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ABSTRACT

The marginal success of the several high-resolution
frequency-wavenumber (f - k) techniques to date is cited
from the literature. Their ability to resolve signals
from two closely spaced sources is not markedly superior
to that of ordinary beamforming. Moreover, such non-linear
techniques yield distorted magnitudes and azimuths. The
ordinary f - k "spectrum" is shown to be no more than a
l-signal estimator, and the existing high resolution tech-
niques to be but variations of that l-signal estimator.

In this paper the notion of the wavenumber "spectrum" is
set aside. 1Instead, by analogy to the l-signal estimator
(the ordinary f - k "spectrum"), a linear M-signal estimator
is developed. The high resolving power of this technique

and the fidelity of its estimates is demonstrated theor-

etically and by computer examples both real and synthetic.
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Introduction

The mathematical development of linear high-resolution
frequency-wave number analysis was presented in the Semi-
annual report to AFOSR for the period ending 1 March 1975.
Since that time the software implementation of the theory
has been accomplished and the technique has been applied
to explosion and earthquake signals recorded at the Large
Aperture Seismic Array (LASA) in Montana. The application
of the technique to real data is the basis for this report,
although for the purposes of completeness and continuity
the previously-reported section on mathematical development

is also included.




The frequency-wavenumber spectrum, which is a multi-
dimensional equivalent of the ordinary frequency spectrum,
is used in the sciences for theoretical and experimental
analysis of traveling waves, It was introduced formally
into seismology by Burg (5) in an application to data
analysis., The ordinary unsmoothed three dimensional
frequency-wavenumber spectrum of time series data sampled

at discrete points in space is given by

N — 2
P(w, k) =|—',\;nZ: {An(w')exp[ia,\(u))]}' exp(ik-r)
(1)

where
n is the index of the spatial

sample points,
An(w) € X p L1xa(w)]

is the finite Fourier trans-
form of the nth time series.

k is the vector wavenumber.,
n

is the vector location of the nth
sensor, or sample point.

Each Fourier transform term is equivalent to a sinusoid.
For example, the sinusoid for the rftk transform at frequency
() has amplitude ;\“(uﬂ) and phase ¢ (W)

(at the center of the time window).
Now -—]Z'-Fk is the phase delay, between the origin

1
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and fh , of a plane wave arriving from the azimuth of

the vector l< and traveling at the phase velocity

v @R

So, multiplication of the transform by the kernel exp(lt'ﬁ)
has the effect of advancing the sinusoid by just the amount
the wave itself had delayed it. Thus the summation in (1),
above, is a beam sum, and the l-k spectrum is just the
frequency domain equivalent of ordinary beam steering.

When the traveling-wave delays are exactly compensated
for by the beam shifting, i.,e., when the true 1; of the
signal is selected, the sinusoids add up constructively with

no interference, and the power, FD is maximized. Within

/
certain limits, then, maxima or peaks in L—k space are
treated as indications of the presence of traveling plane
waves, and the location and size of the maxima are taken
as estimates of the speed, bearing, frequency. and power
of those signals. If more than one signal is present or
if there is noise in the data, though exact determinations
are no longer possible, the -F-k spectrum is still useful
for detecting and estimating signals, again within limits.
One of those limitations is imposed by the finite width

of the maxima associated with signals, ( 9 ) The case is

analogous to that of the ordinary frequency spectrum in

which components are represented by peaks of finite width.
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Plane wave signal peaks in the -L-k_ spectrum have a half-

power width of the order
ak= =
AX

where A X 1is the width, or aperture, of the array of
spatial sample points. (4) If two signals in the same
time window and frequency band are also close enough in

phase velocity and azimuth so their wavenumbers, say kq

a—

and l(l , are such:
Ik-k,| < ak,

then their maxima in the 'F"I( spectrum are merged and
form a single peak. (23) Thus, because the sensor arrays
are spatially finite their resolving power is finite., Attempts
to increase that power of resolution through data processing
technique have required mathematical schemes to reduce the
width of the lobe of the signal peak (1-3, 6-15, 17, 19).
However, the straight-forward geometric appeal of this
approach has proved misleading thus far. In such hybrid
spectra signal lobe-widths indeed have been narrowed
substantially. Nevertheless, when signal pairs approach
each other in the k-plane, resolution still fails as the
separation nears A}l&, to wit, the lobe half-width for

the ordinary +-k spectrum. (2, 11, 13, 15, 20).

——
oy L et
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Observations of other investigators on the shortcomings of
various high-resolution frequency-wavenumber techniques are
cited below.
Lintz (15) finds that the high-resolution f-k spectral
technique of Haney (14) does not significantly improve the
capability of a seismic array to detect multiple time-overlap- P
ping events from different azimuths, b

Galat and Sax (13) experimentally find the high-resol-

R

ution f-k spectrum of Haney (14), and that of Capon (8), (9),

no better at resolving two simultaneously arriving waves than

the ordinary f-k spectrum. McCowan and Lintz (17) call atten-
tion to an unrecoverable distortion of the true amplitude

spectrum in Haney's technique, and the marked disadvantage of

spurious peaks under certain conditions which they regard as
the inevitable result of using a high-gain procedure.

Seligson (20) describes conditions under which Capon's
high-resolution technique displays less "angular resolution"
than ordinary beamforming. McDonough (18) concludes that
variations in amplitude from sensor to sensor may be expected
to produce anomolous behavior in Capon's processor. Of course,
just such variation in amplitude from sensor to sensor will
result precisely because of the presence of two or more sig-

nals. McDonough offers arguments to show that ordinary beam-

forming is less susceptible to instability resulting from
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small signal modeling errors than all other array processors.

Haney, too, notes that in the processor he describes
(14) variation in amplitude from sensor-to-sensor could dis-
tort the spectrum beyond recognition. He remedies this diffi-~
culty by forcing the same amplitude upon each input channel,
thus destroying the very amplitude information that would be
indicative of the presence of two or more signals.

Woods and Lintz (23) conclude that given favorable con-
ditions, the resolving power of the maximum-likelihood f-k
spectrum can be effectively infinite, but, disappointingly,
offer computer examples on synthetic data in which the input
signal pairs are well spaced to begin with (they are separ-
ated by a disténce of 0.9 of the main-lobe half-width). Cox
(11) also offers theory suggesting that given arbitrarily
high signal~to-noise ratios arbitrarily fine resolution should
be possible, but he does not offer a method.

It may be argued that the limited resolving power of the
several high-resolution techniques results from the wavenumber
spectrum being in reality a l-signal estimator. Indeed the
ordinary f£-k "spectrum" is a least squares estimator for fit-
ting data to a single plane wave, as shown further on. 1In
routine automated processing of the LASA LP data Mack and
Smart (24) found the ordinary spectrum useful for‘estimating

only one signal at a time. Estimates of a possible second




signal were made by recomputing the wavenumber spectrum

after the first (and larger) estimate had been subtracted

from the data. They call this process stripping; it is use-
ful, of course, only for estimating signals separated by

about the reciprocal of the array diameter or more. At that,
such estimates of a pair of signals are not optimum, but first
order approximations.

Properly, the f-k spectrum is defined only for signals
of infinite spatial extent traversing infinitely large arrays.
The effect of a signal of wavenumber k is then confined to
the point k in the spectrum. Approximations to this gdefin-
ition are useful if the dimensions of signals and arrays are
sufficientlyllarge. Failing that, the "spectrum" reduces to
a l-signal estimator as noted. While the high-resolution
techniques do attempt to extend the effective array diameter,
they all test the wavenumber space with a l-signal probe, as
in the ordinary f-k spectrum.

It is proposed here to set aside the notion of a spec-
trum. Rather we will extend the l-signal estimator to an
M-signal estimator thus to permit the simultaneous removal
of the effects of one signal from the estimate of another
and so achieve true high-resolution, At the same time, use
of simple beamforming (in the k-plane) to estimate each of

the M signals will preserve the stability and estimate fidel-

Pt PPN |




ity of the ordinary f-k spectrum,

In the following discussion a l-signal least squares
estimator is developed and is identified with the ordinary

f-k spectrum. Analogy to the l-signal estimator is used to

develop an M~-signal estimator.




Conventional Frequency-Wavenumber Analysis

In the conventional frequency-wavenumber spectrum
(ordinary or high-resolution) a single plane wave is
hypothesized at each frequency. That model is then tested
over the wavenumber space of interest., One attempts to

minimize the error

AN : 2
E = Z U,\‘"Ae’l('r"
N/

by varying A and l(where

LJ“ are the complex Fourier series terms
(for the given frequency)

n is the sensor, or channel, index
Pq is the total number of sensors
——
r; are the location vectors of the
sensors
/\ is the complex Fourier series term

for the hypothesized plane wave
(at the given frequency)

L‘ is the wavenumber of the hypothetical
plane wave (at that given frequency)

- Same o roltBl]
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e b4 ’\" /; R I is the !

model, i.e., the hypothesized plane w:.ve.

Note that also one can write € as

.._s 2

N L=
& = é] U,\e—’ ‘K\'—'A

—
.

-zé";’:‘ = /.

since ‘ <

i,

For a given k,e is minimized by setting A to
/ A/ '—Z
—_ -1 k-
A=7x2 Ue'kR

A=/

which is shown by the following:

Let Sntica = Use”’ =
and Q +* l. & E A
Then ~N 2
E = : . (a,\"a> “+ Z(C,\_C)
N\ =

AN
Z: ( on-a) + (ca-C)*

n=/

Take partial derivatives:

N
g% =-27 (an-d) ; 26 =-27 (¢,-¢)

n=7 n=
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Setting DE ~2€ L o 5
S =)
/ A/ y N
Q=7 L S C ==/ Ca
A=/ n=
and A N ;Z
. . / _ .
QALC = A = -7\/,_-;":/ (cﬂ,‘-v‘lc’\) = V/\—/~§ U’\e 7 ‘A

A

b ==/

A=/

A/ —_
U SR __{_Z U —l"é'—;"- *

This expression can be separated into 2 parts, thus:

N

=7 (8.-a)" + (cﬁac)1

A/

~N
. A -28.9 4A% £ QN —2C,.C+CT
ney
v,

= 2 (ar+ C,f) ~28-AN £ PN -2C-CN 2CN

nas

N 2 A . 2
=/ Az
Thus, /\/ 2 / /\/ ____.—.-
é=2:\U,\ —’U;U,\e"/"‘
A=/ =z

r A R TR i Y g "“‘M“”“ R A et o
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The second term is the ordinary frequency-wavenumber
spectrum

— ra

vl ‘AZ; UJO[) ="t A

—

P(:C k)

So,

A 2 e
& = Z; Ud — Pk

Since € is a squared modulus

& >0

and

Similarly p( A) 2 o

Since

\u

AE/

b

So to minimize € one must maximize P(k) )

A

cd) = 2_

A=/

2

UA e—:'/t'—f: ~ A




becomes exactly zero when

—— A/ — i
. — | -' .—- R —
U. = e:é./; v Z Uj‘e rke Aefé-fz
J=! ,
n= 2, .. .,A/

that is, when the data describe a single plane wave exactly.
The smaller é(é)mi,\ is, in a given situation, the
more likely is the hypothegisal plane wave
T -
%\ G?tk.(
because the smaller é?éjg} is, the larger the F-statistic
is for the hypothesis. The F-statistic is given by
_N-D- PR/
F == Pkl
This single plane wave model is often applied in
attempts to analyze a 2-signal case(or a possible 2-signal
case). In such an analysis each signal is treated as if it
existed by itself, the presence of the other being ignored

with consequent distortion of estimates by mutual interfer-

ence. This interference can be serious, and if the two

signals are not separated in l{ -space by at least the half-

width of the main lobe of the array response, they are likely

to appear as but one signal, their main lobes having coalesced.

Attempts to improve the performance of the single wave hypo-
thesis (in application to the two signal case) have been

made in which the main lobe ©f the array response has been

slenderized mathematically by alternative methods of esti-
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mation of the wavenumber spectrum. The object has been to
reduce the main-lobe half-width and so resolve signal pairs
which otherwise have coalesced main-lobes indistinguishable
from a signal case. These results have been marginal. In
the various high-resolution techniques the influence of the
one signal on the analysis of the other has been ignored.

Analysis of possible 2-signal cases calls for a
2-signal model, in particular when the 2-signals are known
(or suspected) to be so close together as to have their main
lobes merged.

As the l-signal model serves for both the 0- and the
l-signal case, so one might expect a 2-signal model to be

effective in all three cases: 0, 1, or 2-signals.




Multiple Signal Frequency-Wavenumber Analysis

By analogy to the l-signal model, one would

expect to solve a 2-signal model by minimizing the error

N —_ —_ 2
< = Z: U»\"Ae’é":‘ —Be’%"“
ne/

—

i
varying /k, k B, and *2 , where
) ’

ES is the complex Fourier series
term for the second hypothesized
plane wave (at the same given
frequency)

4& is the wavenumber of the hypothe-
tical plane wave (at that same
given frequency)

There are now two signals to solve for:

———

A e'l‘?: and B et't‘?:

Let — —_—

) ——

Ta = U.\—Ae'k”’" —Bei&'r"

lien

then

N 2 ~
€=L|T| =4 T

Again, let
] * +
A= a+1c, AT=a-ic
Taking first partial derivatives while noting that

A élfi“',= / and éifi = - 2AX = ]
&

20 =
5a 94 = 3C

14




and

'm
nin
‘l_l.
3
T
n. .
x
Rk
S’
+
Pa
|
Y
»
e”

Setting Se
Q

IE C D & ke
< = == = - — ‘Y —
D FI13E = ZZ: [, e} “ =0
n=/{
Therefore,

A/ — t-..—~

A = _/(/_"Z‘ <U B e—I r'\) e—‘l k'ﬂ\

Analogously - e —
Z(u ~A KR kT

In this form /\ and ES are optimized, that is, they produce

——

the minimum value of € for any arbitrary pair of L. and

mm——

*;. Adopting the notatinn:

o kT
P"-‘-“N'Z Use™t "

N=}

| N TV —
=L Ut

Q
N
=g, &

one may write simply:

L P
o i 2 S i sl i
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A=P-BE and B=Q-A-E*
Rearranging to solve A and B simultaneously
P=A + BE
Q=AE+ B

P E | P

= 1 E* Q
AT e B=1TE
E™ | E* |

A = (P-QE)/(1- E*E)
B = (Q-PE*/(I-E*E)

Written out at length,

N et N -~ L_\ T T
- Ak ik kT
e (= 3
N2 N

and B is similar in form.

Introducing a factor of %\! into &

(u Ae”: "Bl kT)
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N
€= 2 UfU, - (A*P+ APY) - (B*a + BQ¥)
+(A*A + B*B) +(A*BE + AB*E™)
Rearranging the terms in f:,

Z UXU, - (A*P+AP*) - (B*Q+ B Q)
+ A*(A+BE) + R*(AE*+DB)

Z|-
>

and recalling that

P= A+BE = Q= AE*+B

< - 4rZ UzU, —(AP*+BQY)

Azl

et s pp——n—
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Further, substituting

A=P-BE = B=Q-AE*

N 2 :
«= v Z|U*-(PPrarq - PQUE"-PQE)

o = E*E
or, written out,
| N 2
=2 U
N Q Ur\
N — N i e e
I i kera | kT i< |
__n_ e‘a A N.Eu_el [ _el’ki.\____ElJJ -uf\q,
n=| Jet J=t
—|Le~ ik-RE?
| - [RZe

The identity of these last 2 equations may be demonstrated

by noting that the numerator (above) equals

N _“"‘ b ™ 2
| ~ P - J::' o
‘N’ b, X
n=

- _K‘l_i:( ke P*.. —Jr:" N ) < '“P "'*Q)

.d’ k). l’

l ol
%é{j*P +Q><Q PQ .—1(*’( lf)t_,\ F)_«Q }

P*P + Q™*Q -PQ E"-P"QE

Since & is a sum of squares, by definition it must
be non-negative everywhere. Therefore the second of the

2 terms in €& , above, must always be

A A, |
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1SN
SNL

N2

2

U

Thus to minimize < , one must maximize

—- Jar =

N N
| ] N ] - Y -
T\TZ: elk-"‘ : ‘\112 ch_:-xk-g — e‘k'ﬂ\' _—lll z U-e"{/‘.'j

A= 1 J‘:|

L N T Ty |2
N—‘ZG}(L\-L\) .

n=1

i

—— M — —
d

l —

This is the 2-signal test, analogous to the ordinary frequency-

wavenumber spectrum which is the l-signal test. However, it
is more convenient to retain the form

AP™ + BQ~
This 2-signal ‘F-k "spectrum" then is computed from 3
beams (as the ordinary ‘Y"’k spectrum is cpmputed from 1 beam).

The beams are

P = U e—i‘('ﬁs the mean of the data transforms
N nzi " that have been beamed to k
(one of the two wavenumber
variables),

N —
Q 1 Z kT the mean of the data transforms
N Ur\e' after beaming to 4  (the
n=t other wavenumber variable),
N _—
E — Z " 'L(/k_k).r,\ which is the (complex) array
N T < response

This 2-signal test is solved as is the ordinary -[-k

spectrum, numerically, by searching the wavenumber space of

A Y - B LAY PR ey
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interest, Now, however, there are 4 dimensions to search,

over which to test the error criterion.
It is instructive to submit a known pair of pure,
noiseless signals to the 2-signal test to illustrate the

function of the elements of the exPre551on

7* - 17
et U= Fel" ™ £ G e VoA, - N
—
Beamlng them exactly to I\ and {; (since these are known
in this spec1a&jcase)

FD.= SN ZL, (F:‘C}l<'ﬁ + C: li\ ) _Effilﬂna

A=

>~ _itk-D
= F o GRZ S - FagE
and
|3 T La YA
Q- 4L (FdER o+ g R i
-~ FE*+qG
Then

A= (P+QE)/(1-E*E)

(F+GE - (FE*+G)E)/(\‘*E*E)
(F+GE - FE*E-GE)/(1-e%&)
= F(i-e*e)/(-exE)

]

I

B =(F‘E*+G -(F + GE)E-‘*)/(‘ “E*E)




Thus

=
[ N kT A R hn ."){"(__.1
=T\TZ:‘FC-‘ "+ Qe - Fet A—Ge‘ =

This little exercise clarifies a bit the function of the array

response, EE, in the signal models A and E5

The development of the 2-signal test, of course,
suggests the derivation of a 3-signal test, by analogy:

First, the form of the test would be, analogously,

l!\l
< =WNL

Introducing the notation

—
— .

U -Ae k% _ B etk _ Ceiﬁ'?:

2

M
pd
Mz
n.
=~
E
>

N =
R = ﬁ; U. e‘ﬁ'"‘ E,

n=
N ‘——. ——— — N — — —
=L (R-kHR Ly JRBT
E.=N<L . Ea=NL =
and expanding é; :
N e —
‘ N — . -ty . —
== = T\T '\Eﬂ (U:(' _A-\(e—lk-n\ _ B.xe-j -i’,\_C-Ke-l(k'

U e s g AN N MIW:--..“..




-(A*P+ AP¥) -(B%a +BQ*)-(C*R + C R¥)

g +(A*A + B*B + C*C)

+(A"BE,+AB*E") +(B*CE,+ BC*EX + (ACE+ACE)
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Now noting that in the 2-signal test

F>== /\ 'F EB!E and

Q= AE*+ B
so that
_ P E i P
3 %®
| Jla 1l 1B Q]
A I*E B I E
i E" | E* |
! one recognizes that, in the 3-signal test,
P= A +4+BE, +CE,
Q = AE*+ B + CE;
| R = AEf+BE + C
and, defining
; | E, E,
CJE:V\ = Eif J Es
EXEX |
P Ec gl d -t
= |Q caen , etc., or
A RErT ’

A = [P(1-EFE) + Q(EJE.-E) + R(E,E,—E,)]/dey\
B = [ P(EXE,-EY) + Q(I-ESE) * R(E,*E;E,)}/Jey\
C = [ P(E*EXEX) + Q(EEX-EN+ R(\“E.*E)]Aen
den=|-EXE, - EXE,-EXE, +E,EXE, + EfE,ES




Now rearranging < .

N
== K"Z:‘ UUs- (A*p+B*Q+C*R) - (AP*+B Q™ + CR¥)

+A*(A+BE, + CE)+B(AE™ B + CE,) +C*(AES+BEX+C)

and substituting P ,Q, and R

| N
= =752 UfU. -(AP*+ BQ"* + CR*)

n=i

To minimize & |, then, one will maximize

AP*4+ BQ*+ CR*®

the 3-signal test, or 3-signal analog to the conventional,
l-signal frequency-wavenumber spectrum. The function is
composed of 6 beams: P . Q and R , the 3 beams of the
data, U,\, and El , Ez, and Ea, the 3 beams of the array
response.,

Remembering the l-signal test (conventional 'F‘|<
spectrum),

| |
NE =~

nel

‘,lTZ:l;' (Uf- A*e‘ﬁ“'?')(u,\ -A e‘_r‘?:)

——

U,\—Ae‘l"_r: 2

]

we may rewrite it as

N
D ST SO

(.S 1]




Thus

is the expression one must maximize in order to minimize

the error. So the 'F-k spectrum (for the l-signal, conven-

tional, case) is

AP* |
and AP"‘ + BQ* is the 2-signal test,
and AP* <+ BQ* + C R* is the 3-signal test.
In the l-signal test
A=
l
For the 2-signal test
|P E. | Pl
=————-—Q l = E' Q
A= el B =1 E.l
EX I ET |
For the 3-signal test p E E

Q! E,

. IREr {c
A=—TEET €
EXT E
EYEY |

»
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This formalism makes evident the relationship between the
successive tests. Thus one may extropolate ang directly

F write the expression for the M-signal test in simple, terse
_ form. For example, the 4-signal test is

| AP+ BQ'+ CR*+DS*

-i_r;.which 5, the sum of the data beamed to yet a 4th point

i , 1s introduced into the sequence P Q , and R :

and in which

.

»
5y

i

OO

>

]
MM — m|mm—m

ajululy

LR Al

M —mirmmm—min

[}

Yy etc.,

mim-=
o x
—mmm

A
n

and E4 is the array response at (t- ) . Es ., that at
— am—
(&— k), etc.

Note that the four-signal test is computed from 10

beams; 4 beams of the input, Uv\, and 6 of the array response.

In general, the M—signal test requires M beams of input

data (Uv\) and M(M-l)/z beams on the array response, for a

Rl o LB L Y, LR o L

pen v ey
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total of M(M+|)/Z beams to compute the least-squares error
at any point in the 2M-dimensional space. But the beams on
the array response are computed from the same complex trig-
onometric terms that are required for the M beams of the input
data. So the M—signal test requires evaluation of Z.MN sine
and cosine terms to compute the error at any point ( N is the
number of sensors in the array). Thus the number of trigo-
nometric terms requiring computation increases linearly with
M.
It must be noted that a multiple signal test is not
everywhere well-behaved, but has a singularity. For example,

in the case of the 2-signal test, if
ee———— i
—k
Q—P
E—1

é is undefined. The value it will take on at /L = l(

so that
and
depends on the direction from which ‘k —"‘(. Though this

can, of course, be shown analytically, it is a bit tedious for

repetition here. The contoured map of an example (figure 1 )

LRV . ey

displays this characteristic graphically. The contoured

function is the 2-signal test

AP+ BQ*

R R e st o L RE B e, s B, o LR s
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with k. held fixed as {; varies over the plane. Note
—— —

tia_f the contour lines all run together__a_t; ’K= k .
/tk may range arbitrarily close to- Ll but must not

take on that value exactly. The data in this figife consist

of 2 closely spaced signals. The fixed vector, L. , was

set at the peak of their merged main lobes.

One might dismiss this singularity from practical con-
sideration since signals of identical speed and bearing are
indistinguishable by array methods. The test for 2 signals at
the same wavenumber location is thus unnecessary anyway. But
if the 2-signal test, say, is applied to data composed of only
1 signal, must not both the probe vectors approach the same
point, i.e,, the wavenumber location of the input signal, in
order to merge and reduce the function to the l-signal test?
We have seen that when the data, LJ« , consist of the same
number of signals as that for which one is testing, the
test performs as expected: the error is minimized at the
wavenumber location of those input signals, and the signals
are recovered undistorted. Suppose, though, that the 2-signal

test, say, is applied to data consisting of just plane wave,

Let

—

U= F®®
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in the error expression

| N 2
<-NZ T
We have to maximize
AP+ BQ™ .
N .7¢ Ly < 7

A =(P-QE)(1-E*E)
A =(F-FE*E)/(-E*E) = F

B =(Q-PE*)I-E*E) = (FE*-FEX)(I-E"E)

O

and
N
_ 4 * - »%
€=&Z Uru, - (AP"+BQ%)
| < %) 3
= — - re . *
= WL (Fre™™)(Fe'*™) - (F*F + 0]
IM %
=N F*F - F*F =0
When L. goes to 12 the error is minimized, the
signal, F: , 1s recovered undistorted, and the hypothesized

second signal vanishes. This solution is invariant though
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'f( be permitted to range over the entire k-plane,

—

excepting the point lﬁ . Thus the 2-signal test does
not reduce to the ordinary {"k spectrum in the presence

of a single plane wave, and 't is not required to go to

— —de

l( nor would the gradient of & with respect to ’r(

—

lead to k (if one were using a steepest descent technique

to minimize & ).




Numerical Solution of the Multiple Signal Test

One might propose to carry out the numerical solution
of a multiple signal test by a straightforward search of
the entire wavenumber space of interest, as is done in the
computation of the conventional f-k spectrum. But the
multiple signal test may be used in more practical fashion,
with greater efficiency, as a follow-up to the ordinary

f-k spectrum. Since a high-resolution array process
by design is intended to separate signals otherwise unre-
solvable, there is sound justification to limit its use to
the vicinity of signals tentatively identified beforehand
by less powerful but faster techniques. This is an advan-
tageous circumstance, since an M-signal test is a function
of 2M dimensions of wavenumber and would otherwise prove
computationally less efficient. Applying the 2 - signal
test to the highest peak of an ordinary f - k spectrum,
then, one hypothesizes the presence of 2 plane waves which
appear as only 1 because of their proximity. By the hypothe-

sis the spectral peak lies within the area of the main lobe

of either signal and thus &€ may be minimized directly by




the method of steepest descent. This is the procedure used

here.

Since, as has been shown earlier,

A =k |

is prohibited, the descent cannot begin from any one single

point in the k -plane, as, for example, the peak under con-

sideration, But any pair of points in that vicinity is

suitable; all lead to the same solution. A convenient pair

are (1) the peak, and (2) the adjacent minimum of & with
—

respect to, say, {L when k\ is fixed at the peak as in the

previously discussed figure 1. The gradient of € is com-

puted at this pair and & itself then recomputed at a new i
location down the gradient. The length of this first step

in the descent is some fraction of the width of the array-
response main-lobe, thus chosen to ensure that the process
does not jump from the vicinity of the solution into the
range of an adjacent relative minimum. The gradient is new-
ly computed at this second location; another somewhat smaller

step is taken down the gradient; the gradient is once more

computed, now at this third location, and so forth in suc-
cessively smaller steps until the point is reached in that

4-dimensional space at which the gradient goes to zero.
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Some examples with synthetic data for the LASA LP array
follow.

Figure 2 represents the array response of LASA. The
function is mapped in contours of 3 db intervals down from
the peak at the center. At present 7 long-period vertical
seismometers remain at LASA: the D-ring, 2 elements of the
C-ring, and the center sensor at A0. Thus, the half-width
of the main lobe is about 0.016 cycle/km. At 20 seconds
period and 3.5 km/sec that half-width intercepts nearly 70
degrees of azimuth.

Since the error expression for the 2-signal test is a
function of 4 dimensions of wavenumber and cannot be presented
in map form as are ordinary f-k spectral sections, numerical
presentations must be resorted to. Figure 3 presents the
first and last page of computer print-out of the successive
steps in the solution of a single-frequency test case cf 2
noiseless signals separated by 1/8 of the array main-lobe
half-width. One signal is 2 magnitudes greater than the
other (ten times the amplitude) and is 180° out of phase
with it at the array center such that they destructively in-
terfere with each other. At the upper right of the first page
are the signal descriptions; beneath that are the array coor-
dinates (in km.) and the Fourier transforms of the signals.

Thereafter each successive line represents a step in the
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optimization. The E formait number at the left in each line

is the error term. The amplitude, phase and coordinates

(kx, ky) at each pair of points are given in the two columns
enclosed by vertical lines. The unit vector of the gradient
is given by the 4 numbers at the right of the page. The size
of the step from the previous point just precedes the unit
vector.

The solution is given at the bottom of the second page
by the complex transforms, wavenumber locations and the final
error value. The solution is both accurate and precise; the
high resolution has introduced no distortion such as charac-
terizes the non-linear technigues,

The computer routines of figure 3 that apply the 2-
signal test were introduced into a general f-k analysis pro-
gram called FKSCAN which was styled after FKCOMB [Mack and
Smart (24ﬂ . To this automated high-resolution processor
synthetic time series were submitted for trial analysis. One
test consisted of a unit plane-wave from 356° at 3.5 km/s to
which synthetic random noise was added to make the signal-to-
noise power ratio equal to 4. To this combination was added
a second plane-wave, 2 magnitudes larger than the first, from
3020, also at 3.5 km/s. In the band of interest ‘' >-23 seconds
period) the 2 signals overlap in wavenumber space. At 23.3

seconds period they are separated by 0.7 the main-lobe half-

R = TS A SN TP ) W B L IER - My _ -,
TP e 3, s
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width; at 16.0 seconds, by 1.0. Each signal was of 20 seconds
period enclosed in 192 second cosine envelope. They arrive

at the array center at the same instant., A 256-second time
window was applied for the analysis. The resulting bulletin
from FKSCAN is given in figure 4, and is self-explanatory.

The larger signal is shown arriving from 301° at 3.518 km/s;
the smaller from 354° at 3.059 km/s. They differ in apparent
magnitude by 2.05 (from the ratio of the power summed over

the band).

The last item on the second page gives a measure of the
assurance one would have had of the validity of such a de-
tection had it appeared in processing of real data. In routine
processing of such 4 minute, 16 second windows each interval
yields 2 suits of vectors, or detections. At the rate of 2
suits of random vectors per time interval, so anamolous an
angular concentration of vectors would appear only once every
11 days, on the average. [This algorithm, installed in FKSCAN
to provide an independent detection statistic separate from
the F-statistic, is based on a probability expression developed
by the author which he intends subsequently to submit for
publicatioé]

Thus, in this modest test of the 2-signal detector
functioning in the presence of random noise, the small, "hidden"

signal is recovered as a strong detection.
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The array, the relative magnitudes and azimuthal spac-
ing of these 2 test signals, and the frequency band in which
the search was made anticipate a test on real LASA data in
which similar conditions were expected. The 2 seismic events
sought in the real data are recorded in the U.S. Department
of the Interior's Earthquake Data Reports 36-74 and 43-74.

On 31 May 74 at 0313:11 an earthquake occurred in the vicinity
of Unimak Island in the Aleutians. At 0326:57 a second event
occurred in eastern Kazakh SSR. The first quake had a body
wave magnitude of 4.8 and a surface wave magnitude of 4.6,

The second event was recorded as MB 5.9, with Mg measurements un-
available. The Unimak signal was expected at LASA about 0330
from 3020, with the Kazakh signal expected about 0406, in the
ongoing coda, from 356°. Figure 5 displays the seismograms

of this interval for all seven LASA stations. The figure begins
at 0329:08 and continues past 0415. The anticipated onset

of the Kazakh surface wave 1is marked by the arrow at 0406:09,
The circled numerals at the bottom of the figure number the
successive time windows, indicated by arrows, that were sub-
mitted to the high-resolution array processor,

Figures 6 through 11 are the resulting bulletins for
the 6 time-windows marked on the seismograms. The relatively
narrow band from 16-23 seconds period was chosen for this

analysis because it was anticipated that the faint signal from
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from Kazakh was most likely to appear in these frequencies

if at all. As before there are two sets of tentative detections
in each time-window, that is, 2 detections per frequency. The
suit at the upper left contains, at each frequency, the sig-

nal pick of greatest power. One might call these the primary
detections. The suit at the upper right contains the smaller
signal picks. Before each suit is submitted to azimuthal dis-
tribution analysis, the program computes the straight line
through the frequency-wavenumber origin (0, 0,n) which, in the

least squares sense, best fits all the vectors in the suit.

The back azimuth and phase velocity of that mean are then
I printed in the bulletin,

The back-azimuth of the mean of the primary signal picks
in succeeding time-windows, then, for these 6 intervals reads,

in sequence: 328°, 3199, 3239, 353°, 356°, and 318°. 1In win-

dows 1, 2, and 3 the detector is "triggering" on the ongoing
coda from the Unimak earthquake. But in windows 4 and 5 it

turns and indicates the back azimuth of the Kazakh site. Then

in window 6 it returns to the Unimak coda.

Figures 12 and 17 (one for each of these 6 time-windows)
are contoured plots in 3 db intervals, of the conventional
wavenumber spectra, integrated over the frequency band 0.043-
0.063 Hz (16-23 seconds period) after the secondary detections

derived from the high-resolution processor have been filtered
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out. These spectra make visible the observations of the

previous paragraph.




Conclusions

The high resolving power of the linear multiple-signal
analysis and the fidelity of its estimates have been de-
monstrated by computer examples and by application to real
signals.

Computer examples indicate that this technique is
capable, in the absence of noise, of exactly recovering
the amplitude, phase, and velocity of two simultaneously
arriving Rayleigh waves at, for example, LASA, which differ
in azimuth by as little as 80, even if one signal is 10
times larger than the other. In the case of the simultan-
eous arrival of a small signal with S/N of 2 and a signal
100 times larger, with a difference in azimuth between the
two of 540, the magnitude (Ms) of the small signal can be
recovered with less than 3% distortion,

The extraction of the Rayleigh wave arriving from a
nuclear test in Kazakh from the coda of an Aleutian earth-
quake demonstrates the practical application of the technique.
It should now be possible to utilize long period array data
to obtain accurate amplitude and phase information for
small events which were previously "hidden" in the coda of
much larger events. In addition, the linear multiple signal

estimator should make possible the decomposition of large
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surface waves into primary and multipath components on the
basis of differences in arrival azimuth. Better estimates

of the true amplitude and phase will.result by removal of

the multipath effects, and the spectrum and angle of approach
of the multipath components will provide information as to
the location and nature of the conditions which give rise

to multipaths.

P
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ranges over the wavcnumber plane.

intersection of the contours,

Figure 1. A contourcd map of a 2-signal test of synthetic data
(see page 27) with one probe point held fixed while the other

When both probes occupy the

same point the function is ambiguous, its value varying with the
direction from which one probe approaches the other. Note the
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31MAY74.
from the LASA LP array (verticals). See page 36.

0329: 08 through 0415 GMT,

Figure 5.
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Figure 10.
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