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ABSTRACT

\mA recent combinatorial result relevant to the computational

complexity of undirected networks is extended to include
all coherent structures. This set-theoretic result provides
computational insight for the problem of computing k-out-of-n
system reliability, for example. All results are illustrated
via simple networks.
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SET THEORETIC SIGNED DOMINATION FOR COHERENT SYSTEMS

by

Richard E. Barlow

1. INTRODUCTION

There have recently been several outstanding advances in our under-

standing of the computational complexity of algorithms for computing

system reliability. Satyanarayana and Prabhakar (1978), in considering

the problem of computing the reliability of two terminal directed

networks, introduced the concept of domination and showed its significance

relative to their algorithm for computing system reliability. They

started with the classical inclusion-exclusion formula for computing

reliability based on minimal path sets. In this formula, there will be

a term corresponding to the probability that all system components work.

The coefficient of this term (an integer, possibly positive, negative

or zero) is called the signed domination of the network or system. In

Satyanarayana and Chang (1981), it was shown that for undirected net-

works, the absolute value of the signed domination is a measure of the

computational complexity of an algorithm for computing reliability using

pivotal decomposition and series-parallel reductions. This result

provides an interesting connection between two different methods for

computing system reliability - namely inclusion-exclusion based on

minimal path sets and pivotal-decomposition followed by series-parallel

reductions. (The comparison assumes statistically independent components.)

However, the absolute value of the signed domination does not provide a

measure of the computational complexity of using pivotal decomposition

followed by series-parallel reductions for general coherent systems.
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For example, for a directed cyclic network, the signed domination is zero.

[See R. R. Willie (1980).

Networks and logic trees (or fault trees when the analysis is failure

oriented) are two important system representations with respect to a

system event of interest. At the present time, there are no computational

complexity results with respect to probabilistic methods for analyzing

logic trees as there are for undirected networks. The set theory generali-

zation of the signed domination theorem provided in this paper may provide

some insight into the more general reliability computational problem. The

original signed domination theorem [see Property 5 in Satyanarayana and

Chang (1981)] was proved only for undirected networks.

_A~r
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2. SIGNED DOMINATION

Let C be a set of components corresponding to a system of

interest. Let P = [P1,P2, .... P p be a family of success sets (e.g.,
p

minimal path sets); i.e., Pi C C; U P, = C and Pi C P implies
i=l

i =j . We call (C,P) a coherent system [see Chapter 1, Barlow and

Proschan (1975).] A formation, F , of (C,P) is a family of sets

such that F C P and UP, = C

P icF

Example 2.1

The following simple example of an undirected network will be used

to illustrate ideas.

FIGURE 2.1

UNDIRECTED TWO TERMINAL NETWORK

For this example, C a {1,2,3, 4 ,el while P - [(l,3},{l,2,4},{e,4},

{e,2,3}1 The formations of (C,P) are:

(Fo P- [{l,31,{l,2,4},{e,4},{e,2,3}1

F1  ({1,3},{l,2,4},{e,2,3}]

(F 2  [{l,3},{l,2,4},{e,4}]

F2 JF3 - ((l,31,{e,4},{e,2,3}]

F -[{l,2,4},{e,2,3}1
F 5 - [({l,2,4},{e,4},{e,2,3}]

-- "
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Let F be a complete family of formations for (C,P) In our

example, F = [Fo,F 1,F2,F3,F4,F5] .

The signed domination, d(C,P) , is the number of odd formations

of (C,P) minus the number of even formations. In our example, the

number of odd formations is 4 and the number of even formations is 2

so that in this case d(C,P) = 2 . As mentioned earlier, the signed

domination is the coefficient of the term in the inclusion-exclusion

formula corresponding to the probability that all components in C

are working. In Satyanarayana and Chang (1981), Id(C,P)I is called

the domination.

Pivoting

By pivoting on a component e e C , we create two subsystems,

coriesponding to the system with e failed and to the system with e

perfect, respectively. Let P(e) = [Pi I e e Pi and Pe P] and

P(e') = [P I e i P, and P, c P1 Then

P = P(e) U P(e')

In our example, P(e) = [{e,4},{e,2,3}] and P(e') = [{l,3},{l,2,4}1

In all cases, U P, C C-e . In our example, U Pi C-e

Pi cP(e') PiEP(e')

so that (C -e,P(e')) is coherent and corresponds to our system with

e failed. If U Pi C C -e , then (C -e,P(e')) has no formations

P cP(e')

so that in this case d(C-e,P(e')) - 0

To describe a system with e perfect, let

P-em [P1 -eP 2 -e, ... , P p-eJ

p
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If e J Pi ' then Pi is included as it is. Let M[P-e) be the

set minimization of P -e . In our example,

P-e = ({1,3},{l,2,4},(4},[2,3})

and

M[P-el = [{1,3},{4},{2,3}]

since {41 C {1,2,4} . In this case,

U A C-e,

A. eM[P-el

so that (C -e,M[P-e]) corresponds to our example system with e

perfect. In general, we only know that

UA. CC-e
1 -

A iM[P-el

so that (C-e,M[P -e]) might be noncoherent.

The main theorem proved in Section 3 is

Theorem 0:

For any e c C

d(C,P) - d(C-e,M(P-e]) - d(C-e,P(e'))

In our example, d(C-e,M[P-e]) - I and d(C-e,P(e')) = -1

so that d(C,P) - 2 which agrees with Theorem 0.

In Satyanarayana and Chang (1981), it is shown that for undirected

networks without replicated arcs

-7
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Id(C,P)l = Id(C-e,M[P-e)j + d(C-e,P(e'))i (2.1)

This is their domination theorem and is the basis for asserting that

the optimal binary computational structure using pivotal decomposition

and series-parallel reductions has Id(C,P)j leaves.

Example 2.2

(2.1) is not true in general. For example, the directed network

in Figure 2.2 has domination zero since it contains a cycle. However,

if we pivot on e , the subsystems each have domination 1 so that (2.1)

is not true in this case. Theorem 0, on the other hand, is still valid.

251Q t
0

FIGURE 2.2

DIRECTED TWO TERMINAL NETWORK

k-out-of-n Systems

A k-out-of-n system functions if any k or more components function.

Such systems cannot be represented as two terminal networks without

replicated arcs. Using Theorem 0 and induction, Kevin Wood

observed that the signed domination in this case is

d(C,P) -(l)k+l (n)

Hencethe domination is n kl for fixed k and large n It

-~ ~ ~~( - 1) ~a'3..C .~.~' * -tn .~X--
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is easy toshow that for these systems (2.1) holds so that the computa-

tional complexity of a pivot and reduce algorithm is polynomial in

n . Also, a pivot and :educe algorithm can be used even if eomponents

are statistically dependent. Of course, this would require knowledge of

conditional probabilities and would require additional storage and

computing time.

Assuming components are statistically independent in a k-out-of-n

system, a better (i.e., n2 computing time) algorithm would be based

on the generating function

n

g(z) = r (qi + piz)
i=l

where pi is the probability component i works and qi= i-pi
k k+l n

We need only expand and sum the coefficients of z ,z , z

This is a well-known technique. However, it does require component

statistical independence so that the domination result may be of

interest relative to the statistically dependent component case.

-7I
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3. PROOF OF THE SIGNED DOMINATION THEOREM

We wish to prove Theorem 0; i.e.,

Theorem 0:

For any e e C

d(C,P) d(C-e,M[P-e]) - d(C-e,P(e'))

To do this, we partition the class of all formations of F into 3 classes.

Class I Formations: F1

F e F is a class 1 formation iff U Pi = C-e . Recall that
P.eF(e')

F(e') = {P, I e i P, and P, e F) .

In our example Figure 2.1, the following are class 1 formations:

F0 = [{l,3},{1,2,4),{e,41,{e,2,311

F1 = [{l,3},{l,2,4},{e,2,3}]

F2 = [{l,3},{e,4},{l,2,4}]

Theorem 1:

N odd(F) - N even(F) = -d(C-eP(e'))

Proof:

[See also proof of Theorem 1 in Satyanarayana and Chang (1981).]

If F is empty,then (C -e,P(e')) is noncoherent since

U Pi C C -e . Hence, (C -e,P(e')) has no formations based on

P iP(e')

P(e') and d(C-e,P(e')) - 0
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Assume F F(e) U F(e') c F Since U P = C-e , we need

Pi F(e')
only add one P. e P(e) to F(e') to obtain a formation for (C,P)

1

Let nodd and neven be the number of odd and even, respectively,

formations of (C-e,P(e')) . Let IP(e)I = x . The number of odd

formations in class 1 is

SoddF] 2X-neven + (2 1l)nodd

which is the number of ways to include an odd number of sets of P(e)

with an even formation of (C -e,P(e')) plus the number of ways to

include an even number of sets of P(e) with an odd formation of

(C -e,P(e')) . Similarly, the number of even formations in class 1 is

Neven [F] = 2X-in0 + (2x-' - l)ne

Therefore, Nodd - Neven 2 neven - nodd = -d(C-e,P(e')) . H

In our example 2.1, (C-e,P(e')) has only the formation [(1,31,

(1,2,41] so that nodd - neven -1 = d(C-e,P(e')) For the class 1

formations,

Nodd [FI - Neven [F] 2- - 1

so that

N oddl[F 1 Neven [FI - -d(C-e),P(e'))

as claimed.

Class 2 Formations: F2

F c F is a class 2 formation iff U Pi C C-e but is not equal
I~~ PeF (e ')

to E -e and

- -a
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F(e') CM[P-e]

In our example,

P-e [({l,31,{l,2,41,{4},{2,31]

and

M(P-e] - [{l,3},{4),{2,3}]

so that

F [{l,3},{e,4},{e,2,31

is the only class 2 formation in our example 2.1.

Theorem 2:

Nodd(F2) - N (F2 ) d(C-e,M[P-e!) .

Proof:

Case 1:

(C-e,M(P-e]) is noncoherent; i.e., U A. C E-e . This

A iCM(P-e]

can only happen if some member of P(e') is a superset of some member

of P(e) - e . Hence,

M[P-e] -Pji ipJ2, ... , Ps' 0Pr+1- e' .. '' Pp-e]

here C..., P] cP(e') and [Pr+l p - P(e) and

PJ U PJ2 U ... U PJ U Pr+l-e U ... U P -e U E-e.
1i 2is r-.p



Hence, P Z U P.2 U ... U P.s U Pr+l U ... U C C.

Let F = il and suppose

F(e') F(e)

F(e') C M[P-el Then in fact F(e') C 1" . and

F(e) C [P*r+l ' " P p] so that

F(e') U F(e) C [ii 2 ' Pr+l' p]

and

UA CC

AicF(e')LF(e)

so that F is not a formation for (c,P) . It follows that in this

case F2  is empty and the theorem follows.

Case 2:

(C-e,M[P -e]) is coherent.

Let

M(P-el - ., Pi s Pr+l -e, ... , Pp-e]

as before. Let H = [HI, ..., Hi,HL+l , .... H t ] be a formation for

(C-e,M[P-e]) where

[HI , ..., H] kC PPl i.,Ps]

and

[ H + , . . H ] (C [ P - e , ... P e l

, . -

" " J"' "J . . ... . . . . . . ... . . - '
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Define U1 so that H c U1  implies [H1, .... Hz] is itself a

formation for (C -e,M[P -e]) . Claim the number of odd formations in

U1 is equaZ to the number of even formations. If UI  is empty, the

assertion is obvious. Hence,suppose U1  is not empty. Choose any

P. e P such that e e Pi " If Pi-e e [H .... H t then
11

H - (Pi -e) is also a formation for (C-e,M[P-el) and H
H - (Pi-e) e Ui ' if Pi-e i H , then H H + (Pi-e) is in U1

Clearly, if H is odd, H1  is even and vice versa. Therefore, we can

pair the odd and even formations of U1 with respect to Pi and the

claim is obvious.

Let U2 be the remaining formations of (C -e,M(P-e]) . Hence,

H e U2 implies

H ..., H is not a formation for (C-e,M[P-e])

Therefore, [HI. ..., HH£+ +e , ..., H t +e ] is a class 2 formation

for (C,P) .

Let F =FFl ... , i, Fk , .... Fi] be a class 2 formation

F(e') F(e)

for (C,P) so that F(e') is not a formation for (C-e,M[P -e])

Then F -e e U2 . It follows that there is a 1-1 correspondence between

members of F2 and U2 . Hence,

N odd(F 2) - N even(F d(C-e,M(P-e])

as was to be shown. 11

Class 3 Formations: F3

F c F is a class 3 formation for (C,P) iff U Pi C C-e

P iF(e')
and F(e') M[P-e] . For our example 2.1,
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F4  [{l,
2 ,4},{e,2,3}1

and

F5 - [{l,2,4},(e,4},({,2,3}1

are class 3 formations and

Nodd[F 3] - even F3] = 0

Theorem 3:

Nodd [F3  N even[F 3 0

Proof:

Let F I [F.,Fi, ..- , F k F. , Fim] ,F F 3 •

F(e') F(e)

Since F(e') Mf[P-e , F(e') must contain a superset of some member

of P(e) - e , say Pi-e where e e P. ' If Pi F , then form

FI = F + P. and F1 is also in F3 but of opposite parity to F

If Pi e F , then there must be at least one other member of F(e)

m
since otherwise U F1i C C . Since there is at least one other member

of F(e) containing e ,we may form F= F - Pi and F is a member

of F3 but of opposite parity to F3m

Hence, to every even formation in F3 , there is an odd formation in

F3 and vice versa. The theorem follows. 11

Theorem 0 is now proved since every formation of (C,P) must be

either a class 1, class 2 or class 3 formation. )

- .. ~.All
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