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ISOLATION AND DAMPING

IMPACT ON COMPLEX MECHANICAL STRUCTURES

S. F. Jan
Bechtel Power Corporation
Houston, Texas

and
E. A. Ripperger

The University of Texas at Austin
Austin, Texas

The principal purpose of this study has been to
develop a procedure for analyzing the response of complex
structures to impact and to provide a computer code for
making the necessary computations. Attention has been
focused specifically on the displacements, velocities and
accelerations produced at various points in military
vehicles subjected to ground impact in airdrop operations.

The vehicle is modeled by a lumped parameter (spring-
mass) system. Using the finite element method, a set of
equations of motion is formulated for this model. Then
these equations are solved numerically by the Runge-Kutta
method. A model for representing a specific vehicle,
namely the M-37 military truck cushioned for an airdrop is
used to illustrate the procedure. Some of the physical
constants for the model are modified as required to bring
the computed displacements and accelerations at various
points in the model into agreement with measured values.
It is found that the response of a structure properly
cushioned and subjected to impact loading is not sensitive
to the elastic properties of the interconnecting members.
Thus, the development of a suitable lumped parameter
model of a given vehicle is simplified. However, special
attention should be given to the more massive and rigid
components of the vehicle such as, for example, the engine.

Experimental results show that more than one fourth
of the system energy is dissipated through the structural
damping. Hence, damping must be included in the equations
of motion.

The most essential factor affecting the dynamic
response of the system has been found to be the force
applied as a result of the impact. In the example used,
this force is applied by the cushioning system.

INTRODUCTION

The finite element method appears
to be ideally suited to the problem
under consideration, namely, the
computation of the displacements,
velocities and accelerations at
selected points in a structure sub-
jected to an impulsive loading. To
apply this method of analysis one
must first devise a conceptual repre-
sentation of the continuous structure

as an assemblage of structural ele-
ments interconnected at nodal points.
The idealized structure is assumed to
be acted on by external equivalent
forces and to possess equivalent
inertia properties only at the nodal
points. Thus the continuous struc-
ture is replaced, for analytical pur-
poses, by a lumped parameter system.
The accuracy of the predicted dynamic
response of a structure will depend on
how well the structure is represented

Creave
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by the selected lumped-parameter model.
It has been reported [l] that even for
a very simple beam or uniform plate
with boundary conditions which can be
exactly expressed mathematically,
errors in the predicted responses can
easily be as much as 35 percent. Al-
though no investigation of the
validity of lumped parameter models
for complex structures, such as vehi-
cles, has been reported in the
literature, it may be assumed that
discrepancies of even more than 35%
can be expected for poorly represented
structures. The general details of
the finite element method have been
discussed in the literature(2]). How-~
ever, the nature of the model which
will best represent a structure such
as a vehicle, with its varied elements,
irregular geometry and discrete masses,
is not at all clear. The primary ob-
jective in this study will be to
select a model and then determine by
computation and by experiment how
valid the model is. It is expected
that some suitable rules can be formu-
lated regarding the representation of
vehicles by lumped parameter models.

A model for representing a specific
vehicle, namely the M-37 military
truck, cushioned for an airdrop is
used to illustrate the procedure.

This particular vehicle was selected
because it has been dropped 20 times
and a great deal of information re-
garding its response to impact has
been collected. The cushioning system
used for the drops that were instru-
mented particularly for this study
evolved and was perfected during those
20 drops. Consequently it was not ex-
pected that the results of this study
would lead to any changes in the
design of that cushioning system. The
objective, as indicated above, was not
to find out how to model this specific
vehicle but rather to formulate rules
that would apply to the modeling of
any vehicle.

In the procedure followed for
this study, the lumped parameter model
for the M-37 is first developed. Then
the equations of motion of the model
are formulated following standard fi~-
nite element methods. These equations,
with appronriate initial conditions
are then solved using the Runge-Kutta
method.* Some important factors such
as structural elastic properties,
damping, and impulse loading which
affect the dynamic response are inves-
tigated. Finally, an experimental
program of actual truck drop tests is
carried out, and the results are com-
pared with computed results. 1In the

*Algorithms for this method are available in most computational facilities.

analysis of the mathematical model,
the concept of linear transformation
is extensively used. Linear trans-
formation techniques streamline and
simplify considerably the procedures
involved in the analysis. It should
be mentioned here that the computer
program developed for the vehicle is
also applicable to other complex
structures.

MATHEMATICAL MODEL

A vehicle such as the M-37 truck
may be represented as a first approx-
imation by the model shown in Fig. 1.
In this model the engine, transmission,
transfer case, differentials and
wheels are treated as discrete masses. !
The mass of the winch is assumed to be
distributed uniformly along the front
transverse frame member, and the mass
of the remaining parts of the struc-
ture, and the load on the truckbed are
assumed to be distributed uniformly 3
along the two main longitudinal and
the remaining transverse members of the
truck frame. The adoption of this
model is, however, quite arbitrary.
Many other arrangements of masses
would, no doubt, be equally acceptable.

When a structure such as this vehi-
cle is to be intentionally subjected to
an impact, as in an airdrop, cushioning
is provided to reduce the severity of
the shock produced by the impact.
Usually all of the discrete masses
shown in Fig. 1 would be cushioned in-
dependently, if possible. For the M-37
truck the engine is not cushioned in-
dependently, partly because it is
shock mounted on the frame, and partly
because of geometrical and structural
problems. The engine is supported on
rubber cushions, or shock mounts at
three points, one in front and two in
the rear. The action of these mounts
can be represented by the spring-
damper system shown in Fig. 2. The
stiffness and the damping capacity of a
mount depends on many factors such as
the hardness of the rubber, the shape,
and the age [3). Rather than try to
determine a precise set of values for
the M-37 mounts, values of 20,000 lb/in.
for k and 60% of critical for the damp-
ing were arbitrarily assumed. Later
these values were varied to improve the
"fit" between experimental observations
and computed results.

The transmission is actually at-
tached to the engine but since it can
be cushioned independently, it has been
assumed to be a mass which is attached
to the engine by a very stiff element.
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The transfer case is supported at
four points on two central cross frame
members which act as spring supports
for it.

Wheels and differentials are con-
nected by the axles which in this
analysis are assumed to be rigid,
massless rods attached to leaf springs.
Tires absorb considerable energy and
this energy is given back in rebound.
Also measured relative displacements
between the rear axle and truck frame
indicate that little energy can be
dissipated through the four shock ab~
sorbers associated with the wheels
during the impact. Consequently the
shock absorbers are neglected and the
vehicle is supported by the leaf
springs in Fig. 3.

The spring constants K and damp-
ing factor C for the tire in Fig. 3
must be determined experimentally, or
they must be estimated using whatever
guidance is available. These quantit-
ies are initially assumed to be 7,000
lb/in. and 20% respectively.
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Uy, ——ee L

Us Ve

Ficure 4 Element Displacements

The winch and the other distri-
buted masses of the truck are cushion-
ed with the two main longitudinal
frame members. In the model shown in
Fig. 1, all individual components are
interconnected at the nodes numbered
from 1 to 39, In the present study
only a vertical, planar impact is
considered. Consequently, each nodal
point in the model is allowed to have
only 3 degrees of freedom, consisting
of one vertical translation and two
planar rotations. Three degrees of
freedom are associated with each end
of all members as shown by the vectors,

Ui' in Fig. 4.
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ANALYSIS OF THE MODEL

For the model shown in Fig. 1

with assumed damping and subject to im-
pact loading, the equation of motion
can be written as:

Mg+Ccg+Kg-=E(r) (1)
where M, C and K are square matrices of
inertia, damping and stiffness respec-
tively and F(t) is the column matrix of
cushion forces. The generalized dis-
placement matrix g is numbered in
sequence according to the joint
numbers. For example, coordinates
q3i-2, g3i-1, and gs3i are associated
with the translatory and two rotat-
tional motions about common datum
axes, at the ith nodal joint of the
model. For example at joint 5, the
coordinates are dis-2, g9i1s5-1, gi15—p OF
g13, q1v and gis.

The stiffness matrix K of the com-
plete element assembly is obtained by
the direct stiffness method [4]. This
method consists of first deriving the
individual element stiffnesses in ele-
ment coordinates, followed by a coor-
dinate transformation and the subse-
quent superposition of each element
stiffness so that the translational
and rotational degrees of freedom of
all elements which share a common nodal
point are expressed in the same coor~
dinates. The superposition of each
transformed stiffness is accomplished
by adding its individual terms into
the complete stiffness matrix according
to the element nodal point numbers.

The same method can be employed to
obtain the mass matrix M and the force
vector F. Since the derivations of
mass matrix M, stiffness matrix K,
force vector F and damping matrix C are
quite lengthy and tedious only the end
results are presented here. Readers
interested in the details should con-
sult reference 6.

The element coordinate scheme is
shown in Fig. 5.

1. Element Displacement Functions

Consider a uniform structural ele-
ment in the horizontal plane as shown
in Fig. 5. The common datum (X, Y, Z)
is established for all structural ele-
ments so that all displacements and
corresponding forces will be referred
to this common coordinate system. The
origin of element coordinates (x, y, z)
is located at node 1 with the o-x axis
taken along the length of element and
with the o-y and o-z axes as the prin-
cipal axes of the element cross sec-
tion.

Y b

Element Coordinates

Figure 5

The column matrix U for this ele-
ment, as mentioned before, consists of
six displacements, two vertical
(2 direction) deflections U; and U, and
four rotations, U,, U;, Us, and Ug.
The displacement functions in element
coordinates are wy, Wy, and w,. These
are assumed to be functions of the co-
ordinates x and y. They can be ex-
pressed in terms of the discrete
displacements U by the relationship

W=ay (2)

where a is a 3 x 6 matrix in terms of
the non-dimensional element coordinates

- X =X =2
r =g s A t T (3)

3. Element Mass Matrix

The element mass matrix is derived
from the work done by the inertia force
of the element during a virtual dis-
placement. Thus

sw = su” ( j o aal a)y (4)
v

where o is a density parameter. By
analogy with the basic work expression

m = Jr o a gT av (5)

v
where the integration would be per-
formed over the whole volume of the
element. Results of computations show
that the effects of rotary and torsion-
al inertia of the element during
impact are negligible so these terms
are eventually neglected.

Anaodatnd,
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3. Element Stiffness Matrix

The stress-strain relationship in
matrix form is

S=4ae (6)
where
Sb EI o
s = and A=]| 7 (7
s o GJ

Sy and S, are bending moment and
twisting moment respectively, and e is
total strain., By writing the express-
ion for virtual strain energy and again
using the analogy with the well known
strain energy expression the element
stiffness expression

L
§=ng;\gdx (8)

is obtained.

4. Element End Forces

The force matrix is obtained by
considering the virtual work done by
the external forces when a virtual
displacement éw occurs. Thus the
equivalent concentrated force f at the
element ends due to a distributed
loading p over the element surface is

£=ngzds (9)
S

5. Linear Transformation

If the set of coordinates g with
n degrees of freedom in the equation
of motion Eg. (2) is a linear combi-
nation of a different set of coor-
dinates u with m degrees of freedom,

q=Bu (10)
then the mass, damping, stiffness and
force matrices in u coordinates can

be expressed in terms of q coordinat-
es as follows:

T

M=p MB
k=8 KB ()
g=8'F

The upper case matrices are in terms
of the q coordinates.

A viscous damping force D can be
expressed as

b =-Cg (12)

where C is the damping matrix in g
zoordinates. By means of the virtual
work consideration again it may be
shown that

c=8T¢ (13)

where ¢ is the damping matrix in u
coordinates.

6. Transformation of Element
Coordinates to Datum Coordinates

Since the element mass matrix p,

stiffness matrix k, and end force vector

f are initially calculated in local
element coordinates, suitably oriented
to minimize the computing effort, it is
necessary to introduce transformation

matrices changing the frame of reference

from a local to a datum coordinate

system. Consider again the element
shown in Fig. 5. U; to U¢ are dis-
placements in the direction of local
coordinates X, y, 2 and Q; to Qi are

displacements in the directions of datum

coordinates XYZ. € is the angle be-
tween the x and X axes. The relation-
ship between the displacements U and
displacements Q is

where
1 0 0
0 cos sin 6
0 -sin 6 cos 8
B = (15)
1 0 0
4] cos 6 sin

-sin O cos

The element mass matrix m,* stiffness
matrix k,* and the force vector f* in
g~ displacements can be obtained by
using the transformations of Egs. (1l1)
and (12) as:
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7. System of Assembled Structure

Since all element stiffness
matrices, mass matrices and force
vectors are now referrcd to the common
datum, the stiffness matrix, mass
matrix and force vector of the complete
element assemblage can be obtained by
the direct stiffness method as mention-
ed previously. The concentrated masses
at nodal joints such as transmission,
differentials and wheels are simply

e e ko
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Figure 6

added to the corresponding diagonal
terms in the assembled mass matrix.
The concentrated cushion forces ap-
plied at nodal points are also
simply added to the corresponding
terms in the system force vector.
However, the discrete masses such
as the engine and transfer case
which connect several nodal points
cannot be superimposed on the
system directly. A special study
of these masses is necessary.

8. Engine and Transfer Case

Since the engine, transfer case
and similar masses are all supported
at several nodal points, special

Mass Supported at Several Points

Since three points define a plane, q;,
g:., and gq;, as generalized coordinates,
sufficiently define the motions of
mass. Let u,, u,, and u; be the ro-
tations about the principal axes of
mass and the vertical translation
respectively. The relationships
between coordinates g's and u's can be
found in the following way:

Fig. 6 shows the system under
consideration:

31, 42 = The unit vectors along two
principal directions of the

. - - mass.

i, j, k = unit vectors along datum

coordinates X, Y, Z.

Xy ¥i,24= coordinates of supports.
-> > >

consideration of these parts is U T te . ¢ ine
required. Consider now a discrete 1,d2,¢3 st ¢ °: vec 2‘5 ° tz°c: :
mass supported by n-springs with where the springs atta °
coordinates q,...q;. the mass, referred to the
N center of mass,
e, = vectors from support point
q: to g2.
for small rotations,
> > » > -
q a, x dl .k a, x 51 .k 1 uy
> > > -
a, | =fa, x 52 .k a, x 32 . k 1 u, (17
A i, .k a, x 4, . k 1
4, a; x d3 .k a, x dy . uy
6
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m 0
1 Solving this equation for q; results in
E, - E, + E
m = m S 2 3 -
o m 2 9 T A2 3 9 7 E)9pEyay (24)
. 0 mq 3
. where
According to the linear trans- _
formation (18), the mass matrix corre- E. = X3 * Y3 Yy (25)
. sponding to the q coordinate system is: 1
. X, - X y. - Y
T i 1 i 1
v m* = BB (20)
. E. =| %2 "% Y™ ¥y
If there are cushioning forces f,, f,, 2 (26)
and f; directly applied in u;, u,, and X, - X Y, - ¥y
u, directions, then the forces in the
q:, 92, and gs; directions are: X. - X v, -
T Eg=| 2 1 CONRE (27
£* = BE (21) . - x -
3 1 Y3 =N
Now the mass matrix m* can be added to
- the mass matrix of the complete element Thus all displacements q, through
assemblage and the forces f* can be add- q_ can be expressed in terms of q;, g2,
ed to the system forces. It must be afid q; simply by replacing the index i
noted that before taking this step, the in the determinants E; and E, by the
constraint coordinates q, through q, numbers 4 to n.
should be eliminated from the system.
To do this, first find a transformation 9. sStatic Condensation
matrix B such that:
— — If an element is not rigidly con-
Q4W Q£W nected to another element, for example,
. a hinged connection, the element stiff-
. ness matrix, mass matrix and fixed end
. = B q (22) force vector must be modified. If
. 2 some coordinates included in the static
. analysis are excluded from the dynamic
q q analysis, or some coordinates with zero
e n L 3 or very small mass must be removed from
and then by linear transformation get the equations of motion to avoid un-=
the modified mass, stiffness and force reasonable numerical results {inTinite
matrix of the whole system. values in computed accelerations), then
‘ the system mass matrix, stiffness
The transformation matrix B in matrix and system force vector nust all
Eq. (22)is formulated by finding all the be modified. All the modifications can
expressions of g. through g, in terms be achieved by a static condensation
of q1, 9z, and q;. Consider now the techn1que[2].. By using thlg technique
displacement qi as indicated in Fig. 6 a transformation matrix similar to the
The vectors from support 1 to 2, 3 and mgtrixhg lndE?' élO) can be forgulated.
: - Then the modified matrices can be
o 1 can be expressed in the form written in the format of Eq. (11).
-» > -+ : >
ey = (xy = x)1 + (y; - y))3 + (g - qlk
7
- R S SO
damat [ . . AR 4
B ORI RSN ) it i i dabimeanatiadng, i al .

org=3au
Thus

u=2ala=8g (18)
Where B = é‘l (19)

Ifm;, m, and m; are the mass moments
of inertia and the mass, then the ma-
trix of the discrete masses in the u
coordinate system can be represented
as:

3 and i are in a

Since supports 1, 2,

plane,
e2xe3.ei=o
or
X 7% YT ¥y 9379

X3 7 X% Y3~ ¥y 9379 |=09

(23)
i 1 Yy TYy 979
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The first step is to partition
the mass matrix M, stiffness matrix
K, force matrix F and displacement
matrix U into:

- -
M= 14, Y,
(28)
PSR- PP
- -
- -
K= 1K; %
(29)
K1 By
-
E - El
(30)
Lib
L -
u=[u]
- -1 (31)
U
| =2 ]

The column matrix U; refers to
all the displacements that are to be
retained, while U, denotes all the
remaining displacements which will
not be employed in formulating the
new equivalent matrices. The dis-
placements U, may be determined
from the static equilibrium equa-
tion F = K U by assuming that the
forces F, corresponding to the dis-
placements U, are all equal to
zero. Hence:

_ gl
Up = "By 55 4y (32
Thus:
P
- = = B*
u = L x U, =B*u; (33
=22 =21
where I is a unit matrix and
[
B* = - (34)
K22 En
b
Thus the modified mass matrix M*,
stiffness matrix K*, and force
matrix F* for displacements U, are
obtained from Egq. (11) as:
ur = B*y B*,
k* = BTk B* (35)
== T
Pt = B*E
10. Structural Damping

Until now the discussion of the
damping matrix in the equations of

motion Eq. (1) has been intentionally
avoided. However, earlier experimental
studies of the M-37 truck indicate

that an appreciable amount of energy
may be dissipated through internal
friction within the truck body or at
joints between frame elements., This
damping matrix may be assumed to be
proportional to the mass and stiffness
matrices as:

C=aM+bK (36)

where a and b are constants and can be
determined so as to give reasonable
damping in the system. If Eq. (36) is
substituted into Eq.{(1l), the modified
differential equation is obtained

gg.g. (a)\=4+b§) é+l=(g=g_(t).(37)
NUMERICAL SOLUTION

1. Runge-Kutta Method

The equations of motion Eq. (37)
can be solved numerically by using the
Runge-Kutta method. However, the
equation must first be decomposed into
first order differential equations.

Premultiply all terms in the equa-
tions of motion Eq. (37) by M~! and
eliminate the coefficient of . Thus

1k g = ulE(t) (38)

g+ (al + buTiRIg + U
where lis a unit matrix, and all
matrices are modified as discussed in
the section on static condensation.
By letting

u=4 (39)

the set of equations (38) is then de-
composed into 2 sets of first order or-
dinary differential equations:*

g=u

R T
with initial conditions:

g =49, and u = éo (41)

Equation (40) with initial conditions
as expressed by Eq. (41) can be solved
numerically by the Runge-Kutta [5]
method.

2. Digital Computer Program

The required input data are nodal
point coordinates, mass distribution,
cushioning forces, initial displacements
and velocities, damping coefficients,

*3 should not be confused with a displacement, It is introduced here purel
for conven?ence and ?s as defined b§ Eq. (38). P Y
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and member properties such as cross
sectional area, flexural rigidity

EI, torsional rigidity GJ, and
torsional inertia I_. The computer
program automaticalfy generates the
structural mass matrix, stiffness
matrix and force matrix and then
solves the equations of motion by the
Runge~Kutta method. The displace-
ments, velocity and acceleration at
any coordinate at any time may be
printed out. The printed out dis-
placement is relative to the position
where impact begins. From these dis-
placements the relative displacement
of any two points can be computed.

FACTORS AFFECTING THE RESPONSE
TO IMPACT

The previous analysis shows that
the dynamic response of a structure
is dependent upon the nature of the
applied forcing function, the elastic
and inertia properties of the struc-
ture, and the damping characteristics
of the system. By study of these

factors, information on design of cush-

ioning systems and the design of the
structure itself may be obtained. In-
gsight into the appropriateness of the
lumped-parameter model should also be
provided. In following sections,
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G
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Impulse Shapes

these factors are discussed in detail.
The effects of the tires on the struc-
tural response to the impact, and the
dynamic behavior of the engine on the
rubger supports will also be consid-
ered.

1. Time Variation of the Applied
Force

For the airdrop application to-
ward which this study is oriented the
applied force is essentially rectan-
gular in time. Therefore a limited
study has been made of the effects on
response of the structure of variat-
ions in the amplitude and duration of
the applied force. Three rectangular
pulses and one triangular pulse,
shown in Fig. 7, were selected for
study. For simplicity, the area of
each pulse was kept the same. Thus
the momentum imparted to the structure
is the same for each pulse. In order
to simplify the analysis, the centroid
position of the pulse has been chosen
as a characteristic parameter.

Neglecting the damping, the max-
imum displacements and peak accelerat-
ions at all nodal points in Fig. 1 for
all four force inputs have been calcu-
lated. The maximum displacements at
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Figure 8 Impulse Shape Effect

on Maximum Displacement

node 18 are shown in Fig. 8. This node
is on the frame over the left rear
wheel of the truck. There is no force
applied directly at this point. Fig. 8
shows that the maximum vertical dis-
placement of this point as a result of
the application of the four different
pulse shapes to the truck is almost
linearly proportional to the time to
the centroid of the pulse shape.

The peak accelerations at node 18,
produced by each of the different
impulses, are shown in Fig. 9. These
results suggest that both the dis-
placement and acceleration produced by
a given impulse depend essentially on
the time to the centroid of the area
under the force-time (impulse) curve.

2. Structural Properties

The structure of an M-37 truck or
any other vehicle is so complicated
that simplifications must be made for
analytical studies. If the truck is
to be represented by a simplified
model, the question of how to esti-
mate the stiffness of the structure
must be answered. As a part of the
attack on this problem the signifi-
cance of changes in the impact response
with variation in the structural pro-
perties has been investigated.
Consider now the mathematical model of
the M-37 truck shown in Fig. 1. Three
different sets of values of stiffness
are assumed:

—
o
4,
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Figure 9 Impuse Shape Effects on

Peak Acceleration

Case 1: All member stiffnesses
are estimated based on
the truck frame only.

Case 2: All member stiffnesses of
case 1 are multiplied by
five.

Case 3: All member stiffnesses of
case 1 are multiplied by
ten.

Computed total displacements and
peak accelerations along the main frame
joint No. 1 through No. 10 for the a-
bove three cases are shown in Figs. 10
and 11, All calculations were made for
a vertical impact velocity of 25 fps 3
and a force level eguivalent to 17.5g
acceleration. The resultant force is
applied a little forward of the center
of gravity. This force is supplied by
a crushable cushioning material which
crushes more toward the rear (because
there is a disproportionate amount of
the material at the front) and produces
the tilt in the displacement curves
shown in Fig. 10. The peak accelera-
tions at each nodal point are shown in
Fig. 11. In both Fig. 10 and Fig. 11,
the three curves representing the 3
different stiffnesses are relatively
close together. Thus it appears that 4
rough approximations to structural
stiffness will be satisfactory for
computational purposes.
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3. Damping

The amount of structural damping
in the vehicle must be determined by
experimentation. If experimental data
or reliable information is not avail-
able, no damping should be assumed in
the analysis since the omission of
damping results in conservative esti-
mates of deflections. Numerical com-
putations for the M-37 model show that
at all points of the truck frame the
absolute magnitudes of displacements
are increasing as damping decreases
but the peak accelerations are affected
very little. Fig. 12 shows the max-
imum displacements for a damping ratio
range from zero up to 0.015. There is
no change in the configuration of the
truck for all three cases. The crush-
ing displacement curve with 0.009 as
the damping ratio is the one which
approximates most closely the experi-
mental M-37 measurements.

4, The Effect of Tires on the
Response of Vehicle Body

Since the vehicle body is connect-
ed to the wheels through a leaf spring
arrangement, the magnitude and shape of
forces transmitted to the vehicle body
as the result of an impact would be
significantly affected by the material
properties of the tires. These forces
must be considered in computations of

200}
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8 3

B
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NODAL NUMBER
Figure 11 Structural Stiffness

Effect on Peak
Accelerations

the overall response of the vehicle
body .

For the purpose of analysis, the
wheel and tire are replaced by a mass,
a spring K, and dashpot C arrangement
as depicted in Fig. 3. Using different
sets of values of K and C for the tire,
the maximum displacements and maximum
acceleration at point No. 3 (q3;) of the
vehicle body, and the wheel at point
No. 24 (g,«) have been calculated and
plotted in Fig. 13.

In general, the larger the spring
constants and the damping ratio, the
smaller the displacement of the vehicle,
Also the peak acceleration of the vehi-
cle body does not show any significant
variation as the spring constant and
damping ratio of the tire is varied.

5. The Effect of Engine Supports on
the Behavior of Engine

The idealized engine supporting
arrangement is shown in Fig. 2. Com-
putational results indicate that the
values of the spring constant K and
damping ratio C have no significant
effect on either the peak accelerations
or the maximum displacements at any
point in the vehicle except the engine
itself during the period of impact.
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Figure 16

Figs. 14 and 15 show the effects of the
elastic stiffness and internal damping
of engine supports on the dynamic re-
sponses of the engine, As in the case
of the tire, in general, the larger the
spring constant and internal damping of
the supports, the smaller the engine
relative displacement to the truck
frame.

The peak acceleration of the en-
gine is not influenced much by the
spring censtant of the supports but it
decreases with an increase in internal
damping of the support.

EXPERIMENTAL INVESTIGATION - M-~37 TRUCK
DROP TEST

To obtain some experimental data
for comparison with the computed re-
sults as described in the previous
chapters, three drops of the M-37, 3/4
ton truck with a 1500 lb. simulated
load of sandbags have been made from a
drop height of 10 ft., and at a design
acceleration of 17.5 g. The truck was

11| i,

L —

Rigging for Lifting the Vehicle

cushioned with paper honeycomb and
rigged for dropping as shown in Fig. 16.

Accelerations were measured at se-
lected points using fluid-damped
accelerometers to minimize overshoot
and ringing. Engine displacement re-
lative to the frame and various other
displacements were measured and record-
ed during the impact.

Numerical values for the weights
of various parts of the vehicle were
taken from the technical manual or were
estimated. Member properties were cal-
culated using truck frame cross sect-
ional dimensions. Tire spring con-
stants were assumed to be 7000 1b/in
and the damping ratio 0.2. Spring
constants for the engine support are
12000 1lb/in at the front and 40000
lb/in at the rear, and the damping
ratio 0.6, Structural damping ratio
was assumed to be 0.09.

Some measured and calculated re-
sults are shown in Figs. 17, 18, 19,
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20 and 21. Further results and a more
detailed account of both the calcula-
tions and the experiments are avail-
able in Ref. 6.

DISCUSSION

1. Mathematical Model

(a) It is impractical to try to
include all the components of a com-
plex structure in a model. Include
only those components whose motions
are considered to be most important.
For example, in an airdrop of a vehi-
cle, the motion of the engine block,
transmission, differentials, and wheels
may be the important parameters for
the proper design of a cushioning sys-
tem to protect the vehicle. Conse-
quently the model should be so design-
ed as to represent the motions of these
components as realistically as possi-
ble. On the other hand, if the task is
to design a cushioning system for the
protection of a car radio, a completely
different model will be needed. There
is no unique model. The model shown in
Fig, 1 is a particular model. Many
other model configurations could have
served quite as well for this study.

(b) Information on the environ-
ment that the structure is likely to be
subjected to is also very important.

In airdrop of a vehicle, the whole
structure is expected to land with an
impact velocity of approximately 30 fps,
and the rise time of the impulse im-
parted to the vehicle is of the order
of milliseconds. These are important
data. A continuous elastic structure,
such as a vehicle, has, in principle,
an infinite number of modes of vibra-
tion that can be excited. A lumped
parameter system can be excited in only
as many modes as it has degrees of
freedom. Therefore a lumped parameter
system will not accurately represent a
continuous structure under conditions
in which the higher modes of the struc-
ture might be excited. The long rise
time of the impulse applied to the ve-
hicle means that the higher modes will
most likely not be excited. The lumped
parameter model can therefore provide a
suitable approximation to the motion of
the prototype system, On the other
hand, an input force with a very short
rise time would tend to excite higher
modes of vibration. As a consequence

a lumped parameter model would most
likely not adequately represent the
motion of the prototype structure.

In the present work, the whole
truck body is modeled by a lumped para-
meter sgstem with 39 nodal points.
Since there are six degvees of freedom

EE ————— T TS

at each nodal point, the total number
of degrees of freedom of the system is
234, Only a normal impact (in the ver-
tical direction) is considered here,
hence the vertical displacements of the
nodal points are of the main concern.
The six displacements possible at each
nodal point consist of three transla-
tional motions and three rotational
motions. Two of the translational dis-
placements and one of the rotational
displacements can be disregarded.

Thus the total number of degrees of
freedom is reduced to 117. This number
can be further reduced to 39 by elim-
inating the remaining two rotational
components at the nodal points by the
static condensation process [4].

The amount of computer storage
required by the program for this analy-
sis is 30,000 words. For the CDC 6600
computer, the formulation of the egua-
tions of motion requires three minutes
of central processing time. The numer-
ical integrations by the Runge-Kutta
method require 1.5 minutes for an im-
pact duration of 45 milliseconds, using
an integration step size of 0.1 milli-
seconds.

2. Comparison of Measured and
Computed Results

From Figs. 17 through 21, it may
be seen that agreement between measured
and computed results is, in general,
not very good, so far as the shapes of
the curves are concerned. It is es-
pecial.y poor so far as accelerations
are conzerned. This is undoubtedly due
to the contributions to the accelera~
tion by the higher modes of vibration
which are not provided for in the model.
Displacements are not affected very much
by these higher modes. Hence the agree-
ment, particularly in amplitudes, be-
tween measured and computed results is
much better. It probably is naive to
expect that accelerations at arbitrarily
selected points in a complex structure
such as this truck can ever be computed
with any degree of accuracy. However,
it is not too much to expect that dis-
placements might be computed with ac-
ceptable accuracy, and as indicated
previously displacements are probably
much better indicators of possible
damage, than are accelerations. Agree-
ment between measured and computed re-
sults may be improved in several ways,
all of which would involve making the
computer input parameters match closely
the corresponding quantities in the
model, and of course, the model can
also be improved.
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CONCLUSIONS

1. Displacements at various points of
a complex mechanical structure can be
satisfactorily predicted using a lumped
parameter mathematical model and a
numerical computation procedure.

2. The dynamic response of a complex
structure when properly cushioned and
subjected to an impact loading is not
sensitive to the elastic properties of
the structure. Thus the elastic coupl-
ing between masses in the lumped
parameter model need not be known to
any great degree of precision.

3. Structural damping dissipates a
considerable amount of energy, and as a
consequence decreases the displacements.
However, the peak accelerations at
various points in the structure are
affected very little by the structural
damping.

4. The forcing function is the maior
factor which affects the dynamic re-
sponse of the system, It must be
repregsented as exactly as possible.

5. The procedure for handling the
engine and transfer case in the analysis

can be applied to any rigid discrete
mass which cannot be included in the
elastic properties of the structure.

6. The developed computer program can
be employed to predict the dynamic dis-
placements of any complex mechanical
structure if the structure can be re-
presented by a grid type model.

7. Although the analysis requires the
assumption of linear elastic behavior
and therefore cannot predict permanent
deformations it can indicate where
permanent deformations are likely to
occur.
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ENERGY ABSORPTION AND PHASE EFFECTS

IN SHOCK EXCITED COUPLED SYSTEMS

Charles T. Morrow
Advanced Technology Center, Inc.
Dallas, Texas

come more likely to occur.

further analysis.

This analysis of energy absorption and phase-related uncertainties is
based on an idealized model consisting of two simple damped resonators,
the second resonator being attached to the mass of the first. If the
first resonance frequency is allowed to increase beyond limit, the model
becomes a single simple resonator, as a special case, The focus of the
analysis is on the peak acceleration of the second mass and the energy
absorbed in the second damper. To simplify the mathematics and make the
model correspond to a critical case for reliability, it is assumed that
the second resonator does not load the first, but the conclusions are
not limited to this assumption. The analysis is limited to shock pulses
(such as the terminal peak sawtooth) whose dominant feature is a terminal
step function, so that we can assume for the two-resonator model a resid-
ual response consisting of two transients at the natural frequencies of
the two resonators, and these transients become the primary cause of
energy dissipation and peak response.

The introduction of energy dissipated as an additional factor in the
severity of a shock makes the residual spectrum a more general criterion,
less dependent on the assumptlon of failure modes resembling brittle
fracture. |f eneragy increases with peak response, a ductile material
that could otherwise survive one extreme strain becomes more likely to
fail. Malfunctions that might be insensitive to one peak response be-

It is shown that variability of response energy and peak response can be
held w’thin reasonable limits by tolerances placed on a nominal phase
versu. requency characteristic as well as a nominal magnitude versus
frequency characteristic. The best way to establish the nomina' phase
characteristic for the simulation of particular shocks would require

INTRODUCTION

The purposes of this study are two-fold--
to explore any correlation between the residual
shock spectrum (preferably undamped, for sim-
plicity) and the energy absorbed at a failure
point or mal function point, and to explore any
uncertainty of peak response or energy absorp-
tion because of variability of phasing or timing
of response transients.

The shock spectrum originated as a spectrum
of possible responses of hardware. It has been
considered indicative of damage potential pri-
marily on the assumption of something like a

brittie fracture type of failure such that the
largest value of response acceleration is the
primary concern, Such an assumption is ob-
viously restrictive. We cannot readily pre-
scribe alternate criteria for all specific
types of failure or malfunction, but if the
energy absorbed in the test item could also

be shown to correlate in a simple way with the
shock spectrum, we would have a more general
foundation for spectral descriptions of shock
severity. Because of the simple relationship,
already known, between the undamped residual
shock spectrum and the Fourier transform, the
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former has a more fundamental nature than was transients will be interpreted as residual
originally expected. On this basis, a relation- two degree of freedom responses, but they
ship to energy absorbed wili be derived. could repr: :ent the response of a single
degree of freedom system excited by an ex-
The use of the shock spectrum does not ponentially decaying transient. This excita-
necessarily require an assumption that all tion would be transmitted with some change of
resonators in a test item be simple., For ex- magnitude and a response at the natural fre-
ample, in an earlier study!, the author treated quency of the resonator would be superposed.

a special case of a two degree of freedom
system. One situation leading to failure or

malfunction is a light flexible resonator, such Uncertainty of Peak Response

as a potentiometer wiper, mounted on something

more massive that happens to be tuned to Let the response of a resonant mechanica!
approximately the same frequency. The final system be the sum of two exponentially decaying
mass becomes subject to a 'whipping' action transients, which at first are assumed to start
because of the double amplification by res- at the same instant, but which may differ in
onance. Accordingly, the author assumed two phase as well as frequency and damping.
resonators in tandem as in Figure [, with no

loading of the first by the second, and focused ~ot “a,t

on the response of the final mass. The resid- a=A S'n(w't'él) + Aze S‘ﬂ(wzt'ﬁz)-
ua! response turned out to be the sum of two

transients, each proportional to the Laplace (n
transform (or, in the absence of damping, the with a = wl/ZQ‘ (2)

Fourier transform) of the excitation. It

fol lowed that if one shock had a higher un-

damped residual spectrum than another at every and a, = 02/2Qz (3)
frequency, or a higher Fourier transform magni-

tude, it would always produce the higher peak

residual acceleration of the final mass, ex- Accordiny to Appendix 1, this can be

cept for uncertainty due to relative phasing expressed as

and possibly starting time of the response

transients. This type of conclusion probably ’°|t ’Gzt
holds true for a wider variety of muitipie a= (A'e - Aye )
degree of freedom systems than those covered
by the particular idealized model. For ex- 1 i
ample, if the second resonator is allowed to xsin i-(w‘t'wzt‘¢|+®2) cos 3 (w‘t+w2t-0‘-02)
load the first, the characteristic frequencies
of the transients become system frequencies ot ~ast
differing somewhat from the frequencies of + (A‘e + Ae )
resonance of the individual resonators. But
there are still two transients of the same 1 1
character as for negligible loading. x sin 7 (mlt+m2t-¢‘~oz) cos ¥ (wlt-wzt-o‘+02).
(4)
which may be interpreted as a ‘‘carrier signal
at half the sum of the two original frequencies
modulated in accordance with an exponentially E
decaying signal at half the difference of the :
two frequencies. (n short, the half-sum fre- .
. k1 quency signa)l has an envelope given by
d
LA ty
A, = [(A‘e = Ay )
' m‘ mz 21
x sin (wyt~w,t=0,+¢,)
t, 7
-a,t ~a,t
ci + (A e ! + Ae 2 )2
1 2
2
} . Figure 1. Two Coupled Resonators x cos = (“|t‘w2t‘¢|*°z)],/2o (s)
s In the present study, we will assume two
response transients and explore the effect of which reduces to
phasing and starting time on both peak re-
sponse and energy absorbed. Generally, the
20
i
N\ ~ ——————
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A, = 2Ae cos Iv(w‘t-wzt-o‘*02)

“3pt v,
- 2A.e cos 3z -.w‘t~m2t-¢|+02) (6)

If Al - Az and a) = a,.

As dominance by one transient or the other
tends to decrease any uncertainty dependent on
their relative phasing, Equation (6) fs based
on a worst case, or conditions close to it.

If in addition, w) = wy, Equation (6)
reduces to

4t )
A, = 2Ae cos 7 (¢,79,), (7)

which has its largest value at the beginning,
corresponding to a simple exponential decay
with relative phase influencing the magnitude
but not the shape. The first peak of the
half-sum frequency response is the largest.

However, if w) and wy differ, there is
cosine as well as exponential modulation with
time. Depending on the relative phase, the
peak response is delayed in time and is de-
creased in magnitude because of the exponential
decay of both transients in the meantime. It
is reasonable to assume that the time of the
peak response is approximately equal to the
time of the first maximum of the envelope,
obtained by differentiating Equation (6) with
respect to time and equating the result to zero.

2a
T
. 0‘-02' 2 tan w) ~w,
p wy=wy
N I
- ¢|‘¢z - 2 tan wy=w,
bt M)
|
4=¢, ‘Ztaf‘ QH“V“J
bt e
¥2
. -1 -
. 0, °2 2 tan QzluI 02) (8)
)7, ’

with aid from Equations (2) and (3). For fre-
quency differences of the order of a bandwidth,
we can take Q) = Qp to be constant with fre-
quency when a} = a, is constant, or to be
equally representative of a worst case.

But we are interested, in this study, not
so much in the absolute response as in any un-
certainty due to small increments in ¢)-¢3 from
a nominal value. In other words, we will study
tolerances in relation to reproducibility of
shock response. By differentiation of Equation 8,

dey = dle=0,)/ (wy-u,y), L))
or, for small nonzero increments,

- - - 10

st 8(9,-9,)/ (w)-w,) . (10)

tn this time increment, the decay of the
exponential factor, in terms of q) is

e-u'Atp i} e-w'A(¢'-oz)/2Ql(wl-m2)

S a2, (56 an

1f we limit this to a 10 percent decrease
as a point of departure,

a(e,-4.) 20
174 € —_—FT— loge (.9)

= .21 Q(f~F,)/f, 2)

Note that the permissible phase shift is
directly proportional to (Fy-f,)/f). If we set
this equal to .1, corresponding to a 10 percent
change in frequency separation and assume Q > 10
except in the case of an intentionally installed
isolator, we obtain

A(Q‘-¢2) = .21 rad/10% change in separation

= {2 degrees/10% change in separation

(13)

for a 10 percent peak response uncertainty.

In deriving this result, we tacitly assumed
A(°I'°2) has the same sign as (fl-fz). We could
have readily obtained a similar tolerance for the
opposite sign by permitting the exponential to

increase (for negative A tp) rather than decrease.

At another extreme let us consider two
widely different response frequencies and try to
set up something like a worst case even if it is
rather unlikely, Figure 2 shows two such tran-
sients with approximately the same initial magni-
tude, Only the first half cycle of the lower
frequency transient is shown. The phase angle
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is chosen so the time dependence will be a slowly
decaying sine function. By the time it reaches
its first maximum, the higher frequency transient
has become negligible. The peak of the total
response is insensitive to the phase of the
higher frequency transient, but altering the low
frequency transient from a sine to a cosine would
double the response peak. The greatest varia-
bility comes when it is phased approximately as a
sine wave. Let us require that

sin ¢ 2 4 5 .2 rad
~ 12 degrees (14)

for the lower frequency transient, for a 10
percent variation in peak total response.

Acceleration

Figure 2. Two Response Transients

Finally, suppose that either transient is
initiated a time interval t, before the other
but we desire, as a point o? departure, to con-
trol t, so that this transient will not be
diminished by more than ten percent before the
other is initiated.

Energy Absorbed

An additional measure of the severity of
the effect of shock on the second resonator is
the energy absorbed in the damper c,. As befare,
let the response of a resonant mech%nical system
be the sum of two exponentially decaying transi-
ents as in Equation (1), which are at first
assumed to start at the same instant, but which
may differ in phase as well as frequency and
damping. |if <y is viscous, linear and independ-
ent of frequency, the energy absorbed in it
during the residual response is

2
E= <, f: v® dt Oan

where the instantaneous velocity
t
ve fo a dt

a,t

Ay =%
cos(m|t-o|) + ;;-e cos(wzt-oz)

-a,t ~a,t

=V, e ! cos(w‘t-ol) tV,e cos(wzt-ez),

(18)

unless the transients decay very rapidly. In
any event, the velocity can be reduced to the
final form except for minor changes in the pro-
portionality constant relating V) to A} or vy
to A2, and in the relationships of velocity
phase to acceleration phase. !t follows that

'u‘t
E=c, I: [V|e cos(w‘t-o‘)

2
+ Vz cos(wzt 92)] dt

=2a,t
1 2
- c2 V]2 f: e cos (mlt‘0|) dt

=2a,t
-at ~wt_/2Q 2 2 2 -
e O%ao o 5 .9 + eV, f: e cos (wzt &2) dt
or =(u,*a,)t
1 72
+2c, V.V e cos (w, t=s,) cos{w,t-2,) dt
wt /20 5 .1 27172 [: “177 “2tTv2
c, V z c, V 2
or t s .2/ (15) 2 1 2 2
(3 - -
T YT, i Y,
If we take the lowest to be Q = 10
¢ e (ul*az) cos()=8,) + (w)=w,) sinlt ~t,)
t, € 2/w rad/(rad/sec) (‘"‘1"’2)‘ + {"'|°"’z)
= 110 deg/(rad/sec). (16) (19)
22
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¥
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unless [ml-mzl {s extremely large. The third
term is a phase dependent uncertalinty.

Note that, apart from the uncertainty, the
energy absorbed increases as either Vy or V5 is
increased and consequently as either A, or Az is
increased. |f the two transients are those of
the double resonator of Figure 1, Ay and A, are
proportional to the Laplace transforms of the
shock excitation obtained by inserting the com-
plex frequencies of the two resonators in the
Fourier transform of the shock time hlstory.
This was shown in the previous study‘. Con~
sequently, apart from the phase dependent un-
certainty, whichever of two shocks has the
greater Fourier transform (or undamped residual
shock spectrum) is the shock that imparts the
larger total energy to the second resonator
during the residual time interval.

As in the case of peak response, the
energy absorbed is particularly sensitive to
phase difference when the two transients are
otherwise closely similar. For reference pur-
poses, if V; = Vo, a] = a3 and w)| ~ wp, the
energy absorbed is given by

o vy
Ew —2.“_‘_. Do+ cos(o‘-oz)] (20)

which is capable of 100 percent variation with
relative phase angle.

But as (ml-wz) increases with V{ = ¥7 and
a) = az, the variability of response with ($1-43)

decreases, for Equation (19) reduces more
generally to

20

ba,? cos(s)-6,) + 20, (u;-u,) sTn(s,~s,)

— 2 2z
“ul + (m'-wz)

cos{é,~9,) + [(f,-fz)/a‘] sin(e,-6,)

-] +
7, 2
Ve (F)-F,)°/8,

=1+ N/D, (21)
where N/D is the variation,
N= cos(¢‘-¢2) + [(fl-fz)/B'] sin(s;=9,), (22)

and

D=1+ (fl-fz)zlalz . (23)

To obtain the maximum value of N/D, we set
aN/3(61-92) = O to get

(4)-0,) = tan”'[(F)~F,)/8,] (24)

and combine this with Equation (22) and (23),
or with Equation (21) with the unity term
omitted. (N/D)pax is plotted versus {(f;-f3)/8
in Figure 3. It decreases monotonically as
(f-f;)/B increases.
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Figure 3. Phase Sensitivity When ap = a, and V' = v2

Now, N/D could be expressed as a sinusoidal
function of A¢, of amplitude (N/D)max, where
A¢ is measured from the value of ($;~42) for
which N = 0. We can ensure, as a point of de-
parture, that the variation be limited to 10
percent by requiring

sin 8¢ < 1/ (N/D) (25)
or
Ad s sln-I [‘l/(N/D)maxl (26)

or
(8/(F,-F,)1 86 < [8/(F)-F,) sin™" Las(w/o) )

(27)

in degrees per fractional bandwidth, Equation
(27) is also plotted in Figure (3). [t descends
rapidly at first but settles down to about 6
degrees as (fj-fy) = 2B. But

(8/(F)-F,)] 80 = [F,/(F ~£,)Q,)ae. (28)

As in the analysis of uncertainty of peak
response, we set (fy-f,)/f, = .1 and assume a
minimum Q = 10, Then, Equation (26), as plotted
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in Figure (3) becomes also the permissible phase
increment per 10 percent change In frequency
separation for at most a 10 percent uncertainty
of response. Consequently an upper limit of 6
degrees per ten percent change should be
sufficient--about half the number yielded by
Equation (13).

Time Delay Versus Phase Shift

In connection with the uncertainty of peak
response of a double resonator, we touched
briefly on the effect on initiating one re-
sponse transient before the other. However,
tolerances on relative initiation time are not
independent of tolerances on relative phase
shift.

We can start our investigation of this by
acking what sort of phase snift versus fre-
quency may be equivalent to a constant time
delay t, so that

sin u(t-to) = sin (wt-4). (29)
It follows that

u(t-to) = wt-¢
and, therefore,

¢ = ut {(30)

[¢]

is simply a phase angle proportional to
frequency.

More generally, the delay in any narrow
frequency band, according to Appendix 2, is
given by

to = d¢/dw (31)

Equation (16) gave the maximum time delay
of one transient such that the other would not
decay more than 10 percent in the meantime. Sub-
stitution in Equation (3}) yields

wd - fd - fae
—7ﬁ%- -—3%- —If
£ 110 degrees per fractional bandwidth. (32)
If we set Af/f = ,1, we obtain

Ad € 11 degrees per 10 percent change in
frequency separation. (33)

e e e e O a——————— = .

For simplicity, this was computed as if
only one transient could be subject to a time
delay because of phase versus frequency
characteristic, but, more generally, it applies
on a relative basis. The phase angle must not
change by more than 11 degrees from a_nominal
curve with a 10 percent change in frequency
separation. This is almost the same as the
results obtained previously on the assumption
that the transients started at the same time,
or that we will look at peak response or energy
absorption only after initiation of the second
transient,

Jf two transients have approximately the
same amplitude and decay rate, but one decays
10 percent before the other is initiated, the
peak response subsequently is possibly decreased
by 10 percent. Total power dissipation is less
sensitive to starting time, From Equation (19),
if one transient decays [0 percent before the
other is initiated, the energy dissipated there-~
after may decrease about 10 percent of the total
energy has been dissipated already, so the net
change is much smaller. However, it follows from
Equations (19) and {21) that the power dissipated
after the initiation of the second transient re~
mains sensitive to relative phase at that instant.

A computer study of peak response and energy
dissipation in a double resonator would provide
more insight into the permissible phase versus
frequency variations in the Fourier transform or
residual undamped shock spectrum of a shock ex-
citation. In the meantime, it is reasonable to
use our worst case estimates as points of de-
parture for shocks whose dominant feature re-
sembles a terminal step function. We should keep
in mind that the direct effect of phase angle on
peak response, and the indirect effect, by way of
transient initiation time, can be cumulative; that
we have not examined any effect there may be from
overlap of the pulse with initiation of transients
and, finally, that there could occasionally be
three resonators coupled together.

We have three estimates of phase rate
tolerances with frequency, from a nominal curve,
based on 10 percent variations in an aspect of
response of a double resonator. Equation (13)
permitted 12 degrees per 10 percent change in
frequency. From Equations (27) and (28}, we ob-
tained 6 degrees per 10 percent change in fre-
quency. Equation (33) permitted |i degrees per
10 percent change in frequency. Equation (33)
permitted 11 degrees, per 10 percent change, with
some additive effects on the other uncertainties,
To be conservative, we might suggest a tolerance
of + 2 degrees per 10 percent change in fre-
quency, if it is not too difficult to achleve,
This should keep worst case combined effects on
response within about t S percent.

In addition, for a rather unlikely worst
case, Equation (14) permitted a tolerance of
about 12 degrees for a 10 percent response peak
variation--a tolerance on deviaiton of phase
angle rather than phase rate from a nominal
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curve. We suggest, as a practical tolerance, nators will be at least as great as for a shock
t 6 degrees for a *+ 5 percent variation, If it Is to be simulated. A terminal step function tends
not too difficult to achleve. to initiate all response transients simultaneously
so they can start interacting before any decay i
occurs. However, examination of the previous :
Conclusion study shows that the relative phase for two re- :
sponse transients close together in frequency
We have extended the utility of the shock is such that the peak response may not occur i
spectrum concept by showing that the peak re- for several cycles; this latter consideration ;
sidual response and residual energy absorption tends to make a shock test less conservative. H
In both simple and coupled resonators are re- 1f the terminal step were modified by a frac- i
lated to undamped residual shock spectrum. tional octave fllter, the response transients B
would not be initiated simultaneously, but the :
Actually, these results for residual re- total response peak or energy absorption might .
sponse should not be surprising. Such response in some cases be greater. B

consists of one or more transients at fre-

quencies and decay rates determined by resonances

of the hardware. Transients with higher initial Appendix |

peaks will tend to dissipate more energy. For

shock excitations that do not have a definite

ending or tend to overlap the residual response Sum of Two Transients

or to contribute significantly, by their own

transmission into a test [tem, to peak response -a,t a,t

and energy absorption, analysis would be more a=Ae sin(us't-o') + Aye sin(w,t=¢,)
complicated. 2" "2

ORI N

Consideration of energy dissipated rein- —at ~a,t
force the theme of the previous stud_y‘ that the = A,e sln(w't—¢') - Aze 2 sin(w, t~¢,)
residual shock spectrum is more important than L
the initial in a test specification. The
dissipation of energy tends to be more by In-
duced transients than by transmitted pulses.
For example, a step function was shown in the }
previous study! to be transmitted through a t
|inear resonant system without modification. ot -a,t
Consequently, this by itself involves no rela- = (A'e - Aze ) sln(mzt-¢ )
tive motion and no energy dissipation. 2

-uzt
Aje [sln(mlt-ol) + sln(mzt-Oz)]

+
SN O

We showed also that, for one special type
of shock time history, responses can be made
reproducible by placing tolerances on maximum ‘2‘ [sln(u‘t-o|) + s'"“"z"‘z” (34)
deviation of phase angle from a nominal curve
and on phase rate witE Trequency, as well as
on the mgnituaz of the Fourier transform or Similarly,
shock spectrum. This would indirectly limit
any variation in shock excitation time history. so,t
If such a practice were widely followed in a= (Aze
specifying shock tests, it would undoubtedly
answer the misgivings many engineers have about 1
current use of the shock spectrum. It is too -alt
early, however, to make a firm recommendation + Ae [sln(u‘t-ol) + sln(mzt-oz)] (35)
of such practice, as other types of time history
need to be studied, either by mathematical
analysis or by computer. Now, we take the arithmetic average

-a,t

+

'Glt
- Ae ) sln(u't-ol)

The simplest way to specify a nominal curve 1 ~a,t “ant
is to make it relative to some standard frequency a= 1-(A|e - Ay ) [sln(m't-o‘)
more or less in the middie of the range of
interest, Phase can be defined as an additional
feature of the undamped residual shock spectrum - s|n(w2t'02)]
by measuring the phase of each residual transient
relative to the transient at the :iandard fre-
quency.

) ot -a,t
¥ (Ale + Aye ) [sln(u't-ol)

One question left unanswered is what is the
best way to select a nominal spectral phase + sln(wzt-oz)], (36)
characteristic so as to ensure with minimum ex-
cess margin that the response of coupled reso-
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which leads directly to Equation () because

1 1 1. C. T. Morrow, “'Shock Spectra, Residual,
sin x¢siny = 2 sln = { x+y) cos ¥ (x-y). (37) Initial and Maximax as Criteria of Shock
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Appendix 2

Relation Between Envelope
Time Delay and Phase
Versus Frequency Characteristic

It follows from Equation (37) that

sin ) (t-to) + sin mz(t-to)

=2 sin [ 3 (op+u,) (et )]
\ x cos| ;_(“’I-"’Z) (t-to)]

and

sln(mlt-ol) + sin(wzt-¢2)
= 2sin 3 [{opta) t-(o44,)]

x cos 2 [luy=u,) t=(8,=6,)] (38)

If the envelopes are to be identical functions
of time,

(0)-w,) t = (0,-9,)

[l or

o - 3L (39)

© s Wy * Wy
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Westinghouse Electric Corporation

HIGH PERFORMANCE VIBRATION ISOLATION SYSTEM
FOR THE DD963 GEARS

P.C. Warner D.V. Wright

Marine Division

Sunnyvale, California 94088 Pittsburgh, Pennsylvania 15235

Westinghouse Electric Corporation
Research and Development Center

A system that effectively vibration-isolates a large high horsepower
marine gear of conventional design from its foundation has been
developed. Although it has not yet been tested at sea, its performance
has been verified by extensive shop tests on fully loaded gears. The
system is unconventional in that loads are carried through damped
metallic members, thus avoiding problems associated with creep
effects in elastomeric isolators. Further, isolator system stiffness is ap-
proximately ten times that of conventional isolation systems employ-
ing Navy rubber mounts, thereby alleviating problems due to large
excursions during shock or other extreme operating conditions.
Design considerations and restrictions are discussed. The isolator
system is described and information on its vibration transmission

characteristics is presented.

INTRODUCTION

Specification for gears, Figure 1, for the
DD963 Class destroyers called for strue-
tureborne vibration levels markedly lower
than vibration levels measured on the similar,
though smaller gears supplied for the DE
1052 Class destroyer escorts. It was judged
that such a large incremental improvement in
structureborne noise levels could not be ob-
tained with assurance by any conventional
gear design and manufacturing technique,
particularly in view of weight and cost limita-
tions. Thus, a gear isolation system was pro-
posed. This system has to provide 20 to 25 dB
insertion loss in certain critical frequency
ranges, not require a flexible coupling in the
line shaft for stress reasons, and be designed
around essentially committed gearcase and
engine room designs. It will be appreciated
that the latter restrictions in effect

27

precluded a ‘center of gravity’ mounting, and
thus led to an undesirable amount of spread
of the rigid body natural frequencies of the
gearcase on the isolation system.

To achieve the full benefits of such a ‘hard’
isolation system, it is essential for the ship
designer to provide a foundation with a num-
ber of high impedance points at which to
connect the isolators. Clearly, such an isola-
tion system cannot be expected to carry
shock loads and other extreme operating
loads, hence a separate, though carefully in-
tegrated snubber system was designed.

While an isolation system using elastomeric
materials can be designed to meet these re-
quirements, there are distinct advantages to
the use of a damped, metallic system. One of
the important advantages is that in a metallic
system, the system stiffness is approximately
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Figure 1.

the same statically as dynamically, and does
not change appreciably with frequency.
Thus, minimum stiffness values set by design
considerations of stress or deflection, gear

tooth misalignment stresses in the present
case, do not result in dynamic stiffnesses
which cause excessive vibration transmission
over that to be expected from static stiffness
values. (Typically this metallic isolator
system has a dynamic to static stiffness ratio
of approximately 1.1 as compared to a ratio
of about 1.5 for typical rubber mounts, and
approximately 3 for a design using Fabreeka,
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a fabric stiffened elastomer). A further ad-
vantage of the use of such metals as
aluminum, titanium, or steel for the load

carrying members is the absence of creep
effects such as commonly occur in mounts of
elastomeric materials. Thus, no portion of
allowable deformations need be reserved for
such effects. Additionally, the metallic isola-
tor system is compact. A vertical isolator
which carries static loads up to about 45,000
pounds occupies a space of only about 8 in-
ches in diameter and 20 inches long. The 8
inch diameter, in the plan view, compares




with an equivalent required load carrying
area for Navy 10,000 pound mounts of two
square feet in the plan view. In addition to
the geometrical advantage, the metallic
isolator has, by virtue of its small cross sec-
tional area, approximately the same high fre-
quency characteristic impedance in the load
carrying direction as the static load
equivalent in Navy 10,000 pound mounts, and
a large advantage in the other five degrees of
freedom, which also can transmit apprecia-
ble vibration.

DESICN OBJECTIVES

Our experience shows that there are many
sources of vibration excitation in a marine
reduction gear, and that the energy source

L e A

for any particular observed frequency of
vibration may be difficult or even impossible
to identify even though the vibration itself
may be quite large at times. Despite this, for
a modern gear, it can usually be assumed that
the chief source of either airborne or struc-
tureborne noise will be transmission error at
second reduction {(low speed) mesh frequen-
cy. On occasion, however, transmission error
at the first reduction mesh frequency will be
a contender for ‘most troublesome’ honors.
Thus, an isolation system which is to produce
acceptably low levels of vibration at the top
of a DD963 foundation must provide large
insertion loss over the frequency range oc-
cupied by these two sources of energy for the
range of propeller speed to be tested; in this
case, from roughly % to % full speed. See
Figure 2.
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Another known energy source which at times
can dominate noise considerations is the
vibration due to unbalance in the various
shafts in the gear, but particularly the high
speed pinion shafts. These sources lie in the
low end of the frequency range of interest,
and should preferably not coincide with any
rigid body mode of the gearcase at any test
speed. While these energy sources may not
require isolation, they probably can’t in
general stand a large amplification. Thus, it is
necessary to damp the isolators to control the
Q of the rigid body modes, particularly those
modes in the fore and aft direction where no
appreciable oil film damping between rotat-
ing and stationary parts exists. In addition,
propeller excited motions and motions due to
various sea states and the possibility of im-
pacting hard snubbers also dictate that the
rigid body modes be well damped, say Q
(%) less than 25.

At the high end of the frequency range of in-
terest, insertion loss is limited in part by the
Q of the isolators at the surge frequencies.
Thus, there is good reason to obtain reasona-
ble damping at high frequencies, and to place
the first surge frequency well away from any
of the known chief sources of excitation in
the speed range of primary interest. Further-
more, the frequency range of interest for the
DD963 contains at least an octave in fre-
quency above 10 KHZ in which there did not
appear to be any valid data on struc-
tureborne vibration levels. Hence, it ap-
peared highly desirable not only to have ap-
priciable high frequency damping in the
isolators, but also to minimize their high fre-
quency characteristic impedance (pCA).

In addition to the frequency considerations
outlined previously, it is also necessary to
determine the foundation impedance into
which the isolators will work in order to per-
mit final isolator design for a given estimated
required transmission loss. Evidently the
higher the foundation impedance, the easier
the isolation design and vice versa. After
much investigation and negotiation it was
finally agreed to use as the nominal founda-
tion impedance, an idealization of the impe-
dance measured on a DE 1052 Class gear
foundation. The curve used in design, and to
which the measured structureborne vibration
results are corrected is given in Figure 3.
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The desirable life of an isolator system in
terms of elapsed time may well be readily
evident. The attainable, or even necessary
life in more fundamental terms such as num-
ber of excursions of an isolator through the
full snubber clearance due to ship motion
and operating loads may be difficult to assess.
Indeed, it will usually depend strongly on
the speed-load-sea state operating profile
and dynamic characteristics of the ship itself.
Clearly, required snubber clearances them-
selves depend on such factors, while the
stress levels induced in an isolator during ex-
cursions will be proportional to the
clearance. In the present case, the process of
estimating the necessary cyclic life, hence
the design life, was both long and tortuous. It
culminated essentially in an agreement on a
design objective life of 107 cycles and an ac-
celerated fatigue test demonstration of 106
cycles minimum. This agreement resulted in
a modest, though very effective, redesign of
the vertical isolators, and a minor redesign of
the athwartship isolators.

The essentials of the isolation system are pro-
bably seen most clearly in Figure 4. Vertical
forces including torque reactions are carried
by the eight vertical isolators. Fore and aft
forces are carried by four fore and aft isola-
tors and athwartship forces are carried by
eight athwartship isolators. All isolators,
Figures 5 and 6, transmit forces principally
along one axis and each obtains its flexibility
along this axis by virtue of tension-compres-
sion strains rather than bending strains. This
tends to maximize the value of the first surge
frequency and to minimize the high frequen-
cy characteristic impedance, since isolator
area is small. For the same Q, it does require
a greater ratio of damping material area to
isolator material area since the strains in both
materials are the same.

The steel snubber system, which is also
shown in Figure 4, carries all shock loads and
the higher range of ‘normal’ loads due to ship
motions, etc. The system is designed to be
clear of the snubbers (that is, isolating) up
through sea sta’ four, though not quite to
full power.
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VERTICAL ISOLATORS

The vertical isolators, Figure 5, have a stiff-
ness in the load carrying direction of .71 x 10¢
Ib/in. and they are damped by Lord LD 502
damping material to a Q of 28 at low fre-
quencies and 125°F. The first surge frequen-
cy occurs at 2,000 Hz.

The isolator is made from an extruded bar of
7075 aluminum in the T73 condition by tre-
panning the annular area between the inner
and outer tubes. The need for welding or an
intermediate bolted flange design is thus
eliminated. The T73 condition was chosen
for stress corrosion reasons and the isolator
has, as additional protection, a proven
urethane paint system applied. Since re-
quired cyclic life is high, and peak stresses
are of necessity also reasonably high (up to

30,000 psi tension for maximum excursion),
the isolator is shotpeened all over to Almen
intensity of .010-.014. Further, the contours
at both flanges and at the top “fold over”
section are carefully designed to minimize
stress concentrations. Additionally, the stain-
less steel tapered collar and stainless steel
tapered adapter piece not only minimize
stresses, but also impart a favorable setup
stress in the critical flange area. These
measures resulted from finite element stress
calculations, strain gage tests, and full scale
fatigue tests. Fatigue tests to date indicate an
acceptable margin in cyclic life.

The LD 502 damping tile has favorable pro-
perties, Figure 7, for the required tem-
perature range. The properties are relatively
insensitive to frequency. We did find it
difficult to apply in that it was difficult to get
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Figure 4. DD963 Gear Support System

good bonding of tile to isolator, particularly
to the inner tube. More disconcerting, in
fatigue at high tensile stra a levels, say .003
inch/inch, the tile itself tended to fatigue and
break away adjacent to the adhesive joint if
operated below the glass transition tem-
perature (about 90°F). This problem was
overcome by starting the damping tile in the
low stress region of the isolator, contouring
the end of the tile to reduce the strain con-
centration, and testing in a temperature

range closer to the actual use range of 110°F
to 140°F. It should be noted also that, for
economy reasons, our test strain rates were at
least an order of magnitude greater than
those which might be expected in service.
Thus, the test tends to exaggerate the strain
in the tile over maximum operating strain.
Latest tests, when conducted at the proper
temperature, show that the damping tile sur-
vives 1.5 x 108 cycles at full strain of .003
infin without noticeable degradation.
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HORIZONTAL ISOLATORS

The horizontal isolators, Figure 6, have a
sitffness in the load carrying direction of .9 x
108 Ib/in., and they are damped by LD 502
damping tile to a Q of about 10 at 125°F. The
first surge frequency occurs at 4400 Hz.

These isolators are made of 6 Al 4V titanium
by electron beam welding a rod into two
flange pieces. The circumferential weld is
outside of the highest stress zone. The isola-
tors are shotpeened to Almen .010 - 014 all
over the central section, and the junction
between the rod and flange is an approxi-
mate ‘waterfall’ (variable radius) fillet design
to minimize stress concentration. Peak
stresses for excursion through the complete
snubber clearance fall considerably below
the estimated fatigue limit of the material, so
that the design will have essentially
unlimited life.
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Figure 5. Vertical Isolator

The horizontal isolators are damped by LD
502 material also. As with the vertical isola-
tors, both contouring of the tile ends and
avoidance of excessively low temperature
testing were necessary to avoid failures of the
damping material.
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ISOLATOR TESTS

During the design process certain key spot
checks were made on material properties
and isolator design. In particular, experimen-
tal evaluations of the dynamical properties of
LD 502 gave damping and stiffness values
slightly more favorable than Lord’s curves.
Figure 8 gives results of tests on a fore and aft
isolator terminated by a mass. Agreement
with calculation is good, particularly relative
to Q estimates. Other data, with greatly ex-
panded vertical scale, and accurate frequen-
cy determination at the 3 dB down points
also give results which agree well with com-
putation. Figure 9 gives results of the
horizontal isolator mounted on a fore and aft
terminator. The solid line, measured ac-
celeration ratio, curve is corrected for
variance of foundation impedance from the

design values of Figure 3, giving the dashed

curve. The accuracy limitations inherent in

such a large correction factor are evident.
Neverthless, the low frequency transmission
loss, first surge frequency, and transmission
loss at the surge frequency all match calcula-
tions to a reasonable degree although there is
evidently more flexibility in the connections
than has been accounted for. Only the cru-
dest estimate of average acceleration
transmissibility, about 40 dB, is available at
higher frequencies. This compares to an esti-
mated 32 dB at the broad minimums of the
calculated transmission curve. Figure 10
gives similar results on the current design of
vertical isolators. (It has been fatigue tested
for 3 x 108 full deflection cycles, the last 1.5 x
108 cycles with the damping tile on). Again,
transmission calculations and experimental
results are in reasonable agreement. Figure

B
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T -7 - 15 1"

TRANSFER G'S/LB, dB re 1G/LB

s 6 7 8 91
1000
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Figure 8. Mass Terminated Fore and Aft Isolator
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11 gives the results of testing the vertical
isolator on its terminator for transmission
loss. Results have been corrected on a point
by point basis for the difference between ter-
minator impedance and the design objective
impedance of Figure 3. Since this correction
can be as large as 20 dB, and since both the
correction curve and the basic response

s e e s e R N R R —

curve show many peaks and valleys above
1500 Hz, it is difficult to obtain an accurate,
corrected curve. Thus, Figure 11 must be
used with caution. It does, however, bear out
both the design calculations and other test
results both as to basic levels of transmission
loss and as to location and severity of surge
frequency transmission peaks.
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STRUCTUREBORNE VIBRATION TESTS

One of the key acceptance tests performed
on the DD963 gears is the structureborne
vibration test. In this test, two gears are
driven ‘back-to-back’ by a steam turbine as
shown in Figure 12. Proper torques are ob-
tained by means of torque appliers in the
high speed connecting shafting. (These tor-
que appliers permit one gear to be torqued
against the other). Thus, any torque and
speed conditions can be obtained on the test
gear. To minimize the uncertainties of cor-
recting gear vibration output for test founda-
tion and gear impedances, and to determine
the true performance of the gear and isola-
tion system, a special I x 106 Ib concrete,

R SN, AR . .~ _u.a__mw

steel, and epoxy foundation was built to ap-
proximate the reference impedance curve
shown in Figure 3. The design and testing of
this foundation is treated in detail elsewhere
{#). It is sufficient for present purposes to ob-
serve that measured structureborne vibration
data are corrected for differences between

(*) J. R. Hupton - “The Design and Measure-
ment of a High Impedance
Foundation to 20 KHZ and
the Use of the Data in Cor-
recting Noise Measure-
ments.” 45th Shock and
Vibration Symposium

Figure 12. Back-to-Back Gear Test Driven By Steam Turbine
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measured termination impedance and target
values of Figure 3 based on the assumptions
that the isolators are flexible compared to
gear and terminator, and on complete
decoupling from terminator to terminator.
Corrected structureborne vibration values
are power summed over 1/3 octave bands
and power averaged over all isolators for a
given direction. These values are then com-
pared to specification values.

Each gear is vibration tested at a number of
speed and load points. Initially, at each test
speed, the test values were taken as the
worst values over a speed range of +3% of
the test speed. Subsequently, certain of the
+3% test points were eliminated. All gears
have passed these tests with minimum
margin ranging from 4 dB to about 12 dB.
The point of closest approach in all vertical

cases has been at the first surge frequency of
the isolator despite there not being a major
noise source coincilent at this frequency ex-
cept at the lowest test speed. However, as
specification limits have not been
threatened, no effort has been made to oper-
ate the isolators at proper (more favorable)
temperatures. Figure 13 shows a typical com-
posite test result for the test speed 2680 RPM
and the £3% points.

Since it is not possible to ascertain from
curves such as Figure 13 whether the isola-
tion system is performing approximately as
designed, some testing was done with the
vertical isolators replaced by stiff steel con-
nectors. (Low frequency stiffness approx-
imately 107 lb/in). Figure 14 gives typical
results. Above mount readings, typical of
measurement of a hard mounted gear, reach
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10-15 dB above specification limits. The
below isolator data are from a test with the
same conditions, but the gear mounted on the
isolation system. Figure 15 gives the dB
difference between gear flange vibration
measured both above the steel connectors
and above the vertical isolators. Data are
from tests at two different speeds and are
power averaged. It can be seen that in the
frequency range above approximately 1
KHZ, vibration levels above the steel con-
nections were generally within +4 dB of the
levels above the vertical isolators and the
average difference is close to zero. In the fre-
quency range from 1 KHZ down to 250 Hz,
the average ratio drops off to approximately -
6 dB. In the lowest frequency range, the ratio
is quite variable, as may be expected. Thus,
there is no large reverberant vibration

40

buildup in the gear due to decoupling from
the foundation damping; hence, over most of
the frequency range of interest, transmission
loss and insertion loss are approximately the
same.

Figure 16 gives results of tests at input
speeds of 2140 RPM and 2680 RPM. In both
cases, power averaged measurements made
below the vertical isolators and corrected for
terminator impedance are compared to
power averaged measurements made above
the vertical isolators. Data for above and
below isolators were not taken at the same
time, and thus lack of repeatability of the
vibration, due to imperfect repeat of test
conditions, and other uncontrolled events,
must have an effect. Despite this, the two test
speeds give essentially the same results,
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cy range of interest.

which are in accord with results of mass ter-

minated isolator and isolator on terminator

tests and calculations. Basic low frequency

transmission loss (approximates insertion loss)

is seen to be 30 dB or slightly higher, com-

pared to an estimated 32.3 dB for the design

employed in these tests. The first surge fre-

quency stands out at 2100 Hz and gives a

transmission loss of about 8 dB. This com-

pares to a calculated surge frequency at

115°F of 2240 Hz (for the initial design) and

calculated transmission loss, assuming a dis-

sipative termination, of 15 dB. Since during

gear vibration testing the isolators were

operated at room temperature rather than

the more favorable service (and calculation)

temperature, this difference appears

reasonable. Higher order surge frequencies

evidently are of reduced importance, as

‘ theory predicts. The transmission minimums

. between these surge frequencies approxi-
mate 30 dB, whereas 3l dB is predicted by

. comparing the characteristic column impe-

\ dance of the isolator with the termination im-
pedance. Above 10 KHZ only the high’s and

low’s of the transmission loss are plotted as it
was desired to define general levels only, and
the details cannot be interpreted in any case.
It appears sufficient to note that good
transmission loss holds through the frequen-

Similar extensive test data are not yet availa-
ble for the horizontal isolators. However, the
fragmentary data that are available tend to
give a picture which is very similar to the pic-

ture on the vertical isolators. The horizontal
isolators being simpler than the vertical isola-
tors, are easier to analyze accurately. On the
other hand, the terminators for the horizon-
tal isolators are more complex than those for
the vertical isolators and are more difficult to
analyze. Experimental evidence to date indi-
cates a more than adequate performance of
the isolation system. However, if geometeric
constraint were even moderately relaxed in a
new design, this type of isolation system
could be further improved. Better damping
of the vertical isolators will improve perfor-
mance both at the surge frequencies, and in
the low frequency range where rigid body
modes occur. Further, low frequency perfor-
mance could be improved by a closer ap-
proach to a;‘center of gravity' isolator ar-
rangement, thus minimizing the spread in
rigid body modes. Finally, cost could be ap-
preciably reduced by eliminating the ‘folded
back’ vertical isolator design in favor of a
design similar to that of the horizontal isola-
tors.
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THE DESIGN AND MEASUREMENT OF A HIGH IMPEDANCE
FOUNDATION TO 20 kHz AND USE OF THE DATA IN
CORRECTING NOISE MEASUREMENTS

J.R. Hupton
Westinghouse Electric Corporation
Marine Division
Sunnyvale, California 94088

A foundation (107 Ib) was designed such that the point impedance of
each isolator termination point could be controlled from 14Hz to
20kHz. The objective was to have each termination impedance ap-
proximate a reference impedance and then measure each termination
point impedance such that the measured structureborne noise of the
gear could be corrected to the reference impedance. This reference
impedance is itself an approximation of a tvpical destroyer engine
room foundation and was used as a design objective by the ship-
builder for their engine room foundation.

INTRODUCTION

When structureborne noise measurements
are made on a component for shipboard use
they are normally conducted in accordance
with MIL-STD-740B. Under this normal pro-
cedure, the component is mounted on some
type of Navy standard resilient mount in
order to reduce the effects of extraneous
shop background noise and to ensure that ali
the components of a similar nature are tested
in similar environmental conditions. The
above mount vibration readings are taken at
the noisiest foot of the machine. If the foun-
dations to which the resilient mounts are at-
tached differ, the impact on the impedance
that the component under test is exposed to
is small because the resilient mounts have a
relatively small impedance as compared with
the foundation.
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This procedure is satisfactory as long as the
components being tested will be resiliently
mounted in service and an acceptance cri-
terion is available for these test conditions.
Such a criterion might be based on historical
data of like or similar components. However,
if such an acceptance criterion is established
by means of analytical computations based
upon a desired sound pressure level in the
water and transfer functions between the
water and the component’s foundation, then
it becomes more desirable to eliminate the
isolator as an unknown. This is especially true
if the isolator is of a new design and little is
known about its insertion loss.

Therefore, below mount measurements are
better because they include the isolator's
performance as well as set-up variations of
the component-isolator combination. They
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also eliminate errors in evaluating isolator
performance. If the isolators were evaluated
separately and then combined with an above
mount criterion, the resulting below-mount
level would be more difficult to predict, and
such an approach would also constrain the
isolator design process since it would be
judged on a separate performance criterion.
Whenever waterborne levels are to be
calculated from measured structureborne
noise, levels measured on the ship’s founda-
tion are better than data measured above the
mount.

If the noise measurement method involves
making measurements on a rigid foundation
for the purpose of comparison with an accep-
tance criterion, then it is important to know
the termination impedance for which the ac-
ceptance criterion is intended. And, conver-
sely, the noise measurements made on
different foundations must be corrected to a
reference impedance for valid comparison.

If a foundation is to be constructed for the
purpose of a noise test program, then ideally
the point impedances of the attachment
points should be equal to the impedance the
component will be connected to in normal
service. Such equality over a large frequency
range is unrealistic, but it is not unrealistic to
achieve impedances within 10 to 20 db of a
desired reference impedance. Such a test
program can be conducted simply by
establishing a reference impedance curve
(expressing the impedance as a function of
frequency) that closely approximates the im-
pedance the component is expected to see in
normal service and then by designing and
constructing a test foundation whose point
impedances closely approximate the
reference curve. The noise data that is
measured on this foundation beneath the
component under test can then be corrected
by the ratio of the measured point impe-
dances of the foundation to the reference im-
pedance. Such a procedure requires that the
point impedances of each terminating point
of the foundation be measured exactly as
functions of frequency. The advantage of
such a system is that the measured noise data
is corrected to a known impedance and
thereby represents the exact noise level the
foundation with that impedance would have
in the ship, assuming that the ship designer

designs the ship foundation to meet the
reference impedance. It is important that the
reference impedance be used as a design ob-
jective for both the test foundation and the
ship foundation so that there will not be ma-
jor differences in stiffness between the two.
This method of testing is ideal for compo-
nents that include isolators as part of their
design.

REFERENCE IMPEDANCE

In 1971 Westinghouse started design and
construction of a shipboard reduction gear
that was to provide structureborne noise
levels that could not possibly be guaranteed
without some form of isolation. Because of
the lack of a flexible coupling in the drive
shaft system, this isolation had to be designed
to eliminate the large excursions that the
reduction gear would normally have when
mounted on a conventional soft mounted
system. Furthermore, the acceptance cri-
terion as agreed to was a structureborne
noise level to be measured on a foundation:
that is to say, whatever the form of isolation
used, it was considered to be part of the gear.
This meant that the point impedances of the
foundation would have significant impact on
the noise measurements made, and,
therefore, the customer desired that the ac-
ceptance criteria be tied to a reference impe-
dance.

The final reference impedance curve as
shown in Figure 1 is the result of technical in-
vestigations as well as negotiations between
Westinghouse and the customer. The techni-
cal investigations included impedance
measurements on foundations of similar ships
for which historical gear noise data was
available. Since the ability to design and
manufacture a reduction gear to meet a
specific structureborne noise level had to be
based upon historical gear noise data, in a
similar fashion the impedance from which
this historical data was taken was the best
criterion in establishing a reference impe-
dance curve. Of course, the impedance
measurements made do not follow precisely
the curve shown in Figure 1. However, the
general trend was similar in that the impe-
dance tended to follow a stiffness line up to |
to 2 kHz and then to vary sharply with fre-
gquency throughout the upper frequency
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range, but it tended to oscillate between
resonances and anti-resonances about a cons-
tant impedance line of about 5,000 Ib. sec/in.
The stiffness portion of the measured impe-
dance was consistently in the vicinity of 30 x
10% Ib/in, Therefore, the reference impe-
dance curve as shown in Figure 1 represents
the impedance to which the structureborne
noise acceptance criterion was tied, and any
differences between the foundation impe-
dance and this reference impedance curve
would produce a mathematical correction to
the measured structureborne noise on the
same foundation. The fact that the curve ex-
tends all the way up to 20 kHz illustrates
another unorthodox feature of this noise test
program in that structureborne noise and im-
pedance were measured to 20 kHz instead of
the normal 8 kHz. This feature in itself re-
quired that many technical problems in foun-
dation design and instrumentation be over-
come.
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Reference Impedance

THE FOUNDATION

The design and construction of a foundation
that would support a shipboard reduction
gear for test and approximately duplicate the
impedance shown on Figure 1 was in itself a
major undertaking. The basic approach to
achieve this impedance was to mount a large
steel “terminator,” one for each gear mount-
ing point, in a large common concrete foun-
dation whose size and mass were designed
such that its mass line would have the same
impedance that a 30 x 10¢ Ib/in. stiffness has
at a low frequency. The steel terminator had
a plunger made of steel separated from the
outer steel part of the terminator by a visco-
elastic material whose shear stiffness was
designed to provide the 30 x 10 Ib./in.

spring.

Figure 2 shows an isometric view of the foun-
dation with the terminators located in the
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Figure 2. Impedance Block Details

concrete. The design objective was to make
each terminator solidly integral with the con-
crete foundation such that the “mass line”
portion of the impedance would be con-
trolled by the one-million-pound foundation.
The acceleration response, per unit force, of
the foundation is 10-% g's/Ib. for frequencies
below which the stiffness of the terminator
controls the impedance (i.e., mass controlled
region). As can be seen from Figure 1, the
lower frequency region of the reference im-
pedance curve is equivalent to a spring
whose stiffness is 30 x 10 Ib./in. The fre-

uency at which this impedance intersects
the mass line of the foundation calculates to
be approximately 17 Hz. which is near the
lower limi. . the frequency range of interest.
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As indicated in Figure 1, the reference impe-
dance levels out at 955 Hz, which is simply
the intersection of the 30 x 10% 1b./in. stiffness
curve with a constant impedance of 5,000 Ib.
secf/in. Both of these curves, the 30 x 105
Ib./in. stiffness and the constant impedance,
:lvere the result of shipboard investigation
ata.

This reference impedance was the design ob-
jective for each type of terminator. The
method used to obtain the desired dynamic
stiffness up to 955 Hz and then a constant im-
pedance up to 20 kHz was to isolate the ter-
mination point from the foundation by means
of a visco-elastic material loaded in shear
such that its calculated dynamic stiffness




would be 30 x 10" Ib./in. The termination
point itself was a column whose charac-
teristic impedance (p ca) was approximately
5,000 Ib. sec./in., the nominal design objec-
tive. The visco-elastic material was supposed
to provide, in addition to the 30 x 10 stiff-
ness, sufficient damping in the higher fre-
quency range to minimize the standing wave
resonant and anti-resonant swings about the
characteristic impedance line. This design is
illustrated for the three directions in Figures
3. 4. and 5. In each case the total shear area

REINFORCEMENT BAR

PLUNGER (ISOLATOR

/ ATTACHMENT POINT)
T
VISCO-ELASTIC
=P MATERIAL
—
p
HOT WATER
CONNECTION
THERMOCOUPLE
WIRES

Figure 3. Cross Sectional View of
Vertical Terminator
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used was based on the desired stiffness and
the material properties as published. The
basic method of calculating the stiffness and
the terminator acceleration response is
described in Appendix A.

A similar design method was used for ter-
minators in the fore and aft and athwartships
directions. However, the athwartships direc-
tion consisted of eight termination points, but
only four terminator cases embedded in con-
crete. As seen in Figure 4, each athwartships
terminator consisted of two inner plates
separated from the outer body by the visco-
elastic material. The large “ears” on top are
the termination points for two athwartships
isolators. The relative motion between the
termination point and the foundation in-
cludes rotation in addition to translation,
whereas the vertical and fore and aft ter-
minators translate only.

The ability to calculate and predict the impe-
dance of these terminators depends on the
predictability of the material properties of
the visco-elastic material.

ONE-HALF-SCALE TEST PROGRAM

The material used was CA4OFL, a visce-
elastic adhesive material available commer-
cially. The material properties used in the
calculations were those published prior to
the commencement of this effort. It was not
considered necessary to evaluate the
material properties since a one-half-scale
terminator test was conducted by installing
one-half-scale models of the vertical and
athwartships terminators in a 30,000 b. con-
crete foundation and then evaluating their
performance by measuring the point impe-
dance at the termination point. This one-
half-scale test program was successful in that
it provided sufficient information and data to
establish the validity of the design techni-
ques and the genera{ material properties. As
a result of this test program, a few minor
changes were made to the full-scale design.

One area of concern that helped to justify the
half-scale investigation was the question of
structureborne noise “cross talk”™ between
termination points. It was desirable to design
the foundation such that the vibration on any
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given terminator be controlled, throughout
the frequency spectrum, by the force input at
that point. If there is significant vibration
transmission from one terminator to the next,
and if the correction factor is greater than
one, then the corrected power summation
would be somewhat erroneous because the
correction would be made on one terminator
for motion that was influenced or controlled
by another terminator. During the half-scale
test program, an effort was made to deter-
mine the transmission from one terminator to
another terminator, and it was found that the
problem was of negligible magnitude for the
vertical terminators but was a serious poten-
tial problem for the athwartships termina-
tors. This finding is not surprising since there
are two termination points in each of the ath-
wartships terminator cases. Because this po-
tential problem existed, an effort was made
to keep the full-scale terminator slightly on
the soft side so as to minimize the terminator
“cross talk”. In general, there is a 10 to 20 db
transmission loss between adjacent termina-
tors.

ACCELEROMETER MOUNTING

Concurrent with the one-half-scale test
program, efforts were made to develop high
frequency measurement techniques,
specifically the ability to reliably measure
structureborne noise and impedance at fre-
quencies between 10 kHz and 20 kHz.
Several things that were learned from this
testing eventually had a direct impact on the
impedance and noise tests conducted on the
full-scale foundation. Most of the lessons
learned were the result of the testing of
various accelerometers and accelerometer
mountings on small blocks whose natural fre-
quencies could be easily calculated. Testing
was performed at frequencies as high as 40
kHz. The mounting of the accelerometers
was found to be equally as important as their
selection, and a technique was devised that
incorporated the use of a special ceramic
material to provide a satisfactory mounted
response to 20 kHz. The ceramic material
serves three purposes: First, it provides the
necessary electrical isolation and, secondly,
it's high modulus (58 x 10% psi) combined
with its thin size provides a stiff enough
layer to keep the mounting frequency as high
as possible. Thirdly, the surface finish and
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flatness of the washer is of high enough
quality to prevent high frequency rocking of
the accelerometer. Other materials were
tried, such as mica, but their lower modulus
dictated a thinner washer, and in general the
mounting resonance was less consistent
because the mica washers had to be split by
hand to make them thin enough.

FOUNDATION PERFORMANCE

The theory that the 30 million 1b./in. stiffness
line intersecting the concrete block mass line
on one end and the constant impedance line
on the other end ignores the potential
problem of resonances within the concrete
block or resonances of the contrete block on
the earth (i.e., rigid body modes). Therefore,
various earth samples were taken prior to the
first concrete pour to ascertain the shear
modulus and thereby calculate the rigid
body modes of the concrete foundation.
Then, by using empirical techniques, esti-
mates of damping were made to help deter-
mine the responses of the six rigid body
modes. This analytical approach was
followed up with a testing effort after the
foundation was completed by shaking the
foundation at various points with a large hy-
draulic actuator. The resonance response of
the six rigid body modes was found to be in-
significant, and for all practical purposes, this
problem did not have a significant impact
on the measured impedance of the termina-
tor.

A series of impedance tests were conducted
on the terminators in air before the termina-
tors were installed in the concrete founda-
tion. This was done to serve as a checking
procedure on each full-scale terminator to
ensure that the dynamic stiffness was within
a reasonable tolerance of the 30 x 10° Ib./in.
design objective. To determine the dynamic
stiffness, a plot of acceleration divided by in-
put force (i.e.. g's/lb.) was made at several
temperatures and the dynamic stiffness was
then evaluated in the low frequency stiffaess
controlled frequency range. The data for fre-
quencies above 1 kHz was examined only in a
qualitative sense to ensure that its general
trend was consistent with the design objec-
live.




e

r- IS JARAAR S AR &, ol ¢ ) . A vl Sl Ty

The results of these tests indicated that the
material properties were inconsistent and
tended to vary greatly from terminator to
terminator. The dynamic stiffness varied as
much as 300 percent at a given temperature
and, in general, all the terminators were
stiffer than had been predicted from one-
half-scale model data. Therefore, prior to in-
stallation into the full-scale concrete founda-
tion, the full-scale terminators were modified
to incorporate a thicker layer of visco-elastic
material in order to reduce the dynamic stiff-
ness,

Figures 6 and 7 show pictures of the vertical
and athwartships terminators before the con-
crete foundation was poured. INustrated in
the figures are the heating coils used to con-
trol the temperature of each terminator so as
to maintain a specific temperature and
N thereby keep its impedance from varying

during gear testing. This temperature control
is necessary because of the strong tem-
perature sensitivity of the visco-elastic
material properties.

Figure 8 shows a picture of the completed
foundation with the terminators embedded
in the concrete. In Figure 8 the actual ter-
mination point (i.e., the point to which the
isolator attaches) is labeled; this is the point
at which the final impedance measurements
were made. Also shown in Figure 8 is an ac-
celerometer, which was used for contractual
structureborne noise measurements and for
the impedance measurements. The method
used to obtain the transfer function was to
measure acceleration and divide by the
measured force. The results were then com-
pared directly with the reference impedance
equivalent plotted in g's/lb.

Il
ISOLATOR
ATTACHMENT

Figure 6. Vertical Terminator
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Figure 7. Athwartships Terminator
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Figure 8. Vertical Terminator in the Foundation

A Fourier analyzer system was used to per-
form these impedance tests and store 366
transfer function values for each of the 20
terminators. It consisted of a computer, two
magnetic digital tape systems, and other
peripheral equipment. Figure 9 shows a
schematic diagram of a test set-up in which
the basic signal used to drive the force
shaker was generated in the Fourier analyzer
and then supplied to the shaker through a
digital-analog converter and a power
amplifier. To span the wide range in frequen-
cy (14 Hz - 20 kHz), two shakers and ac-
celerometers were used. Use of the Fourier
analyzer enabled taking the data at precise
frequencies to coincide.with specific contrac-
tual requirements and also made it possible
to drive the shaker at several of the frequen-
cies simultaneously.
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Figure [0 shows some typical data taken
from one of the vertical terminators and a
reference g's/lb. curve. As can be seen from
Figure 10, the stiffness portion of the ter-
minator’s impedance performed very well.
However, this was only after the visco-elastic
material thickness had been increased to
descrease the stiffness. This change effec-
tively reduced the relative damping, which
manifested itself in the form of greater stand-
ing wave resonant and anti-rotation response
in the upper frequency range. The reason for
this is the fact that damping of the visco-
elastic material at any given frequency varies
inversely with the thickness of the visco-
elastic layer. Since the thickness of the layer
had been increased by a factor of 2:1 (4:1
over half-scale) to hold down the dynamic
stiffness, a 50 percent decrease in relative
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Figure 10. Vertical Terminator Test Data (Final)

damping resulted. This decrease in damping
in turn increased the resonant and anti-reso-
nant swings by approximately 6 db. Another
factor affecting the resonant response of the
plunger, as compared to the response of the
half-scale models, is the fact that all of the
compressional wave resonant frequencies are
only half as high. And since the loss modulus
of the visco-elastic material increased with
frequency, the result was additional loss in
damping at each full-scale resonant frequen-
cy. This loss in upper frequency damping is
the price that had to be paid for keeping the
terminators in the proper stiffness range (20 -
30 million 1b./in.). This loss in damping was
not considered to be of great consequence,
however, since the computerized impedance
correction process can easily handle any
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curve similar to the one shown in Figure 10.
The change in thickness was accomplished to
reduce the stiffness and thereby help to
reduce noise transmission from one termina-
tor to another.

Figure 11 shows a g's/Ib. plot of data of the
same terminator with a much higher
response in the higher frequency range (15 -
25 kHz). This data represents the initial set of
tests conducted on the completed founda-
tion, and this noticeably high acceleration
response was strongly suspected to be a
characteristic of the test fixture. As a result, a
series of tests were run on small blocks with
the same accelerometer and force gage to
ascertain the frequency response of the
shaker and force gage combination as well as
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Figure 11. Terminator Response with Excessive High Frequency Resonant
Buildup
. the driving fixture. Figures 12A and 12B seen, the resonant build-up is about 10 db at
show sketches of the attachment methods 20 kHz. The reciprocal of this curve was used
used to obtain the data in Figures 10 and 11. to correct the measured g’s/lb. curves
Use of the steel adapter shown in Figure 12B because this curve, Figure 13, closely ap-
) provided a significant improvement in fre- proximates all three directional test condi-
quency response over other drive fixtures in tions (i.e., vertical, fore and aft, and athwart-
that it maximized the contact stiffness to the ships). This correction process is valid only if
terminator. This adapter was held in place by the apparent mass of the terminator in the
dental cement, which not only provided good frequency range of interest is of the same
adhesion but also acted as a grout to fill the order of magnitude as the calibration block
o small irregularities in the surface finish of the mass.
terminator. Tests conducted with this
adapter on small blocks with known charac- This same resonant buildup of the contact
teristics show that the resonance of the stiffness supporting a mass below the force
mounting was well above 20 kHz. Figure 13 gage is what precluded using any of the stan-
shows the response of a small calibration dard impedance heads presently on the
block being driven by the shaker. As can be market.
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After the drive adapter was improved and
the resonance on its contact stiffness in-
creased to greater than 20 kHz, the controlil-
ing item was the shaker and force gage com-
bination in which the mass between the force
gage and drive adapter became resonant on
its contact stiffness at about 26 to 28 kHz.
Two modifications were made in an effort to
up-grade both this limitation and the driving
block resonance limitation. First, the driving
head of the shaker was changed to a stiffer
material and less massive design, and second,
special drive blocks were made of Alumina
having a modulus of about 58 x 10° psi and a
density about one-third of the density of
steel. The results of these changes are shown
in Figure 14, where a calibration block (reso-
nance about 40 kHz) is driven by an Alumina
drive adapter that is driven by the modified
shaker. A close-up view of the ceramic drive
adapter is shown in Figure 15. It was
designed specifically to maximize its contact
stiffness on the vertical terminator while
minimizing its own mass. The use of these

57

drivers was necessary only because of the ex-
isting holes in the vertical and athwartships
terminators used to attach the isolators. The
fore and aft terminators were tested by at-
taching the shaker directly to the terminator.

USE OF IMPEDANCE DATA

The purpose of measuring each terminator
impedance and maintaining a digital record
for each frequency was to correct struc-
tureborne noise measurements to the
reference impedance shown in Figure 1. If
the termination impe e is large compared
with the source impedance;which is the im-
pedance of the isolator-gear comisination,
then the acceleration as measured below the
isolator varies inversely with the termination
impedance. Therefore, during the negotiat-
ing phase, it was decided that all struc-
tureborne noise measurements made below
the isolating mounts would be corrected to
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Figure 14. Transfer Function Calibration Using Improved Drive Adapter
the reference impedance shown in Figure 1
by the following relationship:
n N T 3
z
Ay =10 log% T 14A 1 - 10 log n + 60
i jalial{ ulikx—l‘}
A
wherﬁ Ajjis the measyred acceleration for
the it frequency and jth location in cm/sec?.
‘ Ajis the corrected one-third octave ac-
celeration referenced to 10-3 cm/sec?.
As can be seen from the equation, each fre-
quency measured at each location is cor-
Y rected to the reference impedance curve by
- simply multiplying it by the magnitude ratio
b of the measured impedance to the reference
2.25 impedance at that frequency and that loca-
tion, This correction process is valid only if
. . , the frequency resolution on which the
| Figure 15.  Alumina Drive Adapter measurements are made is reasonably nar-
f row. Therefore, the contractual agreement
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also specified that Aj; and Zj; be measured
with a 1 Hz resolution up to 160 Hz,a 10 Hz
resolution from 100 to 1 kHz and a 100 Hz
resolution from 1 kHz to 20 kHz. An illustra-
tion of the correction process can be seen in
Figure 10. When the measured g's/lb. is
equal to the reference g's/lb. the correction is
unity. However, when the measured g’'s/lb. is
higher than the reference g's/lb., then the
terminator impedance is lower than the
reference impedance, and hence the

measured acceleration is higher and the cor-
rection factor is less than one.

Making the corrections at all the various ter-
minators and frequencies results in a great
number of calculations; therefore, it was
necessary to digitize the structureborne data
and make all the corrections and one-third
octave summations with a mini-computer.
Figure 16 shows a schematic diagram of the
data acquisition system where all 20 ac-
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WASHER + .060" THICK

Figure 16. Structureborne Noise and Data Correction Diagram
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celerometers (i.e., 20 terminators) feed into a
programmable scanner and are digitized
through an ADC and then converted into the
frequency domain by use of a Fourier
transform. The transformed data is then cor-
rected at each frequency and each location
by the appropriate correction factor, which is
retained on digital tape. Levels of the various
vibration components in each one-third oc-
tave band are then summed. The one-third
octave levels from all the terminators in each
direction are summed on a power average
basis to produce a power average one-third
octave curve corrected to the reference im-

pedance. Figure 17 shows a pair of one-third
octave plots of structureborne noise data
measured on terminators - one corrected and
one uncorrected. The difference between
the two curves is a function not only of the
correction process but also of the narrow
band noise signature. If a given one-third
ocatave is controlled by a discrete frequency,
then the correction factor at that frequency
will mainly determine the difference bet-
ween the two curves. However, if a one-third
octave consists of broad band random noise,
then all the correction factors in the band
will affect the resulting one-third octave.
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CONCLUSIONS

Although much emphasis was placed on the
design and construction of the foundation in
an effort to achieve the reference impe-
dance, it is not important to achieve the
reference impedances exactly. As previously
described, deviations from the reference im-
pedance are easily accounted for in the cor-
rection process, and this ability to correct the
below-mount structureborne noise to almost
any reference impedance is one of the major
advantages of the technigue. As long as the
reference impedance used is reasonably
large with respect to the isolator impedance,
the correction process is valid. The fact that
this correction process can he accomplished
so easily with a mini-computer helps to de-
emphasize the importance of achieving the
exact reference impedance. For example, the
visco-elastic material used in this case
seemed to vary greatly in that the dynamic
stiffness of the completed terminators varied
by as much as 300 percent from terminator to
terminator. Under normal design conditions
this variance would be considered unaccep-
table. However, since the impedance correc-
tion process is calculated for each termina-
tor, this variation is easily accounted for in
the correction process. This fact leads to the
conclusion that the design of a high impe-
dance foundation for component testing in
this fashion need not be difficult because ir-
regularities in material performance do not
prevent the foundation from serving its
design objective. Other findings which rein-
force this conclusion are first, the fact that
the “cross talk” between terminators failed
to manifest itself as a problem, and second,
there is no significant amplification at any of
the concrete block resonances.

It would have been difficult to recommend a
structureborne test procedure incorporating
a correction process ten years ago. With to-

R T R R R S

day's use of computerized analyzers in which
noise data can be easily and extensively pro-
cessed in the frequency domain, correction
processes such as the one described herein
can be easily implemented and used advan-
tageously so that structureborne noise data
can be made more meaningful and useful.

The structureborne noise data taken during
the DD963 gear test program is an example
of how corrected below-mount data can be
obtained on an energy basis. The sound
pressure level in the water is proportional to
the power summation of the isolator output
forces for any given frequency. This fact

assumes that the transfer function between
the isolator attachment point and the water is
the same for all attachment points in a given
direction. The transfer functions tend to be
different for different directions and,
therefore, the acceleration readings in the
vertical, fore and aft, and athwartships direc-
tions are power summed separately.
Therefore, a structureborne specification
written as a power average or power sum of
all the isolator termination points, in a given
direction, is a more realistic method of
measuring component structureborne noise
than current methods.
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APPENDIX A

ACCELERATION RESPONSE OF TER-
MINATOR

The acceleration response {g's/lb.) to a
sinusoidal force applied at Point A will first
respond to the stiffness of the earth by in-
creasing up a stiffness line to the first mode
resonance and then into the anti-resonant dip
of the one-million-pound block on the ter-
minator stiffness. For example, the vertical
mode was calculated to be about 8 Hz, which
is below the frequency range of interest.
From the earth-block resonance the g's/lb.
response follows the block mass line until it
intersects the stiffness line of the visco-
elastic material around the plunger. The
response of the contrete mass as a rigid body
varies somewhat from terminator to termina-
tor depending on the nature of the mode (i.e.,
translation or rotation). However, for the ver-
tical translation case, this intersection of the
one-million-pound block with a spring stiff-
ness of 30 x 10% Ib./in. occurs at about 17 Hz.

The plunger and visco-elastic material stiff-
ness is calculated as shown below. The actual
value for the storage modulus is not shown in
this example because it varies with frequency
and is classified.

Fsin(wt)

L = 50"

R L_.z_.hstzzgsanxsn::nzft?ﬁ?*::lIEz!!!!!!l!H!!lllIllllIIllllllllllllIllllllIll-II!-------------‘

When the plunger stiffness begins to control
the acceleration response (by providing a
lower impedance than the concrete block)
the response follows a typical stiffness line
until the characteristic impedance of the
plunger beings to dominate. The response is
affected by a standing-wave-resonant and
anti-resonant response of the steel plunger,
which is damped by the visco-elastic
material. This upper frequency response
(beginning at 2020 Hz) varies about the cons-
tant characteristic impedance of 4707 Ib/sec.
in.

T = THICKNESS = 130

VISCO-ELASTIC MATERIAL
STIFFNESS DESIGNED TO
APPROXIMATELY 30 x 10% 1b./1ia.

\ STEEL
L_..J_.___.nm. = 6.365

K = El%gk = QlﬂLé;léSJLigJ = 7690_9 G’ (G' in ps;)

.130

PCA of Plunger = Characteristic Impedance

2
PCA = ]_lg}ﬂ u:_‘_%g_c_ [2.02 x 10° in/sec][Lg—si]a n in? = 4707 ____Ib“s‘ec
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Discussion

Mr. Panaro: (IBM Corporation) What prompted
you to use the LD 502 in conjunction with the
vigscoelastic material?

Mr. Hupton: Let me clarify something first
then and try and answer your question. The
viscoelastic material that you saw was not the
LD 502, The LD 502 was used in the isolators,
the material was one that has been used on
submarines and other applications and it was
recommended to us, We used the LD 502 after
we reviewed all of the data that we had from
various sources and we previously conducted
some other tests using the constrained layer
techniques. The LD 502 seemed to have the

E- product that we were looking for in the
temperature range that we were looking for;
that is we knew the temperature of the gear
oil and the engine room enviromment, and we
found something that would give us the proper
E- product in that temperature range.

Mr. Warner: (Westinghouse Electric Corporation)
We had to have good damping at 10 Hertz as

well as 2000 Hertz and at 4000 Hertz., This
was the only material that had good damping
properties over that large a frequency range.

S+ g 0




RESPONSE OF THICK STRUCTURES DAMPED BY VISCOELASTIC MATERIAL
WITH APPLICATION TO LAYERED BEAMS AND PLATES

M. Lalanne, M. Paulard and P, Trompette
Institut National des Sciences Appliquées,
Villeurbanne, France

A method based on the finite element technique is presented
for the prediction of the harmonic response of thick damped
structures. Results are aqiven for the application of the
method to beams and plates. In order to reduce the larae
number of dearees of freedom, the response is expressed by
a modal series. Calculations take into account the dynamic
properties of the viscoelastic materials used, as these
vary both with frequency and also with temperature. The
aareement between experimental and theoretical results is
qood. The method can be applied to more complicated systems
such as frames, panels and blades.

INTRODUCT ION

In many examples of mechanical structures,
it is necessary to reduce vibration levels over
a wide range of frequencies. For several years,
attempts have been made to achieve this objecti-
ve by utilizing the dampinag properties of visco-
elastic materials.

In this study, the finite element method
has been used to predict the harmonic response
of three-dimensionnal structures damped with
thick layers of viscoelastic material, The
structures considered here are beams and plates
which consist of three 'ayers - one viscoelastic
layer sandwiched hetween cwo elastic layers -
but the method may be readily extended to more
complex geometries,

When a structure is modelled by three-
dimensional finite elements the number of
dearees of freedom can become very larae and
the cost of making calculations can become pro-
hibitive. Furthermore, the dynamic properties
of the viscoelastic materials, and thus those of
the complete structure, vary with frequency.
These two problems constitute a major considera-
tion in this study.

RESPONSE OF A DAMPED STRUCTURE TN HARMONIC
EXCITATION

Dynamical behaviour of a discretized
structure, for the case of viscous damping, may
be expressed by the matrix equation :

MX + CX + KX = F(t) (1)

where M, L, K are the mass, damping and stif-
fness matrices of the structure respectively,
X is a vector of generalized coordinates, and
F(t) is a vector of excitation forces.

The order of the equations is N,

In general, the response can be obtained
either in terms of the generalized coordinates
X or in terms of the principal (or modal) coor-
dinates.

Solution in terms of generalized coordinates

For harmonic excitation of frequency w,
we may write :

F(t) = F, elot (2)
The response may be written as :
X(£) = X, eJot = (x4 5 xp) ot (3)

Substituting in (1) for F(t) and X(t), we find :
X F
Xi 0

Thus for a given frequency w, it is neces-
sary to solve 2N simultaneous equations but this
method permits the inclusion of properties which
vary with frecuency, and thus may be applied di-
rectly to a composite viscoelastic structures.
However, in the case of three dimensionnal struc-
tures, the formulation and the solution of these

equations for each value » becomes long and te-
dious because of the large number of degrees of
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freedom. In addition, when the frequency ranges
of interest (i.e. near the resonances) are not
known a priori, it becomes necessary to solve
the equations for many different values of fre-
quency. For these reasons, this method is not
used here,

Solution in terms of modal coordinates
First of all, the lowest n (<< N) modes of
the undamped structure are found, If we let
be a matrix (N x n) formed of the lowest n ei-
genvectors, we may define a set of 1imited modal
coordinates, q, by the equation
X = g . 9 (S)

Now, premultiplying equation (1) by GT, we
obtain :

pTMps + 0Tcod + pTkpa = PTF(t) (6)
For harmonic motion, and writing :
T T T T
m=0M ,c=0CP,k=0Kp,f=0F (7)

equation (6) becomes :

(-w2m + juc + k) 9% = f, (8)
where :

q9=q, edot - (a, + 3 ay) eJut (9)
and

£ edot (10)

It may be noted that m and k are diaqonal
matrices of order n and ¢ is also an n x n ma-
trix but not necessarily diagonal.

The response q is then obtained by solving the

reduced equations :

k = w2m - ue q f

r - ] (11)
0

wC k - w2m a9y

which are of order 2n (<< 2N},

The behaviour of a linear viscoelastic
material subjected to harmonic excitation can he
described by a complex elastic modulus E (1)
where

E=E (1+Jn) (12)
Eqo is the quantity commonly referred to as
Young's modulus, but only for dynaric loading,
and n is the damping loss factor,

In this case, the stiffness matrix for a
viscoelastic material may be written as :

Kv +jn Kv (13)

The stiffness matrix of the structure is thus
complex and must be written as :

K= Kr + jn K,

; (14)

It should be noted that the only non-zero terms
of K; are those which are non-zero in K,. If we
neqlect damping in the elastic members ‘of the

structure, equation (6) becomes :

(-u20TMp + 3n0TKQ + 'K D)a, = f, (15)
Eonation (11) may *hep be written :
T T T
9 Krﬂ - u)zﬂ MQ -nﬂ Kiﬂ qr . fO (16)
n'k,9 o'k 0-u20"mpf |o;| | o

The quantities E4 and n vary with temperature
and frequency (2?. For a given temperature the
modal solution above may not be used directly
because the matrices and Ki the loss factor
n, and the matrix # are functions of frequency.

Extension of the method for variable characte-
ristics

We suppose here that the characteristics
Eg(w) and n(w) are known, If the natural fre-
quencies of the structures are sufficiently
separated, one can obtain the modal response in
the reqion of each frequency by using the va-
Tues of Eq and n at that natural frequency. In
practice, hovever, values of these properties
cannot be known until one has found the natu-
ral frequencies. For this reason it is necessa-
rv to seek a solution in several steps. We
begin with two convenient values of E, - for
example Ey' and Eo" - with which we find two
sets of natural frequencies - wi', w2'y, ...
and w1", w2", ... -. With these values we may
examine the variation of each natura! frequency
as a function of E,. In effect, this variation
is approximately l?near, as shown by formula
for the Rayleigh's quotient (3) :

1
buy = =— = -~ (17)
ot o, M9,

Where AE, represents the variation in Young's
modulus, Aw, the variation in the natural fre-
quency of the 2th mode, and P, is the tth
column of @.

The intersections of the lines A Bl, AZBZ'
A.B. {(see fig. 1) with the curve of th;
mgtgria1 characteristic leads to the values of
Eo to be used, Having thus obtained values for
#, n, K, K{ for each frequency, a solution to
the equation (16) may be found in the region of
each natural frequency in turn by inserting the
appropriate values of the those constants,




log.E,

Fig. 1 Young's modulus determination

NUMERICAL CONSIDERATIONS

In the finite element model we have used
a thick shell isoparametric element having 16
nodes and 3 deqrees of freedom per node (4), as
shown in figure 2. However, we have chosen to
use a distributed mass matrix in preference to
the concentred mass matrix of Wilson. The ma-
trices K and M are partitioned in blocks.

10.
)

16
5

Fig, 2 Thick shell isoparametric element

The lowest natural frequencies and the
corresponding modes for the undampéd structure
are obtained by the method of simultaneous ite-
rations, without reducing the number of dearees
of freedom, (5), (6).

In the case of rigid body modes, the
stiffness matrix is singular and the frequen-
cies are found by solving :

(K + aM)X = (42 + a)MX with a >0 (18)

The areater part of the computation time
is spent on finding the natural frequencies and
modes. For example, the total computation time
to obtain the response curve for the plate
usina a CNC 6600 is approximately 4 minutes,
However, ten natural frequencies have been
found.

Several examples have been studied in or-
der to test the performance and the validity of
the program, We shown in fiqure 3 the results
obtained for one particular case - that of a
three-layer beam (steel - P.V.C. - steel} whose
dynamic properties (stiffness and damping) are
independent of frequency. The beam was a canti-
lever and was modelled by 3 x 3 elements.

APPLICATIONS

Before it is possible to apply the method
described above it is necessary to determine
the viscoelastic characteristics Fgs n func-
tiors of frequency. To obtain these values, we
have used an indirect method based on measure-
ments, as follows.

Indirect measurement of the characteristics

A thick beam, damped by the viscoelastic
material of interest, is studied both by expe-
riment and by calculation for a given tempera-
ture,

Netermination of Eg(w)

We begin as in the general method for
calculating the two series of frequencies for
the free-free composite beam, using two diffe-
rent values for Young's modulus. In this cal-
culations the damping of the viscoelastic layer
is neqlected. We thus obtain the lines AIBI-
A2Bp, ... in fiaure 4.

log Eqo
By b —— =
(@)
E R
] | | logw

Wy Wy Wy

Fig. 4 Variation of Young's modulus
with the frequency
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In addition, it is possible to find the
natura) frequencies and modes of the damped
free-free beam by a suitable experiment, for
example, by measuring the mechanical impedance.

Several points on the curve of Eg{w)
against w may then be deduced from the above
calculations and measurements, as shown in fi-
gure 4. An error will be introduced by this me-
thod because the calculated natural frequencies
do not take into account the slight variation
Which is caused by damping. However, the slopes
of the lines A1B1, A2Bp, ... are such that this
error is always sma]?.

Determination of n(w)

If we can assume that the modes are well
separated, then we can measure the 3dB bandwidth
for each resonance from the impedance curve., For
the ¢ th resonance, we may write :

1 89 Cy
"1’?w -
2 ZJElml

where c,, k;, m, are the modal damping, stif-
fness and mass respectively of the 2th mode.
Using equations (8) and (15), we have in addi-
tion :

(19)

T
w, €, = nf KB, (20)
from which :
my
n, = Ag for frequency « (21)
L ¥ oTx.p L
2i’y
Results

In this example we have used a viscoelas-
tic material known as SONECRAN (7). An experi-
mental beam was made by sandwiching a Yayer of
SONECRAN between two identical layers of alumi-
nium. The layers were glued together using
CHEMLOCK (8).

An impedance curve was drawn for such a
beam having dimensions of 352 mm x 30 mm x 26 mm
free-free, excited at its center, and at a cons-
tant temperature of 17°C. For this case, it is
necessary to model by finite elements only one
half of the beam, The number of elements used
was again 3 x 3. The results for Ey(w) are shown
in figure 5, for the first two flexural fre~
quencies,

In addition, it is found that n(uw) is ef-
fectively constant at 0.6. Throughout the cal-
culations, Poisson's ratio has been taken at
0.49, as used by other workers (9).

69

——
10‘°l
Eo |
(N/m*) ’ ,
1 L
10
'0. i i 121 (Wl ' 1 J N . §
! - i
w0 | © l N (Hz) :

678 2224

Fia. 5 Sonecran Young's modulus determination

Application of the method

The method has been applied to the cal-
culation of a composite plate - aluminium/
Sonecran/aluminium - having dimensions of
272.5 mm x 138.5 mm x 25 mm, The free-free
plate was excited at its center and, according-
1y, one quarter of the plate was modelled by
3 x 3 x 2 elements, as shown in figure 6, for
the calculations.

z

° F
y

x

sonecran
Fia. 6 Aluminium/Sonecran/Aluminium Plate

The initial estimates of Eg were chosen
as those values which applied at 1000 Hz and at
4000 Hz. The results in figure 7 show good
agreement between theory and experiment.

In addition, one can see from figure 8
good aqreement between theory and experiment
over a very wide frequency range, and not just
near the resonant frequencies where Eqy and n
have been deduced,

for the experiments, we have used a
SPECTRAL DYNAMICS system SD 1002, a KISTLER 903
force gauge, and an ENDEVCO 2221 C accelerome-
ter.
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CONCLUSION SYMBOLS
A method has been developed for predic- M Mass matrix of the structure
ting the harmonic response of thick, heavily-
damped beams and plates. In fact, the method K Stiffness matrix
may be applied readily to more complex Sstruc-
tures, such as are listed in (10), (11). c Namping matrix
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CONTROLLING THE DYNAMIC RESPONSE OF JET ENGINE COMPOM LNTS (U)

David I. G. Jones
Air Force Materials Laboratory
Wright-Patterson AFB, Ohio 45433

and
C. M, Cannon and M, L, Parin

University of Dayton
Dayton, Ohio 45469

This paper details recent progress made at the Air Force Materials Laboratory
toward developing an alternative approach for controlling high frequency vibra-
tion problems in jet engine components such as stator vanes, inlet guide vanes,
compressor and turbine blades, combustor liners, at high temperatures. The
approach used is the selective application of high temperature enamels or
glasses in such a way that energy is dissipated in the enamel or glass as the
component deforms cyclically during vibration. In this way, provided that suf-
ficient effort is applied, it is possible that the cumbersome and inefficient
mechanical friction devices now used in rotating components such as fan, com-
pressor or turbine blades, can ultimately be eliminated and that the often
capricious aerodynamic sources of damping in static components such as stator
and inlet vanes can be effectively and consistently supplemented. The specific

damping temperature zones.

damping treatments discussed include unconstrained and constrained layer
treatments, and tuned damping devices, incorporating enamels in their high

INTRODUCTION

(U) Many jet engine components such as
turbine blades, compressor blades, stator
vanes, inlet guide vanes and combustor liners
suffer from vibration induced high stresses
under operational conditions, As jet engines
become progressively more complex, lighter
and more powerful, it will eventually become
extremely difficult to design the systems so
that these vibration problems are always
circumvented by control of blade profiles,
stiffnesses and natural frequencies alone, so
as to avoid encountering resonant amplification
of excitations around integral multiples of the
blade passage frequency. As of now, damping
techniques to limit such vibration induced
stresses to acceptable levels include mechani-
cal friction devices relying on interface slip-
ping for energy dissipation, such as the plat-
forms in turbine blades and the mid-span
shrouds in compressor blades, and aero-

dynamic damping alone in the case of stator
vanes and inlet guide vanes, Such approaches
are expensive, inefficient and heavy, and
aerodynamic damping is capricious, although
these approaches are necessary at present.

An alternative approach which, if prop-
erly developed, can supplement these current
techniques is the use of the energy dissipating
properties of certain enamels and glasses
when deformed cyclically at high tempera-
tures. The eassence of this approach is to
properly select the glass or enamel 8o that
its damping capability is high withir. the oper-
ational temperature range, and applying it in
a suitable treatment or device according to
the vibrational characteristics of the com-
ponent.

This paper will review the status of two
such potential applications, namely the con.
trol of vibration induced stresses in a set of
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stator vanes by means of an external enamel
coating over part of the surface area, and the
conirol of vibrations in a turbine blade by
means of a tuned damping device,

DAMPING MATERIAL BEHAVIOR

Room Temperature Damping Material

Since it is difficult to conduct vibration
tests on jet engine components at high temper-
ature, because of the necessity to protect the
detection and excitation transducers, the
initial tests were conducted around room tem-
perature using an elastomeric damping mater -
ial, having qualitatively similar properties at
low temperatures to those of the enamel at
high temperatures, The purpose of these
tests was to establish the effect of the pro-
posed treatment on the response of the com-
ponents, thereby establishing the most appro-
priate approach and indicating the orders of
magnitude involved.

The material selected for the room tem-
perature tests was a typical stiff room tem-
perature damping tile [1]. The complex
modulus properties of the material were
measured by vibrating beam, rocking beam
and resonance tests [2,3]. The resulting
graphs of Young's Modulus and loss factor
versus temperature are shown in Figure 1.
The damping material behaves in a qualita-
tively similar manner to the enamel, as will
be seen presently, apart from the different
temperature ranges and the somewhat greater
stiffness of the enamel, The test systems
used for these tests are illustrated in refer-
ences 2] and [3].

High Temperature Damping Material Behavior

Glasses and enamels exhibit damping
properties very similar to those of some high
damping elastomers [4], Experiments show
that the peak damping of enamels and glasses
occurs near their softening point, and it is
therefore necessary to select a glass or
enamel whose softening point occurs near the
operating temperature range of the component
to be damped.

The operating temperature of the stator
vane assembly was estimated to be between
800 and 1100°F (427 to 593°C). A particular
commercially available porcelain enamel
[4,5,6] with an appropriate softening temper-
ature was therefore evaluated. The complex
modulus properties of the material were
measured using a vibrating beam technique

o .,
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[3,6,7]). Graphs of Epy, the Young's Modulus,
and of np, the loss factor, versus temperature
are shown in Figure 2. It is seen that the
material has a high loss factor in the appro-
priate temperature range, and a high storage
modulus Epy near 950°F (510°C).
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The turbine blade was estimated to oper-
ate at around 1200°F (6499C), and a different
commercial enamel was selected {7,9]. The
complex modulus properties of this enamel,
measured in the same way, are plotted as
graphs of Epy and np, versus temperature in
Figure 3. The test system used to measure
the complex modulus properties of the enamels
is illustrated in references [6] and [7].
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Figure 3. Graphs of Ep and §p versus
temperature for CV-17214

VIBRATION CONTROL IN A STATOR STAGE
Uncoated Vanes

A typical jet engine stator ring segment
is illustrated in Figure 4. The vanes are
thin, aerodynamically shaped beams welded
or brazed to the outer and inner shrouds. The
vanes are short, so that the natural frequen-
cies are high, of the order of 2 kHz or higher.
The modal damping is usually very low, with
modal loss factors of the order of 0.002 or
less, because of the lack of any sliding sur-
faces in the jointa. This means that resonant
vibration levels can be very high, leading pos-
sibly to failure, whenever the aerodynamic
damping is low, This occurs, for example,
when the vanes are stalled.
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Figure 4. Photograph of typical stator vane

In order to determine the type of
response behavior encountered, a typical
stator segment was tested using the test sys-
tem shown in Figures % and 6. The stator was
excited by a small magnetic transducer and
the response picked up by a miniature accel-
erometer at the points shown in Figure 6.
Typical damped and urdamped response spec-
tra, consisting of plots of acceleration ampli-
tude versus frequency, are shown in Figure 7.
The mode at 2750 Hz is the first bending (1B)
mode, while that at 6094 Hz is the first torsion
(1T) mode, These modes were identified using
laser holographic techniques, The other
modes have not been specifically identified to
date. In view of the thinness of the vanes,
they behaved essentially as thin beams or,
more precisely, plates, and a damping treat-
ment consisting of a thin layer of a stiff,
highly dissipative, damping material was
expected to provide considerable increase in
the modal damping. The initial modal damp-
ing, and the damping of the coated system,
was measured using the '"half-power band.
width'' method.

Effect of Room Temperature Damping Treat-
ment on Stator Response

The damping tile was glued to the outer
surface of each stator vane, on both sides and
at both ends, as illustrated in Figures 6 and 8,
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Figure 5. Stator vane test system
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Figure 6. Stator vane pickup and
excitation points

and the system was excited in the same way
as for the undamped case. The coating width
was 0.5 inches (12,7 mm) and two thicknesses
were evaluated, namely 0.02 inches (0. 508
mm) and 0. 04 inches (1,016 mm)., Figures 9
to 11 show the variation of the measured
modal loss factor (1”) and resonant frequency
(fn) for the first three modes as a function of
temperature. It is seen that the damping was
increased considerably by the treatment.
Figure 7 shows a typical damped response
spectrum, as compared with an undamped
spectrum for the same excitation and pickup
points.

From the known properties of the damp-
ing tile material, it was then straightforward
to calculate the ratios 5, /np and w, /w, for the
coated versus uncoated vanes and plot these
quantities against the modulus ratio Ep/E as
in Figure 12. From this figure, it is seen
that ng/np is approximately proportional to
Ep/E (10°3¢ ER/E<10-!) and to the thickness
ration (0 ng 0.67) of coating thickness to
maximum vane thickness (0,06 inches or

TTrrre
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—— DAMPED
(78°F)

001 i s baaa 1 n
500 1000 5000 0000 $0000
FREQUENCY Hz

Figure 7. Typical response spectra

Figure 8. Photograph of stator vane segment
with damping tile

1.52 mm). Numerically, in fact, it is readily
shown for the first two modes that:

ngy = 5:61 npn(EL/E) (1

ngz = 9-10 Ay n (EL/E) (2)

These approximate relationships are, of
course, applicable only to vanes of the partic-
ular cross-section geometry tested, as illus-
trated in Figure 13, From them, we can
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deduce the effect of any other coating treat-
ment, such as an enamel. For example, con-
sider an enamel coating 0.01 inches (0,254
mm) thick, having a Young's modulus Ep of
4.5 x 106 Lb/in? (3.1 x 1010 N/m?) and loss
factor np of 0.38 at 2700 Hz and 925°F, as in
Figure 2. Then the appropriate value of n,,
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D
is readily shown from equation 1 to be 0,049,
This value can be compared with the measured

value in the next section.

Effect of Enamel Coating on Stator Respon-e

Tests were conducted on a single stator
vane at high temperature to determine the
effect of a free-layer treatment, incorporating
a commercially available enamel [ 5], on the
dynamic response and modal damping. The
experimental system used is shown in Figure
14, It was not possible at the time to test
more than one vane, as in the case of the room
temperature tests, because of available space
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Figure 13. Sketch of stator section
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Figure 14. Test system for measuring
response of enamel coated
stator vanes

in the furnace and difficulties of designing a
suitable fixture in such a case, The single
vane was mounted in a rigid fixture attached to
the top of a stiff column which was, in turn,
connected to a shaker table. The response
was measured by a high temperature strain
gage applied at the center of the vane. Results
for the first bending mode are shown in Figure
15, in the form of graphs of modal loss factor
versus temperature for the two specific treat-
ment configurations identified. The stator
vane was coated at both ends and on both sides,
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Figure 15. Graphs of 5, and w, versus
temperature for enamel
coated stator vane

with a thickness of enamel of 0.01 inches
(0.254 mm) and breadth 0.5 inches (12.7 mm).
Because the strain gage was aligned longitudi-
nally on the vane surface, and very close to
the node line for the first torsion mode, it was
not possible to measure the response in this or
any higher modes. Further tests with differ-
ent strain gage locations were not carried out
because of difficulties in strain gage attach-
ment and time limitations.

The ceramic coating {Metco 81VF-NC
Chromium Carbide powder) was plasma
sprayed to a thickness of about 0.008 inches
(0.203 mm) in order to create an abrasion
resistant protective coating over the enamel,
since early engine tests showed such erosion
to occur. The erosion protection is needed to
reduce the scouring action of the high velocity
hot gases in the jet engine and also to mini-
mize flow of the coating during occasional
overheat conditions, The ceramic coating also
had the effect of markedly increasing the effec-
tive temperature range over which the modal
damping was high, probably because it acted
as a constraining layer for the enamel as it
softened at high temperatures, since the
ceramic coating retains its high stiffness to
far higher temperatures.




TURBINE BLADE VIBRATION CONTROL

Undamped Blade Response

] A typical cooled turbine blade is illus-

’ trated in Figures 16 and 17, Again, the initial
damping is usually very low and often has to
be increased by means of mechanical friction
devices. In order to measure the dynamic
response behavior of the specimen turbine
blade, the system illustrated in Figure 18 was
used, The specimen was again excited by a
magnetic transducer and the response picked
up by a miniature accelerometer. A typical

: undamped response spectrum, consisting of a

. graph of acceleration amplitude versus fre-
quency, is shown in Figure 19. Several modes
occur in the frequency range examined, the
lowest being the first "bending' mode. The

. response behavior of the turbine blade is very
different from that of the stator vane because

Photograph of turbine
blade and damper

PLATFORM
\-euoe
Sketch of turbine blade
and damper

Figure 16,

o

Figure 17.

the turbine blade is very thick whereas the
stator vane is thin, and a simple surface
coating treatment will not have much effect on
the modal damping, as was readily verified,

A more appropriate approach is to use a tuned
damping device which depends on the peak dis-
placement rather than the peak strain in the
blade, as will be discussed in the next section,

soceEhouTER. ] osciuaTon [+ cowTen |
Figure 18, Turbine blade dynamic
test system
20, - -
10 r————J»—» t 3
[ UNDAMPED 3
I N p
o -
-]
z i0
2 ¢t DAMPED )
a | Ta°F(24%C) s
[ 4 )
w 4
< i
e VAR
- —

o

o o }

0 %00 1000 1500 2000
FREQUENCY Mz

—r
§ | I W

Figure 19. Typical response spectra

for turbine blade
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Effect of Room Temperature Tuned Damper

on Response

It is difficult, by means of a layered
damping treatment, to add much damping to
the various modes of vibration of the turbine
blade because of its exceptionally high stiff.
ness, A very promising approach appeared
to be to use a tuned damping device to control
the amplitude of the first bending mode, which
occurred at about 1600 Hz, by tuning the
damper to this frequency. Other modes can be
controlled in the same way by appropriately
tuning the damper. Many prior investigations
[10-12] have demonstrated the effectiveness
of tuned dampers and the necessary criteria
for proper tuning.

The type of damper examined in this
investigation is illustrated in Figure 20. The
damper consisted of an enamel or elastomer
with a metal coating, i.e. the dissipative
material is encapsulated. An electrodeposi-
tion technique was used to apply the metal
coating. The encapsulated damper has the
advantage over an unencapsulated damper that
the dissipative material is totally restrained,
so that creep resulting from the centrifugal
loads can be controlled. Unfortunately, there
are also some disadvantages, including the
fact that the damping levels in the damper are
far lower than for the externally coated dam-
per [9], and the analysis is more complex.
In order to verify the levels of damping
achievable in practice, as well as to verify the
levels of reduction in amplitude which could be
achieved in a typical turbine blade, the first
tests were carried out around room tempera-
ture.

The specific damper tested consisted of
a core of room temperature damping tile [1],

METAL PLATING

VISCOELASTIC CORE

Figure 20, Sketch of damper geometry
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having a thickness of 0,0676 inches (1,717
mm), with an electroplated copper coating of
thickness 0,005 inchee (0.127 mmj). The
effective vibrating length of the damper in the
turbine blade was 1.0 inches (25.4 mm). The
damper loss factor at room temperature was
measured to be about 0.04, the peak value,
and the resonant frequency was about 1350 Hz
[13]. The damper was glued to the tip of the
turbine blade as shown in Figure 19. A typical
measured response spectrum at room temper-
ature is illustrated in Figure 19 and compared
with the nominally undamped spectrum. It is
seen that considerable reductions in vibration
amplitude are achievable in the first bending
mode, even though the damper loss factor was
not very high and the damper was not optimally
tuned, having a natural frequency around 1350
Hz inatead of 1600 Hz, The higher modes
were not significantly changed, as was to be
expected unless the damper was tuned to a
much higher frequency. It should be noted
that the familiar pair of response peaks, well
known from classical theory, are clearly dis-
cernible in the vicinity of the fundamental
frequency.

High Temperature Response Tests

High temperature tests have been con-
ducted, so far, only for externally coated
cantilever beam dampers, using the higher
temperature enamel {9]. Reference [9] shows
that such a damper can reduce dynamic
response levels, when properly tuned, by over
an order of magnitude. Efforts to produce
encapsulated dampers by electroplating an
enamel strip with a thin coating of nickel have
been successful on an experimental basis, and
further work to produce a damped turbine blade
and test it under static and rotating conditions
is being planned.

CONCLUSIONS

it has been shown that enamel damping
materials can be used very effectively to
reduce vibration amplitudes in jet engine com-
ponents under resonant conditions. The results
are illustrated through two specific examples,
namely a stator ring and a turbine blade,
Considerable engineering effort will be neces.
sary to bring this basic technology to the point
of routine practical use, but the corresponding
rewards of greater efficiency, cost effective-
ness and reliability seem well worth the effort.
Some such efforts are now being undertaken
and will be reported on in due course,
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NOMENCLATURE
E Young's modulus of stator material
ED Real part of Young's modulus of
damping material
fi ith resonant frequency (i = 1,2, 3, --)
f Resonant frequency of first bending
iB
mode (= fl)
f Resonant frequency of first torsion
1T
mode (= fz)
h Maximum cross section thickness of

stator vane

hD Thickness of damping layer

n Thickness ratio hD/h

15 Loss factor of damping material

Mg Mgy Modal loas factor of damped stator
system

w, Resonant frequency of damped sys -
tem

w, Resonant frequency of undamped sys-
tem




Discussion

Mr, Warner:(Westinghouse Marine Division)

You used the word enamel which scares me.
What are the mechanical properties that would
enable that coating to last and how long do
you think it should last?

Mr. Jones: That unfortunately is one of the
fine questions and that is one that we have
asked ourselves. If you take an enamel up in-
to a temperature range where it starts to
soften it tends to get somewhat viscous, that
is a term that is qualitative only I would not
try verifying it, und in fact if you get suffi-
ciently high overheating, or if you get con-
siderably very large forces applied to it, it
would certainly creep and move; in the case of
rotating components you have the worry of creep
and I would not address this here. As applied
to a stator vane there are two ways to look
upon this particular problem. At 950 degrees
F, the material stiffness had not dropped

too much for the particular material that we
used; at about 1200 degrees F it starts

to become very soft and it starts melting,

and at that point it would just spread all
over the engine., So if there is some acciden~
tal overheating you have a problem. There is
a way of solving this problem, and that is to
coat the enamel with & thin layer of nickel or
of some ceramic material, which in itself does
not melt., We currently have some tests in
progress in which we have put a very thin
tayer of an aircraft englne specification type
of a ceramic coating which we hope is designed
to prevent erosion and to prevent any adverse
effects from overheating; but the purpose of
this particular investigation was to verify
that in fact it would work.

Mr. Russo: (Air Force Materials Laboratory)
Some of the alloys in these engines are ex-
tremely tempermental and different variations
of trace elements anyplace can drastically
affect just the basic properties of the materi-
al. So this is one of the things we will have
to investigate pretty heavily whem you talk
about applying these types of enawel, or what
ever word you would rather use for them, to
damp out vibration.

Mr. Sen Gupta: (The Boeing Company) I'm not
quite sure if you applied the damping treatment
on the whole stator blade or just near the root.

Mr. Jones: Ouly near the root.

Mr. SenGupta: Why didn't you apply it to the
entire blade?

Mr. Jones: In the case of the thirteenth stage
it would only be a quarter inch out from the
root and you would leave the rest of the blade
uncosted to satisfy the aerodynamicists mainly,
We would prefer to coat all of it but the aero-
dynamicists say they would much rather ha re
nothing on the blade.

e e e v~ S

Mr, SenGupta: Because the activity was bend-
ing, would you expect the damping material to
be more effective by having it near the center?

Mr. Jones: That was our intuition we have not
been able to verify it and I think a finite
element analysis, or perhaps a transfer matrix
analysis would be necessary before we could
really verify this. We have not made any stress
measurements.

Mr. Butzel: (The Boeing Company) What is the
long term purpose of increasing the damping
in these blades, to get longer life?

Mr, Jones: I understand the question. As with
all questions it is difficult to give just a
simple answer. The purpose, as far as we are
concerned, is to increase life to an acceptable
level and obviously you would not apply damping
to a system which is working perfectly well,
But this particular system was not,the life of
the stator was much less than the normal re-
placement cycle. So any time you have a com-
ponent which is subjected to excessive stresses
and it is not convenient for any reason to re-
design it, as in this particular instance be-
cause this was an existing engine in the in-
ventory, in a case like that you would apply
damping since it would be expensive to go back
and retool and remake.

Mr. Butzel: Are you also thinking in terms of
future designs? That is, if you can increase
the damping in these blades will it influence
the design of future stators?

Mr. Jones: Absolutely, and I think some of the
engine manufacturers are inclined to agree with
us although thle question of how to do it is just
in its infancy. If you could in fact increase
the damping to a significant level without any
other unsatisfactory side effects you would
simplify the design considerably because if you
are not bothered by one multiple of the rota-
tional frequency you may be bothered by another.
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AN INVESTIGATION OF THE RESPONSE OF A DAMPED STRUCTURE
USING DIGITAL TECHNIQUES
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3 . University of Dayton Research Institute, Dayton, Ohio
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L INTRODUCTION

4. Measurement of the effects of high
temperature on the undamped
specimen, and evaluation of candidate

The design of effective damping treat-
ments for the control of resonant structural
vibrations necessitates the making of

v
. engineering trade-off decisions based on the damping materiale in damping treat-
dynamic characteristics of the vibrating struc- ment configurations on the test
ture, and the effect of environmental factors specimen at high temperature.
' on the properties of the damping materials, It . .

‘ is for this reason that the Air Force Materials s This papel; desc?be; ﬂ;e st!t'uctura:tu
Laboratory, in conjunction with the’ University re po.nse mea-su emen. af‘ T o.m 'emp.er l:e
of Dayton Research Institute, is in the process dampmg' po::txons of this mve'sttgatmu,.mcludmg

- of completing an experimental program to the application of impact testing techniques
{ develop vibration damping treatments for utiliz%ng digital fast Fourier ana.lysis. Digital
possible application in the reduction of sonic :e:hmqu;fs for z:ipzdslgadete!n:;mtng 'te?’:ant
fatigue in structures such as the aft fuselage of dx;mqu.encx::, ;‘;sce dp:sda: 51:u° u aa d
the B-1 aircraft. Although it is not anticipated withpsl?se s\:e tus;ei ns €sults compare
that there will be a sonic fatigue problem with n ep techniques.
the B-1 ai he devel d i
[ e B-1aircraft, the development of damping II. IMPACT TESTING FOR DIGITAL
] treatments to work effectively in the unique TRANSFER FUNCTIONS
4 combination of operational environments seen
by this structure represents a challenge that Fouri lysis of vibrating ¢ i
will have to be met by the aerospace industry oul:xer a}na ys8is ol vibra ‘f‘g sy’s ems 18
3 sooner or later, These environments include not a new idea in the shock and vibration area
: but the advent of the digital fast Fourier
1 temperatures up to 300°F, sound pressure .
levels in excess of 168 db and, sincethe damp- analyzer has made this method of analyzing
ing treatment would be inside ’a fuel tank experimental data far more readily available
~ 8 . ’ to the engineer than ever before. In this study,
. there is the added complication that it must be . . X
: unaffected by long term exposure to fuel an impact testing method was used, with the
f - ' * Fourier analyzer system shown schematically
. This investigation is divided into in Figure 1, to determine transfer functions,
! essentially four stages: These transfer functions, which represent the
! 1. Measurement of natural frequencies frequency response of the structure at some
* and mode shapes in an undamped point due to a unit excitation at either the same
i . P P point (driving point transfer function) or
: specimen representative of the full .
scale structure. another point (cross transfer function), provide
information which include resonant frequencies,
- 2. Evaluation of effects of elevated mode shapes and modal damping. The impact
temperature, fuel exposure, and water technique used was a very straight-forward

process in which a "hammer', i{nstrumented
with a piezoelectric force transducer, was
used to excite the structure. Frequency con-

3 environment on the performance of
candidate damping materials,

‘ 3. Measurement of the effect of room tent of the excitation impulse could be con-
temperature damping materials on the trolled, to same extent. by using hammer
y response of the structural specimen, ' . » Oy using
|
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Figure 1, Diagram of Digital Test System

heads of different materials, the "harder"
head giving a higher maximum frequency than
the '"'softer' heads. The response of the struc-
ture was measured using a piezoelectric
accelerometer. The digital transfer functions
were obtained by simultaneously measuring,
and digitally storing, the time histories of
impact force and acceleration response. These
time-domain signals were then analyzed using
the fast Fourier analyzer system, thereby
calculating, in the frequency domain, the
acceleration auto power spectrum Gyy, the
force auto power spectrum Gxx, the cross
power spectrum Gyx, and the transfer function
H (iw) where:

G—E »

H (iw) = — ! (1)

(9]

and the coherence function § 2 where

2 2
6 (iw) = —
Gxx | Gyy

, 0 6zsl. (2)

The coherence function used here is a
measure of the ''quality’ of the data, since
a coherence value of 1 indicates that the
"output" (acceleration) is completely causally
related to the input (force), whereas a

*
— indicates average over several samples,

coherence value of zero indicates that the
acceleration signal is due entirely to some
other input [1]. Thus, problems in the signal
conditioning system, such as bad cables or
ground loops, as well as spurious excitation
by ambient acoustic noise, or nonlinearities in
the structural response, become immediately
apparent in terms of a low value of the
coherence function. This gives the test
engineer the advantage of immediately being
able to recognize and reject bad data, at the
time that the test is being run, as opposed to
attempting to recognize unreasonable final
results, caused by bad data, which can occur
when utilizing analog sine sweep techniques.

III. COMPARISON OF ANALOG
AND DIGITAL TECHNIQUES

As with any relatively new test tech-
nique, it was considered desirable to obtain
a quantitative comparison between the data
obtained using impact test techniques, with
digital data processing, and the data obtained
using more conventional analog sine sweep
techniques. For comparative purposes, it was
decided to examine the response of a stiffening
strap (shown in Figure 2) within the frequency
range around its fundamental resonance, which
occurred at about 240 Hz, Transfer functions
were measured using both analog (sine sweep)
and digital (impact) methods for the undamped
structure and for the structure when damped
with various room temperature damping treat-
ments.,

Figure 2. Photo of Sine-Sweep Set Up
Used to Collect Data for
Digital to Analog Comparison
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The sine sweep experimental system
utilized a magnetic transducer®” for excit-
ation, and a very small accelerometer™** for
response pickup,as shown in Figure 2. With
this method of excitation, it is necessary to
attach a small ferromagnetic disk to the
structure, and this disk is then driven by the
oscillating component of the magnetic field of
the transducer, The mass loading effects are
negligible in most aerospace type structures.
In these analog tests, the excitation point was
located on the stiffening strap at a point near
the frame, and the response was picked up by
an accelerometer near the center of the strap.
The force signal at the transducer was used
as a control feedback to maintain a constant
force amplitude as the frequency was swept,
therefore the plots of measured acceleration
versus frequency, of which a typical example
is shown in Figure 3, are directly comparable
with plots of the magnitude of an acceleration
transfer function. The resonant frequency was
determined from the location of the peak in the
acceleration plot, and the damping was deter-
mined by measuring the "half-power band-
width' of this peak, Table 1 contains a
summary of fundamental mode resonant fre-
quencies and structural loss factors measured
by sine sweep techniques.

) ]

—— UNDAMPED
—-— 3 LAYERS
----- 6 LAYERS

1
ANALOG DATA

ACCELERATION TRANSFER FUNCTION

Figure 3. Analog Transfer Function Data
Used in Comparison

The impact tests were accomplished
using the same pickup point, but a slightly
different excitation point was used, because
one problem encountered with impact testing

. Bruel and Kjaer MM0002
Transducer

*"Bndevco 22 Accelerometer

By P~ AP e . - W8 7 oA g ¢

s »'M-"*_‘M

TABLE 1

COMPARISON OF DIGITAL
TO ANALOG DATA

Digital
Sine Nyquist
Sweep Plot
UNDAMPENED
Res. Freq, 236.2 235.75
Loss Factor . 006 . 006
DAMPENED
3 LAYERS
Res, Freq. 243.5 246.5
Loss Factor .038 . 037
DAMPENED
6 LAYERS
Res, Freq. 243.9 243.5
Loss Factor . 090 .082

is that when one impacts a flexible structure,
the usable frequency range for a transient
force input is limited to relatively low fre-
quencies, since the upper frequency limit
depends on the local structural stiffness at the
point of impact. In these tests, because of the
relatively low local stiffness, it was necessary
to move the excitation point closer to the
frame as shown in Figure 2, to excite the
resonant frequencies of interest,

Three digital transfer functions are
shown in Figure 4, which are compared to
the analog response functions shown in
Figure 3. Resonant frequencies can be

e
-3
DIGITAL DATA p—4 tAYERS
g 4
&
§ |
i
— 4'%
) 2%0 %00

Figure 4, Digital Transfer Function Data
Used in Comparison

-




T. -y L B
1
i
determined from transfer function data by
identifying the frequencies at which the imag-
inary part of the transfer function becomes a 2800¢
maximum and the real part is small, or the
magnitude'becomes a maxgmuxn and the phase 2a00}
angle is approximately 90 . Modal damping
can be obtained from a Nyquist plot, which is
3 simply a plot of the imaginary part of the 2000}
transfer function against the real part, in the z
frequency range around a single resonance. R |
In this investigation, Nyquist plots were §
obtained utilizing both digital and analog &
- methods. The analog set-up used to obtain % 1200
i Nyquist plots utilizing Spectral Dynamics [
’ tracking filters and a CO-Quad unit, Examples E 00
of Nyquist plots obtained through both analog ; |
and digital techniques are shown in Figures H
5 and 6 respectively. 400}
s o ) ) L L
> + -20 -0 -40 o 40 [ [ w0
REAL PART TRANSFER FUNCTION
\ -
’ |.Q_ Figure 6. Digital Nyquist Plot
Q
% the circle., Furthermore, it can be shown
- u that if hysteretic damping is assumed to be
E § the dominant mechanism, then the structural
v loss factor, ng» €an be determined at a
<Zt resonant frequency, f, , from the relationship
=
E n = 4R/TE (af/as )1 3)
a 1
g where R is the radius of the circle.
- There are several advantages to be ]
; 0 obtained frem using Nyquist plots obtained by ;s
] - + digital techniques. One advantage is the speed ;
of data acquisition, since all the data required #
REAL PART TRANSFER FUNCTION for Nyquist plots are automatically obtained
s and stored during the process of measuring
Figure 5. Analog Nyquist Plot the digital transfer functions. A typical time
interval for processing this data from a single
. Fitting a circle, using a least square impact, in this investigation, .was found to be
‘ technique, to a Nyquist plot of measured about 6 seconds for a 2048 point transfer func-
A tion, The analog method, however, generally
transfer function data near a resonance can
: provide all of the modal parameters necessary required a ‘separate test 'for each transfer
I » to defi..e a complex normal mode, except in function, with several minutes of slow fre-
; the case of nearly coincident resonant fre- que'ncy s‘weep and also a lengthy set-up and
- quencies 2. For instance, the resonant calibration procedfu"e. A second advantage of
E " digital data acquisition techniques lies in the
Y

requency occurs at the point wh he rat

.y f:f ::a:g: :t a:c le:gth ‘&t;\nr:::e:: :oef:e -e fact that the u‘ata' are already digitized at.the

: ’ . quency, ds/df, is a maximum. In the case of outset, and are in a' form that can be_ rapidly

a discrete Fourier transform, where data is processed by the mini computer, using a ¢

taken only at specific frequency intervals Af, I;or:iran programlfor I:a;t squares fitting ol

resonance occurs at a point between the fre- the data to a ..rcle and for immediate calcula-
tion of resonant frequency and damping.

quencies which mark the end points of the . .
interval of maximum arc length, ASmax s Of Graphical techniques examined in this
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investigation, in conjunction with the analog

4 Nyquist plots, proved to be too cumbersome to
be practical, and damping was far more read-
ily determined from direct band-width mea-
surements of the analog response data.

Data obtained through analog and digital
techniques are shown in Figures 3 through 6
and are compared in Figure 7 and Table I,

The excellent agreement obtained in these
tests went a long way toward verifying the
validity and convenience of the digital test
techniques. The digital techniques were there-
fore utilized in the remainder of this investi-
gation,

4
T —~-—- DIG!ITAL
— ANALOG

a——
ACCELERATION TRANSFER FUNCTION

o 250
FREQUENCY (Hz}

Figure 7. Plot of the Digital Data vs

Analog Data

1V, MEASUREMENTS OF RESONANT

FREQUENCIES AND MODE SHAPES

The structure examined in this investi-
~ gation is typical of a segment of the proposed
aft fuselage area of the B-1 aircraft, near
fuselage station 1475, Figure 8 shows the
particular structural specimen used and the
¢ three zones chosen to characterize structural
response for different average radii of curva-
ture, The specimen is shown in a side view,
with zone 3 representing the relatively flat
bottom of the fuselage, and zones | and 2
representing side sections with decreased
radii of curvature, The basic construction is
of titanium skin stiffened by perpendicular
Tew frames, with the inside frame caps inter-
conpected by straps, This construction, which
combines a chem-milled titanium skin of varying
curvature and thickness, and a complex sys-
tem of {frame webs (shown in Figure 9) having
varying thicknesses of frame caps and straps,
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Overall External View of
Test Specimen .

Figure 8.

Internal View of Test
Specimen

Figure 9,

resulted in extremely complicated vibrational
response characteristics. Resonant frequen-
cies, identified from transfer function mea-
surements, occurred in several frequency
bands of high modal density. Typically these
occurred between 250-350 Hz and 500-600 Hz
in zones ]and 3, and at somewhat higher
frequencies in zone 2, This high modal
density is evident in Figure 10. The primary
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Figure 10, Undampcd Transfer Function
frequency range of interest was the low fre-
quency band, 250-350 Hz, which was identified
as having high 1/3-octave band strain levels by
Rockwell International during their sonic
fatigue tests,

A detailed understanding of typical mode
shapes is necessary for proper design of
damping treatments, One analog sine-excita-
tion method of obtaining mode shapes is to
excite the structure with a discrete frequency
force, at one point, and move a lightweight
accelerometer to various points in a griq
pattern, measuring and plotting the accelera-
tion at each point at each resonant frequency.
This method is very cumbersome and time
consuming, because the system must be re-
swept for each point and is difficult to use for
closely spaced resonances because of modal
coupling.

Impulse testing and digital data process-
ing can, however, often be used to rapidly and
conveniently acquire mode shape data, The
process involves obtaining several transfer
functions, representing the frequency response
of the structure at several points, due to
excitation at a single point, This can be done
either by impacting the structure at a single
point and moving the accelerometer to each
response point, as for the analog method, or
by using Maxwell's Law of Reciprocity 77,
leaving the accelerometer at a single point and
impacting the structure at each point where
mode shape data is required [47.
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Mode shape information can then be com-
piled by examining the amplitude of the
imaginary part of the transfer function, at
each resonant frequency, for each response
point measured on the structure, In the case
where there are several closely spaced reson- PN
ant frequencies, and structural damping is low, N
small errors in identifying resonant frequen-
cies, resulting from the limited frequency
resolution, can cause large errors in the
measured mode shapes, In some cases, this K
problem can be alleviated by employing a spe- ’
cial time window 51 which causes the obser-
ved force and acceleration time samples to
decay with time. * This windowing process
smooths the calculated transfer function and
therefore can provide more accurate deter-
mination of mode shapes. Obviously, how-
ever, since the special time window adds
apparent damping of the transfer function, it
must not be used when the transfer function
data is used to calculate modal damping. Two
test techniques were used in this investigation
to obtain mode shape data, namely: (1) a
fairly straight-forward method which produces
two -dimensional mode shapes, and (2) a more
sophisticated method which generates anitnated
three-dimensional mode shapes on the oscilli-
scope screen.

The two dimensional technique involves
determination of each resonant frequency from
observation of a ''windowed' transfer function,

such as that shown in Figure 11. As can be :
z
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2 MAGNITUDE
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Figure 11, Time Windowed Undamped

Transfer Function

*

The time window used in this investigation
was an exponentially decaying function, with an
arbitrary rate of decay.
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seen, the special window produces a transfer
function which is considerably smoother than
those taken without the window, such as those
shown in Figure 10. Resonant peaks in the
transfer function are characterized by a peak
in the magnitude, and a 90 degree phase angle
between force and a2cceleration, such as occurs
at 295 Hz in Figure 11. Once a resonant fre-
quency has been identified, a transfer function
measurement is then made for each point on
the structure at which mode shape information
is desired. For a two-dimensional mode shape
display these structural coordinate points are
usually selected to lie in a pattern of straight
lines. The two dimensional mode shape com -
puter program used in this investigation 6]
then determines and displays, on the oscilli-
scope, the amplitude of the imaginary part of
the transfer function, not only at the desig -
nated resonant frequency, but also at four
additional frequencies, namely the two frc-
quency steps immediately above the resonant
frequency and the two frequency steps immedi-
ately below the designated resonance, With
this method, slight shifts in the frejuency at
which maximum quadrature amplitude is
observed do not affect the measured mode
shape significantly. Typical outputs of this
program are shown in Figures 12 and 13, with
a peak displayed at each point representing a
structural coordinate; thus the mode shape is
taken to be the envelope of these peaks., Fig-
ure 13 shows a mode shape of a skin panel,
along a line parallel to the frames, Figure 14
shows a mode shape of the same panel mea-
sured along a line perpendicular to the frames.
With these plots, and a little imagination, the
three dimensional mode shape of a simple
panel can be visualized,
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Figure 12. Typical Skin Panel Mode Shape
at 330 Hz
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Figure 13, Typical Skin Panel Mode Shape
at 295 Hz in S Direction
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Figure 14. Typical Skin Panel Mode Shape
at 295 Hz in X Direction

However, with a more complicated
structural geometry, it becomes increasingly
difficult to visualize 3-D mode shapes by
viewing a collection of 2-D mode shape sec-
tions. For example, using the above 2-D
mode shape procedure, it would be extremely
tedious to attempt to visualize the modes
involving coupled motioas of the skin, frames
and straps. Yet it is exactly this type of
information which is needed for the proper
design and placement of damping treatments on
this structure. Therefore, the 3-D mode shape
computer program which produces an orthog-
onal projection of the structure with a super-
imposed animation of the mode shape, having a
capability of selecting any viewing angle, is a
very powerful aid to engineers faced with
designing effective damping treatments.
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Perhaps the best way to explain how the
3-D mode program works is through an exam-~
ple. Consider the structure shown in Figures
2, 15, and 14, The portion of structure under
consideration consists of a skin panel, twa
stiffening frames, and a connecting strap. The
i structure is then represented by a finite
number of points in space. In this case 50
points were chosen with 25 points on the skin,
9 points on alternate sides of a stiffner on one
of the frames, 6 points on the strap, and 10
additional points on alternate sides of a
stiffener on the other frame. This grid pat-
tern, representing the structure, is shown
in Figure 17. The spatial coordinates of each
point, along with the direction of impact or
acceleration measurement, is stored by the
computer in a geometry file. A cross transfer

RPN

+ function is then measured for every point on
M the grid relative to the single impact {or pick-
up) point, and each of these transfer functions ) 3 A
] is stored on the disc, These transfer functions Figure 16. l;,;lght I'B"ame A'realt;:eg n
‘ can be taken with the special time window pre- Sh::: ‘mensional Mode

viously discussed or, if modal damping mea-~
surements are required, stored without win-~
dowing on the disc and then, if desired,
- smoothed later by applying the window to data.
The computer software can then calculate the
3-D mode shapes from the stored transfer
function data and the information in the geo-
metry file for a number of resonant irequen-
3 ) cies selected and identified by the test engi-
neer, These mode shapes can be displayed in
a slow motion animated fashion superinposed

Figure {7. Undeformed Three Dimen-
sionai Mode Shape Model

on orthogonal projection of the points repre-

- senting the structure. Furthermore this 3-D 3
view of the mode shape can be viewed from any ;
e point in space selected by the test engineer. 4

Photos of different mode shapes are shown in
Figures 18-22, )

Figure 15, Skin Area Used in Three At first glance one might assume that
Dimensional Mode Shape this is an interesting gimmick, of little techni-
Program cal value, but in reality this 3-D mode shape

display is a very powerful tool for under-
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standing the modes of complex structures.

Figure 18. First Bending Mode of the
Strap at 237 Hz

Figure 19. Mode Shape at 295 Hz

Figure 20. Edge View of Skin and

Figure 21.

Strap Mode at 295 Hz

Mode Shape at 354 Hz




Rotated View Showing Right
Frame at 354 Hz

Figure 22,

V. DAMPED AND UNDAMPED RESPONSE
MEASUREMENTS

The transfer function and mode shape
data previously discussed led into an experi-
mental study to determine the effect of the
placement of various room temperature damp-~
ing treatments on the vibrational response of
the aft section of the B-1 structure. The object
of the study was two fold; namely, (1) to deter-
mine the effect of skin-frame modal coupling
on the damped vibration response of the struc~
ture; and, (2) to establish the parts of the
structure, found from the 3-D mode shape
data, to which the damping treatments should
be applied in order that they may be used in
the most efficient manner.

The areas of the B-1 structure investi-
gated were two adjacent skin panels and the
frame between them. Figure 23 illustrates the
construction of the structurg. The blocked-
off section in Figure 24 shows the skin area to
which the damping treatments were applied and
the pickup location for the frame area is
illustrated in Figure 9,

Two types of damping treatinent were
applied successively and independently to the
structure, namely constrained layer damping
treatments and tuned dampers, Each layer
of the constrained layer damping treatment
consisted of 0.002 in,of a pressure sensitive
adhesive and 0, 005 in,aluminum backing, as
in Figure 25. The tuned dampers were single
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FRAME

Structure Construction to
which Damping Treatment
was Applied

Figure 23,

Figure 24. Skin Area of B-1 Structure
to which Damping Treat-
ments were Applied,

degree-of-freedom spring-mass systems with
a Dow Corning fluorosilicone sealant as the
viscoelastic spring and were designed to have
a resonance frequency of 280 Hz, The fre-
quency corresponds to one of the resonances
of the structure.
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Figure 25. Configuration of Damping
Treatments Applied

The damping treatments examined and
their placement on the structure are listed in
Table II. The resulting effect of each damping
treatment was determined by measuring the
transfer function at positions A, B, and C and
comparing this to the undamped transfer func-
tion. The reduction of peak amplitude is a
measure of the effectiveness of the damping
treatment and its location. These results are
shown in Table IIl. Nyquist plot determinations
of damping for this system was not feasible
because of the closely spaced modes encoun-
tered in the structures. Closely spaced modes
cause the Nyquist circle of one resonance to
distort the circle of adjacent resonances. This
distortion ruins the Nyquist plot circle f{it
method of determining damping!

Transfer functions for each damped con-
figuration listed in Table [Il, at position B, are
shown in Figures 10 and 26-29. The results
indicate that the most effective way to add
damping to a specific area is to directly apply
the treatment there. However, the coupled
nature of the motion observed in the three-
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dimensional mode shape analysis is illumi-
nated by the reduction in amplitude observed
in the frame as a result of the damping on the
skin and vice versa. Because of this coupling,
the greatest amount of damping is added by
applying damping to both the skin and the
frame.

TABLE II

TYPES OF DAMPING TREATMENTS AND
THE PART OF STRUCTURE APPLIED TO

Treat- Type of Treatment and Part of
ment Structure to Which it Was
No. Applied
o Undamped
1 Six layers of the constrained
layer treatment applied to frame
web only.
2 Three layers of the constrained

layer treatment applied to both
adjacent skin panels.

3 Three layers of the constrained
layer treatment applied to both
skin panels and six layers
applied to frame web.

4 Four tuned dampers applied to
the frame web number 3. (See
Figure 30 for location on frame.)

TABLE III

TREATMENT NUMBER AND PEAK
TRANSFER FUNCTION RESULTS

Location| Treatment Number and Applitude of
of Maximum Peak in Transfer
Pickup Function Below 350 Hez

A 0-320 [1-112]2-63 | 3-11 | 4-90
B 0-850 [1-118|2-20 | 3-11 | 4-540
C 0-1400(1-100{2-520( 3-110{ 4-500

e e e T o i e st

b \

yodantown s o o WY o




C e ah

1000
2 800F
Q
f=
2
€ GOOT
®
w
-
]
s
x 400F
=
-
]
8
< 200}
0
200 240 260 320 380 400
FREQUENCY (Hz)
Figure 26. Transfer Function with
Damping Treatment No. 1
Applied
25
z 20}
§
E IS}
2
£
)
8
2

280 320 360
FREQUENCY (Hz)

Figure 27. Transfer Function with
Damping Treatment No. 2
Applied

FREQUENCY (Hz)

Figure 28, Transfer Function with
Damping Treatment No. 3

Applied

€00
§
2
«
b
E d u
o
)
3

%00 ) 3%0

FREQUENCY (Hz)

Figure 29. Transfer Function with
Damping Treatment No. 4
Applied




e e

SKIN

X

AL

-

/

FRAME WEB

Figure 30, Placement of Tuned Dampers

VI. SUMMARY AND CONCLUSIONS

The results obtained, to date, during
this on-going investigation demonstrate some
of the advantages of using impact testing tech-
niques, with digital.data processing, through a
Fourier analyzer consisting of 2 minicomputer
and appropriate software to conduct discrete
fast Fourier transform and modal analysis.
Comparisons of data obtained utilizing digital
techniques with data obtained from sine sweep
tests show that measured resonant frequencies
and modal damping are essentially the same
for either method. Digital techniques have the
advantage of being much faster, coupled with
a capability of being able to immediately
evaluate the quality of the measured data
through observation of the coherence function,
In addition, two and three dimensional mode
shape information can be rapidly obtained and
conveniently displayed. It was found that three
dimensional animated mode shapes were of
great value in determining where, and which
type, of damping treatments are most appro-
priate for effective damping of structures
having fairly complex geometry,

Test results, to date, indicate that the
most effective way to damp the modes of this
structure, which are of interest from a sonic
fatigue standpoint, is to have damping treat-
ments applied to the skin, to the frame webs,
and to the straps, This necessitates three
different material systems, since each of
these components is expected to have differ-
ent operating temperature ranges. Tests are
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presently underway to evaluate appropriate
damping treatments for each temperature
range. Different damping materials, as well
as highly efficient graphite-epoxy constraining
layers and appropriate adhesive systems, are
being investigated for their damping effecti-
veness at the expected temperature, and
possible degradation resulting from long term
exposure to fuel and moisture environments,
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Discussion

Mr. Caruso: (Westinghouse Product Qualification
Laboratory) Was all of your testing done
using a sinusoidal input?

Mr. Drake: No the testing was done with im~
pact, We have what we call a "calibrated
hammer’”” with a force gage; we would impact
the structure at one point and simultaneously
measure the acceleration output and the force
input during the impact, digitize this data,
and fourier transform it which would then put
you into the frequency domain., We use no sine
sweep testing at all, other than for a come~
parison to see that our digital data was
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accurate,

Mr, Caruso: We have a similar system at the
lab now that we have been using and we have
been running some modal analyses primarily of
our vibration test fixtures, as well as a
couple of systems. We have been running some
tests mostly as a selling point to designers
engineers and we are trying to show that the
random testing and sinusoidal testing are
equivalent using some of the digital techniques.

Mr, Drake: We have found that to be true. We
have run comparisons where we use what they
call the "DAK", which is a Digital to Analog
Output, and we can control shakers, We have
run Digital to Analog Output (DAK) tests, the
typical magnetic transducer or shaker type
sinusoidal sweep tests, and impact tests; we
have compared the data and the comparison is
unbelievable.

Mr, Caruso: Were the data that you obtained
from the sine sweep and the random burst tests
virtually equivalent?

Mr, Drake: Yes.

Mr, Stroud: (Lockheed Missiles & Space Co.)

The response plots indicated that your modes
were well isolated which simplified determining
the mode shapes. What kind of luck have you
had with this technique in dealing with multi-
ple mode response, where the modes were closely
spaced?

Mr. Henderson: You are right, the technique
for fitting a circle in the nyquist plot will
not work if your modes are closely coupled. We
have resorted to a comparison of a level of the
transfer function for the evaluation of the
effectiveness of the damping treatment on the
more complicated structures in this particular
investigation; there are techniques available
for curve fitting closely coupled modes to
various mathematical models and we have tried
some of these. The most successful techniques
that we are aware of use a complex normal mode
analysis, They curve fit the transfer function
data to a number of complex normal modes in
order to synthesize the behavior, they use this
to derive the modal damping; this is the only
way that I am aware of that you can obtain the
modal damping Lf you have really closely coupled
modes, This technigue works if we can obtain
something like eight data points around a reso-
nance that we can curve fit, and those frequency
points are typically separated by efither 1 Hg
or k Hz, so that we can handle fairly closely
coupled modes; but if they are really closely
coupled, or if the system is highly damped, you
cannot sort out the modal damping with this
nyquist plot.

Mr. Drake: I think we are missing part of your
question about the mode shapes. I picked out
something that was very simple and clean in
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the transfer function data that I have shown
and it only had one mode; but in the mode
shapes that you have seen, I didn't make it as
evident as I should have, we had nine modes
between 212 Hz and 354 Hz, I don't know if
you consider that closely packed modes or not,
but for the closely packed modes it doesn't
really make too much difference, for the mode
shapes alone because if you are interested in
a particular resonant frequency, and if there
are modes or frequencies that are two or three
Hz apart, you can examine them individually.

Mr. Stroud: You would need a sufficient num-
ber of data points between the resonances such
as the eight points that you mentioned.

Mr. Drake: This is for damping. 1 don't think
you would need that many data points for the
mode shapes.

Mr, Stroud: Then you wouldn't use the quad-
rature response you would plot the diameter
of the circle,

Mr. Henderson: The quadrature response has a
tendency to decouple this. The quadrature
response on coupled modes is closer to a
normal mode than the actual magnitude of the
complex response. There are some very good
treatments of this subject, Dave Brown at the
University of Cincinnati has been discussing
this lately. We are also looking at the quad-
rature response mode shapes.

Mr, Stroud: What did you use for displaying
the mode shapes?

Mr. Drake: The display was just an ordinary
oscilloscope.

Voice: Do you expect the third mode involving
frame twisting to be symmetrical?

Mr. Drake: [ think if you had an ideal struc~-
ture it would be, but I have never seen one
put together so that its motion was symmetri-
cal.

Mr. Caruso: 1 just wanted to make a quick
point in response to the gentleman's ques~
tion on isolating very closely spaced modes.
We have a setup similar to yours and just from
the visual inte.pretations end of it you can
pick out modes as closely as you want by lim-
iting the test and analysis frequency bands.
Without going into specific equipment terms
we have been able to visually isolate modes
that are & Hz and 1 Hz apart; the numerical
data would be in the form of a printout but
you can go as close as you want. You would
be limited by the quality of your data, I
think, with that type of digital set up.
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AN ALTERNATIVE SYSTEM FOR MEASURING COMPLEX DYNAMIC MODULI
OF DAMPING MATERIALS (U)

David I. G. Jones
Air Force Materials Laboratory
Wright-Patterson AFB, Ohio 45433

of the material specimen on the dynamic

as low as 103 Lb/in? (6. 87 x 10 N/m?).

In this paper, a simple technique for measuring complex dynamic moduli
of damping materials is described and evaluated. The system consists
of a rigid rod supported at both ends by two metallic flexural springs,
with the damping material specimen placed between the center of the rod
and a rigid surface. The rod is then excited horizontally, and the effect

Results obtained by this technique are compared with those obtained
using the well established vibrating beam techniques. The results indi-
cate that this '"rocking beam' technique can be used to accurately meas-
ure Young's moduli of the specimen material from over 10 Lb/in®

(6. 87 x 10? N/m?) to less than 104 Lb/in® (6. 87 x 107 N/m?), possibly

response behavior measured.

INTRODUCTION

(U) The well established vibrating beam
techniques [1-4] have been used for many
years to measure complex extensional moduii
of elastomeric materials, The normal range
over which reliable data is readily obtainable
is from a modulus of 107 Lb/in? (6.87 x 1010
N/m?) to 105 Lb/in® (6.87 x 108 N/m?), while
moduli of less than 104 Lb/in? (6. 87 x 107
N/m®) can be measured on occasion if extreme
care is taken., Values below this cannot be
regarded as valid in general, even if the
results appear to be self consistent. The
advantages of the vibrating beam techniques
are simplicity and the fact that data for sev-
eral frequencies can be obtained for a single
specimen at each test temperature. One
major disadvantage is that for low moduli of
the damping material, error magnifications
are large so that apparently consistent but
nevertheless erroneous data is then readily
obtained. It is not easy to overcome this dif-
ficulty, and other techniques are then resorted
to [3,5-7]. Another disadvantage of the
vibrating beam technique is the fact that the
excitation and pickup transducers must be
close to the beam in order to interact effec-
tively, This limits the temperature range
over which data can be obtained, especially at
' the high temperature end.

The technique being evaluated in this
paper does not overcome all of these difficult-
ies, and even loses the advantage of obtaining
data for several frequencies at each tempera-
ture because it is essentially a single degree
of freedom system, However, the specimen
can be heated to any degree within the limita-
tions of the materials used, while the pickup
and excitation transducers are safely outside.
The tests reported herein involved a relatively
low temperature damping material, so that no
special protective measures had to be taken in
regard to the transducers. However, for tests
on very high temperature enamels, epoxies
and elastomers, such protection would be
essential. The tests conducted on this low
temperature material show that satisfactory
results can be obtained by the technique over a
wide range of conditions and that the accept/
reject criteria for reliable data are simple to

apply.
ANALYSIS

The test system being analyzed is illus-
trated in Figure 1, The rigid metal rod is
supported and restrained at each end by a
flexible metal spring and the material speci-
men being evaluated is placed hetween the cen-
ter of the rod and a rigid surface. The rod is
then excited at one end and the response picked
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Figure 1. Rocking beam test system

up at the other. In this way, the excitation and
pickup transducers are well separated and are,
or can be, kept outside the environmental
chamber or furnace so that the specimen can
be taken to higher temperatures than the trans-
ducers can normally withstand, This is a
most significant advantage.

Consider, now, the deformation of the
system in the longitudinal direction, as illus-
trated in Figure 2, The flexural stiffness of

ELASTIC SUPPORT
(STEEL) TRANSVERSE

DIS':’LACFMENT

E RIGID ROD

HEAVY BLOCK

Figure 2. Deformed specimen

each end spring provides an equivalent spring
opposing the motion of the rod, of magnitude
12E1/13 according to classical beam theory
under static conditions [8], The specimen
stiffness, by the same token, is lZEﬁlD/Sl%,
where S is a shape factor to account for the
fact that the specimen may not be a thin beam
in the classical sense. S has yet tn be deter-
mined, but can be expected to be unity for
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hp/2p<<1 and increase rapidly as the speci-
men becomes thicker, The net stiffness of the
system in the longitudinal direction is, there-
fore:

* 3 #* 3
k = 24EI/1° + lZEDID/SlD (1

The net mass of the system is equal to the sum
of the mass of the rod, m_, and the equivalent
mass m_ of each end spring. The specimen
mass may usually be neglected unless the rod
is very light; indeed the mass of the end
springs may also be neglected in many cases.
The effective mass of each end spring can be
calculated by first calculating the static defor-
mation at each point along the flexural spring
for zero displacement and slope at the lower
end and zero slope but finite displacement at
the other end and, secondly, calculating the
total kinetic energy and comparing terms.

The result is:

m, = (l3/35)m.b (2)

where is the actual mass of the length # of
the flexural spring and m, is the equivalent
mass if all were concentrated at the rod end.
Since the system behaves, to a degree of
approximation, as a single degree of freedom
system, we may write the equation for the
resonant frequency in the form w® = Re(k™)/m.
Hence, for the undamped system:

wi = Z4EI/l3m (3)
and, for the damped system:
w2 = 24EI/m1> + 12E_1_/mSt> (4
D DD D
where m = m_+ (26/35) m, . Therefore:
2 2
AR ("’D/“’o)
3
= 1+ (ED/E)(ID/I)(! /lD) /28 (5)
. B 2 3.,,2
- Ep = mao(!D/hD) S(Z" -1) (6)
where L, = bh}/12 and I = bh3/12. From

equation’1, the loss factor 5, is deduced by
taking the ratio of the imaginary to the real
part of the stiffness k*:

* 3 3
k = 24El/17 + lZEDID/SlD

- o

i 3
+ thEDqDID/le
. - 3 3 3
Somg = (leDnDID/szn)/(um/, +12E 1 /S10)
. = 2
-Mp = ')./(1 - 1/Z%) %)
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using equation 5, From the measured resonant
frequencies w., and w , and the measured loss
factor _, one can therefore use equations 6 \} MAGNETIC TRANSDUCER (PICKUP)
and 7 to determine the material modulus Ep ,
and loss factor 7. ng can be measured using CHAMBER
the "half-power bandwidth" method, 3
The shape factor S can be calculated for E,
a particular section by finite element tech- E OSCILLATOR/
niques or, approximately, by means of classi- i ] AMPLIFIER
cal two-dimensional elasticity theory. While B — h &
exact results are not readily available in the L [ H
literature, the limiting case of a very thick : : INFLQT
specimen, for which shear effects are domi- ) - 43
nant, is {9]. In this reference, a correction | FEEDBACK }
factor is given for a shear specimen to allow X
for bending effects, which is valid for hp/t R COUNTER 3
ratios as low as 1.0, Transposing this cor- S ;
rection into a correction for bending instead of
shear is then easily shown to give:
5 = 3(h /2t )2 (1+ 202 /42 ) (8) AMPLIFIER OSCILLOSCOPE
D''D D'"D
This result is valid for hD/lD 2 1.0, i.e. for |
a square cross-section specimen. For b /I 4
< 1.0, bending effects become progressively
more important and S approaches the limiting RECORDER A.C.VOLTMETER
value of 1.0 for hy/lp = 0. Comparison with
experimental results will be discussed in the
next section,
Figure 3, Vibrating beam test system
EXPERIMENTAL INVESTIGATIONS
values of wp, @, and ng from Table I. The
Vibrating Beam Tests data was subject to the limitation that when
Z3 - 1 becomes equal to or less than 0.1 the
In order to establish the validity and results are unreliable [2]. For this reason,
usefulness of the '"'rocking-beam' technique, it no data was obtained for the higher tempera-
was necessary to compare the results with tures.
those obtained by a well established technique,
such as the vibrating cantilever beam with the Static Deformation Tests to Determine S
damping material coated syrmmetrically on both
sides as shown in Figure 3 [2]. The beam was In order to determine S, the simple test
excited by a magnetic transducer near the root. system illustrated in Figure 6 was used. The
Typical measured loss factor and resonant length 1 of the soft rubber specimen was
frequency data for the first three modes is varied from 1,0 inches (25.4 mm) to 0.25
shown in Table I, for thickness ration = hD/lD inches (6.35 mm), by successively cutting the
= 0. 449 of a typical room temperature range specimen and re-gluing. The load was applied
damping material [10]. The beam was 7 in successive steps, and then released by the
inches long (177. 8 mm), 0.078 inches thick same steps, and the process repeated several
(1,98 mm) and 0.45 inches wide (11,43 mm). times, Typical results are shown in Figure 7,
The data was reduced in the usual manner, by as graphs of load versus deformation, Since
means of the equations [2]: the same specimen material was used in each
2 2 test, the values of S were readily derived from
ED = E (ZO - 1)/(8n" + 12n + 6) (9) the observed stiffnesses. If it is assumed
2 that S = 1.0 for the longest specimen, 'D =
np = v,'/(l - 1/Z°) (10) 1.0 inches (25.4 mm), then it is easily shown
that S = 1,09 for lD = 0.5 inches (12.7 mm)
Some of the results are shown in Figures 4 and and S = 1,46 for £ = 0,25 inches (6.35 mm).
5, as graphs of Ep and np versus frequency at These results are plotted as a graph of S ver-
several temperatures, based on interpolated sus hpy/fp in Figure 8, along with the limiting
values discussed in the analysis.
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TABLE 1
Vibrating Beam Test Results

-

S

SHAPE FACTOR

o
Temp F Mode ng fr (HZ) io (HZ)
0 1 0.017 67.7 50.0
2 0.013 416.8 3lz. 7
3 0.011 1168.5 876.9
25 1 0,032 65.8 49.8
2 0,026 406.9 310.9
3 0.020 1147.5 872.0
50 1 0.087 57.9 49.4
2 0,067 370.0 308.9
3 0.057 1061.6 866.3
75 1 0.172 47.5 49.1
2 0.143 316.8 306.8
3 0.133 914.1 860.5
100 1 0.033 41.8 48. 7
2 0.067 264.1 304.2
3 0.105 753.4 853.2
125 1 0.013 41.4 48.1
2 0,017 258.0 300.6
3 0.033 715.8 843.2
Rocking Beam Tests
80 In order to evaluate the effectiveness of
L the '"'rocking beam' test technique, it was
| necessary to restrict attention to specific
specimen dimensions. After some trial and
20 error, the following dimensions were found
; to be most convenient for the initial investiga-
/ tions; h = 0,01 inches (0.254 mm), § = 7/8
10 inch (22,23 mm), b = 0.5 inches (12.7 mm),
[ / m_ = 43.03 grams and the thickness hp of the
¥ specimen was varied from 0,077 inches
s0 (1.96 mm) to 0.454 inches (11.53 mm)., Fig-
% ure 9 illustrates the test system. Figure 10
shows the measured variation oi Ngs fD and to
i with temperature for the various values of
L, 2 2,2 hy. From equations 6 and 7, it was then
20 L7 Mg/ &) "’2"0""’—7 straightforward to calculate 7p and E_, using
,D’/V the values of S obtained earlier. The Tesults
o y are shown in Figures 4 and 5. It is seen that
Lop-0= the two techniques give comparable results
[ ] L-— ANALYSIS over the entire temperature range over which
1 O+ EXPERIMENT reliable results are obtainable by both tech-
035 rY; o TS niques. Figure 11 shows a typical undamped
ho/to and a typical damped response spectrum,
Figure 8. Graph of shape factor S (.
versus h/ 1h
103

i e e —e e - Gm———————————— -




M 'o ] L] 'T""I 1 I‘VI""I ﬂ
OSCILLATOR/ E- —
] ANPLIFIER i hy*0 7
: - gt -
ORIVE g‘ ]
| a I
F * §O| E— _4
[ 4 -
me B counTER 8 b Np=0.077ins.
R T [ ]
{SOLATORS E L 4
- 8 L .
: ¥
* AMPLIFIER OSCILLOSCOPE go, | .
r ]
T 1 ] I -
€ | 4
RECORDER A.C. VOLTMETER - 1
» : .
Figure 9. Rocking beam test system ool el ' |
T 20 50 100 200 500 1000 2000
o FREQUENCY HZ
STMBOL  hp/dy
= g 0_?,, ’ . Figure 11. Typical dynamic response spectra
- o | © o1e
& v oz * The values of Ep and 0y, of the damping mater-
§ I * N\ ial were determined from the measured reso-
Q nant frequency of the specimen and the system
oo [ loss factor was determined by the half-power
2 r \ . bandwidth method. The dimensions of the
- - | ; specimen were f = 1.75 inches (44.5 mm),
3 hD = 0,085 inches (2.16 mm)and b = 0.5
002 inches (12.7 mm). Values of E, and 5y, were
obtained at 125°F, 150°F and 175°F. The
1000¢ ] results are shown in Figures 4 and 5. It is
£ 3 1 seen that the resonance and rocking beam test
o h results are in good agreement in the range
g [ o 1 where data is obtainable using both techniques.
: 0o
Y g’ 200} % - Temperature -Frequency Reduction of Test
5 5 Data
< ~
. é E "F_“’——‘* Following the procedure of reference
¢ wl- e proen —— [3], the data shown in Figures 4 and 5 has
TEMPERATURE been reduced to graphs of E. and n, versus
reduced frequency fa and of the sh ft factor
. ap versus temperature, as shown in Figures
Figure 10. Graphs of n, and {p, versus 13 and 14, This procedure completes the
temperature characterization of the complex modulus prop-
b erties of the particular elastomer tested uti-
", Resonance Tests lizing three separate reasurement techniques,
’ . and the results illustrate the consistency of
In order to complete the investigation, the data obtained,
the complex modulus properties of the damp-
ing tile were also measured at high tempera-
ture using a simple resonance technique [ 3],
utilizing the setup illustrated in Figure 12.
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CONCLUSIONS

The tests described in this paper show
that the rocking-beam technique represents a
feasible approach toward accurately measur-
ing the complex dynamic moduli of damping
materials over a wide range of magnitudes.
The method is easy to use over very broad
temperature ranges, utilizes very simple elec-
tronic instrumentation, and does not require
mass-cancellation circuitry as do same of the
mechanical impedance and vibrating beam
techniques for high temperature testing.
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Figure 14. Graph of ap versus temperature
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NOMENCLATURE

Breadth of springs (uniform)

Real part of complex Young's modulus
of damping material

Young's modulus of beam-like end
springs

Complex Young's modulus of damping
material [ = ED(l+ir;D)]

Resonant frequency of damped system
Resonant frequency of damped beam
Resonant frequency of undamped system
Thickness of end springs in rocking

beam system or thickness of metal beam
in vibrating beam system

Thickness of damping material

VT

Flexural rigidity (bh3/12) of end-springs

Flexural rigidity of beam-like visco-
elastic specimen (bhl3)/ 12)

Complex stiffness of system
Length of end springs
Length of specimen
Effective mass of system
Mass of rod

Effective mass of end spring
Actual mass of end spring

Thickness ratio for beam specimen
(bD /h)

Shape factor

Frequency ratio for rocking beam
wplw,)

Frequency parameter for vibrating
beam [ = (w /0 ) (1+pph/ /ph)]

Loss factor of damped system
Loss factor of damping material
Density of damping material
Density of beam material

Resonant frequency of undamped sys-
tems

Resonant frequency of damped rocking
beam system

Resonant frequency of vibrating beam
system in rth mode




L DYNAMIC ANALYSIS

NONLINEAR VIBRATION OF CYLINDRICAL SHELLS
UNDER RADIAL LINE LOAD
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The nonlinear responses of a thin, cylindrical shell under radial line
load sinusoidally distributed around the circumference is investigated
using the large deflection theory for cylindrical shells given by
Mushtari (1).

The equations of motion for the line load problem are solved by the
series expansion technique in conjunction with Galerkin method. By
taking a two-tem periodic solution, the shell problem is transformed
to a set of nonlinear equations of the Duffing type for a two-degrees-
of-freedom system. The hammonic balance method (7, 8) is then applied
to derive the frequency responses.

In accordance with Floquet theory (4), the stability of the solutions
is investigated by the perturbation method (12, 13). The problem then
reduces to the type of Mathieu equation from which the stability cri-
teria are determined.

Mumerical solutions for a specific cylindrical shell are presented
graphically to demonstrate the application of various procedures of the
analysis.

NOMENCLATURE

a = radius of cylinder

a. = amplitude of response xj
i=1,2,...,0, Eq. (31)

aJ! = amplitude of perturbed motion,
j = 0,1,2, Eq. (49)

A = response amplitude in radial
direction for mode mn

A=A

A=A

b. = amplitude of response x3
J j=0,1,2, Eg. (31)

b{ = amplitude of perturbed motion,
i=1,2, Eq. (49)
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BO = parameter defined by Eq. (36)

an = amplitude of stress function for
mode mn

s Cpp C3 ™ geometric parameters defined by
Eq. (28)

C = loading constant defined by
Eq. (22)

}313
— " flexual rigidity of

12(1- v%)  shell

D=

E = modulus of elasticity

f = linear natural frequency of shell
™ mode m in cps




fm(x,¢)

= Fl/m

modal function of stress func-
tion defined by Eq. (12)

= stress function defined by

Eq. (5)

= equivalent additional force

defined by Eq. (29)

: = amplitude of excitation Pj,

Eq. (30)

— o

; = shear modulus
= gshell thickness

i = integers, 1 and 2, unless other-

wise specified

coefficient in the stability
characteristic Eq. (56)

external load in z-direction
amplitude of Pz’ Eq. (8)
time function of external load

coefficient of Fourier series,

Eq, (17)

forcing function defined by

Eq. (25)

maximm value of n, also
coefficient in Eq. (74)

coefficient in Eq. (82)

constant term in stability
characteristic equation (56)

v = integers, 1, Zy.e.,1 < number of
i giﬁi?ﬁiﬁ?tﬁioﬁn waves of = geometric constant defined by
k=1- (c/wlcy) in Eq. (89) Eq. (25)
ko, Kl, = shell geometric parameters = nommal shearing forces
3 & 4
defined by Eq. (22) - mz/w = natural frequency
- . = sheil geometric parameter ratio
defined by Eq. (25) = w /w = forcing frequency ratio
= shell length =a¢= circumferential coordinate
= ode number = number of half-sine of cylindrical shell
waves in axial direction - surface area of shell
c c
2 2 Y. o .
=1+ 2(~?—)mhq.(95] = time
wy 3
= displacements of shell middle
2c surface
_ 2
T (95) = shell modes in Eq. (10)
N 1 2
= axial coordinate of cylindrical
M g’ Mx’ M. = bending moments shell
. Mx = twist moments = shell responses defined by
Eq. (3D
= mode number = number of circum- . iy
ferential full waves = response amplitudes in Fq. (32)
N , N, = membrane forces = Ji 1 xl' k. (78)
. N . = inplane shearing forces = e X B (79
p = maximm value of m = radial coordinate of shell
= coefficient in the cubic equa- a,f = phase angles of x; and xz with
tion (82) respect to forcing function
- . P o= . g g——— s A nlas e e e o i
N tateunc i ' S~
TSNS SAEUPIIASES SRR,

~ YIS




L Bn = frequency parameters in Eq. (27)
8(x-x0) = Dirac delta function in Eq. (8)
8fm = variation of the stress
function £
mn
8xi = variation of response X,
8W__ = variation of mode W
mn mn
€€, 712 = bending and shear strains of
shell middle surface
— 2
’ 51 = cl/ wy
: 2 2
X ' =
€] (Sc1 + cs/r ) /w 1
2 2 2
t = =
€ (3clr + c:())/t.,1 "€
{ = characteristic exponent of per-
turbed motion in Eq. (49)
# = mass per unit area of shell
v = Poisson's ratio
Tt
¢ = angular coordinate of cylindri-
cal shell
@(t), ¥(t) = periodic function of time in

Eq. (31)

Al’ A.Zi le’ 715’ YZC’ stv "’C’ ,’S' v, WC:

INTRODUCTION

Thin cylindrical shells are often used as
substructures or components of aerospace
vehicles. In some cases, these shell struc-
tures, serving as fuel or gas tanks, are
installed inside a large shell. During various
operational or test conditions, vibratory
motions may be excited in the primary struc-
ture. The radial component of the vibration
will then transmit inward through ring frames
or bulkhead supports to the internal shell in
the form of radial excitation which is peri-
odic around the circumference of the internal
shell, This constitutes the dynamic problem of
a thin elastic cylindrical shell under radial
line load sinusoidally distributed around the
circunference. This paper presents an analy-
tical solution to the forced response of the
shell under such a dynamic line load.

LARGE DEFLECTION OF CYLINDRICAL SHELLS

Since the shell is thin, the radial
deflection under this type of load may not be
small in comparison with the shell thickness.
Therefore, the large deflection theory for
elastic shells (1, 2) is used for the analysis.

The basic assumptions are the following:

1. The shell is made of linear elastic
material. Hooke's law holds for the
stress-strain relationship.

2. The small quantities of the transverse
shear deformation and the stress nor-
mal to the middle surface of the shell

o, ¢ c'gs = stability parameters in are neglected, in accordance with
Eq. (47) Kirchhoff-Love hypothesis,
xl =A 11 For a cylindrical shell with its geometry
and coordinates as shown in Fig. 1, the large
yi_vy2 ,y?2 deflection theory gives the following
1 1c 1s equations:
n2._.92,92
c ]
Xps Xy X 12° changes of curvature of shell Strain components of a lamina at a distance
middle surface, Eq. (3) z from the middle surface,
o = angular forcing frequency
o, = natural frequency of shell ©“T atixy
E =
2]z ®= 2% 2€
— 2
w. =] - —
1 3 7x¢ = 712 + 22 Xy, Q)
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a = radius of the cylinder oN aNx ®

—_— = 0
[
L = length of the cylinder ox ad
x = axial coordinate aNxtb . oNe _ 0
ox aoP
¢ = angular coordinate
4 w2 2%
s = ad = circumferential coordinate DV w - Nx ;2- -3 Nx(b Ixo6
z = radial coordinate, positive
VIR AL A
z ®\ o’ B
0 X -P, =0 4
S
—_ where
2
4 _ [ a° K
Vol 2t
L ox aoe

Fig. 1 - Geometry and coordinates of a
cylindrical shell By introducing a stress function F. defined
in such a way that
Strain components of the middle surface,

_ o %F
2 N= =2 7N "7
€ = du 1 fow a“od 9x
1 x 2 ox
2 N _ =N, =- o’ )
€ =2V ,w 1 (0w xP $x aoxo®
2 a a 2 \ad®,
the equations of equilibrium can be transformed
Y =Y. = ov,2u 1 9w dw into two nonlinear differential equations in
12 21 9x add a dx d¢ terms of F and w,
(2
poby . _2F_ 3% 2 3% %
Changes of curvature of the middle 2, .2 2 2 9x0% 9x0¢
a0 © 9x a
surface,
2 2
:|r=-—azw X L 'ag ng '% =P
] »
1 ax2 2 aZa ® 2 ox a 0¢
2
2 2
3w 4 0w
X12" " a9x0® ®) V'F-Eh [(aaxa«p_)
The relations between the membrane forces 2 2
and strains, and between the moments and _ 0w ow__1Y|(_ 0 )
curvatures are the same as those for the linear 2 2 2 a
09X a“dd
case (3).
The second equation is the condition of the
Based on Vlasov's engineering theory for compat ibility of deformations derivable from
shallow cylindrical shells, the equations of Eqs. (2), (3), and (5) in conjunction with the

equilibrium are force, moment, and strain relations.
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EQUATIONS OF MOTION

The equations of motion for a cylindrical
shell under a radial dynamic load P;(t) can be
obtained by replacing the static load P; in
Eq. (6) by the combined inertia and external
load.

4 o°F W 2 o°F 0w
DV'w - + —
aza°z axz aZ xo® oxod
2 2 2
_a_fi 73‘12_; *Faw=Pz(t)
ox “oe ot
2
2
4. _ oW
vVE Eh[(abxb@)
Bzw azw 1
T2 \Te7 a) ("0 ™
ox a“od

The radial line load applied to the
cylindrical shell is defined as

n
P, (x, ®,t) = P(t)3 (x-x) Y cos ke (8)
k=1

where

P(t) = load ampliiude, a function of
time

k=1, 2, 3,...,n = mmber of cir-
cunferential waves

Xy = axial location of loading

8(x-x0) = Dirac delta function having the
following property:

1, ifx= X,
f8(x-xo)dx =
0, ifx¥ X,

This forcing function is sinusoidally
distributed around the circumference of the
cylinder, Its amplitude, P(t), having the
dimension of force per unit length, varies with
time periodically.

Rewriting Eq. (7) and making use of
Eq. (8), the equations of motion are as
follows:

oty . BF_ 3% 2 O ok
Zral 32 7 x99 3xb

[/ ZF azw
az b 02

.1
a

azw n
® P P(t) 8 (x-x;) I cos ké=0
t k=1

+

3 2
4 . oW __
vF E“[(aaxao)
2 2
GW( oW 1)
-2 -2)j-o ®
ax* \a%ae? a]
SOLUTIONS

The solutions of Eq. (9) can be assumed in
the form of a series as

wix, &,t) =X T A L (OF(x, @)
m n

Fx, ®,t) =LY B (Of (X, )
m n

(10)

where
myn=1,2,3,...

Amn(t), Bm(t) = time functions of the response

wm(x, ®) = shell modes
and

fm(x, ®) = stress function depended only
on shell coordinates

For practical problems, only a definite
number of terms in the series (10) are consid-
ered. Hence,

P q
w(x, ®,t) -22 Am(t)wm(x, ®)
m n

P q
F&x, ,8) =3 T B (OF_(x,®) (1)
mn

vwhere p, q = maximum value of m and n,
respectively,
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For a cylindrical shell simply supported
at both ends, the mode shapes and stress func-
tion are assumed as

_ o .omwx
Wm(x,¢) = sin 94— cos n¢

. mwX
fm(x, @) = sin L cos ne (12)

These functions satisfy the following
boundary conditions exactly; namely, at both
ends, x = 0 and x = L,

w=0, v=20, Nx=0, ande=0 (13)
But they do not satisfy the equations of motion
(9). In order to solve the problem in an
approximate manner, it is convenient to apply
the Galerkin method.

According to this method, the following
integrations are performed over the entire sur-
face, S, of the shell:

[}
(=]

./S- f [Equation (9a)] 8wmds

-/S' j [Equation (9b)] 8fmdS

0 14)

where dS = ad®dx; 8Wpy, and 8 £y, are the vari-
ations of the mode shape and stress function,
respectively, and are defined as

- oW _
8wmn = m =W, @)
= sin m;x cos néd
- _90F _
8 = a8 " £ (%> @)
= sin mzrx cos ne (15)

The forcing function (8) must be trans-
formed to series form before substitution into

Eq. (14).

P q
P, (x, #,t) =¥ TP (t) sin “‘l:”‘ cos né  (16)

m n

where the time function Pm(t) is determined by
the following equation:

P t) =

112

fs P (x, &,t) W_(x,®) dS

/ﬁfm(x, ®) ds
s
P(t)_/z,’m sin —

P () =

8(x-x0) 2 cos k®cos nd dxdd

) MEX, 2
cos nedxd®

mwx
L

0

=2 p(t) sin an

By substituting Eq. (17) into Eq. (16), the
forcing function becomes

2 L3 X0 . mwx
Pz x,%t) = T P(t)gn:z sin I sin =L cos né

(18)

By using Egs. (9), (11), (12), (15), and
(18), the integration of Eq. (14) can be
carried out. Then a set of two nonlinear alge-
braic equations will be obtained for each m, n
with Ay and By as unknown functions of time.
However, due to the nonlinear terms existing in
the integrands, no general solutions are
obtainable for the foregoing integrations. For
the problem under investigation, p and q are
limited to the following:

p=1 and q-=2,

Physical interpretation of these is that
the lateral mode shape along the axial length
of the cylinder is assumed to be the first mode
with only one half-sine elastic wave, while the
radial mode shapes around the circumference of
the cylinder consist of the first two modes
with one and two full-sine waves (n = 1 and 2).

The wave number k of the forcing function
(8) has the same value as n (1 and 2) so that
the radial excitation around the cylinder is
corresponding to the first and second modes of
free vibration. The time function P(t) is
degenerated into Pj(t) and P(t) corresponding
ton =1 and 2, respectively.

The assumption of a two-~term solution is,
of course, only an approximation. Due to the
complexity of the nonlinear problem as shown

o

|
1
i
[
:




later on, no attempt is made to include more
terms in the series. The approximate solution
to be derived for this special case serves to
demonstrate a useful and practical way for
solving such a nonlinear vibration problem.

From Eq. (11), the assumed two-term

solutions for displacement and stress function
are

W(X, ‘I”t) = All(t)wll(x' d’) + Alz(t)wlz(x’ ¢)

F(x, 0,£) = B (1)) (x, #) + Bip(t)f),(x, @)
(19

where

= = 1 ﬂ
Wu(X,‘b) fn(x,é) sin =7 cos &

= sin TX
W, 0, @) = £,(x, ®) = sin = cos 2& (20)

By using Eqs. (19) and (20), the integra-
tions of Eq. (14) are carried out, and the
resulting four equations are as follows:

2 2 2
aL ~ 1 4
D (7) [ (E) v ;2'] A w Gub
*ALB) 3By

N (%1'-)2“}‘11

2
P (%)2[(%)2’;%] A12'%‘\11]’11
- aB, * (%,,1‘—)2 "xlz

a 2 rxo
= 2L (—) sin —= Pz(t)

LS

) 2
aL m2 1 Eh
(") [ (f) ' ?] By *w Ay

+ wa) =0

(%)2[(%)2+;%]2 2o

+wad;,) = 0

By introducing some new notations,

~
5
Il
QPT‘
—
———
=
N
(3
+
™
N
——
[\

o

1]

o

=
V)
A
N

g

the foregoing four equations can be simplified

as follows:

DKjAp

4
“x BBt

+ kOFAll = Cpl(t)

DKA), = w2k - 3By
+ kypuAy, = CPy(t)

Eh
KBy A By

Eh

2 =
KP *w (ZAu * "An) 0

From the last two equations of Eq. (23),
can be solved in terms of A11 and

Bll and BlZ

vy

='“"‘11(» 12 "’)

Eh

B2 " T(w 1 a”‘12)

2

‘\12B11

+ wa) =0

(21)

-

(22)

(23)

(24
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Substituting Eq. (24) into the first two - c
equations of Eq. (23), two nonlinear differential l"1 2(t) " E P1 2(t) (25)
equations in temms of AL and A, are obtained, ’ 0 '

L

Ky + Wikgpiag ) (DKI * aZF‘h/'ﬁ)
8Eh 2 2
* [’;Z—An/ K+ 2K

2 1 C
e = < _ P (t)
(Kl xz) 12” K p 1

+

L]

2
1 a"Eh
A+ DK, +
12 kO#AH 2"
- () e
x2 \Ag 1'%

_c
v (@/K + 1K) aAn] Tk A P,®)

Further simplification of these two equa-
tions can be achieved by introducing the fol-
lowing notations:

2 1 2
1 _kop' (Dl(1 +a Eh/Kl)

€
]

2 1 2
“12 % F (D"z"a Eh/xz)
Q- 2

! ]

wKk, @,

- 20 (/) (“Afz * K"Hz)] - B0
(26)

Eq. (26) gives the two equations of motion
of the system. The quantities wj; and wj2
given by Eq. (25) are the first two linear,
angular natural frequencies corresponding to the
normal modes, W] and Wj;. The general
expression of the natural frequency is

2
Eha
2 .1, z, n 27
©an " % (a +8) az(am+ ﬂn)z @n
where
oy = L)
8 = (/a)’

For an aluminum thin shell with a = 18 in.,
L = 72 in,, and h = 0.05 in,, Eq. (27) is evalu-
ated form = 1,2,...,5, and n = 1,2,...,20. The
computed natural frequences fpn = @py/27 in
cps are tabulated in Table 1 and plotted in
Fig. 2.




TABLE 1
Natural Frequencies of Cylindrical Shell (CPS)
E = 106, h=10.05,a=18, v=0.3,L=72,m=5,n=20
n W 1
1 2 3 4 5
n
1 663.1 1,236.8 1,472.8 1,578.2 1,632.4
2 232.3 663.2 1,010.3 1,237.0 1,380.4
- 3 112.4 374.3 663.4 909.5 1,098.1
] 4 68.9 233.8 448.8 664.2 854.3
N 5 56.1 161.2 319.0 494.6 665.7
6 61.0 124.8 240.0 380.0 526.6
7 75.6 112.2 194.0 303.8 426.6
8 95.9 116.6 172.0 256.1 356.9
9 112.0 132.3 168.6 230.8 311.6
10 147.4 155.4 179.3 223.9 287.0
11 177.9 183.7 200.0 231.8 279.9
12 211.4 216.0 227.8 250.9 287.3
13 247.9 251.8 260.9 778.4 306.1
14 287.3 290.8 298.3 312.1 333.8
15 329.7 332.9 339.4 350.8 368.5
16 374.9 378.0 383.9 393.8 408.7
17 423.1 426.1 431.6 440.4 453.4
18 474.3 477.2 482.4 490.5 502.1
19 528.3 531.1 536.2 543.8 554.5
20 585.3 588.1 593.0 600.3 610.4
1, 800
1, 700 For simplicity in further analysis, the
L ool first subscript 1 will be dropped from the
' notations Ajj, A12, wj], and wj; hereafter.
11, A12 11 12
1.5 They became now A1, Az, w;, and w,,
1,400 K\Xt respectively.
1,300 .
1200 LK \ Eq. {26} is then written in another form:
s LAY . 2 3 2_3
£ 'l::; T A+ o e Y IMA, ey = (Y
—aa I . 2 2 2, = ‘
z %o J\\\ \ Ay * wZAZ te * CSAIAZ Pz(") (28)
> 8w
) ol \\ A\ where
soof—-2-3
A}
i 1 4 5\6 c, = 4K,
M ENRANN . ¢, =
0 AN
- NN Y cg = 8U/K
T~
1
0 [ By introducing two variables,
0 4 6 16 12 M 1 18 2
NO. OF CIRCUMFERENTIAL WAVES, N X = A
Fig. 2 - Natural frequencies of a -
g eq Xy = Ay * cpfeq

cylindrical shell
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Eq. (28) is transformed to the following form: and external load. Mathematically, the
responses can be expressed in series form as
T sz +cx3+cxx2=F(t) follows:
1 171 171 37172 1
x, (t) =z a. ¢.(t)
. 2 i_5 1" ~ 171
X, + 0 X, * XX, = Pz(t) + FO (29) i
where XZ(t) =zi: bi"'i(t) 1
2 2 2
w1 = 0’1 cz/c3 where o
and i=1, 2, ... ,n’
Tl Fy = wi c,/cs a, b = constants to be determined
$(t), ¥(t) = periodic function of time

It is noted that, by this transformation,
the second-degree nonlinear terms in Eq. (28)
have been eliminated. Eq. (29) becomes the
standard Duffing equations with only odd order

For the present case, only the first
approximation of a two-term hammonic solution is
sought. The appropriate form of the responses

SV AR

v nonlinear terms. The right side of the second
F o equation includes a frequency-dependent constant can be assumed as
If:grz?g: p\lli.equlvalent to an additional constant x, ) = X1 cos (wt - @)
‘ xz(t) = b0 + X2 cos (wt - B8} (32)
Various methods had been used in the past
by many investigators (4~11) to solve the non-
linear vibration problems of a single-degree-of- where
* freedom system. These include the phase plane
technique, the perturbation approach, equiva- bO = constant
lent linearization, numerical iteration,
averaging method, and harmonic balance. How- Xl, XZ = response amplitudes
ever, for a multidegree-of-freedom system as
1 the present case, the harmonic balance method a, B = phase angles
(7, 8) is found to be the most direct and con-
venient approach. Therefore, in the following As pointed out by Hayashi (7}, the con-
analysis, this method will be employed for stant by is required for balancing the harmo-
finding the steady-state response of the non- nics and accounts for the response of zero
linear sy :tem represented by Eq. (29). frequency due to the existence of the constant
force FO in Eq. (29).
[ The forcing functions in Eq. (29) are
i assumed to be harmonic with a period Acerrdiag to the principle of harmonic
. T=2n/w, namely, balance, Eqs. (30) and (32) are substituted
F into i, 29). By equating to zero separately
E P () =F, cos et he constant terms, the coefficients of
_ 1 1 cos ot and sin @t terms, the following six
1 ¢ '52 (t) = F, cos wt (30) equations are obtained:
where C3b0X1X2 cos (¢-8) =0

F., F, = amplitudes of excitation 2,1 2\,
e 5 (“’2 t3e1) =K

. w = forcing frequency
2. .2.3 2
* 540 * TR

e The steady-state-responses are not merely Ef -
harmonic in this case. They may consist of '

harmonic motion, superhammonic motion, and sub- F
harmonic motion depending upon the system char- N %Csxi [2 . Cos 28 - a)] - 1

X, €os «
1

acteristics - damping force, restoring force, cos a
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2
. -2 2 2.3 2 ) 1
X sine %"’1"" + ey * N By " c, —““';j"zz" ;
1+ —2 X
S 71
1.2 sin (28- ) _ @y
+ =X\ 2 = =0
2 sina
F the remaining four equations with four
o - ot * Lox 2+ cos (20-B)} . 2 unknowns, X1, Xz, a and g, are transformed as
2 47371 cosf XZ cos@ follows:
2 2 342
we - w + B+ 3C X
R 1 0 4171
) X2 sing {wz - W
: 1,2 [ cos (2 E— a)] 1
+ X212+ =
+£cX2 Z+51n(20'ﬁ) -0 47372 cos @ X, cosa
47371 sin B
2 2 3.2
ey 17 TR Fatel
L. A lfor m?ntrivial solutions, the first R _1_c Xz 2. sin gz g-a3l .y ‘
equation gives 4732 sina H
' a - = F
\ cos (a-8) W2 - R [2+cos (2a-B)]= 2
or 2 47371 cosf Xy cosB
-8 = :7/2 4 2 2 12 sin (2a-B)1 .
- wy - e rgEf 2T Tsinp 70 .
This means that, for nonvanishing X; and X;, the They can be rearranged in ancthe» form:
two phase angles are 90 degrees out of phase.
2 3
: £rom the second equation of iu. {33), the ‘G?" c1+—=18 +3c . .
y constant bD can be solved. ‘,,i 0 471 ‘
2 3
F wC
b = ¢ ; - _22 (35) RE R PRS- (28-2) 1
N S - W’ + 2 X 432 cos :
2z 371 3 2 2731 %
F LY
or - _):_.___1__. i
x 1 cosa .
C.’ %
b, & % 2 3
0 c w 1 3.2 §
3 2 = —
. e (trzh (") 1+ =518t 3
Zmz 1 “, Q
By introducing a new notation 1 W2 sin (2 B- @) }
+ 3% |20 T sina
2 c 2 CZ
B, *=¢C b2 -:—Z—‘ c 2 L 2
(173 -
R 52 cy (w\*, . & 121 cos (2a-B)
.8 o [ C 2§ 371 cos 8
3 2 271 2 »
, 2
(36} ¥,
or XZ cosﬁ‘
17
L
W e — T - ~ e e rp——— =
- v ) T h
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e Goalt: ot . o it

2 .
() NP 1cx2[z+§1n_.(2_a-_ﬂ
wz 4w2 31 sin g
2

(38)

For any given forcing functions with
amplitudes Fy and F2 and frequency w, the
steady-state responses X; and X; and the phase
angles a and B8 can be solved from the fore-
going equations.

By observation of Egs. (35) and (36), it
is apparent that, for a large frequency w5, the
constant b, approximately equals to c2/c3, and
the other constant By approaches zero. In gen-
eral, the second natural frequency of a thin
shell is quite high. Therefore, the constant
Bg will be neglected hereafter, The system of
equations then becomes the following:

2
© 1§32
2 =1+ —= )2 X
("’1) 0,2’411

+s£_(£&1)]

Cos o
!
chosa
2
e\, 1 2
(..,) =1+ =N
1 wl

[2 4, o8 (Za-ﬁ)]

cos 8

”
[\ ° . 1 2 sin (2a- 8)
(“’ ) 1+ C3x1 [2 * sing ]

(39)

Eq. (39) can be further simplified by
substituting the phase angles relation,
Eq. (34), into the bracket temms in Eq. (39)
and noting that the second term inside the
bracket involving sine and cosine functions in

© e e ey - P Sen

each equation reduces to (-1). The resulting
equations are as follows:

Case 1: For a=0, *; B= +m/2

2 F
w\ <. 1 {3 2.1 2:50
0 DR bt i
1 “’1 2
(40)
2
w 2 1 2
- 1 —5ex (1)
1 4
2
where
T= wy)/ e

The upper sign for the last term of
Eq. (40) stands for a = 0, and the lower sign
for a = w,

Case 2;: For 0 < a < m/2 and
*/2 < a < 7}
B=a = x/2

(42)

2 F
® 2 1 2 2
=1 =r l+——c¢cX, ~7T7—
( ) 4w§ 371 )(Z cosf
(43)
These simplified equations then can be

evaluated numerically to ‘investigate the non-
linear behavior of the system,

Stability of the Solutions

Due to the presence of the nonlinear terms,
Eq. (39) may yield more than one set of solu-
tions. Similar to the single-degree-of-freedom
system of the Duffing type (4), there may exist
more than one set of solutions for a certain
range of the exciting frequencies. These
multiple solutions are not all physically
stable, Therefore, it is essential to determine
the stability of each solution so that a better
prediction of the nonlinear response of the
system can be accomplished.

The physical stability of a steady-state
solution can be determined by investigating the
nature of the frequency response curves in the
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J v vicinity of the steady-state solution according
to Floquet theory (4, 7, 8) and by the appli-
cation of the perturbation method (12, 13).

Let x15(t) and x25(t) be the steady-state
solutions in the form of Eq. (32), and
8 x3(t) and §x(t) be the small variations of
x] and x2, respectively, Then, the total
responses after the disturbance are

xl(t) = xls(t) + 8x1(t)

x,(8) = x, (t) + 8x,(t) (44)

Substitution of Eq. (44) into the equa-
tions of motion (29) and retaining only the
first degree temms of 8x yield the following
two variational differential equations:

. L (=2 2 2
v 8% + ("’1 " SeX Cs"Zs) 8x)

+ ZCSXISXZSSXZ =0

. 2 2
\ 8x, + (fuz + Csxls) dx,
*+ 2eX) Xo 8x, =0 (45)

By substituting the steady-state solutions
given by Er. (32) in the foregoing equations
and letting T = wt, a new set of linear
differential equations in le and 8x2 is
obtained.

2
'i COSZ(T -a)

. -2
8x1 + {wi * 3c,X

+

g [bO + X, cos (T-ﬁ)] 2} 8x1

+

2¢.X, cos (T-a) [b

371 0

+ X, cos (r-p)] §x,=0

8x +[w

SN

2 2
* ¢ X] cos (r-a)] 8x2

+

2c3X1 cos (T-a) [bo

+

X, cos (r - ﬁ)] §x1 =0 (46)

These are two Hill-type equations of two-

degrees-of-freedam system with periodic
coefficients. They can be transformed to the
standard Mathieu equations as follows:

d2(8x1)
— (A Y

cos 2T + V. sin 2T
ar 1c 1s

+ M cos T+ ryssin T) 8x1

+(¢+acc052‘r+ assinZJ'

+ f cosT + g sinT)dx, =0
2
d(8x2)

d'r2

T
2 cos 2

+ YZs sin 2T) gxz + (v + o cos 2T

+(A2+7

+ a’s sin 271 + fC cos T
+ gc sin 1')8x1=0 47)
where
(=2 3..2.1 .2 2
A = “’1*°3bo*'z‘1X1+'2‘3X2)/"’

2.1 2 2
wz + —cs)\l)/w

>
[N}
[ "
P TN

2
Y,.= {3 X2 cos 2a + ¢ X2 cos 28 /sz
1c 171 372
2 2
72c = cS)(1 cos 2a /2w
Y, = {3c,x%in 2@ + ¢ X2 sin zp)/zmz
1s 171 “ 372
G2, 2
‘/25 = c3)(1 sin 2a/2w
2
. = 2egbX, cos B/w
M= 2¢,b X, sin g /w’
S 37072

¥ = c5X; X, cos (a-8)w 2

2
c CSXIXZ cos (a+B)w

q
n

. 2
s = 3% X; sin (a* B/ w

Q
"

e
L]

2
2c3b0X1 cos @ /w

. 2
2c3b0)(1 sin a/w

e
©
n
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It is noted that, in the foregoing nota-
tions, on the left of the equal sign the sub-~
script 1 or 2 indicates to which equation of
Eq. (47), the first or the second, the
coefficient belongs. The subscript c or s
indicates that the coefficient involves only
cosine or sine function of the phase angles.

Eq. (47) gives the basic equations for the
investigation of nonlinear stability of the
original system, Eq. (29). Similar to the
Mathieu equation of the single-degree-of-
freedom system, the stability criterion for the
present case is to determine whether the solu-
tions, 8x; and 8x3, of Eq. (47) are bounded
fort > 0.

The perturbed motions are assumed to be
harmonic, having the same frequency as the
forcing function, which relates to the natural
frequencies of the shell as follows:

w = w x> 3w

1 2

According to the Floquet theory (4, 7, 8,
12), the solutions of Eq. (47) can be assumed as

(48)

8x,(7) = 67 (a) + a] cos T + b} sin T)
- {r( T o T
sz('r) =e aj cos 7 + b} sin 3 (49)

where { is a characteristic exponent; a}, ai,
bj, a3, by are arbitrary, small constants
depending on the initial conditions of pertur-
bation. Similar to the steady-state solution,
the constant a; is necessary for balancing the
harmonics.

The assumption of Eq. (49) as the approxi-
mate solutions of Eq. (47) is based on two
observations: (1) The two equations are
coupled only through small terms in comparison
with the uncoupled terms; (2) The periodicity
of the solutions of the uncoupled equations
depends mainly on the parameters A and A)
rather than on the other small periodic
coefficients. From the notations after
Eq. (47), it is seen that

Al = (f:)l/w)2 =1
and
A, = (0 /)= (1/3)2 = 1/9
2 = (9

The periodicities are approximately 2w and 6=
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for 8x) and 8xp, respectively., In fact,

Eq. (49) represents the harmmonic solutions of
the uncoupled equations derived by dropping all
coupled terms in Eq. (47).

By substituting Eq. (49) into Eq. (47) in
accordance with the method of harmonic bal-
ance, the following two sets of equations for
the determination of the amplitudes of 8 x;
and §x2 are obtained:

2 lyarsl -
(c +Al)a(')+21'cal+2"sbi 0

il
[=]

Waé

n
o

¥ b‘2 (50)

= A = t =
¢a(') * chal * 2€sb1 0

[}
o

l g
Zoc)ai*zasbl
-1 '
(4: Zuc)bl
2 1 2
(C *)‘2'6)5*3

2 2 1), .
-z Lay+ (( +A2-—9-)b2-0

"
o

1
A _- )
'Esao * 72 %% *

]
Cbz 0

3 (51)

These equations clearly indicate that the
perturbed motions, 8x; and 8x;, are completely
uncoupled. Their solutions lead to the fol-
lowing two possible cases for stability
analysis:

Case 1: (52)

8x 70, 8x2=0

Case 2: 8x; =0, s'xz 0 (53)
The characteristic equations are derived
from the first three equations of Eq. (50) and

the last two equations of Eq. (51) as follows:




v R
For Case 1, The characteristic exponent then can be
solved as
k2 7./2 7./2 ,
1 s L - l[—p f,fp'“ - 4q.] (58)
i 2 i i i
8, = L2 1ty Ztlal‘/ =0
1'% Te 1T 70 Z'1s Sinc e ) .
Since Ci appears in - pairs, no asymptotic
- __1_7 Zh o1 ly stability is possible. The only condition for
l Ts (ch 2 1s) (tf 17173 1c a stable solution is that all roots {; as com-
puted by Eq. (58) are purely imaginary. This
: (54) requires that
For Case 2, >
- C'i' <0 (59}
: 1 2
(( + '\2 - ‘5) 'gcz In terms of pj and g, the stability
AZ( cz) = =0 criteria for a stable system are
-2 ( LA - _) >0 (60)
56, (€544, -5 4
and
. (85)
5
pl>*- "qi (61)
where the subscripts for ¢ indicate the case
number corresponding to Egs. (52) and (53); For each §, there exists a set of values
Al(tl) and A, ({,) are determinants of the of aj, aj, al, b} and b; obtainable from Kgs.
coefficients of a's and b's of Egs. (50) and {50) and (51). The perturbed motions 8"1 and
51 espectively.
- (51), respectively 8x, are then determined by Eg. (49). As stated
Expanding the determinants and omitting carlier, however, these solutions can physically
the sixth degree term due to its smallness in exist only if they are stable. Therefore, it is
comparison with other quantities, the following unnecessary to obtain the solutions of 8x. and
equation is obtained: Sx,. Instead, it will be necessary to study
R thé stability criteria of Egs. (00) and (613, 1f
t4 AP +q =0 (56) they are satisfied, the steady-state solutions
1 171 1 of the original system of Eq. (29) will have
infinitesimal stability. The nonlincar response
where i = 1, 2 behavior of the system then can be analyzed
i according to Fq. (39) by graphical method.
e 1 2 2
pl = [3)‘ 1 7 U Y1) From the assumption that the forcing fre-
quency is the same as the natural frequency of
v . , X1, Eq. (48), and from the decoupling effect
- S 1,")]/(3A] +2) of the stability Eqs. (50) and (51), it can be
- s seen that the response X7 will not attain
appreciable amplitude due to the direct excita-
> 2 tion of F». Thus, the system is equivalent to
94, 37‘1 [(M - b 4 (YIC * 715’] one with a single excitation F. acting upon the
first degrec of freedom. The "response X; of
12 1 the second degree of f{reedom may not vanish due
) [’7,; (A] -l 37 1.;) to the nonlinear coupling of Xi.
o Corresponding to Lgs. (52} and (53), the
b + 9 “\l N ’Yl )]i/(,u + 2) cases of stability analysis are restated as
oY s © ! follows:
Case 1: F1 £0, F =0; X] # 0; and
Pr=2 A, +g) X, =0
M . . . c e v :
4= @, - 5 (57) Case 2: F) £0, F,=0; X £X, 40
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Under these two conditions, the set of
equations for analyzing the nonlinear responses
and stability behaviors of the system can be
sumnarized as follows:

1. Free vibration loci
a. Only Xl mode is considered.
2 5 R
(i‘-’-) =1+ 5c¢X (62)
o

This equation is derived from bq.

- {40} by letting Fl =X, =0,

‘ h. Both modes, Xl and X,, are con-
sidered. -
2 1 f32
; w . 1 /3.2
(.,, ) L+ 3(4 1M
A i wl
) 2
Y3 c.’.\', (63)

This equation is obtained by
vanishing the forcing function Fy
in Eq. (40). By assuming that

- the vibration amplitudes are in-
versely proportional to the natural
frequencies, i.e.,

X, /X

/X = wyfey =T

or

X, = rX

1 2

X, = xl/r (64)

-

Eq. (631 is transformed to the
“ following forms with only one mode
involved in each equation:

2 1
w
. w_ =1 + ———| 3¢
(l) 41»2( t

1
! c
31,2
P -3) ¢ (5
' r
; L 2
L “
(2 -+ (o
{ do
1
) 2
+ ‘3))(2 (66)
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2. Frequency response loci

a. Only X; mode is excited. Eq. (40)
is reduced to the following form

for )(2 = 0:
w ’ 1 2
Py R S
“1 4o
1
F
¥ —,—l- (67}
wXy

b. Both modes, X and X,, are excited
directly or indirectiy by ¥;. The
response equation is the same as
Eq. (40).

"

oY o1 L {3

(m) =1 2(4‘1"1
1 ]

F
! 2. 1
Y7 Cs)\z ¥ ) (68)

Using the relations of Eq. (64),
Eq. (68) is transformed into two
equations each of which involves
only one mode.

2
(_w_) R
@1 dor”

,
e 257 S (69)
2 2
T ml.!
2
(i"-) =1+ ~= (3c1r2
“y Ao,
1
vyl F 20
+ L3) XZ . ZX (70)
%

3. Jump point loci

These are the vertical tangents of
response equations Eqs. (67), (69), and
(70).

a. For Eq. (67):

2
(.w..) =1 -35 cle (71
w) ta




b. For Eqs. (69) and (70):

2
(sz.) =1+ 2 3
“ 403 !
1

c
“'—g) Xf (72)
r
2 el
("’) =1+ i,,(Scr“
w 2 1
1 dw
1
+ C.) YZ (73)
3772 )

Stability criteria

The stability boundarics between the
stable and unstable regions are
obtained from Eqs. (60) and (61).

= =t
ay 0, and p; 2 \’qi (74)

where i = 1, 2,

In terms of the parameters of Eq. (47),
the two sets of stability boundaries
are the following:

a. Case 1

From Eq. (74) with i = 1 and using
Eq. (57).

<2 1 g2
)‘1(}\1 T 71)

] =0 {75)

v [ Y.
A || I
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where

V=7 -1

R

Wenl e
b. Case 2

From Eq. (74) with i = 2 and using
Eq. (57),

P, = 2

4, = @, -

L

2
1s

2
s

b\z + é), and

1.2
30 >0

It is obvious, in this case, that

p, > *2 ‘,q7 . Therefore, according
to Fq. (61), the perturbed motion

sz is stable at all frequencies

while 8x1 = 0. The stable motion

of the original system is

represented by Eq. (68) or Eq. (69)
and (70).

Numerical Evaluation

The various nonlinear response equations
are evaluated numerically for a cylindrical
shell specified in Table 1. Computer programs
are utilized whenever necessary. It is

assumed that there is on%y one forcing function
F, acting with F, = Flﬁwi = 1. The forcing

I

frequency w is assumed to be the same as w,.

1

However, for graphical presentation, it is
treated as a varinble so that the plots of the

equations cover a rveguency range of R =(nAul =

0.7 to 1.4.

From Tahle 1, the first two computed
natural frequencies are:

f. = 663.1 cps

f, = 232.3 cps

4 rad/sec
6 rad/sec
-fz 3503 = 4
= ?; = 0, 350 3

e




o1l lhe computed geometric parameters are as RZ =1+ 1 X?Z (79)
ows: 4 i
¢ = 532 where X/ = V‘i X, i=1,2
: ¢, = 1.303 x 10° This equation is plotted as curve 1
- in Fig. 4, which is also similar to
¢z = 86,852 the vibration of a nonlinear, hard
’ 2 spring system.
_ q - Cl/a)l = {.00030068
TS 2. Frequency response loci
\/‘-1 = 0.017516 a. X FF £0,X,20
c
' . 3 0 Using Eq. (77), the response
= |{: — = 0.04595 . . o
€ (’Ll * rZ) 1 0.045 equation iq. (67) is transformed as
v - " VaF
[N . = 1143 2 - !
V‘l 0.21430 o= 1+ 3 XZ : 11 (80)
4 1 X
b ) Al 1
€ = 3¢+ ¢ w? = r7 ¢ = 0.0051056
2 1 3 1 1
In another form,
€, = 0.071453 (77)
<3 v =~
- Calculations for the response equations Ny*pPX; tq=0 181)
are also carried out. The results are plotted
and discussed as follows: 4 2
where p = 3 1 - R7), and
[. Free vibration loci ~ 4 = -
a=*3 \Fl R
a. ,\] £ 0, l-'l = Xl =0
) The solutjons of this cubic equation,
q. (62) represents t.hc free obtained by a computer program,
v:l‘_)ratlon of this case. By noting represent the forced response of the
R = m/m1 and using the notations first degree of freedom when the
of Eq. (77), this equation is second degree of freedom is not
converted to the following form excited. The equation is plotted
for cvaluation: as curve 2 in Fig. 3, which
~ resembles the frequency response
2 302 of the Duffing equation.
R™ =1+ 3 xl (78)
. _ - b. le.\,a‘o, F}#O
where X, = €X “
1 17
The frequency responses of this
Eq. (78) is then plotted as curve case are given by bgs. (69} and
1 in Fig. 3. The curve bends to {70). They can be reduced to a
the right side of the graph and is single equation hy using Egs.
o similar to the free vibration of a (77) and (79).
- singlec-degree-of- freedom system
ox with a nonlinear, hard spring. 3
\I + p'N'i +q =0,1i=1,2 (8
h. .‘\'l # ,\3 0, Fl =0
where
The free vibration of this case are ;s
given by Fgs. (65) and (00), which p' =4 (] . R")
can be reduced to a single equation
by using Eq. (77, 1
L.+ e ' T =T I v/e'T
| q | Vc] Fl ~ Vez T'
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. The solution of this equation is
plotted as curve 2 in Fig. 4, which
represents the forced response of

either Xl'or Xz’. Although there is

no direct excitation for the second
degree of freedom (since FZ =0,
the response Xz' exists due to the
nonlinear coupling of the two modes.

3. Jump point loci

a. Eq. (71) is the jump point locus
. of Eq. (67). By using Eq. (77,
it can be simplified as

(83)

This equation is then plotted as
curve 3 in Fig. 3.

. b. Egs. (72) and (73) are the two
‘ jump point loci for Egs. (69) and
(70). They are reduced to a
single cquation by using the
parameters in Biq. (77) together
with Bq. (79).

,

R:]»

i

1, 2 (8

el

\..2 .
XTed

This equation is plotted as curve
3 in Fig. 4.

These two eguations, fgs. (83) and
(84), are the loci of the vertical
1 tangents of the nonlinear response
curves for frequency ratio R >1.

similar to the peridic solution
of the huffing equation, these

e curves represent the critical Substituting Eq. (85) into Eq. (87)
points at which an abrupt jump of and neglecting the higher degree
the motion will occur during a terms of X] other than the second,

. frequency sweep. the stability boundary for q; = 0 is
obtained.

f 4. Stability criteria A s 3 -2 2 A

\ (R -4RR"*3}()X;+'§'R (R

t The stability boundaries for Case 1, ” s )y

, kys. (75) and (76), are evaluated 2kR° + kY =0 (88)

o under the previously stated two con-
- - ditions: This equation then can be plotted

a. X)f(),lt‘fO,X’=l =0

)
2

Since there is only one excitation
t and one response in this undamped

125

system, the phase angle a of x1
must be zero or w. Then the
stabiljty parameters of Eq. (47}
can be reduced to the following
forms:

=
"
~
L[]
ru‘b«l

N M =M= 0 (85) ,

&
1
-
¥

By eliminating the zero terms in
Eq. (75), the stability boundary
equation is reduced to the following

torm:
2 1 2)
'\l('\l—'tl_ylc

or

(]
=]

(86)

3 2 1, 2
R N /PRI C)

as curve 4 in Fig. 3. Ths other
stability houndary, Py = ‘, Q>

can be derived from Eq. (76) by
eliminating the zero temms
according to Eq. (85).

' =~ : : ' ' _‘ | ,\ Lo
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o fx2 . L 42
+ 2) ()‘1 r vlc) (89)

7
Since YIC involves small quantity
of Xi, the preceding equation can be

reduced to

al . 12 o s 2
(] + 17 = A (G ¢ 20 A

(90)
or

4,3 2 ~
3&1-104\1-10/\.1+8A1—0 (91)

Substituting Eqs. (85) into (o1
and neglecting the higher degree
terms of X,, the stability boundary
for this case is obtained.

7 2 T 2
o2k - skRY - 12KRT 4 3K

- )8 keer® - 1okk’

22 .3
- 16kKRT + 3k (92)

This equation is plotted as curve
5 in Fig. 3.
leXZi‘FI#O,F2=0
According to Eq. {34), the two-
phase angles have the following
values:

a=0,7

p = to/2

The stability parameters then can
be simplificd as

N
Ne T2 (3‘1"‘1 ’ ‘3":) (93)

2 -
L = *chboxz/w , 127
Using Eqs. (35) and (64),

b0 ] cz/cs, and X, = rxz,
the parameters in Eq. (93) can be
expressed in terms of either X1 or

XZ alone.

= .15_ xiz
2R”
1 .2 2
=-—7(.>clr 'CS)XZ
)
1 .2
= — X
w
oo =t P S
N = t— cle = mXy
T® R
i
2 1 4
=t 5 o X, = 2 = mX] §
2 7272
» RZ 272 2
{95)
where
1 Cz 1 ‘Z
m, = 4 —_— . —
1 2 PO i
w
1 3
2c,
m, =—=
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The stability boundary Eq. (75) for
Q1 = 0 is reduced to the following
form by eliminating the zero
quantities of Eq. (93):

2 1.2\ 1.2 < .
A 1"571c)'7"s @y r Y =0
(96)
or
3 2 1. .2
AL IAL A MY
1, .2 1.2 2
-2'517)5*37)5-37145-0
(o7

Substituting Egs. (94) and (95) into
{97) and neglecting the higher

degree terms of Xi and Xé the

stability boundary becomes

- AlmI)R2

9 b

[R4+(m
) “‘1(‘“5 : 3‘“1)] X;2

bl 2
+ 2m ( R4 - 2m,R° + m“) =0
1 1 1 (98)

where i=1, 2

This equation is then plotted as
curve 4 in Fig. 3. The other
stability boundary, P, " 2 >
with X # X, # 0 is derived from

Eq. {76) by eliminating the zero
termms according to Eq. (93).

g en—e

1.4
1.2
b 1.0
.
E 08
[- %
2 @ @\’
%, 06 > /T’
04 -
i 77 ®
0.2 A T
74N o}
[ y \JL
31

0
0.7 0.8 0.9 1.0 11 1.2 1.
FREQUENCY RATIO, a.olc.:l

.4

X, £ 0, Fp £0; X, = F, =0

2 2

Free vibration locus
Forced vibration locus
Jump point locus
Stability boundary Q = 0

P I

5. Stability boundary p, = by /ql

Fig. 3 - Frequency response of shell with
only first mode excited

k4

<

s s < _1x 2
= 40GA * ) WA _,A]ns)

(99)
or
4 3 2
3)\1-10A1-10A1*81\1-1
2, 2
QA - RS
1.2
R0 (100}
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Substituting Egs. (94) and (95)
into (100) and neglecting the
higher degree of terms of X! the

stability boundary becomes 1
7
48 + sl - ) R
7 N Rl
N 2 2
Zml (m2 l-ml) R
-3 2,2 2
my (m2 - _ml) xi
=% r® - 1omr?
1 1
22 _3
lmﬁR + mﬁ) (101)

Eq. (101) is plotted as curve §

in Fig. 4,
18 ///
L2fp— A /
o / Gg,#
5 1.0 ié:l\ ',7’
 , V/ Of ™
: // /_/ o
8 - [
£ o4 4”//’ » ol (:2
"] "'I,’ \)<
0.2 e
0 ]

07 0.8 0.9 L0 L1 12 1.3 1.4
FREQUENCY RATIO, w/w

Xy # X, 405 F 0, F,=0

Free vibration locus
Forced vibration locus
Jump point locus
Stability houndary q, = 0

Stability boundary P = fZJch

VY b by o

Fig. 4 - Frequency responses of shell with
first two modes coupled and only mode 1
directly excited

CONCLUSIONS

The problem of nonlinear responses of
cylindrical shells under radial line load has
been investigated. A general procedure for
solving the problem was presented. Because of
its complexity, no exact solutions can be
derived. Instead, a two-term series approxi-
mation was used to develop the frequency
responses and the stability criteria. For the
purpose of demonstration of the methods of
analysis, the approximate solutions are seen to
be adequate.

It is interesting to observe from the
analyses and the response plots that the non-
linear shell problem under dynamic, sinusoidal
line load can be treated systematically as a
nonlinear vibration problem of a mechanical
system. The application of the study resuits
will enable one to derive solutions with
sufficient accuracy for other shell problems
of similar nature.

In engineering practice, one may he
interested in finding the stresses in the shell.
This would pose no difficulty as far as
mathematics is concerned. Once a stable solu-
tion of displacement is found, it is only
necessary to trace back step by step the formulas
in the previous paragraphs to calculate all
unknown quantities. The problem is then com-
pletely solved.
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DETERMINATION OF THE ELASTIC MODES AND

FREQUENCIES WHEN RIGID BODY MODES EXIST

J. W. Straight, Associate Professor
Mechanical Engineering
Christian Brothers College
Memphis, Tennessee

structure is proposed.

A technique for the determination of the elastic
mode shapes and natural frequencies of an unrestrained
The original equations of motion
are transformed into a set of equations that possess
symmetric and non-singular inertia and stiffness matrices.
The eigenvalues and eigenvectors of these equations are
determined by conventional iteration procedures.
eigenvectors are then transformed back to the original
co-ordinates as the elastic mode shapes.

The

INTRODUCTION

The difficulty of determining the natural
frequencies and mode shapes of a multi-degree-
of-freedom system is increased whenever rigid
body modes (and their zero eigenvalueg are
present. The classical solution [1], [2]!
which involves determining the roots ot the
characteristic equation is usable for systems
with few degrees of freedom, but becomes far
too cumbersome for systems with many degrees
of freedom.

The usual iteration solution [3] uses the
inverse of the stiffness matrix. However, for
systems with rigid body modes, the stiffness
matrix is singular and cannot be inverted.
Although the iteration form requiring the in-
verse of the mass masirix can be used, it is
undesirable to do so in most instances since
that form determines the high frequency modes
first.

Anderson (2] uses the property of orthgo-
nality to alter the equations of motion to a
form that has a non-singular stiffness matrix.
Although useful, this .echnique is laborious
in that it requires inverting a different
stiffness matrix for each successive mode. In
addition, conventional sweeping techniques can-
not be used with the modified equations since
the modified stiffness matrix is not symmetric.
A biorthogonal sweeping system [4] could be
used but that technique requires twice the
computation time of a conventional system.

1 Numbers in brackets designate References at
end of paper.
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Complete co-ordinate transformation of
the types proposed by Newman and Ojalvo [5)
and Craig and Bampton (6] leads to reduced
equations that may be solved by conventional
techniques. Their primary disadvantage is the
difficulty involved in the determination of the
transformation matrix. The transformation used
by Meirovitch (7] and by Bishop, Gladwell and
Michaelson (8] also leads to well conditioned
reduced equations and is not overly complex.
However, the transformation does require
writing a constraint equation based on conser-
vation of momentum.

The technique proposed in this paper
overcomes these objections by using a simple,
easily obtained transformation matrix to
modify the equations of motion to a form that
has symmetric and nonsingular mass and stiff-
ness matrices. As a result, the natural fre-
quencies and mode shapes may be determined by
conventional iteration and sweeping procedures.

Wwhile for clarity of presentation, the
development in this paper will be limited to
systems with one rigid body mode, the technique
can easily be extended to systems with several
rigid body modes.

ANALYSIS

‘The homogeneous equations of motion for
an n degree-of -freedom system can generally be
written as

M) (;} + [K] (x} = {0} m

where [M] is an n x n intertia matrix and [K]
is an n x n stiffness matrix. Typically, the
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solution to Eqs. (1) is written in temms of

the natural mode shape matrix and the uncoupled

normal co-ordinates as
(x} = [o] (q} (2)

where [¢] is the modal matrix composed of the
mode shape colums and {q} is the normal co-
ordinate vector,

The determination of [¢] is difficult any
time a rigid body mode exists, but once it is
known [¢] can be used to uncouple Egs. (1) in
terms of the normal co-ordinates.

Generally, the existence of rigid body
modes and the mode shapes associated with them
can be determined by observation.

Fig. 1 System with rigid body mode

For example, the rigid body mode for the
system shown in Fig. 1 is

X, 1/3
X, p = 2/3 q,
X 1

The mode shape is therefore

n /3
%, P7 2/3 3
¢ 1

The rigid body mode shape forms the basis
for the co-ordinate transformation.

(x} = [A] {y} ®

where {x} is the original co-ordinate vector,
{y} is the new co-ordinate vector and [A] is
the transformation matrix. The first colum
of this transformation matrix is simply (¢},
and the lower righ* hand submatrix is a unity

matrix. The general form of the transformation

is

B i aamc.ad
M= (¢ l0....07
. l10...0
101..... (5)
. . 0
qumio. .01

For the system shown in Fig. 1, the transfor-
mation matrix is

fA] = 1/3 0 0
273 1 0 (6)
1 01

After the co-ordinate transformation is
performed, the equations of motion are pre-
multiplied by the transpose of the transfomm
matrix. The result is

(AT [AlGy) + [AIT[K] [AJty} = {0} (7)

Since and [X] are symmetric, [A]TM][A]

and [AJT[K] [A] will also be symmetric. For

simplicity, Eqs. (7) can be rewritten in the
form

By} + [Ty = (0} ®8)
by letting

(8] = [AIT(MI (A]
and

(s] = ATKI(A

The transformation is based on the rigid
body mode shape and because the generalized
stifrness associated with that mode is zero,
the matrix [S] will have the form

[s]= [o] o
S ©)
0| SR
where [SR] is of order (n-1) x (n-1) and is

merely [S] without the first row and column.
Thus the first equation of Egs. (8) is

ByYr = - Bioyz «oo BinYp

or
s 1 .
yy = - [Byz .-+ By b4 (10)
By o |72
¥n
T ———ER
e e o= -»\‘- - - — —

Rt e, Koot

]




The remainder of Eqs. (8) can be written as

B21 .)"2
y, + [BR]
Bny Yn
Y2
+ [sr] = 0 an
yn

where [BR] is [B] without the first row and
colum. The first term of this equation can
be expanded by using Eq. (10) as

By Bay Y2
Ny -1 :
C T e MBeBigf{ 0 D)
By Bm ¥n

The resulting coefficient matrix on the right
hand side is symmetric. The combination ard
simplification of Eqs. (11) and (12) gives

.).’2 Yo
MI¢. »@®{- Y= o (13)
¥ Yn

where

M - [BR] - —B—lﬂ_ Bai [Biz...Byp]

By
and  [R] = [5R]

Both and m are symmetric, nonsingular,
and of order n-1.

The modified equations of motion in the
form of Egs. (10) can be iterated for eigen-
vectors and eigenvalues using conventional
iteration and sweeping techniques. The eigen-
values will be the natural frequencies of the
system but the eigenvectors will not be the
natural mode shapes.

The true natural mode shapes may be
obtained from the eigenvectors through simple
transformations. The system motion can be
written in the form
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¥ Al

Y2 9,
= [v] . (14)
Yn Qn

where [y] is the matrix of eigenvectors
and

4
is the matrix of elastic generalized
co-ordinates
9
Hence, Eq. (10) can be written as
a
5= 1
1= g (By2-++Bin_| [v]
%
Motion in any one of the elastic modes, which
are represented by the normal coordinates q,
through q,, is sinusoidal and thus
& = - wq, for 1<ic<n
1 i1 .
Consequently, the elastic response in y, can be

written
.. 1
y, = - ™ @12...31,,_] 0 {a 1s)

A
Eqs. (14) can thus be expanded to include
Y, as

b4 9.
= [{] . (16)
'n 9n

Where [;] is [y] augmented by an additional
row at the top. That row is given by Eq. (15)

as
G- | o= 'g‘:‘ll_Blszx_J N

It should be noted that (Y] is of order
n x (n-1). The transformation back to the
original co-ordinates is then

e R,

CiNav
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X1 q2
=AM (. an
Xy ap

The n x (n-1) product of [A] [¥] is the matrix
of vibratory mode shapes. Thus

[ﬂvib = [A] [7] (18)
The complete mode shape matrix is obtained by

simply including the rigid body modal column.
Hence

]
ST DN as)
!
EXAMPLE

The equations of motion for the system
shown in Fig. 1 are

A oo X,

m (0 1 0 ;2

B0 1 X3
T220-21 6 X, 0

541

+ ‘? 20 24 -9 X ) = 0

5¢ , 2
L6 -9 4 X, 0

The rigid body mode shape is given by Egs. (3)
and the transformation matrix, [A], is given
by Igs. (6). The transformed equations be-
come
M.555 .606 1 Y,
m o |.666 1 0 ;?2

1 0 1 y

00 0 Yy 0
S4E1
2080 - 2
. P 024 -9 y,r{o (20)
0-9 4 y 0
The first of these equations gives

y, = - 4280y, - .6428 y, 2n
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Substituting this value of y; into the re-
mainder of Egs. (20) yields two equations in
the unknowns y, and y;:

7143 - 4286 Y2
m o
-.4286 .387 Y3

24 - 0
+ S4EI [ ] Y2 -
523 -9 4 Y, 0
These equations, which have symmetric
and nonsingular coefficient matrices, can be

iterated to their eigenvalue, and eigenvectors
by using conventional methods. The results are

v] = [.341 1.14
N

and  w? = 47.66 S
2 me3

and  ? = 513.93 B
3 3

These results can be used to write the
y vector in terms of the normal co-ordinates

as
Y, ) [341 1.141} q,
Y, 1 1 q,

Eq. (21) can be used to determine y; by

y, = - |.4286 .6428] [.341 1.141 q,
1 1 q,

Thus the complete y vector becomes

Y, -.7889 -1.131 q,
Y, ) = 341 1141 a,
Y, 1 1

The y vector is easily transformed back to the
X co-ordinates by

X, P/s 0 0] [-.7889 -1.131 q,
x )=|¥3 10 341 1141 | q,
X 1 01 1 1

3
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X -1.25 2.861 q

{ 2
X, = (-.877 -2.93 q,
X3 1 1

Addition of the rigid body mode as the first
column completes the modal matrix as

2333 -1.25 2.861
(6] = [.666 -.877 -2.93
1 11

CONCLUSTON

A method has been presented for finding
the mode shapes and natural frequencies of a
mlti-degree-of-freedom system which has a
rigid body mode. The technique has the primary
advantage of employing a simple transformation
matrix that is easily obtained in terms of the
rigid body mode. The transformed equations
have symmetric and non-singular inertia and
stiffness matrices. As a result, conventional
computer-oriented iteration and sweeping pro-
cedures can be used for the determination of
frequencies and mode shapes.

Although the necessary transformations
appear complicated, they are operationally
quite simple and can be easily programmed for
computer solution. The majority of the effort
involved in the application of this method is
expended in the determination of the eigen-
values and eigenvectors of the modified equa-
tions as is true of all of the existing methods
for the solution to this type of system. The
effort is minimized in this case, however,
since existing computer programs can be util-
ized.

The development illustrated has been for
a system with one rigid body mode; however, the
method can easily be extended to include
several rigid body modes.
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ON THE FORCED VIBRATION OF TRIANGULAR PLATES (U)

H. M, Negm, S. Chander, B, K. Donaldson
Department of Aerospace Engineering
University of Maryland
College Park, Maryland 20742

(U) This article deals with the application of the extended
field method of approximate analysis to the forced vibration

of thin triangular plates with clamped or simple support
boundary conditions. The numerical results show that greater
accuracy per degree of freedom can be expected with the extended
field method than with any of the presently popular approximate
methods of analysis.

INTRODUCTION

() Thin triangular plates have relatively methods can produce good deflection results,
few practical uses. Nevertheless, they always none of the three is without some small compli-
have been of particular interest to analysts be- cation. Furthermore, as is cautioned for ex-
cause of the challenge posed by their geometry. ample in reference [3], ". . . a finite diff-
Some exact solutions do exist for some special erence solution requires an advance to one or
geometries and special static loadings [1] but more finer meshes so that convergence may be
there is no general static or sinusoidal vibra- examined, (and) a series solution requires in-
tion solution. Hence analysts must be concerned vestigation of the effect of including addition-
with approximate solutions. The three most pop- al terms." Therefore it is worthwhile to con-
ular methods of approximate structural analysis sider new approximate methods of solution,
today are the finite element deflection method,
the finite difference method, and the Rayleigh- This paper deals with a new approximate
Ritz method. Each of these three methods can be method of analysis called the extended field
used to provide good engineering answers, but method of analysis. The purpose of this paper
each has small drawbacks when applied to trie is to report on the first application of the
angular plates. When deflection finite elements extended field method to thin triangular plates.
are used to model a triangular plate, it is of These plates will be taken to be Hookean, homo-
course necessary to employ triangular plate ele- geneous, isotropic, and of constant thickness.
ments. The popular Clough triangle [2] tends to The specific problem considered is one of forced
be overly stiff, so a non-compatible rectangular sinusoidal vibration.

element would be a reasonable choice for the

majority of the model as shown in Figure 1. A detailed explanation of the extended field

This figure shows that there is the small prob- method and some of its applications can be found
lem of the aspect ratios of the rectangles vary- in References [3, 4, and 5). However, because
ing across the field, This causes one side of of its newness, a very brief description of the
the triangular plate to be slightly less stiff method follows, The extended field method, as
in one direction, while the other side of the applied to the forced vibration of thin plates,
triangular plate is slightly less stiff in the begins with a rectangular plate which is not
perpendicular direction. A finite difference loaded over its surface, but is fyrced to vib-
solution would have to accept three different rate due to applied edge moments and shears
grid spacings in order to place grid points along just one side of the plate. The other
exactly on the triangular plate boundary. The three sides are taken to be simply supported.
Rayleigh-Ritz method js also a bit awkward when The deflecting edge conditions are de.cribed
dealing with a triangular field. It is not cer- ordinarily in terms of the resulting edge verti-
tain which coordinate system and which set of cal deflection and normal slope amplitudes.
functions would produce the simplest integra- These amplitudes are in turn described in terms
tions. Again, while each of the above three of Fourier sine series, A Lévy series solution
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is easily obtained in terms of those Fourier
series coefficients. This Lévy solution and
three similar ones for the other three sides of
the rectangle are then superimposed on the Nav-
ier solution for a simply supported rectangular
plate subjected to a surface pressure which has
an arbitrary spatial distribution, but has the
same vibration frequency as the edge loads.

The result of this superposition is the extended
plate (or extended field). The plate to be ana-
lyzed, called the actual plate, is geometrically
located within the boundaries of the extended
plate in a convenient manner, Then the simple,
arbitrary boundary conditions of the extended
plate, which are at the disposal of the analyst,
are used to achieve the otherwise intractable
boundary conditions of the actual plate. Since
the pressure amplitude over the extended plate
is chosen to coincide with that of the actual
plate within the boundaries of the actual plate,
then the extended field solution is also the
actual plate solution within the boundaries of
the actual plate.

It proved possible to apply the extended
field methad to triangular plates in several
different ways. The most significant ways are
discussed below. Right angle triangular plates
are discussed first, and the lessons learned
from that application are used in the analysis
of triangular plates of general geometry.

THE RIGHT ANGLE TRIANGULAR PLATE

To locate a triangular actual plate within
a rectangular extended plate requires, of course,
that one or more of the triangular plate bound-
aries be oblique to the boundaries of the rect-
angular extended plate. In the case of a right
angle triangular plate, the simplest arrange-
ment is as shown in Figure 2 when f = b and
g = 0. For the sake of simplicity, let the tri-
angular plate boundary conditions be such that
the oblique edge is clamped, and the other two
edges are simply supported. Hence it will be
called a CSS triangular plate. In the extended
field method, simply supported edges which are
coincident with extended field edges are obtain-
ed by just omitting from the total extended field
solution those Lévy solutions that correspond to
the simply supported edges. Thus the only equa-
tions that need be written are those that require
that the vertical deflection amplitude and the
normal slope amplitude along the oblique edge be
zero; i. e.

WG, -2eeb) o (1a)

a b
W gE-gEeb)=0 (1b)

where W is the deflection amplitude, x = (a/t)e,
y = -(b/t)e + b, and a subscripted independent
variable following a comma indicates partial
differentiation with respect to that subscript.
These symbols are those of Reference [4], and

are explained in Appendix I. Using the chain
rule, the second of the above equations is re-
written for convenience as

(b/a)u’x te e 0 {ic)

Equations (1a) and (ic) are put into a form con-
venient for numerical calculation by application
of the Galerkin technique which renders the
error in approximating the boundary conditions
orthogonal, in this case, to an uninterrupted,
finite set of sine functions, That is, after
multiplying by (2/2) sin (mwg/2) and integrat-
ing over £ from 0 to 2, the oblique edge bound-
ary conditions become

N
3 [ o nEron = Y10,mnE2 00" 0
n=}

+ (U

9.m.nE3.n - Ulo,m.nE4,n)kl,n

* (Ull,m,nES.n'UIZ,m.nES,n)hz,n

* Wy mnf7.07%12,monEs 0)%2,0] = - Py (22)
N
f-
T gzb“Hnmmﬁ7m*Hmmmﬁam”1m
- (U7 m.nE19.0 = Y18,m,nE20,0)%1 0
* (U19,m,n521.n - UZO,m.nEZZ,n)hZ,n
+ (V19 mn23,n = Y20,m,nE28,0)%2,n]
N
+ AE% (V13 m,nEg,n = Y14,m,nE10,07M 10
* W3, mnE11,n - Y14 manEr2,00% 0 (2b)

*(%5mmqmn'Ume54man

*+ (V15 m.nE15,n - Y16.m,nE16,07%2,n]

= f-
- Tﬂpn,m - Plo,m

form=1,2,...,1. These are the same as Equa-
tions (50) and (51) of Reference [4], but with
f=0band g = 0, and the inclusion of a minus
sign erroneously omitted in that reference.

The quantities hl.n' k]". hz.n' and kz.n'

where n = 1,2,...,N, are the extended plate edge
Fourier series coefficients, and, as such, they
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are the only unknown quantities in Equations (2).
Thus there are four sets of unknown quantities
and just two sets of equations. This situation
had not been encountered previously.

The most successful way of resolving the
disparity between the number of sets of unknowns
and the number of sets of equations turned out
to be simply requiring the error of approxima-
tion to oe orthogonal to twice as many sine
functions as there are Fourier series coeffici-
ents in any one of the four sets of unknowns;
i.e. setting I = 28, Typical numerical re-
sults are shown in Table 1, for which the
following values were input

£ =1.05 x 10psi

2.609 x 1073 lbs-sec/in4

[+
uw=20.3
20.0 in.

[
'}

o
"

20.0 in.

d = 0.25 in.

w = 100 rad/sec

The amplitude of the applied load was a constant
1.0 psi, which causes its Fourier Eeries coeffi-
cient p_ to have the value (16/7°mn) when m

and n aPe"both odd, and the value zero other-

wise. (This choice of loading is neither advan-
tageous nor disadvantageous.) The last unchang-
ing item of input was the maximum value for the
dummy indices of the loading series Pg n’ P‘0 n

and P . A value of 85 was sufficient., As
furthl}’ﬂxplanation of Table 1, note that each
value of N indicates a new finite series solu-
tion, in this case, using 44 unknown quantities.
Presentation of the results to eight signifi-
cant figures is justified by the fact that all
computations were performed using double preci-
sion arithmetic.

The accuracy of the numerical results shown
in Table 1 was checked by using the NASTRAN
finite element program. The finite element model
is shown in Figure 3, and vecause of symmetry,
the model involves only 65 unconstrained degrees
of freedom, The numerical results obtsined for
the point (14,16) were W = 3,665 x 1077 in.,

W.x = -7.037 x 10™° and W,y = 3.911. Taking in-
to account the differences in sign convention,
these results differ from those of Table 1 by
less than 2%, and thus substantiate the correct-
ness of the extended field method digita) compu-
ter program.

Table 2 shows similar numerical results
when the plate aspect ratio is changed so that
a =20.0 in. and now b = 10.0 in. with all other
input quantities unchanged. The numerical re-
sults again show truly excellent convergence,

but not quite as good as when a/b = 1. Similar
results were obtained when a/b had a value of
three, At all aspect ratios there was no signi-
ficant change in convergence as the point at
which amplitudes were calculated was shifted
from place to place within the actual plate.

A somewhat less successful extended field
analysis involved dividing the hypotenuse at the
arbitrary point £ = q¢ and writing 2N equations
for one segment, and 2N equations for tne other
segment, and then solving for the 4N unknown
Fourier series coefficients. As might be ex -
vpected, the quality of convergence varied con-
siderably with the selection of the arbitrary
dividing point on the hypotenuse of the trian-
gular plate. Again the quality of convergence
varied slightly with plate aspect ratio, but not
with forcing frequency or with the point at
which amplitudes were calculated. Table 3 shows
typical results. For an optimum choice of q,
seven digit convergence can be obtained with
just sixty degrees of freedom. However a non-
optimum, but still reasonable choice of q can
drop the quality of convergence to just three
significant figures. The optimum choice of q
varies with the plate aspect ratio and it is
possible to present a graph of optimum q versus
(a/b). However, the first approach discussed
seems to be preferable even when an optimum q is
used in the second approach. Before leaving the
discussion of this approach note that the results
shown in Table 2 and the best results of Table 3
provide mutual confirmation.

A third approach to the right angle trian-
gular plate was to simply assign arbitrary con-
stants of proportionality, a« and g, between
similar extended plate edge amplitude Fourier
series coefficients; i.e, write

= 8ky o (3)

for n = 1,2,...,N. This of course, reduces the
number of unknown quantities, and therefore the
number of required equations, to 2N. The value
(a/b) was the best discovered for a and 8, but
using this value never produced convergence be-
yond three significant figures within the use of
thirty unknowns, i.e. at an N equivalent to 7 or
8 for the previously discussed work. Thus this
approach was deemed to be a pgor one.

THE TRIANGULAR PLATE OF GENERAL GEOMETRY

As shown in Figures 4 and 5, CSC boundary
conditions were chosen for the general triangu-
lar plate to be investigated. As before, this
choice of simple support and clamped boundary
conditions simplifies the analysis somewhat by
requiring only 6N, as opposed to 8N, unknown
Fourier series coefficients. This in turn short-
ens somewhat lengthy equations. This choice
also avoids free edges, which when they are
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adjacent to each other and thus producing a
free corner, make satisfactory convergence of
the series solution difficult to achieve. An
isosceles triangular plate with its one axis of
symmetry was chosen so as to use the symmetry
to provide a check on the digital computer pro-
gram solution. It is worth reiterating, how-
ever, that the extended field method in no way
relies upon symmetry.

Two approaches to triangular plates of gen-
eral geometry were investigated. They both are
based on the previous success with right angle
triangular plates. The first approach here is
just a variation on the first approach of the
previous section, That is, the oblique line of
Figure 2 was used with two different inclina-
tions in the same extended plate to produce a
triangular actual plate. The two ways that this
can be accomplished are indicated in Figures 4
and 5. In the algebraic solution the y-coordi-
nates of the end points of the upper oblique
line are callied f and g as before, while those
of the lower oblique line are namgd T and g.
Quantities calculated from f and g then also
receive a distinguishing upper bar.

Jsing a second oblique line requires the
addition to the situation of Figure 2 of forc-
ing extended plate edge displacement amplitudes
along the edge y = b, The Fourier series co-
eff1c1ents associated with those amplitudes are

and k4 for vertical defiection and nor-
mﬁt"slope rgspectively. ote in passing that
if other than simple support boundary condi-
tions were to be selected for the third side,
x=a, similar Fourier series coefficients h3 n

and k would also be necessary. The equations
that araduce clamped boundary conditions along
the upper oblique line are Equations 4a and 4b.
The Fourier series coefficients h3 n and k3 n

L] *

and tnheir factors, have been included in these
equations for the sake of completeness. Of
course, h3 n and k3 n Were set equal to zero for

the present numerical calculations.
N -
2. [(Ug,m,ntl,n'ulo.m.nEZ,n)hl,n *
n=1

Wy mnf3,nY10,mnEan) 10 *

(uil,m,nES,n 12,m,n 6 n

E

)h

+

(Ull,m,n 7.n " Ulz,m,nEa,n)kZ,n

+

(Va1 m,n€1,n7Y22,0E2,0)03,0

E )k

- (U21,m n -3,n Y] ,m,n 4 n

+ E,

(U23,m,n S,n'U24,m,nE6,n)h4,n

¢ Y23,0,087,0"%28,m,nE8,0 %4 0] = = Pg q (%2)

N

f-
3 5%1 W7 mnE17,07Y18,mnE18,00M 0

- U47,m,0E19,n7Y18,m,0520,07%1 10
*+ (19, m,nf21,07Y%20,m,nE22,0 /12,0
* (D19 m,nf23,nY20,m,nf24,07%2 0
+ (Vg5 m,nE17,n7Y26,m,nE18,07"3,0

- (Y25 m,nE19,n"Y26 ,m,nf20,07%3,n

* (U29,m.nE21,n'u30,m,nE22.n)h4,n

- (Upg m.nE23.n"Y30,m,nE24 0 %4 0]

N
+ % [U3 0089 0"Y14,maE10,n0M 0
n=1

+ (U )k

13,m0501 0 %14,m,05102,0
* (UIS,m,nE]3,n'U16,m.n514.n)h2,n
* (U5 m,nf15,0 = Y16,m,nF16,00%2,n

* {Uz7.m,nf9,n = Y28,m,nE10,n""3,n

= (U7 mnE11,n = Y28,m,nf12,0)%3,n

* (U3 mn€1a,n = Y31,m,nE13,0)0,0

(U3 m.nE16,n = Y31 ,m,nE15,07%4 0]

f-
<=2 Py 0 Plogm (4b)

form=1,2, .. ., I. The equations that clamp
the lower oblique line have exactly the same
form as those above except that the U and P
factors are replaced by U and P factors. Thus
there are 6N unknown Fourier series coefficients
and 41 equations. Thus, by the first approach,
which is simply expanding the number of equations
in order to match the number of unknowns, N is
required to be even and I must equal 3N/2. Num-
erical solutions based on this approach and
using first the geometry pictured in Figure 4
and then the geometry pictured in Figure 5 pro-
duced, for the same actual plate, the results
listed in Table 4, A1l other input data to the
solution were the same as that for the right
angle triangular plates. Once again the results
show remarkable convergence, and engineering
accuracy is obtained with just twelve unknowns.

The second approach was to patch back to
back two right angle triangular plates by

v RN

it b,
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requiring continuity across their common bound-
ary of vertical deflection, normal slope, mom-
ent, and shear amplitudes. Thus the second
approach employs two extended fields, one for
each of the actual right angle triangular
plates. Therefore the second approach requires
four (one of which turns out to be trivial)
more sets of equations and five more sets of
unknown Fourier series coefficients, which is
more costly of computer time. See Figure 6.
There is an uneveness to the second approach,
The total of 7I equations to salve for the 1IN
unknowns cannot be equally distributed. The
oblique edges get twice as many equations per
boundary condition as does the common boundary
per continuity equation. The numerical solu-
tions obtained with the second approach ranged
from excellent (six figure convergence) to just
satisfactory (nearly three figure convergence)
at 110 degrees of freedom. Perhaps more effort
could bring up the rear, but the extensive work
that was done clearly indicated certain trends.
The quality of convergence decreased as the
ratio of the triangle height to base increased,
and was worse in the immediate vicinity of the
common boundary. Thus for the particular prob-
lem of triangular plates, a combination of the
oblique line equations within a single extended
field produces the best numerical results.
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In conclusion, the extended field method
can be successfully applied to any triangular
plate with clamped or simple support boundary
conditions. Furthermore, with the extended
field method, the accuracy that is obtained per
degree of freedom is greater than that which
can be expected using finite element techniques.
Other experience shows that the same can be said
for the finite difference and Rayleigh-Ritz
methods .
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TABLE 1
Deflection and slope amplitudes at the point x = 14 in, and y = 16 in.
on the CSS right angle triangular plate of Figure 1,
where a =b=f =200 1in., and g =0
N W (x1072 1n.) W (a0 W (x -1073)
. W
1 .42188387 .56624721 .47820823
2 .37131614 .71969010 .38567137
3 .37014838 .70354928 .38471381
4 .37015225 70243466 .38464112
5 .37015138 .70247251 .38463696
6 .37015143 .70246985 .38463677
7 .37015143 .70246983 .38463676
8 .37015143 70246987 .38463676
9 .37015143 .70246987 .38463676
10 .37015143 73246987 .38463676
TABLE 2
Deflection and slope amplitudes at the point (15,7) on the CSS triangular
plate of Figure 1 where a = 20.0 in, b = f = 10.0 in., and ¢ = 0. j
a
N w(x1073 in.) w007 W (x 10
1 .70867714 .49412800 .04026906 1
2 .73318264 .60272816 .21260135
3 .72643866 .58495714 .15358350
4 .72719485 .57746950 15654636
5 72720480 .57832247 .15699536
6 .72719720 .57833070 .15687139 j
7 .72719839 .57831298 .15688012
8 .72719918 .57831674 .15688320
9 .72719925 .57831734 .15688276
10 .72719930 .57831739 .15688288
n .72719932 .57831749 .15688296
12 .72719933 .57831754 .165638297
13 .72719934 .5781757 .156388299
14 .72719934 .57831758 .15688299
]
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TABLE 3
The vertical deflection amplitude at the point (15,7) on the CSS triangular
plate of Figure 1, where a = 20.0 in, b = f = 10.0 in., g = 0, as calculated
using a divided hypotenuse.
W (x 1073 4n.)
N
q = 0.52 q = 0.42 q = 0.3
1 .82327238 .76376477 .73759322
2 .73542778 .740n6897 .74097488
- 3 72592877 .72624329 .72656214
. 4 72880698 .72745690 72117270
5 .72668159 72717189 72720557 ,
6 .72758232 .72722576 .72720543
7 .72700265 .72718869 .72719656
s ‘ 8 .72732638 72720436 .72719986
v 9 .7211372 72719673 .72719836
’ 10 72725957 72720063 .72719942
\ ' 1 72715539 .72719859 .72719923
' 12 .72723244 .72719974 .72719936
13 LT2717373 .72719910 .7271993
- 14 .72721963 .72719948 .72719935
15 .72718270 .72719926 72719934
f TABLE 4
Deflection amplitude at point A of the C3C
triangular plate of Figs. 4 and 5.
Wy (x107%4n.)
. W Scheme of Fig. 4 Scheme of Fig. 5
2 .16332157 16197112
. 4 16683520 .16655533
' 6 .16685213 .16685281
! 8 . 16685047 .16685019
10 .16685059 .16685060
: : 12 .16635067 .16685068
[ 1 .16685069 .16635072
L L 16 .16685070 .16685071
] -'41
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Figure 1. Typical finite element layout or finite
difference grid for a general triangle.
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ey Figure 2. Extended field Fourier series coefficients and geometric
quantities needed to imbed a right angle triangular plate
within a rectangular extended field.
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Figure 3. Division scheme for symmetric CSS triangular
plate for NASTRAN finite element analysis.
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Figure 4. An extended field arrangement for an isosceles triangular
actual plate with a twenty inch height and base,
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Figure 5. Another extended field arrangement for an isosceles triangular
. actual plate with a twenty inch height and base.
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6. Geometrical arrangement and Fourier series coefficients
Floure for the analysis of a general CSC triangular plate by
use of two separate extended fields.
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Symbols
a

b

d
f.q,f.g

h.i.n

m,n,p

>>

L o
-
S

X,y
Z
]
E
EJ n

H,d,l

W
u

- —

U5 mny m,n

| AP . PR et S ¢ e e - o

APPENDIX 1

extended plate length in x-coordinate
direction

extended plate length in y-coordinate
direction

plate chickness

y-coordinates of the end points of an
oblique cut in an extended plate

nth Fourier series coefficient of the
vertical deflection amplitude on the
jth extended plate edge

nth Fourier series coefficient of the
normal slope on the jth extended plate
edge

length of an oblique cut in an extend-
ed plate

summation indices
b rpuld, 1/4

7 ol

a [Emzd] 1/4
» D

double Fourier series coefficient of
the pressure amplitude function on
the extended plate

[(En)2 o (eu2d)}/291/2

(57 v (egdy72y172
2
[(0)° + (©£24)1/2)1/2
2 -
[@n” . @2/ g
-7+ @122 g q

plate Cartesian coordinates
coordinate normal to an oblique cut
plate stiffness factor, Ed3/12(1-,%)
Young's modulus

constant coefficients of plate edge
deflection equations; see Appendix 11

maximum values for the indices
sgn{n-n)
sgn(n-n)

constants of the pressure loading de-
fined in Appendix Il

constant coefficients defined in
Appendix 11

plate lateral deflection amplitude
Poisson's ratio

and

sin(h)sna -l

etc.

cos(h)vnb s ‘

coordinate along oblique portion of an
extended plate

mass density
circular frequency of forced vibration

Pm,n

2 2.2
D(L(IM° + (I)°) - euzdy

sin 5,2 ifne<n

sinh s a ifn>n .

cos v b ifn<n ;
ifn>n ;

cosh vnb

APPENDIX II

Definitions:

Dl,m,n

2,m,n

3,m,n

D4,m,n

El.n *

E2.n *

E3.n "

E&,n
E5.n *

Es.n

E7.n

Ea,n *

E9,n

E]O.n - T EZvn

nn
By D

) El,n

i

= (0 (o-f) - m1? + v 2a?)
([ (q-f) + )2 + r D)} ! i
= {7 (a-f) - m1? + s %a?)

((%F (g-F) + m3 + § sﬁaz)} -

={ [(m-n)%? + (g-)u 2]
Cmn)2a + (g-A2u 21} !

={ [(m-m)%? + F(g-?v 2]

[men)2e? + fi(g-11%v, 217!

Sh cos(h) 5,

" cosh r.

sin{h) Syl

sinh r,

n n cos(h) vnb

v, cosh unb

L. sin{h) v“b

L_sinh unb

nx

nx

dusshities




l v
S
|
3
t *

.

.

~ou S avall

e s S

. _nn - :
t]znn - -EEAsn ElQ,n rn E3,n \1
{
Ey3,n = Vnbe,n Exo,n ™ 5n Ean
E =y E < Nz !
T4 Tn S Epyn * "2 Esun ! }
l"lS,ﬂ * Vn l:'8.11 £ .0 : !
£ =u E 22,n a 5,n ‘
16,n n 7.0 "
- Eran ™ 2 &7
E17,0 " "n E.n L
: < n
tls,n Sn EZ,n E24,n a E8,n
. . -1
Iy = [sn sinh r a cos(h)sna - T cosh ra sm(h)sna]
- : . -1
L, = [vn sinh unb cos(h)vnb -y, cosh unb s1n(h)vnb]
M
znnmsinm—’[;i ifn=pandg=f
m
MM
1%— T npmsin¥ if {(n-p)b = + {g-f)m and g # f
pm "
P9,n = ﬁ
M N
-%— ZZH':’msin'"-%;i if (n+p)b = (g-f)mand g # f
p m
s MM np b3 (g-f) [(-1)™P cos '—'—"'53 - cos '“-%t] )
T E2Z%m 77 7 777 7 otherwise
[(n-p)ebl-m (g-f)“10(n+p) b -n" (9-£)7]
mop
M
Zb—-nn'mcosm%f ifn=pandg-="f
m
MM
1%— p Z'ﬂg-np m €05 "—'"51 if (n-p)b = + (g-fimand g # f
= mop
PlO,n \
M M
Sl g sma o T i (nepb = (g-fimand g f f
p m
noH nmzpb2 {g-f)[sin m__;__f - (- )n+p sin "—%ﬂ]
4 33 %m T T 2 7T 7 z otherwise
L M [(nep)°bZ-m® (g-F)“1[(n+p) b -m" (g-F)"]
mp
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rO ifn=pandgs="f
MM
+7RE Py, cos L if (n-p)b = + (g-f)n
p m
Pm = 4w
%—Z > ?’- Tom €O '1"'51 if (n+p)b = (g-f)m
pm
na mebfLinlepdn? -(g-0)Znellsin TEE - (-1)Psin TGy
" 2Z X Ny
: | p m alb*(n-p)” - w’(g-F)°Ib% (n+p)%on® (g-£)2]

. . The constants PJ. n are obtained by replacing f by t and replacing g by 5 Where j = 9,
0, 11. ’

2
= .2_ - & nn -f . M
v Ug mn = 1 g sinh ra(l - 2) sin p= (f + ST £) sin _zidg

o % N s,

naf

- { ﬂﬂb_"_ (g-f) rya [cosh roa cos “E= - (-1)" cos T2 ]

-2y [(gl-)2 (g-f)2 - mznz - \-'2' a“] sinh rqa sin “;f }

2
Uio.mn = Dz‘m’n{ 4'"""b =f s,a [cos(h) s a cos '_‘l'i - (-1)" cos —1]

-2m (2 (g-£)7 - nie? - N s a2] sin(h) s a sin "—;i

sinh un(b-g) ifm=nand g-=f
3
ull ,m,n :
~ J (4mnn2( -f) u_ [cosh u_(b-f) - (-l)""" cosh u_ (b-g)1}
3,m,n 9 n n n
sin(h) vn(b-g) ifm=nandg=f
ulz,m,n : 2 m+n
oq‘m'" {4mn“(g-f) Y [cos(h) vn(b-f) - (-1) cos(h) vn(b-g)])
2
4mnn” (g-f m ny nwf
} ul3,m.n = 0 mn {——F(L)' raa [(-1)" sin —53 ~ cosh r a sin T]

”*»
-2 [(g—'l)z(g-f)2 - menl - rﬁazl sinh r a cos % }

-
e ]
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Uig.mn = Y2,min {im—"lv(ﬂ—l s, [(- 1™ sin 'bj" cos(h) s, sm"%—f‘]

~2mw [( a2 (g- f)? - 2.2 N aZ] sin(h) s a cos —g
u cos(h)v(bf) ifm=nandg=f
15,m.n Dy o (AT 2(g-f) 1 v, [sin(n) v (b-f) - (- 1N™" sin(n) v, (b-f)]}
cosh un(b-f) ifm=nand f=g
l‘|16,m.n =
D (amna2(g-f) u_ [sinh u (b-f) = (-1)™" sinh u (b-g)1}
3,m,n n n n

2
- 4mnn”{g-f naf
u”’m’n = D).m,n{ 5 rpa [sinh rod cos =~

-2mn [(g—“)z(g-f)z - ol - J[cosh r,a sin -'!1— - (~1)" sin —3]}

2 A
4mns“(g-f) .
UlB.m.n = DZ.m,n{ mns f H] sna [S\n(h) sna cos %]

-2mn [(';r")z(g-f)2 ~nled N s aZ][cos(h) s,a sin °p- nef )™ sin '—'59-]}

) 0 if (mtn) =evenand g~ f

U =

19,m,n

Dy mn (ol (n2-n2)a? + (g-Z Elsinh u (o) - (-1)™" sinh u (b-g)]) %
0 if (mn) = even and g = f

UZO,m,n =i

04 mn (amel(R-n)e? + R (g7 v 2sin(h) v, (b-£) ~(-D)™" sin(h) v, (b-g)]}
ZmuD {Znnr a(g-—)[( 0" coshr acos —-9-

- ¢os —"—] - [(r a) + (lll'n) - {nn) (SF') 1 (-1)7 sinhr a sin -bj-}

ZmnDZ’m’n(ansna(ﬂé)[(-I)'“ cos(h)sna cos '-'-Eﬁ - ¢os T] - [(sna)zi; + (mw)2

u22.m.r| *
- (nﬂ)z(g-gi)zl (-l)msin(h)sna sin -'1?}
sinh unf if mn =even and g = f
. U23,m,n =
a2 u,(9-f)03 o n[(-l)""" coshu g - coshu,f] otherwise
sin(‘n)vnf when m#n = even and 9 = f
l"24,m.n =
4mnn2vn(g-f)04'm’n[(-l)m" cos(h)vng - cos(h)vnf] otherwise
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2my oo (Znnrnd(ﬂg-f)(-l )" stnanr a cos ﬂ%ﬂ - [(r"a)z ¢ (nn)?

UZS.m.n *
- (2D eoshr 2 sin 22 - sin 0]
2“"“2‘“,‘"(2“1'5,10(?)(-1)"' sin(h)s a cos x2- ((sna)zﬁ « (m)?
u . .
26, ,m,n
- (nn)z(gﬁt)zll(-l ™ cos(h)s a sin Qg_q - sin .'-’.g];
-2mn, o {2nwra (Q:Ft) [(-1)" coshr a sin EF- - sin %]
Y21.mm 2 2 2,q-%,2 n n
+ [(r @)% + (m)® - () (FF7) (1) sinhroa cos %
‘ -Zsz‘m,n {2n7s 2 (ﬂé) [(-l)'" cos(h)sna sin ? - sin Eg—]
J =
28,m,n A
v Us2)? A ) - (m)2(EEH2] ()" sin(h)sga cos B
0 ifm+n=evenand g=f
U29 JM,n * %
-Zlﬂw[unz(g--f‘)2 + (m«)z - (““)ZJD;{_M," {1 )""" sinhu g - sinhu"f] otherwise
0 ifm+n=evenand g= f
Y30.m,n ’l = 2, o2 2 2 mén
-Zmu[an (g-F) + (mm)° - (nm) ]D4 man [(-1) sin(h)vng - sin(h)v“f] otherwise
cos(h)vnf ifm+n=evenandg = f
u3l ,m,n -’ 1
4mn1r2vnN(g-f)04’mm [(-1)™n sin{h)v,g - sin(h)v,f] otherwise i
coshu f . ifm+n=evenand g=f
u32,m,n * ]

4""”2(9‘f)“n03,m,n [(-'I)'""" sinh up9 - sinh unf] otherwise

The constants U

§,m,0 are obtained by replacing f by T and replacing g by g. Where j =9
through 32. s
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EXPERIMENTAL DETERMINATION OF

MULTIDIRECTIONAL MOBILITY DATA FOR BEAMS

) D. J. Ewins,
f Imperial College of Science and Technology,
. London, England

P. T. Gleeson,
Middlesex Polytechnic and Imperial College,
London, England

at each coupling psint.

and rotational mobilities.

mobilities,

r frequencies.

Wnen mobility dat~s is to be used for prediction of the vibra-
) tion properties -t ~cpled structures, it is necessary to
‘ consider all the directions of vibration which are significant
"+ particular, when analysing beam-
like structures it is necessary to include both translational
Often it is necessary to obtain
such data by experiment and altnough techniques are established
for measuring translaticnal vibration, it is difficult to
measure rotational mobilities with sufficient accuracy. A
method is presented here which enables the required rotational
mobilities to be derived from measurements of translational
Results show that derivation of rotational data
is more accurate than direct measurement, especially at low

1. INTRODUCTION

When a complete structure is analy-
sed in order to predict its vibration
characteristics, it is usually more <on~
venient to break that structure down
into its basic component parts. Each of
these may then be analysed individually
in as much (or as little} detail as its
complexity demands. An analytical model
of the complete structure may then be
generated by combining all the indivi-
dual component analyses using an imped-

¢ ance or mobility coupling process.

However, it is often found that
some of the components in engineering
structures are not amenable to (or even
defy) theoretical analysis. 1In this
case, in order to make an analysis of
the complete structure, recourse may be

e made to experimental measurement of tne

necessary data. This situation is often
encountered when using non-metallic com-
ponents (rubber or polymers), or when
attaching additional components onto an
existing and complex structure such as
an air-frame or a bulkhead in a ship.
If such a procedure is to be undertaken
successfully, very careful consideration
must be given to the choice of (a) whicn
mobility data should be measured, and

o Pasid
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(b) how these may be obtained accurately.
The main limitation of conventional
mobility or impedance measuring techni-
ques is that they consider motion in one
translational direction only, while
practical structures usually vibrate in
several directions simultaneously
(translational and rotational).

Previous work (1) nas illustrated
this basic problem and presented a
method for measuring the type of multi-
directiornal mobility data which may be
required. The results were encouraging,
although not perfect, but the measure-
ment method was difficult and relatively
lengthy. Another, similar, method for
measuring such comprenhensive mobility
data has been reported (2), but this
also is fairly complex.

Further work has now been under-
taken wtn the objectives of developing
the measurement technique described in
(1): (a) by applying it to a wider
variety of structures, in particular to
smaller ones; (b) by improving the
accuracy of the measured data; and
(c) by simplifying the procedure so that
it may be undertaken witn conventional
impedance testing equipment,
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The present paper describes this develop-
ment,

2. CASE_STUDY

As previously, a specific example
was chosen with which to test and demon-
strate the various aspects of the
measurement method. A very simple
structure was selected - a uniform steel
beam, C, which was formed by joining two
different uniform beams A and B, end to
end, The experiment consisted of:

(i) measuring the tip mobility data
for beam A;

(ii) measuring similar data for beam Bj

(iii) using the above data to predict
the properties of the combined
beam C, and then comparing these
with the actual properties,

Tne underlying philosophy of this
experiment was that unless such a simple
system as that described above could be
measured and analysed successfully,
there was little point in attempting to
apply such techniques to more complex
practical structures.

Chosen Beams

It was decided to use steel beams
of rectanqular cross section for the test
pieces so that the theoretical mobility
values could be readily calculated.
Steel was selected because of its avail-
ability and also because, being very
lightly damped, it would offer a wide
dynamic range of response and thus tax
the measurement system, Several con-
siderations were made in deciding upon
the dimensions of the two beams. As
mentioned above, one object of this
study was to test the basic multi-
directional mobility measurement tech-
nique on smaller components than
previously. Also, there were freqguency
constraints to be imposed in order to
keep within the range in which accurate
measurements could be reliably expected.
This range had a lower bound of 50 Hz
(mains frequency) and an upper one of
about 1000 Hz, above which transducers
and drive rods can begin to cause prob-
lems, Thus the decade 80 - 800 Hz was
selected as the 'central' frequency
range.

The beams were to be tested in a
free-free configuration; this nhaving
boundary conditions which can be most
closely achieved in an experiment. The
longer of the two beams was chosen with
a section of 25 mm x 31 mm and a length
of 1.4 m. For bending vibration in its
stiffer plane (i.e. with 31 mm as the

tnickness), this beam has calculated
natural frequencies at 86, 237, 464 and
767 Hz. The shorter beam was chosen to
have the same cross section and a lengtn
of 0.65 m. This beam has its first two
natural frequencies at 399 and 1100 Kz,
deliberately chosen so as not to coincide
with those of the long beam,

3. DIRECT MEASUREMENT OF MOBILITY DATA

Basic Measurement Method

The response of the test piece to a
harmonic input force and a harmonic
couple M, applied at point P, are the
velocity X and the angular velocity ¢.

These are related by the mobility
equation: -

if im
2L le® [Pl [ Yxx Yxe | T
3 f
] e M Yox Yoo | (M
or
&= [¢] @ (1)

In general, F and M are complex
quantities incorporating both magnitude
and phase information of steady-state
sinusoids and it follows that X, § and
all four elements of the mobility matrix,
[¥], are also complex.

For measurement of these mobility
data, the inputs F and M are applied to
the structure by an 'exciting block'
which is fixed to tne test piece at P
and which enables F, M and the responses
X and § to be deduced from the outputs
of accelerometers mounted symmetrically
on the block. See Fig. 1.

The responses % and % at point P
are related to the accelerations a, and
a, measured by the accelerometers Qy the
equations: -

X = (ay + 3g)/2, § = (a, = a;)/2s

where s is the distance of offset of each
accelerometer from P.

These equations may be expressed as
a matrix equation:

) 1/2 1/2 a,
] 1/2s =~1/2s ag
or ,,
(X3 = (1] (a) (2)
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FIG.1. BASIC MEASULUREMENT CONFIGURATION.
Data are obtained in eacn of two Thus: ( F F, - m X,
test runs at a discrete number of fre- = .
gquencies, In Run 1 a force F, is applied M e, Fy -1 9,
to the block at a point offse% a distance p
e, from P, and in Run 2 a force F, is Equation (1) may now be rewritten as:
applied at a point which is a disgance % F m ¥
e, from P, (e, and e, need not be symm- U _ YJ 1 - 1
efrical about %). H = [ F 1 4
1 €1 Fp -1 8
The coordinate system has X positive s s oas s
downwards and 8 positive anti-clockwise. BlVldln? tﬁrough ?y Fq and writing
Since F and M are the force and couple X/jw = K; 8/jy = 8 we get:
inputs applied to the test piece at P, ” v
their relationship to F, and F, can be (X/F) 4 1 -m (X/F),
determined by regarding the exéiting LYAI"L S = [YJ (3)
block as a free body with an input F, or (8/F), e ~ I ('e'/F)1
Fg above tne block and -F, -M input at P P
(See Fig. 1). Similarly for Run 2:
Thus, in Run 1, resolving vertical 3%/ >
. F) 1 - m (X/F)
forces: 1/ { i 20 _ [31 2 (4)
o (8/F) e, - I (§/F)
F)-F = mX 2 2 P 2
and taking moments about P: Combining (3) and (4):
¢
e, F, -M = I_§ (X/F), (X/F) ‘
11 p "1 1/ i 1 i 2 - : 1
where m is the mass of the block (inclu- (8/F), (8/F),
ding accelerometers) and I_ its moment
3 of inertia about P. P
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11 m 0\ (/) (/)

(¥] - (5)

e e, 0 Ip ('e'/F)1 (8/F),

We may write |1 1
=(T} , & transforma-
ey e, tion matrix.

and m 0
= [M], a matrix of block
0 Ip inertial properties

Using equation (2), we have:
(X/F)1 (X/F)2
(é'/F).l ('e'/F)2
) CT] (aA/F)1 (aA/F)2
(aB/F)1 (aB/F)2

or [In] = [T] [Inm] (6)
where [In] is a matrix of Inertance
quantities

and |In 2 is the matrix of those
Inertancé quantities which are measured
experimentally.

Thus equation (5) may be rewritten:-
1/ju[T] [Inm-J - W ]- [M][T] [Inm_l)
and so [¥]} = 1/3[T)[1n ]

(f1]- [ [z ]~ Hen

The required matrix of mobility para-
meters is obtained here in terms of
[T),(1]and (M) wnich are constant for
a given test configuration, together
with [In ] which incorporates data
measured at angular frequency p in the
two test_runs. The resulting mobility
data, [Y], has thus been fully corrected
to account for the mass and inertia of
the added block and transducers.

Measuring System

The experiments reported here were
carried out using a digital transfer
function analyser (DTFA) interfaced with
a mini-computer, together constituting
a system capable of handling the large
amount of data and computation involved.
The peripheral equipment consisted of a
teletype with a read/write facility
together with a high-speed punch, a
high-speed reader and an X - Y plotter.

The oscillator of the DTFA supplied
a conventional shaker via a power ampli-
fier. The coupling of the shaker to the
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force transducer mounted on the exciting
block was made through a short flexible
push rod made of steel 1 mm diameter and
25 mm long. This allowed the test
structure to rotate slightly when the
applied force did not pass through its
centre of gravity without being restrai-
ned by an unknown couple,

During Run 1 the force was input at
a distanceé e, from P and the inertance
data at each of the test frequencies
were stored on tape. The force input
was then moved to a distance e, from P.
At each test frequency during ﬁun 2,
inertance data were again measured and
combined with the corresponding data
read from the Run 1 tape. The matrix
calculation for the four complex_compo-
nents of the mobility matrix [¥] was
carried out and the results printed on
the teletype and also punched on tape.
Graphs of the mobility data versus
frequency were subsequently made from
the taped data.

Development of Exciting Blocks

Each exciting block was designed to
be used with a Bruel and Kjaer type 8200
Force Transducer and Endevco type 233E
Accelerometers.,

Based on earlier tests (1), block
Mk. 4 was designed to provide the small-
est, lightest block which could have two
accelerometers on its upper surface,
equidistant from the measuring point P,
and also have two positions for the
force gauge. A drawing of this block
is shown in Fig. 2. The foot of the
block has dimensions 24 by 32 mm which
closely matches the section of the test
beam to which it was attached (with
adhesive) during the tests.

The results of tests using the Mk.4
block were poor in the measurement of
the rotational mobilities, of (8/M) in
particular. It _was thought that the
measurement of § could be improved by
increasing s (the accelerometer offset)
from 25 mm to 50 mm and the rotational
signal level could be increased by
shifting the force transducer in Run 1
from ¢ to 50 mm. Thus a Mk. S block
was designed which had the accelero-
meters and the force transducer mounted
back-to-back as shown in Fig. 3. The
foot of this block (30 mm by 32 mm) was
slightly wider than the test beams but
it was thought necessary to ensure
adequate stiffness at the ends of the
block by making the 'skirts' 6 mm thick,

Block Mk. 5 was used extensively in
measuring the four mobility parameters
of the beams. As before, the rotational
quantities were obtained less accurately
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than the translational, witn (8/M) gen-
erally being poor, especially at low
frequencies. Two factors were signifi-
cant:~

(a) The transverse sensitivity of tne
accelerometers gave rise to signals
comparable to the small difference sig-
nals associated with @ measurement; and

(b} There appeared to be direct inter-
ference between the force gauge and the
accelerometer when the transducers
shared a common mounting stud.

The first factor was minimised by
the use of accelerometers selected to
have a transverse sensitivity of less
than 1,0%.

The second factor was corrected
by the design of block Mk. 6, which nhas
the same essential features as block
Mk. 5 but does not use a common mounting
stud for both force gauge and accelero-
meter. This block is shown in Fig. 4:
it has no 'skirts' but has a thicker
top section to provide sufficient stiff-
ness.

All the measurements reported in
this paper were made using block Mk. 6.

Measured Mobilities of Long and Short
Beams

In order to measure the mobilities
of the long beam, the Mk. 6 exciting
block was attached by adhesive to the
beam such that the test point, P, was
as close as possible (0.016 m) to the
tip. Measurements were made at 76 dis-
crete freguencies in the range 31.6 Hz
to 1000 Hz and are presented in Fig, 5
in which the continuous line shows the
theoretical response for the beam tip,
computed using closed-form receptance
formulae, and the points are tnhe measur-
ed data,

. The measured responses for (X/F),
(8/F) and (¥X/M) show a little scatter
but are accurate to within about 2 dB
up to 800 Hz., The (g§/M) response is
inaccurate below the first response and
shows an antiresonance at about 57 Hz
whereas the theoretical antiresonance is
well below 30 Hz., Above the first res-
onance at 86 Hz, however, the measured
(8/M) response is reasonably accurate.
The results of other tests on this beam
have very similar features.

A number of corresponding tests
were carried out on the short beam and
the results are shown in Fig. 6. These
show very good correlation between the
measured data and the thegretical tip
response for the (ﬁ/P), (e/F) and (X/M)
mobilities. Tnhe biggest discrepancies
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are in the location of the antireson-
ances, but this is probably a result of
the measurement point not being quite at
the tip of the beam, but 0,016 m inboard.
(A theoretical calculation was made for
a point 0.016 m along a 0.65 beam, This
showed antiresonances exactly coincident
with those of the measured data. The
resonances of course, were unchanged and
remained in close coincidence with the
measured data points). The (§/M) res-~
ponse is reasonably accurate above

200 Hz but has a considerable error of
about +8 dB below that frequency.

In general, it can be_ seen that the
two rotational responses (8/F) and (8§/M)
are the more difficult to measure accu-
rately and (8/M), which involves two
rotational quantities, is unlikely to ke
accurate at frequencies below the first
resonance., The § data depends on the
difference between the signals of the 2
accelerometers, which have therefore to
be accurately matched and carefully
calibrated. Any spurious responge which
has only a slight effect on the X data
(wnhich depends on the sum of the accel-
erometer signals) will have a major
effect on the ¥ value. In most cases it
is also true to say that the expecrted
values of acceleration due to rotation
are much smaller than those due to trans-
lation.

4. ANALYSIS OF THE COUPLED BEAMS

Coupling of Components

Components A and B have mobility
properties given by:-

;iA} = [YA] fF,) (8)
and X5} = [YB] (Fg} (9)

Where [Y]is a mobility matrix for the
point on the structure which is of
interest.

When the components are coupled (to
form A + B) tneir respective motions at
the coupling point must be identical:-

iX,) = (X} = X} (10)

and considering the equilibrium at the
point of connection:-

[P} + (Fp} = (F.} (1)

where {F.} is the net force exerted on
the coupied structure.

The mobility of the combination,
[Yé], features in the equation:-

(X} = [YC] TF.)
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= [Yc] (¢F,} + [FR})
- [¥] ([YA]”‘ g ™h ko
.'.[yc]= ([YA.]—l N [yB'l”)'1 (13)

Calculation of the mobility matrix
of an assembly for any particular fre-
quency thus involves inverting the
mobility matrix of each component (for
that frequency); adding the two resul-
tant impedance matrices and then
re-inverting,

- This process has to be carried out
: at each frequency data point.

Coupled-Beam Analysis Using Raw Data

The measured data used for Fig. 5
and 6 were combined, frequency by fre-
guency, in a calculation of the mobility

[% responses at tne point of connection

. between the long beam (1.4 m) and the

short beam (0.65 m). The computation

involved reading data simultaneously
‘ from two tapes; then inverting and add-
ing two matrices; inverting the result

and punching out the data produced.
This process took about 30 seconds per
1 resultant data point, the major part of
- the time being occupied by the teletype
reading taped data.

The result of tnhis direct calcula-
ticn is shown as Fig. 7 together with
the theoretical values of the mobility
at a point 0,65 m along a 2.05 m beam,
The predicted results are extremely
poor for all four mobility parameters
except in the range 180 Hz to 400 Hz,
Examination of t = input data sh.ws that
this is tnhe_ only frequency range for
which the (8/M) response of the short
beam is accurate. The other seven mob-
ility parameters have wider ranges of
reasonable accuracy. Thus it is conclu-
ded tnhat if any of the eight input
mobility parameters is inaccurate at a
particular frequency, the all the calcu-
lated mobilities of the combined struc-
ture will probably be wrong at that

¢ frequency.

Tne (9/M) responses were confirmed
as tnhe chief sources of error by another
calculation in which the raw (8/M) data
of both subsystems were replaced by
theoretical (8/M) data. The result of
this exercise .s shown in Fig. 8 which
illustrates a considerable improvement
R in accuracy when compared with Fig. 7,

especially below 80 Hz. The overall
accuracy, however, is still not accept-
able since there are ranges where the
scatter is considerable, (80 - 100 Hz;
170 - 140 Hz; 400 - SO0 Hz, for example)
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Improvement in the resultant coup-
led data could evidently be made first,
by smoothing, and second, by improving
the acguracy of the rotational mobili-
ties (@/F) and (8§/M) for tne two
component subsystems.

5, COUPLED-BEAM ANALYSIS USING SMOCTHED
DATA

Smoothing Technigque

The first attempt to improve the
component data was by a simple smootn~
ing process, In this, the experimental
mobility 'curve' is curve-fitted by a
suitable equation which thus smootnes
out random scatter in the data. The
appropriate equation is formed by iden-
tifying from the experimental data the
main modes of vibration of the test
structure. Modal identification pro-
vides a simple representation of a
system with n resonances as ar assembly
of n single~degree-of-freedom cscilla-
tors, each resonating at one of the n
resonant freguencies and weighted by a
modal constant. Tne method of modal
identification used here was based on
the treatment developed by A. L.
Klosterman (3) and is summarised in
Appendix 1, There it is shown that tne
modal constants for a system with n
dominant modes can be determined by
matrix manipulation involving measured
mobility data obtained at n discrete
non-resonant frequencies. 1In the pre. .-
ent study, this data could of cour « be
selected from that already measured.
Once tnhe n modal constants (e.g. A,,A
eesessA  for (X/F}) nave been determified,
the identified freguency response can be
regenerated by summing the contribution
from each mode in turn at each freguency.

The raw data for the long beam was
examined and five resonant frequencies
(0, 86, 234, 457 and 758 Hz) estimated.
Data measured at the n coff-resonant
frequencies of 31.6, 69,2, 120, 202 and
724 Hz were taken and used to calculate
modal constants from which the smoothed
curves of Fig. 9 were calculated. Tnhese
are seen to be quite similar to the raw
data of Fig. 5 except above 758 Hz, the
highest resonant frequency used. Abtove
that frequency, the curves approach the
20 dB/decade mobility line of a mass,
because the dominant contribution is
from the highest mode included in the
identification which is mass-like above
its resonant frequency.

In the case of the short beam, the
resonant frequencies were estimated fr-a
the raw data to be 0, 394 and 1100 Hz
and data measured at 31.6, 209 and 603
Hz were used in the modal calculations
giving the results shown in Fig. 10
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FIG. 7 MOBILITY PROPERTIES OF THE COUPLED BEAM: T
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PIG. 8 MOBILITY PROPERTIES OF THE COQUPLED BEAM: II

Theoretical ... Predicted from direct measurements
plus theoretical (B/M) data

( | I R

—40

b

[t

CLINVIREN P
BRI RANERD
I A

S
s

(&/F) L 1 1TH

-i00 + -

rvo L

t in
-G@o '.‘}J g WLA ’ Al A‘L-»
AN
il B
! N

-100 }L 1
| 1
4
~20 : l
. r.l A
. ~40 | e "L
& /M P " ‘
( / ) -co 5":}\ D0 \Y/‘
bt 199 gyeTATION FREQUENCY Hy '9°°
163
— o o ST N T T T
e ———c e ittt o o ¢ A




AV S hshadeafh

FIG. 9 MOSILITY PROPERTIES_OF THZ LONG BEAM: IT

Theoretical ... Smoothed measurements

(&8 re (M [sN)
~20 1

A
(x/F) ( ) |

-0 , —

- - —— ] - -
-

-850

(dB ve lzan|sN)
-20

.~ - -

Vs
o
D
\
N
e

i(d.B re | Rad |gN)

'

~20

iloa = L S

-40

. Y

) “

P R

-a40

(4B re 1RAD [SNW)

-20

.0
ad
N *c\‘

40

(8/m) - | , I

Go T

ISAY
W

3 1000

'Oy ciTATION FREQUENCSY H2




FIG. 10 MOBILITY PROPERTIES OF THE SHORT BEAM: 11
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which is recognizably a smoothed version
of Fig. 6. There is no high frequency
discrepancy on this plot because the
highest mode used is at a frequency
higher than the range limit of 1000 Hz.
In general, smoothing by modal identifi-
cation gives acceptable accuracy provi-
ded that the number of modes identified
is one more than the number of modes
which lie within the frequency range of
interest,

Coupled-Beam analysis using smoothed
data

The smoothed data of Fig. 9 and 10
were coupled using exactly the same
process as before to produce a predicted
set of responses for a 2.05 m beam., The
results are presented in Fig. 11 but
although having less scatter, they are
not otnerwise any improvement in the
unsmoothed results in Fig. 7.

However, there was one advantage in
using smoothed data at this stage, and
that was in the computation time whicn
was considerably reduced since much less
data needed to be handled. Printing of
the output on the teletype took the
greater part of the time, the process
taking about 12 seconds per resultant
data point (compared with 30 seconds
previously).

6. ALTERNATIVE METHOD OF DETERMINING
ROTATIONAL MOBILITIES

A metnod was now sought Ly which
the accuracy of (¢/F) and (§/M) mobility
data could be improved. As the rota-
tional motion (@, & or ¥) is evidently
very difficult to measure accurately,
some alternative means of deriving the
appropriate mobilities was required.

Referring to the modal identifica-
tion analysis presented in Appendix 1,
we find a particularly interesting and
useful result. For each mode identified,
there are four constants - Ar, B, C
and D_ ~ which relate to the’confribfi-
tion &f the rth mode to the (&/F)(/F)
(%/M) and (3/M) mobilities respectively.
Now it is shown in the Appendix that
these four constants are very simply
related by:

2
Br = Cr and Dr = Cr /Ar

(The special case of the zero=-frequency
modes possessed by a free-free structure
is treated in Appendix 2, resulting in

2
81 = C1 and Dl - C,l /(A1 - 1/m)

where m is the mass of the structure).

Because of the greater difficulty
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in measuring rotation than translations,
it is possible to derive moge accurate
values for A  and C_ from (X/F) and
(%/M) data) Ehan fof B_ and D_. However,
it is clear from tne above refationsnips
that these latter constants may be
immediately determined from Ar and Cr’

Thus the mobilities (§/F) and (8/M)
can be derived from measurements of
{X/F) and (X/M) using the modal identi-
fication techniques, without measuring
rotations directly.

Calculations using the relation-
ships between the modal constants devel-
oped above were carried out for both
beams and the results are shown in Figs.
12 and 13. In these, there are only
three distinct responses presented since
(§/F) is now automatically identical to
(X/M) (since B, = D).

When the derived (9/M) response of
Fig. 12 is compared with the smoothed
(8/M) response of Fig. 9, it is immed-
iately apparent that the accuracy at low
frequencies below the first resonance at
86 Hz, where the Fig. 9 response is very
poor, is now greatly improved and at
nigher frequencies up to 800 Hz, where
Fig. 9 was quite good, it is a little
further improved.

Similar obgervations apply to the
comparison of (8/M) responses of Figs.
10 and 13 for the short beam. The accu-
racy of the Fig. 13 curve is less than
that of Fig. 12 because fewer modes are
included, but most significantly the
(8/M) response is accurate around 30 Hz.

Tne conclusion of this section is
that better (8/M) results may be obtai-
ned by identifying the A and C_ modal
constants from (R/F) and®(X/M) feasure-
ments and then calculating Br and D
than by trying to identify Br and D
directly from the inevitably less
reliable (8/F) and (§/M) raw data.

r

7. COUPLED-BEAM ANALYSIS USING DERIVED
DATA

The four mobility responses for the
combined beam were again computed, this
time using the derived B and D, con-
stants together with tneFidentified A
and C, constants. Again these are only
three distinct regponses presented in
Fig. 14 pecause (§/F) and (X/M) are
taken as identical.

This coupled data is inaccurate
above 800 Hz, the highest frequency for
which the data for the long beam is
reliable, Below 800 Hz the fit of the
smoothed and derived data to the curve
calculated from closed-form receptance

il
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FIG. 12 MOBILITY PROPERTIES OF THE LONG BEAM: IIX
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F1G. 13 MOBILITY PROPERTIES OF THE SHORT BEAM: III

——— Theoretical ... Smootnad Measurements for (X/F)(X/M)
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FIG. 14 MOBILITY PROPERTIES OF THE C( UPLED BEAM: IV

~—memmem Theoretical ... Predicted from Smoothed/derived
measurements on component beams.
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formulae is much better than either of
the previous examples shown in Figs. 7
and 11. 1In particular, these results
accurately predict the low frequency
resonance at 42 Hz (close to the theo-
retical value of 40 Hz) which is absent
from the earlier coupled-beam results.
The other 5 resonances are also indicated
with yeasonable accuracy for the mobil-
ity (X/F), and this response has the
rignt general shape and level up to 800
Hz. Tnhe (§/F), (X/M) responses maintain
good shape up to 400 Hz, although the
resonance at 120 Hz is only just notice-
able. The 120 Hz resg¢nance is missed
altogether from the (8/M) response but
it should be noted that the correspond-
ing theoretical resonance is very small.

The identification and derivation
process is thus more accurate for low
frequencies than for high which may be
explained by the inherently greater
accuracy of low frequency modal con-
stants. The results are felt to be sig-
nificant mainly becauge it has not been
possible to measure (8/M) at all accu-
rately at frequencies below the first
resonance by any other method.

8. CONCLUSIONS

It has been demonstrated again that
when experimentally determined mobility
(or impedance) data are required for
further analysis, due consideration must
be given to all the directions in which
the test structure vibrates, In parti-
cular, for beams it is necessary to
include the rotational motion as well as
the translatjonal.

Measurement of rotational mobility
data is hindered by the difficulty of
measuring rotational response. However,
a method has been presented which en-
ables the determination of such rota-
tional mobility data from measurements
of translational responses only, thereby
obviating the need to measure angular
motion. The technique involves simply
making two otherwise conventional mob-
ility measurements,plus some analysis.
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APPENDIX I. The Response of a Multi-
Degree of Freedom System to
Sinusoidal Excitation

The response of a n-degree of free-
dom system to steady-state sinusoidal
excitation at an angular frequency g,
can be written in generalized coordi-
nates q,, q, etc., see ref. (3):

n

fe.3" (F) ¢
f0}=z'r} 2] ;r]

r=1 M (nr - o)

n
= Z Yr f'r} (1)
r=1

where {Q} is a column vector of response
amplitudes
{F} is a column vector of input
force amplitudes
and . 1is the r th eigenvalue
{'r] is the eigenvector of the
rth mode

m. is the mass of the r th mode

We are particularly interested in
the response Q, caused by the single
excitation Fj:

n
F.) (¢
a, ’Z ey (i1)

ra1 "r ~w)
giving
Vg Y (iii)
(Q/Fy) = S
r=1 Mr (Qr )

We wish to consider two responses,
X (=Q ) and ¢ (=Q5),

and two forces, F (=F;) and M (aF,)
The system being considered is
continuous but we may assume that at low

frequencies only a finite number of
modes need be included.

Thus we can write:-

n A

{X/F) = L (iv)
?; (n 2 69

(§/F) = Z‘ {(v)
r=1 )

(X/M) = Z (vi)

r:1 )




(vii)

2
Where A, = 'rl/mr’ Br = V.0 'rl/mr;

2 A
Cpr = 99 vrz/mr, D= 'rz/mr(Vlil)
2
= C_ /Ar
(ix)
Thus all four modal constants may be
deduced from Ar and Cr.

It follows thnat Br = Cr and Dr

1

MODAL IDENTIFICATION

This is the process of determining
the modal constants from measured imped-
ance data.

Equation (iv) may be rewritten by
%

substituting -y = X to give
(X/F) = :E:
r=1
z .
______17___
1 (1 - a, /o

This quantity is the Inertance, the
ratio of acceleration to force, the two
quantities measured in 'impedance' tests.

There are n modes being considered,
and thus there are n resonant frequen-
cies which must be known. Inertance
data must be obtained at n non-resonant
angular frequencies, W]r Wps W3 eeesw,e

The matrix equation relating these
quantities is
1 i

‘.. 3\ 1
(X/F) 5
(1 - 01 /‘"1 )
1
(%/F)
o 1
(X/F) 4 v
d = (1 - Q4 /w3
" 1
(¥X/F)
" (1 - ay°/w,")
or -

[r] a3

(1 - 0,70 ®)

esccaccsronce A2

seeessncscseve

ceees [ »
(1 - ,%/0%) !

1
1 -2, 2,
1 - 0, /wy")

escnsssancss A3

1
2 2 An

(1 - 0, Va,®)

Jd 8 J

Similarly there are equations for the other modal constants:-

(rR] &Y 1)

= /] (o)

The modal constants can thus be determined by inverting the R matrix
and then pre-multiplying the appropriate response matrix

and (I} = [r] (D}

i e e

and so on.

(a1 = [/ (1,)
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, APPENDIX II. Solid Body Response Secondly, the effect of tne input
’ force F acting at P is required.(Fig.16)
If the system is free-free it has a
resonance at zero frequency (f; = 0).
The motion is, of course, that of a
solid body. The relationsnips expressed F
in equation (ix) do not nold for this
case and 1t is necessary to study the
geometry of tne motion to discover the
corrections needed.

The body has mass m and moment of
inertia IG about its centroid G.

In the first instance the effect of
pure input couple M on the angular
3 response g and the translational res-
ponse X, of point P are required.
(Fig. 18)

AR A T ook S R R Bt

M

v :
E
\ ;
" ks
#
Fig. 16. Effect of Force Input on :
~ Solid Body 3
Force input at P produces botn rotation
and translation of G.
X, =¢ 8 + X
P G
.P /
X. =X, ~e ¢
Xp 73 G G P
4 .o - ve
i P Fe= IG 8 e (B/F) = e/IG
F F=m XG = m (xp - e §)
: =m (X, - e (e F/xc))
N Fig. 15. Effect of Couple Input on 2 -
Solid Bedy SCL 1l +me /IG) =m X,
Pure couple M produces rotation but no . kv 2
. translation of G. 7o (Xp/F) = Tm + e /1
1]
. . - p)
' M=1.08 e (eM) = /T It follows that Ay = 1/m + e /XG
ve . o B, = e/l
M = IG(xp/e) o . (XP/M) = e/l 1 G
' Cl = e/IG
», D.1 = 'l/IG
Ty 2
Thus 31 = C,} and D1 - C1 /(A'l -~ 1/m)
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A NEW STUDY OF THE HARMONIC OSCILLATOR

WITH NON-LINEAR FLUID DAMPING

Ralph A. Eyman
Martin Marietta Aerospace
Orlando, Florida

The frequency of all oscillating spring mass systems which rely on

fluid damping will approach the natural frequency of the system as :
time becomes large. The dependence of resistance on velocity may
be limited by the value of vt where 1<g<2,586.

The damped harmonic oscillator represented where the damping coefficient and natural fre-
by a mass, spting, dashpot system is treated quency are respectively,
extensively in most applied mathematics and
mechanics texts. The retarding force is known
as viscous friction and is proportional to the - b - AT
velocity of the mass. This relation, when Y= 2m Yo e
expressed by an equation of motion, results in
a second-order linear differential equation
which may be solved in closed form.

No closed form solutions have been found for
this equation except for ¢ = 1 where it takes
the classical form

Comprehensive studies of the solutions
result in such familiar terms as viscous damp-
ing, under damping, over damping, critical - . 2.
damping, and damped frequency. However, no x4 2yx + Yo X 0
dashpot behaves precisely like linear resis-
tance and, with the exception of electrical whose solutions are
analogues, these terms, as defined, exist only
in the mathematics. Theoretically, when three-
dimensional flow is considered, resistance pro- x = L-Yt(A cos w
vided by the dashpot is proportional to the
fluid density and the square of the piston
velocity and, at large velocities, has been where
considered to be proportional to nearly the
cube of the velocity. Non-linear damping is A 2 _ Y2
elegantly treated by various mathematical tech- 1 o
niques in many advanced mechanics and control
theory texts. The author presents the results
of a new study done with the aid of computer is the damped frequency and,

techniques.

1t + B sin wlt). wy > Y

-vt
We consider the equation, x= 2 T(C+ DY), wy Y

mx + b £(X) + kx = 0 and,

and set x = YEELYE + MY, wy <Y
where,

. X |0 €
£(x) = |—.-||x| .
x
b= 42 =Wy e

The equation may be rewritten as

} When wo > v the system is under-damped. For
. values of wo < vy it is over—damped and for the
value wo = y the system is critically damped,

g+2r X xS+ulxm0
x| The value v/uwg 18 called the damping ratio.
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For the purpose of this study a mass-spring
system with a natural frequency of one radian
per second is released from rest at a displace~
ment of one unit. The coefficients A, B, C, D,
E, and F are established and the solutions are
rewritten as

x = l-Yt(cos mlt + v sin mlt), y<1

x = 27751+ ye), y=1

o vty + 1 ut_Y-u-ut) .
x = 2 (—7;—— 3 P L » Y > 1

where the damping ratio is v.

The particular form of the equation is rewritten
as

x +-¥.21|i|€ +x=0.
x

The equation was solved by numerical inte-~
gration for various values of vy and €. For the
particular value of y = 1, (which is the crit-
ical damped case in the viscous or linear
damped equation) the values of x = f(t) are
plotted on Figure 1 for values of ¢ = 1, 1.2,
2, and 3.

For the value ¢ = 1 the curve follows the
solution,

x= 25 + ¢).

For the value of ¢ = 1.2 the system oscillates
with an initial period slightly larger than the
period of the natural frequency and is observed
to approach the natural frequency as time

becomes larger. For the value
initial period after the first
very near to, but still larger
the value of ¢ = 3, it is very
smaller than 27, In each case

of € = 2 the
overshoot is
than 27, and for
near to, but
it approaches 2w

176

quite rapidly. The periods for the three
cases, although discrete values, are plotted as
continuous functions of the number of over- '
shoots on Figure 2. Other values of y produce H
similar results (see Figure 3). The system :
always oscillates except where y = 1 and € = 1,

the linear critical damped condition. The sys-

tem even oscillates for some values of v > 1

provided ¢ > 1 and in those cases the frequency

also converges on Wo as time becomes large.

;

By trail and error a constant € = e, was
found such that after the first overshoot the
system always oscillates at precisely its nat-
ural frequency for all values of y. Its value,
to four significant figures is

€ = 2,586.
n

For values of € < 2,586 the initial period
1s always greater than 27 and for values of
e > 2,586 it is always less than 27,

The plot of the solutions of the equation,

; + _).K_ZYI£(2.586 + x
X

=0

1s shown on Figure 4 for four values of y which
range over 4 orders of magnitude. The value
Y = 100 was also tested with similar results.

Since it seems reasonable that no damped
oscillator would oscillate at a frequency
greater than its natural frequency the results
of this study strongly suggest that en is a
natural constant limiting the proportionality of
the dependence of resistance on velocity, v, to
the value,

2,586
v .

It may even suggest that the dependence of all
fluid friction on velocity is limited to this
value,
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Figure 2. Convergence of Period — Unity Damping
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MECHANICAL DESIGN, ANALYSIS, AND TEST OF THE
STANDARD ELECTRONICS CABINET AND
CONTROL DISPLAY CONSOLE FOR THE AN/BQQ-5 SONAR SET*

Richard E. Denver and Joseph M. Menichello
IBM Corporation
Federal Systems Division
Owego, New York 13827

The AN/BQQ-5 shipboard system is a sonar signal processor comprised
of electronics cabinets whose function is to detect, track, and classify
targets in the ocean. IBM, Federal Systems Division, has been involved
in designing, building, and testing various AN/BQQ-5 equipment since
1971, This paper deals with the analysis and development shock and
vibration testing leading to the mechanical design of two types of electronics
units, namely, the standard electronics cabinet and the Control Display
Console, As a result of the extensive structural analysis and engineering
evaluation testing program performed during development, these two
complex unit structures passed the formal shock and vibration qualification
tests without a reportable failure,

INTRODUCTION

The AN/BQQ-5 units were designed to meet the
requirements of MIL-E-16400, which requires qual-
ification to MIL~STD-167 and MIL-5-901C for vi-
bration and shock environments, respectively. To
ensure compliance with these requirements, a basic
philosophy was established early in the development
stage of design. This governing philosophy for
shipboard equipment within IBM is twofold:

1) Design sufficient structural rigidity, or
stiffness, to ensure that fundamental
equipment resonances are substantially
greater than the maximum foreing frequen-
cy speciffed in MIL-STD-167, In this man-
ner, amplification at resonance 18 avoided
and the corresponding potentia' fatigue
damage 18 precluded.

2) Design sufficient strength in the structural
elements to keep streases resulting from
the Navy Hi-Impact shock testing of MIL-
8-901C within allowable material limits,

DESIGN

Within the AN/BQQ-5 shipboard system are
several basic electronic units, two of which are
discussed in this paper. The standard electronics

cabinet design is utilized as the basis for a large
percentage of the total system while the Control
Display Console is the most unique and complex.

STANDARD ELECTRONICS CABINET

Three variations of the standard electronic
cabinet exist, each designed with two vertical slide-
out chassis which carry most of the electronics.
When in the closed position, each slide-out chassis
of the largest cabinet height (65 inches) mates with
the housing by means of five 12~inch diameter
bullpins in the rear and 9-5/16 inch diameter
bullpins around the front latch. In addition, each
front latch contains 16 bolts and strikers to posi-
tively attach the chassfs to the cabinet housing.

The primary load-carrying structure in the
cabinet housing is shown in Figure 1. The structure
consists of an A357 aluminum alloy casting both top
and bottom. The sides are a one-piece extruded
6061-T6 aluminum alloy, which forms an integral
wall incorporating corner posts, inner and outer
skins, and longitudinal flutes for cooling air. The
extrusions are welded to the top and bottom castings.
The cabinet is divided into two sections by a vertical
partition which is designed to form fluted ducts for
cooling air. The rear of the cabinet i3 a removable
1/8-inch thick panel attached by flathead screws.

* This work was performed under Contract N00024-70-C-1300 with NAVSEA Systems Command, Code 660F1.
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Figure 1. Primary Structure for Standard Cabinet
Figure 2. SHF Module Gate Frame
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The cabinet houses two slide-out chassis con~
structed of a one~piece, high strength 3luminum
alloy casting. For the ease of manufacturing, the
alloy options are K01, A357, or A356, The casting
is machined to accept the full length latch on front,
slides on top and bottom, and electronic subassem-
blies attached to each side. A sketch of the slide-
out chassis gate {s shown in Figure 2 (also Figures

3 and 4).

Tom
YR

R
1

CONTROL DISPLAY CONSOLE

. The Control Display Console is designed with
five slide~out chassis -~ two separate CRT chassis,
one combined memory drum unit and drum power
supply chassis, and two Standard Hardware Program

!‘ (SHP) (Naval Air Facility, Indianappolis) chassis,

: The structure is designed in two halves to comply

& with submarine installation size restrictions, Each

" half i8 constructed in a similar fashion and they

are bolted together to form one integral unit

ot (Figure 5).
The base of each half is an A357 aluminum

alloy casting. The top 18 a solid plate of 6061-Té6
aluminum, The main frame members are generally

Figure 3. Standard Cabinet with Gate A Open
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6061-T6 aluminum extrusfons. The top plate, bot-
tom casting, and extrusions are welded together to
form the basic frame. The sides and rear are
1/8-inch thick aluminum panels of 6061-T6 alloy,
which are attached by flathead screws, An addi-
tional doghouse extends the full height on the rear

to form a return air duct for cooling the electronics.

The lower half of the Control Display Console
contains two similar SHP slide-out chassis, A
picture of the left-side chassis, when in the
extended position, 18 shown in Figure 6, This
figure shows the hinged double SHP gate opened in
the maintenance position. Figure 7 shows the
primary structure for both gates. As indicated in
the sketch, the entire chassis slides out on two
slides located one above the other. The slides are
attached to the KO1 T43 aluminum "L shaped single
SHP gate casting. The double SHP gate I8 attached
by a hinge to the single SHP frame.

Figure 4. Standard Cabinet with Gates A & B Closed

Figure 5§, Primary Frame Structure for the
Control Display Console

TG > s

Figure 6. Control Display Console Lower SHP
Left-side Chassis in the Extended Position
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Hinge Pin

Single SHP Gate

5/16 Bull Pin
{2 Front, 4 Rear)

Wedge
{3 Front, 2 Rear)

Double SHP Gate

{Hinged to Single SHP Gate)

1/4 inch Diameter Piano Type Hinge

Toggle Latches
{Four on Each Door)

Left SHP Chassis Door
in Qpen Position

Figure 7. Control Display Console Primary Structure for Lower Left SHP Chassls

The single SHP gate, double SHP gate, hinged
door, and Control Display Console frame are inte-
grally locked together, when in the closed position,
by bullpins and specifically designed wedges and
toggle latches. Some of these devices and their
locations are shown in Figures 7 and 8. The rear
of the double SHP gate attaches to the single SHP
gate through two 17-4 PH (H900) steel wedges in
addition to the hinge, which is 1/2 inch diameter
17-4 PH (H900) steel. The wedges are designed to
act similar to bullpins; however, they are wedge
shaped to provide engagement as the double SHP
gate swings in an arc to mate to the single SHP gate.
The hinge and wedge provide positive attachment
between the two gates at the rear, The SHP gates
then mate to the Control Display Console frame in
the rear with six 5/16 inch diameter 17-4 PH (H900)
bullpins - four on the single and two on the double
SHP chasais,

The front of the single SHP gate attaches to
the Control Display Console structure through
2-5/16 inch diameter bullpins. The SHP front door
s 3/8 inch thick 6081-T6 aluminum and is designed
to provide additional support to the front of the SHP

gates. The door 18 attached to the center front
member of the Control Display Console by a 1/4
inch diameter 17-4 PH (Condition A) continuons
hinge. As the door s pivoted to the closed position,
three wedges engage with the front edge of the
double SHP gate. The door then attaches to the
Control Display Console structure along the side
with four specially designed toggle latches, These
four toggle latches serve two purposes: (1) they act
as the wedges to resist shock forces in shear, and
(2) they also act as thumbacrews to engage the
wedges and bullpins and hold the chassis in the
closed position. In addition, the front SHP door also
has two 303 stainless steel 1/4 inch diameter thumb-
screws - they attach to the front edge of double SHP
gate to pull the gates tight to the door to ensure full
engagement of the wedges, and to prevent motion

of the chassis from front to rear.

The upper and lower CRT chassis, shown in
Figures 9 and 10, are constructed of a one piece
A356-T6 aluminum casting supported on each side
with a slide. When in the closed position, the
casting mates with the frame by means of 2-5/16
inch bullpins front and rear. The bullpine are made
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Figure 9. Control Display Console Upper CRT

Figure 8. Control Display Console in the Extended Position

from 17-4 PH (H900) steel. The chassis is held in
the closed position by four 1/4 inch diameter
thumbscrews made of 303 stainless steel. Power
supplies, transformers, and other electronics
attach directly to the casting or to brackets. The
CRT itself is potted with foam within a continuous
metal shield, The shield attaches to the casting
through stainless steel tabs, which are spot welded
to the CRT shield.

The drum chassis extends on two slides located
one above the other along the right side of the
Control Display Console, In the closed position,
the chassis is supported by four 5/16 inch bullpins,
both front and rear. These eight bullpins are made
from 17-4 (H900) steel. The chassis is held in the
closed position by six 1/4 inch diameter thumbscrews
made of 303 stainless steel. The chassis is a cast
A356-T6 aluminuia frame, and the front panel 18 a
separate casting of the same material, The drum
itself is mounted in the lower sectfon of the drawer,
The upper half contains the drum power supply and
the static inverter (Figure 11).

Figure 10. Control Display Console Lower CRT
in the Extended Position
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Control Display Console Drum Chasgsis
in the Extended Position

Figure 11.

STRUCTURE ANALYSIS

The design of each structure was aided by
computerized structural analysis from the inception
of the design through the initial structural drawing
release. In the early phases, the analysis was
confined to determining a lower bound for the
natural frequency of each structure (using the
Mechanical Analysis (MECHA) computer program)
to ensure that the resonances were above the max-
imum forcing frequency of 33 Hz. To prevent
amplification, 2 minimum resonance of 45 Hz was
established as a goal,

Preliminary math models were made to repre-
sent the major structural members of both units,
Due to limited number of degrees of freedom
allowed in the MECHA program, and also due to
lack of detafled layout information in the early
stages of design when the primary member sizes
were being established, not all the stiffnesses
were represented in the math model, These initial
analytical vibration results indicated that the
primary structural resonances for both units were
above the minimum established goal of 46 Hz and
attention was then given to a more detailed static
analysis to ensure every structural elements
would survive the high impact hammer drop test,
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To ensure that both units meet the shock
requirements, much more detailed structural
analyses were performed using the Structural Design
Language (STRUDL) program. The standard cabi-
net was divided into two parts for analysis. A model
was developed for one of the slide-out gates. For
this model, the support points were taken as the
bullpins and latch strikers that attach between the
gates and the frame, The reaction forces at the
support points were then applied as loads to the
detailed cabinet model. The slide-~out gate model
wasocomposed of 88 joints and 113 members with
497" of freedom. The math model for theocabtnet
frame was comprised of 121 nodes with 6 of free-
dom permitted at each node except at the eight
support points.

The Control Display Console math model was
also divided into several parts. A model was devel-
oped for each type of the slide-out chassis, namely,
the upper CRT chassis, drum chassis, and lower
SHP chassis. For the models, the support points
were taken as the bullpins, thumbscrews, or toggle
latches that attach between chassis and frame, The
reaction forces at the support points were then ap-
plied as loads to the detafled Control Display Console
model. In total, approxtmately 450 joints, or 2700
of freedom, were used to represent the Control
Display Console Frame and contained subassemblies.
It should be noted that as the design progressed,
this model was continually updated to reflect the
latest design changes. Extensive interfacing be-
tween the design and analysis groups eliminated any
overstressed conditions,

From test data obtained from the Navy, a 70g
load factor was applied to the weight of each unit in
the vertical direction to simulate maximum loading
during the medium weight hammer drop test.

To simulate loading during the inclined medium
weight hammer drop test, load factors are applied
as follows: 61g vertically and 25g along two horizon-
tal axes. These factors are simultaneously applied
to simulate shock loadlng when the unit {8 rotated
45" and then inclined 30" around one corner and
shocked from below as required by MIL-S-901C.

VIBRATION AND SHOCK TESTING

Development vibration and shock testing were
performed on both standard cabinet and Control
Display Console structures early in the design stage
to confirm the integrity of the mechanical design.
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STANDARD ELECTRONICS CABINET

The vibration testing consisted of approximately

Hammer Table Number

Orientation Height (ft) Travel (in) of Blows

clined 0.75 3 4

4.6 hours of testing per plane to include the follow- Incline 3.25 3 1
Ing: 5.50 3 1
1) Exploratory Vibration Test: 5.50 1.5 1

4 to 33 Hz at 0, 02/inch DA
15 seconds/discrete frequency

2) Variable Frequency Test:

4 to 15 Hz at 0,06 inch DA

16 to 25 Hz at 0.04 inch DA
26 to 33 Hz at 0. 02 inch DA
5 minutes/discrete frequency

3) Endurance Test:
2 hour dwell at 33 Hz with a 0. 020 inch DA.

A resonance search was performed prior to the
start and at the completion of each of the three
planes of vibration. This was performed in addi-
tion to the requirements of MIL-STD-167B to de-
termine the resonant frequency of the system, and
to verify that there was no structural weakening
during the approximately 4-1/2 hours of vibration
per plane,

The results of vibration testing confirmed the
analytical predictions, The natural frequencies
found are listed below as a function of direction.

The standard cabinet was loaded with simulated
weights to achieve a total unit weight of 900 pounds.
The vertical and 30" incline vibration and shock
test setups are shown in Figures 12 through 15.
Table 1 is a summary of the results determined
from the testing.

There was approximately 156% attenuation
across the supporting C feet during the six shock
blows. The 0.25 inch thick L stabilizing brackets
at the top showed permanent yielding at the corner
radii. This does not cause concern since the can-
tilevered brackets are designed to yleld. There
was no observable fracturing or yielding within the
cabinet itself. The gates were opened after each of
the six blows without difficulty or binding. All rear
bull pins and lock nuts remained in their preset
positions.

After reviewing the reduced acceleration data,
the following conclusions can be drawn:

1) With the deck simulator, the medium
weight hammer imposes acceleration msg-
nitudes of between 50g and 90g into and

C e sl i WS

Direction, Frequency (Hz) within the cabinet, along the hammer blow

Vertical 66 axis. The half-sine time durations are )
Side to Side 75 approximately 12 ms. ;
Front to Rear 80 !

Since the maximum forcing frequency was 33
Hz, the maximum transmissib{lity measured during
testing was 1.2. No degradation was observed
during the vibration testing,

The shock testing was performed in accordance
with the requirements of MIL-S-901C., As required
by the performance specification, a soft deck sim-
ulator was inserted between the cabinet and anvil
during the shock testing., Twelve blows were deliv-
ered to the test specimen, six of which were to
determine the spring bed natural frequency. The
following chart is a chronological summary of the
shock testing,

2) Inclining the unit 30° generally had little
effect on the acceleration levels as recorded
in the vertical plane. Accelerations of
approximately 60g were experienced in the
major and minor planes during this inclined
position,

3) The gates remained essentially rigid within
the structure. That is, there was no no-
ticeable shifting between the two. Also, the
same acceleration levels were experienced

on the SHP card as on the supporting chassis.

4) The cabinet acceleration from the 3-foot
hammer drop and 3-inch anvil travel is
approximately 30% less than that experi-
enced from the 5. 5-foot hammer drop and
1. 5-inch anvil travel.

Hammer Table Number
5) An attenuation factor of approximately 6
Orfentation Height (ftj Travel (in) of Blows was experfenced across the Navy deck sim-
Vertical 0.75 3 2 ulator for the three shock blows in the ver-
3.26 3 1 tical plane. The acceleration level on the
6.50 3 1 anvil was 550g.
6.50 1.5 1
185
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- Figure 12, Vertical Axis Test Setup Figure 14, Vertical Fixture Test Setup

Figure 13. Vertical Axis Test Setup - Left Side Figure 15, 30° Incline Test Setup
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Table 1
SUMMARY OF SHOCK TEST RESULTS FOR THE STANDARD ELECTRONICS CABINET

%
. No. Accelerometer Location Response Acceler:tton. g
Vertical 30 Inclination
1 Bedspring, top 56 90 90 | 70 90 85
2 SHP? Fin 85 80 100 | 45 55 60
3 Gate, Left latch 70 90 90 | 55 75 %
4 Cabinet, top 15 60 nil| 50 85 30
5 Gate, left rear 65 85 100 | 50 65 70
6 Cabinet, base, front 60 T0 65150 60 70
7 Gate, right latch 60 80 80 | - - -
Fixture support - - - 60 90 90
8 Gate, right rear 60 60 70| 40 S50 50
9 Cabinet, top nil nil nil | 50 50 60
10 Cabinet, cross member, rear 50 60 70| 40 50 50
Test Conditions
Hammer height (ft) 3 5.5 5.5 3 5.5 5.5
Anvil Travel (in) 3 3 1.5 3 3 1.5
*All the responses are in the vertical axis with the exception of two.
Accelerometer number 4 is oriented in the major or side-to-side axis and
number 9 i8 in the minor or front-to-back axis.

CONTROL DISPLAY CONSOLE

The Control Display Console was loaded with
simulated weights with the exception of a live CRT,
drum memory, and Parameter Select Matrix
(PRASMA) assemblies. The total unit weight was
1100 pounds. The following relates a summary of
the testing performed.

Sinusoidal sweeps were performed along the
three principal unft axes preceding and following
vibration in that axis. In addition to identifying
structural resonances, these tests also served as
an indicator of structural integrity as testing pro-
ceeded,

The vibration testing consisted of approximately
4.8 hours of testing per plane to include the follow-
ing:

1) Exploratory Vibration Test:

4 to 33 Hz at 0,02/inch DA
15 seconds/discrete frequency

2) Variable Frequency Test:

4 to 15 Hz at 0.06 inch DA
16 to 25 Hz at 0,04 inch DA
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26 to 33 Hz at 0,02 inch DA
5 minutes/discrete frequency

3) Endurance Test:

2 Hour Dwell at 33 Hz with a 0.020
inch DA,

Through a low level exploratory vibration test,
it was determined that unit resonance in all three
planes was above 55 Hz, well above the maximum
frequency of the teat specification. The fundamental
natural frequencies determined from the resonance
search data were found to be:

Direction ency (He
Vertical 57
Side to fide  (Fixture resonance at 55 to 60
Hz. Did not detect any reso-
nance below §5 Hz)
Front to Rear 59

In our ter’ range, a transmissibility of one (1)
was seen, No mechanical degradation was expert-
enced during or as a result of the vibration testing.
(See Figures 16, 17 and 18,)
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Figure 16. Control Display Console Vertical Shock
Test Configuration

Figure 17. Control Display Console Vertical Shock
Test Configuration

Figure 18, Control Display Console 30° Incline
Shock Test Configuration

The Control Display Console shock testing was
conducted similarly to the standard cabinet testing.
Once again, the soft deck simulator was used an 12
blows were delivered to the test item. Table 2
summarizes the shock testing showing response
accel:ration to the medium welght hammer drop as
a function of location within the console.

The reduced acceleration data reveals, in gen-
eral, the same conclusions that apply to the stand-
ard cabinet, However, due to the more complex
construction of the console, the frequency content
of the shock responses at the various locations mon-~
itored within the console varies considerably in
contrast to the predominance of a single frequency
throughout the cabinet,
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. Table 2

SUMMARY OF SHOCK TEST RESULTS FOR THE CONTROL DISPLAY CONSOLE

*
No. Accle‘:)ecx::xter Orientation Response Acceleragon, g
Vertical 30" Inclination
1 Fixture Vertical 70 80 90 { 100 100 100+
3 Vertlcal 60 65 75 70 70 65
4 Top of "C'" Foot Front-to-Rear 40 45 50 70 70 60
5 Side~to-Side 25 25 30 50 70 60
T 6 Vertical 85 90 100} 90 90 100
7 Top of Console Front-to-Rear 45 45 45 ) 85 80 170
8 Side-to-Side - 35 65 85 70 70
9 Sidewall, Vertical 70 75 75 80 80 90
. 10 Center Front-to-Rear 20 25 60)] 60 70 60
A Test Conditions
Hammer height (ft) 3.25 5.5 5.5 3.25 5.5 5.5
Table Travel (in) 3 3 1.5 3 3 1.5
*Peak Magnitude
CONCLUSION The Control Display Console has the unique
distinction of being the first console to withstand the
As a result of the extensive structural analysis Navy medium weight hammer drop without a single
and development testing performed during design of problem.
these units, as well as several other unique designs
which are not discussed in this paper, there were
no structural failures or indications of impending ACKNOWLEDGEMENT
failures throughout the entire shock and vibration
test program. In addition, the unit structures were The authors wish to express their gratitude to
effective in controlling the acceleration inputs to the Design department of the Navy Underwater
the electronics to a tolerable level during shock and Sound Laboratory, Code EA151, for the technical
vibration testing, The success of the system can be assistance and guidance offered in support of the
attributed largely to the high natural frequency de - AN/BQQ-5 mechanical design. .
S sign set as a fundamental design goal. This goal !
was accomplished in two primary steps:
1) Design, by analysis, of the primary
‘ structures and subassembly structures
with a high stiffness to weight ratio )
2) Interconnection of the primay scructures
and subassembly structures by mears of H
[ rigid interconnection hardware, such as R
L the bullpins and cabinet gate latch which i
| . were developed at the Naval Electronics
- Laboratory Center, San Diego.

The analysis and testing led to mechanical
packaging concepts that resulted in low centers of
gravity and favorable packaging density. . i
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DISCUSSION

Mr. Austin (Supervisor of Shipbuilding): I
noticed that one of your slides showed cooling
ducts. I am not clear whether it was air or
water cooling. Did you check to see whether
you had any air borme noise problems when it is
running?

Mr. Panaro: It is a liquid to air cooled
system. It has a liquid supply where the
liquid supplies the cooling and the air
circulates.

Mr. BMastin: Did you make any airborne noise
measurements in the air circulation system?

Mr. Panaro: Yes.
Mr. Austin: To what standard was that?
Mr. Denver: We ran both a structureborne

noise test and an airborne noise test to
satisfy MIL-~STD-740B.
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. SHOCK SPECTRA, RESIDUAL, INITIAL AND
MAXIMAX AS CRITER{A OF SHOCK SEVERITY

Charles T. Morrow '
Advanced Technology Center, Inc.
Dallas, Texas

For estimating the severity of a mechanical shock, one would like to

) know the response time histor{es at the failure points of the structure

\ or equipment to which the shock Is applied. [n practice, before shock

. testing, one can not count on advance knowledge of either the time his-
v tories or the identity of the failure points.

A typical test item,

though not completely linear, is, however, above all a mechanical filter.
Consequently, for shock data reduction and for specification of test
severitlies, there has been a trend away from input time histories (e.g.
pulse shapes) toward spectral descriptions such as the shock spectrum.
The validity of the latter is usually based on an assumption of failure
by brittle fracture or other mechanism such that knowledge of peak res-
ponse should be sufficient, Energy considerations in addition would
provide a more general foundatlon.

- However, even on the assumption of brittle fracture, specification of a

' simple shock spectrum without further qualification does not necessarily
control the severity of a shock if the resonators of the test item are
not necessarily simple. When the shock to be simulated occurs In the
absence of sustained acceleration, a lower limit on residual and an upper
limit on initial or maximax are appropriate. When the shock to be simu-
lated occurs in the presence of sustained acceleration, lower limits on
pulse height and inftial oscillatory spectrum and an upper 1imit on resi-

dual may be adequate.

For shock testing by means of an electronic shaker system, there has
been a recent tendency to synthesize the input time hlstory not as a
pulse shape or filtered pulse, but as a sum of a series of transients,
it is shown that If these are to be applled simultaneously, their
effect does not necessarily differ from that of a simple pulse.

INTRODUCTON

A shock Is defined to be an excitation of
duration comparable to or shorter than the res-
¢ ponse times of the resonances of hardware res-~
! ponding to it, and which results in transient
' responses of the resonators,

I
|
)
'

Since the first time the shock spectrum was
used as a means for specifying the severity of a
shock test, there has been a simmering contro-
o~ versy over the validity of such application,
. - Debate never reached the Intensity of that over
. random vibration, but it Is still with us,
Recantly, the controversy has taken on new dimen-
sions through a growing interest In synthesis of
shock test Input time histories by means of
superposed electrical transfents. An attempt
will be made here at a partial resolution of the
matter or at least an identificatlion of some of
the Issues.,

However, differences of opinion about shock
spectra can start at 8 very elementary level,
For example, it has been stated that the applice-
bility of such spectra is dependent on an assump-
tion that all resonators in an (tem to be .tested
are simple mechanical resonators. But the shock
spectrum originated as M, A, Biot's earthquake
spectrum’, in one classic paper, Blot (eflinea
his concept in terms of simple resonators sad
then related it to the response of a bullding
with distributed parsmeters, the response of a
bullding with two degress of freedom, and the
effect of the building foundation. At another
axtreme, papers have been prepared on the use of
the shock spectrum or the optimization of its
use, on the assumption that the test engineer
knows in advance the failure modes and asso-
clated transfer functlions for the ltem to be
tested. But al) environmental tests for quali-
fication of hardware are intended to have veli-
dity In the absence of such knowledge. In prac~
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tice, failure modes and transfer functions are
seldom known in any detail in advance,

Recently, there has been an Interest In
synthesizing shocks for a shaker table by sum-
ming electrical transients. For many test pro-
grams, it is more economical to proceed from
vibration to shock without transferring the test
item to a drop tower, The superposed transients
are attractive in part because many shocks to be
simulated, especially pyrotechnic shocks trans-
mitted through structure, have similar consti-~
tuents. They appear to offer an opportunity,
compared, say, to a terminal peak sawtooth
signal subject to the same fllters and potent-
iometers used in vibration equalization, to
achieve an adequate shock spectrum with less
shaker excursion and with less peak acceleration
applied to the mounting points of the test item,

Since transients applied singly put energy
into a system gradually, the proposed techni-
ques have raised some questions about when the
peak response actually occurs after initiation
of the shock, and what measures should be under-
taken to control this., But the decay rates of
the transients In the synthesized shock input
are not necessarily simply related to the timing
of peak responses.

To see the principle, let us cast aside
practical considerations, such as permissible
shaker excursion and allowable complexity of
test apparatus, and conduct a mental experi-
ment. Let us pass a terminal peak sawtooth
signal through a set of contiguous third
octave filters, and associated attenuators, -
and recombine the outputs. We are in effect
using filters with Q's of approximately three
to produce some highly damped transients, and
then combining these, Let us also use & much
Jarger number of contiguous filters with Q's
of ten or a hundred, and a correspondingly
larger number of attenustors. The transients
decay much more slowly, and we might expect
peak responses to occur later. But, as a
special case, let us set the attenuators in
each setup for equal gains through the conti-
gquous filters. If the filter sets have suit-
able phase characteristics and sufficient total
bandwidth, the final result of recombinations
in either setup is the original sawtooth, Conse-
quently, when the applied shock time history has
a relatively smooth resfdual spectrum, as In the
case of the termina) pesk sawtooth, the decay
times of any transients used for {ts synthesis
ymay have very little correlation with the time
required to build up peak responses.

What is a "suitable' phase characteristic
for reproduction of the original sawtooth pulse
and how can it be obtained? A constant fre-

uency bandwidth fllter set inherently tends
to have such a characteristic. A constant
fractional octave bandwidth filter set may not
unless a phase compensator |s added. The
filters nearer the low end of the spectrum
individually take longer to respond and to
recover. The responses of the test item In
this frequency range may occur later. A more
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fundamental way of looking at this, however,
with fewer pitfalls, is to observe that this
filter set, as opposed to the constant band-
width set, may have a frequency-dependent

phase rate. A phase compensating network for
this s quite feasible, It can be inactive,
#ith primarily inductive and capacitative
elements, or active, with resistors, capacitors
and semiconductor devices. Whatever can be

done by analog circuitry can also be accomplished
in a different way by digital circuitry. Except
for the concept of phase compensation, which is
not treated, Broch2 gives an excellent brief
discussion of spectrum shaping by contiguous
filters.

In connection with shock synthesis by tran-
sients, perhaps the most_quoted paper is by
Favour, LeBrun and Young’. These authors devis-
ed an ingenious application of the Fast Fourier
Transform algorithm to synthesize an input
transient' for a random vibration test system
such that the corresponding excitation to the
test item will have a prescribed time history.
But the excitation at the output of the system
is not referred to as s translient. It could
equally well in principle be a standard pulse.
The input to their system is less important,
and not necessarily distinctly transient in
character. If the random test system were
suitably equalized in amplitude and phase ver-
sus frequency, the input could be elther a stan-
dard pulse or identical to whatever final time
history is desired.

In the present paper, there is no Intent to
deny that the fractional octave filter set with-
out phase compensation may have virtues, or that
synthesis by Fourier transform methods may have
merit. However, the effect of a shock will be
analyzed in terms of shock spectra without refer-
ence to whatever means may have been used for
synthesis. Further, for simplest interpretation
of analysis results, it will be assumed that the
excitation time history {s such that transient
respons- . of the test jtem are all initiated at
essentially the same time.

The primary concern will be what kind of
shock spectral lower limit will ensure that a
test shock is an adequate simulation of another
shock in the sense that responses, particularly
of coupled resonators In the test item will be
at least as severe. An adequate test in this
sense 15 the basic responsibility of the speci-
fication writer. As a matter of convenience
he may be the person to determine upper limits
as well or In other words to apply upper and
lower 1imits to a nominal spectrum. He may
have good reason in a particular situation to
prescribe a lower spectral requirement than
would follow directly from this paper, and
take his risks.

In the discussion that follows, we will
make use of excerpts from an environmental
speciflication the author tgok part in preparing
some years ago and a paper' prepared at about
the same time that served as a partial founds-
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tion for the approach taken. The specification
vwas adequate for its time, but the language was
not sufficiently precise for some trends that
have taken place since. The paper contained
some gaps In logic and was not carried through
to some conclusions that are more evident in
retrospect, The analysis, with suitable modi-
fications, will be reproduced in an appendix,
partly to provide in the record a more satis-
factory account to support further investiga-
tion the author has in mind.

The basic approach is an ldealized Model
Analysis - the analysis of something simpler and
more understandable than an actual or typical

test item, but which will support conclusions
that have high probabilit og Eefn sufficlent!
d for the i k Y 1

vall engineering task. Spectral analy-
sis in terms of the responses of possible simple
resonators® is taken as partial evidence of
equivalence of two shocks, or alternately that
one is at least as severe as the other. fInvesti-
gation of higher order responses“ corresponding
to multiple degree of freedom systems is taken

as additional evidence. But if the higher order
responses have suitable simple relationships to

responses of simple resonators, only the latter
need be known,

In brief, the purpose of this paper from
here on is to clarify some fragments of past
history and update and extend an earlier paper
that supported some early engineering decisions,

Some Shock Specification History

The shock spectrum originated in a paper by
M. A. Biot and was used in an exploratory way by
1. Vigness and his associates at the Naval
Research Laboratory to compare test shocks with
shipboard shocks they were intended to simulate.
The author learned about it during a sesslon of
the shock and vibration symposium and especially
a question period in which Vigness participated.
The first use of the spectrum to specify a test
shock, to the author's knowledge, was in an
environmental specification the author took part
in preparing in 1955, Excerpts given In Appendix
| include a suggestlion that the test requirement
be met by means of a terminal pesk sawtooth
pulse of nccolegntloﬂ. This had already been
proved feasible®. This sawtooth, in contrast
to the half sine wave and square wave, had no
nulls in its residual spectrum. As no one
yet had a better ldes, the pulse shape for prac-
tical purposes became an auxiliary mandatory
requiremant.

Since then, there has been a trend toward
specifying this pulse without reference to a
spectrum %wlth some simplification of wording)
without reference to a pulse shape, The former
approach st least puts a superior pulse shape
to use, although, if one considers responss
time history to be more important than excita-
tion time history, dealing with tolerences with-
out reference to spectrs is clumsy. For example,
Figure | shows some variations within typical
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time domain tolerances that can have drastic
effect on response., Because of this considera~
tion, the spectral approach is preferable in
principle, but it has {ts own pitfalls,

The dual approach with the spectrum more
basic was utflized in anticlpation of possible
pyrotechnic shock, and in part to try to put an
end to a practfce of simulating shocks b9 pulses
of comparable peak acceleration and effective
duration regardless of radically different wave
shapes, This practice, widely accepted at the
time by shock and vibration engineers and aero-
space engineers in general for tack of a better
idea, has evidently disappeared. (It tended to
yield deficient energy at some frequencies and
excessive energy at others, especially low
frequencies.

But note that except for the subtle words
"in both plus and minus directions, the first
excerpt would imply a maximax spectrum. It
could be satisfied by either the initial (pri-
mary) or resfdual. The latter is 2nf times the
magnitude of the Fourier transform and related
to the spectral energy of the pulse. The former
has no definite relation of spectral energy and
at sufficiently high frequencies reduces to the
peak acceleration of the excitation time history.
Its use could have amounted to merely a sophis-
ticated way of prescribing a minimum peak accele~
ration for an applied pulse. Except for the
quoted subtle words, the "spectral" requirement
by Ttself could be met by a centrifuge, which
undoubtedly would have undertested some coupled
resonators, and possibly overtested some low and
high frequency resonators.

The pressures of init{al planning of a large
program do not provide the best atmosphere for
generating or even preserving subtle wordings
in an environmental specification. In the long
run it would have been better to have prescribed
a minimum residual spectrum explicitly. For the
most part, this should be encouraged today. A
minimum Fourier transform or spectrum could have
been prescribed, but its relationship to the
residual spectrum had not yet been discovered,
and it was too abstract an idea for that time.

Care in wording of a spectral shock require~
ment would be of minor importance except for the
fact that simple resonators are probably the
exception rather than the zorm in equipment to
be shock tested,

Summary of the Analysis

The exploratory analysis of some fifteen
years ago has been extended to close some gaps
of logic, express the final formulas in more
meaningful form, and reveal soma new funda-
mental relationships. For conformity with pre-
sent shock and vibratton usage, it has been
found desirable to start from a different defi-
nition fro the Laplace transform. This defini-
tion and the relationship between the Fourier

T
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and Laplace transforms are discussed in Appendix
2. Several forms of the Heaviside expansion
theorem are given In Appendix 3. The analysis
is given In Appendices b and 5.

The idealized modei for the analysis con-
sists of two (or more) simple resonators mounted
sequentially as Iin Figure 2. Motion of the mass
of the final resonator, corresponding to the
whipping of a potentiometer wiper or other light
appendage, could be related to frequent causes
of damage or malfunction. The mode} is made to
represent more of a worst case, and the mathe-
matics is simplfied, by assuming no dynamical
loading of one resonator by another. If one
shock is more severe than another, not only
for a simple resonator, but for this compound
ideal lzed mode) as well, we can have more con-
fidence that this comparison holds true gene~
rally, regardless of the particular dynamics
of the test item.

The peak acceleration of the second mass as
» function of the two resonance frequencies, for
any particular shock excitation, is defined to
be the second order shock spectrum for that
excitation. (Three coupled resonators would
lead to a third order shock spectrum). fn
Appendix 4, responses of the second mass, or
second order responses, are calculated for seve-
ral elementary excitations, some of which (e.g.
ramp and step functions) could be combined
sequentially in time to form standard accelera-
tion pulses such as sawtooth and square wave.
Excitation and corresponding responses are
expressed in terms of the Laplace transform
and Heaviside expansion theorem. Each response
Is shown to be a sum of transmitted excitation,
possibly modified by a factor involving the com-
plex frequencles characterizing the two reso-
nators, plus a pair of transients, called initial
oscillatory responses, at the frequencles of t
resonators. (he peak of the sum of the two
transients as a function of the two resonance
frequencies is defined to be a second order
initial oscillatory shock spectrum. In Appendix
T, It |s shown that second order residual
responses and spectra are of the same form as
the Initial oscillatory and have the same rela-
tion to Laplace and Fourier transform of the
entire pulse as the latter have to transforms
of the Initia) elementary excitation, If the
frequency of the first resonator of Figure 1|
were aliowed to [ncrease beyond 1imit, the
analyslis would reduce to an analysis of first
order or ordinary responses and shock spectra.

We are now in a position to make a number
of observations that will become apparent to
the reader who has time and patience to read
the analysis with sufficient care.

Significant Observations From The Analysis

1. From Equation (49) we conclude that the
second order undamped residual spectrum,
obtained by summing the peak éccelerstlions

of the net residual transients for each pair of
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resonator frequencies, is simply related to the
tirst order undamped residual spectrum in such a
way that only the latter need be known to pro-
vide r able evid of an adequate test.
Suppose that ths test item contains two coupled
resonators with resonance frequencies f and f,
arbltrarily chosen. (f at fy and f3, shock A
has higher undamped residual shock spectrum
values than shock B, the corresponding second
order undamped residual shock spectrum values
will also be higher for shock A. More generally,
if of two shocks one has a higher first order
undamped residual shock spectrum for every
frequency in the region of interest, that shock

also has a higher second order undamped residual
shock spactrum for every pair of frequencies in
the region of interest.

2, Equation (h7) was derived from Equation (46),
which involved the Fourier transform. Likewise,
Equation (39) involved the Fourier transform.

If the exponentials are combined to yield trigo-
nometric functions of time, it becomes evident
that the first order undamped residual spectrum
is 2nf times the magnitude of the Fourier trans-
form - a fact already well known, Consequently,
Observation | can be reinterpreted to say that

one shock will have a higher second order undamped

residual shock spectrum than another if for every
frequency the magnitude of its Fourler transform
is greater,

3. We can define a second order dang residual
shock spectrum as the peak acceleration of the
two residual deesaying transients of two coupled
damped resonators, subject to the no-loading
condition, as a function of the complex fre-
quenclies of the resonators, With no damping,
the peak values of the two transients would
eventually sum arithmetically unless the fre-
quencies were in a harmonic relatlonship, in
which case the peak value for the combined
transients would be determined in part by rela-
tive phase regardless of frequency relatlionship.

4, The first order damped residual rasponse is.
roportional to the Laplace transform of the
shTa'cE excltatlon, evaluated for the Tex
frequency of the simple resonator, ang of course,
decays exponentially with time. Accordingly,
the mlgnltuse of the Laplace transform, multi-
plied by the magnitude of the complex frequency,
yields an upper 1limit for the damped residual
spectrum, E conservative lower limit may be
obtained by diminishing the magnitude of the
transform by the decay occurring during one
complete period. A lass conservative lower
1imit can be computed for each specific complex
Trequency. If the phase of the transform is
also known, the residual spectrum can be com-
puted exactly and will be found to be, unlike
the undamped residual spectrum, not completely
symmetrical for the positive and negative direc-
tions of acceleration, but the assymmetry will
be small except for high damping.
5. The second order damped residual response
consists of two damped sinusoids differing at
least in frequency (not necessarily In exponent-
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ial decay rate). Each term is given by the
corresponding first order residual response (in-
‘volving the Laplace transform) multiplied by a
factor reflecting the relationship between the
two complex frequencies. The sum of the magni-
tudes of the two terms s an upper limit to the
second order damped residual shock spectrum,
whose actua) value will be somewhat dependent

on the relative timing and phasing of the res-
ponse transients. But the transients are larger
for the test shock whose Laplace transform is
greater than that of the shock to be simulated,
for every complex frequency of interested.

for any complex frequency, the Laplace transform
has a magnitude proportional to the corresponding
Fourier transform obtained by setting the decay
constant equal to zero. Consequently, except
for effects of timing and phasing, it is suffi-
cient that the Fourier transform or first order
undamped residual spectrum be greater for every
frequency for the test shock than the shock to
be simulated.

6. The statements concerning residual response
and residual spectra apply also to initial
oscillatory response and initial oscillatory
spectra, discussed in the Summary of the Analy-
sis, and actually treated more directly than
residual response and spectra in Appendix &.
Consequently, the initial oscliltatory spectrum
may have application when it is desired to
simulate shock in the presence of sustained
acceleration, This will be explained more fully
in a later section.

7. The step function, as in the example of Equa-
tion (43) appears unchanged in the response of
any order, damped or undamped, except for super-
posed transients. So therefore, does a square
wave., A ramp function appears unchanged If
there is no damping. As a practical matter,

a pulse made up of a finite number of steps

and ramps appears essentially unchanged if
damping is low. The superposed transients are,
however, altered at each successive application
of an elementary excitation.

Application To Shock Test Requirements

Unless it is specifically stated otherwise,
we assume low damping in the test item, and an
absence of isolators. (nitially, we assume
that the shock to be simulated occurs when there
Is negligible vibration or steady acceleration.
Some aspects of the simultaneous vibration_pro-
blem have been treated in a previous paper7. We
do not at any time restrict the actua) test item
to simple internal resonators. The observations
listed above lead directly to some conclusions
ahout shock testinn policy,

1f shock testing, tor simplicity, is to
focus en any one spectral description, that
should be the Fourier spectrum or undamped
residual sBock spectrum, certainly not initial
or maximax®, However, consideration of addi-
tional spectra can provide the specification
writer with greater assurance of adequacy and

|
|
|
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the test and design engineers with more protec-
tion against overtest.

The specification writer can feel confldent
a test is adequate if he prescribes a minimum
resldua) undamped shock spectrum that is an enve-
Tope of the maximum composite spectrum of the
shock to be simulated, As a practical compro-~
mise, the lowest damping available on commercial
shock spectrum computers may be acceptable in
place of zero damping., Then If the designer
is to be protected against a requirement to
overdesign, the test procedure shouid state a
maximum initial or maximax spectrum or refer to
a pulse shape (e.g. a terminal peak sawtooth)
such that the inftial spectrum is unlikely to
be excessive,

{f high damping is anti¢ipated in the test
item, the specification writer may feel more
confident the test Is adequate {f he also places
lower limits on damped residual spectra. How-
ever, a more detailed study of possible responses
to contemplated excitations would be desirable
to ensure this Is worth the effort and complica-
tion or determine how far it should be carried.

The possibility of gaining further confi-

. dence in the adequacy of a shock test condition,

by placing an upper 1imit on the length of time
before peak response occurs, is not excluded.
Its value may be dependent on what approaches
to shock synthesis become popular in the future,
or what other restrictions on such approaches
may be included in future specifications.

The terminal peak sawtooth has one feature
that has not received much previous attentlion -
it inftlates all transient responses at assen-
tially the same time., With practical mechanical
implementation or with gradual spectral shaping
by equalizing filters and attenuators, there can
be some small phase shifts as a function of res-~
ponse frequency, but a generally simple effect
is preserved, For simulation of cryogenic shock,
long duration in the sawtooth and large associated
tow-frequency spectral content are not often
necessary. When these can be reduced sufficiently,
the excursion becomes small enough for available
shakers., [f the low-frequency content Is reduced
by an equalizer, the primary effect is to reduce
the effective duration without altering the
sharpness of the final dropoff or the corres-
ponding high-frequency effect.

The terminal .peak sawtooth and simple var-
fants derived by equallzation tend to be conser-
vative, or more severe than the collections of
transients they are most often used to simulate.
if the associated spectrum is an envelope of
field conditions, their valleys, of course,
tend to be filled in. The responses start more
or less simultaneously and generally earlier
than for the shock to be simulated, so that
less energy is lost hefore peak response occurs.
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Shock in the Present of Steady Acceleration

Now let us suppose that the shock to be
simulated occurs when steady acceleration Is not
negligible. 1t Is not economical or usually
even feasible to operate a shock tester in a
centrifuge. As points of departure, the speci-
fication writer may consider two other options.
He can increase the residual shock spectrum by -
the amount of the steady acceleration, This is
likely to overtest some parts while undertest~
ing others. Alternately, [f the spectral level
and steady acceleration are not too different
he can prescribe a square wave acceleration
pulse, which appears unaltered in the first and
‘igher order responses, but taper off the end
more gradually to deemphasize res{dual response,
He can require that the level of the initial
step function be at least equal to the steady
acceleration to be simutated, for some mini-
mum length of time, and specify a lower limit
on the initial osclillatory spectrum. To protect
the designer against a requirement to overtest,
the test procedure should now place an upper
Timit on the residual spectrum. The consequent
test would be more suited to a drop tower than
a shaker,

Special Considerations Related to lsolators

Isolators behave at low frequencies 1ike
simple resonators., Sway or rattle space must be
planned for them in the design, whereas this is
seldom allowed to any extent for any other parts.
Their resonance frequencies, unlike those of
other parts, cannot arbitrarily be pushed high
in frequency. Consequently, the low-frequency
character of vibration and shock tests becomes
more critical when isolators are contemplated.
Once a resonance frequency has been established
for an isolator, the corresponding sway space
required for shock is related to the maximax
spectrum rather than the residual. There (s
some virtue, therefore, for adequacy of test,
in placing a lower limit on the maximax test
spectrum, at low frequencies, to be ignored if
isolators are not used. There is also merit in
reexamining some standard shock specifications,
whose origins date back many years, for possible
excessive or inadequate demands on sway space.

Conclusion

Our primary conclusion is that the maximax
and initial shock spectra should be given less
importance, and the residual spectrum, or altgr-
nately Fourier spectrum, should be given more®.
However, a judicious use of several shock spec-
trum concepts, according to the application,
with more careful wording of specifications,
will be beneficial.

The 1dea)ized Model Analysis used here can
and probably wi)] be extended. It is hoped
that the interpretations given here will help
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to bring about more agreement on the role of
shock spectra, or at least refocus some of the
differences of opinion.

APPENDIX 1

Excerpts From Alrborne Electronic
Equipment WS-107A Environmental
Test Requirements, 3 January 1956

Shock Test Requirements:

3.2,2.9 Shock - A shock whose shock spec-
trum in both plus and minus directions is at
least 100 g from 100 cps to 700 cps. The shock
is to be applied at least once along each of
three orthogonal axes through the mounting
points that are used to connect to the missile
unless the component is vibration mounted in
the missile; in this case, the shock shall be
applied at the points where the vibration mounts
connect to the equipment component.

From Section 6.1.3, Supporting Information:

A preferred pulse shape is a termina) peak
sawtooth which rises to 100 g in approximately
6 milliseconds with as sharp a peak as possible
and a minimum of superposed oscillation and
drops abruptly to zero, as may be obtained by
fastening the component to a rigid carriage
and dropping it onto a properly shaped lead
pellet. The drop carriage for this type of
pulse and any other supporting structure that
is not nominally part of the component as mounted
in the missile should be free of resonances in
the range up to 1500 cps so as to apply the
standard specified condition to the mounting
points; this supporting structure should not be
designed to simulate part of the airframe. The
carriage should also be heavier than the compo-
nent so as to make the deceleration independent
of internal resonances of the component. The
sawtooth pulse shape is recommended because its
theoretical shock spectrum (s smooth and free
of nulls, and because it is relatively easy to
obtain,

APPENDIX 2

Transforms

There are several ways of defining the Four-
ier and Laplace transforms, depending on whether
one prefers to think {n terms of frequency f in
Hz or of angular frequency w = 2xf, and any im-
portance ona places on consistency with the
Heaviside operational calculus. Any choices
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will yield essentially the same results. For
simplicity, except for a slight complication in
the forms of the Heaviside expansion theorem,
we will define the Fourier transform of a time
function a(t) to be

F(f) = ;- a(t)e J27ft g (1

and the Laplace transform to be

L(s) = I°° alt)e st dt (2)
0

where s = o + ju is called the complex fre-
quency.

In respect to the role of frequency, the
Laplace transform is a generalization of the
Fourier transform, whereas integration only
from t = 0 turns out to be a useful restric-
tion, convenient for transient phenomena. The
Fourier transform Interprets a(t) in terms of
a summation of steady-state sinusoids. The
Laplace transform interprets a(t) more in terms
of exponentially decaying transients.

If a(t) is zero at least for negative t
and has a Fourier transform, this may be obtain-
ed from the Laplace transform by setting s = j2«f,
All practical shogk time functions of Interest
have a Fourier traniform,

The Laplace transforms of many functions
may be found directly from the definition of
tquation (2). For example, consider the unit
step function, given, for positive t by

a(t) = 1. 3
It follows that
Lis) = 1/s (k)
Furthermore, if
alt) = e, (5)
the Laplace transform is
L(s) = V/(s + a) (6)

From Equations (5) and (6) we can obtain
the transform of the unit Impulse

a(t) = s(t) , 7

which is zero except at t = 0 but has an inte-
gral equal to unity,

Note that for

a(t) = ae ®t N (8)

whose transform is

L(s) = a/(s +a) ,

- (9)
7 a(t) =1

0

regardless of the value of a. If we let a In-
crease beyond 1imit, Equation (10) approaches

2 unit impulse and Equation (9) ylelds Its trans-
from as

L(s) = 1. (10)
It can be shown that
d
ao(t) = i;-a(t) ’ ()
has a transform

Lo(s) = s t(s) -tle+o a(t) , (12)
pOS

with the last term equal to zero for most func-
tions that Interest us,

Conversely, if
t
aglt) = 7 a(t) at, (13)
0
the corresponding transform is
Lols) = £ L(s) . (1h)
Finally, (f

ap(t) = alt~r) , (15)

for t 3 t, the transform is

Lo(s) =e S L(s) . (6)

It can also readily be shown from Equation
(2) that the transform of the sum of terms is
“the sum of the transforms of the individual
terms.
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APPENDIX 3

The Heaviside Expansion Theorem

Our immediate task is to establish state-
ments of the Heaviside expansion theorem that,
taken together, are sufficiently general for
our purposes. First, we assume a time function,
such as an exponentially decaying sinusold,
whose Laplace transform is given by the ratlo
of two real polynomials of order m in the com-
plex frequency s, neither containing multiple
roots nor s = 0 as a root:

Ny(s)

Lols) = BET;T an

The denominator can be written as a product

(s=s)

(18)

with any complex or amaglnary roots occuring in
pairs as conjugates, since D, {s) is real,

DO(S) = (s~s)) ==

To obtain an elementary version of the ex-
pansion theorem, Equation (17) is expanded in
partial fractions:

Nolsy)

Lole) = i | Trs g0y G,y
m Ng(s) i

= d s=s,* 5-s
m (s-sk)No(s) )

k-l Do s s-sk 5=s)

= Z (s-sy)Lg(s) | (19)

But, from Equat;ons (s) and (6), the La-

place transform of e is l/(s-s ). Accord-
ingly, we take inverse transforms term by term
to obtain the time function.

i
s=S, s-sk

m 5, t
ay(t) = kg {s=s ), ls)fs_s e » (20)

which is one form of the Heaviside expansion
theorem in the notation most convenient for our
use,

We are interested next in what happens if

s is a factor in the numerator. I(f the trans-
form of a(t) is

L{s) = N(s)/D(s) (21)

and

Lo(s) = sL(s) = sH(s)/D(s) , (29)
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we can apply Equation (14) term by term to the i
Heaviside expansion of Equation {23) to obtain i
Oo(t) - 2 Sk(S'Sk)L(S)]s-s [ - Lim a(t) :
tpos*o
m s, t
) kg (s- sk)L (s)'s-s e - tlm ~+~0 st}
oS (23)

which is the same as Equation (20) except for
the final term, which will be zero later when
responses are considered, for the response of
a resonator must be a continuous function that
starts from zero.

Next, we are interested in the form Equa-

tion (20) takes for a Laplace transform with s
a factor, possibly multiple, in the denominator.

Let
N ]
Lols) = oty =5 L(s)

The Heaviside expansion now contains a term
for s = 0,

(24)

m s
ag(t) = L(0) + kzo (s-sk)Lo(s)ls_o e " (25)

Now Let
) =Ml Ll el lie) . e
s“p(s) s s s

The principle of Equations (13) and (14)
can be applied term by term to the expansion
in Equation (25), to obtain the new

skt
ag(t) = tL (0) + X (s-sk)l.o(s)ls_s {e " -1)

27
Similarly, for

Nis 1 LR

Lys) -5—35-(-75-5—3L () =3 L6, @8
2
ag(t) = &L (0)
5.t
+ f (s-sk)L (s)ls_s (e © =l-s.t) . (29)
More generally, for
ols) = =2l a Ly (), 30y

s"0(s)
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with n a positive integer,

a(t)s —£—t L(0)
{n-1)

m ( ( s, t (skt)"-zl
-5 )L almg, gmeeom
+k§0 (s=s, g sHS_sk e sit -
(31)

In Equations (27), (29) and (31), we see
the s, summation, if it Is non-zero, developing
a polynomial in s, .t more allied to the first
term and more appropriately lumped together
with it.

If, as a special case of Equation (30),

Lyls) ==, (32)
s

the time function of Equation (33) becomes
tn-l
a(t) = —— (33)

(n-1)1

Finally, if any time function ao(t) is
delayed by a time 1 before initiation, applica-
tion of Equation (15) and (17), term by term,
to any of the previous expansions alters the
eSkt terms in the s, summation to

? ( o )i Sy skt
s=s5 JL (s e e
k=0 k’"0 s=S),

m sk(t—t)
- kgo (s-sk)Lo(s)e . (34)

and converts any polynomial in s t from this

source to a polynomfal in si(t-1) for t 2 r,

all of which amounts simply to a delay by the
time T,

Accordingly, we can build up a pulse by
a succession of ramp or step functions, or
other fundamental excitations, initfated at
successive instants, The time functions that
ar« nonzero in any chosen time interval are
additive, as are their Laplace transforms, or
their Heaviside expansions, term by term,
Consequently, versions of the expansion theorem
apply also to such synthesized pulses.

APPENDIX &4

Responses and Response Spectra

The transfer function of an undamped simple
mechanical resonator of angular resonance fre-
quency w) = 2nf), excited at the base, elther
without Ioadlng of the source, or measured with
the loading present, is g&ve; by

2

(0]
| 1

7 7" LSRRI

+ w
s 1

(35)

This is obtained by taking the Laplace trans-
form of the terms of the differential equation
and dividing the transform of the response by
the transform of the excitation.

The Laplace transform of the response of
the resonator,

2
(1]
L (s) = e L (s) , 6
| s§+w|2 o's (36)

stil) fulfills the requirements for application
of the expansion theorem. Accordingly, the
first order undamped response for positive time,
corresponding to Equations (17) and (19), is

2
m w, (s-sk)Lo(s) st

e - kZl 51T G5, 30y l"sk ¢

jwl jwlt jml -jw't
T Lol e T+ Lpliuyde
. m mlz(s-sk)Lo(s) 5, t G7)

k=1 (sk2+w|2) =Sk

2nf Ju t 2xf =ju,t

S L Rtge e il e e

where Fo(f ) and Fo(~f)) represept the Fourier
transform of the excitation, evaluated for
f=aztf :

I.

The last two terms of Equations (37) repre-
sent a sinusoidal initial oscillatory response
of peak value equal to the magnitude of the
Fourler transform, so that the initial oscilla-
tory shock spectrum is given by

a, (f)) =206 |FolFD) (38)

an important relationship, which has been proved
independently for the residual spectrum, and
holds generally for any function whose Fourier
transform exists. I|f a,(t) decreases rapidly to
a negtigible value, as ?n the case of

e at

- sin wt

')
or

'O - e-at R

the initial oscillatory spectrum becomes also
the resjdual spectrum, Simila¥ly, If & pulse
such as a square wave is synthesized by succes~
sive application of two or more elementary
excitations, the residual response conslists of




a sum of terms at the frequency fy, yielding

a residual spectrum conforming to Equation (40),
with Fg(f|) interpreted as the Fourler trans-
form of the entire pulse.

As an example of application of Equation
(37), consider the unit impulse excitation glven
by Equation (7), with its Laplace transform

given by Equation (10). The first order undamped

response is
Ju,t -ju,t
al(t) =Juje + Juje
(39)

= sin w,t ,

}

which is simply the initial oscillatory (or
residual) response with no trace of the
excitation.

The response corresponding to Equations
(21), (22) and (23), in consideration of Equa-
tions (11) and (12) is also given by Equation
(37), since the response of a resonator mass
to any shock must be continuous and start
from zero.

The response corresponding to Equations
(24) and (25) is
2
m owi“(s~s )L,(s) s, t
1 k'"0 k
ay(t) =L(0) + § kO
! k=1 (52+m‘2) $=s

an| ju‘t wal -jm‘t
-} 5 Fo(f‘)e + F°(°f|)e .

(40)

As a special case, consider the step func-
tion represented by Equation (3) for positive
t, and whose transform is given by Equation
(4). The response is

ju t ~juw,t
a,(t)-l--;-e ! --;-e i

®)
= | - cos u't .

The step function {s the only elementary
excitation that appears unchanged in thé first
order undamped or damped response. fn fact,
it appears unchanged in the response, undamped
or damped, of any order. Consequently the only
pulses that appear unchanged in the undamped
or demped response of any order are made of
successive step functions, as, for example, a
square wave. The ramp function and excitations
proportional to an odd power of time appear
unchanged in undamped responses of any order,
as the time polynomials, which occur twlice,
cancel to zero. For other elemantary exci-
tations, the s, summatfon does not disappear,
or the terms that yield an oscillatory or resi-
dua) response at resonator frequency also give
a modification of the original pulse. ''Hash"

produced on a basic square wave by a resonant
fixture does not appear unchanged in the
response.

First order undamped responses are given
in Table 4-1 for severa) elementary excitations.
Initial oscillatory (or residual) spectra are
given in the right hand column. Responses and
spectra for complete pulses are well covered in
the Viterature3:t and are not given here, but
Tany'can be readily constructed from the table)

by addition of delayed responses, not spectra
or from the previous anaT7§E§%—-J

Ot obtain the second order undamped res-
ponse, we replacg the transfer function of
Equation (35) by

2 2 2 2
0y Y9 Wy w2

(+Z4a D) (sZ+a,2) N COTIN I E3 0 L CR T L )

(42)

The second order response corresponding to
Equations (26), (27) and (42), as a typical
example, becomes

m,zuzz(s-sk)Lo(s) eskt
2y
2)

a,(t) = L(0) + 'f

2, 2 2
k=1 (sk ) )(sk +w s=s,

2
£ jonf Ju
5 \ i
T T2 Folf)le
1°h
£,2  jouf -Juyt
2 1 “)

2 “luwgt
+ _T_ff - — Fo(fz)e (43)
2 1
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Unless the two initial oscillatory response
sinysoids are in a harmonic relatlonship, their
peaks In the positive or negative direction will
soon occur at the same time. Therefore the
second order undamped initial osclillatory shock
spectrum becomes

2
f
2

£,2
+ '—-__I a (f ) R (II‘O)
fzz_flz 1p'2

and is completely determined by the first order
initial oscillatory shock spectrum. (f a pulse
is synthesized by successive application of time
functions, or If the initfal excitation dies
away rapidly, these remarks apply to residual
response and residual spectra, as will be evi-
dent from Appendix 5.

starting from Equations (3) and (6) would
remove the first term of Equation (43).

Yo obtain the response of a damped resona-
tor, we replace the transfer function of Equa-
tion (35) by

azmz azﬂnz
1 1 - 1 1 . (45)
(sva,) 20w, (3P 7Iep) (stoytiuy)
where
o= “llqu' (46)
and

wy = \/k/m~ci/km2 , (47)

with standard notation for mass, damping and
stiffness.

The response, formerly given by Equation
(37), becomes

(u’z¢u'z)(s-sk)L°(s)' °skt

m
a,(t) = L(0) +
! kzl (skfa,)z;u'z |s-sk

2, 2
s#al#ju|

(-u,+jul)t
e

S"o"fjw,

203

(a|2+wl2)to(s) e(-u'-ju‘)t

(48)
+ ]s+al-jm,) Is--al-jw'

For the special case of the unit function
represented by Equatfon (3) and whose transform
Is glven by Equation (&), this reduces to

~ayt -a,t
a = 1 -e cosut - (a‘/wl) e sinu t
~a,t -a .t
=]-e cosw |t - (I/2Q|) e slnult .
(49)

To obtain the second order damped response,
corresponding to the model of Figure 2, we
replace the transfer function of Equation (42 by

2, 2 2
(o) 0y )(°zz*“2 )

[s+a)) 20, 2 [(s%a,) 20,7

(al2+w12)(022+u22)

- (;;“‘_julj1§+ql+jul)(E?Eé-jugfls#uz+jw2)

(50)

The response, formerly given by Equation
(43) becomes

a,(t) = L,(0)

I A R R L TO N
kel Usvay) oo 2l (st 202l 575
2, 2

. {a; 4w, )(uzz*wzz)Lo(s? e(‘u'+Ju‘)t
(543 4Juy) [s%,)24u,%) smea 4ju,

. (o, 200, 2) (0,240, D)L (s) : ooyt
(s+al-ju‘)[(s+uzi2;wii] s==a;=ju,
(u'zm'z)(uzzmzz)Lo(s)I (~u2+ju2)t
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For the step function, this reduces to
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The residual response is given by the sum
of transients

2, 2
APPENDIX § ay ey Lo (et (raptju))t
TJuy  tor e tieyle

1 R
. Residual Response « 2+u (~a-ju,)t
] ] . ] ]
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We now wish to show that relatlonship of !
the initial oscillatory responses to transforms 2 2

hold also for the more familiar residual res- e (o +ioy) (e1)
ponses, taking the first order response as an + “ZJa, L oz('“)*j“‘))e
example, \ 1
2,2 (~a,=juw,) (t-1)
It can readily be shown from the rules b 1

Rk AS— S T | - -
of complex algebra that the last two terms of * -ZJm' L 02( * j“l)e

Equation (47), representing the first order

residual response, combine into_a decaying 2, 2 -
sinusold whose magnitude is (a'2+w|§)/w, times A el Loy (o +w )e( aptiuglt
the magnitude of Lo('“l"J"’l)' ijml o1t 1%
Now, if two or more elementary excitations a‘zm‘z ("al‘jw‘)t
are used successively to produce a pulse of fi- + Lo {-a, - e
nite duration, the residual response will con- 'ij“’l 0'( il Jw‘)
sist of the sum of transients, like the last 2 2
two terms, successively excited. Let us con- o)+, (-ul+jml)t
sider as an example two successive excitatlions + _E’JT_ L°2(~u‘+jm|)e
as in the square wave, the first initiated at 1
t = 0, and the second inftiated at t = ¢, Let 2 2
their transforms as functions of time after ) ml (-u‘-Jm|)t
starting time L ,(s) and L'py(s). Let the + _—zT;—-Loz(-u'-jw')e
transform of thg second excitation as a func- 1
tion t ba ), (s). We wish to show specifically 2 2
t(ha% thg)resfdual response has a ‘magnftude )t ( ('0‘4‘}0‘)!
a,%4w)4)/w, times the magnitude of the Laplace = o L. (~a,+ju,)e
trlnsform of the entire pulse, | LA
2, 2
" +w (~a,~juw, )t
L (s) =L, (s} + L,.(s). ot Ml | B
0( ) 01 ) 02 ) (53) + -_-ET';,—- Lo('a-jw')e .

But, from Equation (15)

- (55)
Loa(s) = e 8 Lioals) - (54)
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.o which proves the polnt for the Laplace transform.
If, now, the damping approaches zero, this
expression becomes

2nf Ju, t 2nf
L Ryle) e e JL B (-f) Ut (s56)

where here F (f;) Is used to represent the Four-
ler transform of the entire pulse. The relation
of the undamped resfdual spectrum to the Fourier
transform has been proved more simply by means
of a Duhamel integral.
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