBsw

SB PB) between the critical components P A and F’8 in the general case.

would appear in all system success states anyway. In Section 6.9 we shall propose a set of
side-constraints which may be imposed on the PMS structure to be analyzed so that
ambiguities of this and other sorts can be resoived.

3 ke

Overiord Routine | 149
6.7 The Main Loop of the Overlord Routine

The Overlord routine in ADVISER controis alf of the actual assembiing of the system
reliability functions for a given compound Boolean requirement expression. In general, the
compound requirement can be a disjunctive requirement. If this is so, the Overlord routine
expresses it as a disjunction of purely conjunctive requirements (i.e. the "sum-of-products”
canonical form for a Boolean expression). Then a CRP is derived for the PMS structure for
each of the conjunctive requirements in this sum-of-products form. Finally, the CRPs for al!
the conjunctive requirements are PMERGEGJ to obtain the CRP for the disjunction. i

The main loop of the Overlord routine accepts a purely conjunctive reguirement and
returns a CRP which is the reliability function of the PMS structure under that conjunctive
requirement. Each conjunctive requirement is decomposed by the Overlord routine into the

atomic requirements which comprise it. In general, in the instance of any one of these atomic

o PR

requirements, say \p(ri,xi), the PMS structure may have ui>ri components of type X.. There are

u.
then (. ') ways of satisfying np(ri,x.l). There are, therefore,
i

.
[S| E

u.
o, (9 u2r,
[}

ways of satisfying the conjunctive requirement. However, the u, components of type x, will, in

el

general, be scattered throughout the various known-segments and/or the Kernel of the PMS

structure. Hence there is an upper bound on the number of components of type x, that a given
segment can contribute toward satistaction of the requirement. The Overlord routine calls the
TREEREL and PATHREL a.lgoritﬁms to compute the reliability contributions, expressed as

CRPs, for each of the segments, for each atomic requirement in the conjunctive requirement.
for each possibie number of components chosen from that segment to satisty the
requirement. The number of components chosen from a segment varies from unity up to
either the upper bound aliuded to above or to n, whichever is smaller. The CRPs. thus
derived, are hash-coded away for (ater retrieval and use. Such hash-coding obviates the need
for repeated recomputation of the identical CRPs several times over the course of a program
run.

The main loop of the Overiord routine utilizes these hash-coded partial results while
constructing the CRP of the PMS structure under the conjunctive requirement. For each
iteration through the loop, the sequence of steps described below is executed. The resuits of
the iterations are accumuiated and the accumulation, after the final iteration, represents the
CRP under the conjunctive requirement. The steps are first described broadly. Following

150 Overlord Routine

sections will provide details on the steps. Through the rest of this section (Section 6.7) we
shall interchangeably use "component” and “type" for "critical component” and "critical
component type" respectively.

1. Generate next composition of the requirement integers over the known-segmen!s
and the Kernel (if no more compositions can be generated, go to Step 6):
Compositions were described on Page 125 and in Chapter 2. Each composition
here represents one possible case of satisfaction of the requirement. A
composition specifies what number of each required (critical) type of components
are to be chosen from each known-segment and the Kernel. Only feasible
compositions (see Page 127) emerge from the composition generating function.
Feasible compositions are those which do not demand that more components of
any type be chosen from any segment than are present of that type in the
segment.

2. Determine if the Kernei will satisfy the Communication Axiom for this feasibie
composition. If not, 90 to Step 1: Computes the CRP which represents the
contribution of the Kerne! for this feasible composition.

3. For each known-segment, and for each component type, retrieve the CRP from
the hash-tabies which represents the reliability contribution of the known-
segment in the case that the number of components of the type. specified by the
current composition, are chosen from it.: The CRP may, of course. be null in the
case that there are no components of a particular type in the segment.

4. SMERGE the CRPs retrieved in Step 3 with the Kernel CRP of Step 2: The
SMERGE operation of this step accounts for the fact that ali the known-segments
and the Kernel must simultaneously satisty the various requirements imposed on
them by the current composition.

5. Accumulate the result of Step 4 by PMERGEing it into the accumulation thus far.
Then go to Step 1: This step accounts for the fact that the satisfaction of any one
composition provides a reliable system. Hence we must take the disjunction of the
CRPs for satisfied compositions.

6. The accumulated CRP ai the end of the iteration over Steps 1 through §
represents the reliability of the PMS structure under the conjunctive requirement

6.7.1 Generation of feasible compositions

The implementation of the process of generation of feasible compositions will be
summarized here. The process is also introduced in Chapter 2 and treated at length in Section
6.4.

The ADVISER program maintains & two-dimensional array called the Compositions Table
which it uses in the generation of compositions (see Figure 8-12). In addition. a one-
dimensional Regquirements Arrgy is maintained paraliel to the columns of the Compositions

Overiord Routine 151

Requirement

Segments
Xo 12 j n '”:‘”e’s
1] S0 fCn | G2 —” S\ 11
Critical 3]\ 3

Component L—-"f _‘L -
. Types — r“ N -—1
' i :\JL % *11 ‘ il %
e =~
" WL/ "

Requirements

Compositions Table Array

Figure 6-12: The logical organization of the Compositions Table

152 Overiord Routine

Table. The rows of the latter correspond to ail the distinct critical component types which are
specified in the conjunctive requirement. Each column of the Compostions Table
corresponds to a known-segment of the PMS graph, except the zeroth column which
corresponds to the Kernel. For a given conjunctive requirement

the contents of the i™ cell of the Requirements Array will always hold the integer requirement
r The contents of the cells of the Compositions Table are subject to change each time a new
feasible composition is generated. it is always the case that the i™ row of the Compositions
Table holds some (n+1)-composition of the requirements integer rin cell i of the
Requirements Array. If each particular distribution of integers in the cells of the Compositions
Table is considered a state of the Table, then each state of the Table is a set of feasible
compositions in the rows, after control emerges from the composition generator function.
Such a state will be termed a feasible state of the Table. However, as was pointed out earlier
in this chapter even though a Compositions Table state is feasible, it will not contribute to
system reliability uniess the Communication Axiom is satisfied. The contents, say < of cell
[i.j] of the Compositions Table in any particular state, specities that < components of type i
must be chosen from known.segment j (or the Kemel if j=0). Thus in Step 3 above, for
known-segment j, =0, the program advances down column j and for each <, it retrieves the
hash-coded CRP for the atomic requirement ¢'(c“‘ti) on that segment (i.e. PTS). Of course. it
c”=0, then the CRP is null. Likewise, if no critical components are chosen from a given
known-segment then the corresponding column of the table will contain all zeroes and will be
ignored. The zeroth column of the Compositions Table is passed to the DoCore function
which computes the CRP for the reliability contribution of the Kernel and ensures that the
Communication Axiom is satisfied. This function s described in Section 6.7.2.

As noted above, there may be an upper bound.say u,. on components of type t which can
be chosen from segment j such that “q<’u' One may, therefore. think of an "upper-bound
state” of the Compositions Table which constrains the ¢ values. Some of the (n+ 1)
compositions of a given r, may not be useful if some cell of the i™ row contains an integer
which is greater than Uy its upper bound. Thus. a state of the Compositions Table is feasible if
and only it

vij ¢, Sy, 6.2)

The generating routine for the next feasibie composition enumerates all the possibie states of
the table but returns only those which satisty condition (6.2) above. Since the i™ row of the
table will produce

Overlord Routine 1583

(n.1)¢r.l-1

t.-1
i

separate (n+ 1)-compositions of the integer r, the total number of states (feasibie or
infeasible) of the Compositions Tabie is

m (n¢1)+ri-1

iz r1
1

This can be a large number but the process of generating each state is incremental and thus
fast. The upper bound check does not add much more complexity. Moreover, as will be
described in Chapter 7, the largest fraction of compute time during a run of the ADVISER
program has been experimentally observed to be consumed in another portion of the
program.

As was noted in Section (6.1) there is a strong analogy between the action of an odometer
and the generation of feasible states of the Compositions Table. Each row of the Table
corresponds to a wheel of the odometer. The compositions which may occupy the cells of a
given row are analogous to the numbers on the corresponding odometer wheel. Therefore.
one complete revolution of the whee! corresponds to the generation of one compiete cycte of
{(n + 1)-compositiors in the row. Row 1 of the Table corresponds to the slowest moving wheel
while row m corresponds to the fastest moving whee! of the odometer in our anaiogy.
However, since oniy feasible states of the Z“ompositions Table are ever used, the odometer
may be viewed as having slippage on some of its wheels. This would cause the odometer to
skip those positions which correspond 10 the infeasibie states of the Tabie.

With this odometer analogy in mind we may view the actual generation of all possible states
of the Compositions Table which treats the table as a stack. Each row of the Table in the
implementation scheme corresponds to a level in the stack and the m™ row (see Figure 6-12)
is at the top of the stack. In other words, the next (n + 1)-compositions of the requirement
integer r_ at the i™ level of the stack (i.e. the ith row) is computed gnly after all possibie (n + 1)-
compositions of the integer r., have been computed at the (i + 1)"‘ level. Also, whenever the
i™ row is advanced to the next (n + 1)-composition of ri,3° ait the rows (i+ 1) through m are
reset to their initial {n + 1)-compositions. An initial composition for the i™ row consists simply

m'I'h‘ asigorithm used 10 generate the next composition is & variant of the one described in [Nijenhuis 78] with
modifications to do the upper bound checks and return onfy feasibie compositions.

154 Qverlord Routine

in putting the integer r in the zeroth cell of the row.3' The process ends when all (n«+ 1)
compositions have been exhausted at row 1.

6.7.2 Computing the reliability contribution of the Kernel

The process of computing the reliability contribution of the Kernel, carried out by the
DoCore function in ADVISER, plays a critical part in deciding whether a feasible state of the
Compositions Table will actually produce system success. The decision is based primarily on
whether the Communication Axiom can be satisfied by the current state of the Compositions
Table (recall that each state of the table corresponds to one particular way of choosing
critical components from the various parts of the graph to satisfy the overall requirement). The
decision also depends on any side-constraints which may have been specified. The side-
constraints are not important to the elucidation at this time and a discussion of then is
deferred to Section €.9. Any feasible state of the Compositions Table which passes the check
by the DoCore function is termed a success state of the Compositions Table.

The reason that the check for the satisfaction of the Communication Axiom is localized to
the Kernel, and not the known-segments, lies in the difference between the algorithms used
on the two kinds of subgraphs. The TREEREL algorithm assumes that all communication
between components in the tree, and to other components in the rest of the graph. is through
the root vertex. The recursive descent nature of the algorithm starting from the root vertex
ensures that the probability of functioning of paths to the root is accounted for in the case ot
all the critical components chosen from the tree. Hence the CRP returned by the TREEREL
aigorithm also accounts implicitly for satisfaction of the Communication Axiom as far as
communication between the root and other components in the tree is concerned. As a result it
falis to the DoCore function, which treats the Kernel, to check whether the Axiom is satisfied
by the Composition Table state being considered.

We now digress to introduce terminoiogy which will make a description of the DoCore
function clearer. For each state of the Compositions Table some fragment requirements will
be applied to some or all of the known-segments and the Kernel. Those known-segments
which do not have fragment requirements applied to them will be termed gurrently dormant
known-segments in the given state. The other known-segments, against which fragment

3 in practice, however, it & sometimes possibie 10 start off a row with some intermediate compeosition, which 1
would have ultimately reached in the normal course, because the constraints placed on the compositions in that row
preciude previous compositions from being feasidble.

AT N N NP

PR

Overlord Routine 158

requirements have been applied, will have some critical components chosen from them. Such
known-segments will be termed currentiy active segments. The Kernel will be currently active,
in the same sense, when either critical components are chosen from it, or paths must exist in
it which link the root vertices of active known-segments, or both these conditions hoid. Note
that it is possible for the Kernel to be dormant in the above sense when some known-segment
by itself alone is able to satisfy the entire conjunctive requirement. Then the TREEREL
algorithm applied to that PTS will implicitly ensure satisfaction of the Communication Axiom
and provide the reliability contribution of the corresponding Compositions Tabie state. The
DoCore tunction will not be invoked in such an instance since paths through the Kemel are
not involved.

In a given Compositions Table state, when the Kerne! is currently active, attention is
directed toward two kinds of vertices within it, namely

1. Interface vertices of active known-segments, and
2. Critical components chosen from the Kernel in the current state.

The set of vertices in ltems 1 and 2 together will be termed the Currently Chosen Kerne! Set
(QQLS__). Note that for a given Compositions Table state there may be many CCKSs. The
reason for this is understood by considering the following example. Assume that b,
components of critical component type t, are present in the Kerne! and that the current state
of the Compositions Table requures that b components (0<b <b,) of type t, be chosen from
the Kernel. There are then (>) ways of doing this, each of which will produce a ditferent
ccks B ttis important to not ? however, that the set of interface vertices, contained in these
CCKSs of the same state, does not vary since the set of currently active known-segments
does not change. Also to be noted is that since the reliabilities of the interface vertices are
taken into account during the computation of the PTS reliabilities, they are not included in the
path reliability calcutations.

Returning to our discussion of the DoCore function we now note the following important
point. Since the Communication Axiom is implicitly satisfied within known-segments due to
the action of the TREEREL algorithm, the test for satisfaction of the Axiom, by the entire PMS
structure, may be confined to the CCKS.

&Howwcr. soe Section 5.3 for a current deficiency in the TREEREL algorithm which could cause an error here.

aa‘l’hu situstion aiso arises in known-segments. But the TREEREL aigorithm returns 3 CRP which takes into
account all the possible cases. in the Kermel, however, the enumeration must be done explicitly.

O i iiiaictond A

156 Overlord Routine

Using the terminology of Section 6.6.1 we may restate the above condition as follows: The
Communication Axiom is satistied by the PMS graph G if there exists a connected K-graph on
the critical components chosen from the Kerne! and the interface vertices of those known-

segments from which at least one ctitical component was chosen.

As was described in Section €.6.4 the PATHREL algorithm returns a CRP if a K-edge exists
between a pair of designated components and null otherwise. Each such CRP was then hash.
coded, keyed on the identities of its end vertices. Thus, for any given pair of components in
the Kernel. if the key is computed and no associated CRP is found in the hash table then no K-
edge exists between those two components. The task of the DoCore function then reduces to
examining all pairs of components in the CCKS and attempting to retrieve a CRP from the
hash table for each pair. The number of K-edges thus retrieved are counted and must number
at least one less than the cardinality of the CCKS: this is a necessary conditior for
connectedness of the K-graph. Furthermore, each vertex in the CCKS must be connected in
the K-graph to at least one other component in the CCKS. This ensures connectedness of the
K-graph. Once connectedness is established, then the CRPs of all the K-edges are SMERGEd
together to give the CRP for the CCKS. If the K-graph is not connected then the next CCKS is
generated and the process continues until all possible ways of choosing the required number
of critical components from the Kerne! have been considered for the current Compositions
Table state.

Since any-one of the CCKSs which satisfies the Communication Axiom will make for system
success, the CRP of the Kernel for a given state of the Compositions Table is the PMERGE of
all the CRPs of the CCKSs of that state and the DoCore function returns the result of this
PMERGE as the reliability contribution of the Kernel.

6.7.3 Computing the reliability contribution of the PTS segments {

The contribution of the PTS segments (or known-segments) towards the system reliability i
were precomputed and hash-coded away. They are now retrieved for use. It will be recalled :
that the hash-code keys in this case were basad on the requirement integer, the required
component type and the identity of the root vertex of the PTS. For any state of the
Compositions Table, a PTS segment j corresponds to column j of the tabie, the required

component type t. corresponds to row i and the integer requirement r, is the contents of the
cell at the intersection of that row and column i.e. ¢ Thus the key for the CRP of the segment
j under the atomic requirement w(ci}.t.) can be computed and the CRP may be retrieved for
use. Note that (i) if ¢ = 0 then the CRP is null, and (ii) if cii>0 then the process of generating

Overiord Routine ‘ 157

partial results for PTSs (see Section 6.4.3.1) guarantees that a CRP will have been hash-
coded away.

Since we are dealing with purely conjunctive requirements, all the atomic requirements
specified by the cells of the Compositions Tabie (other than in ¢column O, which refers to the
Kernel and is treated separately by the DoCore function) must be satisfied simuitaneously.

. The CRP for this event is obtained by SMERGEing all the PTS segment CRPs retrieved for the

current state of the Compositions Table.

6.7.4 Accumulating the resulit for a pure Conjunctive Requirement

We have seen above how CRPs are constructed for the reliability contribution of the Kernel
and the combined reliability contribution of the PTS segments, for each state of the
Compositions Table which is capable of satistying the Communication Axiom. Since both the
Kernel and the active known-segments must simuitaneously be functional, we must SMERGE
the final CRPs obtained as described in Sections 6.7.2 and 6.7.3 above. This gives the CRP for
the event that the current state of the Compositions Table is a success state of the table i.e.
gives rise to one or more system success states.

Now, any state of the Compositions Table which allows system success states will
contribute toward system reliability. Thus, finally, the CRPs for all success states of the
Compositions Tabie must be PMERGEd to obtained the CRP for the PMS structure under the
overall conjunctive requirement.

6.7.5 General case: a Disjunctive Requirement

Recall further that if the user of ADVISER supplies a general disjunctive requirement, then
this is rephrased as a disjunction of purely conjunctive requirements and the Overlord routine
main loop is cailed once for each of these. For each of the conjunctive requirements a CRP
will be returned by the main loop as outlined in Section 6.7 4. Since the satisfaction of any one
or more of these conjunctive requirements implies system success, all the CRPs, returned by
the various cases to the main loop with conjunctive requirements, are PMERGEd to provide
the CRP which gives the system success probability under the general disjunctive
requirement expression.

iai e

- t—

158 Overiord Routine

, 6.8 Efficiency in the assembling of CRP’s in Overlord

It will have been noted in the foregoing sections that the PMERGE and SMERGE operations
are frequently used. Furthermore, it was shown in Chapter 3 that the time complexity of the
SMERGE operation is O(Nz) whereas that of the PMERGE operation is O(N? + 2N) where N is
the length of the CRP lists being operated upon. Depending on the complexity of the PMS
structure, and the input requirements expression, the length of CRPs relating to states of the
Compositions Table begins to get rather large. Lengths on the order of 1000 and more terms
have been observed by the author in experiments. Hehce one may predict that ADVISER
would spend the largest part of its compute time in the PMERGE and SMERGE operations.
This is indeed strongly borne out by experience, so much so that in most reasonably complex
cases of PMS structures and requirements the percentage of compute time taken by the
PMERGE and SMERGE operations over the run of the program, largely outweighs all other
costs of other computations during the run. Chapter 7 shows that in a fairly typical case
runtime consumed in the merge package of the current ADVISER impiementation couid range
as high as around 88% of the total compute time. Hence it is imperative that the number of
PMERGE and SMERGE operation be reduced as much as is possible if the current
intermeciate representation and its algorithms continue to be used.

Referring back to the Compositions Table we see that because of the stack discipline while
generating the states of the table, all rows in the table, except for row 1, cycle through their
(n+ 1)-compositions more than once. Thus, the CRP corresponding to some (n+1)
composition of some row i, 2<1:{m, will be used in an SMERGE operation more than once.
Each time, the accumulated CSPs of Steps 4, 5, and 6, on Page 150, may. and usually will,
grow in length. Thus each succeeding merge operation on the accumulated results takes
more and more compute fime. There is clearly incentive here to keep the CRP term list lengths
as small as possibie. The problem may be alleviated considerably by postponing the mergings
of Steps 4 and 5. on Page 150, until a later phase when some economies may become
apparent.

The stack discipline of the Compositions Table suggests a remedy. The PMERGE and
SMERGE operations are associate and commutative over one another. Thus the CRP for a
given state of the Compositions Table, may be arrived at by simply SMERGEing all the CRPs
for all cells, not in column O of the table, in any desired order. The result of this is then
SMERGEdJ with the Kerne! CRP for the table state as computed by the DoCore function using
column 0 of the table and other criteria such as the Communication Axiom. However, due to
the stack discipline of the table, the CRPs for the cells of row i will not change until row i+ 1

Overlord Routine 189

has cycied through ali of its (n+1)-compositions. Thus, a savings might be eflected by
postponing the SMERGEIng of the CRPs of row i 1o a later time so that it may be done only
once. We ignore the zeroth column of the table when speaking of the rows at this time,
because of the special treatment accorded to it by the DoCore function, and concentrate on
columns 1 through n. We shall term as a Row-CRP that which is produced by SMERGEIing the
CRPs retrieved by keying on the values of the cells of any row (column O cell excluded).
Similarly, we shall term as the Kernel-CRP that which is produced by the DoCore function
operating on column 0. Clearly, the CRP of any state of the Compositions Table is the
SMERGE of all the Row-CRPs of the state, SMERGEJ with the Kernel-CRP. However, the CRP
for the conjunctive requirement may be computed more efficiently than this as is described in
the following.

6.8.1 The CRPTree

We now expand on ti.e notion of the CRPTree which was introduced in Section §.4.3.2. The
CRP7ree 1s a rooted tree of (m + 2) levels where m is the number of critical component tyoes
retererced in the conjunctive requirement. This is also the number of rows in the
cor-espunding Compesitions Tabie. The root vertex of the CRPTree is a dummy vertex. The
‘rzt w1 De sad ic be at levei zero of the CRPTRee. All vertices at level i, 1<i<m, of the tree
w i c2oesponc ¢ row i of the Compositions Table (exciuding ¢column Q). The leaf vertices at
e.e ~ . wil zorrespond to the Kerne!l (i.e. to column O of the tabie). Figure 6-13 shows a
ca* .. a -~stance o' a CRPTree. Each vertex at fevel i corresponds to some distinct (n + 1)
-i=gzsrLm o row - 0 the Compositions Table and the vertex is labelled with the Row-CRP of
e Tomgt .t composition Each vertex at level i, 1<i<(m-1), can have at most

s_z:es3:° .e~ s25 “his number 1§ the total number of possible {n+ 1)-compositions (ol the
‘ecuement rteger) which can occupy row i+ 1. Thus the tree has. in the most genera:
case 2 3Mere~! max:mum branching factor at each level. which is equal to the total possible
numbe-’ o! (n s 1).compesiions assumed by the row corresponding to the next lower level.
Each path from the root vertex of the CRPTree to a vertex at level m, therefore. represents a
set of CRPs which are the labeis of the vertices along the path. Each such set ot CRPs is
precisely the set of ali Row-CRPs for a particular state of the Compositions Table. Finally,
each vertex at level m will have precisely one pendant successd: vertex at level m e+ ¥ whose
label 1s the Kernel-CRP for the state cotresponding to the path trom the root to that level-m
vertex. Therefore, each path in tha CRPTree Irom the root vertex 10 a lea’ ventex corresponds
1o a unique success state of the Compositions Table

SOV = 77 N

PV R Y ST ¢

160 Overlord Routine
i
k-
Dummy
~~ Leve! O |
4
- - - - Level 1
&
\
Row CRPs \

-
- an @ o w W=
-

Level (m-1)

Level m

Level (me 1)

‘\\\

Kernel CRPs

Figure 8-13: Anexampleofa CRPTree

/S ——

Overlord Routine 161

in the extreme case, every state of the Compositions Table will contribute to system
reliability, and the DoCore function will return a non-null CRP after some computations for

each such state which use column 0 of the table. Then the tree will be complste at 2ach leve!

to the maximum branching factor at that level. If the (m+ 1) level (i.e. Kernel-CRPs) are
ignored, this complete tree will also be symmetric in that the sets of labeis {CRPs) of
successor vertices, tor all vertices at a given level will be identical. Unfortunately, the Kernel-
CRPs may in genera! be distinct from each other thus destroying the symmetry of the tree.
However there may still exist some symmetric subtrees of the overall CRPTree when the
Kernel-CRPs at their corresponding leaf vertices are identical.

in a more typical case, not all states of the Compositions Table contribute to system !
reliabitity. Excluded would be those states for which the Kernel-CRP is null due to the inability
of the Kernel to satisty the Communication Axiom. The exclusion of a Compositions Table

state corresponds to removing the leaf vertex, which would have been labslled with the ;

Kernel-CRP for that state. and all vertices on the path to that feaf which are not shared with i
other paths, e.g. vertices a and b in Figure 8-13. Thus. in the typical case, the tree may :
become incomplete at alf levels. The lack of symmetry in the tree is a hindrance to efficient S
computation but it may be possible to use what little symmetry still exists. F

6.8.2 Construction of the CRPTree

The CRPTree is quite simply constructed in a recursive fashion during the main loop
execution in the Overlord routine. For any row i, 1<i<m, in the Compositions Tatie. 2 vertex

at level i of the CRPTree is produced when the contents of the row’s ¢cells advance to the next

{n + 1)-compositions of G Each (n + 1)-composition is held constant in row t until row i+ 1 has
cycled through all its (n + 1}-compositions of flay thereby producing a set of vertices at leve!
i+1. These vertices are made successors of the vertex generated for the currest (n=1)-
composition at level i. Once row i has cycled through alil of its (n + 1)-compositions ot r. the

set of level-i vertices generated during the cycle is passed upwar¢ to row -1 1o become

successors to the current vertex at level i-1. The vertices generated for row 1 are made g
successors of a dummy vertex labelled with a null CRP and designated the root vertex. Each
row may be viewed. therefore, as passing a set of subtrees of the CRPTree tc the immediately
previous row each time it cycies through all its (n + 1)-compositions.

The (m + 1)™ level of the tree consists of vertices labelled with Kernel-CRPs. A level.(m« 1)
vertex of the tree is generated whenever the DoCore function returns a non-null CRP akter

operating on the contents of column 0 in the current state of the Compcsitions Table. The

— " A e
-

162 Overiord Routine

generation of a level-(m + 1) vertex signifies that the current state of the Compositions Table
satisfies the Communication Axior and contributes to system reliability.

6.8.3 Use ¢! the CRPTree

| The purpose of building the CRPTree is to postpone the bulk of the PMERGE and SMERGE
‘ operations to a phase after the compietion of the main loop execution in the Overlord routine.
i At that time, as explained above, using the CRPTree as the data structure fewer of the merge
operations need be done to complete computation of the system reliability tunction.
Furthermore, it may be possible to use any symmetry in the CRPTree to advantage by doing

PR _A_,_L_...-.M‘_.A._ﬁu.;__“.‘j

the indicated merge operations for one of the symmetric subparts and using the resuitant

CRP as a template for the rest.

The procedure for computing the CRP of any subtree t of the CRPTree is simply stated in a
recursive fashion as follows:
1. The CRP of any subtree t, of a CRPTree is obtained by

a. PMERGEing the CRPs of the subtrees rooted on the successor vertices of
the root vertex of t,, and then 1

b. SMERGEIng the resultant CRP of Step 1 with the CRP which labels the root
vertex of t_. 4 1

2. The CRP of a one-vertex subtree is simply the CRP which labels that vertex.

A simple implementation of this is the recursive procedure CRPTREEMERGE which is shown

9n Page 135.

6.9 Side Constraints on Reliability Function generation

We have seen that at least three basic items of information are necessary to compute
system reliability, namsly
{ 1. Reliabilities of individual components in the system,
2. The interconnection topology of the system, and

3. Minimum task requirements on component reliability which determine the system
reliability in relation to the task.

Thus far we have considered PMS structures to be mapped into undirected graphs with
labeiled vertices. The implicit assumptions regarding possibie paths of information flow in the

Overiord Routine 163

structure have been preciseiy those which are made in classical network reliability analysis.
To wit, information may flow into a vertex {component) from any arc incident on the vertex
and exit it from any other of its incident arcs. Thus typical neiwork reiiabifity analysis
examines concepts such as the probability that a particular vertex will aiways be abie to
communicate with some other specific vertex for the duration of the mision; the probability
that a network of a certain diameter will be reliable over the mission time, etc.

The kinds of questions which arise out of the analysis of Processor-Memory-Switch
structures. however, concern themselves with @ minimum working set of components which
must be functional and abie to communicate amongst themselves in order for the system to
be reliable. Qualitatively, a PMS network differs from general communication networks in the
degree of coupling between system components; the coupling is much tighter in PMS
structures. Another fundamental difference is the intuitive model of behavior of a node in a
communication network and a node in a PMS structure. in the latter case the nodes in the
structure cannot usually be considered to be homogeneous and their internal information
flow characteristics are not uniform . As was shown in Section €.6.8, treating PMS nodes as
being able to transfer information from any incident arc to any other incident arc can lead to
incorrect reliability estimates. Furthermore, the behavior of actual PMS level components

such as buses, memories, processors, et¢., is not adequately modeled.

It is clear, then, that further constraints beyond the three stated above must be imposed on
the problem in order to obtain an adequate reliability model. At the same time. in a program
that is viewed as an estimation tool for design, it is impossible to incorporate information
about every type of PMS component that exists or may exist in the futurs. Thus an effort was
made to distill those aspects of the information flow characteristics of PMS leve! components.
and commonly occurring PMS substructures, which when combined with the Communication
Axiom would provide adegquate reliability models in a majority of instances. For example, the
adoption of Pencant Tree Subgraphs as the sort of known-segments to achieve during the
problem partitioning. was driven by the observation that PTSs cccur in alargs number ¢t PMS

structures; typically in the input/output subsystems and bussed architectures.

The PMS leve! of detail at which systems are studied (Bell 71] is characterized by a lack of
information specific to the behavior of each system component. Rather, the emphasis in
modelling at the PMS level is directed toward the system interconnection structure and breoad
details on the rates and types of information fiow among the system components To
paraphrase Sell and Newell, this is the chemical engineering view of computer systems In

keeping with this view, and in an attempt to preserve generality. the side constraints are based

164 Overiord Routine

on system interconnection structure and pathways of information flow among components
rather than the specific behavior of certain types of system components.

In succeeding sections we shall examine three kinds of side constraints on the reliability
function generation process which, when judiciously applied, will ease the task of the
program and provide more accurate models. For each case we discuss, in order

—the need for being able to specify the constraint,
- the implementation of the constraint, and

- the changes which are necessary to other algorithms to be able to deal with the
constraint.

6.9.1 Intracomponent port connections

6.9.1.1 Need for constraint

As was stated above, the classical model applied to a node in a communication network
constrains its behavior very weakly. In principle, such a node is deemed capable of accepting
incoming information flow from any incident arc and transmitting it out over any other, or the
same, incident arc. Section 6.6.6 gave the Bus-Switch architecture as an exampie wherein
there is a component in the PMS structure which is incapabie of such general behavior.
Consider the model in Figure 6-14(a) where a vertex v’ is shown enlarged and its neighboring

" vertices are v & Ve Vo Vo The Pi are the connection ports of the component represented by
v'. The broken lines inside the circle representing v' correspond to the possibie paths of
information fiow within the component. They, and the arrows on them, show the possible path
and direction of information flow between their end ports. Thus, for instance. information
flowing in from port P, could, after processing within v', exit only via port P, and vice versa.
The ports themseives do not act as intermediate stopping points on such paths i.e. the
existence of the paths (P,,P,) and (Pz,P o) does ngt imply that information may flow from F’1 to
P,viaP,.

It the internal port connectivity of v’ were not known, it woulg be surmised that information
could flow from say v atovg although the component behavior does not support this. Thus, v’
may become part of a "functioning” path even though v, and vy are not allowed to
communicate directly through v'. Many cases of such behavior may be noticed in PMS
structures e.9. the Bus-Switch architecture of Section 6.6.6. The internal port connection
constraints attempt to account for such behavior in general fashion.

PRI RP

PO

Overlord Routine . 165

(a)
v’
P, F, P, P,

Pl 0 1 1 Internal
Port

P
2} © ! 0 L Connection
Matrix

(b)

Figure 6-14: An exampie of a vertex with an Internal Port Connection Matrix

dade.

Adidia

Kisle o i ek d o

166 Overiord Routine
6.9.1.2 iImpiementation
The most natural way of specifying the intra.component port connection constraint is in the

form of an |ntemal Port Connection Matrix (IPCM). This is simply an adjacency matrix for the
ports of the component. The IPCM for the vertex v’ of Figure 6-14(a) is shown in part (b) of the

figure. it may be noted that the matrix is symmetric. This is a direct consequence of our basic
mode! of the PMS structure as an undirected graph. Were the underlying mode! changed to
support directed graphs then the IPCM would not necessarily be symmetric. In the ADVISER
program, the absence of an IPCM associated with a vertex is assumed to imply that all
elements of the IPCM, were one to be appended to the vertex, are unity, i.e. that each port can
transfer information to and from any other port.

For the current version of ADVISER the IPCM for any given vertex is specified only after the
interconnection graph has been specified (a preferable method is described below). The
vertex is identified by naming the component it represents and the value of the [i,jjth element
of the IPCM for the vertex is set to 1 by naming the pair of neighboring components of the
vertex which are connected to the it" and j"‘ ports respectively. For the current graph model.
all diagonal eiements of the IPCM default to 1 and all others default to 0 if not set to one.
Clearly, this approach of setting elements &f a given IPCM to unity can become tedious if the
number of elements to be so set is large or the number of IPCMs is large. Neither case may be
expected to be common in typical PMS structures. Furthermore, IPCMs need only be
specified for those components wherein the default complete internal interconnectivity of
ports would lead to erroneous paths being discovered by the path-finding algorithms. Thus,
the current method of specification was deemed adequate though tentative.

A better method of specification would be to allow the particular IPCM to be associated with
a generic component type. Then when a component of that type was instantiated in the PMS
structure the IPCM would be automatically declared. However, the connection of other
components to this component would have to be done more carefully, keeping port identities
in mind. There wouid aiso arise issues of what is to be done in case the user of the program
does not connect any components to a certain port. These questions are left to a future
implementation update of ADVISER.

’——-—-_,I———-————________a‘

Overlord Routine 167
6.9.1.3 Eftect of constraint on algorithms

The Intra Component Port Connection constraint affects the operation of two of the
algorithms in ADVISER. The first, and most alfected, is the PATHREL algorithm (see Section
£.6.4). 1t is no longer sufficient, at each recursive call to PATHREL, to simply check the
visitation mark on a neighbor vertex when deciding whether or not to recursively call the
procedure on that neighbor vertex. The reason for this is that the current vertex may not
internally allow a path from the previous vertex to the neighbor vertex being considered.
Returning to Figure 6-14. presume that a call of PATHREL on the vertex v, may call a
recursive incarnation of the procedure on its neighbor v'. The incarnation on v’ should ngt
consider vgasa candidate for the next recursive call since there is no path from v, to Vg
through v'. Thus an extra parameter is added to the PATHREL procedure which
"remembers” the identity of the vertex out of which the current recursive call arose, i.e. the
originating vertex. Going back 1o our example, the current incarnation of PATHREL on v’

would have an “originating vertex" parameter whose value is v,. The algorithm when

A
considering a neighbor vertex for a recursive call will first look up the IPCM of the node being
currently visited. It will see if the element corresponding to the originating vertex and the i
currently considerad neighbor vertex can communicate through the currently visited vertex, 4
i.e. if the corresponding IPCM element is unity. If the IRCM element is zero t;xen that neighbor

vertex is not visited even if it has no other visitation marks.

The other algorithm atfected by this constraint is the GROWTREES algorithm described in
Chapter 5. The current version of the TREEREL aigorithm (Chapter 5) assumes that alf the

vertices in the PTS belong to the default case, i.e. all of their IPCM elements are unity. Until
such time as the TREEREL algorithm is extended to handle this constraint, the PTSs may
have no vertex which has an explicit IPCM. This implies the addition of cne more test to
Algorithm GROWTREES in Chapter 5. Thus the GROWTREES algorithm does not. at present.
inciude any vertex into a PTS when it has an explicit IPCM. Whereas the F7S may ordinarily
have "grown"” past that vertex. the tree wili now stop short of such a vertex. The introduction
of this constraint, consequently, will force al! vertices with explicit IPCMs to be left as part of
the Kernel. The resulting PTSs may be smaller. The Compositions Takle will not change
much but the DoCore function will have r«re work to do since the Kernet will contain more
vertices than otherwise. Note that this implementation restriction on the GROWTREES
aigorthm can be used at present in an ad hoc tashion to force particular components to be in
e Kernel To do this it is sufficient to assign to the component an IPCM al' of whose
ee~a-ts are unity. The only effect of this currently is to force that component to be

¢ ze-a= as sart of the Kernel (see Section 7.3.1). The computation of path reliabilities in
‘e s -8 m-az.er will not be affected.

168 Overlord Routine

6.9.2 Intra Component-Type Communication

6.9.2.1 Need for constraint

The second side-constraint deals with communication between components of like type. A
minimal critical resource set (MCRS) of components may be composed of various different
types of components. in the context of PMS structures some types of components are
typically active and originate contro! information in the structure. Examples of active
components are processors and direct-memory-access device controliers and other “smart”
controllers. The remaining types of components are passive and accept control and
commands from the active components. Examples of passive components are memories and
input-output transducers. 1t is largely the case in typical PMS structures that active
components will exchange information amongst each other, or with passive components
while controlliing them, or both. Thus, in general, paths for information flow will need to exist
between active components and passive components in the structure and amongst the active
components themselves. On the other hand paths need not be sought directly between
passive components. Thus, including the probability of existence of K-edges between passive
critical components during the Overlord main loop computations would lead to a pessimistic
system reliability estimate. This is because components along those paths would be required
to be functional which in reality are superfluous since the paths are never used for
communication between the passive components. This is not always true since an active
component might lie along one of the paths between the two passive components. However,
this in 0 implies that the path probability would be considered during some other iteration
of the main lcop when paths are being sought between the intermediate active component on
that path and each of the passive components at either end of the path. The general
constraint can be phrased as the directive "Do not attempt to account for K-edges between
passive components of an MCRS". '

6.9.2.2 implementation

A study of the common types of PMS structures by the author seems to indicate that a
weaker constraint might suffice. This weaker constraint, which was implemented, subsumes
the more specific one above and can be phrased as follows: "Do not attempt to account for K.
edges between components of like type except when otherwise explicitly specified by the
user”. Thus, for instance, paths should not be found between memories in one PTS and
memories in another PTS through the Kernel. There were two reasons for requiring the user
of ADVISER to specify gereric component types, whose members go communicate amongst
themseives in the operation of the PMS structure. The first is that the underlying graph modet,

Danacnsmsmesnmmne

O TR,

Overlord Routine 169

though it allows labels for vertices in the PMS graph, attaches no significance to these labels.
Thus the user must specifically identity those component types whose members are active.
The second reason is that in a typical PMS structure the majority of component types are
passive thus making it easier to identity active component types with less effort. The model,
therefore, assumes that communication between ynlike component types 1s routine, that
members of any passive component type do not communicate with each other. and that all
- component types are treated as though they were passive unless otherwise specified In short
the implemented constraint may be phrased: " Account for K-edges only between critical
components of unlike type in the PMS structure, and not between critical components of like
type uniess specified by the user.”

€.9.2.3 Effect of constraint on algorithms

The implementation of the Intra Component-Type communication constraint affects the
Kernel aigorithms in two ways. First affected is the manner in which the PATHREL algorithm is
used in the initial path generation phase when path-CRPs are hash-coded away for later use.
The effect is in the way path-CRP computations are carried out for critical components in the
Kernel. Path-CRPs are generated with the PATHREL algorithm for a pair of critical
components in the Kernel it and only if they'are of unlike types. Thus later, during the
Overlord main loop iterations, when in the DoCore function the path-CRPs are fetched for
some Compasitions Table state, no CRPs will be found to exist for pairs of components of like
type. Thus the DoCore function will assume that no paths exist between such components.
which is. of course, the desired effect.

Thre second effect is in the way the DoCore function attempts to find paths from interface
vertices to other interface and/or critical components in a given CCKS. In each state of the
Compositions Table, for each PTS a set of component types is computed. This se! specifies
what various distinct types of critical components have been chosen from the PTS for the
current Compositions Table state. Thus for each interface vertex it is always xnown which set
of component types within its PTS are exchanging information with the ¢ritical components in
the Kernel and in other PTSs. There are two cases in which it would be superfluous to find a
path from that interface vertex to another vertex in the CCKS, namely:

1. Components of exactly one component type are currently active in the PTS of this
interface vertex. It is proposed to find a path from the interface vertex to a critical
component which is currently active in the Kernel. The path :s superfivous, f the
component type ol that critical component is the same as the singie component

type which is currently chosen in that PTS. Note component types explicitly
indicated by the usar are exempt from this check.

b hd

170 Overlord Routine

2. Components of exactly one component type are currently chosen in the PTS of
this interface vertex. It is proposed to find a path from this interface vertex to the
interface vertex of a second PTS. The second PTS also has currently chosen
components of exactly one type. The path is superfluous if these two currently
chosen types in the two PTSs are identical. In other words according to the
constraints no paths must be considered between vertices which act as channels
between critical components of the same type. Note: Again, component types
explicitly indicated by the user are exempt from this check.
In all other cases, i.e. if components of more than one type are currently chosen in a PTS,
then there will be at least one critical component in the PTS and another in the Kernel, or
another PTS, which are of unlike type and thus the paths‘ from the interface vertex of this PTS
to those other vertices are meaningful and must be considered for their reliability

contribution.

6.9.3 Bounded Clustering of Critical Components

6.9.3.1 Need for constraint

The reliability computation for PMS structures differs in yet another way from the classical
network reliability computation. We have seen that a major difference is that vertices of the
PMS interconnection graph are not homogeneous and are classified naturally according to
the distinct types of components present in the system. in addition to the Communication
Axiom, the PMS system reliability is predicated upon a minimum number of pivotal
components, termed critical components, being functional in the structure. Since there are a
variety of component types represented in the structure, this stipulation on the minimum
number of functional critical components requires to be strengthened to account for
component types. We thus arrive at the minimal requirements which stipulate non-zero lower
bounds on the number of components of each critical component type, which must be
functional as a precondition to system success.

There is, hov »ver, a more subtle issue to be considered; one which forms the subject of
this section and the reason for this third side-constraint. in many cases of PMS structures, a
simple lower bound on the overall number of critical components of a particular type being
functional, provides insufficient information for reliability computation. It is necessary in these
cases to account in addition for the phenomenon that components of differeant types may be
interdependent on each other in some facet of their operation, For instance, if some number
of functional components of one such type occur in a particular substructure of the system,
then it may be essential that at least a certain other number of components of an
interdependent component type also be functional in the same substructure of the system to

RS

. e ia

Overlord Routine 171

achieve system success. Thus in a functional system of this type. ¢lusters of tunctional critical
components belonging to these interdependent types will be observed in the various
substructures of the system. Furthermore, there will usually be a lower bound on the number
of components of each critical component type in the cluster. We term this phenomenon

Bounded Clustering of Critical Compganents.

As an example of this phenomenon consider a multiprocessor system composed of say
eight processor buses, each with two processors and, say, eight local memory cards. and a
bus-arbiter, amongst other components. Assume that these buses are connectec together in
some fashion (which is not of importance at the moment) so that it is always possible to satisfy
the Communication Axiom if the minimum number of functional processors, memories and
bus-arbiters are available. There are then a total of 16 processors, 64 memories and 8 bus-

arbiters. Now say that a minimum requirement is
Y(4,Processor) A ¥(8.LocalMemory) A {4, BusArbiter) {(6.3)

This gverall stipulation aliows too much latitude. We do not, for instance. consider a
processor bus to be functional unless its bus-arbiter is functional. Additionally it may be
necessary 10 have, say, two functional local memories per functioning processor on the
processor bus. Therefore, it is useless to consider a system state wherein four processors are
functional, two each on buses A and B, say, eight memories functional on a third bus C. and
tour bus-arbiters functional, one each on four other buses D, E, F and G. This would clearly
not be a system success state although it satisfies the overall requirement expression (£.3)
above.

On the contrary it is to be noted that a processor bus will be considerec tunctional only it its
bus.arbiter is functional and at least one of the two processors ancd two of the eight local
memories on that bus are aisc functional. This represents a bounded clustering, in the
processor-bus substructure of the system, of the critical component types BusArbiter,
Processor and Memory. The lower bounds on the number of functioning components of each
of these three types in the cluster are conveyed by the following set of inequalities:

Number of BusArbiter > 1

Number of Processor 2 1

Number cf Memory 2> 2 * Number of Processor

h—-—-......._________________& e

P,

172 Overiord Routine

in general an arbitrary set of such inequalities may be specified which constrain the number
of functional components of the various critical component types which are specified in the
bounded-cluster constraint. Thus when the requirement integers in expression (6.3) above
are fragmented over the various processor buses, these inequalities must be kept in mind for
each processor bus.

The bounded clustering constraint, therefore, seeks to allow the user of ADVISER to
specity which critical component types will cluster in the system and what the inequalities are
which effectively place lower bounds on each critical component type in a cluster. Note that
there may be several different kinds of clusters each with its own subset of the set of critical
component types in the structure.

Two difficulties in handling the inequalities are to be noted here. First, if general sets of
inegualities are allowed then the program will have to check before it even begins
computation that these inequalities do have solutions. In other words an integer programming
problem has to be solved for each set of inequalities. Of course. a brute force approach could
be employed wherein all feasible states of the Compositions Table are checked against the
inequalities. If none satisfy the constraints then the constraints are unsatisfiable for the given

K
probiem.

The second difficulty is arriving at an interpretation of the possibility that two user-specitied

cluster constraints address non-disjoint sets of critical component types. The author's current
thinking is that if such intersecting cluster constraints are specified then a compound cluster
constraint should be considered instead which has respectively the union of the intersecting
sets of component types and the union of the sets of inequalities.

Note: At present the ADVISER program implements only a weaker version of the cluster
constraint. Instead of allowing inequalities in their full generality it allows only a lower bound
to be specified on the number of functioning components chosen from one of the cluster
types. i does not allow the relating of numbers of chosen components of different types. Thus
it is not currently possible to specity an inequality of the form

Number of Memory 2> 2 * Number of Processor

This deficiency had an effect during the experiment on ADVISER with the PLURIBUS
architecture which is described in Chapter 7.

Overlord Routine 173
6.9.3.2 Effect on Aigorithms

The bounded clustering constraint in the ADVISER framework is applied to the
substructures of the PMS graph which are represented by the PTSs and the Kernel. The
bounded ciustering constraint directly affects the main loop of the Overlord routine. In the
absence of this constraint. the process of generating the next feasible state of the
Compositions Table produced a candidate feasible state for evaluation by the DoCore routine
when the set of compositions in the rows of the Table satisfied the ypper bounds placed on
them by the resources available in each segment of the PMS graph. In the case of the
bounded clustering constraint the inequalities effectively impose lower bounds as well. What
were previously feasible states of the Table may no longer be so.

The constraint is implemented simply by examining each candicate feasible siate of the
Compositions Table as it is generated and before it is passed to the DoCore routine for the
Communication Axiom test. The inequalities are tested for satisfaction against the values of
cells in each column in the Table for the candidate Table state. Recall that if components of
one of the types specified in a cluster constraint are chosen from a given segment, then
components belonging to a// of the other specified types must also be checsen from that
segment, subject of course to the inequalities. Each column of the Compositions Table
represents one segment of the PMS graph. Each column in the candidate feasible state of the
Table is examined to discover whether the given cluster constraint applies to it. In other words
the constraint applies to the column if one or more of the non-zero cells in the column
represents one of the component types specified in the constraint. if the constraint applies to
the column and the non-zero cell values in the column do not satisfy the constraint

inequalities then the candidate is discarded and the next feasible state is generated.

There is one subtlety in these tests which must be kept in mind and is bast explained
through an example. Suppose that some cluster constraint specified by the user of ADVISER
contains the following ineguality

Number of Processor > 2 (6.4

Assume that this constraint is applicable to a segment which has more than two critical
components of type Processor. In other words the segment is able to satisfy the inegquality
(6.4). Now assume that one of the fragment atomic requirements imposed on the segmenrt.
during the fragmenting of the overall requirement on the FS graph. is ¥(1 Processor) In
other words the cluster constraint is stronger than the atomic reguirement "at least 1 of

Processor” which will also be satisfied by two or more functioning processors. However, if

ooy

. e e e ———
e ot L ST
T TV T

—r—
]
,
i8] - .
L I @ .
ww. D : o Ll .-
- O s = < A5 e
5o @ & & o - .
(r LA N - R . “ [} IS
v £ L = W " PO o o oot
g 5 7 o a L 27 £ & ol
e > . 3 I's G . [€ -
m ”S 4 » O g 5 — FAN A (h a6
2 k @ G ™ R o1 e ¢ -
Q & 5 o M.m A.v. I ¢ m M.\“ b 2] i M\
P PR 4)
I -0 o o) £
g - " el P L L o1) .
Mw 3 Mm_ = & .QW C m £ ™y Iz P £
= (eI ¢ [R -t . L
’ »w o O a 2 9 > I L ot Yo
ar_w e £ < ‘- o .n_w < m t- By A 72} o P - onu
' e S x . mo e O ™ “w -
S T e 2 [AW R N R i
«© O O [) - - -~ .) - .- "y Aw
20 S n S) i B
€ 9 ¢ 2o > 08 a0 g X
= - ; L
! S A s a o 2 oz £ N a 5 won
23w “: D6 ul e byt 3 o om eow) “ “w
S5 o8 £ U 2 9 5 9 T ¢ 0 ow o
(8] w s o [SEEECRE 2 s O w n
R o 43} 2 8] [$9] > A B v oY . . .
[S T L o £ . — in * ¢ 3 O .
oo E sy - — o [] 1 4 0
s A > [O EI— £ . - (&
i ~ O 6 »oco~ bob SR
[") w? 1) py [? poy th P MJ . ~ .- -
c o = e Y. T S e -
= Ry .. Moo .. O 5, w : 3
-~ oy s’ 3¢ [. oy — o " e A [L 7S <
> . Uy i aq g € [sa) o D “ i m '
Y S~ o ot T PES S ¢Y m N D
P B =) . IR Q 5 L .= A n -
o0 6 g2 PEA S = SE RO A S U i
o 5 K = Mmooty 0 C oG T 2N o 1
£ 2 - : R e A o
2 3 G g = £, £ O BE SR LR s O
ar T Y - *: R I [SRS - i 3000 .
SRS 35 [R T O fus] D F a2 L2 "
SR £ TR S m,v £ v ¢ & - i
- - .z = <o = o Y 1Y R - R
RS S5 L] nu 3 © aB LA o AT
B 3 Nw = m < 3) (Y. © s .,w £ w: .z nw &
» B w - P «m O LN BB - KGN
RS T VI L AP ‘ . N B s
. - A2 (97 L- ¢ ATy ot C 7 - " L) & [o} a- N
> 9 & <= o0 o I woo R SR v < 0
. s © » révl o O - @ - - -, -
— e - -3 Y] wt a.
= 2o 200 0 o) = 0 U A
v oC G o » S -~] &) ¢ « oo
$ocoE g = £ oo 5w T b goa ¢ g5
s » 2 oo O o W O o
a < 3 & ®» O . W : 2 w0 . 9 N
G 7 =R N a D T g - > = SATS B AN
£ s km. voQ & noo) > S P ¢] o o
> « A 3 *3 — oot 9 O 3 . A -
3 » 3w a0 ao c a5y S A -t o Q
Y e o 2 «“ 0« 0. 3 - o D o g .o T
Vv T o o= L [o RS £ i G @ .
£ - — V\W T . o B o - - . "
| e 4) - £ Pt [Lo 0 Y ..
- - @ - a0 Y b1 .. [%) — Q 2 o - -~) n 0 I T
s & £ 5 8 o Ew o, NS < o oo oo 9
o » 3 .m»u v < [R ,M\.. RIZENGY < c W .m.v LU O N
< £ . E o 3 S I SO 1 O £ om0 S i > U r @ v
= o WU O vw T o W» -~ o v Bt [-5 f o O
= D D o 9 = O < D < ~— - % = < 3 o) ST a
-~ O n ¥ x > o o o Q : = » c 0 O [N T @ c ®
N0 0 {e] o 3] e Yon . TSI =
.n.u. m (73] bad o a3 o £ e -
M O e B O v
- O 3 o %
w o)

Overlord Routine 178

represents the system reliability function. The section ends with a description of the way in
which the simplified system CRP is printed out.

The reader will recall from Chapter 3 that the juxtaposition of two factors in a CRP term
represents the SMERGE ol the probabilities represented by the factors. In the case of
component probabilities, which are stochastically independent trom each other by our
assumptions, this SMERGE degenerates to a simple multiplication of those individual
probabilities. However, as we have seen earlier, the probabilities represented by a pair of
partial result CRPs can be interrelated if the subsets of the system components referenced by
them are not disjoint. Then the SMERGE operation must be carried out on the pair of partial
result CRPs to obtain the correct result. The method of generating these partial resutt CRPs
guarantees that two CRPs will represent dependent probabilities only if they are partiai results
for the same segment of the PMS graph. Use is made of this tact during the simplification
process. There are two important points to be made at this juncture, namely:

1. The SMERGE simplification will take place to a recursive depth of only one leve!.

This is because the partial result CRPs themselves are devoid of AUXVECs in
their terms.

2. The partial results for the PTS segments are all assigned bits in the AUXVECs of
system CRP terms. Thus any NORMVEC bits in any term of the system CRP will
reter to only the reliabilities of components in the Kernel.®* Hence during ths
SMERGEing of CRPs represented by the AUXVEC bits of a term in the system
CRP. the NORMVEC bits do not come into play since they are guaranteed to
represent probabilities which are independent from those of the PTS partial
results.

Due to the above observations, the NORMVEC and AUXVEC bit vectors of any given CRP
term may be treated independently. The results may then be simply multipiied. In the following
paragraphs the treatment of the AUXVEC and NORMVEC bit vectors are described separately
for a typical term which has both a NORMVECT anc and AUXVEZL bit vector. The goal is to do
any SMERGEs which are indicated thus leaving only those juxtapositions of bits which Zenote
multiplication by virtue of their represented CRPs being independant probabilities Finally
the remaining multiplications are converted to exponentiations wherever two juxtaposed bits
represent CRPs. which though representing independcent probabilities are similar in form (i.e.
share the same template) and, therefore. numerically evaiuate to equal quantities. After this
final simplification step the symbolic reliability function is printed out.

a‘Exctud'nq Intetace vertices The reiabiilies of these are accouniec for ir the tomputaten of the partiai resu?
CRPs for the PTSs See Secton 8.5

176 Overlord Routine

6.10.1 NORMVEC processing

The bits in any NCRMVZC bit vactor are known 1o reprasent individual comporent
probabilities which, by assumption, are stochastically ind2pendent. Thus all juxtapesitions of
1-bits in the NORMVEC simply denote multiplication of the appropriate probabilities. In view of
this, al! pairs of bits in the NORMVEC ars compared. If two hits represent components of the
same type then thair reliabiiity tunctions are identical™ and, therefore, the symbol for
reiiability of the hpe to which both the components belong. is raised to the powar of two
Evary succeading bit which rapresents another component of the sam= type simply causas
this power o be inc. ementad by one. At the end of this processing. the simplified NORMVEC

will consist of 2 s2t of factors 2ach of whic* is a symbol for a componant hyne reliability raised

to a power. The power of a factor is simply the number ¢f bits in the vector which reprasentad
a component of the same type as the factor represents. it is now obvious why part of the
description of each component type. which was input by the user at the beginning of the
program run, censisted of a "print-name” for the component type. Thesz print names are the

tactor symbals referred to in this paragraph.

6.10.2 AUXVEC processing

During the simplification of the AUXVECs. for each pair of bits set to one in the AUXVEC ¢!
the term, the bits in the pair are comparad on the basis of the p:artial result CRPs which they
represent. It the CRFs werz derived from difierent segments of the PMS graph then the sets of
compeonients they referance will be disjoint. Thus identical numerical results wili be obtained |f

they are
- SMERGEd and ths rasulting CRP is numerically evaluated, or

~the individuai CRPs are numerically evaluated and the resuliing numbers
multiptied.
Hence, in such cases, the SMERGE is not performead and the bits ars 128 undisturbed. ¥ the
two bits baing compared represent CRPs darived for the same segment of the PMS graph
then the SMERGE is performed to give a third CRP (devoid of AUXVECSs) which is then addsd
t0 the Partial Results Hash Table and assigned a unigue symbol of its own. It ¢ also latalled
with the identities of the two "parent” CRPs which were SMERGEJ to form it This is Jons

since the same situation may occur in the simplification of another term in the CRP anc the

35;\.; noted in Chapler 21 woulC Se prefe-able !¢ aliow 3@ par OF comperents ¢ De 2'ass el 2s Delinping ic ‘he
same type whie having Jit'ere~! ~ehabiity tunctions This 15 a8 simgie matter of changing the furctions in ADVISIR
whiC™ accent e prodiem desyphion, and the cnange t¢ the NORMVED pracessing 8 obvious andgd triviai

Overiord Routine . 177

cost of the SMERGE may be avoided if the result was computed earlier and can be founc in
the hash table.

For each pair of AUXVEC bits compared there will be eight possible cases to be considerec
based on the hash keys of the partial result CRPs represented by the bits. Recall from Section
8.5.1.1 that a partial result CRP for a given PTS was uniquely identified by three attributes
namely

(i) The PTS segment of the Neighbors Class Graph G* which represents possibly
several symmaetric PTSs of the PMS graph G of which the given PTS is a member

(i) The root vertex of the given PTS of G which distinguishes it from its symmatnc
“brothers”, and

(iii} The atomic requirement for which the given CRP was derived.

The last item actually identifies a template in the Templates Table, anc s¢ two part:al result
CRPs are considered to be the same idantical CRP it their PTS segments in G arz in the same
PTS of G’ (set of symmetric PTSs); their PTS segments in G have the same root vertex; and
they derive from the same template. The eight cases described below are based on equality

checks on these three attributes of two CRPs being compared:

Case O Ditferent segment of G'; Different root vertex; Different template:
These are two completely diferent CRPs. They, theretore, represent
independent probabilities and we may algebraically multiply them.

Case 1 Different segment of G'; Different root vertex; Same template
This is an impossibie case. A template CRP will refer to the reliabilities of
components in one of a set of symmetric PTSs of G (see Section 6.5.1.2).
Therefore. if two CRPs are to have the same template they must also at
least be derived for the same segment of G° (ie. the same set of
symmetric trees).

Case 2 Diftferent segment ot G'; Same root vertex; Ditferent template:
This is an impossible case. Two PTSs canncot have the same roct vertax
and belong to different segments.

Case 3 Difterent segment 0t G'; Same roct vertex: Same tempiate.
Impcssible for the same reason as Case 2.

Case 4 Same segmentof G'; Ditferent root vertex; Different template
The CRPs in this case were derived for diterent PTSs in the same set ¢
symmetric PTSs. Thus, the CRPs represen: ingecengan~! D anabiites
since their relerenced comoponent sets are disjoini. They may pe directiy
multiplied in the simplified reliability function.

Case 5 Same segmentof G'; Different root vertex; Same template.

DRI e)

178 Overiord Routine

The PTSs are two symmetric trees in the same set. The fact that the
templates are the same implies that the CRPs compute the reliability of
physically symmetric PTSs under the same atomic requirement. Thus.
numericaily. the two CRPs will evaluate to be equal. Consequently we may
algebraically square the template to get the equivalent value. More
precisely, the exponent count of the symbol for the template in the current
term is incremented by one. This is the power to which the tempiate is to
be raised at the end of simplification of the given system CRP term.

Case 6 Same segmentof G'; Same root vertex; Different template:
Both partial result CRPs in this case refer 10 the same PTS of G but were
derived for different atomic requirements. Therefore, they represe~!
dependent reliabilities and mus! be SMERGEC. The result of the SMERGE
is entered into the Partial Results table with a new index.

Case 7 Same segmentof G'; Same root vertex; Same template:
This is an "impossible” case. It implies that a given partial result was not
assigned a ynigue bit in the AUXVEC

6.10.3 Final algebraic simplification

During the first pass over the system CRP the NORMVEC and AUXVEC simplifications are
performed on each term in the CRP. The result of this first pass is that all SMERGESs which
needed to be performed have been carried out and only algebraic r. "iolications remain.
Repeatec occurrences of juxtapositions in different CRP terms of the same two bits which
require SMERGEIing of their CRPs will cause the SMEGE to occur only once. Whereupon, the
resultant CRP will be inserted into the hash table and appended with the identities of its
“parent” CRPs. This enables avoidance of redundant SMERGE operations. Note that several
terms in the simplified system CRP so far may reference the same set of templates. The
numerical evaluation of the system CRP can take acvantage of this fact by computing the
numerical values of the template CRPs just once and using them repeatedly for each term
which references the corresponding templates. /n software terms, program statements may
be gereratec which evaluate each template CRP and store the result in a temporary variable

whicr bears as its name the unique symbo! of the CRP.

A final O(N?/2) pass is made over the simplified system CRP thus far to do algebraiz
simplification. This consists in comparing each term in the system CRP to each of its
successors in the list of terms and, in case of equality, algebraically adding the signed
coefficients. Where the addition leads to zero, the terms have cancelled an¢ may be
discarded. At the end of this simplification process the resulting list of terms represents the

system reliability function and is ready for printing out.

Overiord Routine 179

At this point we also note that, preparatory to printing out the results. the template CRPs
also need to be simplifiad before they can be output. Since all the template CRPs generated
during the initial phase of partial result generation have only NORMVECs. the simplification ¢f
their terms is carried out in the manner of Section 6.10.1. Finally, they too undergo algebraic

simplification as above.

6.11 Printing of Results

At the present time, the ADVISER program is able to print out the computed symbolic
system reliability function as the tex: of a program mcodule which computes tne funclon
Currently the program text may be in either FORTRAN or SAIL {Reiser 76]. The module may
then be compiled and loaded along with other software which may make use of it to draw
plots, or for other numeric computation. An third output mode causes ADVISER to print the
function in a simple expression syntax, unencumberead by programming constructs. which will
make it suitable as input to the symbol manipulation system MACSYMA [Macsyma 77] (see

Chapter 7 for examples of how the MACSYMA option is used).

Figures &-15 anc & 16 show the output for a simple reliabitity function in FORTRAN and
Sall resaectively36 The component type definitions. PMS structure definitions and the
requirements expression have bean output ac comments preceding the program statements.
Each prograrm module consists of a sub-program or procedure whose name may be supplied
by the user but defaults to RSYS if not supplied. The program. since it computes Rsys(t). takes
a parameter T which is the time at which the system reliability is to be determined. A single
floating point value. Rsys(T). is returned by the procecdure. Another teature. which will be
noticed in these programs produced by ADVISER, is that variables are ceclared, one for each
component type. bearing as their names the print names declared for the respective
comporent type {see Table 2.1 in Chapter 2). Each variabie is initial:ized to the computad
reliability of a component o the types reprasentec by the vanabie, at time T specified as a
parameter t¢ the program. “hese values are then used in the computation of the temporary

variables and the main refiability function.

The temporary variablas introcuced intc the SAIL program (Tigure € 1€) are of the form T/
where n is an integer. Likewise, in the FORTRAN version (Figure 6-15) the ‘emporaries are

named XXxXm where m is also an integer. As was described eariier, ali the simpiified CRPs

36As an aid 1o reading the FORTRAN version we mention here that ail conunualan (nes are pretaec in towmn §
with 2 “$" sign

B e e

180 Overlord Routine

which were referred 1o in the various terms of the system CRP, via the Partial Results Hac*"
Table. are computed first. Their values are assigned to the unique temporaries as may be
seeh in the examples. These values are then used wherever required in the system CRP. A
question might arise as to whether the final simplified system reliability function wouid have
less terms if the templates were back-substituted into it and algebraic simplification were
carried out. This would be true in the case of completely symmetric PMS structures which
would vield algebraically simple, factored reliability functions. However, any slight asymmetry
will cause the final reliabifity function to be less easily factorable, or not at all. Thus, in most
cases, this "factorization"” based on templates would seem to be at least somewhat beneficial
from the standpoint of numeric computation. If error magnitudes during numerical reliability
computation are a serious issue then the symbolic function may be factored using a symbol
manipulation program such as MACSYMA before the numeric computation is performed.

C-tcecmracemceamseasecmacececscsanacescacccacroaramoanem e oo
C ** FORTRAN Module for Reliadility function evaluation

C ** produced by ADVISER on Sungay. 25 Jan 81 at 22:09:45 for [4,13687)
Comvmmmmmeceracecocccacescecscmacacemsscecicmmcmceima seca-e-essmeea—ce-eesas
C ** Task Title: EXAMP.PMS -- Running example in thesis

C

C ** Requirements on the Structure were:

C

c (1-0F~CPU AND 1-0F-MPR AND 1-0OF-MSH AND 2-0OF-DSK)

c

C ** Component-Type definitions for this task:

C

C INDEX TYPENAME PRINTNAME REL.FN. PARAMS

L =eme= cmcecece sccsceca. crecace eccees

[« 0 M.SHARED MSH Expon. Lambda= .00100000

c 1 CPU CcpPu Expon. Lambdas .00200000

c 2 BUS BUS Weibull Lambdas .00010000

[« Alpha= .80000001

C 3 LINK LNK Weibull tLambda=z .00100000

c Alpha= 80000001

C 4 M.PRIMARY MPR Expon. Lambdas .00100000

c 5 DISK Dsx Weibul) Lambda=10.00000000

c Alphas .83000001

o 6 K.DISK KOK Weibull Lambdas6€.0000000¢

C Alphas 89000001

AD~A112 713 CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER =-ETC F/6 9/2
AUTOMATIC GENERATION OF RELIABILITY FUNCTIONS FOR PROCESSOR=MEM==ETC{U)
FEB 81 V KINI NO0018=77=C~0103

NL

UNCLASSIFIED CMU-CS=81-~121

10
1 jh=c
{ —I—==

= I
L2 e e

L A Y
..... st o M .

Qveriord Routine 181

C ** PMS Structure Definitions for this task:

¢

C INDEX NAME TYPE NNEIG NEIGHBORS

c pRp— csme emese meesenssew

¢ 0 MSH.1 M SHARED 2 (P.1, P.2)

¢ 1Pt cPU 2 (MSH.1, S.1)

c 2 .2 cPy 2 (MSH.1, §.2)

¢ 3 s.1 BUS 4 (P.1, L.1, MP.1, K.1)
¢ 4 5.2 BUS 4 (P.2, L.1, MP.2, K.2)
¢ 5 L.t LINK 2 (S.1, 5.2)

¢ & MP.1 M_PRIMARY 1 (s.1)

¢ 7 MP.2 M. PRIMARY 1 (S.2)

¢ 8 x.1 K.DISK 3 (s.1, 0.1, 0.2

¢ s K.2 K.0DISK 3 (S.2, D.3.D. &)

C 10 0.1 D1ISK 1 X, 1)

¢ 11 D.2 DISK 1 {K.1)

¢ 12 0.3 DISK 1 (k 2)

¢ 13 D.4 DISK 1 (K.2)

¢

c ...
¢

C ®** Begin Reljabilily Function evaluation code:
REAL FUNCTION RSYS (7).
IMPLICIT REAL (A-2)
WEIBUL(LAMBDA ALPHA TIME)sEXP(-(LAMBDA®1E-E*TIMEI ®e A PHA)

MSH
cru

= EXP(-C.0C1000 * 1E-6 2 T)
= EXP({-C.0C2000 * 1E-6 * T)
BUS = WEJBUL({ €.COC100 . 0.90000C . T)
LNK = WEIBUL{ €.001000 , 0.90000C ., T)
MPR = EXP(-C.001000 * 1E-6 * T)
DSK = WEIBUL(10.000000 , 0.930000 , 7)
KDK = WEIBUL(6.000000 , ©.890000 , T)
C ** End of expressions for calculating individual reliabilities:

XXXG = BUS * MPR
XXXl = BYS * DSXx**2 * KDX
XXX2 = 2.C * BUS * DSK * XDX - BUS * DSk**Z * XDK

XXX3 = BUS * MPR * DSK**2 * XDK

XXX&4 = 2. * BUS * MPR * DSK ® KDK - BUS ¢ MPR * DSK®®*2 *
$XDK

C ** End of templiate evalyating expressicns;
MODREL = ¢

MODREL = 2.0 ® MSH ® CPU ¢ XXX3 - MSH ® CPU®*2 ® XXXl**Z -~
$2.0 * MSK ® CPU®®Z * LNK * XXXC ® XXX3 - 2.0 * MSH * (Pye*z ¢
SLNK ® XXX3 ® XXX3 + 2.8 ¢ MSH ® CPyu®®2 ® LNK * XXX4& * XXXZ

$ - 2.0 * MSH * (PU®*2 * (KK * XXX3 ® XXX2 - 2.0 ® MSH *
SCPU®®2 * LNK ® XXX4 & XXX1 - MSH ® CPU®®2 * LNK ® XXX4®%2
$2.0 * MSH ® CPU®®2 * |NK ® XXX4 % XXX3 ¢ MSH ® CPy*e*2 * LNK *
$XXX3**2

C ** End of System Reliadilfity computation:

ar.3,

182

RSYS = MOOREL
RETURN
END

Overiord Routine

Figure 6-15: An example of a computed reliability function printed in FORTRAN

COMMENT

SAIL Mogule for Reliability Function evaluation
produced by ADVISER on Sunday, 25 Jan 81 at 22:10:16 for [4,1367)

...

Task Title: EXAMP.PMS -- Running example in thesis

Requirements on the Structure were:

(1-0F-CPU AND 1-OF-MPR AND 1-OF-~MSH AND 2-0F-DSK)

Component-Type definitions for this task:

INDEX TYPENAME

0 M.SHARED
1 CPU

2 8US

3 LINK

4 M.PRIMARY
5 D0IsK

6 X.DISK

PMS Structure Definitions for this

INDEX NAME

..... P

MSH .1
P.1

COO0OODOXRXXXIrULWmO
~ o

- N e R s

PRINTNAME

MPR
DSk

KDK

TYPE
M.SHARED
Cru

CPy

8uUs

BUS

LINK

M. PRIMARY
M. PRIMARY
K.DISK
K.DISK
DISK

DISK

DISK

DISK

REL.FN.

Expon.
Weidbull

wWeibull

Expon.
weibull

wWeibull

PARAMS

Lamddas .00100000
Lambdas . 00200000
Lambda= 00010000
Alphas .80000001
Lembdas: .00100000
Apha® .80000001
Lambda= 00100000
Lambdas10.00000000
Alpha=z .83000001
Lambda=6.00000000
Alphas .89000001

task:

NE IGHBORS
(P.1, P.2)
(MSH.1. S.1)
(MSH.1, §.2)
(P.1, L.1. MP.1, K.
(P.2, L.1, K
5.2)

COMMENT Begin Reliadility Function evaluation code;

ENTRY RSYS;

BEGIN “Declaration!

Block”

escavsscan ctecaccemen sAmssmmrmaca

el ik ae

B e o —s—————

Overlord Routine 183

INTERKAL SIMPLE REAL PROCEDURE RSYS (REAL 7).
BEGIN “Calculation!of!RSYS"

REAL !'System'Relianility;
REQUIRE *(}<>" DELIMITERS:
DEFINE WEIBULL(LAMBDA ALPHA) s {EXP{ - (LAMBDA * 18-€ * T)sALPHA}),
REAL
MSH,CPL.BUS,LNK ,MPR, DSK, XDK
; COMMENT End of ingividua) Relisbility Function variable declarations,
REAL
ITIGITIL T2, 1713, 714
COMMENT End of template variable veclarations,
MSH - EXP(-0.001000 * 18-6 * 1),

CPU ~ EXP(-0.002000 * 18-6 * T);
BUS « WEIBULL(0.000100 , 0.900000);
LNK = WEIBULL(0.001000 , 0.9000C0C);
MPR = EXP(-0.001000 * 18-6 * T):
OSK « WEIBULL(10.00005C , £.930000):
KOK « WEIBULL(6.000006 , 0.830G(C):
COMMENT £nd of expressions for calculating indgividual reliabilities,
1710~ ,
BUS * MPR 1
'TH1e .
+ BUS * DSK+2 * KDK 1
T2~
2.0 * BUS * OSK * KOK - BYS * DSK+2 * KOK i
1713~ '
BUS * MPR * DSK*2 * KDK
1T 4. '
2.0 ®* BUS ® MPR ¢ DSK * KDK - BUS ® MPR * DSKh*2 * KDK
E COMMENT End of template evaluating expressions;]
!

: !System!Reliability~0;

tSystem'Reliadility~

2.0 * MSH ® CPU * T!3 - MSH ® CPU*2 ® 'T13e2 + 2.0 ¢

MSH * CPU*2 ® LNK ® T!Q ® !'T'1 - 2.0 * MSH * (PU+Z ® [NK *
'TI3 % !TI0 4 2.0 ® MSH * CPUCZ ® LNK ® !T!& * T2 - 2.¢
* MSH * CPU?T2 ™ INK ® 'Tt3 ® T2 - 2.0 % MSH ® CPU+2 *®

LNK ® !T!& ® 1711 -« MSH ® CPU+2 ® LNK ® !T'422 + 2.0 ¢

MSH ® CPUTZ ® LNK ® IT14 * IT!2 + MSH ® LPU*2 * LNK * 'T!3+2
: COMMENT Eng of System Reliability computa icr

RETURN (!System!Reliability).
END "Calculation!of!RSYS",

END "Declgration!Block”;

Figure 6-16: An example of a computed reliability function printed in SAIL

- It T m

184 Overlord Routine

6.12 Summary

This chapter has provided an overall view of the ADVISER program while giving specific
details as regards the Overlord routine within it. The Overiord routine controls and
synthesizes the efforts of subordinate functions in the program.

The initial task is to input the problem specifications which, in order, consists of the PMS
component-type definitions, the PMS interconnection graph, the boolean requirements
expression, and side-constraints, if any. The PMS interconnection graph is then analyzed for
symmetries which might help in reducing the total amount of computation necessary. Any
pendant tree subgraphs of the PMS graph are then isolated and form the known-segments
apart from the Kernel. The basis for such a segmenting of the graphs is that special reliability
computation techniques are known for known-segments but only simple pathfinding methods
are applied to the Kernel.

The next step analyzes the booiean requirements expression t0 determine what atomic
requirements will ever be applied, during the course of the computation, to any given known.
segment or the Kernel. Partial results are computed for each of these known-segments for
each atomic requirement imposed. The partial results are then hash coded for quick recovery
during the several occasions in which each partial result is expected to be used. Any
symmetry in the PMS graphs is exploited here by computing partial results for one of a set of
symmetric subgraphs and extending them {0 the rest by storing the results as templates.

Requirements expressions containing disjunctions are converted to a disjunction-of-
conjunctions, or sum-of-products form and only pure conjunctive requirements are passed to
the Overlord routine main loop. The partial result CRPs resulting from these pure ¢onjunctive
requirements are finally PMERGEJ to provide the system CRP.

The Overlord routine then enters its main loop for each purely conjunctive requirement
passed to it. Here cases are generated of instances where the functional required
components are scattered in various ways throughout the structure. Each case is checked to
see if its particular scattering of components satisfies the Communication Axiom and the side-
constraints (if any). The computation of the reliability contribution of the Kernel is crucial in
this determination and is deputed to the function DoCore. Each case which satisties the
Communication Axiom represents a subset of system success states. The contribution of
such cases is accounted for in disjunction by using the PMERGE algorithm, since any one of
them may provide a functional system.

PRTRTRSC

Hata

Overiord Routine 185 |

The canonical reliability polynomial for the system, resulting from the PMERGE of the CRPs {
returned by the Overlord routine operating on the pure conjunctive requirements, is simplified 1

by taking into account the fact that identical components have identical reliabitity functions.

The ADVISER program finally prints out a program which computes the system reliability at a

P

time T which is passed to the program as a parameter. This program may be compiled and

loaded with other programs which desire to utilize the computed reliability function.

a2t auade v

o~

o e s
abblid i o

: 4 T g TR TRT Y T T T e T T e g e e T T —
1 -

———
Examples and Results

—-—-'---———--———--——-------———--'-_N

Examples and Results 187

Chapter 7
Examples and Results

This chapter describes ex.eriments with the ADVISER program which were used ‘o
validate the reliability tunctions produced by it. thereby raising confidence in its useability.
The ADVISER program is written in the BLISS. 10 language {Wulf 71] for the Digital Equipment
Corp. PDP-10 architacture. The program occupies approximately 40K 36-bit words of memory

and automatically expands to accommodate problem sizes.

7.1 Validation of ADVISER

In programming practice. programs of any reasonable size may usually be expectad to
contain errors when initially constructed. Usual methods of program testing include
generating and using sets of test input data which will cause all paths of fiow of control
through the program to be exercised. if the input data and output results are such that they
can be easily duplicated by hand or engender confidence of correctress upon simple
examination then the testing process is easier and can be made very thorough. Testing is
much harder in the case of a program such as ADVISER where the rationale for building the
program is to compute reliability functions which wouid otherwise be 160 tedious, complicated
and subject to error when produced manually. It is difficult in addition to cursorily examine a
oolynomial and pronounce it as being the correct system raliability polynomiai for the given
PMS structure under the given requirements. On the other hand. it is also the case tha'
complex programs such as compilers are never fully debugged whereas user conficence in
them grows with prolonged use and with experience as to which types of input data are linely
to cause errors in the output and should be avoided. It would appear that short of doing a tull
scale formal veritication of ADVISER its usefuiness would have to be determinec over a period
of time during which intensive use would expose most major errors. Until such time as
confidence in the program is sufficient its output would have to be viewed with at ieast mild
suspicion.

Under these conditions it was decicded that initia! tests of ADVISER should proceed aiong
two major avenues. namely

.

Sabanbd

i b e ek L Te e

188 Examples and Results

- Compute the result for a set of representative PMS structures, both using
ADVISER and "by hand” (i.e. largely manually although assisted by machine in
some ways so as to relieve tedium). Choose the structures so that they represent
the major types of structures which are planned for in the program.

- Use the results of other efforts by independent researchers and compare them to
the output of ADVISER applied to the same problem.

In Sections 7.2 and 7.3 we describe both kinds of tests which were conducted with ADVISER.

In addition to inspection of the output of ADVISER, at least one other form of check proved
to be so useful during the debugging of the ADVISER program that it is now standardly
performed for each CRP which is ever manipulated in the program. For any reliability function
the following two properties hold true:

1. The setting of all the factors in al! its terms to zero should cause the function to
evaluate identically to zero.

2. Likewise, the setting of all the factors in all its terms to unity should cause the
function to evaluate identically to unity.
In order for Property 1 to hold true the function must not have a constant term. This is already
true of CRPs as ADVISER uses them and thus the first property uniformly holds true for CRPs.
For Property 2 to hold true the sum of the coefficients of all the terms in the CRP must be 1.
This is s0 since all the polynomials manipulated by ADVISER are in canonical form. This
boundary-value test is simple to conduct and it is performed in ADVISER upon the result of
each SMERGE or PMERGE operation and, consequently, an the final system reliability
polynomial. This very simple "go no-go" expedient was instrumental in trapping many errors

in the program during the various stages of its construction and testing.

7.2 Comparison to manual calculations

Three types of PMS structures were chosen for the test in which the output of ADVISER
was compared to manually derived resuits. By manually derived results we mean here that the
analysis of the PMS structure and its functional states was done manually in order to produce
an intermediate representation (which is the usual current practice) and then a program was
used to reduce the intermediate form to the final result. The output from ADVISER was then
comzared with this result. The intermediate representation in the manual case was also
chosen to be the Series-Paralle! Reliability Block Diagram. The program constructed as an
aid to hand caiculation to help solve the intermediate representation was written in the
INTERLISP ianguage [Teitelman 78] which is a variety of LISP. The outputs of ADVISER and
the LISP program are both symbolic expressions and thus may be compared.

S A At b e it o e

e ————

Examples and Results 189

In mos! instances the comparison was too tedious to do by simple examinaticn. This was
true in particular because ADVISER introduces temporary variables which represent the
intermediate results genrerated during the computation. Thus in order to be atle tc compare
the two expressions. the symbolic values of the temporary variabies have 10 be substituted
back into the system reliability polynomial generated by ADVISER, and the latter aigebraically
simplitied. before comparison can begin. The MACSYMA program for symbol manipulation
[Macsyma 77] was an invaluable tool in this regard. Both ADVISER ang the INTERLISP
programs were constructed to output command files which wouic caus2 *he rasults of their
respective computations t¢ be loaded as polynomials into MACSYMA The lafter could then

be invokad to cornpare them.

The series of figures anc program output listings on the following pages wii! show the
results of three of the experiments. In these experiments three similar simple PMS
architectures ware chosen along with similar reguirements expressions. The interconnection
schemes of these examplas presented ADVISER with three cases which are dealt with 2ach
guite differently in the program despite their superficial simiiarity. Thes2 three exampies were
also chosan for inclusicn here in part to display the way in which the number of tunctional
states of a structure, and consequently its reliability functior, can change with a smali change
in the interconnection scheme of the PMS architecture. Only the results of using a single
requirements 2xpression per example are included hera for purposes of expesition although

other experiments were carried out with satisfactory results.

7.2.1 The DEC1.PMS example

We now describe the first of the thres axperiments in detail. The process for the other twd
experiments was very similar ang for them only the results of the ADVISER run and the hang

calculation are prasented in Section 7.2.2.

Figure 7-1 shows the first of the three types of PMS structures chosen for manual
evaluation. Two processors P.1 and P.2 can communicate through one or both of twe
interprocessor buses (S.1 and $.2) and 2ach has its own local bus (S.3 and S.4) with two diss
memories apiece (M.1 through M.4). The requirements chosen tor this structure were "¢ (1.P)
A Y(2.M)". Figure 7-2 shows the manually derived series-parallel reliability block diagram fer
this set of givens.

The SPRBD of Figure 7-2 is explained as foliows. Each path through the SPRBD trom

source to sink vertex describes one functional state of the PMS structure uncer the given

190 Examples and Results

PMS Diagram:

S.2

K.1 3 K.4
AN N/
P.1 P.2
5.3 5.4
L K.5—M.1 M.3—K.7—] :
L—x.6—Mn.2 M.4—K.8—

Requirements:

¥(1.P) A y(2.M)

» Figure 7-1: Exampie DEC1.PMS -- PMS Diagram and Requirements.

! requirements, both of which are shown in Figure 7-1. Appropriate arcs of the SPRBD are
numbered in Figure 7-2 so that the paths may be described. The single-arc path {1} indicates
that one functional state is achieved when the components in the set

{P.1,8.3,X.5.K.6,M.1,M.2} are functional. In other words the required one processor and two
disk memories are provided by the P.1 processor bus. Likewise the single-arc path {2}
indicates a functional state achieved when the requirements are met by he other processor
bus under P.2. The paraliel combination of the arcs {4} and {§} in Figure 7-1 describes the
fact that at /east one of the interprocessor buses (and the associated bus interfaces) needs to
be functional. Likewise, the four arcs {7}.{8}.{S]} and {10} in parallel describe the tour
possible ways of having two disks memories functional from the four that are available in the
PMS structure. Thus, for instance, path {3.4.6,7) describes a functional state wherein the
interprocessor bus S.1 is functional, P.1 and P.2 are both functional (thus satistying the y(1.P)

Exampies and Results . 191

———— P.1 5.3 K.5 K.6 M.1 M.2 -
>——0-—-P2 S.4 K.7 XK.8 M.3 M.4 -

K. 5 M.1 K.7 M3
S.1 K.1 K.3 e

K.5 M.1 K.8 M.4
C{ P.1°.25.35.4
3 K.6 M.2 K.7 M.3

S$.2 K.2 K.4

K.6 M.2 K.8 M. 4

Figure 7-2: Example DEC1.PMS -- Hang-constructed SPRED for given regquirements.

atomic requirement) and the two functional disks are M.1 and M.3. Note that in all these four

cases both processors need 10 be functional so that both funchioning cisks are accessible

The following iistings of files show the process by which it was determinad tha! the
symbolic reliability function resulting as a solution ot the SPRED in Figure 7-2 was identicai to
that producad by ADVISER for the same problem. In al! of these listings this first example is

relerrec to as DEC1.PMS. Preceding each listing ara comments to aid in its interpretation

Listing 1, Example DEC1.PMS

The foliowing is a Hsting of the command file prapared for input to ADVISER in order to set
up the example problem DEC1. Listing 2 for example DEC1 starting on Page 192 shows how
it is used.

input title
DEC1.PMS -- A dual dus, 2 processor-dus architecture

Py

L

182 Examples and Resuits

input types

dynabus dbus
k.dbus ks
papil]
unibus ubus
gisk [
k.disk km

0.0001
8.000
8.00 0.89
0.0001
10.000 0.91
6.000 0.86

XL E™m™

1nput pms
. dynadus
dynabus
k.dbus
k.dbus
k.dbdbus
k.dbus
pap1l
pop11
unidbus
unibus
k.disk
k.disk
k.disk
kK.disk
disk
disk
disk
disk

YR - W

” o e
LI B S

2 I PNANXNNOVOVO *

L I

) N e

3
$
k
[3
k
k
p
p.
$
s
[4
K
[3
[3
n

S .
S .

SR AN PNBOU NN NS T
O PO e N +s e N s N N

28823
“ n
»Wr e

tnput restriction selftalk
pdpi1l

seot watch run

Listing 2, Example DEC1.PMS

This listing shows the teletype session with ADVISER which solved the probiem and printed
out the solution. The characters typed in by the user for this probiem are underlined. The
"@dec1.pms” command causes the file shown in Listing 1 to be read and its lines executed
as a series of commands. The double asterisk prompt characters of the program indicate that
it is currently within a command file. The reading of the command file causes the PMS
structure and the component types to be defined. The command “input restriction selftalk”
implements the intra Component-Type Communication side constraint discussed in Chapter
6. The command "set watch run” causes ADVISER to print run times of each command and
each computation phase during the reliability calculation process. In the declaration of the
component types the reliability function type "E” stands for the exponential distribution and
the foliowing real number is the failure rate for the distribution. The reliability function type
"W" stands for the Weibul!l distribution and the foliowing two real numbers are respectively

Examples and Results 193

the scale and shape parameters of the distribution. Thig information is no! used in the present

example in which only symbolic manipu'ations are intended. The commancds set up in the
command file = a/ just 2s well be entered individually during the teletype session but the
command file option allows the user 10 think about and prepare an error free inpu* o*fline with
an editor. During the reliability function computation ADVISER prints messages indicating its
progress through various phases. The “print" command is used with the "macsyma” option
to obtain the computacd symbolic function in a form s.itatie for input to MACSYMA. The

resulting printout is shown in Listing 3 starting on Page 184

dacviser
ADVISER 2A(E) wednesday 7 Jan 81 10:82:02

**irput title

Title: DECI.PMS ~- A dua’l bus, Z grocessor-bus architecture

LA

**input types

Input compcnent typés anc associatec priat-names; enc with blanx lire

Types i Praint-names | Re) . Fn. | Lambca | {aloha)
dynatus gbus £ ¢ .20

k.Cbus ks E €.30C

pdplt p W &.3° C. &3

unibus ubus £ ¢.0Ci

¢isk ms w 10.0¢C ¢1

k.disk km W £.00¢C .88

**input pms
Input graph in formet {enc with blank line):
Compcnent name | Typename | Neighoour . Neighbour.....

s.1 cdynadus k1 k.3
H $.2 dynabus k.2 k.4
he k.1 k. dbus s.1 p.1
; k.2 k. dbus 5.2 p.1
k.3 k.dbus 5.3 p.2
k.4 k.cbus $.2 p.2
p.1 pdpil k. § k.2 s.2
p.2 popll k.3 k.4 s.4
i $.3 unibus p.1 k.5 k.6
‘ s.4 unidus p.Z k.7 k.8
k. 2 k.gisk $.2 ms 1
k.€ k.gisk .3 ms 2
k.7 k.drsk s. 4 ms. 3
k.8 k.disk s.d ms. 4
ms.1 018k k.5
. ms .2 disk k. &
' ms.2 gisk k.7
ms. 4 gisk k.8

*®ipput restriciion selftalk
Input Yist of Type names:
pdpit

*%sgt watlch run

[.00]

164

Exampiles and Results

(03]
sinput reguirements
Input boolean function (X of N AND/OR Y of M etc.):

! digk
[.12)
*get relighility
Generating symmetries.....
[.07)
Hashing Kernel term lists.
[.08)
Hashing PTS term lists... ..
{.08]

Setting up table space.....
Computing Relrability function..... v
CG: 1
(20122
SC: 6
Collapsing CRPTree.....
fNNNY
[.23)
[.31)
Releasing table space.....
Reducing Reliability Function.....

Number of terms to be processed * 60. Here goes. . ..
RRABRRRRAARERARNARRAORRNIRRRRRNAD NN RBRANRRRARRERAINIRI R ORI Y
Doing Algedratc Simplification....

FRARNONANIN

Terms remaining = 8

[.57]

Done!

[1.14)]
*openo decl mcs

[.10]

*print relighild m m

Listing 3, Example DEC1.PMS

This listing shows the MACSYMA command file which was printed by ADVISER. in this file
character strings which are meant to be comments to MACSYMA are bracketed (as in the

PL/I language) by the delimiters “/°" and "*/". Semicolons are activating characters which
tell MACSYMA that a command has been completely typed. A colon is the assignment

i

Examples and Results 195

character which causes the symbolic value to its right to be assigned to the variable whose
name appears on its let. The variables whose names begin with the characters "%%7T" are
temporary variables which are introduced by ADVISER to hold the intermediate result CRPs
which were generatec during the computation of the system reliability tunction. Listing 5
starting on Page 196 shows a teletype session with MACSYMA which uses the command file
shown in this listing.

MACSYMA Module for Reliability Function manipulation
produced by ADVISER on Wednesday, 7 Jan 8! at 10:54:25 for [4,1367)

...

Task Title: DEC1.PMS -- A Tandem/16-1ike architecture, Versicn 1
Requirements on the Structure were:

(1-0F-P AND 2-0F-MS)

...

XXT1:

P ® UBUS ® MS+2 * KM+2;
x%T2:

2 ®* P * UBUS ®* MS * XM - P * UBUS ®* MS*Z ° KM*2.
/¢ End of temporary variable initralizations */

SystemiReliability: 0;
SystemXReliadbility:

2 * DBUS ® KS*2 * X%T72+2 - 4 * DBUS * KS+2 *® %XT1 * X&72
+ 2 * DBUS * KS*+2 * %XTit2 - DBUS*2 * KStd ® XXT22 + 2
* DBUSt2 * KSt4 * %XT1 * %XT2 - DBUS*t2 ® KS*d * %%+l =«
2 * XAT1 - %AT1e2

i /%End of System Reliability computation®/

FACTOR(X):

Listing 4, Example DEC1.PMS

This listing is the output from the INTERLISP program which was written to solve SFRBDs
such as the one in Figure 7-2. The listing is in the format of a MACSYMA command file which
sets the variable SYSREL to the symbolic expression which results from the saolution of the
hand-constructed SPRBD of Figure 7-2. The use of this command file is shown in Listing 5
below.

196 Examples and Results

/% Reliagbility Function printed by LISP at 11-Jan-81 19:25:45 ¢/

SYSREL:

+20KMT2oMS T 2O POUBUS - 1oKM T 4OMS 14 2P +2°UBYS + 2+8°DBLS KM+ 2 KS+2%MS 2P 12*UBUS 2
~16°DBUS KM I®KS+2°MS+I®P+20UBUSt2+8DBUS KMTA®KS+2OMS + 4P 2% BUIS 12~ 49DBUS t2°KM
129KSTAOMS 2290P 225 UBUS+2+8¢DBUS 12O KM+ IO KS+ASMS+ 3P 22oBUS+2
~4°DBUST22KMT4OKS tAPMS +4%P22°BUS2 ;

Listing 5, Exampie DEC1.PMS

This listing shows the MACSYMA teletype session which confirms the equality of the
symbolic expressions generated by ADVISER for the DEC1.PMS example and by the
INTERLISP program from the hand-constructed SPRBD of Figure 7-2. The outputs from
ADVISER and INTERLISP were shipped across the Arpanet to the host computer MIT-MC
where the MACSYMA program resides. At MiT-MC the ADVISER output was kept in the file
KINI EGADV and the results of the hand-caiculation were kept in the file KIN! EGHNOD.
MACSYMA prompts for command lines with the characters "(Cn)" where n represents
consecutive integers. This allows the user to refer to previously typed commands. The
results of MACSYMA's computations are prefixed by the characters "(Dm)” where m aiso
represents consecutive integers. Characters typed by the user during this session are
underlined. The “batch" function in MACSYMA causes a command file to be read. The first
command file read in was KIN/ EGADV and this set the variable "System%Reliability” to the
symbolic expression computed by ADVISER with all the temporary variables substituted in
and the result simplified (line (DS) in the listing befow). The "FACTOR(%)" causes the
symbolic expression on the immediately previous "D" line (in this case the value of
System%Reliability) to be factored. The command file KIN! EGHND was read in next with the
"batch” function and caused the variable "SYSREL" to be set to the symbolic expression
computed using INTERLISP. Finally, line (C9) requests MACSYMA to expand to its simplest
terms the expression resuiting from the subtraction of the symbolic values of SYSREL and
System%Reliability. The result is zero indicating that the expressions are identical.

*:a
This 1s MACSYMA 293

FIX293 & DSK MACSYM being loaded
Loading done

(C1) batgh(kini. eqadvi.

Examples and Results

...

MACSYMA Module for Regliability Function manipulation
produced by ADVISER on Wednesday, 7 Jan 81 at 10:54:25 for [¢ 13€7)

...

fask Title: DEC1.PMS -- A Tandem/15-1ike architecture, Version 1

Reguirements on the Structure were:

(1-0F-P ANC 2-0F-MS)

*/
XX71

P * UBUS * MSt2 * KM12;

2 2

(D2) KM MS P UBUS
(C3) %%72:

29 P % UBUS * MS * KM =~ P ® UBUS * MS*2 ® KMtZ:

2 2

(03) 2 KM M5 P UBUS - KM MS P UBUS

(C4) /* End of temporary variadble initializations */

SystemX%Reliability: 0;

(D4) 0
(C5) SystemXiReliability:
2 % DBUS ®* KSt2 * %XT2+2 - & * DBUS * KS*2 * %XT1 ¢ X%7¢2
+ 2 * DBUS * KS*2 * XXT1t2 - DBUS+2 * KS+4 ® %XT2-2 =+ ¢
* DBUS*2 * KSt4 * XXT1 ® %%T2 - DBUS*2 * KS+4 ® X%Ti+2 -
2 * XRT1 - %%T1e2
2o 2 2 2
(DS} - OBUS KS (2 KM MS P UBUS - KM MS P UBUS)
H 2 e 2 2 4 4 4 2 F]

+ 2 DBUS KS (2 KM MS P UBUS ~ KM MS P UBUS) - DBUS KM KS M§ P UBUS

4 2 4 2 2 4 4 2 2
+ 2 DBUS KM XS MS P UBUS - KM MS P UBUS

2 2 4 2 2 2
+ 2 DBUS KM KS MS P UBUS (2 KM MS P UBUS - KM MS P UBUS)

2 2 2 2 2
- 4 DBUS KM KS MS P UBUS (2 KM MS P UBUS - KM MS P UBUS)

2 2
« 2 KM MS P UBUS

(C6) /*End of System Reliability computation®/
FACTOR(%);
2 2 2 2 4 2 2 2 2
(D6) - KM MS P UBUS (4 DBUS KM KS MS P UBUS - 8 DBUS KM KS MS P UBUS

2 2 2 4 2
+ KM MS P UBUS - 8 DBUS XM KS MS P UBUS + 15 DBUS XM KS MS P UBUS

2 4 2
+ 4 DBUS KS P UBUS - 8 DBUS XS P UBUS - 2)

187

ity S

198 Examples and Resuits

(07) BATCH DONE
(C7) bagch(kini, eghnd);

(C8) /® Reliability Function printed by LISP at 11-Jan-81 10:25:45 %/

SYSREL:
+2°KM?2°MS 1 2°POUBUS - 1o KM+ 4*MS+4*P+2°UBUS +2+8°DBUS® KM+ 22KS12°NS +2*P+2°UBUS *2
~16°DBUS*KMT3I®KS+2°MS+ 30P+2°UBUS*2+8°DBUSOKMT4*KS 129K 1 40P+ 2oUBUS*2-4°0BUS12°KM
T29KS+4OMS+2°P+2°UBUS +2+8°DBUS T 2°KM?3*KS 1 4°MS+3*P122BUS 2
~4°DBUS*2°KMT4°KSr4oMS v 4P+ 2°UBUS+2;

2 4 4 &2 2 4 2 4 2 2
(D8) - 4 DBUS KM KS MS P UBUS + 8 DBUS XM KS MS P UBUS

4 4 2 2 2 3 4 32 2

- KM MS P UBUS <+ 8 DBUS KM KS MS P UBUS
3 2 32 2 2 2 4 2 2 2

- 16 DBUS KM KS MS P UBUS - 4 DBUS KM KS MS P UBUS
2 2 2 2 2 2 2

+ 8 DBUS KM KS MS P UBUS + 2 KM MS P UBUS

(08) BATCH DONE

(C9) ratexpand(sysrel - systemkceligbility);

(D10) 0

(€10) guit()s

:KILL

7.2.2 The DEC2.PMS and DEC3.PMS examples

The DEC1.PMS example shown in Figure 7-1 was a PMS structure with a Kernel composed
of the component set {S.1,S.2,K.1,K.2,K.3,K.4} with the interface vertices {P.1,P.2}. P.1 and
P.2 were also the root vertices of their respective Pendant Tree Subgraphs. Under the given
requirements, i.e. "y(1.,P) A ¢(2M)" the Kernel contained no critical components. The
interface vertices were critical components but we have seen in Chapter & that these are
counted as part of the PTS subgraphs, rather than the Kernel, for the caiculation of the
intermediate resuit CRPs.

The two other examples, DEC2.PMS and DEC3.PMS, in which the output of ADVISER was
compared against the resuits of manual analysis are shown in Figures 7-3 and 7-5 along with

requirements similar to those in Figure 7-1. The DEC2 example varies from the CEC1 exampie
in that the former consists of a PMS structure which ie composed entirely of a Kernel without
any Pendant Tree Subgraphs. The DEC3 example on the other hand difters from the DEC1
example in that, although it has a similar structure with Kernel and PTSs, it also has critical

et

Examples and Results 189

PMS Diagram:
S.1
| S.Z l
K.1 /KZ K.3\ K.4
P.1 P.2
S.3 S.4
K.§ M. 1 K.7
K.6 M.2 K.8

Requirements:

¥(1.P) A ¢(1.M)

Figure 7.3: Example DEC2.PMS .. PMS Diagram and Requirements.

components in its Kernel. The process of checking the output of ADVISER for thess
examples is identical to that dascribed above in detail for DEC1.PMS. both ADVISER anc the
INTERLISP program are used to obtain MACSYMA commangd files which are then read into

the latter and the two symbolic expressions compared.

Figures 7-4 and 7-6 show the respective manually-constructed SPRBDs for the DEC2 an¢
DEC3 examples. These may be understood in the same manner as the SPRBD for the DEC1
example. The two listings below show the MACSYMA sessions for the DEC2 and DE
examples in which it is demonstrated that the output of ADVISER tallies with the manual

construction.

SPPROLT P IR.

s

200 Examples and Results

K.5—M, 1
R :
K.G-—M.Z-—I

K.7—M.1
) --P.Z--S.4-—-[::: -1
o— K.8—M.2 — —o

K.5—S5.3
S.1—K.1—K.3 M. 1
L._ K.7—S5.4
P.1—P.2
K.6—S.3
S.2~K.2—K.4 M.2
K.8—S.4

Figure 7-4: Example DEC2.PMS -- Hand-constructed SPRBD for given requirements.

Listing 6, Example DEC2.PMS

This listing shows the MACSYMA teletype session during which it is shown that the
ADVISER output matches the manual construction for the DEC2 exampie. The ADVISER
output was in the file KIN/ EGADV at the host MIT-MC on the Arpanet. The output of the
INTERLISP program was in the file KIN/ EGHND. Characters typed in by the user are
underlined.

(C8) Datchikini, egagv):

...

MACSYMA Module for Reliability Fumction manipulation
produced dy ADVISER on Thursday, 8 Jan 81 at 15:38:44 for [4,1367)]

Task Title: DEC2.PMS -- A Tandem/16-1ike architecture, Version 2
Requirements on the Structure were:
(1-0F-P AND 1-OF-MS)

...

SystemXReliadbility: 0:
(09) 0

e

Examples and Results

PMS Diagram:

5.1
I 5.2 l
K.1 /x.z K.3 K.4 K.5 K.6
P.1 P.2 — M. 3 —
l | L 4
5.3 S.4

l"""'-K. 7M. 1 M. 2—7s 0 ‘-j

Requirements:

V(1.PY Ay (2.M)

Figure 7-5: Exampie DEC3.PMS -- PMS Diagram anc Requirements.

(C10) SystemXReliadility:

4 * P e UBUS * MS * KM - 2 ¢ P ® UBUS * MS*Z ® KM*2 - 2 °
Pe2 ® UBUST2 * MS ® KM:Z2 = 2 * P2 & UBUSTZ * MS+Z * KM*?
+ 4 % Ptr2 * UBUSt2 * MSt2 * KM-2 - Pt2 * UBUS+2 * MS+2 *

KM*4

4 2 2 2 3 2 2 2 2 H
(D15) - xM M§ P UBUS =+ 4 XM MS P UBUS - Z KM MS

2 2 2 2 2

P

H 2
UBUS

=2 KM MS P UBUS - 2 KM MS P UBUS <+ 4 KM MS P UBUS

(€C11) /%End¢ of System Reliadility computation®/

FACTOR(%):
3 2

(D11) - XM M5 P UBUS (XM MS P UBUS - 4 XM MS P UBUS ¢ 2 XM MS P UBUS

+ 2 KM P UBUS ¢ & KM MS -

(012) BATCH DONE
(Ci12) bateh/xiri eghngl

(C13) /* Reliabidity Function printes by LISP at &-Janr-8!

16:31.1% ¢/

4)

202

Examples and Results !

K.1 §.1 K.5
~P.1 M.1 §.3 I(.7--{:: -—_L‘—
M.1 8.3 K.7 K.1 K.3 K.5 S.1
a1
M.2 S.4K.8 K.2 X.4 X.6 5.2

K.3 S.1K.5
j—-P.2 M.2 S.4 K.S{ _' ~—

Figure 7-6: Example DEC3.PMS -- Hand-constructed SPRBD for given requirements.

M.3

M.4

K.15.1 K.3—'l {
r-P.l P.2 M.1 M2 5.3 5.4K.7K.8 - i

K.2 5.2 K.4— i

K.1 8.1 K.5
LD

K.2 S.2 K.6 1
- M.3——M.4 -

K.3 S.1 K.§
T
K.4 $.2 K.6

SYSREL:
*4OKMOMS*POUBUS-2°KMt 2OMS* P+ 20 JBUS +2-2°KM22* NS + 2¢ PPUBUS
“2°KMT2oMS+2°0P42°BUST2+4% KM I°MS12°P+20BUS 12- 1#KMT4°MS 2 28P+ 28 UBLS+2 ;

4 2 2 2 3 2 2 2 2 2 2 rd
(D13) - XM MS P UBUS + 4 KM WS P UBUS =~ 2 KM MS P UBUS

2 2 2 e 2
-2 KM MS P UBUS - 2 KM MS P UBUS + 4 KM MS P UBUS

(D14) BATCH DONE
(C14) r ity - ;

(D18) 0
(C18) auisld.

Examples and Resuits 203

CKILL

Listing 7, Example DEC3.PMS

This listing shows the MACSYMA teletype session during which it is shown that the
ADVISER output maiches the manual construction. ADVISER output was in the file KIN/
EGACV and INTERLISP output was in KIN! EGHND. Characters typed by the user are
underlined.

{(C11) bateh kini, egadv:;

(c12) /*

MACSYMA Module for Reliability Function manipulation |
producec by ADVISER on Thursday., & Jan B1 at 20 18:27 for [4.12£7] k

Task Title: DEC3.PMS -- A Tandem/16-1ike architecture, Versior 3 R

Requirements on the Structure were:

(1-0F-P AND 2-0F-MS)

X%T0:
(D12) P
(C13) X%T1:

P * UBUS * MS * KM:
(013) KM MS P UBUS

(C14) /* Eng of temporary variable initislizations */

SystemiReliadility. 0.
(0i4) 0

(C15) System%Reliabil:ty.

2 * DBUS ® XS-Z ® xXTiez 4 & * DBUS * KS°Z ® MS * XTI . 4
* DBUS ® KS°2 ® MS*2 * XXTC - 8 * OBUS ® KS+Z ® MS~Z * %7}
- 8 * DBUS * KS+3 * MS * XxTi1-g - 2 ® DBUS * KS-2 * MS-:

® XXY0t2 - DBUS*2 * KS*4 * XXT1t2 <+ 6 * DBUS ® XS*3 *
MS*2 * XXT1t2 - &4 ®* 0BUS+2 ® XSe+d * MS * XXT1 - 12 * DBUS*

2 ® K§S°4 * MS * XXT1*2 - 2 * DBUS*2 ® KS+d& * M§e2 * ITO

+ 4 ® DBUS*2 * KS*4 * MSel ¢ XNT! - 24 * DBUSTZ * KSeE ¢
MS ® XXT1t2 + 8 °* DBUS*Z * KS+& *® MS-2 * XXTj-2 - 2 ¢
DBUS=2 * KS*4 ® MSe2 * XXT0<2 - 16 ® DBUS+Z ® KS+5 ¢ MS-2 ¢
%%Tir2 + 4 * DBUS*Z * KS+5 * MSe2 ¢ XXT¢ - 8 * DBUS-Z *
KS*€ * MS ¢ XXAT)1e2 - DBUS®*2 ® KS+E& * MS+2 * ¥XT0+2 +« &L ¢
DBUS*2 ® KS*6 * MS-Z * xXTi-2

.
“2
2

2 2 6 4 2
2 2 4 4 2 2
+ 3 DBUS KM KS MS P UBUS

2 2 6 3 2 F3
- 808BUS KM KS MS P UBUS

2 2 4 3 2
- 12 0BUS XM KS MS P UBUS

2 2 4 2 2 2
- DBUS XM KS MS P UBUS =+

2 4 3

+*

2 4 2

+

4 DBUS KS MS P - 2 DBUS

Z 4 2

FACTOR(X):
).
2 2
3 2 2 2
2 4 2
2 2 2
2 2
*
4
+*
+ &)
(D17)

(C17) patch(xini eghod).

2 5 2 2 2

Examples and Results

2 2 2 5 4 2 2

(D15) 5 DBUS KM KS MS P UBUS - 16 DBUS XM KS MS P UBUS

2 3 42 2
+ 6 DBUS XM KS MS P UBUS

2 2 &6 3 2 2
+ 24 DBUS KM KS MS P UBUS

2 2 3 3 2 2

- 8 DBUS KM KS MS P UBUS

2 2 2 2 2
2 DBUS K KS MS P UBUS

2 3

4 DBUS KM KS MS P UBUS - 8 DBUS KM XS MS P UBUS

2 2 2 6 2 2

4 DBUS KM KS MS P UBUS + B DBUS KM KS MS P UBUS - DBUS KS MS P

4 2 2 a 2 2
KS MS P - 2 DBUS KS MS P

2 2

2 DBUS KS MS P + 4 DBUS KS MS P

. (C16) /®*End of System Reliability computation®/

2 4 2 2 2 3 2 2
(D16) DBUS KS MS P (5 DBUS KM KS MS P UBUS - 16 DBUS KM KkS MS P UBUS

2 2 2

8 DBUS KM KS MS P UBUS + 6 KM KS MS P UBUS

2 3 2

8 DBUS KM KS MS P UBUS <+ 24 DBUS KM KS MS P UBUS

2 2 2 2 2

12 DBUS KM KS MS P UBUS =~ 8 KM KS MS P UBUS - DBUS KM KS P UBUS

2 2

2 KM P UBUS + 4 DBUS KM KS MS UBUS - 8 KM MS UBUS - 4 DBUS KM KS UBUS

3 2 2

8 KM UBUS - DBUS KS P + 4 DBUS KS P - 2 DBUS KS P - 2 KS P - 2 DBUS KS

BATCH DONE

(C18) /* Reliadility Function printed by LISP at 8-Jan-81 17:46:30 */

Examples and Results 205

SYSREL:

+4°DBUSOKS*2oMS129P-2¢0BUSAKS* 3OS~ 2P~ 2~ 20DE S+ 2OKS 4%MS 2P
=2%DBUS*2OKS»4¥MS+2%P ¢ 2~ 4o DBUS 2 KS " EoMS 125 P 1z~ 1®DBUS 2 KS16MS* 2P+ 2 E*DBUS KM
*KSt2*MS*2°PoUBUS

-8®DBUS KMPKS*2oMS+ 38 P UBUS~2*0BUS KM= 2*KS12oMS+ 2P 22UBUS+2-82DBLUS KMs2°X523®
MS*3®Pr2oUBUSt2-6%0BUS KM2°KS7IoMS»d P2 2oUBYS 2

~4°DBUS*2OKMOKS 4 MS+ 2o PoUBUS+4°DBUS* 2 KMo KS14OMS+ 2 PeUBUS- 1°DBUS 1 2%KMr29K5 4
MSt20Pe2%UBUS*2-12°D8US 20 KM 2oKS 14 oMS» 9P r2O0BUS 2

+8%DBUSTZOKMI2OKS 4o MS = 4P Y2 UBUS 2 +24°DBUS T 2O KM220KS1EOMS+30P o2 BUS+2- [62DBUS
t2°KMt28KS 5O MSr 4P 12O UBUST2-BODBUST2 KMT2°KS+6OMSr 3P 2 UBUSY?
+5%DBUS*2%KM=2oKStE*MS s 4% P+ 2*UBUS -2,

2 2 € 4 2 2 2 Z 5 & 2 2
(O1€, 5 DBUS KM KS MS P UBUS - 16 DBUS XM XS MS P UBUS

2 2 4 4 2 2 2 3 L 2
8 DBUS KM KS MS P UBUS <+ €& DBUS xM K5 MS P UBUS

+

2 2 6 3 2 2 2 2 s 3 2 2 ;
B DBUS KM KS MS P UBUS =~ 24 DBUS XM XS MS P UBUS

3 2 4 3 2 2 2 3 3 2 2

- 12 DBUS KM KS MS P UBUS - 8 DBUS KM KS MS P UBUS i
2 2 4 2 2 2 2 2 2 2 2
- DBUS KM KS MS P UBUS <+ 2 DBUS KM XS MS P UBLS 1
2 4 3 2 3
+ 4 DBUS XM XS MS P UBUS - B DBUS KM XS MS P UBUS
2 4 2 2 2 2 6 2z 2]
- & DBUS KM KS MS P UBUS « 8 DBUS KM KS MS P UBUS - DBUS kS HMS P
2 5 2 2 2 4 2 2 3 2 2
+ 4 DBUS XS MS P - 2 DBUS XS MS P - 2 DBUS XS MS P
2 4 2 2 2
- 2 DBUS KS MS P + & DBUS XS WMS P
(D19) BATCH DONE
(C20) ratexpand(sys-~e'! - sysiemiraliapi’ity -
{D20) 0
(€21 guis()
(KILL

206 Examples and Resuits

7.3 Comparison to published results

The work described ‘a (Siewiorek 78] provided a useful opportunity 10 test the output of
ADVISER for correctness. For convenience we shall henceforth refer to [Siewiorek 78] as
SENET which is the acronym for the subject of that report. SENET presented general
reliability functions cerived by hand for each of a set of five multiprocessor architectures. In
the SENET work a Fortran program was constructed for each architecture to compute
numerica! values of its refiability given architectural parameters and operational requirements.
Assuming a very small chance of the exact same compUtational error occurring in both the
SENET work anc the output of ADVISER, a good test of the latler is to numerically evaluate its
output and compare it to the output from SENET programs. Although disagreement in the two
sets of results proves at best that one of the outputs is in error, agreement on the other hand
engenders substantial confidence in both. This is especially true since the methods of

arriving at the system reliability functions in the two cases are so different.

Following ssctions describe the results of the comparison. The resuits of only one or two
tests par architecture are actually included here but several tests were satisfactorily carried
ocut with each architecture. In thocse cases where the outputs of the two programs did not
match, the known or suspected reasons are provided. Mismatches in the case of the Global
Bus architecture (Section 7.3.4) were traced to errors in the SENET program for the
architecture and the ADVISER output was shown to be correct by comparing to manual
computation. Mismatches in the case of the Pluribus architecture (Section 7.3.5) and two test
cases of the Cm* architecture (Section 7.3.1) were caused by known deficiencies in the
ADVISER algorithms. It is 10 be emphasized here that these are not serious deficiences. they
result from inccmplete implementation in ADVISER of the ideas discussed in Chapters 4 ang §
and manifest themselves in infrequent cases. A mismatch in two cases of the Tandem
architecture (Section 7.3.3) are strongly suspected to arise from errors in the SENET program
for the architecture since manual computation once more proved ADVISER to be correct. All

other tests resulted in successful matches.

NOTE:

~In the rest of this chapter, the phrase "successful maich”™ or “successful tes!” will
be used 1o mean that the absolute differences between the numerica’ vaives of
the output of the two programs were within one percent of the SENET values.

~Fach of the SENET programs was constructed 1o compute the reiiabiiity of the
architeciure it accresses for & range of values aiong 1he ume 2xis, stariing at
1=20C hrs ano 200 hrs. apan. Compuiation corntinues until 200 values "ave
been computed or the reliabiiity has falien below 10™. in gispiaying ke results of

Examples and Results 207

the comparison of ADVISER ind SENET values in succeecing pages, only
represen:ative sampies will be showr i/ the total numbe- of values :s 10¢ iarge.

-In all of the comparisons. as in SENET, all components were presumec (o have
exponentia cistroutions for ther hmes ro ‘ailure. Tre ‘auure rates used as .nouts
to ADVISER were taken directly from SENET. Ncte, nowever, that the ADVISER)
output can easiiy be modified for other tailure distriputions.

i b,

™~
~_
S

3 Slocal Slocal Stocal Slocal Slocal Stlocal
- \
/ (3
P MM P MM P MM P MM P MM P MM i
Key
B Intercluster Bus Slocal Local switch
L Intercluster Bus Interface P Processor
Kmag Mapping Controller M Memory

Figure 7-7: Cm* architecture used for ADVISER test

7.3.1 The Cm* architecture

The Cm* muitiprocessor architecture is based on the LSI-11 microcomputer and is
described in [Swan 77]. Figure 7-7 shows the version of the architecture which was used for
the ADVISER test. It consists of three clusters of two computer mocdules (Cm's) each. Each

Cm is composed of one processor with two memories. The memories in the structure

collectively realize the virtual address space shared by the processors. The KMAPs in Figure

208 Examples and Results

7-7 are mapping controllers which allow processors in Cms to access memory elsewhere in
the cluster or in other clusters via the intercluster Buses (B in the figure). The components
marked L in the figure are the interfaces from the KMAPs to intercluster Buses.

in one test using the Cm* architecture, from a total of six processors and 12 memories the
test imposed the requirement that five processors and ten memories be functional. For these
configuration parameters the SENET Cm* program was run to obtain numencal system
refiability values. ADVISER was then run on the same probiem with the requirement
expression "y (5.P) A (10M)". The Fortran output of ADVISER for the problem was
compiled and called repeatedly by a Fortran driver program to obtain reliability values for the
same points along the time axis as in the corresponding SENET case. Figure 7-8 shows the
results of the test, for samples of the time values. in five columns. The fifth and last column

lists the differences in the fourth column as a percentage of corresponding SENET values.

In this fashion all combinations of requirements up to a maximum of € processors and 12
memories were tried. The results matched SENET results except in two cases viz. the
requirements "Y(1.P) A ¥(1.M)" and "¢y(1,P) A ¢(2.M)". See Figure 7-9 which shows the
mismatch for the latter of these two requirements. The reason for this mismatch is a known
deficiency in the TREEREL algorithm of ADVISER. When the above two requirements are
imposed on the given Cm* structure there are functional states of the system in which the
requirements are satisfied by a single Cm which has one processor and two memories within
it. In this case, theoretically, no other components outside the Cm are necessary to cause the
system state to be functional. However, the TREEREL algorithm was used to generate partial
result CRPs before system CRP was computed. As described in Chapter 5 the TREEREL
algorithm assumes that all components on the path from any currently active critical
component in the PTS to the root of the PTS, upto and inciuding the root vertex, need to be
functional in order to satisty the Communication Axiom. If the requirements are entirely
satisfied by some subtree of a PTS, as in the case of the two simple requirements above, then
there is no need for components up to the root vertex of the PTS to be functional. in terms of
the Cm* example, since the requirements are met by a single Cm there is no need for the
Kmap to be functional. However, the TREEREL algorithm does take into account the Kmap
reliability even in this case and thus causes the reliability to ditfer from SENET resuits. This
situation was anticipated in Section 5.3.

Note, however, that this probiem may currently be sidestepped in an ad hoc fashion by
forcing ail the Kmaps to be part of the Kernel by assigning them ftrivial Internal Port
Connection Matrices (see Section 6.9.1.3 on Page 167; for this exampie all the links, L in

Examples and Results

Time SENET ADVISER (SENET-ADVISER) Dyt
20C.2 C.5230371E-00 0.9C30333£~00 0.3822148E-02 [y
4388 . BCETAEEESQO 0.80€73C6E-2D 0.56306828-32 Tl
o ¢ 0.7131108:-00 0.7131026£-00 0.818583¢¢-CE ¢l
8CC. 2 0 6240257E-020 0.62301€68E~2C C.S25€171E-C8 ° ol
1200 .2 C.5408821E+00 0.5409721E+00C D.1004336E-04 ¢ 2l
1200 3 0.4645715€+00 0.464961CE+30 0.1053885E-04 c.oC
1400 ¢ 0.3888082E+0C 0.35€4577E+00 0.1048787E-04 SR
165C. ¢ 0.3257063E+00 0.33565¢1E+00 0.1024827E-04 (R
18068 . ¢ 0.2823718¢+0C 0.2823821E+00 0.9686485E-08 e o
22089 €.2350537E-00 0.2360848E+00 0.8915282E-0¢8 DLl
2903 0.1663228E-30 0.1963144£+00 .818C737E-08 ¢ CC
24008 £.1624335¢E+0C 0.1624266E+00 0.7305294E-05 0 oC
2600 0 0.1337768E-30 0.1337762E-0C 0.65508223E-0¢8 2.C¢
28000 C.106708EE+0D 0.1087528E-00 0.5845827t-05 00
300C. ¢ 0.8661€48£-C1 €.8661237E-01 0.81101€67E-0% 2.0
320C.0 $.7234213€-0C1 0.7263771E-01 0.44226888-08 ¢ 0t
34C0 2 0.531€6542E-01 0.5916560E-21 0.3816C064E-C¢ 0.0
36l ¢ 0.4784723E-01 0.4784297E-01 0.32€08€0E-08 ¢ 0
38350 €.3857868€£-01 0.3857610£-01 0.27€2228E-08 ¢l
4CCC.0 ¢.310212¢6¢t-C1 0.3101853¢-01 0.2355546E-0F .01
420C. 2 0.24B880€%E-C1 0.2487870E-01 0.1587210£-28 .01
440C C 0.198C8C0E-C1 0.1960534E-01 0.1662644E-05 .01
480C. 0 0.158¢336£-01 0.1663207E-01 0.1362550£-05 c.C:
480¢ . ¢ 0.1266170E-01 0.1266355€-01 0.:1154258E-05 ¢.%1
5060.C 0.1C0€703E-01 0.1005€C8E-C1 0 9514624E-06 0.C1
52CC.¢C 0.758G0828-02 0.7968264£-C2 0.7878585f-0C¢€ o C:
5403.¢ 0.632874¢0E-0C2 0.632810CE-02 0.6491900E-06 0.01
5€30.0 0.5005073E-02 0.5004541£-02 0.631727CE-08 ¢.C1t
§80C.¢ 0.3951948E-02 0.39515068€-02 0.4362082E-06 0
6CC0. ¢ 0.3115686¢E-02 0.3115335£-02 0.3544847E-06 0
620C.°C 0.2452862€-C¢ 0.2452573E-02 C.283146€E-06 0.
64CC .0 0.18284028-032 0.19268168£-32 0.23482C5€-0¢ Pl
660C. 0 0.1814107E-02 0.1813517€-02 0 19032¢1E-0€ 0.¢
830 € 0.1187348€-02 0.1187187E-02 3.1534384£-0¢ ¢l
7000.¢ 0.62653028-03 0.6298667E-02 0.1238312¢8-C09 ¢ C1
r2¢c.¢ 0.7276841€-03 0.7274347¢-02 0.6943324€-C7 ¢l
7400.0 0.568€2878-03 0.5€85488E-03 C.7691912€-07 ¢.1
7603 0 0.4435328E-03 0.44386888-C3 0.63e70z728-07 .0
7608 .C 0.3462370E-02 0.3461858E-03 C.8120061E-97 3
8C0CC.¢C 0.2697834t-02 0.2667426E-03 0.40G3080E-07 ¢ 2
820¢.¢ 0.2100194E£-03 0.2009866£-03 0.32800C2€-C7 022
§40C.0 0.1833507E-03 0.1€33246E-03 0.261006EE-07 0.32
8600.° 0.1250448€-03 0.1269241¢£-03 0.20€8737¢-07 g.02

Figure 7-8: Comparison of ADVISER and SENET results for Figure 7-7,
Cm*, 5P, 10 M required.

210

Time
200.
400.
600.
800.
1000.
1200.
1400.
1600.
1800.
2000.
2200.
2400.
2600.
280C.
3000.
3200.
3400.
3600.
3800.
4000.
420C.
440¢
4600.
4800
5000.
§200.
5§4)0.
5600.
5800.
600C.

1480C.
15000.
15200.
15400.
15600
15807 .
16000.
16200,
16400.
16600.
16800.
17000 .
17200.
17400.
17600.
17800.
18000.
1820C.
18400.
18600.
1880C.
19000.
16200.
19400.
19600.
19800.
20000.

OO0 OO00OODDO0OOD0DO0OO0O0ODO0ODO0OOO0O0DO0O0O0OO0O00000O0O

GO0 QOO OOODO0ODOCO0ODO0O0O0O00O0DOD0DODTO0O0OO00O

0000000000000V O0O00CO0DODO0O0DOO0O

0000000000000 QCAOAOOO0DO0OOO0

SENET

.9999730€+00
.9997945E+00
.9993369E+00
.9984870E+00
.9971916€+00
.9953556E+00
.9929393E+00
.9899069E+00
.9862300€+00
.9818953¢E+00
.9768935£+00
.9712227€+00
.9648860E-00
.9578912£+00
.9502490E+00
.9419730£+00
.9330787€+00
.9235832£+00
.9135049E+00
.9028628€+00
.8916769E+00
.8799678E+00
.8677563E+00
.8550640€+00
.8419129€+00
.8283256E+00
.8143252E+00
. 7999355E+00
.7851810E+00
.7700870E+00

.1528339E+00
.1448945E+00
.1375726€+00
.1305604E+0°
.12384898E+00
.1174324E+00
.11129909€+00
.1054434€+00
.9986439€-01
.9452401E-01
.8944351£-01
.8480410£-01
.7999710€-01
.7561383E-01
.7144576E-01
.6748447E-01
.6372169E-01
.6014929E€-01
.5675932€-01
.5354400€-01
.5049577¢-01
.4760725E-01
.4487128E-01
.4228092€-01
.3982942€-01
.3751029E-01
.3831723¢-01

ODO0OOOO0O0O0O000D0O0O0O0ODODDDOLOO0OODODO0DOODOOCOCO

0000000000000V OO0OOOODOOO0O

ADVISER
.9996722E+00
.9997808E+00
.8992688£+00
.9982957E+00
.9967242E+00
.9944353€+00
.9913239€+00
.9872989£+00
.9822857£+00
.9762253E+00
.9890743E+00
.9808054£+00
.9514064E+00
.9408782E+00
.9292360€+00
.9165066E+00
.9027279E+00
.8879471E+00
.8722199E+00
.8556088€E+00
.8381827£+400
.8200143€E+00
.8011793€+00
.7817565€+00
.7618252£+00
.7414650£+400
.7207553E+00
.8897733E+00
.8785947E+00
.6572824E+00

.7468458E-01
.7032622€-01
.6620502E-01
.6230972E-01
.5862943E-01
.5615366E-01
.5187227¢-01
.4877561€-01
.4585401E-01
.4306878E-01
.4060120€-01
.3805299€E-01
.3574626E-01
.3357347¢-01
.3152738E-01
.2960114E-01
.2778819€-01
.2608228€-01
.2447747€-01
.2296812E-01
.2154886E-01
.2021460E-01
.1896050€-01
.1778198€-01
.1667470€-01
.1563454£-01
.14857681E-01

(SENET-ADVISER)
.8344650E-06
.1372397€-04
.8711483E-04
.2013370E-03
. 4673526E-03
.9202883€-03
.1616353€-02
.2606966E-02
.3944293€-02
.5669951E-02
.7819181E-02
.1041731E-01
.1347961E-01
.1701299E-01
.2101298E-01
.2546640E-01
.3035083€-01
.3563607E-01
.4128495E-01
.4725389E-01
.5349422€-01
.5995355E-01
.8657703£-01
.7330754£-01
.8008774E-01
.8686056E-01
935699201
.1001622£+00
.1065863£+00
. 1127946E+00

D000 O0O00CO0O0OO0O0O0TO0O0OAONVDNODOODOO0DO0O0OOO

OO0 CO0OO0O0DO0OO0DO0OO0OO0D0OCODOOONO0O0DO0CCO0DO0OO0OO

.7784932E-01
.7456828E-01
.7136758E~01
.6825063E-01
.8522037€-01
.6227874€-01
.6942763€-01
.5666789¢E-01
.5400038E-01
.5142523E-01
.4894231E-01
L4855111E-01
.4425084E-01
.4204036E-01
.3991838E-01
.3788333E-01
.35683380E-01
.3406701E-01
.3228185E-01
.3057588¢E-01
.2894601E-01
.2739265€-01
.2561078€-01
.24498094£-01
.2315472E-01
.2187575E-01
.2065962E-01

Figure 7-9: Comparison of ADVISER and SENET results for Figure 7.7,
Cm*, 1P, 2 M required.

Examples and Results

% Diff.

WO IO RO EWWNNI M OOO0OODODOODO0OOD0OOO

b funt

Examples and Results 211

Figure 7-7, were forced into the Kernel). This is not always recommended with the current
version of ADVISER, however, since this usually results in a larger Kernel. the number o! PTSs
in the graph is higher and thus the number of cases of feasible compositions rises thereby
causing a much higher computation time for the problem. In fact. although with high
likelihood the ADVISER test would have succeeded if all Kmaps were included in the Kernel,
doing so generated so many cases to be analyzed that the current ADVISER version would
have used extreme amounts of CPU time for the solution.

7.3.2 The C.mmp architecture

The next of the SENET examples chosen for comparison with ADVISER was the C.mmp
architecture [Wulf 72]. The architecture consists of an N x M crosspoint switch which has N
memory ports and M processor ports. Hence each processor is able to access each memory
port. In the original C.mmp architecture contention for access to the same memory port was
resolved by queueing requests at the port. Figure 7-10 shows the mode! treated by SENET.
On the processor side of the crosspoint switch the switch ports may have 1/0 lines attached
to them through direct-memory-access /0 controliers. SENET also treats two cases of
switch reliability separately. In one case the individua!l crosspoint reliabilities are lumped and
the switch is considered an indivisible component. In the other case the individual crosspoint
reliabilities and the actual distributed structure of the switch are taken into account. For
further details the reader is referred to [Siewiorek 78). The particular example chosen for
testing here is shown in Figure 7-10 and consists of six memories, two on each of three
memory ports, and three processors and one 1/O controller each on their own ports on the
processor side of the switch. The K.clock is a system wide clock used for processor
synchronization and its functioning is essential to the system. An IPCM (see Chaptsr 6) was
assigned 10 the crosspoint switch in the lumped case which allowed communication only from

processors to memories and vice versa.

Figure 7-11 shows parts of the comparison between ADVISER and SENET results for the
architecture of Figure 7-10 with the switch treated as lumped and the requirement $(2.P) A
Y(2M) A §(1.Kio) A ¢(1,K.clock). Similarly, Figure 7-12 shows parts of the cempearison
between ADVISER and SENET results for the architecture of Figure 7-1C with the switch
treated as distributed and the same requirement as for the case of the lumpad switch. The
small differences of less than one percent in this case possibly arise from a slightly ditferent
way of assigning the crosspoint failure rates to the switch multiplexers in the SENET program

versus ADVISER. The implementation of the switch actually realizes the conceptual NxM

212 Examples and Resulits

IoL

cLOCK
Key
Ay Memory Arbiter Ky Memory Control
Ko "Relocation Box" KeLock System Clock
I0L 1/0 Line P Processor
S Crosspoint Switch M Memory

Figure 7-10: C.mmp architecture for ADVISER test.

crosspoints as a set of M N-to-1 multiplexers in the memory-to-processor paths and N M-to-1
muitiplexers in the processor-to-memory paths (see [Siewiorek 78)).

7.3.3 The Tandem architecture

The third example treated by SENET is the Tandem-16 NonStop” architecture which is
described in detail in [Katzman 77]. Figure 7-13(a) shows the version of the Tandem

37decm-w and NonStop are registered trademarks of Tandem Computers inc.

himaddas du ;. . sl ioada .. A ..

Examples and Resuits

Time
20¢
390
600
25
100C.
1208
140¢
160C.
1802
200¢.
2200
240¢C
2630
280¢C

1920¢C
1040C.
1060C.
10888
11000
1120¢
114C¢
15600,
1182¢C
1260¢C
12220
12400
1260¢
1282¢

278CC.
27830 .
28000
2820C.
2840¢
23508
2880C.
29000
29238,
29400
29600
298072
3000¢.

3780%.
38007
38200
3842¢.
38687
38822
390t
3923¢
36400
3960¢
39850
40000 .

Figure 7-11:

€Y €2 €3 €3 €D €Y €D €2 (D €3 I 3 LD 0D €3 T O 2 DU DI DD oD

OO DD O DD

Fe N >R RANS ARSI S I o]

MO COOOOOD0ODOIINOOO

OO DO OO0 O0O D00

OO0 OO0 OGO

OO O OO ODOOO0

SENET
9911113€+00
$822736E+3C

L87263208+20

3647315820

L9561173E-0¢C
(9475084800
. 9383579E+00
.8304625E+00
.9220242E+0C
(9138422800

G083166E400

.39“04755~GC
.8888348E+00
.88068788E<00

.89 907372‘00
.59308378+00
.58715388+00
.5812855€+03
LE754248E~00
.568E314E~00
.5638848E+00
.558184GE00
(5525212E-CC
L5388236E+00
L54813823E+00

.238C987E+00
.2362878£+00
.23345489E+00
.2306897E+00
L2275420E+00
.2252217E+00
.222528EE+00
.2168625E+20
L2172231E+00
.2148103E+00
.2120238E+00
.20684636€+0C
.20652538+00

L1263744E+0¢0

124728€EE+00

.122310148400
.1214827E+0¢

1189023€+0¢

.1383200E+00
L1167757E+0C

11823528490

L1137204E400
.112219CE~0¢

110738CE«0C

.1092682E+00

DO0OOOODOO0OO0VOITDOOO

PO OOODO DO OO OO0 OO0 OO0 D000 ODOOHDOOo

OO OO ODOO OO

ADVISER

J9911112E-00
.8822788¢E+3C
L9735019E+00

382T318E30

CB5E11E5E-00
8478335 E.C0
.838988C¢E+5C
.BI04E27E+0D
1922024280
.9136219E+00
.9C53158E+00
.BEIC3C2E~0C
.8888335E+0C
. B8OBT73E~CC

.5754152E+00
56862178400
.56387581E+00
.£581748E+02
.852582128-00C
. 54691368+00
.5413818E+0C

L23908858E-00
.2362587¢E-CC
.2334559E+00

2308808E-C0

.2278332E+00
L2282130£400
.2225200E+0¢C
.2198539E+00
L2172146E400
.2146016E+00
,21201868+C0
.2094554E-00
.2066213840¢C

.12537OGE000

372438400
233972E*“0

1214885800
. 1155982E-00
.1183253E-CC
CITIETT18E-00
C1182382E+00
.1137166E+0C
.1122183E+00
1107314800
.1062647€+00

(SENET ADVISEF)
0.813858258-07
-0.1
0.
-0.
L.
-0.
-0.
0.
L1117587¢- 06

L2682203¢

8T 3110E 06
L 10E3952E-06
.85€8156E-06

O OO O0OCoO

OO0 D OCOO0OOOO0OO0DO0OO0O

OO0 OO OO 000000

WO W0 N O O Do

QOO0 0O OOOOOO

6391282 -0&
8195€29E-07
2235174E-37
38743028-0¢€
1256556€-06
1460118E-08
23B41BEE-0B

12144345¢g-08

£60516€-05
T767BAE~0E
708726E-08
CET189E-05
0745C7E~05
350479808
E0BFa1E-08
€832GEE-08
700656E-C5
9237509E-058

L1033366E-04
.10508228-04

.81008848-08
.80580438-08
.9026378£-0%
.B938834E-08
.87842358-0¢8
.B67433BE-CE
.B590S18E-0¢8
85756188 -0¢
.8450821E-C5
. 8383277E-0¢8
,8186325E-05
. 818C737E-08
.802€138¢-

.4375283E-08
.4314817E-05
L42253811E- 05
.4170462¢- 05
L 4315240¢E -

.8023314¢-0¢
.36452828-0¢8
.3885575¢-05
.3815629¢8-2%
.3€7220%¢E-08
.36C32B7E-TB
. 3837163E-353%

Comparison of ADVISER and SENET resulits for Figure 7
C.mmp, lumped switch, 2P, 2 M ang 1 K.io required.

OO DO OO MNTOO OO0 OO0 OO ADODOO0 OO0

OO0 OO OO OO DO

OO0 OO OO OO

.0C

W o
0

€I PO O WD OO OO
EIIOI O G G OI T I T O

QOO OO0
€I CI LY LD DD OO OO

€262 O LI DY) O WV 2O
€3 €2 O I 3 2 3D

213

ki

214

Time
200.
400.
600.
800.
1000,
1200.
1400.
1600.
1800.
2000.
2200.
2400.
2600.

9200.
9400.
9800.
9800.
; 10000.
! 10200,
; 10400.

15600.

15800.

3 16000.
‘ 16200
| 16400 .
(16600.

21400,
21600.

! 21800.
; 22000.
22200.

22400.

22600.

25200.
25400.
25600.
25800.
26000.

28800.
29000,
29200.
4 29400.
29600.

32200.
32400.
32600.
32800.
33000,
33200.
33400.
33600.

39000.
39200.
38400.
39600.
36800.
40000.

Figure 7-12: Comparison of ADVISER and SENET results for Figure 7-10,
C.mmp, distributed switch, 2 P, 2 M and 1 K.io required.

0000000000000

[~ =12~ =] OO0 00O [~ =) OO0 00000 OO 00 O0Oo OO0 00O0O0O

000000

0000000000000

COO0OO0OOO0O00O (-~ -] 0CO0OO0COOoO QOO0 0000 00O CO0OO0O00O0Q

O0OD0DOoO0O0O

SENET

.9975381E+00
.9850695£+00
.9925644E+00
.9900534€+00
.9875266€+00
.9849844E+00
.9824272E+00
.9798853E+00
.9772690£+00
.9746688E+00
.9720548E+00
.9694274E+00
.9667867E+00

.8737929E+00
.8708335¢t+00
.8678675E+00
.8648948E+00
.8619156€+00
.8588303E+00
.8556386£+00

.7762822£+00
.7731680€+00
.7700303E+00
.7668991E+00
.7637644E+00
.7806265E+00

.6845764E+00
.6813883E+00
.6781997E+00
.6750106E+00
.6718211E+00
.6686315E+00
.6654417E+00

.6240197E+00
.62084128+00
.6176643E+00
.6144894E+00
.6113165€+00

.5671748E+00
.5640468E+00
.5609228E+00
.5578030€E+00
.5546875E+00

.5146284E+00
.5116852E+00
.5085482E+00
.5055172€+00
.5024926E+00
.4994744E+00
.4964827€+00
.4934577€+00

.4152083€+00
. 4124301E+00
.4096613E+00
.4089020E+00
.4041523E+00
.4014123E+00

0000V O0OO0DODODOOO

00000 OO 000000 OO0 O0O O

OO0 O

000000 OO0 [~J -2 =~ =

0CO0OO0OO0O0O0

ADVISER

.99768528€+00
.9952881£+00
.9929053E+00
.9905054E+00
.9880890€+00
.9856559€£+00
.9832067€+00
.9807418€+00
.9782609E+00
.9757654E+00
.9732548E+00
.9707297£+00
.9681900£+00

.8778365E+00
.8749353E+00
.8720262E+00
.8691091£+00
.8661845E+00
.8632521€+00
.8603122€+00

.1815654E+00
.7784604€+00
.7753506E+00
.7722361£+00
.7691172E+00
.7859939E+00

.8800008E+00
.6868041E+00
.6836061£+00
.6804069E+00
.§772065E+00
.6740052E+00
.6708030£+00

.6291804E+00
.8259608£+00
.6227623€+00
.8195652€+00
.6163695E+00

.5718629E+00
.5687060€+00
.5655528E+00
.8824034E+00
.5892580€+00

.5187874E+00
.51587112€+00
.5126408£+00
.8095765£+00
.5065184€+00
.5034665¢+00
.5004211€£+00
.4973821£+00

.4182035€+00
.4153913E+00
.4125888E+00
.4097954E+00
.4070119E+00
.4042382E+00

(SENET-ADVISER)
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

-0

-0.
-0.
-0.
-0.
-0.
-0.

-0

-0.
-0.
-0.
-0.
-0.
-0.

-0.
-0.
-0.
-0.
-0.
-0.
-0.

-0.

-0

-0.
-0.
-0.
-0.
-0.

-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

-0.
0.
~0.
-0.
-0.
-0.

1147017€-03
2286360€-03
3409162E-03
4519969E-03
§624220E-03
6715357€-03
7784574E-03
8865297E-03
9919032€-03
1096606E-02

.1199968E-02
-0.
-3,

1302280£-02
1403287E-02

4043624E-02
4101843E-02
4158720E-02
4214294t-02
4268914E-02
4321851€-02

.4373640£-02

5283222E-02
5§302370£-02
5320296E£-02
5336985E-02
6§352832€-02
5367398E£-02

5424440E-02
5415820£-02
5406417E-02
5396277E-02
5385420€-02
5373731E-02
5361326E-02

5140752¢8-02

.5119599€E-02
-0.
-0.
-0.

5008045€-02
5075775€E-02
5063014E-02

4688144E-02
4859235E-02
4630029E-02
4600435E-02
4570462E-02

4158989E-02
4125968E-02
4092834E-02
4059300€-02
4025780€-02
39921256€-02
3958356£-02
3924429€-02

2995219€-02
2961207€-02
2927266E-02
2893418€-02
2859626E-02
2825856E-02

Examples and Resuits

X Diff.

00000000000 OO

QOO0 O0OO0OO

OO0 00 00

OO0 O0O0O0O0O 00O OoOCO oo oC OO0 QOO0

CO0O0 OO

2deas o

Examples and Resuits 215
B
‘ B ‘ l
A//C C C
Ke Ke
\
IOL—-SIq\\ /fxE—'IOL
K¢ K¢
Key
B Dynabus oL 1/0 Line
C Computer Sio 1/0 Switch
Ke Communications Contro)
(a)
'l<s
| T 1 A R 1
KIO P M M M M M M M M
Key
Klo 170 Control P Processor
Kg Dynabus Control M Memory
(b)

Figure 7-13: Tandem-16 architecture for ADVISER test.
(a) PMS diagram (b) Detail of Computar.

et & a e e

216 Examples and Results

architecture used for the test. There are three computers which communicate via a duplicated
fast bus termed the Dynabus. Each computer is composed of a processor, local memory, a
Dynabus control and an (/0 channel (Figure 7-13({b)). The computers communicate with 1/0
lines via dual-ported 1/0 switches which are connected to dual-ported (possibly multi-ported)
communications controllers. This arrangement gives the architecture high availability.

The Tandem example provided an opportunity for using the facility in ADV.SER where
independent symmetric sub-structures of the original PMS structure are submitted as
separate problems to ADVISER and the solutions are used in conjunction. In the Tandem
example, the computers were taken to be identical and each computer was taken by SENET
to have eight local memories cf which at least six were required to function for a reliabie
computer. In order for the architecture to be functional the requirement was that at least two
of the three computers and both the 1/0 lines should be functional. The Tandem example
was split into two probiems for ADVISER. The first problem is to compute the reliability of a
single computer with the requirement that six of the eight available local memories. the
processor, the Dynabus control and the 170 channe! should function. The second problem
considers the Tandem architecture with the computers as indivisible entities and computes
the reliability assuming that two of the computers and both the i/0 iines need to function.
The reliability of components of type "computer” in the second problem is taken to be what
was obtained as a soiution of first probiem. ADVISER provides the capability of asserting that
the reliability of a component type will be provided by an external Fortran (or Sail) function.
Then, at the appropriate point in the Fortran (or Sail) output for the example, calls are
provided to the external function in order to obtain the reliability of the substructure, in this
case a computer.

Figure 7-14 shows the results of the comparison for the Tandem architecture of Figure 7-13
for the requirement "¢(2,.C) A ¢(2,J0L)". For each computer the requirement was "y (6.M) A
v(1.P) A ¢(1.10C) A $(1.Kb)". The tests were aiso successful for the case of a four
computer Tandem model which contained four computers and three 1/0 lines connected in
reguiar fashion in extension of Figure 7-13(a).

There were two cases in which the output of ADVISER did not match that ot SENET for the
example of Figure 7-13. The requirements in these cases were respectively "¢(1,C) A
¥(1.10L)" and "¢(2,C) A ¢(1,I0L)". Figure 7-15 shows the results of the comparison in the
first for the first of these two requirements. in both these, however, cases hand computation
using the LISP-MACSYMA combination described in Section 7.2 showed that the ADVISER
output was correct. Since SENET is not too clear on this point, the discrepancies are thought

Exampies and Results

Time
20¢.

acc.

6C0C

80°0.
1000
128C.

140C

160C.
18CC.
20CC.

R e el R ik o
I N C) D Y ks Mo

O o

5

€V €Y DO s 5 Ch >
€ €2 € Y O3 6 () 1y 03 D

on

~

€3 €5 €I €5 €I Y € Fr >

e s
NI NN
»

P
W W W W G
S MmO OO

va
[

[Ny
@ 0o G0
| >
€ O

18¢
192
192
196
158

O DD

280370

2420C.

244C<

24807
24820

annma

25C72¢
282707
28:0C
2860
258
250

Iy]

~
v
e

Figure 7-14: Comparison of ADVISER anc SENET results for Figure 713,

€ €3 €3 €3 D

€63 D 6> Y D O 3O

IO Oy O

"
~

P YLD O (D

€O D C DLWV D D)

€Y OO

> > O 0
o U €D

€) €3 €3 €3 €3 €3) D O D

()

AR EN AN e IR}

OO0 000000 oo
oo 000w W Wwww

(XS

2 O OO0 00000 DO OO0 0N aOaOa
N W W W

OO0 O0OO0O00O00O0O0O0

QOO OO0 OaOo

SENET

.9B8T2584E+0C

1240€-0¢C

£+00

o G oW

36EBS1TELDD
3477387E-00
.33018318+C3
3132108E+30
2968122£+00
.28U8534E+00
L28877338+00
251135408
23708L1E+00
2038062800
541887SE-01
5023823E-01
4588325¢E-C1
3132238-01
§§25838-01
£3334€E-C1
2146368-01
1881238-C1
g13713t-01
6632645€-01
485c05318-02

L44€30848-02
.40780888-902
.3724820¢8-02
.34010988-02
.3154308E-32
.2B324728-02

28835828 -02
28342686E-02
¢343%61€-03
2127647€-03
18261338-22
17432312E-03
187°64588-02
14273378-03
1261378E-03
11675888-23
1055635€E-03

OO0 OO0 OOOO0O 00O OO0 OO0 VO OO0 OO0

OO0 O0OODOOOOO

4313228¢8-C1
IS5l 2E-20
IESI3A8E-0
32146268-1
31538130¢€-01
25137148E-21
2E8G2K84E-0
485288318-02
4462084E-02
4C7BCBEE-C2
3724804E-22

4010868-02
310423058-202
.2822422¢8-C¢
258324528-32
23585838-C2
21470588-32
28€26588-03
2894255833
234E56528-03
2127647E-03
1525183E-33
1743412¢8-33
1577648E-23
1427327E-23
1261078€-03
1187588E-C2
1085685¢8-03

DO OO0 OO0

ADVISER
98725628+0¢C
9731238E-0
g577225¢E+30
G41176C0E00
92355:0E+0(
908074E+00

S57200E+00
8656257L+ 0
8448755E-00
£235678E+32

3658817E+00

477387802
J3C1881E+3C
3132101880
2668122E+0¢
2805392E+200
26587737E-30
2511358830
2372801E+00
22380088+020

.5418578E-01
.50248248-01
L4€5€8358-04

—

1

[}

VOO O0OTOMNOODOOWm

<

(=]

™

DI DD IO D QIO GO O OO

[l elNeNeNaNe NN

O OO O D0 OO0
N ote PO

NET-ADVISE
{§64€22¢-2
1837181E-2
44702458¢E-0
35C1773L-0¢8
35017738-0¢
1713634E-0¢€
74505318-28
6705823E-07
56804£48-07
16645228-0¢
1117837¢8-27
372828CE-38
T4E2224E-38
37252528-07
T8231ICE-07
11820528-0¢
8540887¢-37
11548408-06
4842877E-07
4842877E-07
1257288E-07
74208818-08
27623¢6E58E-L8
$887222E-C8
13065848 -08
dE8RE12E-03
.3728230¢8-08
Tel82228-0¢
T€83411E-C¢8
28¢1127E-3¢8
0020000200
45725288 -09
4652613806
6G84916E-06¢
2C37268L-0%
40745288 -C¢
3783458E-08
40748388-06
25103828 -0%
261223838-0%
agegfgt- 10
§a2 gt~ ¢
545&383E-10
41835768 -10
fagsgze-1g
der2gze-1l
458385t -1¢
38376738 -110
5820766~ 10
24E8E38E-10
35108278130

Tangem. 2 C and 2 10L required.

S4 M h D

['ARA1
5.02
¢ oC
. an
e
Ao
c o2
¢ 0c
¢ o¢
¢ 00
0.CC
0.0¢
[
~AOAS
£.02
¢ ot
PR
¢l
¢t
¢ a¢
.00
LY
0.l2
c.c2
¢ ¢l
c.cc
c.0°0
£.22
PRI
[ae
PPN
Mww
¢.C2
(ST
0.2°
.08
.ot
¢ 2
6.0¢
¢ oo
¢ .2
[N
6.lC
0.C¢C
0 CC
¢ o¢

0O DD 00000

R ARRE

T2 € €) () M) TP O (O

LR B A A A

218

Time
200.
400.
600.
800.
1000.
1200.
1400.
1600.
1800.
2000
2200.
2400C.
2600

OO0 OOOO0O0O

9200.
9400C.
9600.
9800C.
10000,
10200.

0000 00O

1680¢C.
16000
16200.
16400C.
16600.

00O oo

21800.
22000.
22200.
22400.
22600.

[~ el NeNe]

25200.
25400.
25600.
25800.
26000.

[« el Ne)

28800.
29000.
29200.
29400.
29600.

DO O0OO0CO

32400.
32600.
32800.
33000.
33200
33400.

QOO0 0O

39000,
39200
39400
39600.
30800
40000.

OO0 oO0OQ

Figure 7-

00000000 D0DOO0O0O

000000 OO0 O0O OO0 O0O0 OO0 o -~ - - -]

COO0O0O0O

~a OO0 OODOOO

SENET

.9998223E+00
.9992822E+00
.9983688E+00
.9970618E+00
.9853511E+00
.9932191E+00
.9906493E+00
.9876261E+00
.9841342E+00
.9801596E+00
.9756894E+00
.9707126E+00
.9652199E+00

.5522491E+00
.5365108E+00
.5216915E+00
.5066104E+00
.4916856E+00
.4769340E+00

.1687120E+00
.1617050€+00
.1549451£+00
.1484267E+00
.1421441E+00

.4279192E-01
.4076578E-01
.3883022E-01
.3698158£-01
.3521631E-01

.1844592E-01
.1753758E-01
.1667235¢€-01
.1584828E-01
.1506352E-01

.7331980¢€-02
.6960301€-02
.6806983¢E-02
.8271182¢8-02
.5951871¢-02

.2844847E-02
.2697490€-02
.2557619E-02
.2424864E-02
.2298872€-02
.2179307E-02

.4787798E-03
.4532638E-03
.4290907€-03
.4081908E-02
.3844980E-03
.3630497E-03

OO0V OOODDOO0O

0000 0O [~ - -] [~~~ 3~ N oo O0OooO (-~~~ NJ OO0 OoOoO

[~

ADVISER

.9999585E+00
.9998116E+00
.9995273E+00
.9990740E+00
.9984210£+00
.99756388E+00
.9983988£+00
.9949735E+00
.9932366E+00
.9911631E+00
.9887297E+00
.9859143€+00
.9826968E-00

.8389382€+00
.6240145E+00
.6090811E+00
.5941803E+00
.5792730E+00
.5644397E+00

.2243941E+00
.2158566E+00
.2075755E+00
.1995476E+00
.1917695E+00

.6216241E-01
.5935029E-01
.5665510E-01
.5407268E-01
.5159896E-01

.2766751€-01
.2634561E-01
.2508355¢E-01
.2387885¢E-01
.2272911€-01

.1125228¢€-01
.1069262¢-01
.1016982€-01
.9652642£-02
.9169624E-02

.4430988E-02
.4204167€-02
.3988665E-02
.3783937€-02
.3589462E-02
.3404743E-02

.71565972€-03
.7164731E-03
.8784452E-03
.6424061E-03
.8082538£-03
.5758913£-03

(SENET-ADVISER)
-0.
.52937126-03
-0.

-0

-0

-0
-0

-0
-0

-0

-0

-0

-0

-0

-0
-0

-0.
-0.
-0.
-0.
-0.

-0.
.3732322¢E-02
-0.
-0.
-0.

-0

-0.
-0.
-0.
-0.
-0.
-0.

-0.
.2632093E-02
-0.
-0.
-0.
-0.

5: Comparison of ADVISER and SENET results tor Figure 7-13,

-0

R

1361519€-03

1160488E-02

.2012357€-02
-0.
-0.
-0.
0.
-0.
-0.

3069885¢£-02
4319750E-02
5749486£-02
7347405E-02
9102374E-02
1100352E-01

.1304028¢E-01
.1520169€-01
-0.

1747689E-01

.8668911¢£-01
.8710366€-01
~0.

8738965t-01

.8754990E-01
~0.
-0.

8758744£-01
8750571E-01

.5568206E-01
-0.
-0.

§415158E-01
5263038€-01

.5112094€-01
-0.

4962545€-01

.1937049€-01
.1868451¢-01
-0,

1782488E-01

,1709110E-01
.1638265E-01

9221594E-02
8808033E-02
8411204E~02
8030573€-02
7665589€E-02

3920209€-02

3552836E-02
3381490€-02
3217953€-02

1586141€-02
1606677€-02
1431046€-02
1359073€-02
12905890E-02
1225436E-02

2778174E-03

2493545E-03
2362163€-03
2237858€-03
21198416€-03

Tandem, 1 C and 1 IOL required.

Examples and Results

% Diff.

-t ODOODO0OO0DO0OO0O0O0CO

Exampies and Results 218

to result from possible slight differences in the ADVISER rehability mode! of the architecture
as compared 10 the model assumed in the SENET program. especially {or iow values of the

requirements {se2 [Siswiorek 73}, Page I1i.78).

7.3.4 The Globa! Bus architecture

The next example from SENET used as a test of ADVISER concsrns the Gicbal Bus
multiprocessor archi~acture. Two cases of the PMS diagram of the architecture used in the
test are shown in Figure 7-16. The Global 8us architecture is similar to the archaecture of a
single cluster of Cm*® described in Section 7.3.1. The glcba! bus shared by all the processors
is analogous to the Kmap of a Cm* cluster. Each of the processcrs is able to access
memories in other clustars via the global bus and the failure of a processer does not preclude

accessing of its associated memories by processors in other clusters.

The attempts at matching results for the Global Bus architecture without 1/C lines (Figurs
7-186(a)) were successful for all requirements for low values of the numbs- of memgries
configured per processorse. However. discrepancies appearsd when the numbsr ¢f
memories per processor exceeded three. All attempts to obtain @ match with SENET resulis
failed in the case of the Global Bus architecture with {/C lines (Figure 7-15(b}). Subsaguently,
manual construction was used to verify the correctness of ADVISER output in both cases of
Figure 7-16. Figure 7-17 shows the comparison of SENET and ADVISER results for the case
of Figure 7-16(b) with a requirement of "y (2.P) A J(8.M) A ¢(110L)". The mismatch s
obvious. The rehability for this example was derived by hand, using the success-siate-table
method describad in SENET, to be

Rsy~s = Rl::us.RS 10

"Riol "R+ 2R+ 3R, +BR + R, + 25,4 2Ry
where

P\z . 3! 3'
Ry = Rxio Rk R5 Rasm

o -] eRdenlden
R1 - Rl'(no(1 HK.lo) RK RP TTAGM

saNote here tha! the Jefic:ency n the TREEREL aigorithm which causes ACVISER 10
4

.
c vie 8
rehiability for the Sm* strudture for small values of the raquirements Joes not nave adverse #'ec's in the Gleba Bos
case inCe the Dus was for2ed 1o e ir the Kasnel (Dy the method described in Section T 3 1) 872 1he Tus cont:dler X
1or 8 Processor 1S always Necessarny ir a%y §ysiem state 'n which (he Drocessor s ‘unchioral

e

Examples and Results

220
/| K\\ //K\\\ K\
P MMMM P MMMM P/MMMM
Key
S Global Bus P Processor
K Bus Control M Memory
(a)
K /K \ K \
P MMMM PMMMMKIO\PMMM/MKIO
5|10
0L
Key
S Global Bus p Processor Ko 1/0 Interface
K Bus Control M Memory Sto I1/0 Switch

IOL 1/0 Line
(b)

Figure 7-16: The Global Bus architecture used for ADVISER tests
(a) Without 1/0 lines (b) With 1/0 line.

ok

Examples and Results

T ime
20¢
Kbl
60C.
8e2
108¢C
1200
140¢
160C .
180¢C.
2€0¢C

223¢.

240¢
2500
280C.
320
3220,
340C.
352C.
38CC.
4C0C
420C.
432C.
4L
480C.
50CC.

P A bA bA s s ea 1A b e ba g
[L T NSNS UL A O N N
[I S IS IS WY

YMOOM PRI YO L PO WD

=)

€3 €D €Y (D O D3 O
OO DO OO O

1630
16200
1640C .
166CC
1538C°.
17000,
17232
174¢¢.

1760,

178¢7.
1806C.
182¢C.
1842¢C.
18€3¢
1880C.
16800,
182C3.

Figure 7:17: Comparison of ADVISER ang SENET results for Figure 7. 16,

OO CC LI OGO D00

O WO DO OO0 OO WL OO

BTN~~~ (o080 O WD W O W

PP OO D OO OO WO ODDODODOODDOOUVONDO 0O

DO OO OO VUOOOODDOO000O0OOOONC MO0,

SENET
877112800
128874820
SECTT3ES0D
37E1T8E-LD
1778028+
QEES2EE~OC
7438148400
5CSSBEE~CO
265441800
Ci0601E-07
746032806
4724308070
1989528+00
332533800
EOBTHEELTC
12674830
C15838£+00
70968828407
409888E-00
112225¢+30
818778£-00

$832837E-00
3245180E-20C
3878548E-0C
3710716E-07°
424€828¢€-02
37428582-02
325€3588-02
2971538802
258248588 -0L
2244CT70E-02
19718C2E-02
1731604E-02
15168368-C2
1333285802
11€8574E-22
1024418E-02
8672858E-33
78386858-02
E87427B8E-02
601¢693E-03
£286787¢-02
4563835428-02
40127234E-03
.38027888-02

¢s8s168-C2
26£7978E-03
2328742€-C3
20283¢EE-03
I7E7876E-C2
183881:E-33
1340881£-22
1167208E-03
1015738€£-02

OO D ODVDODBDMOHBTOODAD OO OMDOO DO

DO C OO OOOOONDMHBOOODOOODOODOCOAOOOOOOO DD

ADVISER

L I
’
O

on
-~
o
(e}
o
o

RN B I GG A)
+

+ 4 4

+
O DD DOODOHOOLWOOLOQHOOOO DM«

€YY P YO OOy

m
o
w

+

h
-~

Lo NS (N o NN PRV
1 G W O
+ + 4 4

w0 W D e o
[S NSNS IFNG NS HIE LN SN IS AN

L3 N)
+

FOOTV V10 6VY (VT EVE £ SV ATI AT ML 6N T (R M M Yy

-~ 00 0 @ W)
[N I

RN PV RRTE) 1)

~d 2 e Y O
+ ¢ ¢

+

SEm N LD DO DN MO N E DY

LT B BN e (RN AP I e B/ o BT 0 R S TRNR LT AN N+ - JNS LU SN
—_ U O e

s 2

RN R DWW W & = (MO
o N B S PV o (BT S I AL LI ¢ B ZF IS L

—_ MR N O
Mmoo e oy

+

2O
OV pe o8 € w2 I W O O A €I AP I O o B n ~2 (D =3 N WD D~ OISO)
~g A L PO D D DO AN e

YL PTY PR P PR ST PR TV T CR Gr Y £ 6T ETU PN MM T T T O TR 60 P 6 Py iy
1 PR T T T S T T S S |

O OOV UWVOOODOMOVWIHNMHMOOOOOMOMDOAOONDOONDOGOO0

~3 00 €5 ~4 Pd 2 P D L e

R R R LD B (N N D g W) h sa s s e BN S B D QO D s
=1 N R 0 CY P (NP (DD ea N~ ()
.

SO AR DD O UMD ORI CYR 2O WA OO U2 D B e
I FI N 2 D 2 P D N M TN PO IR N 00N M W R

4
e
548%
5475
2148
C5355¢% -
6852¢-
2818 -
§f22%-
2CF1E-04
S&TCE-04
UB13E-04
£518E-04
CALEE-C2
37888-04
§0508-C4
8i21£-04
LL4BE-04
3510E-04

o In (0 L (@ (0 (D (D G2 (D D W L W W WL Ry

(SENET-ADVISER)
90581$2£-03
4523285E-32
144276431
27340248401
4210285+ 01
§7805776~C1
7373115€-01
89329128-01
. 1041414E+50
L 1478898E~00
. 1302681F
14117378
15C4BETESD

©

OO0 QO U0 OO OO

QOO OO0 000

.1028688€ -
.80e1085¢E-
L76756451E~
.701748%¢8 -
.817C184E-02
.5422133€-123
.4762088E-C3
.&18L187E-C2

O OO OOVODOODDOIOODDOODOODDOODOO OO OO

© ¢

(S A1
€ DO O O

[N s)
+
(=
o>

>
€3

e
oo
~1

[P
ot

o

o

LR EVREE AR« T s BN)
o b

]

(IR

€> ™

i i S I I S SV X
G ka (N O »4 Fu =3 0>
P2 O WP~ O~ N
€ DO ~2 = O 2 O
G e ~d €Y A N DD
3 ra) ~5 (N S dn e

RN % B %)

G 3 Ay R R RO RS PO R P T

O C OO QIO OO

Ca

38£7i76E-C2
d2:88218-C2
28185556E-C3
2468CZFE-C2
21€18578-02
1852080802
€55 01E-C2
L144723CE-33
12645068-038
1105G689¢6-02
9846532804

4238758-04

Giobal Bus, 2P, 8M and 1 I0OL requirec.

-
A

L L

oW oW D W W W

~) ~2
now

I RN IR R RS BN B RN RV I

W oMM GO ®D OO~~~

2 g s (DU PO D <3 D

O W O D U L e

Sd AN AN MU OV s b

WO h fa e 10 (1 €t €3 ~2 ¥» 52 (D 63V K2 0N (N 13 00 N b= =1 Iy (2 (D PO 00 3 €1 (D

PR RS N2 e s st b €D 7D O3 O WO W OO OO D~ 2

Y U to On o -~

o M to L.

"
L3 BT R A T A e

Bx () R € O3 £ 2 (D w2 (D WD M (M h D 7 1 s

(@ O va (N -2 L P (D B L.

“EOV O B BN WD
Lo €) NS +s € LY (D NV UY R wA (N D

221

.

222 Examples and Results

2 egden? .
R, = Ry o "Rk "Rp(1-Rp)"Ryou

L] 3. 2 []
Ry = R ol 1R i) R "Rp(1-Rp) R o

p e
]

2 op2 err2 o8
RK.no RK“'RK) RP RM

Py
d

o2 enlernB
5" RK..o“'RK.m) RK“'RK) RP RM

L 2 L] 2. B
Rg = Ry o "Rk(1-RW)RRy,

and

v = Eio CORE (1R

This reliability was compared to the output of ADVISER after substitution of Ro through Re
in the R oS polynomial by using MACSYMA as described in Listing § on Page 186. The
subtraction of the two polynomials resuited identically in zero, thereby showing that the
ADV!SER‘output was correct for this case. A further test was made using a simpler version of
the architecture with only two memories per processor and the requirement "(2,P) A ¥(2,M)
A ¢(1,I0L)". The reliability for this simpler case was computed with ADVISER as well as by
the LISP program of Section 7.2 working on a hand-constructed RBD for the case. When
symbolically compared with MACSYMA these two reliabilities were found to be identical.

7.3.5 The Pluribus architecture

The last of the five examples from SENET which were used to test ADVISER is the Pluribus
architecture which is described in [Ornstein 75]. The version of the architecture used to test
ADVISER is shown in Figure 7-18. Each of the processor buses has one or more processors
(P in the figure) and at least one local memory (ML) per processor has to function if a
processor bus is to be functional. On the memory buses are situated the shared memories
(MX) accessible by any processor on a processor bus. The 170 bus (there may be more than
one) connects to the 1/0 devices which are alsoc accessible by any processor. The system
clock (CLK in the figure) and the Pseudo Interrupt Device (PID in the figure) are both essential
for system functioning and also reside on the 1/0 bus.

For the iest the architecture used had two processors and two iocal memories on each of

Examples anc Results

ML 4

Processor
Local Memory
Shared Memory
Bus

L.,

223

MX MX
(s |
K K ———
K K
MX MX
PR
K K
K K
K K
]]
0L 10L
K Bus Coupler
CLK Clock
PID Pseudo-Interrupt Device
10L 1/0 Line

Figure 7-18: Pluribus mode! for ADVISER test.

224

Time
200.
400.
600.
800.
1000.
1200.
1400
1600.
1800.
2000.
2200.
2400.
2600.
2800.

10200.
10400.
10600
1080¢C.
11000.
11200.
11400.
11600,
11800.
12000.
1220C.
12400.
12600.
12800.

27400.
27600,
27800.
28000.
28200.
28400.
28600.
2880C.
29000 .
29200,
29400.
29600.
29800,
30000.

37400.
37600.
37800,
38000.
38200.
38400.
38600.
38800.
39000.
39200.
39400.
39600,
39800.
40000.

Figure 7-19: Comparison of ADVISER and SENET resuits for Figure 7-18,
Pluribus, 2 P, 2 MX, 2 ML, 1 CLK, 1 PID, 1 IOL

[« NoNoNolN-NollaNalaNolloRe Moo 0CO0OO0OO0O0O0DO0OO0OQOQOOQCOO OO0 00O0O0OO0DO0O0O0OO0OQOO

COO0OO0OO0OO0O0DO0O00O0D0OOoO

[-WeNeN-NeleNolNoNelalNaoloolle 0CO0O000CO00CO0OO0O0DO0OO0OQO

0000000 OO0OO0OOOO

SENET

.9645158E~+00
.9881578E+00
.9806476E+00
.9729111E+00
.9640771E+00
.9544773¢+00
.9441460E+00
.9331194E+00
.9214355¢+00
.9091336€+00
.8962542E+00
.8828383E~00
.8689275E+00
.8545635£+00

.2989771E+00
.2880181E+00
.2773625E+00
.2670085E-00
.2569537E+00
.2471951E+00
L2377295E+00
.2285532€400
.2196622E+00
.2110822E+00
.2027188E~00
.1846564€+00
.1888607E+00
.1793263E+00

.5390093E-02
.53115320€-02
.4854218€-02
.4606130E-02
.4370430E-02
.4146518E-02
.3933826E-02
.3731808¢E-02
.3539945¢€-02
.3357742¢-02
.3184727¢€-02
.3020450E-02
.2864483E-02
.2716416E-02

0.3694320£-03
0.3498083E-03
0.3312183€-03
0.3136080£-03
0.2969265E-03
0.2811282£-03
0.2661584£-02
0.
0
0
0
0
0
0
1

2519823E-03

.2385856E-03
.2258392€-03
.2137958E-03
.2023902¢-03
.1915889€-03
.1813601€-03

A0 OO0 O0DO0OODOODOO 000000000 ODOOCO CO0O0OO0DO0O0O0O0ODODODODOO

0O0OO00O0O00CO0OO0ODOO0O00O

ADVISER

.9948578E+00
.9881006E+00
.9787324E+00
.9687837E~00
.9583082E+00
.9453768€+00
.9310750E+00
.9154986€+00
.8987511E+00
.8808416£+00
.8621820E+0C
.8425849E+00
.B222626E+00
.8013255E+00

.1621089€+00
.1535380€+00
.1453676E+00
.1378836E+00
.1301721€+00
.1231183E+00
.1164113E+00
.1100348E+00
.1039763E+00
.9822276€-01
.9276142£-01
.8757975¢8-C1
.B266558E-01
.7800705E-01

.7767298E-C3
.7273190E-03
.6810308E-03
.6376685E-03
.5970500E-03
.5590028E-03
.5233657E-03
.4899871E-03
.4587251€-03
.4284468E-03
.4020270€-03
.3763489€-03
.3523025¢E-03
.3297848E-03

.2829785€E-04
.2647468E-04
.2476876E-04
.2317258¢-04
.2167909E~04
.2028189€-04
.1897423E-04
.1775092€-04
.1680636£-04
.1553549€E-04
.1452358E-04
.1389819E-04
.1271918€-04
.1189866£-04

(SENET-ADVISER)
-0.
.5715340£-04
.12181908-02
.3122404F-02
.5768895£-02
.9100489€-02
.1307096€-01
.1762076€-01
.2268440€-01
.2819187E-01
.3407221€-01
.4025344£-01
.84666494£-01
.5323795¢€-01

COO0OO0O0DUO0OO0DO0OO0O0COCO COO00AOO0OO0O0ODODO0OO00O CO0OO0O0D0DO0ODO0OO0OODOOOC

QOO0 O0OO0DDO0OO0OoOO0OOCOO

3420487E£-03

-1368682E+00
-1344801E+00
.1319849E+00
.1294249E+00
.1267816E+00
.1240758E+00
.1213182£+00
.1185184E+00
.1156859€+00
.1128294€+00
.1099671¢+0C
.1070767E+00
.1041851E+00
.1013193E+00

.4613363E-02
.4388001E-02
-4173187E-02
.3968461E-02
.3773380E-02
.3587515E-02
.3410460E-02
.3241821E-02
.3081220€-02
.2928295E-02
.2782700E-02
.2644101E-02
.2512181€-02
.2386631E-02

.3411341€-03
.3233336E-03
.3064495€-03
.2904354€-03
.2752474€-03
.2608435€-03
.2471842E-03
.2342314E-023
.22104828-03
.23103037E-02
.1992622£-02
.18879408-03
.1788687E-03
.1694614E-03

% Diff

D OEWWNFHHOOOO0 0O

Examples and Results

Examples and Results 225

two processor buses, two shared memories on each of two memory buses and two 1/0 lines.
a clock and a PID on the single I/0 bus. The reguirements used were “y(2,P) A ¢(2,MX) A
Y{(2. ML) A ¢(1,CLK) A ¢(1,PID) A ¥(1,I0L)". The results are shown in Figure 7-19. Again
the mismatch is unmistakable.

This mismatch, as in the case of the Cm* mismatches, was anticipated since it arose from a
known deficiency of ADVISER. This deficiency was the subject of Chapter 8, Section 6.8.3
which considerad the side constraint dealing with bounded-clustering of ¢critical components.
The deficiency is summarized here. In order to implement a complete form of the boundec-
clustering side constraint it is necessary to process a set of general inegualities which relate
the quantities of the different types of critical components to be chosen in a bounded cluster.
The current version of ADVISER allows only a weaker set of inequalities to be specified which
simply put an independent integer lower-bound on the numbers of each type of critical
component to be chosen in a bounded cluster. Relating this to the Pluribus example under
study. the number of local memories which naed to be functional in order to insure that a
processor bus tunctions is bounded on the lower side by the number of processors which are

functionai on tha: bus. Thus the bounded-cluster constraint should be
(Number of ML) > (Number of P) A (Number of P) > 1
instead of which it was only possible to give ADVISER the weaker constraint

{(Number of ML) 2 1 A (Number of P} 2 1

in effect, therefore. the mismatch in Figure 7-19 reflects the fact that the SENET program
for the architecture and ADVISER were employing slightly ditferent models of the
architecture. The guestion now arises, it one is to grant the correctness of the mode!
assumed by ADVISER, is the reliability it computes correct for that mode!? it was decidec to
investigate this by comparing to hand-computation. However, due to the complexity of the
architecture and the inability of the LISP program to cope with the size of the hanc-
constructed RBD for Figure 7-18 it was decided 1o use a simpler form of the architecture. The
example actually used ‘or comparison (Figure 7-20(a)) was similar to that of Figure 7-18
except that there was only one processor and a single local memory on each of two processor
buses, one share¢ memory on each of two memory buses, and one 170 line. one clock and
one PID on the single i/0 bus. The requirement used was "¢ (1.P) A ¢(1.ML) A L(1.MX) A
Vv(1,.CLK) A ¢{1.PID) A ¢(1.10L)". Figure 7-20(b) shows the hand-constructed RBD for the
simpier example with this requirement. Listing 8 shows the MACSYMA terminal session which

demonstrated that the two symboli¢ expressions were the same.

P P o S

226 Exampies and Results
ML1 P1 MX’
L—l— S,— K1 s —-J
Kz Ka
Ka Ks

2 2]2
L—J_Sz_ Ks Kwo—S:
KS K11
Ke K3z
KL‘E |14 ’ﬁs 'J(w
Ss

(a)

K, K, S, MX, K K, =—
[1 Ry 93 MR K Rys
—P, ML, S, Ky K3
Ko Kig Sq MX; Ky, K1FJ

o—5, PID CLK I0L —

—]

5 12

(b)

Figure 7-20: (a) Simple version of Pluribus architecture
(b) Hand-constructed SPRBD for structure in (a) above;
1P, 1 ML, 1 MX, 1 CLK, 1 PID and 1 10L required.

s L

K, K, S, MX, K, K, ===y
a Kg Sy MXy Ko Kyg
P, ML, S, K¢ K7 |
Kg Kyy S, WX, Ky Kim

e suaala adaam)

Exampies and Results 227

Listing 8, Simple Pluribus Example

r; This listing shows the MACSYMA session during which ADVISER output for the simpie
Pluribus exampie was shown to be equal to the manual construction.
e |

This is MACSYMA 234

¢ FIX294 2 DSK MACSYM peing loaded
Loading done

H (C1) datehl(kini, eqagv';

Et (c2y /*

...

MACSYMA Module for Reliability Function manipulation
produced by ADVISER on Saturday, 17 Jan 81 at 21:52:35 for [4.1367)

...

F Task Title: PLURI.PMS --- A simple 2-PcBus, 2-MBus, 1-10Bus Pluridus model

Requirements on the Structure were:
(1-0F-P AND 1-0f-ML AND 1-0OF-MX AND 1-QF-PI0 AND 1-0F-CLK AND 1-07-101)

Component-Type definitions for this task:

INDEX TYPENAME PRINTNAME REL.FN. PARAMS

0 BUS BUS Const. Relia.=1.0060C000
1 COUPLER X Expon. Lambda=27.00000000
2 MEXT MX Expon. Lambda=23.139C0000
3 MLOCAL ML Const. Relia.=23.12900000
4 ARBITERP AP Expon. Lambda=3.50000000
5 ARBITERM AM Expon. Lambda=3.50000000
: 6 PROCESSOR P Expon. Lambda=12.906263300
; 7 I0INT 101 Expon. Lambda=72.20000000
E 8 CLOCK CLK Expon. Lamboa=14.704G0C00
i 9 PID PID Expon. fambda=7.00CC00000

i PMS Structure Definitions for this task:

e it " o i s

PAPOUIN

228
INDEX NAME TYPE NNEIG
0 SM.1 BUS 4
1 SM.2 BUS 4
2 SP.1 BUS 4
3 §p.2 BUS 4
4 SI10 BUS 7
§ AM.1 ARBITERM 2
§ AM.2 ARBITERM 2
7 AP.% ARBITERP 3
8 AP.2 ARBITERP 3
9 Mx.1 MEXT 1
10 Mx.3 MEXT 1
11 P} PROCESSOR 1
12 .3 PROCESSOR 1
13 ML.1 MLOCAL 1
14 ML.3 MLOCAL 1
15 1.1 10INT 1
16 PID.1 PID 1
17 CLx.1 SLOCK 1
18 k.1 COUPLER 2
19 k.2 COUPLER 2
20 K.3 COUPLER 2
21 K.4 COUPLER 2
22 K.5 COUPLER 2
23 K.6 COUPLER 2
28 K.7 COUPLER 2
25 X.8 COUPLER 2
26 K.9 COUPLER 2
27 K.10 COUPLER 2
28 K.11 COUPLER 2
29 k.12 COUPLER 2
30 k.13 COUPLER 2
31 K.14 COUPLER 2
32 k.15 COUPLER 2
33 K.18 COUPLER 2
./
%X%T0:
BUS ® MX * AM;
(02) AM
(C3) %%76:
BUS ®* ML * AP * P;
(D3) AP B
(C4) %XT8:
BUS * I0I * CLK * PID;
(04) 8US CL

(CS) /* End of temporary variadble ini

SystemXReliability: O0;
(08)

(C6) SystemXReliadbility:
4 ® Kt6 * XXTO * XXT6 * %XT8
XXT8 - 2 ® K+10 * XAT0e2 o
® ATEr2 * XXTE + 4 * Xr14
Ke18 * 2XT092 * X%TB+2 * %XTB

.

e R D eyt gy

Examples and Results
NEIGHBORS
(A1, X.1, X.2, X.3)
(AM.2, K.4, X.5, K.8)
(AP.1, K.7, k.8, K.9)
(AP.2, K.10, K.11, K.12)
(T.1, PID.1, CLK.1, K.13, K.14,
K.15, X.18)
(SM.1, MX.1)
(SM.2, MX.3)
(SP.1, P.1, ML.1)
(SP.2, P.3, ML.3)
(AM. 1)
(AM.2)
(AP.1)
(AP.2)
(AP.1)
(AP.2)
(S10)
(S10)
(s10)
(SM.1, X.7)
(SM.1, X.10)
(SM.1, K.14)
(SM.2, K.8)
(SM.2. K.11)
(SM.2, X.13)
{SP.1, K.1)
(SP.1, K.4)
(SP.1. K.16)
($P.2, X.2)
(SP.2. X.5)
(SP.2, K.15)
(S10, K.6)
(s10, x.3)
(S10, k.12)
(S10, K.9)
BUS MX
US ML P
K 101 PID

tializationse/

= 2% Kr10 * XXTO * XXT6+2 ©
IXT6 = X%T8 - 2 ® Kt12 ® XXATO+2
* XAT0+2 * XXTBe2 * XXTB -

P

s

o

Examples and Results

2 2 5 16 2 2 2
(D6 - AM AP BUS CLK 101 K ML Mx P PID

2 2 5 14 2 2 2
« 4 AM AP BUS CLK IOl K ML MX P PID

2 2 6 12 2 2 2
- 2 AWM AP BUS CLK IO1 X ML Mx P PID

2 4 10 2 2
- 2 AM AP BUS CLK IOl x ML Mx P PID

2 a4 10 2
- 2 AM AP BUS CLX 101 ML MX P PID
A}
3 6
+ & AN AP BUS CLK I0T1 K ML MXx P PID

{(€7) /*Eng of System Reliability computation®/

FACTOR(X):
3 6 2 10
(D7) - AM AP BUS CLK IOI K ML MX P (AM AP BUS K ML MX P

2 8 2 6 4
- 4 AM AP BUS K ML MX P « 2 AM AP BUS K ML MX P + 2 AP BUS Kk ML P

4
+ 2 AM BUS K MX - 4} PID

(D8) BATCH DONE

(C9) batch{kini,eghnd);

C10) /% Reliability Function printed by LISP at 17-Jan-81 21:48:1C ¢/
y

SYSREL:

+ACAMOAPOBUS 3 CLK* I0I K EOMLOMX?P*PID-2 AMP AP 22BUS+ 4 CLK I0I K- 1CoM 22 *MX*P2
*PID-2¢AMt2%APABUS*3°CLK*101®K*1GoMLEMX+2%P*PID

~2oAMT 28 APt 2OBUS*ESCLK 0TI K 12°ML ¢t 2 MX120P 12 PID+4%AMY 20 AP+ 228 USE*C LK TOT*K?
14°ML*2OMX120P12¢PID- 1AM+ 2 AP+ 22BUS 5 CLR®IOI K 1BoML22oMX*2P=2*P]D,

2 2 5 16 R 2 2
(D10) - a» AP BUS CLX IOl X ML MX P PID
2 2 L] 14 2 2 2
+ 4 AM AP BUS CLK IOl X ML Mx P PID
2 2 5 12 2 2 2
- 2 AM AP BUS CLK I0I X ML MXx P FID
2 4 10 2 2
-2 ¥ AP BUS (LK I0I X ML MX P PID
2 4 10 2
- 2 AM AP BUS CLx 101 X ML Mx P PID
3 &
+« 4 AM AP BUS CLK IOl X ML MX P PID
(011) BATCH DONE
(C11) rarerpsnd’syscel - svstemireliabilivy,
(011) 0
(C12, guitisL

228

230 Examples and Resuits

(KILL

7.4 Performance measurements on ADVISER

The author's experience with the current version of ADVISER has generated some
intuitions regarding the capabilities of the program in terms of the size of problems it can
handle. This section describes some of those intu}tions and presents some timing
measurements made on ADVISER using the Cm* architecture. Note: The timings in this
section are 10 be used as rough guides to the performance. They are not very accurate due 10
unavoidable circumstances at the time of measurement. The run time totals include a small
part of the timing overhead. All timings are in seconds of CPU time on a Digital Equipment
Corp. KL-10 processor.

The Cm* architecture was chosen because it embodies attributes which cause the current
version of ADVISER to exhibit some of its worst case behavior. Although ADVISER does
make use of some of the symmetry in the PMS structure there is room for it to do more. The
Cm* case offers an example of a structure with Pendant Tree Subgraphs which in addition to
being symmetric to each other aiso have considerable symmetry within themselves. Assume
that a single Cm* cluster has a total of 12 memories within it and the requirement is for six of
them to function. Currently ADVISER does not make use of the fact that the structure of the
cluster itself is very regular. It treats the problem as a 6-out-of-12 structure and goes through
considerable computation and use of the PMERGE and SMERGE algorithms to generate the
canonicai-form solution whereas one would straightforwardly write down the expression

38

. 12 12-i i
RKmap RSIocal i=0 i)RM “'RM)' 7.1

Note. however, that in a situation where this is a small portion of a bigger problem, the
expression (7.1) does not retain any of the individual identities of the memories involved and
therefore computing the symbolic probability of the intersection or union of this event with
other events dependent on it would not be easy. Furthermore, the TREEREL algorithm in
ADVISER works even when no symmetry exists aithough the price for this generality is paid
when there is a lot of symmetry internal to the PTSs which could be exploited.

The above example was provided to indicate that such problems would cause ADVISER to
do large amounts of computation especially if the requirement asks for roughly half of the

Examples and Results 231

configured components of each critical type to be functional. This is where the binomial
distribution of the number of functional cases reaches its peak. Experiments aisc provide? the
intuition that PMS structures which have smalier Kernels for a given set of PTSs tend to do
better in terms of compute time consumed. Experimental results given below show that the
CRP algorithms are the biggest performance bottleneck. Kernal path CRPs are used directly
in the coliapsing of the CRPTree. thus performance deteriorates when there are more of them
and they have more terms. The effect of increasing the number of PTSs in the PMS structure
is not as drastic in comparison, especially if the PTSs are symmetric. This is because CRPs for
the pendant tree subgraphs are allottad unique bits in the AUXVEC bitvector and the number
of them and their lengths do not have a significant effect in the CRPTree collapsing process.
Increasing the compiexity of the individual PTSs in a symmetric set. therefore, has a greater
effect than increasing the number of them in the set. However, a larger number of PTSs
implies 2 larger number of segments of the PMS graph which implies an increased the depth
to the CRPTree. In turn, the number of compaositions of the requirement integers in the
Compcesitions Table grows combinatorially with the number of segments. It is experimentally
obsarved that these two preperties combine to have a significant adverse offect on the run

time after approximately six or eight segments have been introduced.

It appears that although compute time is necessarily sensitive to the number of components
in the structure per se, it is more sensitive to how many of the configured critical components
are required to be functional i.e. the complexity of the requirements (see Footnote on Page
109). ADVISER does best when the requirements demand that much less than half. or aimest
all. of the configured components of each critical type be functional. This is generally
expected to be the case in practical multiprocessor architectures. Tasks on muitiprocessors
such as Cm* will probably require much fewer than half the total numbear of procassors
configured. Likewise array-processor type SIMD archictectures will ganerally require all, or
a!most all processcrs to be functional.

It is to be noted that all of the above patterns of behavior do not in themsetvas affect the
compute time significantly: their effect is magnified by the poor performance of the CRP
algorithms. Experiments show that the outstanding consumars of computation time during a
typical ADVISER run are the CRP merging algorithms PMERGE anc SMERGE The timing
measurements prasented below show that overwhelming percentages of the run time are
spent in these algorithms despite all efforts to make them as efficient as pcssibie 1n the
implementation. This is not entirely unexpected since deaiing with canomical forms ot the
polynomials is known to be inefficient in a larger sanse. On the other hand the versatiiity.
simplicity and robustness of the PMERGE and SMERGE aigorithms greatly eased the

-

232 A Examples and Results

implementation of the program. it is clear that for more efficient versions of ADVISER some
more compact iow level representation for the polynomials would have to be found which
allows greater use of existing symmetry in the structure while preserving the ease with which
the symbolic probabilities of the unions and intersections of dependent events may be
computed.

Requirements Total Run Total Time 3 Tota! No. CRP
Time (3ec) in Merge Merge/ Terms processed

------------ Package Total

4 L} (sec)

1 1 1.41 0.427 30.28 198
2 1.89 0.776 41.06 581
3 2.59 1.255 48 .46 1071
4 2.84 1.382 48 .66 1353
§ 2.97 1.440 48 . 48 1427
6 3.08 1.490 48 .38 1439

2 1 1.32 0.293 22.20 225
2 1.84 0.684 37.17 608
3 2.47 1.146 46.40 1098
4 2.91 1.388 47.70 1380
5 3.o8 1.487 48 .28 1454
6 3.21 1.582 49.28 1466

3 1 1.26 0.189 15.00 234
2 1.74 0.574 32.99 617
3 2.48 1.114 45.28 1107
4 2.93 1.429 48.77 1389
5 3.21 1.554 48. 41 1463
6 3.43 1.678 48 .92 1475

..

Table 7-1: ADVISER timings for 1-cluster Cm* case.

Two simple versions of the Cm* architecture were used to generate what is conceivably
worst case behavior for ADVISER. The first example is a simple single-cluster Cm* with three
Cm's each with one processor and two memories. This makes a total of three processors and
six memories. All possible combinations of requirements on processors and memories were
taken. The results are shown in Table 7-1. The first column gives the total run time for each
case. The second column gives the run time consumed by the PMERGE and SMERGE
algorithms for each case. The third column states the merge run time as a percentage of the
total run time. The last column shows the total number of CRP terms processed in the
intermediate representation package for each case.

The second example was a two cluster model wherein each cluster was identical to the
cluster in the first case and the two clusters were connected through a single intercluster bus.
This makes a total of six processors and twelve memories. Enough cases of requirements

Yo

i

S s et

P N S

Examples and Rasulls 233
Resuirs-ertls Total Run Total Time 3 Tosa) %o (CRP
Tiea (se0c) in Ke-ge Marse/ Tarms processel

------------ Paciage Total

P L (sec)

1 1 5.20 0.533 17.238 418
2 45 .91 42 438 86.78% 2c2¢C
3 107.02 §4.469 88 27 5820
4 147 .04 132,230 88 £¢§ 7670
5 163.26 143 802 ge .08 gecd
6 1656.5¢ 143.773 85 32 10638
7 168.27 136.248 87.58 10432
8 64 6% 58.804 8s 84 8834

2 1 1.00 1.%84 28 .24 #28
2 77.83 60 314 77.43 4048
J 166.389 133.686 8¢ 3¢ §$C01¢
4 225.8% 183.160 81.10 12222
L] 254 .53 2¢2.315% 79.48 16282
6 >244.00 7 ? ?
7 241.55 188.788 82.29 16452
8 g5.16 77.456 81.44 8536

3 1 4.324 1.858 43 .04 1628
2 70.80 5% .662 B4.2 6274
3 160.28 137.367 85.70 1252
4 226,86 160.701 4.¢5 162¢2
5 >252.00 ? 7 ?
3 475,581 326.610 8810 27872
7 284 8% 217.165 76.23 22024
8 107.52 3.091% 77.28 12€74

4 1 3.81 1.670 45 2¢ 123¢
2 64 .89 5% 8¢8 £.1¢C 4882
3 144.82 126.736 87.%81 16032
4 136.13 171.036 §7.21 14858
5 222 .9¢ 188 a8g 84 5¢ 17755
[272.82 215,022 75.81 2028
7 224.52 188 . 400 83.9! 17302
8 $0.78 75.684 83.37 10412
Table 7-2: ADVISER timings for 2-cluster Cm*® case.

wera triad out on this exampie to pass beyond the reguirement which enablss tha pe2h
numoer of successtul stztas e YA P) A {8 M) The resuMs are shown in Table 7.2 Tne
expicsive growth in the number of polynomiz! terms to be processsd by the merz 73

aigorithms is obvious, as is the large parcentaze of the toa! run time taten un

)
P
oT
%)

inputinto ADVISIA the probizT znz'ysis phass, before the CRETres wag fna", totapnet
ra-aly oo mere then six 1o 420 s2zonds of processer time Thus P more elf clentimiermaed et
£ 2,5% CN IOoTpiex

234 Exampies and Results
Rua 3.4 b oo 3
Tune et
{sec)
3.2 2
1

No. Memones required

Figure 7-21: Graph of ADVISER runtimes in Table 7-1.

——— o

Examples and Resuits 235

Run 500.0 - Extapolated values (see Tabie °-2)
Time
(5¢<.)

480.0 -

1500 | 7, e . '\

K0+ 4

0.0 1 1 ! BN 1 1)
1 2 3 4 5 6 ? "8

No. Memones required

Figure 7-22: Graph of ADVISER runtimes in Table 7.2.

oo T,

236 ' Examples and Resuits

In the cases where question marks appear in the table the program did not complete its run
due to exhaustion of memory space. This is not a serious problem necessarity inherent in the
size or nature of the example but reflects inefficiency in the use and garbage coliection of
aliocated space within ADVISER which could be improved by more careful programming®. In
these cases the run-time figure is that which was recorded at the time of the error due o
space exhaustion.

Figure 7-21 plots the values of Table 7-1 and Figure 7-22 plots the values of Table 7-2.
There is a peak in the graphs of Figure 7-22 at the requirement of six memories out of a total
of 12. This corresponds to the maximum number of ways of choosing some size set of
memories from the 12 available. Also, the graph with the highest peak corresponds to the
requirement of three processors out of six; again half the number available. A peak is not
similarly visible in Figure 7-21. Since some unquantified part of the timing overheads is
included in the total run time figure the absence of the peak may be due to the timing
overheacs being of magnitude comparable to the run time in the case of the 1-cluster Cm*
case. In the 2-ciuster Cm*® case the run times are evidently much greater than the timing
overheads and the peak is displayed. However, the timing overheads may be expected to
increase with the number of CRP terms being processed and this is borne out by skewing to
the right of the area under the curves in Figure 7-22.

Most of the problems chosen for the tests in Section 7.3 however were not as stressful on
ADVISER. Table 7-3 shows the ADVISER run times for the examples used in the tests. For the
Tandem example the table shows an additional time inside parentheses. This refers to the
separate problem provided to ADVISER to compute the reliability of a “"computer” (see
Section 7.3.3). Although the second time is shown for both Tandem tests. the separate
cafculation for the "computer” reliability was carried out only once and the results used in
both Tandem tests. The outstanding times in Table 7-3 are the ones for the case of C.mmp
(distributed switch) and the Global Bus. The C.mmp timing for the case of the distributed
switch is high since the Kernel in that case reflects the structure of the switch. This results in
the generation more Kernel path reliabilities and correspondingly more PMERGE and
SMERGE operations both during the computation of the path reliabilities as well as because
of the overail number of CRP operations necessitated. In the case of the Gilobal Bus reliability
the example stresses the same weak point as shown above in the 2-cluster Cm* example

5“ 3 possibie 2 subtie programming error, which causes the loas of pointers 10 dealiocated space. may be

responsible since ADVISER has handled larger exampies from the standpoint of lengths and number of CRPs
invoived

Examples and Results 237
Example Requirement Run Time
(sec)

DECY.PMS 1P, 2 M 1.1¢4
DEC2.PMS 1P.1 M 0.3¢
DEC3I.PMS 1P, 2 M 3.14
Cme 5P, 10 M 12.87
Cm* 1P, 2 M 2.08
C.omp (Lumped) 2P, 2 M, 4.67

1 K.10, 1 K.clock
C.mmp (Distributed) 2 P, 2 M, 170 .51

1 K.io, 1 K.clock
Tangem 2 C. 2 1oL 1.84 («18.71)
Tandem 1C. 1 1I0t 5.90 (+18.71)
Global Bus 2P, B M 4015 .69
Pluribus 2 P, 2 ML, 2 MX, 3.52

1 CLK, 1 PID, 1 I0L

...

Table 7-3: ADVISER timings for architectures of Section 7.3.

(Table 7-2). In addition the addressed Global Bus structure is not regular thus resulting in
fewer opportunities to simplity CRPs. Hence CRPs are in general ionger in this example and
since the PMERGE and SMERGE algorithms are sensitive to CRP lengths the problem is
compounded.)

-

7.5 Application to classical Network Reliability problems

In certain kinds of classical network reliability probiems it is possibie to use ADVISER for
computing the solution. By the phrase "classical network reliability problems™ we refer here
10 the class of problems discussed in papers such as [Wilkov 72]. The network is typically

viewed in such problems as a set of hc’mogenecaus‘o

processing elements or nodes
connected by a set of homogeneous non-directed arcs for transferring data. Either nodes or
arcs, or both, may be prone to failure with some probability. Traditional reliability measures
for such networks inciude the probability that two particular nodes are always able to
communicate, the probability that enough arcs are functional to preserve a spanning tree of
tha network, and so on. We note in passing here, however, that ADVISER is not constrained

to the traditional assumption of homogeneity of arcs and nodes.

In order to convert such problems to the ADVISER model the treatment differs according to
whether nodes or arcs, or bath, are failure-prone. If only nodes are prone to failure while arcs

‘oi.e‘ having dentical probabilities of failure or success.

238 Examples and Results

are pertfect then this is precisely the ADVISER model and no change is necessary to the
interconnection graph of the network. in the case that nodes are perfect while arcs are
failure-prone, or the case that both nodes and arcs may fail, it is necessary to convert the
interconnection graph into a probabilistically equivalent network by the following
transformation. 1t G(V.E) is the interconnection graph and the edge (v,.vz)éE where v1.v2€v
then replace the edge (v,.vz) by a new node vy and two new edges (v1.v ‘) and (v..v,‘,) where Va
embodies the lumped reliability behavior of the original edge and the two new arcs are
perfect. In this manner at most n(n-1)/2 new failure-prone vertices are introduced (where n is
the cardinality of the original vertex set V). The new graph obtained in this fashion is
probabilistically equivalent to the original graph and is composed of perfect arcs. the original
nodes which continue to be perfect, and some new nodes which are failure-prone.

The kinds of requirements which ADVISER is capable of handling in such problems are any
that may reasonably be transtormed into the boolean expression method of specifying the
reliability requirements. For instance, if it is desired to compute the probability that two
particular nodes, say v, and Vi will be functional and abie to communicate, then it is
necessary to aliot them distinct type names (in the ADVISER sense). Thus make v, the only
node of type TYPEX, say, and vy the only node of TYPEY, say, in the graph. Then. to compute
the desired probability, the necessary requirement to be applied to the transformed graph will
be

$(1.TYPEX) A ¥(1,TYPEY).

ADVISER will then compute the probability function using the Communication Axiom. It is
possible in the case of tree-connected PMS structures that ADVISER may compute a
pessimistic reliability. This case was referred to in Section 5.3.

In order to illustrate the contention of this section we choose the ARPANET example
described in [Hansler 74], Page 107. The network is shown in Figure 7-23(a) where the
objective is to compute the probability that vertices 1 anc 8 will always be able to
communicate. The vertices are homogeneous and perfect whereas the arcs are
homogeneous and failure-prone. [Hansler 74] gives the following expression as the solution:

Pl1.8] = 492 + 60-16q*~32q° + 115q°~134" + 78q®-24q% + 39™° (7.2)

where P [s.t] is the probability of failure of communication between nodes s and t and g is the
failyre probability of an arc. [Hansler 74] also defines P c[s.t] to be the probability of successtul
communication between s and 1. Then P [s.t] = 1-Pc[s.t].

Exampies and Results 239

By the transformation outlined above we obtain Figure 7-23(b). Note that the probabilities
specified to ADVISER for the arcs and nodes will be syccess probabilities and that the pertect
vertices will be given success probabilities of 1.0. Listing 8 shows a MACSYMA session with
the ADVISER solution (i.e. Pc[‘l .8)) to the problem. in line (D6) the reliability (N) of the pertfect
vertices in Figure 7-23(b) is set to unity. In line (D7) the success probabilities of the failure-
prone vertices have been replaced by failure probabilities in order to conver: the expression
to the form in [Hansier 74]. it is seen that the result of the MACSYMA manipulations in line
(DB) is the complement of the expression in Equation (7.2) above.

L% Listing 9, Arpanet Example

This iisting shows the MACSYMA manipulations on the ADVISER solution to the Arpanet

example of {Hansler 74] showing that it is the same solution as obtained by the latter.
ot |
This is MACSYMA 283

FI1X292 6 DOSK MACSYM being loaded
Loaging done

(C1' pateh(kini,egagv); .

MACSYMA Mogule for Reliability Function manipulation
produced by ADVISER on Monday, 12 Jan 81 at 12:39:21 for [&4,13€7]

...

Task Title: ARPANT.PMS -- A small modified Arpanet problem
Requirements on the Structure were:

{1-0F-N AND 1-0F-N)

Component-Type definitions for this task:

INDEX TYPENAME PRINTNAME REL.FN. PARAMS

0 N Const. Relia.=1.00C00000
b N Const. Relia.=1.0000000C
2 7T N Const. Retia. «1.00000000
3 p Expen. Lambaa=10.00000000

PMS Structure Definitions for this task:

it 2.

Cae s

240 Examples and Results

(a)

N7

-

N8

Nb

(b)

Figure 7-23: (a) Example network from [Hansler 74]
(b) Translation into ADVISER framework

Examples and Results

INOEX NAME TYPE NNEIG NEIGHBORS
0 Nt s 2 (A, B)
1 N2 NODE 2 (8. D)
2 N3 NODE 3 (A C.)
' NODE 2 (E. F)
4 NS NODE 4 (C.D, 6. H
5 NS NODE 2 (W, J)
8 N NODE 3 (F. 6, 1)
7 N8 T 2 (1.3)
8 A ARC 2 (N1, N3)
9 ARC 2 (N1, N2)
10 ¢ ARC 2 (N3, N5)
110 ARC 2 (N2, N5)
12 € ARC 2 (NS, N&)
13 F ARC 2 (N4, NT)
12 6 ARC 2 (N5, N7)
15 H ARC 2 (NS, N6)
16 1 ARC 2 (N7, N8)
17) ARC 2 (N6, N8)

s/

SystemXReliability: ¢;

(D2) 0

(C3) SystemXReliability:
59 N2 ® N o N®Pra - 5% NtGSN®N®P1G + 2°Ne5e
Ne®NePE - 6% N*5°N®N®®Pt]T + 5§ pNe5°*N*N"
Pt8 - 3 “ N*6 * N ® N °® P8 + 6 * N+*6 * N*N* Pt - 3

S N*8 * N * N * Pr10
8 10 8 9 8 8 7 8 7 7 7 6 6 6
(D3) -3 N P +&6N P -3IN P «5N P -6N P +«2N P -5N P

5 &
+ 5N P

(C4) /®tnd of System Reliability computatione/

FACTOR(%):
5§ 4 386 3 5 34 2 s 2 3 2 2
(04) - N P (3N P -6K P +3N P -5N P +«6N P -2N P
2
«~5 NP - 8)
(05) BATCH DONE
(C8) DA N=1;
4 6 5 4 3 2
(06) -P (3P -86P -2P +6P +3P -5)
(C7) %.Pe(1-0):
6 5 4 3 2
(D7) = (3 (1 -Q) -8 (1 -Q) -2(1-Q) +6(1-Q) <«3(t-Q -8
4
(1 -Q

241

242 Examples and Results

(C8) ratexpang(%),
10

9 8 7 6 5 4 3 2
(D8) - 3Q +24Q -79Q +138Q -13150Q +32Q +16Q -60Q - 40

+ 1
(C9) quit{d:
KILL

7.6 Summary and Conclusions

This chapter has described some of the results of testing ADVISER for correctness of its
output. In all of the cases so far studied, where ADVISER's deficiencies did not come into
play, it has been possible to show that the chance of ADVISER's output being correct is high. :
In those cases where comparison to manual computation was feasible the program output

et te

was indeed verified to be correct. Further testing using more complex and stressful examples

will be required before strong confidence in the program is justified. However, the prognosis
for the program’s useability appears very good.

The major hindering factor at this stage of ADVISER's development is the inherent
L inefficiency of its low level PMERGE and SMERGE aigorithms for dealing with the
intermediate representation. These inefficiencies were partiy to be expected with the use of

canonical forms of polynomials, however, what was quite unexpected was the large
percentage of the typical program run time consumed by these algorithms. The encouraging
thought is that the problem analysis time, preceding the collapsing of the CRPTree in the final

phase of the computation, appears 10 take typically around 15 percent of the solution time.
Improvement in the intermediate representations and algorithms can therefore be expectec to
bring about signifcant improvements in the program’s performance. Minimal forms instead of
canonical forms of expressions must be used. Improvements must be obtained to algorithms
such as those described in [Bennetts 75] and [Satyanarayana 78] so that they may be
incorporated into ADVISER and used at all stages of the computation rather than in a final
pass over a constructed intermediate representation.

A solution to the deficiency in the bounded-cluster side constraint specifiability is fairly
straightforward and requires mostly an implementation effort. However, the deficiency in the

TREEREL algorithm is more severe and will need more research to arrive at a satistactory

solution. Despite these deficiencies the program can be useful for anaiyzing the reliability of
many types of PMS structures.

i —

e .

s

Conclusions, Future Research 243

Chapter 8
Summary, Conclusions, and Future Research

The work contained in this thesis has been an attempt to introduce a new and higher level
approach to the reliability modelling of computer structures at the Processor-Memory-Switch
(PMS) level of design. Traditionally, reliability caiculation programs have addressed the
problem largely at the level of analysis of fauit-trees and reliability graphs (for example see
[Misra 70a]. [Bariow 75b], {Chelson 71], [Fleming 71} [Bennetts 75]). The fault-tree or
reliability graph is assumed to have been derived by hand from the program-user's knowtedge
of the system being analyzed. In another branch of this endeavor, systems are viewed as
cascades of GM7. (General Modular Regdundant) subsystems. for example see [Mathur 75a],
[Ng 80]. In these cases the user of the reliability calculation tool is required to first
appropriately segment the system under consideration into such subsystems. Often this may
not be possible. Much work has been done toward the calculation of what is commonly
termed "network reliability” in the literature in one of two senses. in one sense this term nas
been used to refer to computing of system reliability as encoded by reliability graphs. in the
other sense the term refers to the calculation of reliahility of such loosely coupled systems as
geographically distributed computer communication networks (see [Wilkov 72]). The
underlying mode! in these latter instances has generally been a graph with homogeneous
vertices and arcs, where the vertices or the arcs, or both, are prone to faifure. The reliability
measures of interest in these cases have tended to focus. for instance. on the probability that
certain key vertices in the network are able to communicate at all times. In the case of PMS
systems the vertices of the interconnection graph represent the non-homogenecus
components in the system and therefore must be labelled to reflect this non-homogeneity.
Furthermore, the criteria for system functionality are more compiex and require typically that a
certain minimum sized assortment of types of components be functional and capabie of

intercommunication.

The main goal of the work has been to develop techniques which enabie much more of the
PMS system reliability calculation process to be automated than has heretofore been
customary. The concomitant desirable result of achieving such a goal is the reduction of the

ek, i [P P VAR

h—a......______'__________________“k

244 Conclusions, Future Research

possibility of error which is ever-present in tedious hand calculation. Furthermore, relatively
unsophisticated modeliers of PMS system refiability have access to a powertui tool which
relieves them of the burden of attending to many of the complexities of such modelling.

This dissertat.. . Jdescribes significant progress toward such a goal. The ADVISER
program was constructed to provide a reliability caiculation aid at the PMS ievel. The program
accepts as one of its inputs the interconnection structure of the PMS system in the form of a
graph in which the vertices are labelled with the generic type of the components they
individually represent. Another input is a set of requirements or criteria for system
functionality in the form of a modified Boolean expression. Further ad hoc side-constraints
may also be provided by the user. The output of the program is a text file which contains a
program to compute the reliability function of the described PMS system under the given
requirements and constraints.

The next section will recapitulate the material of the chapters of this thesis taken in
sequence and the final section will restate the problems which remained unsoived at the
conclusion of this investigation and propose areas for future research in the field.

8.1 Recapitulation

Chapter 2 reviewed eariier work on algorithms for reliability calculation and various efforts
towards building software design tools which calcuiate the reliability of various kinds of
systems, It was noted that while many such reliability calculation aids had been constructed
virtually every one of them has required the user of the program to do a partial analysis of the
system under consideratiom. Typically, then, some intermediate representation is generated
by the user which encodes the resuit of his system analysis. Depending on the type of system
reliability analysis desired this intermediate representation is usually either a fault or event
tree or a reliability graph. Having derived the intermediate representation the user then
proceeds 1o feed it to one of several commonly available reliability caiculation aids which use
the intermediate representation to compute numerically, or symbolically, the system reliabitity.

This perspective lead to the posing of the question: /s it feasible 1o construct a design too!
which will compute the symbolic reliability of PMS level systems directly from their
interconnection graphs and a statement of the criteria by which they are judged functiona™”
This investigation undertook to answer the question. The rest of Chapter 2 provided a broad
overview of the functioning of the ADVISER program which was the result of the investigation.

s Ty ot e b iy e

Conclusions, Future Research 245

The program operates on what are termed Canonical Reliability Polynomials (CRPs). These
are the equivalent of an intermediate representation mentioned above. lt incrementally
generates CRPs as Partial Resuits for each class of functional system states which arises as a
result of its case analysis of the PMS system. The structure of a CRP bears a close

resemblance to the structure of a Boolean expression in disjunctive normal form except that

the literais in the CRP are the symbolic probabilities of success (reliabilities) of unique
; components in the structure. CRPs can be "merged”" in two ways which respectively
: represent the computation of the probabilities of intersections (SMERGE) and unions

(PMERGE) of events. The primitive events under consideration are the successes of
\ components in the system and system success is a compound event. Chapter 3 described the
t list data structure used to represent CRPs and algorithms for the SMERGE and PMERGE
[operations. The algorithms are simple and robust in the face of overspecification. In other

words they will correctly merge two CRPs to form the appropriate CRP representing the

U]

intersection or union c¢f the events represented by the CRPs which were merged, regardless

of the exact set of events or antecedents of the merged CRPs. They are thus idea! for use in a

i program such as ADVISER wherein CRPs are generated in severa! different phases during a
program run and no record is kept of how any particutar CRP was generated. The drawback
g with these algorithms is their time complexity which is O(nz) if each of the list data structures
' representing the two CRPs to be merged is of length O(n). Furthermore, the list resulting trom n
a merge has a length of O(n"’) thus making successive merge operations more and more ;

expensive. This is the major drawback of the ADVISER program as it is currently constituted

and some palliative measures are reported in Chapters 3 and 6. The SMERGE and PMERGE

operations are used throughout the rest of the program to appropriately combine partial
results in order to finally produce the system reliability function.

, Chapter 4 described symmetry detection aigorithms, based on the work of Gaschnig.
[Gaschnig 77]. which are used 1o detect symmetric subparts of the PMS interconnection
structure. The motivation is to employ any existing symmetry to acvantage by computing
results for only one of a set of several symmetric subparts and applying those results
identically to the rest of the members in the set. The result of processing the interconnection
graph of the PMS structure through the symmetry detection algorithms is 2 Typed Ne:ghbors
Class Graph (TNCG) whose vertices are the symmetry classes induced by the Typed
Neighbors Class Equivalence Relation (TNCER). An examination of the TNCG reveals the
nature and number of symmetric substructures within the PMS system.

It was postulated that a divide-and-conquer approach to the system reliability calculation
would be truittul if the program had a repertoire of special refiability calculation techniques for

D)

W

246 Conclusions, Future Research

various kinds of substructures within a PMS system. Then the segmenting of the PMS
interconnection graph to provide the subproblems for the divide-and-conquer paradigm could
be done on the basis of substructures for which special techniques were known. Quite by
chance one of the most frequently occurring substructures in PMS systems is the tree
interconnection structure. Chapter 5 describes the GROWTREES algorithm whereby Pendant
Tree Subgraphs (PTSs) are recognized in the TNCG, thus providing a knowledge of
symmetric PTSs in the original PMS interconnection graph. The TREEREL algorithm is also
described and embodies the special techniques mentioned above for the case of tree
interconnection structures. Using the SMERGE and PMERGE algorithms of Chapter 3 it
computes the symbolic reliability for a PTS given the interconnection structure of the PTS and
criteria for its functionality. In this respect the TREEREL algorithm is a microcosm of the
ADVISER program.

Chapter 6 describes the OVERLORD routine in the ADVISER program which orchestrates
the functions of the various algorithms described in earlier chapters. After the PMS structure
has been input along with the requirements the OVERLORD routine takes control. it invokes
the SYMMDET aigorithm on the PMS interconnection graph and then proceeds to discover
symmetric PTSs in the graph by calling the GROWTREES algorithm. It then invokes the
TREEREL algorithm a sufficient number of times on the discovered PTSs in order to
precompute all partial results (CRPs) for PTSs which may be expected to be used during the
remainder of the program run. Finally it proceeds to fragment the input requirement into all
possible subcases which the system can satisfy and, thus, be functional. Cases of interest are
those in which the functional components in the system satisfy the Communication Axiom and
other side-constraints which were specified by the user of the program. Each of these cases
actually represents a class of functional system states since the enumeration is done over
functionat substructures of the PMS system rather than over individua! components. For each
case it generates a partial result or CRP and finally merges these partial results to form the
CRP which represents the system reliability. During the last phase of the program run this
final CRP is algebraically simplified using what is known about the generic class of
components to which each component in the PMS system belongs: all components in the
same generic class are deemed to have identical reliability functions. The simplifiad refiability
function is then printed out as a file containing the text of a FORTRAN or SAIL procedure
which numerically computes the reliability function just derived.

Chapter 7 presents some experimental results obtained by using the ADVISER program
with some typical PMS structures. In an effort to engender confidence in the correctness of
ADVISER output the output was checked in two ways. The first check involved comparing the

Conclusions. Future Research 247

output for @& PMS structure, which couid be analyzed easily by hand, with the manually
computed reliability function. In the second form of check numerical values of system
reliability were obtained using the reliability function output by ADVISER. Programs written by
independent researchers to calculate the reliability specitically for those systems were used to
obtain a second set of values against which ADVISER values were compared. Both forms of
test were successful in showing that ADVISER output was correct with high probability and

- that the program could be useful in analyzing a variety of architectures. Experiments in

analyzing the performance of ADVISER were not as satisfying, perhaps inevitably so. given
that the ADVISER sottware is of necessity not of production quality. Large percentages of the
compute time for a problem are spent in the low level algorithms which operate on the
intermediate representation. There is clearly much room for improvement in these algorithms
and the indications from the experiments are that modest improvements in them would resuit
in significant improvements in program performance.

8.2 Future Research

There are two general classes of topics for future research in the area addressed by this
dissertation. The first of these is the set of problems which were encountered whiie
constructing the ADVISER program as a test bed for the ideas developed here and for which
no solutions have yet been found. The other class of topics is generated by the systematic
elimination of the fundamental underlying assumptions which were made in order to
circumscribe this work. We shall discuss both these classes of probiems in the foilowing.

8.2.1 Unsolved problems in the present framework

8.2.1.1 Intermediate Representation

The Canonical Reliability Polynomial (CRP) as an intermediate representation in ADVISER
provided some attractive benefits from the point of view of the design and construction of the
program. The algorithms to process CRPs are simpie and robust and will work to correctly
merge any arbitrary set of CRPs so long as the set of primitive events is fixed and CRPs for all
compound events are generated only by means of the merge algorithms themseives. Thus the
software package which handles CRPs as the primitive operands could be designed
completely independently of any other part of the program and be called during any phase of
the program run. lronically this very simplicity gives rise to a combinatorial explosion in the
case that the input requirements expression is exceedingly complex or in the case that for any
critical component type the requirements demand that about half of the available components

248 Conclusions, Future Research

of that type in the structure be functional. In other words the program performs poorly when it
is operating near the peak of the binomial distribution of the number of functional subsets of

components in each critical component type.

The primary cause tor this undesirable time complexity is that the reliability polynomiais are
maintained in canonical form and the distinct identities of the individual components are
maintained in the symbols which express their reliabilities. The former fact implies that list
lengths will be longer than for the equivalent polynomiais in factored or minimal form, thus
adding to the complexity. The tafter fact implies that, for instance, cancellations of a pair of
terms will not take place even though this would happen if generic reliabilities were to be
substituted for the unique component reliability symbols in those two terms. However, it is
aiso to be noted that the retaining in the CRPs of the unique component reliability symbols
allows the easy computation of probabilities of unions and intersections of events. Factored
or minimal forms of the polynomials will not be so amenable.

Of the unsolved problems at hand, therefore, perhaps the most important is to devise a
suitable intermediate representation and algorithms to operate on it efficiently. Any such new
method for the manipulation of symbolic reliability expressions must be of some form which
does not have the above disadvantages, while it maintains the advantages of the CRP
approach. These advantages are

- Robustness in the face of overspecification in the input requirements
- Inherently simpie algorithms, and

- May be used at any phase of the computation rather than once at the end.

The performance measurements of Chapter 7 indicate that if such a method can be found it
would drastically improve the useability of the ADVISER program. Of significant interest for
modification and adaptation to the ADVISE.Y framework are the kinds of algorithms described
in [Satyanarayana 78], [Bennetts 75), [Aggarwal 78] and [Lin 76].

8.2.1.2 The CRPTree

During the generation of the system CRP the various other CRPs, which were precomputed
and stored in hash tables by the program, are used several times in the merging process. As
we saw in Chapter 3, however, the amount of compute time consumed in the CRP package is
0(n?) where n is the length of the CRP term list. The lengths of the lists also grow each time a
merge operation is performed. Hence the more merge operations are performed, the slower

the program runs.

.

Conclusions, Future Research 249

The CRPTree was used as a device 1o ensure that the merging of any given CRP would be
performed as late and as few times as possible in the process. This was achieved by delaying
the merging until after the CRPTree was built. Then for each node of the CRPTree, the CRP
which labels it would be merged only once with the CRP which results from the “"collapsing”
of the subtree beneath that node. However, as the "collapsing” process reaches the upper
levels of the tree, the lists have typically already grown to an undesirably iarge size. There is
thus an incéntive to process the CRPTree more efficiently than at present. It is possible in the
case of highly symmetric PMS structures such as Cm* that the CRPTree will itseif contain
symmetries. These must be exploited. For instance if two subtrees of the same CRPTree node
are symmetric in the sense that they will produce identical CRPs after collapsing. then only
one of them need be collapsed since the other will be superfiuous due to the idempotency of
the SMERGE and PMERGE operations. Even if two symmetric subtrees in the CRPTree do not
share the same immediate ancestor, a copy of the CRP resulting from one may be used tor the
other. Other etficiencies may also be possible. Methods for efficiently collapsing the CRPTree
would add further to the efficiency and useability of ADVISER.

8.2.1.3 Side Constraints

The set of side-constraints suggested in Chapter 6 is ad hoc although it appears to be
sufficient for a wide class of examples. An open area of investigation is the determination of
whether this set of side-constraints can be extended or made more sophisticated or unified in
a theory of constraints.

8.2.1.4 Enhancement of TREEREL algerithm

The TREEREL algorithm descrihed in Chapter § expects a Pendant Tree Subgraph under
the implicit assumption that ai' components within the PTS and the Kerne! communicate
through the root vertex of the tree If the given input PMS structure is itsei! a tree to begin
with. then a possibly pessimistic reliability estimate results since, in order for two components
to communicate under the model, the communications are assumed to take place through the
root of the PTS even though the two components are in the same subtree of the PTS and zan
communicate via a more direct path through the root vertex of that subtree. As was seen in
the Cm* example of Chapter 7 this deficiency comes into play aiso in cases where the entire
requirements expression can be satisfied by some subtree of a PTS segment of the overall
PMS structure. Some variant of the current TREEREL algorithm needs to be devised to
eliminate this deficiency. This is not viewed as an exceedingly difficult task.

250 Conclusions, Future Research

8.2.1.5 Further exploitation of symmetry

At present the ADVISER program makes use of inherent symmetry in the PMS structure
only in order to discover symmetric PTSs so that redundant computations on such PTSs can
be avoided by doing them for only one of each symmetric set. However, as in the case of the
Cm* structure (Section 7.3.1), there may be considerable symmetry within a PTS which could
be exploited and is currently not. in effect for simple cases of symmetry such as in the Cm*
architecture closed form solutions are readily available. The question is one of efficient
representation and storage of such closed forms. If such closed forms are to be used, then
related questions arise regarding the ease of computation of the probabilities of intersections
and unions of events represented by them. These impinge on the design of the intermediate
representation and efficient algorithms to manipulate it. Also to be answered is the question
whether ADVISER shouid be outfitted with an ad hoc collection of closed form solutions for
specific instances of symmetric structures; 10 be used whenever any such structure is
recognized. It would perhaps be preferable instead to devise and incorporate an algorithm
which would recognize cases for which a closed form solution could be constructed and do
the construction from first principles.

In a similar fashion inherent symmetry in the Kernel could be taken advantage of in the path
reliability computation. However, the advantage in this case may not be as pronounced since
the Kernel would tend to be small in most cases.

8.2.2 Relaxing of Underlying Assumptions

The relaxing of the assumptions, which underly the present work and which were stated in
Chapter 2, would be the next logical step in the continuation of the research effort in this field.
Some areas of investigation, spawned by such a loosening of assumptions, are mentioned in
the following.

8.2.2.1 Directed Graphs

The current model of PMS systems which is built into ADVISER is that of an interconnection
graph which is non-directed and having labelled vertices. One may seek to relax this
restriction and allow directed graphs to be introduced. Doing this does not have as great an
impact on the model as might be imagined. For instance, the path-finding algorithm
PATHREL. which computes the Kerne! CRP, wouid change only very slightly. Potential paths
to the goal vertex would be sought only along arcs leading away from the current vertex. The
function of the internal Port Connection Matrix (IPCM) would remain exactly the same as it is

Moo o ———

4

A nmxame .

Conclusions, Future Research 251

at present“. The symmetry algorithms of Chapter 4 would generalize to the case of directed
graphs; the aigorithm described in [Gaschnig 77] was in fact originally derived for the general
case.

One model which would change upon the introduction of directed graphs would be that of
Pendant Tree Subgraphs (PTSs). It would still be possible to generate these PTSs in similar
fashion it the direction of an arc connecting two neighboring vertices is disregarded. The
current model assumes, however, that all communication amongst components in the PTS
occurs through the root vertex of the PTS. This may not necessarily be the case in directed
graphs. One solution might be to let the GROWTREES and TREEREL algorithms work exactly
as they do now and apply them only to those PTSs which are such that all pairs of vertices in
them are joined by dual directed arcs, one in each direction (this is essentially equivalent to
the directed case). However, a possible implication may be that at most times the program will
be incapable of generating any segments except a Kemel which contains essentially the
whole graph itself. This defeats the purpose of the special case solvers. The better alternative
then is t0 devise tree algorithms which construct symbolic reliability functions for trees which
are directed graphs.

8.2.2.2 Statistically dependent component failures

One of the underlying assumptions of the present framework was that the failure behaviors
in the PMS system components are statistically mutually independent. The relaxing of this
assumption, to include cases in which statistically dependent failure behavior is possible.
implies that the joint failure probabilities of pairs of components would have to be taken into
account. A possible initial solution to this probiem is suggested by the nature of CRPs. Recall
that the juxtaposition of factors in a CRP term represents the SMERGE of the corresponding
probabilities and not just a multiplication; it is treated throughout this thes:s as eventually
being a multiplication only because of the basic assumption ot s.independent component
failure behavior. The SMERGE operation computes the probabilities of the intersection of
events and one can envision constructing an SMERGE algorithm on CRPs for the situation
where the joint failure probabilities of pairs of system components are non-zero. In this
situation one may find factors in a CRP term which represent such dependert components. f
the symbolic joint failure probabilities of these components are known then the intersection
probability (i.e. the probability of the simultaneous functioning of these components) may be
computed using the laws of probability.

“Tne current version of ADVISER does in fact allow non-symmetric IPCMs to be specified tor components withir
the Kernel and the path reliability aigonthms do take this into account but directec graphs are not handied in therr
generality

it

252 Conclusions, Future Research

Care needs i0 be exercised in dealing with CRPs in such a situation. For instance, many of
the procedures described in earlier chapters, such as the simplification of the system CRP,
assume implicitly that any CRPs derived for two disjoint sections of the PMS graph, are
independent. These wouid have t0 be modified to accommodate the general case. The
problem of handling dependent failure behavior is still open, however, and points out one
more attribute which must be possessed by any intermediate representation formalism which
is sought to replace the CRP.

8.2.2.3 Coverage factors

A major simplifying assumption of the current model has been that coverage of hard
failures of system components is perfect. In other words it has been assumed that the
conditional probability that the system will recover from component failures without loss of
information is unity. This is clearly optimistic. It has been shown by other investigators
[Bouricius 69] that overall system reliability is very sensitive to coverage. A more accurate
modelling of PMS system reliability would require that imperfect coverage be accounted for.

The CRP intermediate representation uses oniy the success probabilities of the system
components. Therefore, the inclusion of coverage factors into the CRPs being computed is
not straightforward since coverage factors apply upon the failure of system components. The
formulae described in Chapter 3 which form the bases for the current CRP algorithms may be
modified to include coverage factors as foliows:

Pr{ev,Nev,} = R,®Ry (SMERGE)

Pr{ev,Uevy} = RAQCB(T-RB) + FrM@RB + RBQCAU-RA) (PMERGE)

where C and CB are the coverage factors for the events ~A and ~B respectively. The second
of the two equations above reflects the fact tha* the union of the events A and B is composed
of the three mutually exclusive events (A A ~B), (A A B) and (~A A B) respectively. The
inclusion of the coverage factors causes the PMERGE to be explicitly a reliability computation
rather than just the computation of the probability of an intersection of two events as in
Chapter 3. In the above equations, however, it is also apparent that coverage factors will need
to be known for all possibie compound events in the event space. Unfortunately, in general
systems the estimation of coverage factors is at best a difficuit proposition since the factors
are so dependent on things other than the hardware of which the system is composed.
Coverage factors are more likely to be known in the case of failures of entire subsystems

by o g kel Laae o

PUPUNRD PSRRI

Conclusions, Future Research 253

rather than at the individual component level. In addition the current data structure used for
CRPs will not suffice since it is oriented strictly toward representing success probabilities. The
devising of CRP algorithms, or algorithms on other intermediate representations, which
incorporate coverage factors in the computation of system reliability, is a research area of
prime importance.

8.2.2.4 Multi-state models of component reliability

The current model, on which the ADVISER program is based. assumes that any system
] component may be in one of only two possible s:tates, i.e. failed or working. No allowance is
k made for components whose failure behavior is characterized by transit through a sequence
of states in which the component is successively more degraded. For instance it may be
possibie that partial failure of a component manifests itselt as degraded performance, which
in consequence similarly degrades the performance of the PMS network. If the PMS system)
performance, according to some metric, is required to be greater than some minimum for the »
system to be functional (see 8.2.3.1 below) then such partial failures of components are of i
importance in determining system reliability. The adoption of a multi-state model of]
component (ailure behavior, however, invalidates the simple boolean requirement
specification method along with t.he CRP representation which both depend on the binary
state model.

8.2.3 Other research issues

8.2.3.1 Incorporating performance into system reliability

As was mentioned above, one may consider the reliability of a PMS system to be a function

not only of the hard failure reliability of its individual components but also of their capability to
| process information at rates above some decreed minimum necessary for system
| functionality. Recent work has been reported in the construction of such compound models
([Beaudry 78]. [Castillo 80]). Typically in such a model one would consider components
which degrade in their performance in several steps before failing completely. When the 4
reliability measure of a PMS system is to include performance issues, the flow rates between
components in the structure assume importance. In such situations, in addition to requiring

that a certain assortment of critical components be at least minimally functional and able to
communicate (as in the current ADVISER program), one would require not only that the
individual critical components support a certain minimum information processing rate but that
ali the functional paths used for communication between them also sustain ¢ertain minimum

e |

M

254 Conclusions, Future Research

data rates at al! times. Thus the general max-flow-min-cut algorithms (see [Ford 62]) would
become applicable in the reliability analysis and, for instance, the path.finding strategy in the
Kernel (see Section 6.6) would have to be enhanced to use them. Such concerns would atfect
the method of requirement specification in the ADVISER framework. It will no longer be
sufficient to require a minimum number of components of each critical type to be minimally
tunctional. Either by including a separate specification, or by moditying the current
specification method, a further requirement for minimum sustained information flow rate: per
critical component type perhaps, would need to be specified.

\

In addition to the above. once information on fiow rates has been inciuded in the PMS
structure which is described to the program it will also become possible to check tor
inconsistencies in the way the system is structured in that the specified minimum required
information fiow rates may not be supportable at all. Such “go-nogo" tests would be useful to
the designer trying to construct a PMS system from a database of components to specify
given design constraints on performance and reliability.

8.2.3.2 Other special solvers

Given the acceptability of the ADVISER method of generating reliability functions for PMS
structures. further research needs to be carried out into other kinds of substructures which
might appear with some regularity in extant systems. The nature and frequency of such
substructures might change with time and with the evolution of design principies and
systematic design methodology for PMS structures. Further algorithms on graphs need $o be
developed to discover the existence of such substructures in the original PMS
interconnection graph. The greater the number of special-case structures for which soivers
are available, the smater it is hoped the typical Kernel would become. Current practice in
ADVISER is to assign unique singie-symbol aliases to partial result CRPs emanating from the
special solvers. Adherence to this along with the simpler path-CRPs from a smaller Kernel
couid act to cause CRPs to be shorter thus decreasing the time consumed in the CRP
algorithms.

8.2.3.3 Indetinite requirement specifications

The current specification of the requirements for system reliability use a constant
requirement integer. Thus, for instance, a typical atomic requirement of the form
¥(10,Processor) requires that at least 10 Processors be functional. However, the truly general
case would imply the requirement of an indefinite number of Processors. Thus, for example,
¥(q, Processors). where at least g Processors are required for some q. Naturally the lower

Conclusions, Future Research 255

bound on q is zero and the upper bound is the total number of Processors contained in the
PMS system under study. If the system reliability function were produced in terms of such
indefinite requirements, then parameterized studies of PMS system reliability would be
facilitated ever further. The problems in implementing such a capability in an ADVISER-like
program are difficuit and would probably require a lot of the sophisticated symbol
manipulations available in a program like MACSYMA, {(Macsyma 77].

An additional enhancement to the requirement specification, which could probably be of
much use to users of programs like ADVISER, would be the ability to refer in the requirements
expression to specific components in the PMS structure by name. This may be done in a
round about fashion in the current implementation by isolating the specific component of
interest into its own component-type category and then requiring at least one component of
that type to be functional. However, the ability to attach special significance to a member of
some component type would cause the treatment of the components of that type to be non.
homogeneous. This wouid probably necessitate the redesign of many of the algorithms
described in earlier chapters.

8.2:3.4 Relia »ility models for repairable systems

In the case of repairable systems the problem of reliability calculation is faced with two
random variables, namely the time to failure and the time to repair. This complicates the
mathematical analysis significantly. Several other issues which strongly affect the tractability
of such probiems need to be addressed. For example, the sharing of repair facility amongst
components causes their reliabilities to depend on each other in complex ways. Generally,
Markov models are required to characterize the failure behavior of such systems and to
calculate their reliability and availability. Closed form solutions may or may not be available
depending on the complexity of the interdependence between components. It is not apparent
at present how the ADVISER framework may be modified to sotve such problems or whether
the framework is adequate at all in the general instance.

it may be useful to point out, however, that ADVISER as it is currently constitutec can be
used t0 compute PMS system availabilities in a very constrained case of repairable systems.
This case is one in which each individual system component is endowed with a dedicated
repair facility which is completely independent from all the other repair facilities of other
components. This assumption preserves the independence of the primitive events in the
current ADVISER framework. Consequently the symbolic probabilities in the final system CRP
computed by ADVISER may just as well be viewed as availabilities (transient or limiting) or as
reliabitities.

e aa — e

256 PTS Algorithm Special Case

8.3 Summary

[S,

This thesis has reported work towards developing a strategy for the automatic generation
of symbolic reliability functions for Processor-Memory-Switch structures. A program named
ADVISER embodying the resulting ideas was described and some details of its
implementation were given. Algorithms which were used during the various phases of the
computation in ADVISER were described and their advantages and disadvantages discussed.
The presentation ended with the description of example PMS structures which were run
through ADVISER and a discussion of some fruitful areas for future research.

|
1

PTS Algorithm Special Case 257

Appendix A
A special case of inputs to PTS algorithms

Chapter 5§ assumed that the PMS interconnection graph G was not a tree although that it
did possibly have PTSs. A question arises as to what the response of the PTS algorithms of
Chapter 5 will be it G is itself simply a tree graph. Under these circumstances there is no
Kernel (see Chapter 2) and computing the reliability of the system implies using the TREEREL
algorithm of Chapter § on G. However, this algorithm assumes the existence of a
distinguished or root vertex of the tree upon which it operates. In the case that G is simply a
tree there is no one vertex which can be termed an “interface vertex" to the Kernel {(which
does not exist in this case) and the tree is not rooted. Likewise, Algorithm GROW attempts to
“grow" each germinal PTS towards a putative root vertex and one might question the result
when GROW is applied to an unrooted tree-structuréd PMS system. It so happens that
Algorithm GROW will work even in this case. It will, in fact, identify the entire tree graph G as
a "PTS" and choose a specific vertex as its "root". The properties of this vertex are the
subject of Section A.1. In the case of the TREEREL algorithm, however, the resulting
computed reliability could be pessimistic and a discussion of this possibility was provided in
Section 5.3.

A.1 Special case operation of Algorithm GROW

The GROW algorithm operates on G°, the NCG of G, which in this case is also a tree graph.
For G’ to be a tree graph it is sufficient (although not necessary) for G to be a tree graph. Two
cases can be identified here.

1. G has at least one vertex with two or more symmetric subtrees below it. This
allows the symmetry detection aigorithms to equivalence, or "fold"” them.

2. G has no vertices with symmetric subtrees below them.

In the former case, because of the equivalencing or "foiding". there wiil be at least one
connection density in G° which is greater than one. In the latter case, all the connection
densities labelling the arcs in G* will be identically unity since each vertex of G will occupy its
own equivalence class alone due to the lack of any symmetry. We shall consider Case 2 first.

et A mn ko d e

258 PTS Aigorithm Special Case

A.1.1 Connection densities all unity

As usual, the set of pendant vertices of G', which are also pendant vertices of G, are
chosen as the germinal trees. Then during each iteration of the algorithm some of the
germinal trees will grow by one edge toward some vertex which the algorithm will eventually
identify as the "root” of the "PTS". This vertex will be the root of the tree (G as it turns out)
which is formed by the coalescing of the two or more germinal trees in the final iteration of the
algorithm. It is clear that none of the germinal trees will have the function “MarkComplete’
called on it*? because, for any ') the connection density to all neighbors will be unity and
there are no self loops in G'. Hence the algorithm will only complete when all th2 germinal
trees have merged into one.

Theorem 8.1: Let G(V,E) be a tree graph which is the interconnection graph of
a PMS structure. Let G be such that G’ (V" E’), its TNCG, has all the connection
densities labelling edges in E” identically equal to one (i.e. G* is isomorphic to G).
Then Algorithm GROW will pick a root vertex "r€V with the following property. If q_
is the length of the longest path of which v _is one terminal vertex and if g is the
length of the longest path in G, then

q/2, qeven

q, =
rq/27, qodd
Furthermore, if there are m> 1 longest paths in G, each of length |, and composed

of vertex sets V;. V;,, oy V;ng V respectively, then vrev; nv;n....nv;n.

We shall first introduce two necessary intermediate resuits.

Lemma 8.2: The end points of any longest path in a tree graph are leaves of
the tree.

Proof: The proof is obvious.

Lemma 8.3: If G(V,E) is a tree graph which has m>1 longest paths of length q
and vertex sets V_, V;. .y v;“g V respactively, then V; nv;n....nvr’“: d, i.e. they
have at least one vertex in common.

Proot: The proof is by contradiction. Assume that there are two longest paths p,
and P, in G, each of length q and having vertex sets v and V respectively.
Assume they have no vertices in common i.e. V1 nvz =, Smce G us atree and is
connected there must be a path of at least one edge, e, between exactly one
pair*? of vertices (v,v,), v,EV;, v,€V,. In the worst case let us assume that v, and
v, occur exactly at the m»dpomts of the paths P, and P, respectively. Then the
exnstence of e’ assures that there is a path of length q/2 +Q/2 + 1= l+tin
G. Thus p, and p, are not longest paths of G.

42544 peeudo-code for Procedure GROW.

“’mmmuewuwnotuwn

:’
!
l

PTS Algorithm Special Case ' 259

Proof: of Theorem 8.1. in any iteration Algorithm GROW adds exactly one
vertex v_ and, therefore, exactly one edge to a germinal tree t” which is still
capable of growing. This vertex v” is added to the germinal tree if and only if the
connection density 10 it from the current root of t” is exactly unity. In addition, v’
must be the only neighbor vertex of the root of t” which has not already been
precluded from consideration by inclusion in t” or some other germinal tree. This
ensures that a vertex v’ of G which is eligible for inclusion, but not already
included in some germinal tree, will be included only when the foltowing condition
is met: All germinal trees which will eventually coalesce into a germinal tree t* with
root vertex v- must have grown to within exactly one edge of v'. Thus the inclusion
of vertex v* will be delayed until its germinal subtree of greatest height (i.e. path
length from that subtree’s root vertex to its leaves) has grown to within one edge of
v'. This is because germinal trees grow by at most one edge every iteration.
Hence the number of iterations required to grow some germinal tree t’ is equal to
the length of the longest path from its root v’ to its leaves.

Assume initially that there is exactly one longest path p” of length lin G. its end
vertices according to Lemma 8.2 are leaf vertices of G. Since germinal trees are
started with the leaf vertices of G there will be at least two germinal trees growing
toward each other from opposite ends of p’ Since at most one edge is added
during each iteration to either of them, these two germinal trees will finally
coalesce after q/2 iterations if g is even. At that time the root vertex of the single
remaining germinal tree will be the center of the longest path in G i.e. the longest
path from the root will be q/2 long. If q is odd then these two germinal trees will
approach each other until their root vertices are neighbors. Then, one of the two
vertices will have to be chosen over the other as the final root. Hence the longest
path length starting at the final root will be q/27. Furthermore, by Lemma 8.3 the
final root will be on all the longest paths in G since those germinal trees would
have coalesced ali together after q/2 iterations (Fq/27 if q is odd).

it will be seen trom the above, therefore, that the algorithm will "deadlock” in its choice of a
root vertex just before the final iteration if the following conditions are met

- The longest path length, |, in G is odd. {(Hence there can be at most two germinal
trees left to coalesce in the final iteration.)

- The connection densities between the roots of the two germinal trees before the
final iteration are both unity.

In this case, were the final iteration to foliow, each germinal tree would include the root of
the other into itself thereby causing a situation that is contradictory since the final root is
indeterminate. This is resolved in the program by modifying Procedure GROW as foilows. The
germinal trees during any iteration are treated as an ordered tuple. Then when making the
pass over the tuple which checks whether a vertex may be added to any of the trees, a further
check is made. For tree t*) , if a suitable neighbor, v, of t'has been found which may displace
t'as the new root, the algorithm also checks to see that v_is not already inciuded in some tree
of lower order in the tuple than t". This check is suggested by the proof of Theorem 8.1
above. 1t will cause the "deadlock” to be broken in all cases of odd maximum path length.

260 PTS Algorithm Special Case

L A.1.2 Connection densities not all unity

in the other case mentioned above, the NCG of G when G is a tree may also contain
connection densities greater than one. When this happens it is possible that some germinal i
tree will be prevented from growing because all of its connection densities to its neighbors d

may be greater than unity. In this case Theorem 8.1 will no longer apply. It is difficult to predi~
in the generai case, which vertex of G will be chosen as the root by the algorithm since it
depends entirely on the distribution of the non-unity connection densities within G”.

kb ke

Terminology 261

Appendix B
Terminology

Page numbers refer to the page of definition or first use of the terms in this list.

Atomic Requirements
§] These are requirements which are clauses of the form "at least N components of
type X need to function”. The clauses are abbreviated y(N,X). Page 24.

Conjunctive Requirements
These are requirements which are pure conjunctions of Atomic Requirements. Page
34.

Disjunctive Requirements
These are requirements composed of conjunctions and/or disjunctions of Atomic

Requirements Page 34. ,
RBD Reliability Block Diagram Page 51. 1
SPRBD Series-Paralle! Reliability Block Diagram. ' Page 52. !

SIP operator
Symbolic intersection Probability operator, which is denoted in the thesis as "®". It
computes the intersection probability of two events given their individual symbolic

_ probabilities of occurrence. Page 56. {
;
: CRPs Canonical Reliability Polynomials Page 56.

NORMVEC ﬂ

The NORMVEC bit vector is one of two bit vectors which can be present in a term of
a Canonical Reliability Polynomial. Each bit in the NORMVEC represents a unique i
: component in the PMS structure for which the reliability function is being derived.
! Page 59.]

, AUXVECThe AUXVEC bit vector is one of two bit vectors which can be present in a term of a
' Canonical Reliability Polynomial. Each bit in the AUXVEC represents a unique
Partial Result which is generated during the initial phases of the program run and
stored away in a hash table. Page 60.

NCER Neighbors Class Equivaience Relation; used to detect the symmetry classes of a
graph. Page 70.

262 : Terminology

NCG Neighbors Class Graph; its vertices correspond to the equivalence classes
generated by the NCER equivalence relation on the PMS graph G. Page 73.

EDS "Equal degree then split" partition; formed by the NCER equivalence relation on the
PMS graph G. Page 74.

TNCER Typed Neighbors Class Equivalence Relation; a modified version of the Neighbors
Class Equivalence Reiation (NCER). . Page 79.

ETEDS “Equal Type then Equal Degree then Spiit", this is the name of an aigorithm to
discover symmetry classes of the PMS graph based on the Typed Neighbors Class
Equivalence Relation (TNCER) Page 80.

Pendant Tree Subgraph (PTS)

A Pendant Tree Subgraph is a maximal rooted tree subgraph of G such that the root

vertex of the tree is an articuiation vertex of G and the simple path, p_ , between any
. . . o xy

pair of vertices v, and v, in the tree is unique in G. Page 91.

Kernel The Kernel is the subgraph of G which remains when the Pendant Tree Subgraphs
of G have been removed. Page 115.

Partial Resuits
Partial Resuits are Canonical Reliability Polynomials which are generated due to the
application of fragments of the original input requirements to the various Segments

of the PMS structure Page 117.
Segments'Table

This is used to retain information about the various segments into which the PMS

graph G was divided. Page 122.

Criticat Components
Components in the PMS structure whose component type appears in the
requirements expression. Page 124.

Auxiliary Components
All components in the PMS structure which are not Critical Components. Page 124.

m-composition of the integer N
Page 125.

Capacity Vector
This conveys the number of components of some given type present in the various
segments of G. Page 125.

Feasible.Compositions
Page 127.

infeasibie Compositions
Page 127.

Terminology 263

Fragment Requirement
Page 128.

Canonical Reliability Polynomial Tree (CRPTree)
The CRPTree is a tree constructed by ADVISER during the running of the
OVERLORD routine. Its vertices are labelled with Partiai Result CRPs and
"collapsing" it gives the System CRP. Page 134.

. Tempiates Table
When symmetric substructures exist in the PMS structure, the application of a given

requirement to a symmetric group results in Partial Resuit CRPs which are aiso
similar. Such similar CRPs may be represented by a single template. The Templates
Tabie holds all such templates which were generated by ADVISER during a run.
Page 137.

Communicability Graph
Page 141.

Communicability Edge
See Communicability Graph. Page 141.

Compositions Table
The Compositions Table is very important in the operation of ADVISER and is used

to cycle through all possible compositions of the given minimal requirements in
order to determine the cases in which system success occurs. Page 150.

Requirements Array
This array holds those atoms of given minimal requirements which are currently

being processed together as a Conjunctive Requirement by the OVERLORD routine.
Page 150.

Currently Chcsen Kernel Set (CCKS)
Page 155.

Row-CRP
Page 159.

Kernel-CRP
Page 159.

internal Port Convection Matrix ({PCM)
The IPCM for a particular component in the structure describes for the purposes of
the Side Constraints which ports of the component are able to communicate

information through the internals of the companent Page 166.

Bounded Clustering of Critical Camponents
Page 171.

bt

References and Bibliography

References and Bibliography 265

References and Bibliography

[Aggarwal 75a] Aggarwal, KK, et ai.
Computational time and absolute error comparisons for reliability
expressions derived by various methods.
Microeiectronics and Reliability 14:465-467, 1975.

[Aggarwal 75b] Aggarwal, K.K.
' A tast algorithm for reliability evaluation.
‘{ IEEE Transactions on Reliability R-24:83-85, April, 1975. ¥

; {Aggarwal 78] Aggarwal, K.K., and Rai, S.
: Symbolic Reliability Evaluation Using Logical Signal Relations.
IEEE Transactions on Reliability R-27(3):202-208, August, 1978.

[Avizienis 75] Avizienis, A.
Architecture of Fault-Tolerant Computing Systems. !
In Proceedings of the Fifth Annual international Symposium on Fault-

Tolerant Computing, pages 3-18. IEEE Computer Society, 1975.

(Ball 80) Ball, M.O.
Compiexity of network reiiability computations.
Networks 10:153-165, 1880.

[Barlow 75a) Bariow. R.E., and Proschan, F.
Statistical Theory of Reliability and Life Testing.
Holt, Rinehart and Winston, 1975. *

L [Barlow 75b] Barlow, R.E., and Lambert, H.E.

introduction to Fauit Tree Analysis.

In Barlow, R.E. (editor), Reliability and Fault Tree Analysis: Theoretical and
Applied Aspects of System Reliability and Safety Assessment, pages 7-
35. Soc. Indust. and Appl. Math., Philadeiphia, 1975.

[Bariow 76) Barlow, R.E., and Proschan, F.)
Some current academic research in system reliability theory.
IEEE Transactions on Reliability R-25(3):198, 1976.]

[Beaudry 78] Beaudry, M.D.
Performance-refated reliability measures for Computing Systems.
: IEEE Transactions on Computers C-27(6):540-547, June, 1978.

266

[Bell 71]

[Bennetts 75]

[Boesch 72)

[Bouricius 69]

[Bouricius 71}

[Brown 71]

[Buzacott 67]

[Buzacott 70)

[Camarda 78]

[Castillo 80)

[Chatteriee 75}

References and Bibliography

Bell, C.G., and Newell, A.
Computer Structures: Readings and Examples.
McGraw:Hili, 1971.

Bennetts, R.G.
On the analysis of fault trees.
IEEE Transactions on Reliability R-24:175, 1975.

Boesch, F.T., and Feizer, A.P.]
A general class of invuinerable graphs.
Networks 2:261-283, 1872.

Bouricius, W.G, Carter, W.C. and Schneider, P.R.

Reliability Modeling Techniques for Self-Repairing Computer Systems.

in Proc. 24th. National Conference ACM, pages 295-309. Association for
Computing Machinery, 1969.

Bouricius, W.G., Carter, W.C., Jessep, D.C,, Schneider, P.R. and Wadia
A.B.

Reliability Modeling for Fault-Tolerant Computers.

IEEE Transactions on Computers C-20(11):1306-1311, November, 1971.

8rown, D.B.

A computerized algorithm for determining the reliability of redundant
configurations. .

IEEE Transactions on Reliability R-20(3):108, August, 1971.

Buzacoftt, J. _

Finding the MTBF of repairable systems by reduction of the reliabiiity block
diagram. '

Microefectronics and Reliability 6:105-112, 1867.

Buzacott, J.
Network approaches to finding the reliability of repairable systems.
IEEE Transactions on Reliability R-19(4):140, November, 1970.

Camarda, P., Corsi, F., and Trentadue, A.
An efficient simple algorithm for Fauit Ti2e automatic synthesis.
IEEE Transactions on Refiability R-27(3):215-221, August, 1878.

Castilio, X. and Siewiorek, D.P.

A performance-reliability modei for computing systems.

In Digest of Papers, FTCS-10: Tenth International Symposium on Fauit-
Tolerant Computing, pages 187-192. IEEE Computer Society, October,
1880.

Chatterjee, P.

Modularization of Fault Trees: A method to reduce the cost of analysis.

In Barliow, R.E. (editor), Reliability and Faulit Tree Analysis: Theoretical and
Applied Aspects of System Reliability and Sefety Assessment, pages 37-
58. Soc. Indust. and Appl. Math., Philadeiphia, 1975.

References and Bibliography 267
[Chelson 71] Chelson, P.Q. and Eckstein, R.E.
Reliability Computation from Reliability Block Diagrams.
Technical Report 32-1543, National Aeronautics And Space Administration,
Jet Propuision Laboratory, Pasadena, Ca., December, 1871.
[Chung 71] Chung, W.K.
Generalized reliability function for systems of arbitrary complexity.
IEEE Transactions on Reliability R-20(2):85, 1871.
[Cox 68) Cox, R.E., and Miller, H.D.
The theory of stochastic processes.
Methuen and Co., London, 1968.
[Creasey 67) Creasey, D.J.
Reliability predictions for repairable systems containing redundancy.
Microelectronics and Reliability 6:135-142, 1967.
[Fleming71] Fleming, J.L.
RELCOMP: A computer program for calculating system reliability and 1%
MTBF.
IEEE Transactions on Reliability R-20(3):102, August, 1971. :
[Ford 62 Ford, L.K. and Fulkerson, D.R.
Flows in Networks.
Princeton University Press, Princeton, N.J., 1962.)
[Frank 70 Frank, H., and Frisch, I.T. |
Analysis and design of survivable networks.
IEEE Transactions on Communications Technology COM-18(5):501-519,
1970.
[Fratta 75] Fratta, L. and Montanari, U.
A Vertex Elimination Algorithm for Enumerating all Simple Paths in a Graph.
Networks §:151.177, 1875.
[Fussell 74] Fussell, J.B., Powers, G.J. and Bennetts, R.G.
Fault Trees -- A state of the art discussion.
IEEE Transactions on Reliabitity R-23:51, 1874,
[Fussell 75a) Fussell, J.B.
Computer Aided Fault Tree Construction for Electrical Systems.
Iin Bariow, R.E. (editor), Reliability and Fault Tree Analysis: Theoretical and
Applied Aspects of System Reliability and Safety Assessment, pages 37-
56. Soc. Indust. and Appl. Math., Philadelphia, 1975.
[Fussell 75b] Fusseil, J.B.

How to hand calculate system reliability and safety characteristics.
IEEE Transactions on Reliability R-24:168, 1975.

268

{Gandhi 72]

H [Gaschnig 77)

[Greene €8]

[Hansler 74]

[Hill 68)

[Hopcroft 73]

[Jenny 69]

[Katzman 77)

[Kim 72)

[Knight 75)

[Knuth 69]

[Knudsen 73]

R.eferences and Bibliogr=~*y

Gandhi, S.L., inoue, K., and Henley, E.J.

Computer aided system reliability analysis and optimization.

In Viietstra, J. and Wielinga, R.F. (editors), Computer-Aided Design: Proc
IFIP Working Contference on Principies of Computer-Aided Design,
pages 283-308. IFIP, Eindhoven, Nct, 1972.

Guchmg. J.
A "Neighbors Class” Node Pamtlomnq Algorithm for Fmdmg Symmetry
Classes in Graphs.
1977.
Draft, September 18, Unpublished.

Greene, K. and Cunningham, T.J.

Failure modes, effects and criticality analysis.

in Proceedings, 1968 Annual Symposium on Reliability, pages 374. IEEE,
Boston, 1968.

Hansler, E., McAuliffe, G.K. and Wilkov, R.S.
Exact Calculation of Computer Network Reliability.
Networks 4:95-112, 1974,

Hill, F.J. and Peterson, G.R.
Introduction to Switching Theory and Logical Design.
John Wiley & Sons, New York, 1968.

Hopcroft, J. and Tarjan, R.
Algorithm 447: Efficient Aigorithms for Graph Manipulation.
Communications Of The ACM 16(6):372-378, June, 1973,

Jenny, J.A.
The effect of partial failure modes on reliability analysis.
IEEE Transactions on Reliability R-18(4):175, November, 1969.

Katzman, J.A.
A Fault-Tolerant Computing System,
Technical Report, Tandem Computers Inc., 1977.

Kim, Y.H,, Case, K.E., and Ghare, P.M.
A method for computing complex system reliability.
IEEE Transactions on Reliability R-21(2):215, May, 1972.

Knight, L.
The measursment and prediction of the reliability of computing systems.
In Proc. internepcon (Microelectron.), pages 205. \EEE (?), October, 1975.

Knudsen, M.J.
PMSL, An Interactive Language for System-Level Description and Analy:is
of Computer Structures.

* PhD thesis, Carnegie-Mellon University, April, 1873.

Knuth, D.E.
The Art of Computer Programming. Volume 2: Seminumerical Algorithms.
Addison Wesley, 1969,

- TSt

References and Bibliography 2689

[Knuth 75a)

[Knuth 75b])

[Koen 74)

Knuth, D.E.
The Art of Computer Programming. Voiume 3: Sorting and Searching.
Addison Wesiey, 1975.

Knuth, D.E.

The Art of Computer Programming. Volume 1: Fundamental Algorithms.
Addison Wesley, 1975.

Second Edition.

Koen, B.V. and Carnino, A.)
Reliability Calculation with a List Processing Technique.
IEEE Transactions on Reliability R-23:43, 1974.

[Krishnamurthy 72)

[Landrault 78]

[Lapp 77]

[Laprie 76)

[Lin 69)

{Lin 76]

[Liu 68]

[Locks 71]

Krishnamurthy, E.V. and Komissar, G.
Computer-Aided Reliability Network Analysis.
IEEE Transactions on Reliability R-21(2):86, May, 1972.

Landrault, C. and Laprie, J.C.

SURF -- A Program for Modeling and Reliability Prediction for Fault-
Tolerant Computing Systems.

In J. Moneta (editor), Information Technology, . North-Holland Publishing
Co., 1978.

Lapp, S., and Powers, G.
Computer-Aided Synthesis of Fauit-Trees.
IEEE Transactions on Reliability R-26(1):2, April, 1977.

Laprie, J.C.
On the reliability prediction of repairable redundant digital systems.
IEEE Transactions on Reliability R-25(4):256, October, 1976.

Lin, P.M. and Aiderson, G.E.

Symbolic Network Functions by a Single Path-Finding Algorithm.

in Proc. of 7" Allerton Conference on Circuit and Syste~ Theory, pages
196. IEEE (7), 1968.

Lin, P.M., Leon, B.J., and Huang, T.C.
A new algorithm for symbolic reliability analysis.
IEEE Transactions on Reliability R-25(1).2-15, April, 48786.

Liu, C.L.
Introduction to Combinatorial Mathematics.
McGraw Hill, 1968.

Locks, M.O.

The maximum error in system reliability calculation by using a subset of the
minimal states.

IEEE Transactions on Reliability R-20(4):231, November, 1871.

r

270 : References and Bibliography
[Locks 80] Locks, M.O.
Recursive Disjoint Products, Inclusion-Exclusion and Min-Cut
Approximations.

IEEE Transactions on Reliability R-29(5):368-371, December, 1880.

[Macsyma77] The MathLab Group.
MACSYMA Reference Manual)
Laboratory for Computer Science, Massachusetts Institute of Technology,
~ Cambridge, Mass., 1877. L
Version 9, Second Printing, December 1877,

[Mathur 72) Mathur, F.P.
Automation of reliability evaiuation procedures through CARE -- The
computer-aided reliability estimation program.
in Proceedings Fail Joint Computer Conferance, pages 65-77. AFIPS,
1872,

{Mathur 75a) Mathur, F.P. and deSouza, P.T.
Reliability modeliing and analysis of general modular redundant systems.
IEEE Transactions on Reliability R-24(5):296, December, 1975.

[Mathur 75b) Mathur, F.P. and deSouza, P.T.
Reliability models of NMR systems.
IEEE Transactions on Reliability R-24:108, 1975.

[MIL-HDBK-217B 74]
Military Standardization Handbook: Reliability Prediction of Electronic
Equipment
, September 1974.

[Misra 70a] Misra, K.B.
An Algorithm for the Reliability Evaluation of Redundant Networks,
IEEE Transactions on Reliability R-19:146-151, 1970.

{Misra 70b] Misra, K.B., Rao, TM.S,
Reliability Analysis of Redundant Networks using Flowgraphs.
IEEE Transactions on Reliability R-18:19, February, 1970.

[Neison 70] Neison Jr., A.C., Batts, J.R., Beadies, R.L.
A corfiputer program for approximating system refiability.
IEEE Transactions on Reliability R-19:61-65, May, 1970.

[Ng 77} Ng, Y.W., and Avizienis, A.
ARIES -- An Automated Reliability Estimation System for Redundant Digital
Structures.
in Proceedings 1977 Annual Reliability and Maintainability Symposium,
- pages 108-113. |\EEE, January, 1977.

(Ng 80] Ng, Y.W. and Avizienis, A.
A Unified Reliability Modei for Fault- Tolerant Computers.
IEEE Transactions on Computers C-29(11):1002-1011, November, 1880.

References and 8ibliography . an

[Nijenhuis 78] Nijenhuis, A. and Wilt, H.S.
Combinatorial Algorithms for Computers and Calculators, 2™ Edition.
Academic Press, New York, 1878,

[Omstein 75]) Omstein, S.M., Crowthar, W.R., et al.
Piuribus -- & reliable muitiprocessor.
In AFIPS Conference Proceedings, pages 551-558. AFIPS, 1975.

[Osaki 761 Osaki, S. and Nakagawa, T.
: Bibliography for reliability and availability for stochastic systems.
IEEE Transactions on Reliabiiity R-25(4):284, October, 1976.

[Powers 76€] Powers, G., and Lapp, S.
Computer-Aided Fault-Tree Synthesis.
Chemical Engineering Progress , April, 1976.

[Reiser 76) Reiser, J.F. (ed.).
SAIL
Stanford University, Stanford, California, 1876.
Computer Science Department Report No. STAN-CS-76-574, August 1976.
Also available from the National Technical information Service,
Springfield, Virginia, 22161.

[Rosenthal 77] Rosenthal, A,
Computing the reliability of complex networks.
SIAM J. Appl. Math. 32(2).384.-393, March, 1977.

[Satyanarayana 78]
Satyanarayana, A., and Prabhakar, A.

New Topological Formula and Rapid Algorithm for Reliability Analysis ot
Complex Networks.

IEEE Transactions on Reliability R-27(2):82-100, June, 1978.

[Schick 78) Schick, G.J., and Wolverton, R.W.
An analysis of competing software reliability modets.
IEEE Transactions on Software Engineering SE-4(2):104-120, March, 1978.

{Schroeder 70] Schroeder, R.J.
s Fault Trees for Reliability Analysis.
in Proceedings, 1970 Annual/ Symposium on Reliability, pages 198. IEEE,
February, 1970,
Los Angeles, 1970, IEEE. Cat. # 70C2-R.

(Sharma 76} Sharma, J.
Algorithm for reliability evaluation of a reducible network.
IEEE Transactions on Fleliability R-25(5):337, December, 1876.

[Shooman 88] Shooman, M.L.
Probabilistic Reliability: An Engineering Approach.
McGraw-Hill, New York, 1968.

R

il

it

272 References and Bibliography

[Shooman 70] Shooman, M.L.
The equivalence of reliability diagrams and fault-tree analysis.
IEEE Transactions on Reiiadility R-19(2):74-75, May, 1870.

[Siewiorek 78] Siewiorek, D.P. and Thomas, D.E. (eds.).
The Analysis of the Performance, Reliability and Life Cycie Cost of Multi-
Processor Architectures and their Impact on SENET.
Research Report CMU-CS-78-126, Carnegie-Mellon University, Pittsburgh,
PA, May, 1978.

[Staley 74] Staley, J.E. and Sutcliffe, P.S.
Reliability Block Diagram Analysis.
Microelectronics and Reliability 13(1):33.47, 1974,

[Stofte! 68] Stoffel, R.W.
System Analysis via Probability Diagrams. :
In Proceedings, 7th. Annual Reliability and Maintainability Conference, i
pages 234. 1968. i
San Francisco, CA, 1968.

[Swan 77} Swan, R.J., Fuller, S.H. and Siewiorek, D.P.
Cm*: A modular, muiti-microprocessor. i
in AFIPS Conference Proceedings, pages 637-644. AFIPS, 1977.
Voiume 46.

[Tarjan 72] Tarjan, R.
Depth-First Search and Linear Graph Aigorithms.
SIAM Journal of Computing 1(2):146- 160, 1972,

[Teiteiman 78] Teitelman, W. et al.
INTERLISP Reference Manual
Xerox Paio Alto Research Center, Paig Alto, CA., 1978.

[Tung 76] Tung, S.S.
Reliability of a tree network.
IEEE Transactions on Reliability R-25(5):333, December, 1976.

[USNRC 75] U.S.N.R.C.
Reactor Safety Study -- An Assessment of Accident Risks in U.S.
Commercial Nuclear Power Plants, WASH 1400 (NUREG-75/014).
Technical Report, U.S. Nuclear Regulatory Commigsion, Washington, D.C.,
197S.
Available from NTIS, Springfield, VA, 22161.

[Widawsky 71] Widawsky, W.H.
Reliability and maintainability parameters evaluated with simuiation.
IEEE Transactions on Reliability R-20(3):158, August, 1871.

[Wiesen 67] Wiesen. J.M.
Statistical methods in Reliability Analysis.
Electro-Technology :57, May, 1967.

Relersnces and Bibliography 273

[Wilkov 72]

[Worreil 76)

PVt 71)

[wulf 72)

Wilkov, R.
Analysis and design of reliable computer networks.
IEEE Transactions on Communication COM-20(3):660, 1872.

Worrel, R.B. and Burdick, G.R.
Qualitative analysis in reliability and safety studies.
IEEE Transactions on Reliability R-25(3):164, August, 1976.

Wulf, W.A,, et al.

BLISS Refarence Manual: A Basic Language for Implementation of System
Software for the PDP-10

Camegie-Melion University, 1871.

Wuif, W.A. and Bell, C.G.

C.mmp -- a multi-mini-processor.

In Proc. AFIPS Fall Joint Computing Conferences, pages 765-777. AFIPS
Press, Montvale, N.J., 1972.

Volume 41.

san it

FEoRI—

Cebtentoni

READ INSTRUCTICNS
BEFORE COWPLETING FMARY

. REPORT NUMBER

RECIPIENT'S CATALSG NUMBER

CMU-CS-81-121
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD CCVERED
AUTOMATIC GENERATION OF RELIABILITY FUNCTIONS Interim
FOR PROCESSOR~MEMORY-SWITCH STRUCTURES
6. PERFORMING ORG. REPORYT NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Vittal Kini N00OO14-77-C-0103
9. PERFORMING OCRGANIZATION NAME AND ADDRESS 10. PROGRAM E.EMENT PRIJECZT, TASK
Carnegie-Mellon University AREA & WORK UNIT NUMBERS
Computer Science Department
Pittsburgh, PA, 15213
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
February 1981
13, NUMBER QF PAGES
286
| LIS MONITORING AGENCY NAME & ADORESS(!! ditferant Irom Contralling Olfice) 15. SECURITY CiLASS. (of inia report)
UNCIASSIFIED

1Se. DECLASSIFICATION, DOWNGRAZING

SCHEDULE

6. VISTRIBUTION STATEMENT (of this Report)

¢ B e e

1
!
|

B

17. DISTRIBUTION STATEMENT (of the adatract sntered In Block 20, U1 dillerent from Report)

Approved for public release; distribuir.on unlimited

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse e1de !l necessary and identily by dlock nuznoer)

20. ABSTRACT (Centinue on reverse side il necessary and identily by dlock numnber)

SECURITY CLASIHIFIZATION OF Y w1§ 3AGT ‘When Date Sntered) !

REPORT DOCUMENTATION PAGE

2. GOV ACCESSION NQ. 3.

SO

Do "OM‘ 1473 EDITION CF 1 NOV 83 18 OBSOLETE

JAN T3
S/N 0102-014¢° 6801 ;

UNCLASSIFIFED

SECURITY CLASSIFICATION OF TuiS$ PAGE (%hea Date Batered)

