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Abstract J.W. Wallis and E.H. Shortliffe

Abstract

This paper reports on experiments designed to identify and implement

mechanisms for enhancing the explanation capabilities of reasoning programs

for medical consultation. The goals of an explanation system are discussed,

as is the additional knowledge needed to meet these goals in a medical

domain. We have focussed on the generation of explanations that are

appropriate for different types of system users. This task requires a

knowledge of what 1s complex and what is important; it is further

strengthened by a classification of the associations or causal mechanisms

inherent in the inference rules. A causal representation can also be used to

aid in refining a comprehensive knowledge base so that the reasoning and

explanations are more adequate. We describe a prototype system which reasons

from causal inference rules and generates explanations that are appropriate

for the user.

Key words: medical decision makingt consultation systems, explanation,

human engineering, artificial intelligence, expert systems
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INTRODUCTION J.W. Wallis and E.H. Shortliffe

1 INTRODUCTION

Computer science research devoted to the development of consultation

programs has become known as "expert systems research" or "knowledge

engineering" [71. Much of the work is relevant to the design of clinical

decision making programs [19]. For example, researchers in the development

of expert systems have increasingly recognized the importance of explanation

capabilities in encouraging the acceptance of their programs, an area that is

also critical in medical consultation system development [9],[22].

Good explanations serve four functions in a consultation system: (1)

they provide a method for examining the program's reasoning if errors arise

when the system is being built; (2) they assure users that the reasoning is

logical, thereby increasing user acceptance of the system; (3) they may

persuade users that unexpected advice is appropriate; and (4) they can

educate users in areas where their knowledge may be weak. These diverse

roles impose several requirements upon the system. For example, the

explanations must adequately represent the reasoning processes of the

program, and they should allow the user to examine the reasoning history or

underlying knowledge at various levels of detail. In addition, although the

program's approach to a problem need not be identical to an expert's

approach, the program's overall strategy and reasoning steps must be

understandable and seem logical, regardless of the user's level of expertise.

This means that the system must have the capability to tailor its

explanations to the varying needs and characteristics of its users.

In this paper we describe experiments in the design and implementation
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of a prototype explanation program. After briefly describing previous work

• in the development of explanation capabilities for consultation programs, we

introduce the representation techniques used in our experimental system. The

program's explanation capabilities are then described. Subsequent sections

of the paper discuss the nature of causal reasoning in expert systems and its

relation to explanation. We also suggest a useful scheme for classifying

,I commonly used inference rules.

2 PREVIOUS WORK

Our past work in explanation for consultation systems has dealt

primarily with the ability to cite the production rules [4] involved in a

particular decision. One example of this approach is the explanation system

for MICIN, our rule-based program to assist in the selection of antimicrobial

therapy for patients with bacteremia or meningitis [17],C21]. This program

is able to answer questions about how it has reached a particular conclusion

(i.e., what rules led to the pertinent inference) and about why it has asked

a particular question (i.e., which rules can use the requested information).

The capability can be used for a specific run of the program or for general

querying of the knowledge base.

MCIN's explanation capability is illustrated in Fig. 1. Although the

program's responses provide an accurate description of a portion of its

reasoning, to understand the overall reasoning scheme a user needs to request

a display of all the rules that are used. Additionally, rules such as those
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mentioned in Fig. 1 are largely designed for efficiency and therefore

frequently omit underlying causal mechanisms that are known to experts but

may be necessary for a novice to understand a decision. The rule guiding the

choice of carbenicillin with an aminoglycoside, for example, does not mention

the synergism of the two drugs when combined in the treatment of serious

pseudomonas aeruginosa infections. Finally, while MYCIN does have a limited

sense of discourse (viz., an ability to modify responses based on the topic

under discussion), its explanations are customized to neither the

questioner's objectives nor characteristics.

[Insert Figure 1 about here]

MYCIN's explanation capabilities were expanded by Clancey in his work on

the tutorial system named GUIDON [2]. In order to use MYCIN's knowledge

base and patient cases for tutorial purposes, Clancey found it necessary to

incorporate knowledge about teaching. This knowledge, expressed as "tutorial

rules", and a four-tiered measure of the baseline knowledge of the student

("beginner", "advanced", "practitioner", or "expert"), have enhanced the

ability of a student to learn efficiently from MICIN's knowledge base.

Clancey has also noted problems arising from the frequent lack of underlying

"support" knowledge which is needed to explain the relevance and utility of a

domain rule [3].

More recently, Swartout has developed a system that generates

explanations from a record of the development decisions made during the

writing of a consultation program to advise on digitalis dosing C23]. The

domain expert provides information to a "Writer" subprogram, which in turn
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constructs the advising system. The traces left by the writer, a set of

domain principles, and a domain model are utilized to produce explanations.

Thus both the knowledge acquisition process and automated programming

techniques are intrinsic to the explanations generated by Swartout's system.

Responses to questions are customized for different kinds of users by keeping

track of what class is likely to be interested in a given piece of code.

- ~ Whereas MYCIN generates explanations that are usually based on a single

rule I, Weiner has described a system named BLAH [25] that can summarize an

entire reasoning chain in a single explanatory statement. The approach

developed for BLAB was based on a series of psycholinguistic studies

[11],[12],[26] that analyzed the ways in which human beings explain

decisions, choices, and plans to one another. For example, BLAB structures

an explanation so that the differences between alternatives are given before

the similarities (a practice that was noted during the analysis of human

explanations).

The tasks of interpreting questions and generating explanations are

confounded by the problems inherent in natural language understanding and

text generation. A consultation program must be able to distinguish general

questions from case-speci fo ones, and questions relating to specific

reasoning steps from those involving the overall reasoning strategy. As

previously mentioned, it is also important to tailor the explanation to the

'Although MYCIN's M"W command has a limited ability to integrate
several rules into a single explanation [20), the user wishing a high level
sumary must specifically augment the 'WHY' with a number that indicates the
level of detail desired. We have found that the feature is therefore seldom
used. It would, of course, be preferable if the system 'knew* on its own
when such a summary were appropriate.
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user, giving appropriate supporting causal and empiric relationships. It is

to this last task that the research presented in this paper is aimed. We

have avoided problems of natural language understanding for the present,

concentrating instead on representation and control mechanisms that permit

the generation of explanations customized to the knowledge and experience of

either physician or student users.

3 DESIGN CONSIDERATIONS: THE USER MODEL

For a system to produce customized explanations, it must be able to

model the user's knowledge and motivation for using the system. At the

simplest level, such a model can be represented by a single measure of what

the user knows in this domain, and how much he wants to know (i.e., to what

level of detail he wishes to have things explained). One approach is to

record a single rating of a user's expertise, similar to the four categories

mentioned above for GUIDON. The model could be extended to permit the

program to distinguish subareas of a user's expertise in different portions

of the knowledge base. For example, the measures could be dynamically

updated as the program responds to questions and explains segments of its

knowledge. If the user demonstrates familiarity with one portion of the

knowledge base, then he probably also knows about related portions (e.g., if

a physician is familiar with the detailed biochemistry of one part of the

endocrine system, it is likely he knows the biochemistry of other parts of

the endocrine system as well). This information can be represented in a

manner similar to Goldstein's rule pointers, which link analogous rules, rule
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specializations, and rule refinements [8]. In addition, the model should

ideally incorporate a sense of dialogue to facilitate user interactions.

Finally it must be self-correcting (e.g., if the user unexpectedly requests

information on a topic that the program had assumed he knew, it should

correct its model prior to giving the explanation). In our recent

experiments we have concentrated on the ability to give an explanation

appropriate to the user's level of knowledge and have deemphasized dialogue

or model correction.

14 KNOWLEDGE REPRESENTATION

4.1 Form of a Conceptual Network

We have found it useful to describe the knowledge representation for our

prototype system in terms of a semantic network (Fig. 2)2. It is similar to

other network representations used in the development of expert systems

[6],[27] and has also been influenced by Rieger's work on the representation

and use of causal relationships C16]. A network provides a particularly rich

structure for entering detailed relationships and descriptors in the domain

model. Object nodes are arranged hierarchically, with links to the possible

attributes (parameters) associated with that object. The parameter nodes, in

turn, are linked to the possible value nodes, and rules are themselves

iThe descriptive power of a semantic network provides clarity when
describing this work. Howevert other representation techniques used in
artificial intelligence research could also have captured the attributes of
our prototype system.
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represented as nodes with links that connect value nodes. These

relationships are summarized in Table 1.

[Insert Figure 2 about here]

The certainty factor (CF) associated with value and rule nodes (Table 1)

refers to the belief model developed for the MYCIN system (18]. A CF of +1

associated with a value indicates that it is known to be true in a given

context (e.g., for a specific patient in a given consultation); similarly -1

designates a value known to be false. There is a continuous range of

intermediate values, with CF=O indicating the indifferent state. Measures of

certainty are propagated from premises to conclusions using a combining

function [18) which considers both the belief in the value of the relevant

parameters and the CF for the inference rule (a static measure of the rule's

inference strength on the same -1 to +1 scale).

[Insert Table 1 about here]

Ask first/last (Table 1) is a property that controls whether the value

of a parameter is to be requested from the user before an attempt is made to

compute it using inference rules from the knowledge base. The text

justification of a rule is provided when the system builder has decided not

to break the reasoning step into further component parts but wishes to

provide a brief summary of the knowledge underlying that rule. Complexity,

importance, and rule type are described in more detail below.

4.2 Rules and Their Use

Deomber 1981 -7-
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In the network (Fig. 2), rules connect value nodes with other value

nodes. This contrasts with the MYCIN system in which rules are functionally

associated with an object-parameter pair and succeed or fail only after

completion of an exhaustive search for all possible values associated with

this pair. To make this clear, consider a rule of the form:

If: DISEASE-STATE of the LIVER is ALCOHOLIC-CIRRHOSIS
Then: It is likely (.7) that the SIZE of ESOPHAGEAL-VEINS is

INCREASED

When evaluating the premise (if-condition) of this rule to decide whether it

applies in a specific case, a MYCIN-like system would attempt to determine

the certainty of all possible values of the DISEASE-STATE of the LIVER,

producing a list of values and their associated certainty factors. Our

experimental system, on the other hand, would only investigate rules that

could contribute information specifically about ALCOHOLIC-CIRRHOSIS. In

either case, however, rules are chained together through a mechanism that is

goal-oriented and known as "backward chaining".

Because our prototype system reasons backwards from single values rather

than from parameters, it saves time in reasoning in most cases. However,

there are occasions when this approach is not sufficient. For example, if a

value is concluded with absolute certainty (CFz1) for a parameter with a

mutually exclusive set of values, this necessarily forces the other values to

be false (CF-1). Lines of reasoning that result in conclusions of absolute

certainty (i.e., reasoning chains in which all rules make conclusions with

CF=1) have been termed "unity paths" [20]. In oases with mutually exclusive

values of parameters, complete investigation of one value requires
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consideration of any other value that could be reached by a unity path. Thus

the representation must allow quick access to such paths.

When reasoning by elimination, similar problems arise if a system

focuses on a single value. One needs the ability to conclude a value by

ruling out all other possible values for that parameter; this entails a

slight modification of the organizational and reasoning scheme. One strategy

is to use this elimination method in cases of mutually exclusive options only

,; after the normal backward chaining process fails (provided that the

possibilities represented in the knowledge base are known to span all

potential values).

4.3 Complexity and Importance

The design considerations for adequate explanations require additions to

the representation scheme described above. To provide customized

explanations, appropriate for different levels of expertise, we have found it

useful to associate a measure of complexity, both with the inference rules

and with the concepts about which they are concluding. Because some concepts

are key ideas in a reasoning chain and should be mentioned regardless of

ktheir complexity, a measure of importance associated with concepts is useful

as well. Both measures are presently specified at the time knowledge is

added to the system, but a dynamic modification of these initial values would

improve the flexibility of the approach.

Although complexity and importance are related, one can not necessarily
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be predicted from the other. For example, biochemical details of the

endocrine system are complex, but are not important .to an understanding of

endocrine abnormalities, yet the same complexity of biochemical detail is

important for understanding the glycogen storage diseases. A measure of a

fact's importance was also used by Carbonell in the form of "relevancy tags",

supplemented by "distance" in a semantic network [1], but he did not

distinguish between the two concepts discussed here.

5 EXPLANATION CAPABILITIES

5.1 Tailored Explanations

The measurements of complexity and importance described above facilitate

the generation of tailored explanations. Consider a linear causal chain

representing a simplified causal mechanism for the existence of kidney stones

(Fig. 3). A sample explanation dialogue based on this reasoning chain might

be as follows3:

SOur program functions as shown except that the user input requires a
constrained format rather than free text. We have simplified that
interaction here for illustrative purposes. The program actually has no
English interface.

December 1981 -10-
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Smple Interaction 1:

"*EXPERTISE 3 [the user indicates his level of expertise on a scale of 1 to
10 where 10 = expert]

"ROW DOES HYPERPARATHYROIDISM CAUSE RENAL STONES?
Renal stones are caused by hypercalcemia

Hypercalcemia is caused by hyperparathyroidism

*0MORE DETAIL
Renal stones are caused by increased urinary calcium

Increased urinary calcium is caused by hypercalcemia
Hypercalcemia is caused by increased bone breakdown

Increased bone breakdown is caused by hyperparathyroidism

"*EXPERTISE 7 [the user indicates that he is more expert than above]

**HOW DOES HYPERPARATHYROIDISM LEAD TO INCREASED BONE BREAKDOWN?
Bone breakdown is caused by increaaed osteoclast activity

Increased osteoclast activity is caused by increased cyclic-AMP
Increased cyclic-AMP is caused by hyperparathyroidism

This sample dialogue demonstrate*: (1) the user's ability to specify his

expertise, (2) the program's ability to employ the user's expertise to adjust

the amount of detail it offers, and (3) the user's option to request more

detailed information about the topic under discussion.

[Insert Figure 3 about here]

Two user-specific variables are used to guide the generation of

explanations 4

Expertise: A number representing the user's current level of

*'Another variable we have discussed but not implemented is a focusing
parameter which would put a ceiling on the number of steps in the chain to
trace when formulating an explanation. A highly focussed explanation would
result in a discussion of only a small part of the reasoning tree. In such
oases, it would be appropriate to increase the detail level as well.
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knowledge. As is discussed below, reasoning chains that involve

simpler concepts as intermediates are collapsed to avoid the

display of information that might be obvious to the user.

Detail: A number representing the level of detail desired by the user

when receiving explanations (by default a fixed increment added to

the expertise measure). A series of steps that is excessively

detailed can be collapsed into a single step to avoid flooding the

user with information. However, if the user wants more detailed

information he can request it.

As was shown in Fig. 3, a measure of complexity is associated with each

value node. Whenever an explanation is produced, the concepts in the

reasoning chain are selected for exposition on the basis of their complexity;

those concepts with complexity lying between the user's expertise level and

* the calculated detail level are used5 . Consider, for example, the five-rule

reasoning chpin linking six concepts as shown in Fig. 4. When intermediate

concepts lie outside the desired range (concepts B and E in this case),

broader inference statements are generated to bridge the nodes that are

appropriate for the discussion (e.g., the statement that A leads to C would

be generated in Fig. 1) Terminal concepts in a chain are always mentioned,

even if their complexity lies outside the desired range (as is true for

concept F in the example). This approach preserves the logical flow of the

explanation without introducing concepts of inappropriate complexity.

9The default value for detail in our system is the expertise measure
incremented by 2. When the user requests more detail, the detail measure is
incremented by 2 once again. Thus, for the three interohanges in Sam le
Interaction 1, the expertise-detail ranges are 3-5, 3-7, and 7-9
respectively. Sampl Interaction 2_ (below) demonstrates how this scheme is
modified by the importance measure for a concept.
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[Insert Figure 4 about here]

We have also found it useful to associate a complexity measure with each

inference rule to handle circumstances in which simple concepts (low

complexity) are linked by a complicated rule (high complexity)6. This

situation typically occurs when a detailed mechanism, one that explains the

association between the premise and conclusion of a rule, consists of several

intermediate concepts that the system builder has chosen not to encode

explicitly7
. When building a knowledge base, it is always necessary to limit

the detail at which mechanisms are outlined, either because the precise

mechanisms are unknown or because minute details of mechanism are not

particularly useful for problem solving or explanation. Thus it is useful to

add to the knowledge base a brief text Justification (Table 1) of the

mechanism underlying a rule.

Consider, for example, the case in Fig. 5 which corresponds to the same

reasoning chain represented in Fig. 4. Although rule r3 links two concepts

(C and D) that are within the complexity-detail range for the user, the

relationship mentioned in rule r3 is itself considered to be outside this

range. When generating the explanation for this reasoning chain, the program

mentions concepts C and D, and therefore mentions rule r3 despite its

complexity measure. Since the rule is considered too complex for the user,

however, the additional explanatory text associated with the rule is needed

uThe opposite situation does not occur; rules of low complexity do not

link concepts of higher complexity.

7 Patil has dealt with this problem by explicitly representing causal
relationships about acid-base disorders at a variety of different levels of
detail [13].
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in this case. If the rule had fallen within the complexity-detail range of

the user, on the other hand, the text justification for the rule would not

have been required8.

[Insert Figure 5 about here]

Further modulation of rule and concept selection 1s accomplished using

the importance measure associated with parameters. A high importance forces

the inclusion of a reasoning step in an explanation, thereby overriding the

complexity considerations that were shown in Figs. 4 and 5. When the

importance level of a concept is two or more points above the expertise of

the user, the item is included in the explanation. Consider, for example,

the following dialogue which demonstrates the way in which the importance

measure is used:

S Interaction 2:

**EXPERTISE 6

**OW DOES HTPERPARATHYROIDISM CAUSE RENAL STONES?
Renal stones are caused by increased urinary calcium

Increased urinary calcium is caused by hypercalcemia
Hypercaloemia is caused by increased bone breakdown

Bone breakdown is caused by increased osteoclast activity
Increased osteoclast activity is caused by hyper-
parathyroidism

Note that this example shows a response to the same question asked in Sample

Interaction 1. This time, however, the expertise level is six rather than

three. Hyperoaloemia is therefore mentioned only because its importance

@An example of this approach is included in Sample Interaction 4 in the
next section.
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level of eight (see Fig. 3) is two points higher than the expertise of the

user; the complexity level of hypercalcemia does not fall within the

expertise-detail range of the user and thus would not have been included in

the explanation if it were not for its high importance. The other items

mentioned are either terminal concepts in the chain (renal stones and

hyperparathyroidism) or have a complexlt measure lying within the user's

expertise-detail range of six to eight.

Many reasoning chains are not as simple as those shown in Figs. 3-5.

When explaining a branched reasoning chain, for example, the explanation

system can set aside the branches of the chain and mention them only when it

is appropriate to the level of detail required by the user. This feature

provides users with an overview of the reasoning process to help them decide

whether it is necessary to examine the more detailed steps. The capability

is illustrated in the following dialogue which involves a patient with

hypercalcemia, a possible malignancy, and prolonged bed rest:

Sample Interaction 3:

9W DOES THE PATIENT HAVE INCREASED SERUM CALCIUM?
Increased serum calcium is suggested by immobilization and malignancy

04MORE DETAIL
Increased serum calcium is implied by increased bone breakdown

Increased bone breakdown is suggested by 2 paths of reasoning:
Increased bone breakdown is implied by increased osteoolast
activity

Increased osteoclast activity is implied by prolonged
imobilization

Increased bone breakdown is also implied by malignant bone
invasion

December 1981 -15-
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5.2 TZpes of Rules

Our refinement of the rule types presented by Clancey £3] yields five

types of rules9 that are relevant to explanation strategies:

definitional: the conclusion is a restatement of the precondition in

different terms;

cause-effect: the conclusion follows from the precondition by some

mechanism, the details of which may not be known;

associational: the conclusion and the precondition are related, but

the causal direction (if any) is not known;

effect-cause: the presence of certain effects are used to conclude

about a cause with some degree of certainty;

self-referencing: the current state of knowledge about a value is

used to update that value further I 0 .

The importance of distinquishing between cause-effect and effect-cause

rules is shown in Fig. 6, which considers a simplified network concerning

possible fetal Rh incompatibility in a pregnant patient. Reasoning backwards

from the goal question "Is there a fetal-problem?", one traverses three steps

that lead to the question of whether the parents are Rh incompatible; these

9Rules considered here deal with domain knowledge, to be distinguished
from strategic or meta-level rules [5].

101n many cases these rules can be replaced by strategy rules (e.g., "if
you have tried to conclude a value for this parameter and have failed to do
so, then use the default value for the parameter").
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three steps use cause-effect and definitional links only. However, in order

to use the laboratory data concerning the amniotic fluid to form a conclusion

about the presence of fetal hemolysis, effect-cause links must be used.

[Insert Figure 6 about here]

The sample interactions in the previous section employed only cause-

effect and definitional rules. An explanation for an effect-cause rule, on
the other hand, requires a discussion of the inverse cause-effect rule (or

chain of rules), and a brief mention of alternate possibilities to explain

the certainty measure associated with the rule. As discussed above, the

expertise of a user may also require that the program display a text

*justification. for the causal relationships cited in a cause-effect rule.

Consider, for example, an interaction in which an explanation of the effect-

cause rule in Fig. 6 is produced:

Sample Interaction 4:

4WHIY DO INCREASED BILIRUBIN COMPOUNDS IN THE AMNIOTIC FLUID D4PLY FETAL
HD4OLYSIS?

Fetal hemolysis leads to bilirubin compounds in the fetal circulation;
equilibration then takes place between the fetal plasma and the
amniotio fluid, leading to increased bilirubin compounds in the
amniotic fluid

While the relationship in this direction is nearly certain, the inverse
relationship is less certain because of the following other possible
causes of increased bilirubin compounds in the amniotic fluid:

Maternal blood in the amniotio fluid from trauma
Maternal blood in the amniotic fluid from prior amniocentesis

The response regarding the equilibration of fetal plasma and amniotic fluid
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is the stored text justification of the cause-effect rule that leads from

"fetal hemolysis" to "increased bilirubin in amniotic fluid". The individual

steps could themselves have been represented in causal rules if the system

builder had preferred to enter rule-based knowledge about the nature of

hemolysis and bilirubin release into the circulation. The second component

of the response, on the other hand, is generated from the other Oause-effect

rules that can lead to "increased bilirubin in amniotio fluid".

The other types of rules require minor modif- ..-2"13 of the explanation

strategy. Definitional rules are usually omlt!i U..e expert user on the

basis of their low complexity and importance . An explanation of an

associational rule indicates the lack 4' kncF4- causal information, and

describes the degree of association. Self-rejfirencing rules frequently have

underlying reasons that are not adequately represented by a causal network;

separate support knowledge associated with the rule (31, similar to the text

justification shown in Sample Interaction 4, may need to be displayed for the

user when explaining them.

6 CAUSAL LINKS AND STATISTICAL REASONING

We have focussed this discussion on the utility of representing causal

knowledge in an expert system. In addition to facilitating the generation of

tailored explanations, the use of causal relationships strengthens the

reasoning power of a consultation program and can facilitate the acquisition

of now knowledge from experts. However, an attempt to reason from causal
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information faces many of the same problems that have been encountered by

those who have used statistical approaches for modeling diagnostic reasoning.

It is possible to generate an effect-cause rule, and to suggest its

corresponding probability or certainty, only if the information given in the

corresponding cause-effect rule is accompanied by additional statistical

information. For example, Bayes' Rule may be used to determine the

probability of the ith of k possible "causes" (e.g., diseases), given a

specific observation ("effect"):

P(effect I causei) P(causei)

a) P(oausej) P(effectlcausei)

IAL
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This computation of the probability that the ith possible "cause" is present

given that the specific "effect" is observed, P(causeileffect), requires

knowledge of the a priori frequencies P(causei) for each of the possible

"causes" (cause, cause2 • . . causek) of the "effect". These data are not

usually available for medical problems, and are dependent upon locale and

prescreening of the patient population [19],[241. The formula also requires

the value of P(effectlcausej) for all cause-effect rules leading to the

"effect", not just the one for the rule leading from causei to the "effect".

In Fig. 6, for example, the effect-cause rule leading from "increased

bilirubin in amniotic fluid" to "fetal hemolysis" could be derived from the

cause-effect rule leading in the opposite direction only if all additional

cause-effect rules leading to "increased bilirubin in amniotic fluid" were

known (the "other causes" indicated in the figure) and if the relative

frequencies of the various possible causes of "increased bilirubin in

amniotio fluid" were also available. A more realistic approach is to obtain

the inference weighting for the effect-cause rule directly from the expert

who is building the knowledge base. Although such subjective estimates are

fraught with danger in a purely Bayesian model [10), they appear to be

adequate when the numerical weights are supported by a rich semantic

structure [19),[28].

Similarly, problems are encountered in attempting to produce the inverse

of rules that have Boolean preconditions. For example, consider the rule:

IF: (A and (B or C))
THEN: Conclude D
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Here D is known to imply A (with a certainty dependent on the other possible

causes of D and their relative frequencies) only if B or C is present. While

the inverse rule could be generated using Bayes' Rule given the a priori

probabilities, one would not know the certainty to ascribe to cases where

both B and C are present. This problem of conditional independence tends to

force assumptions or simplifications when applying Bayes' Theorem.

Dependency information can be obtained from databanks or from an expert, but

cannot be derived directly from the causal network.

It is instructive to note how the Present Illness Program (PIP) and

CADUCEUS, two recent medical reasoning programs, deal with the task of

representing both cause-effect and effect-cause information. CADUCEUS [15]

has two numbers for each manifestation of disease, an "evoking strength" (the

likelihood that an observed manifestation is caused by the disease) and a

"frequency" (the likelihood that a patient with a disease will display a

given manifestation). These are analogous to the inference weightings on

effect-cause rules and cause-effect rules respectively. However, the first

version of the CADUCEUS program (INTERNIST-1) does not allow for combinations

of manifestations that give higher (or lower) weighting than the sum of the

separate manifestations11 , nor does it provide a way to explain the inference

paths involved.

PIP [14],[24] handles the implication of diseases by manifestations by

using "triggers" for particular disease frames. No weighting is assigned at

the time of frame invocation; instead PIP uses a scoring criterion that does

''This problem is one of the reasons for the move from INTERNIST-I to

the new approaches used in CADUCEUS [15].
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not distinguish between cause-effect and effect-cause relationships in

assigning a numerical value for a disease frame. While the information

needed to explain the program's reasoning is present, the underlying causal

information is not 12 .

In our experimental system, the inclusion of both cause-effect rules and
effect-cause rules with explicit certainties, and the ability to group

manifestations into rules, allow flexibility in constructing the network.

Although causal information taken alone is insufficient for the construction

of a comprehensive knowledge base, the causal knowledge can be used to

propose effect-cause relationships for modification by the system-builder.

It can similarly be used to help generate explanations for such relationships

when effect-cause rules are entered.

7 CONCLUSION

We have argued that a need exists for better explanations in medical

consultation systems, and that this need can be partially met by

incorporating a user model and an augmented causal representation of the

domain knowledge. The causal network can function as an integral part of the

reasoning system and may be used to guide the generation of tailored

explanations and the acquisition of new domain knowledge. Causal information

is useful but not sufficient for problem solving in most medical domains.

However, when it is linked with information regarding the complexity and

igRecently the ABEL program, a descendent of PIP, has focussed on

detailed modeling of causal relationships (13).
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importance of the concepts and causal links, a powerful tool for explanation

emerges.

Our prototype system has been a useful vehicle for studying the

techniques we have discussed. Topics for future research include: 1) the

development of methods for dynamically determining complexity and importance

(based on the semantics of the network rather than on numbers provided by the

system builder); 2) the discovery of improved techniques for using the

context of a dialogue to guide the formation of an explanation; 3) the use of

linguistic or psychologic methods for determining the reason a user has asked

a question so that a customized response can be generated; and 4) the

development of techniques for managing the-various levels of complexity and

detail inherent in the mechanistic relationships underlying physiological

processes. The recent work of Patil, Szolovits, and Schwartz [13], who have

separated such relationships into multiple levels of detail, has provided a

promising approach to the solution of the last of these problems.
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L TABLE
Table 1

. TYPE OF NODE STATIC INFORMATION DYNAMIC INFORMATION
(Associated with Node) (Consultation-Specific)

Object node part-of link (hierarchic)
parameter list

Parameter node object link
value-node list
default-value
text definition

Value node parameter-node link contexts for which
precondition-rule list this value is true
conclusion-rule list certainty factor
importance explanation data
complexity ask state
ask first/last

Rule node precondition list (boolean) explanation data

I ,conclusion
I certainty factor

rule type
complexity
text justification
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9 LEGENDS TO FIGURES

SFigure 1: An example of a hypothetical interaction with MYCIN's explanation

program. User input is in capital letters and follows a double

asterisk. Note that the rule for selecting a drug to cover pseudomonas

bacteremia is adequate for allowing MYCIN to reach the correct

* - conclusion but that the underlying reason for combining two drugs is

*r unclear.

Figure 2: Sample section of network showing object, parameter, value and rule

nodes. Dotted lines indicate the following rule:

IF: PARAMETER-i of OBJECT-i is VALUE-i, and
PARAMETER-2 of OBJECT-i is VALUE-4

THEN: Conclude that PARAMETER-4 of OBJECT-3 is VALUE-?

I Figure 3: An example of a small section of a causal knowledge base, with the

complexity (Comp) and importance (Imp) illustrated for the value nodes

(concepta). This is a highly simplified causal chain provided for

illustrative purposes only. For example, the effect of parathormone on

the kidney (promoting retention of calcium) is not mentioned but would

have an opposite causal impact on urinary calcium. This reasoning chain

is linear (each value has only one cause) and contains only cause-effect

and definitional rules. Sample Interactions 1 and 2 (see text) are

based on this reasoning chain.

Figure 4: Diagram showing the determination of which concepts (parameter

values) to explain to a user with a given expertise and detail setting.

The letters A through F represent the concepts (values of parameters)
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that are linked by the inference rules ri through r5. Only those

concepts whose complexity falls in the range between the dashed lines

(including the lines themselves) will be mentioned in an explanation

dialogue. Explanatory rules to bridge the intermediate concepts lying

outside this range are generated by the system.

Figure 5: Diagram showing the determination of which rules to explain further

for a user with a given expertise and detail setting. When a rule is

mentioned because of the associated concepts, but the rule itself is too

complex, further text associated with the rule is displayed.

Figure 6: A simple causal network showing the difference in reasoning between

effect-cause and cause-effect rules in the medical setting. The number

beside a link indicates the certainty factor (CF) associated with the

rule. Note than an actual rule network for this domain would be more

complex, with representation of intermediate steps, associated medical

concepts, default values, and definitions.
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10 FIGURES

10.1 Figure I

00 HW DID OU DECIDE TO TREAT FOR PSEUDOMONAS?
ITE4-2 is Pseudomonas-aeruginosa associated with meningitis. I decided to

treat ITDM-2 on the basis of clinical evidence only.

The following rules concluded about:
the likelihood that Pseudomonas-aeruginosa is one of the organisms

which might be causing the infection

last question asked
Rule Cumulative Certainty before conclusion was made

RULE545 (.29) 46
RLE557 (.64) 48
RULE578 (.82) 50

00 PRINT 545

RULE545

If: 1) The infection which requires therapy is meningitis,
2) A: A smear of the culture was not examined, or

B: Organisms were not seen on the stain of the culture,
3) The type of the infection. is bacterial,
4) The patient has not had neurosurgery,
5) The age of the patient is greater than 10 days, and
6) The infection was acquired while the patient was hospitalized

Then: There is evidence that the organisms (other than those seen on
cultures or smears) which might be causing the infection is
e.coli (.75), staphylococous-coag-pos (.3), pseudconas-
aeruginosa (.3) or klebsiella-pneumoniae (.5)

* ' 0 DO YOU TREAT PSEUDOMNAS-AERUGINOSA BACTERDEIA WITH CARBENICILLIN?

Yes, for treatment of PSEUDOMNAS-AERUGINOSA in BACTERDEIA, the drugs
of choice (ranked by relative efficacy, assuming sensitivity) are:

1st choice:
CARBENICILLIN-AND-TOBRMfCIN
CARDBEfICILLIN-AND-GENTAMMCIN
AMIKACIN-AND-CARBENICILLIN

2nd choice:
TOBRAI4YCIN
GENTAMICIN
AMIKACIN
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10.2 Figure 2
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10.3 Figure 3

VALUES RULES

AHype rpa rathy roidism RULE CF RULETYPE
COMP3 Iv aNAM
Cam ~Im arI .9 Cause-effect

Elevated cyclic-AMP
Cmnp 9  Imp 1 -

r2 1 Cause-effect

Inc reased osteoclast activity

a Imp 1. :> 3 .9 Cause-effect

Bone breakdown
C mp ImP 3 - r4 .s Cause-effect

Hypercalcemia

Cap 3 Im ar5 .9 Cause-effect

Increased urinary calcium
COMP 7  Imp 4

)re .5 Cause-effect

Calium-based renal stones
CocnP 2  ImP 3

r7 I Deflivianal

Renal stones
Cowup Imp6
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10.24 Figure 24

Reasoning squence: r i

A __jbB- 2 "C D 4'E -r

concept E
complexity -detail
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10.5 Figure 5

I Reasoning sequence:

ri r2 r3r4 rs

1C

* I rs

rule 2 r

completity l
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10.6 Figure 6

RH INCOMPATABILITY

cazuae oitctj

IL.8

FETAL
HEMOLYSIS Other causes

Causee effect
Cause affect j fc ca Eas ffect4

INCREASED BILIRUBIN
L IN AMNIOTIC FLUID

IMPAIRED FETAL
OXYGEN TRANSPORT

,Definitions,

FETAL PROBLEM
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