




ABSTRACT

The marginal success of the several high-resolution

frequency-wavenumber (f - k) techniques to date is cited

from the literature. Their ability to resolve signals

from two closely spaced sources is not markedly superior

to that of ordinary beamforming. Moreover, such non-linear

techniques yield distorted magnitudes and azimuths. The

ordinary f - k "spectrum" is shown to be no more than a

1-signal estimator, and the existing high resolution tech-

niques to be but variations of that 1-signal estimator.

In this paper the notion of the wavenumber "spectrum" is

set aside. Instead, by analogy to the 1-signal estimator

(the ordinary f - k "spectrum"), a linear M-signal estimator

is developed. The high resolving power of this technique

and the fidelity of its estimates is demonstrated theor-

etically and by computer examples both real and synthetic.
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Introduction

The mathematical development of linear high-resolution

frequency-wave number analysis was presented in the Semi-

annual report to AFOSR for the period ending 1 March 1975.

Since that time the software implementation of the theory

has been accomplished and the technique has been applied

to explosion and earthquake signals recorded at the Large

Aperture Seismic Array (LASA) in Montana. The application

of the technique to real data is the basis for this report,

although for the purposes of completeness and continuity

the previously-reported section on mathematical development

is also included.



The frequency-wavenumber spectrum, which is a multi-

dimensional equivalent of the ordinary frequency spectrum,

is used in the sciences for theoretical and experimental

analysis of traveling waves. It was introduced formally

into seismology by Burg (5) in an application to data

analysis. The ordinary unsmoothed three dimensional

frequency-wavenumber spectrum of time series data sampled

at discrete points in space is given by

Nz

P(WV) N { An(U )e)4p•iO n2)J •j C K!

(I)

where
is the index of the spatial
sample points.

A,(uj) e X p [L -c< (uj)]

is the finite Fourier trans-

form of the ntk time series.

k is the vector wavenumber.

-F is the vector location of the ntk
sensor, or sample point.

Each Fourier transform term is equivalent to a sinusoid.

For example, the sinusoid for the Atk transform at frequency

CO has amplitude Av(W) and phase CXd )

(at the center of the time window).

Now is the phase delay, between the origin
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and r~,of a plane wave arriving from the azimuth of

the vector k and traveling at the phase velocity

V

So, multiplication of the transform by the kernel exP~ik.i)

has the effect of advancing the sinusoid by just the amount

the wave itself had delayed it. Thus the summation in (1),

above, is a beam sum, and the I- k spectrum is just the
frequency domain equivalent of ordinary beam steering.

When the traveling-wave delays are exactly compensated

for by the beam shifting, i.e., when the true kof the
signal is selected, the sinusoids add up constructively with

no interference, and the power, Pis maximized. Within

certain limits, then, maxima or peaks in fP-k space are

treated as indications of the presence of traveling plane

waves, and the location and size of the maxima are taken

as estimates of the speed, bearing, frequency. and power

of those signals. If more than one signal is present or

if there is noise in the data, though exact determinations

are no longer possible, the -f-k spectrum is still useful
for detecting and estimating signals, again within limits.

One of those limitations is imposed by the finite width

of the maxima associated with signals. ( 9 )The case is

analogous to that of the ordinary frequency spectrum in

which components are represented by peaks of finite width.
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Plane wave signal peaks in the 4-k spectrum have a half-

power width of the order

k

where AX is the width, or aperture, of the array of

spatial sample points. (4) If two signals in the same

time window and frequency band are also close enough in

phase velocity and azimuth so their wavenumbers, say

and k2 , are such:

V,-klI < k,

then their maxima in the 4-k spectrum are merged and

form a single peak. (23) Thus, because the sensor arrays

are spatially finite their resolving power is finite. Attempts

to increase that power of resolution through data processing

technique have required mathematical schemes to reduce the

width of the lobe of the signal peak (1-3, 6-15, 17, 19).

However, the straight-forward geometric appeal of this

approach has proved misleading thus far. In such hybrid

spectra signal lobe-widths indeed have been narrowed

substantially. Nevertheless, when signal pairs approach

each other in the k-plane, resolution still fails as the

separation nears Ak to wit, the lobe half-width for

the ordinary 4-k spectrum. (2, 11, 13, 15, 20).

Zl=
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Observations of other investigators on the shortcomings of

various high-resolution frequency-wavenumber techniques are

cited below.

Lintz (15) finds that the high-resolution f-k spectral

technique of Haney (14) does not significantly improve the

capability of a seismic array to detect multiple time-overlap-

ping events from different azimuths.

Galat and Sax (13) experimentally find the high-resol-

ution f-k spectrum of Haney (14), and that of Capon (8), (9),

no better at resolving two simultaneously arriving waves than

the ordinary f-k spectrum. McCowan and Lintz (17) call atten-

tion to an unrecoverable distortion of the true amplitude

spectrum in Haney's technique, and the marked disadvantage of

spurious peaks under certain conditions which they regard as

the inevitable result of using a high-gain procedure.

Seligson (20) describes conditions under which Capon's

high-resolution technique displays less "angular resolution"

than ordinary beamforming. McDonough (18) concludes that

variations in amplitude from sensor to sensor may be expected

to produce anomolous behavior in Capon's processor. Of course,

just such variation in amplitude from sensor to sensor will

result precisely because of the presence of two or more sig-

nals. McDonough offers arguments to show that ordinary beam-

forming is less susceptible to instability resulting from

t_ , .7_ 1_77.77 .. . _.
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small signal modeling errors than all other array processors.

Haney, too, notes that in the processor he describes

(14) variation in amplitude from sensor-to-sensor could dis-

tort the spectrum beyond recognition. He remedies this diffi-

culty by forcing the same amplitude upon each input channel,

thus destroying the very amplitude information that would be

indicative of the presence of two or more signals.

Woods and Lintz (23) conclude that given favorable con-

ditions, the resolving power of the maximum-likelihood f-k

spectrum can be effectively infinite, but, disappointingly,

offer computer examples on synthetic data in which the input

signal pairs are well spaced to begin with (they are separ-

ated by a distance of 0.9 of the main-lobe half-width). Cox

(11) also offers theory suggesting that given arbitrarily

high signal-to-noise ratios arbitrarily fine resolution should

be possible, but he does not offer a method.

It may be argued that the limited resolving power of the

several high-resolution techniques results from the wavenumber

spectrum being in reality a 1-signal estimator. Indeed the

ordinary f-k "spectrum" is a least squares estimator for f it-

ting data to a single plane wave, as shown further on. In

routine automated processing of the LASA LP data Mack and

Smart (24) found the ordinary spectrum useful for estimating

only one signal at a time. Estimates of a possible second
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signal were made by recomputing the wavenumber spectrum

after the first (and larger) estimate had been subtracted

from the data. They call this process stripping; it is use-

ful, of course, only for estimating signals separated by

about the reciprocal of the array diameter or more. At that,

such estimates of a pair of signals are not optimum, but first

order approximations.

Properly, the f-k spectrum is defined only for signals

of infinite spatial extent traversing infinitely large arrays.

The effect of a signal of wavenumber k is then confined to

the point k in the spectrum. Approximations to this defin-

ition are useful if the dimensions of signals and arrays are

sufficiently large. Failing that, the "spectrum" reduces to

a 1-signal estimator as noted. While the high-resolution

techniques do attempt to extend the effective array diameter,

they all test the wavenumber space with a 1-signal probe, as

in the ordinary f-k spectrum.

It is proposed here to set aside the notion of a spec-

trum. Rather we will extend the 1-signal estimator to an

M-signal estimator thus to permit the simultaneous removal

of the effects of one signal from the estimate of another

and so achieve true high-resolution. At the same time, use

of simple beamforming (in the k-plane) to estimate each of

the M signals will preserve the stability and estimate fidel-
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ity of the ordinary f-k spectrum.

In the following discussion a 1-signal least squares

estimator is developed and is identified with the ordinary

f-k spectrum. Analogy to the 1-signal estimator is used to

develop an M-signal estimator.



Conventional Frequency-Wavenumber Analysis

In the conventional frequency-wavenumber spectrum

(ordinary or high-resolution) a single plane wave is

hypothesized at each frequency. That model is then tested

over the wavenumber space of interest. One attempts to

minimize the error

- U, -A

by varying A and kwhere

UO% are the complex Fourier series terms
(for the given frequency)

\is the sensor, or channel, index

N is the total number of sensors

are the location vectors of the
sensors

A is the complex Fourier series term
for the hypothesized plane wave
(at the given frequency)

k is the wavenumber of the hypothetical
plane wave (at that given frequency)

8
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A e k' , -/. . . ., A is the

model, i.e., the hypothesized plane w;.,e.

Note that also one can write i as

Al Z

since

For a given , is minimized by setting A to

A -- --7
which is shown by the following:

Let €?^ o n

and " . ' --- A

Then

Al

Take partial derivatives:

ZZ IC , "-

... .. .... . , i -. - Z -P IC ...
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Setting c _ o ,

anAl/ ,/ A
A1i

anda -/,C A =J- =,C,

So, minimized with respect to Af

A/

, U,
This expression can be separated into 2 parts, thus:

Al

AA=

ZZ -a -ZA cl " + -2C,, C 4

+l=Z:: (e.=4 04) - . / ' ,cA-ZC~C/V'C',,V

A=

Thus, /1,-
U A-- U,%



The second term is the ordinary frequency-wavenumber
spectrum Al -

P(/j.k) = "V z

So,
~2

Since46 is a squared modulus

and

since it is a sum of squared modulii.

Similarly P k) 4 0

Since

So to minimize 6 one must maximize Pr/)

ILI II "- .. . . .. : .. ! , .. . -1- 2-'-'.. : - -:7 :: : - mA - '
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becomes exactly zero when

UA - .Ue K = e

that is, when the data describe a single plane wave exactly.

The smaller 4(/)r^' is, in a given situation, the

more likely is the hypothetical plane wave

because the smaller 4:5C is, the larger the F-statistic

is for the hypothesis. The F-statistic is given by

F - (N-I) P ck)
This single plane wave model is often applied in

attempts to analyze a 2-signal case(or a possible 2-signal

case). In such an analysis each signal is treated as if it

existed by itself, the presence of the other being ignored

with consequent distortion of estimates by mutual interfer-

ence. This interference can be serious, and if the two

signals are not separated in k -space by at least the half-
width of the main lobe of the array response, they are likely

to appear as but one signal, their main lobes having coalesced.

Attempts to improve the performance of the single wave hypo-

thesis (in application to the two signal case) have been

made in which the main lobe of the array response has been

slenderized mathematically by alternative methods of esti-
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mation of the wavenumber spectrum. The object has been to

reduce the main-lobe half-width and so resolve signal pairs

which otherwise have coalesced main-lobes indistinguishable

from a signal case. These results have been marginal. In

the various high-resolution techniques the influence of the

one signal on the analysis of the other has been ignored.

Analysis of possible 2-signal cases calls for a

2-signal model, in particular when the 2-signals are known

(or suspected) to be so close together as to have their main

lobes merged.

As the 1-signal model serves for both the 0- and the

1-signal case, so one might expect a 2-signal model to be

effective in all three cases: 0, 1, or 2-signals.



Multiple Signal Frequency-Wavenumber Analysis

By analogy to the 1-signal model, one would

expect to solve a 2-signal model by minimizing the error

= 213 U, - A ' -BEh '

varying A, k, B, and , where

B is the complex Fourier series
term for the second hypothesized
plane wave (at the same given
frequency)

is the wavenumber of the hypothe-
tical plane wave (at that same
given frequency)

There are now two signals to solve for:

Let -"

.U.-Ae '  -1 ,

then / N

-- I To

Again, let

A &4iC

Taking first partial derivatives while noting that

A = A* / and EA A

14
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and

Setting E _

as in the I-signal case,

Therefore, 7-u

A (U/ E3

Analogously

, = - - -(u,- A ) -

In this form A and are optimized, that is, they produce

the minimum value of for any arbitrary pair of k and

4,. Adopting the notation:

PE -- - " - e-r
n a i4

one may write simply:
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A =P - E=

Rearranging to solve A and E simultaneously

P=A + 5E

.=A.E".4 -B

PF' El

,I E'
E I

A= (P-Q E)/(I -E*E)

SB = (Q- P E")( -E*E)

Written out at length,

N

A =  -u,, - -- ", u,, .
N

and B is similar in form.

Introducing a factor of into

it4 ,*T

x -_. - -,.-5
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NN

ij- u t unu

-A - u, + A-aZ .

+( A*A + *B)

N
' ~u -(A*P 4 A P*) - *.+ Ba")

+( A*A 4 8-B) +(A*BE -AB*E:*)

Rearranging the terms in

=W.ZL _ UO, - (M P..iAP*)- (B-*Q- + B )

AI

+ A*(A 4 BE) 4- 5*(AE* + B)

and recalling that

P= A +BE and Q=AE*+B

= . U.*U, -(AP*+BQ* ')

L ... 3."I-

I .... .]... .. I11- ...., r " - .. .. .-... .-"- , --' :--"- " " -"
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Thus to minimize : , one must maximize

,j=1 j E U

This is the 2-signal test, analogous to the ordinary frequency-

wavenumber spectrumwhich is the 1-signal test. However, it

is more convenient to retain the form

AP*' + 5Q"
This 2-signal -k "spectrum" then is computed from 3

beams (as the ordinary 4-k spectrum is computed from 1 beam).
The beams are

P J-i U eikr the mean of the data trans_,orms
N that have been beamed to k

(one of the two wavenumber
variables),

S.e . the mean of the data transforms
NJAN after beaming to k (the

other wavenumber variable),

which is the (complex) array
N4- response

This 2-signal test is solved as is the ordinary 4-k

spectrum, numerically, by searching the wavenumber space of

-- , , .. . . ... . . . ... .-' . " ' .. .. . L '- .' " L ..-_: -. .. ...
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interest. Now, however, there are 4 dimensions to search,

over which to test the error criterion.

It is instructive to submit a known pair of pure,
noiseless signals to the 2-signal test to illustrate the

function of the elements of the expression:

Let \= F + G' \= ,

Beaming them exactly to k and (since these are knownin this special case),

- (F -+2 + ( .t ).-

I!I
- F ± F-=F+-Ei A=1

and

N F +

FN=I

Then

S(FP + Q E0/1 - E)F +" q + E - (F E* + E__)/O .E KE)
-- + F+ E - F E'E- GE)/ (I- E_.t-E

5 (F E* C, - F C, E) E£.)/(-E E)



21

5E= c I -'E)/(-E*E) G

Thus

#%I 3(-,2

This little exercise clarifies a bit the function of the array

response, E, in the signal models A and B

The development of the 2-signal test, of course,

suggests the derivation of a 3-signal test, by analogy:

First, the form of the test would be, analogously,

Introducing the notation

NN

and expanding 4!5

S (,U-A_ - ' -' CM'e
"(,,A7 - B& ' - c& " )
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A k , +A Ie

-(C

-1+ BC'B + cxc

4-(A* P + iE-Ic) ±A (*R+ R)
A" At BK4 OC

4(A*BE,4AB*E,*) + (B*cE,+ BC*E3*) + (ACEZACWEj)
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Now noting that in the 2-signal test

P A BE and

Q=AE*+ (3

so that

Pj E___P
E! I- E I

one recognizes that, in the 3-signal test,

P A BE, 4 CEx,
Q =AE,>x 13 + CE 3

R + AE B E +. C

and, defining

dI E, E 2.E of Ea
P E, E.

A 1 E, ' , etc., or

A [ P(i -E!Es) 4 Q(E.Ex-E,) 4 R(El E3-E]/e e\
13 [P (E E3 -E, ) + Q( I -E EQ4 R E*EZ-E/

C P (E,'E,-E-")  E Q (E - Ea*) + R 0 - E,*E) 'A
le, M - E, E,- E* E,-EKE E, E E + E, E.E# I

.. ... ..L.. UM L:,,."
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Now rearranging

i N

-- " UU- (A P+ *Q +CfR) - (A P*4 B Q* 4CR()

+ A (A + E, - C E -I-(A E*, B +C E,) 4C(A E 4 B E ,4C)

and substituting P Qand R

W =

To minimize 4 , then, one will maximize

APK + BQt+ CR*

the 3-signal test, or 3-signal analog to the conventional,

1-signal frequency-wavenumber spectrum. The function is

composed of 6 beams: P , 0, and R , the 3 beams of the

data, U., and E , E., and E3, the 3 beams of the array

response.

Remembering the 1-signal test (conventional

spectrum),

N N ZIU AI

we may rewrite it as

N-- "- AZ U",- A*P -AP -A*A
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(since P = r or

* = -Z:"u*u4 A*A -A P* A4(A
I I

r4 *U-AP*
Thus

AP* M. ,

is the expression one must maximize in order to minimize

the error. So the spectrum (for the 1-signal, conven-

tional, case) is

AP*

and AP4 + BQ is the 2-signal test,

and A p* + C R is the 3-signal test.

In the 1-signal test

A =T

For the 2-signal test

For the 3-signal test p E, E

E, E.

-, I E
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This formalism makes evident the relationship between the

successive tests. Thus one may extropolate and directly

write the expression for the M-signal test in simple, terse

form. For example, the 4-signal test is

AP + BQ *+CR"+DS)
in which S, the sum of the data beamed to yet a 4th point

is introduced into the sequence P, Q , and R
and in which

P E, EE.4
QI E, Es
REZ1 Er.

S ---- EI9 etc.,

I E , E E4E1 i EE5EE I E
E*E'EA FE* EO EO 1

and El is the array response at ( , 5 ,that at

( - k), etc.

Note that the four-signal test is computed from 10

beams; 4 beams of the input, Ur, and 6 of the array response.

In general, the M -signal test requires M beams of input

data (U), and M(M-1)A beams on the array response, for a
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total of M(M+I beams to compute the least-squares error

at any point in the 2M-dimensional space. But the beams on

the array response are computed from the same complex trig-

onometric terms that are required for the M beams of the input

data. So the M-signal test requires evaluation of zMN sine

and cosine terms to compute the error at any point N is the

number of sensors in the array). Thus the number of trigo-

nometric terms requiring computation increases linearly with

M.

It must be noted that a multiple signal test is not

everywhere well-behaved, but has a singularity. For example,

in the case of the 2-signal test, if

so that

and

c is undefined. The value it will take on at k k
depends on the direction from which k - . Though this

can, of course, be shown analytically, it is a bit tedious for

repetition here. The contoured map of an example (figure 1

displays this characteristic graphically. The contoured

function is the 2-signal test

AP*+ B Q*
+50
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with held fixed as varies over the plane. Note

that the contour lines all run together at k

may range arbitrarily close to- but must not

take on that value exactly. The data in this figire consist

of 2 closely spaced signals. The fixed vector, k , was

set at the peak of their merged main lobes.

One might dismiss this singularity from practical con-

sideration since signals of identical speed and bearing are

indistinguishable by array methods. The test for 2 signals at

the same wavenumber location is thus unnecessary anyway. But

if the 2-signal test, say, is applied to data composed of only

1 signal, must not both the probe vectors approach the same

point, i.e., the wavenumber location of the input signal, in

order to merge and reduce the function to the 1-signal test?

We have seen that when the data, U., consist of the same

number of signals as that for which one is testing, the

test performs as expected: the error is minimized at the

wavenumber location of those input signals, and the signals

are recovered undistorted. Suppose, though, that the 2-signal

test, say, is applied to data consisting of just plane wave.

Let

et UA=Ae -r =.F
T - f U A - d '
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in the error expression

AIT I
We have to maximize

AP*+ BQ.

P- F -n Z, Q (F t -ke) t' '

P~ F~F~Q=~ Q F~- el

If k goes to , then

P-F, Q.FE*
and

A = (P-Q E)/( -E"E)
becomes

A (F -F EE)/(- E E)= F
and

B -(Q,-PE*)//(-E*E)--(FE*-FE')/ I-E"E)
-0

and
N'=*- uu. -(AP*+ BQ*)

N
FiTZ (F eF A'')(Fe - (R" F 4 0)

-- F*F - F'F -o

When k goes to the error is minimized, the

signal, F , is recovered undistorted, and the hypothesized

second signal vanishes. This solution is invariant though
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be permitted to range over the entire k-plane,

excepting the point Thus the 2-signal test does

not reduce to the ordinary f-k spectrum in the presence

of a single plane wave, and ( is not required to go to

k nor would the gradient of 4 with respect to

lead to k (if one were using a steepest descent technique

to minimize )



Numerical Solution of the Multiple Signal Test

One might propose to carry out the numerical solution

of a multiple signal test by a straightforward search of

the entire wavenumber space of interest, as is done in the

computation of the conventional f-k spectrum. But the

multiple signal test may be used in more practical fashion,

with greater efficiency, as a follow-up to the ordinary

f-k spectrum. Since a high-resolution array process

by design is intended to separate signals otherwise unre-

solvable, there is sound justification to limit its use to

the vicinity of signals tentatively identified beforehand

by less powerful but faster techniques. This is an advan-

tageous circumstance, since an M-signal test is a function

of 2M dimensions of wavenumber and would otherwise prove

computationally less efficient. Applying the 2 - signal

test to the highest peak of an ordinary f - k spectrum,

then, one hypothesizes the presence of 2 plane waves which

appear as only 1 because of their proximity. By the hypothe-

sis the spectral peak lies within the area of the main lobe

of either signal and thus 6 may be minimized directly by

31
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the method of steepest descent. This is the procedure used

here.

Since, as has been shown earlier,

kk
is prohibited, the descent cannot begin from any one single

point in the k -plane, as, for example, the peak under con-

sideration. But any pair of points in that vicinity is

suitable; all lead to the same solution. A convenient pair

are (1) the peak, and (2) the adjacent minimum of 4 with

respect to, say, when I is fixed at the peak as in the

previously discussed figure 1 . The gradient of 4 is com-

puted at this pair and d itself then recomputed at a new

location down the gradient. The length of this first step

in the descent is some fraction of the width of the array-

response main-lobe, thus chosen to ensure that the process

does not jump from the vicinity of the solution into the

range of an adjacent relative minimum. The gradient is new-

ly computed at this second location; another somewhat smaller

step is taken down the gradient; the gradient is once more

computed, now at this third location, and so forth in suc-

cessively smaller steps until the point is reached in that

4-dimensional space at which the gradient goes to zero.
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Some examples with synthetic data for the LASA LP array

follow.

Figure 2 represents the array response of LASA. The

function is mapped in contours of 3 db intervals down from

the peak at the center. At present 7 long-period vertical

seismometers remain at LASA: the D-ring, 2 elements of the

C-ring, and the center sensor at AO. Thus, the half-width

of the main lobe is about 0.016 cycle/km. At 20 seconds

period and 3.5 km/sec that half-width intercepts nearly 70

degrees of azimuth.

Since the error expression for the 2-signal test is a

function of 4 dimensions of wavenumber and cannot be presented

in map form as are ordinary f-k spectral sections, numerical

presentations must be resorted to. Figure 3 presents the

first and last page of computer print-out of the successive

steps in the solution of a single-frequency test case cf 2

noiseless signals separated by 1/8 of the array main-lobe

half-width. One signal is 2 magnitudes greater than the

other (ten times the amplitude) and is 180 out of phase

with it at the array center such that they destructively in-

terfere with each other. At the upper right of the first page

are the signal descriptions; beneath that are the array coor-

dinates (in km.) and the Fourier transforms of the signals.

Thereafter each successive line represents a step in the
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optimization. The E format: number at the left in each line

is the error term. The amplitude, phase and coordinates

(kx, ky) at each pair of points are given in the two columns

enclosed by vertical lines. The unit vector of the gradient

is given by the 4 numbers at the right of the page. The size

of the step from the previous point just precedes the unit

vector.

The solution is given at the bottom of the second page

by the complex transforms, wavenumber locations and the final

error value. The solution is both accurate and precise; the

high resolution has introduced no distortion such as charac-

terizes the non-linear techniques.

The computer routines of figure 3 that apply the 2-

signal test were introduced into a general f-k analysis pro-

gram called FKSCAN which was styled after FKCOMB [Mack and

Smart (24) . To this automated high-resolution processor

synthetic time series were submitted for trial analysis. One

test consisted of a unit plane-wave from 3560 at 3.5 km/s to

which synthetic random noise was added to make the signal-to-

noise power ratio equal to 4. To this combination was added

a second plane-wave, 2 magnitudes larger than the first, from

3020, also at 3.5 km/s. In the band of interest ' 3-23 seconds

period) the 2 signals overlap in wavenumber space. At 23.3

seconds period they are separated by 0.7 the main-lobe half-

6Li
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width; at 16.0 seconds, by 1.0. Each signal was of 20 seconds

period enclosed in 192 second cosine envelope. They arrive

at the array center at the same instant. A 256-second time

window was applied for the analysis. The resulting bulletin

from FKSCAN is given in figure 4, and is self-explanatory.

The larger signal is shown arriving from 3010 at 3.518 km/s;

the smaller from 3540 at 3.059 km/s. They differ in apparent

magnitude by 2.05 (from the ratio of the power summed over

the band).

The last item on the second page gives a measure of the

assurance one would have had of the validity of such a de-

tection had it appeared in processing of real data. In routine

processing of such 4 minute, 16 second windows each interval

yields 2 suits of vectors, or detections. At the rate of 2

suits of random vectors per time interval, so anamolous an

angular concentration of vectors would appear only once every

11 days, on the average. [This algorithm, installed in FKSCAN

to provide an independent detection statistic separate from

the F-statistic, is based on a probability expression developed

by the author which he intends subsequently to submit for

publication]

Thus, in this modest test of the 2-signal detector

functioning in the presence of random noise, the small, "hidden"

signal is recovered as a strong detection.



The array, the relative magnitudes and azimuthal spac-

ing of these 2 test signals, and the frequency band in which

the search was made anticipate a test on real LASA data in

which similar conditions were expected. The 2 seismic events

sought in the real data are recorded in the U.S. Department

of the Interior's Earthquake Data Reports 36-74 and 43-74.

On 31 May 74 at 0313:11 an earthquake occurred in the vicinity

of Unimak Island in the Aleutians. At 0326:57 a second event

occurred in eastern Kazakh SSR. The first quake had a body

wave magnitude of 4.8 and a surface wave magnitude of 4.6.

The second event was recorded as MB 5.9, with Ms measurements un-

available. The Unimak signal was expected at LASA about 0330

0
from 302 , with the Kazakh signal expected about 0406, in the

ongoing coda, from 3560 Figure 5 displays the seismograms

of this interval for all seven LASA stations. The figure begins

at 0329:08 and continues past 0415. The anticipated onset

of the Kazakh surface wave is marked by the arrow at 0406:09.

The circled numerals at the bottom of the figure number the

successive time windows, indicated by arrows, that were sub-

mitted to the high-resolution array processor.

Figures 6 through 11 are the resulting bulletins for

the 6 time-windows marked on the seismograms. The relatively

narrow band from 16-23 seconds period was chosen for this

analysis because it was anticipated that the faint signal from
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from Kazakh was most likely to appear in these frequencies

if at all. As before there are two sets of tentative detections

in each time-window, that is, 2 detections per frequency. The

suit at the upper left contains, at each frequency, the sig-

nal pick of greatest power. One might call these the primary

detections. The suit at the upper right contains the smaller

signal picks. Before each suit is submitted to azimuthal dis-

tribution analysis, the program computes the straight line

through the frequency-wavenumber origin (0,,) which, in the

least squares sense, best fits all the vectors in the suit.

The back azimuth and phase velocity of that mean are then

printed in the bulletin.

The back-azimuth of the mean of the primary signal picks

in succeeding time-windows, then, for these 6 intervals reads,

in sequence: 3280, 3190, 3230, 3530, 3560, and 3180. In win-

dows 1, 2, and 3 the detector is "triggering" on the ongoing

coda from the Unimak earthquake. But in windows 4 and 5 it

turns and indicates the back azimuth of the Kazakh site. Then

in window 6 it returns to the Unimak coda.

Figures 12 and 17 (one for each of these 6 time-windows)

are contoured plots in 3 db intervals, of the conventional

wavenumber spectra, integrated over the frequency band 0.043-

0.063 Hz (16-23 seconds period) after the secondary detections

derived from the high-resolution processor have been filtered
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out. These spectra make visible the observations of the

previous paragraph.



Conclusions

The high resolving power of the linear multiple-signal

analysis and the fidelity of its estimates have been de-

monstrated by computer examples and by application to real

signals.

Computer examples indicate that this technique is

capable, in the absence of noise, of exactly recovering

the amplitude, phase, and velocity of two simultaneously

arriving Rayleigh waves at, for example, LASA, which differ

in azimuth by as little as 80, even if one signal is 10

times larger than the other. In the case of the simultan-

eous arrival of a small signal with S/N of 2 and a signal

100 times larger, with a difference in azimuth between the

two of 540, the magnitude (Ms) of the small signal can be

recovered with less than 3% distortion.

The extraction of the Rayleigh wave arriving from a

nuclear test in Kazakh from the coda of an Aleutian earth-

quake demonstrates the practical application of the technique.

It should now be possible to utilize long period array data

to obtain accurate amplitude and phase information for

small events which were previously "hidden" in the coda of

much larger events. In addition, the linear multiple signal

estimator should make possible the decomposition of large



surface waves into primary and multipath components on the

basis of differences in arrival azimuth. Better estimates

of the true amplitude and phase will result by removal of

the multipath effects, and the spectrum and angle of approach

of the multipath components will provide information as to

the location and nature of the conditions which give rise

to multipaths.

k ---
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Figure 1. A contoured map of a 2-signal test of synthetic data

(see page 27) with one probe point held fixed while the other
ranges over the wavcnumber plane. When both probes occupy the
same point the function is ambiguous, its vaue varying with the

direction from which one probe approaches the other. Note the
intersection of the contours.
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Figure 2. The array response of the 7-element long-period
vertical seismic array at LASA. The contour interval is
in 3 db steps. The scale is 0.01 cycle/km per inch.
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I.9

Figure 12.

0349:05 to 0353:20 GMT 31MAY74, LASA, 7 long-period
seismometers. The wavenumber spectrum integrated over

the band 0.043-0.063 1iz after filtering of secondary
detections derived from the high-resolution search.
The contours are given in 3 db intervals. The compon-
ent spectra have been normalized.
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F~igure 13.
0353:21 to 0357:36 GMT 31MAY74, LASA, 7 long-period

seismometers. The wavenumber spectrum integrated over
the band 0.043-0.063 liz after filtering of secondary
detections derived from the high-resolution search.
The contours are given in 3 db intervals.



54

Figure 14.

0357:37 to 0401:52 GMT 31MAY74, LASA, 7 long-period
seismometers. The wavenumber spectrum integrated over.
the band 0.043-0.063 Itz after filtering of secondary
detections derived from the high-resolution search.
The contours are given in 3 db intervals.
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Figure 15.

0401:53 to 0406:08 GMT 31MAY74, LASA, 7 long-period
seismometers. The wavenumber spectrum integrated over
the band 0.043-0.063 1Iz after filtering of secondary
detections derived from the high-resolution search.
The contours are given in 3 db intervals.
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0406:09 to 0410:24 GMT 31MAY74, LASA, 7 long-period
seismometers. The wavenumbor spectrum integrated over
th, band 0.043-0.063 11z after filtering of secondary
detections derived from the high-resolution search.
The contours are given in 3 db intervals.
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0410:25 to0414:4 GMT 31MY74, LASA, 7 long-period
scisomeers Th wavnumer pecrumintegrated over
the and0.03-0.63 z ater iltrin ofsecondary

detections derived from the high-resolution search.
The conjtour intervalo are in 3 db steps.
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