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1. Introduction

Because of the number of practical applications El] of

wideband network with the narrowband Speech Processor (NSP),

and wide and easy access of the telephone system, a great

deal of interest has been shown in interfacing the telephone

line to the wideband network. The effect of this

interfacing on the narrowband speech processor, however,

must be carefully considered.

The fact that all narrowband speech processors at

present are based upon a linear all-pole model of speech

production (for voiced speech) is important. If speech is

recorded under carefully controlled conditions, i.e., very

high signal-to-noise ratio, minimal room reverberation,

minimal phase distortion and a high quality microphone, then

high quality synthetic speech can be generated with a

carefully implemented simulation. However, it has been

demonstrated that even relatively small amounts of additive

white noise cause the LP coefficients to represent wider

bandwidth resonances, resulting in the perception of

buzziness in the synthesis. Thus, spectral distortion of

the input signal occurs. Two examples:

1. If a tone and a speech signal having roughly equal

powers are added, a human listener will perceive the

resulting interference as a narrowband whistle. During

AI
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analysis and synthesis several of the NSP linear

prediction coefficients will partially represent the

high amplitude tone, thus reducing the accuracy of the

speech representation.

2. If speech is bandpass filtered to 0.3-3.0 kHz, a

listener will perceive the speech as "hollow" even

though no gross distortion has occurred. Depending on

the resistance of the pitch extraction method to the

loss of harmonic structure in the spectrum, the

synthesis may remain unchanged, or it may become

totally unacceptable, due to gross errors in the pitch

period tracking.

Figure 1 is a set of block diagrams which illustrates

two different examples of interfacing the telephone line to

the wideband network. The major difference between these

block diagrams is the location of the hybrid, which is used

to convert the 2-wire telephone line to 4-wire telephone

line. In the configuration of Figure 1 (a), the hybrid and

digital processing unit, which includes a low pass filter,

automatic gain control, A/D, D/A, analyzer, synthesizer,

double talker detector and echo canceller, are at two

different locations. This separation makes the problem a

little more difficult for the echo canceller. Here we are

interested in the configuration of Figure 1(b), where the

hybrid and the digital processor are at the same location.

The block diagram of Figure l(b) can be represented in

I
I
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4I
more detail as shown in Figure 2. The user at site A,

without any local site equipment except for the telephone,

wants to access a user at site D. The sites B and C both

have a complete digital speech processing system and also

I have a leased line channel between sites B and C. The user

at site A might be motivated to dial to site d via sites B

and C for economic and efficiency considerations or for

security considerations. The site A has to access site B

via a local or a long distance call depending on the

g location of site B. This applies to site C and D also.

When sites A and D get access to sites B and C respectively,

via local calls as shown in Figure 2, then first the user of

site A is connected to site B by a 2-wire line through a

I local office of site A and site B. In the case of long

distance calls the site A is connected to the local office

of site A by a 2-wire line, then the local office of site A

I is connected to the site B local office by a "trunk" which

is typically a 4-wire circuit. At the site B local office,

the 4-wire circuit is converted to a 2-wire circuit which is

then connected at site B. In any case, the initial

connection at site B is a voice connecting arrangement

i (VCA). This device mainly protects the telephone line from

any customer equipment. Also, it performs supervisory

functions such as ringing detection, off hook signaling and

automatic seizing of the line. Next, the VCA is connected

i to a hybrid which converts the 2-wire to the 4-wire

I
I
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connection, which in turn is connected to the digital

processing system. This system contains a low pass filter

for anti-aliasing, automatic gain control to compensate for

telephone line loss and maximize the signal to quantizing

I noise ratio, A/D and D/A, analyzer, synthesizer, double

talker detector and echo canceller.

I The 2-wire to 4-wire conversion typically results in

some of the analog output of the synthesizer being fed back

to the analog input of the analyzer, with the amount

depending on how well the hybrid is balanced. This leakage

signal results in an echo. At site C the process is

I duplicated.

There are four major sources of distortions which

Iaffect the quality of the narrowband speech processor:

1) The spectral distortion due to the carbon button

microphones, inductive loadings on 2-wire lines and

i impedance mismatch throughout the system; 2) the signal

loss, hence signal to noise ratio decreases, which is a

function of the length of the 2-wire line and the way the

customer uses the phone, (for example, holding the

mouthpiece far away from the mouth); 3) the echo due to the

I mismatch of the hybrid balance circuit impedance and the

impedance of the 2-wire line; and 4) the automatic gain

I control (AGC), which is required to compensate for the

signal loss in order to achieve a high signal to quantizing

I noise ratio for better vocoder speech quality. This

I



automatic gain control amplifies not only the signal, but

also the noise and the echo. If the gain is high, it might

lead the whole system into singing (or oscillation).

The first source of distortion (i.e. spectral

distortion) requires the telephone channel equalization to

improve the synthesizer's speech quality. This equalization

is nontrivial and unique for the following reasons:

1. Equalization must precede the nonlinear NSP. For

example, it is not possible to process the incoming

speech with the NSP and then post-process the resulting

coefficients with an equalization filter.

2. Equalization can only occur over the frequency

range where severe attenuation has not been introduced.

If a bandpass filter from 0.3-3.0 kHz has been

introduced with 30 dB attentuation in the stopbands,

practical considerations such as system noise and

integer quantization noise from A/D conversion preclude

equalizing the stopband regions.

3. Sophisticated equalization techniques used for

digital modems will not work for voice transmission

equalization. The high-speed digital modem has an

adaptive equalization capability; a series of reference

pulses is initially transmitted to the far-end modem,

which then adaptively updates the taps or coefficients

of an inverse filter or transversal filter until the

mean square error between the reference pulses and anI
I-

r i , .. . ... ,i 4.
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internal standard is minimized. The obvious difficulty

with adaptive equalization where voice is involved is

that there is no standard for comparison.

The above telephone channel equalization problem was

addressed by J.D. Markel and Steven B. Davis at Signal

Technology, Inc. [2]. They showed that the channel

equalization can be performed by using either a prior

long-term spectral characteristic of the speaker, or the

population, as a reference signal. Also, it was

demonstrated that the equalized vocoded telephone speech is

preferred by listeners over nonequalized vocoded telephone

speech. Furthermore, listener acceptance of equalized

telephone speech improves very nearly to the acceptance

level of the reference non-telephone band limited speech by

using speaker dependent equalization. Listener preference

for speaker independent (population dependent) equalization

is slightly lower.

Here we discuss the next three problems--signal loss,

echo, and AGC in the loop.

The echo in the telephone line is a very old problem.

A great deal of work has been done in developing methods for

echo cancellation. These methods range from the simple

introduction of a physical loss in the telephone line to the

5 use of adaptive digital filters which adapt to the telephone

network. It has been shown that the adaptive digital

filters are very effective in satellite telephone networks
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where the round trip could be anywhere from 540 ms to 1200

ms [3].

In all the previous studies the vocoder was not present

in the loop. Hence, the effect of echo and other telephone

distortions combined with the vocoder are not known. Also,

it is important to know how the performance of an adaptive

digital filter is affected by the presence of the vocoder.

A new adaptive filtering algorithm for the echo cancellation

in the frequency domain was developed and its performance

will be compared to some existing algorithms. The existing

algorithms used were the Widrow LMS algorithm and the

Gradient Lattice algorithm. The Widrow LMS algorithm was

used because of its simplicity and robust performance (which

has been shown for many digital signal processing

applications including echo cancellation). The Gradient

Lattice was chosen because of its orthogonality property

which is claimed to result in faster convergence.

The next important point to be considered is the effect

of signal loss on the narrowband speech processor. The

signal to noise echo requirement for the satisfactory

quality of synthetic speech will be defined. Two kinds of

noise will be considered here. The first is the telephone

channel (2-wire) noise and the second is the quantization

noise due to analog to digital conversion. This surely will

play an important roll in defining the need or lack of need

for the AGC. Even after the need of an AGC is defined, the

I
!
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kGC issue must be considered very carefully. While the AGC

helps to minimize the problem of signal to quantization

noise it also introduces other severe problems. A few of

these problems are as listed below:

1. With the AGC in the loop the adaptive filter has to

keep track of AGC along with the transhybrid response

of the hybrid.

2. The present double talker detector algorithm would

not work.

3. The AGC not only amplifies the signal, it also

amplifies the telephone channel noise and echo.

4. If the AGC gain becomes too large the whole system

will go into singing (oscillation).

These problems related to the AGC could be partially solved

by feeding the AGC information into the double talker

detector (DTK) and adaptive digital filter (ADF) and making

AGC slowly varying. "Slowly varying" is a relative term

which needs to be defined for our system.

The overall study was performed via a digital

simulation of the system shown in Fig 2. The digital

simulation was carried out on the STI VAX-11/780 computer.

I

I
I
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2. The Test-bed Simulation

2.1 Introduction

Shown in Fig. 1 is a typical analog telephone

connection (1]. The near end is connected through a

two-wire subscriber loop (or local loop) into the local

switch. The local switch attaches to a toll connect trunk

which is a two-wire connection into an hybrid. The hybrid

then separates the connection into a four-wire transmit and

receive path, and the toll switch connects the near and

far-end trunks for bi-directional transmission (full

duplex). The reason for the four-wire transmission is so

that gain can be added to compensate for physical wire loss

versus length. At the far end the reverse operations are

performed to the subscriber loop. For the Wideband

Integrated Network (WIN) there is a combined analog and

digital network as illustrated in Fig. 2. The same basic

block diagram holds true except that the hybrid now is

connected to A/D and D/A converters so that the four-wire

transmission line is digital instead of analog. However,

this transformation from analog to a digital line has severe

effects on the operation of the system.

In Fig. 2 the full duplex speech processor includes an

LPC speech analyzer and synthesizer. The telephone signal

i
I
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conditioner (TSC) block includes those elements in the

system needed to compensate for echo introduced by the

hybrid and necessary conditioning algorithms to enhance the

speech quality of the synthesized speech output. To model

the effects of the full-duplex network on the LPC

analyzer/synthesizer a full test-bed simulation of the

system has been developed. The main purpose of the

simulation was to check the effectiveness of different

conditioning algorithms on the over-all end-to-end

full-duplex operation.

In this section we will first examine the

interconnection problems between an analog network, the

switch telephone network (STN), and the digital network

(WIN). Then we will present an analog/digital simulation of

the network which includes those algorithms which are

necessary for the system to work in a satisfactory

condition.

2.2 Interconnection Problems with STN-WIN

To investigate the problems that arise from such

interconnection we follow the block diagram of Fig. 3. The

near-end speech input passes first through the telephone

mouthpiece which introduces some distortion [2]. Then, the

speech input passes through the physical two-wire line,

which introduces a loss due to the distance between theI
I
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calling party (the two-wire portion only) and the location

of the hybrid. This loss is a very significant problem as

it can range from (a reference of) 0 dB to as much as 20 dB

[I]. That means that either we improve the LPC analyzer to

perform well for a large dynamic range or we add an

Automatic Gain Control (AGC) in the loop to improve the

signal-to-quantization noise at the LPC analyzer input.

Another problem is caused by the hybrid which is

necessary for converting the standard two-wire line input to

the four-wire system (two wires to the analyzer, two wires

from the synthesizer). Due to the fact that the impedance

balance of the hybrid is a strict function of the loading,

and that the loading is a function of the distance from the

hybrid to the calling party, this imbalance introduces the

most difficult problem in the full-duplex network, the

"echo" problem. In general, the hybrid impedance is not

perfectly matched and a return signal from the far-end

speaker would be fed back through the upper loop to the

far-end speaker. This return signal is the "echo".

The inherent impedance mismatches are a function of the

calling party's physical two-wire line length to the hybrid.
This impedance mismatch causes an echoed signal with

relative level of -30 dB at best to -6 dB at worst [3]. To

understand the problems caused by the hybrid in this special

application, we have to remember that the LPC analyzer needs

an

I
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speech quality. Now, if we assume that the LPC analyzer

requires a 0 dB reference for acceptable signal to

quantization noise ratio, if both near-end and far-end have

a 10 dB loss in the two-wire lines, and if the hybrids each

have 10 dB rejection, then there is a state of sustained

oscillation (unity loop gain or 0 dB "singing margin" (4])

if we use a standard automatic qain control.

Another problem is caused by the interconnection of the

hybrid with the LPC analyzer. For long delays in the

four-wire line, the effect of the echo, without the LPC

analyzer, is very annoying and is handled generally by

adaptive filter algorithms to cancel its effect. With the

LPC analyzer in the loop, the effect of the echo becomes

even worse because of the inherent nonlinearity in the LPC

analyzer. The problem arises particularly during periods

when both speakers at the two ends talk at the same time.

In these cases the input to the LPC analyzer contains the

near-end speaker input and the echo from the far-end

speaker, and because of the nonlinearity of the LPC analyzer

the result is highly distorted speech at the synthesizer

output. We see from the discussion so far that a fast

convergence echo cancelling algorithm is needed in our

* application to minimize the distortion introduced by the LPC

analyzer.

Another issue in the full-duplex network is the

double-talker detection algorithm. The function of thisI
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algorithm is to detect the presence of near end talker voice

input, so that adaptation in the adaptive filter can be

halted during such situations to avoid adapting in the wrong

direction. Basically the double talker measures the energy

at both points at the four-wire side of the hybrid. When

the energy ratio between the four-wire transmit and receive

side exceeds a certain threshold, the algorithm raises 3

flag, meaning that the near-end talker is active.

Another issue to consider is the effect of the STN on

the input speech signal. Specifically the STN bandpasses

the speech, resulting in a range of 300-3200 Hz.

Furthermore, the pass band magnitude characteristic may have

10-15 dB of ripple as a function of the input signal energy.

This combination of channel distortions and band pass

filtering affects the quality of the LPC synthesized speech,

severely affecting the pitch and voice/unvoice algorithms.

Therefore, it is necessary to improve the existing LPC

algorithms to handle such speech signals.

All the issues discussed so far are investigated in

this report in terms of algorithms for the telephone signal

conditioner (TSC). The algorithms implemented in the

test-bed simulation try to solve the problems discussed so

I far. The effectiveness of those algorithms are checked

based on the output speech quality obtained by end-to-end

3 simulations.

In the next subsection the over-all test-bed simulation

h1
I
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is presented.

2.3 The Over-all Test-bed Simulation

In this section we present the over-all test-bed

simulation program. The main purpose of this program is to

check the interaction between different algorithms needed in

the full-duplex communication network with vocoder in the

loop. The test-bed program is written in a modular method

with a number of "software switches" which can be used to

simulate different configurations. This flexibility allows

us to check the interaction between the algorithms and

isolate and identify the problems caused by such

interaction.

Fig. 3 presents a possible block diagram of a

full-duplex communication network with vocoder in the loop.

The user at site A is connected to site B by a 2-wire line

through a local office. The initial connection at site B is

a voice connection arrangement (VCA). This device mainly

protects the telephone line from any customer equipment.

Also, it performs supervisory functions such as a ringing

detection, off-hook signaling and automatic seizing of the

line. Next the VCA is connected to a hybrid which converts

the two-wire line to the 4-wire connection, which in turn is

connected to the digital processing system. This system

contains a low pass filter for anti-aliasing, automatic gain
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control to compensate for telephone line loss and maximize

the signal to quantization noise ratio, A/D and D/A,

analyzer, synthesizer, double talker detector and echo

canceller. Such a block diagram could be simulated entirely

by a digital simulator. However, we prefered to divide the

system into two parts: 1) The local telephone line from

customer mouthpiece to output of VCA; and 2) The wideband

system from the 2-wire input/output part of the hybrid at

site B to site C. We used the physically available

telephone line for part 1, and performed the digital

simulation of part 2.

2.3.1 Local Telephone Line Simulation

The input speech data for digital simulation, which is

the speaker's speech over the telephone line and the output

of the VCA, is collected using the special setup as shown in

Fig. 4 and discussed here. Site A and site D called the

sites B and C, respectively, through a local office. The

output of the VCA at sites B and C were recorded

simultaneously on a two-channel tape recorder for future

digitization. In order to have natural conversation between

the two speakers, the output of each VCA was also connected

to the earphone of the first telephone handset. Because of

3 the set-up in Fig. 4, the length of line 1 and line 2 were

equal. However, in general this may not be the case. Also,I
I
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the conversation was not fully realistic as it did not

include the psychological effects of a satellite delay and

an echo problem.

2.3.2 Wideband System Simulation

For the wideband system we simulated digitally the

following components:

a) Hybrid

In the hybrid the response from 2-wire to 4-wire and

vice versa is not important, and can be approximated by flat

unity gain. However, the response from 4-wire receive side

to 4-wire transmitter side, which is the function of 2-wire

impedence is important. This response is called the

transhybrid response. The term transhybrid loss is also

used. The transhybrid loss represents the average loss over

the frequency. In other words, if the transhybrid loss is

10 dB, then the echo signal at the 4-wire transmitter side

is only 10 dB lower than the signal at the 4-wire received

side. Previous studies have shown that the average

transhybrid loss could be as low as 6 dB in the worst cases

(3]. In our case, not only the magnitude of average

transhybrid loss, which determines the strength of the echo

and hence the perceptual effect, is important, but also the

exact response is important in order to evaluate the

h.1
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performance and requirement of the echo canceller.

In the test-bed simulation, the transhybrid response is

simulated by a 64 weight FIR filter. These weights are

measured under real telephone lines and from an artificial

telephone line where the conditions of loading and line

lengths are more controlled. From these measurements a

library of 14 different impulse responses has been

collected. The user has the option to choose one of them,

or by using a software switch change the hybrid response

dynamically for each fixed amount of time chosen by the

user. In this way a more realistic time variable

transhybrid response can be simulated. Details on the

measurements of the transhybrid responses and their results

are given in Chapter 3.

b) Echo canceller

The echo canceller algorithm is an essential part of

the wideband system. Because of the inherent nonlinearity

of the LPC analyzer a fast convergent algorithm is

* I necessary.

The Test-bed simulation includes four different

algorithms that can be chosen separately by the user: 1) The

Widrow LMS algorithm [5], 2) The normalized Widrow LMS

algorithm [6], 3) The gradient lattice adaptive filter [7]

3 and 4) The unconstrained frequency domain LMS algorithm

(UFLS) [8].

I
, *,-
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The Widrow algorithm was inserted in the test-bed

simulation for comparison purposes, since it is the most

popular algorithm in echo cancelling [9]. The gradient

lattice algorithm has been implemented because of its

potential fast convergence reported in the literature [7],

which happens to be incorrect for our application. The

unconstrained frequency domain LMS algorithm was chosen for

its efficient implementation and fast convergence compared

to the time domain LMS algorithm. The SHARF algorithm was

chosen for its simple implementation since the filter model

is a recursive filter which can have a low order compared to

the FIR model. Since the performance of the SHARF algorithm

was very poor compared to the Widrow algorithm we will not

elaborate on this algorithm in this report, and the

algorithm is not included in the final test-bed simulation.

All the parameters needed to control the different

adaptive filter algorithms, such as filter orders and

convergence constants, can be chosen by the user during the

initialization phase of the simulation program. A complete

description of those algorithms is given in Chapter 4.

c) Double talker detector

The main function of the dcuhle talker detector is to

detect the near-end talking and tell the echo canceller not

to adapt when the near-end speaker is talking.

If a double talker is not present, the adaptive

d
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algorithm will drift to the wrong direction during double

talking, which gives poor echo reduction, and may distort

the signal, depending on the amount of drift present [10].

In the simulation program we have the option to run the

experiment with or without the double talker. In the

simulation program we have two different double talker

algorithms. One is for a time domain algorithm in which the

decision is made on a point-by-point basis, the other is for

the frequency domain algorithm where the decision is made on

a block-by-block basis.

d) Analyzer and synthesizer

The analyzer in the test-bed simulation is an improved

version of the standard LPC analyzer. The improvement is

mainly in the pitch estimation and voice/unvoiced detection

algorithm. Those algorithms are changed to performn 'cter

under STN distortions and a large dynamic range of speech

input.

All the parameters for the analyzer and synthesizer,

such as frame size, pitch detection window, order of the

predictor, etc. (for details see 11], can be controlled by

the user. Details of the improved algorithm are given in

Chapter 5 along with a discussion of the AGC versus improved

LPC analyzer.I
I
I
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e) Channel simulation

The channel delay of the digital 4-wire transmission

line is simulated by a programmable digital delay. The

length of the delay can be controlled by the user. In this

study we assume that we are dealing with an ideal digital

transmission line and no errors are introduced by the

channel.

f) AGC simulation

At first look, an AGC is intuitively very attractive as

a solution to the dynamic range problem at the LPC analyzer

input. However, after a very careful examination of its

interaction with other algorithms, we arrive at the

conclusion that the AGC that can be introduced in the

full-duplex network, will be very complex and moreover will

limit the echo canceller performance to an unacceptable

level.

For that reason, an AGC is not included in the test-bed

simulation. Instead, we chose the improved analyzer as a

solution to the dynamic range problem. A full examination

of the AGC is given in Chapter 5.

Z
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3. Hybrid Simulation

The hybrid is an analog three port device with one

input/output at the 2-wire line, and the receive input and

the transmit output at the 4-wire line [Fig. 5). An exact

simulation of the hybrid is very tedious and complex because

of its multiple input/output and its inherent

nonlinearities. As a first-order approximation, the hybrid

responses from the 2-wire line to the 4-wire line and

vice-versa can be approximated by a flat unity gain. The

standard simulation of the transhybrid response, from the

4-wire line receive to transmit line, is an FIR filter.

In this section we present transhybrid response

measurements made on physical telephone lines connected to a

physical hybrid. Since in using a physical telephone we did

control the loading conditions of the hybrid, the same

measurements were repeated using an artificial telephone

line, where loading conditions were totally controlled.

The transhybrid measurements were made using standard

system identification techniques under linear assumption.

To check the accuracy of this assumption, a new nonlinear

frequency domain adaptive filter has been used to check the

second-order nonlinearity in the hybrid.
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0 T,

Port I

L *

Po. i Z.

The use of the precisely balanced transformer windings
to obtain conjugacy between transmission paths results in the
so-called hybrid circuits. These can be realized with a single
transformer structure, but the impedance levels required are
usually inconvenient. The more common realization uses two
transformers connected as shown by the simplified diagram of
Fig. 2-4. Transformers T 1and T2each consist of at least three
tightly coupled windings.1

If Z I=Z and Z =Z ~, a proper choice of turns ratios will
make port 1 LonjugaLe to port 2, and port 3 conjugate to port 4.
That is, if Z1is a source delivering power to port 1, a negli-
gible part of this power will be received by impedance Z and
vice versa. Power flowing into the circuit at either poit 1.
or port 2 will be delivered to impedances Z 3 and Z 4 equally.

In one practical application, Z is a bilateral two-wire
line, and Z is a fixed network whosa only function is to match
Z and provide the necessary conjugacy. Impedances Z andZ2
rApr esent a four-wire line using separate pairs for tie two
directions of transmission. The terms trans-hybrid loss and
through-balance are used to describe the effectiveness of this
circuit. Losses of 50 dB between impedances Z and Zare
realizable. In central offices where Z is diiferent2 for every

call that is set up, much lower values Ire common.

Fig. 5. Hybrid circuits using two transformers and its
description. (From Transmission Systems for5 Communication, Bell Telephone Laboratories)

II

I o
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3.1 Transhybrid Measurements under Linear Assumption

To measure the transhybrid response of the hybrid a

standard system identification set-up has been built. A

user at site A called to site 8, and the hybrid at site B

was connected to the phone line through a VCA (Voice

Connection Arrangement) as shown in Fig. 6. Bandlimited

white noise was used as the input to the 4-wire receive side

of the hybrid. The user at site A was silent to insure that

the signal received at the 4-wire transmit side was only the

leakage signal. The input and output signals were digitized

simultaneously by a 2-channel A/D. Now the problem reduces

to a system identification problem, where the input and the

output of a black box is known and the problem is to find

the transfer function of the black box.

For system identification we used three different

algorithms: the standard Widrow LMS algorithm, a new

unconstrained frequency domain algorithm for FIR filter

representation, and one which uses the sequential regression

algorithm for hIR filter representation. We ran these

algorithms on the data collected from the set-up described

above. The output of each algorithm was the identified

impulse response for the FIR algorithms or the transfer

function for the IIR algorithm. Another result from the

algorithms was the SNR between the desired response signal

and the error obtained by the adaptive filters. Since the

SNR achieved by the IR model was poor compared to the FIR

model we continued our measurements on the FIR model only.

I
I
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Details on the algorithms used in those measurements will be

given with description of the echo cancelling algorithms.

The problem in using the physical telephone for the

measurements was that no information was available about the

length of the line, i.e., loaded or nonloaded etc.

Therefore, a similar experiment was performed under

controlled conditions. The black box in Fig. 6 wag replaced

by the black box in Fig. 7, where an artificial telephone

line was used for simulating different length telephone

lines. A H88 and D66 loading were used in the loaded lines.

An example of the transhybrid response obtained from

the physical telephone lines is given in Fig. 8. Fig. 8a

represents the transhybrid response for an unloaded line,

and Fig. 8b the transhybrid response for an actual loaded

phone line. In Fig. 9 we have a sample of transhybrid

responses under different conditions. Fig. 9a and 9b are

samples of unloaded artificial line with 5000' and 15,000'

respectively. Fig. 9c and 9d present the transhybrid

response with different length and different loading.

Since with the artificial telephone line we can control

both the length of the lines and the loading conditions, we

use it to build a library of different transhybrid

responses. The library includes 14 different responses

under different conditions. The library is built in a

format such that from the test-bed simulation program any

one of the fourteen responses can be chosen to simulate the

weft- ,_ -
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transhybrid response. The user can specify different

transhybrid responses for the near-end and far-end hybrids.

More than that, the user by a software "switch" can

dynamically change the transhybrid response during the

simulation, and the timing step for those changes can be

also controlled by the user. For example the user can

specify that every 1 sec the transhybrid response will be

changed by another response from the library.

In system identification techniques many measures are

used in checking their performances. One such measure is

the signal-to-error ratio, which is the ratio between the

mean squares output of the system to the mean squares error

between the system and its model, when both the system and

its model are driven by the same white noise input. For a

64 weight FIR filter the signal-to-error ratio was around

25-28 dB; a longer FIR filter did not achieve better

results, and with 32 weights the signal-to-error ratio was

lower by one to two dB's. Since we use a 12-bit A/D in our

simulation, it means that under linear assumption, the

maximum echo reduction that we can achieve is about

25-28 dB.

In the next section we present the measurement of the

transhybrid response under nonlinear conditions. Our aim

was to check the possibility of simulating a more accurate

transhybrid response.

I
I
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3.2 Transhybrid Response under Non-linear Assumption

One of the major difficulties i, , "ealing with nonlinear

system identification is the lack of a unified mathematical

theory for representing various nonlinear characteristics.

There are, however, a number of representations for

nonlinear systems identification purposes. The quality of

those representations depends on the kind of the

nonlinearity in the system. A well known representation is

the Volterra series, with which the least squares technique

can be easily applied to nonlinear systems.

The time domain nonlinear systems algorithm that we

will describe here is due to Roy and Sherman [12). Its main

drawback is the amount of computations needed. To overcome

this complexity a new frequency domain nonlinear algorithm

has been developed which reduces the computation by an order

of N, where N is the filter length.

Since the time domain nonlinear algorithm is much more

easily explained, and to catch the idea of the method, we

will present here only the time domain algorithm. The

details of the frequency domain algorithm are given in NSC

NOTE 147 [13). Both algorithms converge to the same result.

The only advantage to the frequency domain algorithm is the

reduction in computation and its fast convergence compared

to the time domain algorithm.I
I
I
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3.2.1 Time Domain Nonlinear Adaptive Filter

The nonlinear system identification algorithm described

in [12] can be readily interpreted in an adaptive filtering

notation. The input-output relationship of a nonlinear

system can be expressed explicitly as a Volterra series [14,

15, 16]

+ ' + ... "' C1 n) i ix(t' i)d~i + - (3.1)

SThe n-th order Volterra kernel h( lP 2  . ) represents

the weighting function of the n-th degree. Thus the n-th

order term is an n-fold convolution integral. If we assume

that the system is stable and has a finite memory, the

system can be approximated by its sampled data form; the

output can be written as

N-1 N-1 N-i
y(n) = I h1 (i)x(n-i) + I I h2 (i,j)x(n-i)x(n-j) +

i=0 i=O j:0

N-I N-I N-1
+ I I I h3 (i,j,k)x(n-i)x(h-j)x(n-k) + ... (3.2)

i=0 j=0 k:0

The objective of the nonlinear adaptive filter is to find

the system models hl(i), h2 (i,j),..., which minimize the

output mean square error. The system can be found by

standard least squares technique as done in the linear LMS

algorithm. For practical reasons only the quadratic form

I
i
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will be developed here but the same procedure can be

extended to higher orders. For the second order case the

output can be written in the following form:

y(n) = iT(n)h + v(n) (3.3)

where v(h) is random additive noise,

T 22T(n)=[x(n), x(n-i ), ... , x(n-N,- .x2 (n), x(n)x(n-1 ), .... x2 (n-N-ljj, 13.41

and

T
S =h l (O),hj(1),...,h(N-l) h2 (0,0),h 2 (0,1),...,h 2 (N-1,N-1)]

(3.5)

The filter weights adaptation equations for the kth

iteration are

h(k)(i) = h(k-l)(i) + p e(n)x(n-i) (3.6)

h(k)(i,j) = h(k-1)(i,j) + p e(n)x(n-i)x(rn-j) (3.7)

where u is the convergence constant. The block diagram of

the time domain nonlinear algorithm is presented in Fig. 10.

From equations (3.3) to (3.7) we see that the number of

multiply-adds for each output point or iteration is of an

order of N 2 or O(N 2 ). For N output points the number of

multiply-adds is thus of O(N 3). Because of this high

computational complexity this time domain nonlinear filter

is not widely used. A new frequency domain nonlinear

algorithm [13] achieves the same performance with an order

of N2 for N output points or O(N2 ).

I
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3.2.2. Measurement Results of a Nonlinear Model

For the nonlinear transhybrid response measurement we

use the same data collected as described in section 3.1.

Instead of using the linear adaptive filter to identify the

system, we use a new frequency domain nonlinear adaptive

filter as described in [131. This algorithm was chosen

because it has lower computational complexity and faster

convergence than the time domain nonlinear adaptive filter.

The results of the nonlinear system identification

algorithm are presented in figures 11, 12. Fig. 11 presents

the convergence behavior of the linear and nonlinear

frequency domain algorithms. The convergence behavior is

given in terms of signal-to-error ratio in dB versus number

of iterations. From the plots in Fig. 11 we see that the

linear algorithm achieves an average signal-to-error of

28 dB. In those results we used a filter of order 70--

higher orders did not achieve better results. Fig. 12

presents the actual two-dimensional response as identified

by the algorithm.

Those results were obtained from one hybrid, and we

don't know the average statistical behavior on different

hybrids. Since in the nonlinear algorithm we model only the

second order Volterra kernel, it is clear from our results

that the main nonlinearity in the hybrid is a second-order

nonlinearity.

Ii
4!
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The main conclusion from this experiment is that the

performances of linear echo-canceller are limited by the

nonlinearity of the hybrid. The main nonlinearity can be

modeled by a second-order Volterra kernel. If for certain

applications higher echo reduction than the one achieved by

linear algorithm is needed, one can use the nonlinear

frequency domain algorithm. The complexity of this

algorithm is of O(N), like the Widrow algorithm, where N is

the assumed order of the filter. We have to note that with

this new algorithm we solved the computation complexity but

not the problem of the large amount of memory needed. The

amount of memory needed is O(N 2 ) compared to O(N) in the

linear adaptive filter.

A
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4. Echo Cancelling Algorithms

In the study of echo cancelling algorithms for our

application, the main goal was to have an algorithm which

converges fast enough and still competes with the

implementation simplicity of the LMS algorithm. In our

application, a faster convergence is needed than in the

standard telephone line echo cancelling problem. From

experiments presented in Chapter 6, we observe that the

effect of the echo is much more destructive with the

presence of an LPC analyzer in the loop.

In our search for a fast and yet simple algorithm we

checked a number of new recursive adaptive algorithms,

proposed recently in the literature. We checked the simple

HARF (SHARF) [9] algorithm and the modified hyperstable

adaptive recursive filter MHARF (171. Those algorithms

perform very poorly as echo canceller algorithms; for that

reason they are not included in the final test-bed

simulation program.

The next step was to check nonrecursive adaptive

filters with similar complexity as the LMS algorithms. The

promising candidates were the gradient lattice algorithm (71

and a new frequency domain algorithm [8]. The gradient

lattice algorithm was attractive because of its faster

convergence, compared to the LMS algorithm, reported in the
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literature. The unconstrained frequency domain algorithm is

attractive because of the "pseudo-orthogonality" of the

input signal achieved through the use of the D.F.T.

The gradient lattice adaptive filter algorithm is well

documented in the literature. Since there are a number of

gradient lattice algorithms with minor differences in the

literature, we will describe only the gradient lattice

algorithm implemented in the test-bed simulation. The new

frequency algorithm inserted in the test-bed simulation will

be presented in more detail with its convergence rate

compared to the LMS algorithm by a simple system

identification simulation. After the presentation of the

adaptive algirithms inserted in the test-bed simulation we

will present the double talker detection algorithm

associated with each algorithm.

4.1 The Gradient Lattice Algorithm

The FIR lattice gradient algorithm is derived, as the

LMS algorithm, via mean square error minimization criterion.

The main difference is that in the gradient lattice

algorithm the adaptation is done in two stages. The first

stage consists of an adaptive Graham-Schmidt

orthogonalization of the input signal. The second stage is

a standard LMS algorithm under the assumption that the input

signal is already orthogonal. It has been shown that the

M
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gradient lattice achieves faster convergence than the LMS

algorithm for highly correllated stationary input signal

(7].

The block diagram of the algorithm is given in Fig. 13.

The equations controlling the different parameters of the

algorithm are given below.

x(n) - input signal to the adaptive filter

d(n) - desired response of the adaptive filter

b (n) = fi(n) = x(n).

The adaptive equations for the ith stage are:

K (n+l) = Ki(n) +

ai (n) (fii+l+ (n)bi (n-1) + b i+l (n)fi (n)) (4.1)
1

and
142

gi(n+l) = gi(n) + Pi(n) (ei (n)bi(n)); i=0,1,2...N (4.2)

where

ai (n ) = $o(n-1 ) + (1-8)(b 2 (n-l) + f2(n)] (4.3)

and

.2
Pi(n) = Pi(n-l) + (1-8) b2 (n) (4.4)

are the input power estimates at the i-th stage. The

reflection coefficient k(n) defines the predictor at

iteration n, and g(n) defines the filter gain at iteration

n. The variables f(n), b(n) and e(n) are the forward

prediction errors, backward prediction errors, and the

filter error for the i-th stage of the filter at iteration

0 i

, ,.. . .-L , .. ""*-:'":4 " 4.
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n. jI and 112 are the convergence constants, and a is the

energy smoothing constant.

This algorithm has been inserted in the test-bed

simulation program. The user can specify the order of the

adaptive filter N, the convergence constants p' 112 and the

energy smoothing constant B.

4.2 The Unconstrained Frequency Domain LMS Adaptive Filter

4.2.1. Introduction

A great effort has been made to develop efficient

spectral techniques based on the FFT. Many techniques have

been proposed [18,19,20,21] and although they achieve good

performance for very restricted applications, they converge

to a biased suboptimal solution. For instance, two earlier

frequency domain approaches by Dentino et al. [19] achieve

good performance as a line-enhancer, and the algorithm by

Watzner and Schwartz (211 is specially designed for the

isolated training pulse situation for which there is very

limited use. Although the use of frequency domain is very

attractive (because of the FFT), the key difficulty that has

prevented prior work o. adaptive filtering from being

effective is that the filter must perform linear

convolutions whereas the FFT is intrinsically suited for

circular convolution.
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Recently a more general frequency domain adaptive

filter algorithm (FLMS], which converges to the optimal

(Wiener) solution, was proposed by Ferrara [22]. The FLMS

is efficient for a large number of taps and can be used in

general adaptive filtering applications. However, the major

drawback of the FLMS algorithm is its slow convergence for

highly correlated input signals, as in the case of the time

domain LMS algorithm. The FLMS algorithm requires five

DFT's in every iteration, two of them are needed to impose

time domain constraint in which the last N points of the

time domain impulse response are made to be zero.

In this section we introduce a new frequency domain

adaptive filtering algorithm that converges to the optimal

Wiener solution without the need for any constraints. We

domonstrate that the proposed algorithm achieves both faster

convergence and reduced complexity compared to the FLMS

algorithm. This unconstrained frequency domain algorithm

(UFLMS) with normalized convergence constant, achieves

faster convergence for an input signal whose covariance

matrix has highly disparate eigenvalues.

The UFLMS is presented in section 4.2.2. In 4.2.3.

the algorithm with an adaptive convergence constant is

introduced and the performance of the UFLMS is compared to

the LMS algorithms in a system identification simulation.

In 4.2.4. the complexity of the proposed algorithm is

described in terms of number of multiply-adds and storage
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required. The proof of convergence of the UFLMS to the

Wiener solution is given in [81 and will not be given in

this report.

I4
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4.2.2. The Frequency Domain Adaptive Filter

To simplify the presentation of the frequency domain algor-

ithm, a brief review of the LMS algorithm (Fig. 14) will be given.

The LMS algorithm is a time domain adaptive filter. For each

iteration, the weights of the transversal filter wj are adapted

according to the equation

W+ = j + 2p e j xj (4.5)

where is the state vector of input samples stored in the adaptive

filter,

T (... f_ + ) (4 .6 )

The error at the jth iteration is e. and is defined by

e. d.- y. (4.7)

where

T
yj (4.8)

and d. is the desired response of the adaptive filter.

In the time domain adaptive filter, e and yj are scalars. In

the frequency domain adaptive filter the output of the filter and

the error are vectors. New definitions of the input/output are

needed in the frequency domain adaptive filter. Capital letters

I
II ' & I a-
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will denote the frequency domain variables, lower case letters, the

time domain variables and underlined letters denote vectors or mat-

rices.

The UFLMS algorithm is based on the well known "overlap-save"

method used in fast convolution [20]. To clarify the input/output

formulations and notations used in the derivation of the UFLMS

algorithm, we first introduce the "overlap-save" method using

matrix notation.

We assume that the order of the digital filter is less than or

equal to N + 1. We define a 2N impulse response vector h in the

following way:

h(i) = h(i) i = 0,1,...,N

h(i) = 0 i = N+I,...,2N-1 (4.9)

The input data stream x(n) is segmented into 2N point vectors with

N points of overlap in the following way:

XK(n) = x(kN + n) n = 0,1,..., 2N-1

K = 0, o (4.10)

Using the matrix notation of circular convolution and by dropping K

for simplicity in notation, the output vector Yk will be

o __ __ -
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Y2N-1 x(O) X(1) ...... x(2N-1) 0

Y2N-2 x(2N-1) x(O) x() . . .. x(2N-2) 0

Y2N-3 X(2N-2) . . . . . . . . . . . . 0

hN (4.11)

Yi hlI

YOX(1) X(2) x(O) h0

We can see from inspection that since the first N-1 points of

the vector h are zero, and the last N point in output vector y are

the result of linear convolution. In the "overlap-save" method

this matrix operation is done using FFT techniques which give a

high computational efficiency. We see that in each iteraton k we

have 2N data inputs and N data outputs, for that reason the input

data is overlapped by N points.

Now we will introduce different matrix operations that we will

use in the derivation of the UFLMS algorithm.

Notation and Definitions

Let f be a symmetric 2N x 2N matrix whose elements are F =

exp (-i (2n/2N) kj), kj = 0,1,...,2N-1, where i is the square root

of -1. When f operates on a column vector of order 2N the result

is a column vector representing the DFT of the original vector.

Let f be the inverse of matrix f, one can show that T1 is a

symmetric 2N x 2N matrix whose elements are F"1 = 1/2N exp(ikJ =

(2n/2N) kj). It can be shown that f and - have the following

properties:
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F = 2N -  and (Fl)t = 1/2N E, where t denotes the transpose

complex conjugate.

Let Ik be the circulant matrix defined by equation (4.10) and

(4.11) for the iteration k.

Now define:

X k =  F XkF "1
Xk xkF

since is a circulant matrix, Xk is a diagonal matrix whose

elements are the DFT output of the first row of the circulant

matrix Xk (for details see [25]). Using the properties of the

matrices fE and E-1 we have _ -1

Let h be a 2N x 2N windowing matrix whose lower N x N right

corner is the identity matrix:

13=

Q i

By inspection, _h h = h. We define

Since b is diagonal, t is a circulant matrix whose first row

is the inverse OFT of the vector (0...0 1 1 ... 1)

The following equalities hold for H_:
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H h FEbfI 3F 1 =hJf - E ,E (4.12)

t 1 (l)t E t F hF 1  =H (4.13)

Let g be a 2N x 2N real diagonal positive definite matrix, where

the elements on its diagonal represent the convergence constant for

each frequency in the UFLMS algorithms to be introduced later.

Let k' Wk' ,k' k be 2N point vectors representing the de-

sired response, the impulse response, the error vector and the

output vector in the time domain.

Finally, let 2k' k' [k' k be the 2N points OFT's of the

vectors dkV Wk' Sk' Xk respectively.

Using the above definitions and the block diagram of Fig. 15,

we can present the unconstrained frequency domain adaptive filter.

The configuration is based on the "overlap-save" technique [24].

The diagonal matrix Xk' derived from the OFT of the 2N point input

vector at iteration k, is multiplied by k' the OFT of the impulse

response, to give the output Yk'

lk = lk Wk (4.14)

The OFT output in the time domain is

k k Wk (4.15)

I k~
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The error in the time domain before windowing is

e= dk -k .(4.16)

According to the "overlap-save" method, when the filter length is

N+1 only the last N points of Yk are the result of a linear convo-

lution; then the vector error output must be windowed by b to give

Sk = k - Xk) 
= h ( k  - 1 Xk Wk) (4.17)

Since we want to adapt the coefficients in the frequency domain, we

take the DFT of equation (4.17) by multiplying both sides by f,

9k = _E 9k = E b (d k  E-__"  
k Wk )

-k = E 1 (= d k  E E Ak Wk)

9k = b ( k - Ak Wk )  (4.18)

To derive the adaptive algorithm, we can follow the same steps used

to derive the LMS algorithm. Assuming that the input signal is

stationary and the identified system is time-invariant, we can

show that the expected value of the squared error e I -k 2 is

quadratic in Wk.  By using the gradient method, the algorithm will

converge to some _* that achieves the minimum mean square error.

The squared error at each iteration is
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k2  Et k t_ tX t) t H (" XW (4.19)

as H is symmetric and idempotent

k 2 = t - t f At ) H ( k W( .0
9k k -k -k = -fk~ k A (420

Assume for now that the weight vector Wk is independent of k"

This assumption serves only to motivate the design of the algorithm

and is not used in the convergence proof which follows later. The

expected squared error will be

+tt

Wk CXk -H -k Wk (4.21)

where c denotes expectea value.

Equation (4.21) is quadratic in Wk The optimal vector W" is

obtained by setting the gradient with respect to Wk equal to zero,

1 2~a t eI H 0 X (4.22)!-kk MH 1-0 +2 k  --W = 0

The UFLMS algorithm uses the gradient method to solve equation

(4.22). According to this method the "next" weight vector Wk+1 is

equal to the present weight vector Nk plus an increment propor-

tional to the negative gradient,

Wk+1 Wk" k (4.23)

I
I
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In the UFLMS algorithm the gradient vector is estimated by its

instantaneous value at iteration k. As in the LMS algorithm this

instantaneous gradient is used to approximate the real gradient.

From equation (4.22) the equation controlling the filter weights

will be

=k+1 = Wk + 2 -k (= -k -k k) ' (4.24)

or by using (4.18), equation (4.24) becomes

Wk+1 = Wk + 2 4Ek (4.25)

where the diagonal matrix g is the convergence constant as in the

LMS algorithm. As we shall see, we can choose different conver-

gence constants for different frequencies.

In [8] we prove that the adaptive filter is stable if p(i,i)

is bounded by the maximum of (Xk(i i)2 for all k. Here we present

the algorithm in a simplistic way; in [8] we proved that the algo-

rithms converge to the optimal solution under the following condi-

tions.

1. The input singal to the adaptive signal is ergodic,

stationary and bounded.

2. The covariance matrix of the input signal has at least

rank N+1.

3. The identified system is time invariant.

4. The order of the identified system is less than or equal

to N+1.
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4.2.3. Simulation results

From (8], we have to choose 0 < pii < 1/Mi, where M. is the
l1

upper bound for the energy at frequency i. Since in practical

applications, we do not know those bounds, we choose to estimate Mi

by normalizing a constant convergence factor a by an estimate of

the energy at the i-th frequency. This normalization is similar to

the process used in the lattice adaptive filter [7]:

k+i(i)  k , (4.26)

where

z(i) k = (1 - ) z(i) k-1 + AXk(i) Xk(i) (4.27)

where i is the frequency index, a is the normalized convergence

factor for all the frequencies and p is the energy smoothing con-

stant for all frequencies. As in the lattice adaptive filter

algorithm, different smoothing and normalization algorithms can be

applied depending on the applications.

To illustrate the rapid convergence rate of the UFLMS algor-

ithm for highly correlated input signal, two simulations of system

identification are discussed, one with uncorrelated input signal

and the other with a highly correlated signal.

A 32 weight F.I.R. filter was chosen as the system to be

identified, with the actual values of the impulse response given in

I
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NUMERATOR DENOMINATOR
1 0.230847E+00 0.100000E+01
2 -0.102171E-00 0.OOOOOOE+00
3 0.383698E-01 0.OOOOOOE+00
4 -0.295674E-01 0.OOOOOOE+O0
5 -0.575074E-02 0.OOOOOOE+0O
6 -0.693523E-02 0.OOOOOOE+00
7 -0.295320E-01 0.OOOOOOE+00
8 -0.690188E-02 0.OOOOOOE+00
9 -O.503678E-01 0.OOOOOOE+00

10 0.102334E-01 0.OOOOOOE+OO
11 -0.448287E-01 0.OOOOOOE+0O
12 -0.354443E-01 0.OOOOOOE+00
13 -0.331595E-01 0.OOOOOOE+00
14 0.515750E-02 0.OOOOOOE+Q0
15 -0.419697E-01 0.OOOOOOE+00
16 0.518027E-02 0.OOOOOOE+0O
17 -0.163817E-01 0.OOOOOOE+00
18 -0.926803E-02 0.OOOOOOE+00
19 -0.896433E-03 0.OOOOOOE+00
20 -0.948155E-02 0.OOOOOOE+00
21 -0.180632E-02 O.OOOOOOE+00
22 -0.774926E-03 0.OOOOOOE+O0
23 -0.647487E-02 0.OOOOOOE+00
24 0.329426E-02 0.OOOOOOE+OO
25 -0.438749E-02 0.OOOOOOE+0O
26 0.927637E-03 0.OOOOOOE+0O
27 -0.200423E-04 0.OOOOOOE+O0
28 -O.152551E-02 0.OOOOOOE+0O
29 0.340074E-02 O.OOOOOOE+0O
30 -0.310239E-02 0.OOOOOOE+00
31 0.551548E-02 0.00000EOO0
32 -0.336223E-02 0.OOOOOOE+00

TABLE 1. COEFFICIENTS OF 31-TH ORDER ALL
ZERO FILTER (FIR)
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Table 1. This F.I.R. filter approximate a transhybrid response

(26]. In the first experiment, the input signal x(n) was white

random noise uniformly distributed between -1000 and 1000. The

desired response dk was the result of the convolution of x(n) with

the F.I.R. filter. Since dk in our simulation was transformed back

from floating to integer representation, the additive noise in this

simulation was the quantization noise. Figure 16 presents the

block diagram of the computer simulation.

In Fig. 17, we have the convergence of UFLMS and LMS algo-

rithms, presented as the S/N in dB between the energy in the de-

sired response signal to the error signal. We see that both al-

gorithms have almost the same convergence rate as expected from the

discussion in (8]. For the LMS algorithm a p of 0.1 x 10- was

chosen to achieve the fastest convergence rate. In the UFLMS

algorithm a = 0.4 and B = 0.8 were chosen tc achieve the same

misadjustment error as in the LMS algorithm.

In the second experiment, the input signal was changed to a

highly correlated signal by passing the same white noise from the

first experiment through a 12th order all pole filter; the co-

efficients of the filter are given in Table 2. The motivation was

to produce a highly correlated signal and with this filter a

Xmax Amin of 20 was achieved.

In Fig. 18 the convergence rate with the correlated signal is

given for the LMS and UFLMS algorithms. We notice that the con-

vergence of the UFLMS is almost the same as with correlated signal

as with the uncorrelated signal. The LMS algorithm has slow
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NUMER~ATOR DENOMINATOR
1 0.100000E+01 0.100000E+01
2 0.OOOOOOE+O0 -0.146034E+01
3 0.OOOOOOE+0O 0.126638E+01
4 0.000000E+00 -0.850541E+00
5 0.OOOOOOE+00 0.629542E+00
6 O.000000E-00 -0.497503E+00
7 0.OOOOOOE+OO 0.273701E+00
8 0.OOOOOOE+00 -0.168227E+00
9 0.OOOOOOE+00 0.257914E+00

10 0.OOOOOOE+00 -0.238396E+00
L1 O.OOOOOOE+00 0.508109E+00
12 0.OOOOOOE+O0 -0.379440E+00
13 0.OOOOOOE+0O 0.204267E+00

* ITABLE 2. COEFFICIENTS OF 12-TH ORDER ALL
POLES FILTER

6m&
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covergence with the highly correlated signal. For the LMS algo-

rithm a p = 0.2 x 10- 7 was chosen to achieve the fastest conver-

gence possible, for the UFLMS algorithm a a = 0.09 and ( = 0.8 were

chosen to achieve the same misadjustment error. These simulation

results illustrate the advantage of the UFLMS algorithm for highly

correlated signals over the LMS algorithm.
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4.2.4. Complexity of the Algorithm

For large N (filter length -1) the algorithm is very effi-

cient. To filter N points the conventional LMS algorithm requires

N iterations or 2N(N+1) real multiplies. For the same N points,

the UFLMS algorithm requires three FFT's of 2N real data points,

two 2N complex multiplies and two 2N real multiplies. For real

input data, the output of the FFT is conjugate symmetric so that

only the first N+I values need be updated. Furthermore, for real

data, the 2N point FFT can be realized with an N point FFT and N

complex multiplies using an array of N complex points. Each N

point FFT requires N/2 log N/2 complex multiplies. Therefore, the

number of complex multiplies per block will be 3(N/2 log N/2 + N)

for the three FFT's, 2N complex multiplies for the complex weight-

ing and adaptation, and 2N real multiplies for the convergence

constants. For the adaptive convergence constant 5N additional

real multiplies are required.

Assuming one complex multiply is equivalent to 4 real mul-

tiplies, the ratio y between the UFLMS real multiplies and the LMS

real multiplies will be

3 log N + 11

Y N (4.28)

for constant convergence factor and

2 3 log N + 13.5
YN (4.29)

I
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for the adaptive convergence factor. This ratio is computed for

several values of N in the following table

N Y1 Y2

16 1.25 1.4

32 0.72 0.8

64 0.4 0.44

128 0.22 0.24

256 0.12 0.13

512 0.068 0.072

1024 0.037 0.039

From the table we see that for N = 32 the proposed algorithm is

already more efficient than the LMS algorithm.

The UFLMS algorithm requires 3 real arrays of 2N points each

for the three FFT's and one 2N real data array for the filter co-

efficients. For the adaptive convergence factor one more array of

N real data points is needed. The sine table for the FFT needs an

array of N/4 real data points. Overall we need about 8N points of

memory compared to only 2N in the LMS algorithm.

We see that what we gain in computation we lose in memory.

For special purpose hardware the proposed algorithm is even more

efficient since we are working on block operations which can be

done very efficiently with array processors.

I
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4.3. The Double Talker Algorithm

The function of the double talker is to detect the

presence of near end talker voice input, so that adaptation

in the adaptive filter can be halted when a near end talker

is detected to avoid adapting the coefficients in the wrong

direction. Basically, the double talker detector measures

the energy at both points at the four-wire side of the

hybrid, and when the energy ratio between the four-wire

transmit and receive side exceeds a certain threshold, the

algorithm decides that near end talker input is present.

For the LMS and the gradient lattice algorithm a simple

double talker detection algorithm taken from (61 is used.

It compares the output signal d(n) of the hybrid with the

input signal x(n) of the hybrid over the L preceding sample

points. If the signal d(n) is greater than one-third the

largest absolute (in magnitude) value of x(n) over L

preceding sample points, double talking is 'detected". The

number L is the number of the impulse response of the

transhybrid function, chosen by the user. In the simulation

test-bed the user can specify the threshold for the double

talker algorithm. In our simulations we set the threshold

to 9 dB under the assumption (which is true in our

simulation) that the transhybrid loss is at least 9 dB.

Since the frequency domain algorithm is a block type

algorithm, a slight modification has been made in theI
!
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double talker algorithm. In the frequency domain algorithm

each block of N points is processed at the same time and the

input data is overlapped so that in each block we get M new

points when M < N/2. For each new input point the double

talker algorithm works in the same mode as for the LMS

algorithm, but the decision to adapt or not is based on M

decisions at the same time. In the algorithm that we use,

if there is more than one double talker decision in the M

new points, a double talker flag is applied to the entire

block.

In the double talker algorithm we have a double thres-

hold option. One option is the threshold for the individual

or point threshold as in the LMS algorithm. The second

threshold is the number of double talker events in one block

of points. In the simulation we ran, the first threshold

was 9 dB, and the second threshold was more than one double

talker decision in the M points. These thresholds were

found experimentally.

i
I
I
I

I
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5. Improved LPC Analyzer
For Large Dynamic Range Signals

5.1 Introduction

In this section we discuss the possibility of using an

Automatic Gain Control (AGC) in the full duplex channel with

a vocoder in the loop. The main purpose of the AGC is to

enhance the quality of the synthesized speech in low level

signals. A low level signal can be caused either by line

loss, which can be as high as 15-20 dB [3] for a long

distance line, or by the speaker articulation.

Fig. 3 shows a block diagram pertaining to the

simulation of a full-duplex telephone with a vocoder in the

loop. This block diagram includes the A/D and D/A units,

the echo canceller, the anlyzer and synthesizer, and a

digital simulation of the hybrid for the 2-wire to 4-wire

conversion. The best place to introduce the AGC is before

the A/D unit. Since the AGC must be an analog device which

is highly nonlinear, its interaction with other components

must be carefully examined--especially with the hybrid and

the echo canceller. In Subsection 5.2 we discuss the

problems that arise from such interaction.

Since the main conclusion of Subsection 5.2 is that the

AGC performance becomes very complicated when interacting

with other components, we chose in Subsection 5.3 to work

I
I
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directly on the improvement of the LPC analyzer for a low

level signal. In Section 5.4 we describe an xperiment in

which good quality telephone line speech has been achieved

over a dynamic range of 30 dB, using the algorithm described

in Section 5.3.

5.2 AGC Interfacing Problems

To analyze the effect of an AGC on the full-duplex

system (Fig. 19) in an attempt to achieve better synthesis

quality, some characteristic parameters of the AGC must

first be defined. In the current case--an AGC followed by

an A/D converter and an LPC analyzer--standard AGC

parameters are:

1) Dynamic range of 30 to 40 dB: this parameter is

necessary in offsetting the losses due to telephone lines

which may be as high as 20 dB [3], and the naturally

occuring energy variations due to articulation.

2) Fast response time of 10 to 30 msec: this is the

time for the AGC to change from a high gain to a low gain.

This fast response time is required to avoid overload upon

precipitous high level input signals.

3) Slow release time of 0.5 to 1 sec: this is the time

for the AGC to change from a low gain to a high gain. This

slow response time is necessary to track the speech

intonation.
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The analysis of the system with such an AGC is very

complex. From Fig. 19 we see that because of the hybrid

leakage we have a closed feedback loop which may become

unstable. The main difficulties in analyzing this closed

loop system come from the nonlinearities of the LPC

analyzer and the AGC, and the dynamic behavior of the echo

canceller. Even more complexity is added from the

adaptation of the echo canceller being frozen during

simultaneous double talker conversation. To simplify the

analysis we will check conditions for stability of the

system without the echo canceller, and then analyze the

effect of the AGC on the performance of the echo canceller.

It can be shown that stability of the system without the

echo canceller and stability of the echo canceller with the

AGC assures the stability of the system under normal

conditions.

5.2.1 Stability of the System Without Echo Canceller

To check conditions for stability without the echo

canceller we may use the block diagram of Fig. 19. In this

figure the transhybrid responses of the near-end and far-end

talkers are represented respectively by H1 (z) and H2 (z).

The block diagram includes the AGC, the A/D and D/A

converters, the LPC analyzer/synthesizer, and the satellite

delays. Since the LPC analyzer is nonlinear we cannot use

I
4.:
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standard linear techniques to check stability of the system.

However, we may use the Lp stability condition theorem [231

for the purpose (where sufficient conditions for stability

require that the over-all closed loop gain be less than 1).

Since the system is more complex when we include the echo

canceller in the loop, this sufficient criterion assures the

stability of the system. To simplify the analysis, we

replace the transhybrid response H (z) and H2 (z) by a

constant gain a1 and a2 for the hybrids, respectively, which

in the worst case can be as high as -6 dB. If we use an AGC

with dynamic range of 30 dB, unstability may occur since the

over-all loop gain can be as high as 48 dB in the worst

case. If GAGC is the AGC gain in dB for both sides and a1

and a 2 are the worst case leakage in dB for the hybrids, the

overall closed loop gain will be

GCL 2 2GAGC + + a2  (5.1)

To assure stability of the system we must add some loss

in the closed loop system to compensate for the high AGC

gain. Since the main function of the AGC is to maintain a

high signal to quantization noise ratio at the input to the

analyzer, the loss must be introduced after the analyzer

along the transmitting path. In fact, the best place to

insert this loss is after the synthesizer. The information

about the amount of loss needed can be obtained from the AGC

gain, and transmitted digitally through the channel along

-7
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with the information from the analyer. Fig. 20 represents a

block diagram which inludes an analog controlled loss after

the synthesizer. An analog instead of digital loss is

suggested to maintain low quantization noise for low level

signals at the synthesizer output. An accuracy of 3 dB in

the controlled loss is enough to assure stability since a

6 dB minimum loss comes from each hybrid, yielding a singing

margin of 6 dB for the system in the worst case (See NSC

Note 139 for definitions) [4]. Therefore, an additional 4

-bits per frame are needed to transfer the AGC information to

the controlled loss through the channel. Since the

information from the LPC is transmitted for every frame, the

AGC gain information must also be sent for every frame.

Therefore, the change in the AGC gain must occur on frame

boundaries only.

A partial conclusion from the discussion so far is that

an AGC can be introduced as shown in Fig. 20 under the

following conditions:

1. A gain change in the AGC, can occur at frame

boundaries only.

2. A 4 bits quantization of the AGC gain must be

transmitted through the channel for an analog

controlled loss.

In the next section we analyze the effect of the AGC on the

echo canceller.

I
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5.2.2 AGC--Echo Canceller Interaction

From the last section we saw that an AGC, with a fast

response time of 22 msec (frame size), can be incorporated

into the system and can have a dynamic range of 40 dB

without causing stability problems. The question then is

how such an AGC affects the performance of the echo

canceller. In Fig. 21 we show a block diagram which

includes the hybrid, the AGC, A/D and the echo canceller

with a double talker detector. To achieve good performance

from the echo canceller, the adaptive filter must compensate

for the transhybrid response plus the instantaneous gain of

the AGC. Since we have the information about the

instantaneous gain of the AGC, this information can be

incorporated into the adaptive filter. The same gain

information can be used by the double talker algorithm to

compensate for the gain introduced by the AGC.

In the ideal case, where the compensation in the two

cases is exact and under the assumption that the hybrid is

linear, there is no interaction problem and, as a result,

the echo canceller will have the same performance with or

without the AGC. Practically, however, we have to be

concerned about how an error in the compensation and

non-linearity in the hybrid will affect the performance of

the echo cancelior.

A straightforward calculation of the effect of a gain
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error on echo cancelling performance will give us the

following result: an error of 1% in gain will limit the echo

reduction to a maximum of 40 dB. During the adaptation

phase the echo canceller will try to compensate for this

error each time the gain is changed, but during a double

talker situation the adaptation is frozen and the maximum

echo reduction in this case is limited to 40 dB.

We assumed so far that the hybrid is linear and can be

modeled by a linear filter. From measurements of the

transhybrid response [13], we found that a linear filter

approximates the transhybrid response only up to 25-28 dB;

this means that with a linear adaptive filter the maximum

echo reduction can be 25 to 28 dB. From those measuremenLs

we found also that a second-order Volterra series can

achieve 8 dB more echo reduction [13]. In a system without

AGC the maximum level of the echo will be given by the dB

sum of the transhybrid loss and the maximum attainable echo

reduction. In the worst case the transhybrid loss is 6 dB,

and if we add to it the maximum echo reduction of 28 dB we

see that the maximum level of the echo becomes -34 dB. When

we introduce an AGC in the loop, the gain of the AGC must be

added also. Tf, for example, the gain is 20 dB, the maximum

level of the echo will be -14 dB, which is intolerable for

long distance calls.

A conclusion from the above discussion is that a

complex AGC with special specifications can solve the

I
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oscillation problems and achieve a low quantization noise

for low level signals at the LPC analyzer input. However,

such an AGC will reduce the echo-reduction achieved by the

echo canceller algorithm to an unacceptable level. This

loss in the echo-reduction performance is due mainly to the

non-linearity of the hybrid.

In the next section we present a different approach to

solving the same problem by directly improving the existing

LPC analyzer to peform better for larger dynamic ranges.

5.3 Pitch and Voicing Algorithm Improvement

Pitch and voicing estimation is probably one of the

most difficult and challenging problems in speech analysis

for narrow band voice coding. It is even more difficult to

design an algorithm that will work well for speech signals

which have a very wide dynamic range. Although we have

shown in a previous note (111 that the cepstrally based

pitch and voicing estimation method gives accurate pitch and

voicing analysis results and is particularly robust in a

noisy environment, substantial degradation in the voicing

decision was recently found when it was applied to speech

signals of extremely low level with peak amplitude of the

order of 5-6 bits. In this section we try to improve the

algorithm used for dealing with extremely low level signals.

In this section we describe the modifications made to

!
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the original algorithm [11] and report in the next section

experimental results of applying the modified algorithm to

speech segments with abrupt changes of over 20 dB in signal

level. Significant improvement in performance will be shown

and its effect in Wideband Integrated Network Communication

will be discussed.

5.3.1 Modifications

As reported in [11], four parameters are used in making

the voicing decision--the first reflection coefficient, the

energy parameter, the zero crossing rate, and the cepstral

peak value. These parameters and the voicing decision logic

that uses these parameters are the focus of the

modifications which are listed below:

A) The first reflection coefficient (Ki)

The first reflection coefficient appears to be the

parameter least affected by inadequate signal level.

However, it is desirable to use in voicing decision a

K1 that is obtained independently of analysis

conditions such as the pre-emphasis factor. Since K1

provides informtion on the first order spectral shape,

we prefer to use a K1 obtained from a signal that is

constantly pre-emphasized by a factor of 0.9. Such a

factor will lead to a rough voicing indication, in

general, a positive K1 for unvoiced frame and a

' -
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negative 1 for voiced frame. Unfortunately, such a

pre-emphasis factor may require extra signal processing

since the pre-emphasis factor in a general vocoder

analyzer may be differently specified. In order to

avoid introducing extra complexity in computing the 0.9

pre-emphasized Ki we use the following approximations.

Let x(n) and y(n) be the input sequence and the

pre-emphasized sequence with a factor of P,

respectively. That is,

y(n) = x(n)-p x (n-1) (5.2)

Expressing the first two autocorrelation terms of y(n)

in terms of the autocorrelation of x(n), we have

ry(O) - .Z y2 (n)

- ? x?*(n) - 2p Z x(n) x(n-l) + p2 Z x 2 (n-l)

- r (0 ) - 2prx (1 ) + p 2 r x (0)

- (l+p2 ) rx (o) -
2pr (1) (5.3)

and r y(1) = Z y(n)y(n+l)

- (l+p2)rx (1) - P[rx(2 ) + rx (0)] (5.4)

As a result, the first reflection coefficient K1

corresponding to sequence y(n) is

K - r () P[r X(2) + r x(0)] - (l+p2)rx(1)M5.5)

r y(O) (1+p?)r x (o) - 2pr x 1

yi
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In this case where P = 0.9.

0.9 [rx (2) + rx(0)] - 1.81 r x(1)
K1 =(5.6) 1.81 rx(0) - 1.8 rx(1)

This equation thus eliminates the need for an extra

pre-emphasis operation, and the Ki will be

approximately the first reflection coefficient

corresponding to a constantly pre-emphasized (with P =

0.9) data sequence for the pitch and voicing algorithm.

Another modification to Kl is in the normalization

of the parameter to a corresponding one with 8 KHz

sampling frequency. In (11], the normalization factor

is defined as

= (8000/fs) for all fs (5.7)

where f s is the sampling frequency (in Hz) of the data

to be analyzed. Such a normalization factor is

generally appropriate for fs >8 KHz due to the shape of

the autocorrelation function as illustrated in Fig. 22.

However, it is too far off for f 8 KHz., resulting in

I more voiced to unvoiced errors due to over-reduced Kl

score. We have found from experiment that a

* normalization factor of

I -T (8000/fs)1 / 3  (5.8)

is more suitable for fs>8 KHz. Such modification

significantly improvec the voicing decision for f >8

I
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KHz.

B) The Energy Parameter

The energy parameter should be carefully defined

particulary when the input level is low. More

experiments have found that the signal energy is more

appropriate in voicing decision than the residual

energy. Therefore, instead of the residual energy

which was used in (32], we now employ the signal

energy. Note that the energy parameter is a

complicated function of the energy term as discussed in

[11]. The simple change from the residual energy to

the signal energy has more complication than is implied

in the terms (refer to [11] for details).

As the signal energy is always higher than the

residual energy, the two terms RMSUV and RMSAVE, which

represent the smoothed unvoiced energy and the overall

energy contours, require a higher initial value. We

have found that a value of 512 (increased from the

previous 256) gives good results.

C) The Zero Crossing Rate

In (11], an integer bias term was used in the zero

crossing count. The bias term alternates its sign for

successive samples to avoid a very small zero crossing

rate when the signal is almost a constant. The term

was defined as

b - INT(RMSUV/128) + 4I
I
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where INT and RMSUV denote the truncation to integer

operation and the smoothed unvoiced energy

respectively.

Apparently, the integer operation and the constant

term "4" will cause problems in obtaining a reliable

zero crossing count when the signal level is low. In

particular, the constant term will lead to an excessive

zero crossing rate for low level signals resulting in

voiced to unvoiced errors. Deleting this constant term

in turn may yield a zero bias, due to the integer

- operation, that will result in a very small zero

crossing rate and an unvoiced to voiced error when the

signal is low.

The following modification is thus made:

b - RMSUV/128 (5.9)

By deleting the constant term and resorting to floating

point operation, a much more reliable zero crossing

count is obtained in dealing with low level signals.

D) Voicing Decision Logic

Only minor changes in the voicing decision logic

were made. The modification involves the non-linear

score for an extremely high or extremely low cepstral

peak, and is listed as follows:

i) ICX a 250 (was 180) when ICPT 60 and

ii) ICX - -200 (was -400) when ICPT 10 (was 19)

where ICPT and ICX denote the normalized cepstral peak
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value and the voicing score due to cepstral peak

respectively. It can be seen that the modification

emphasizes the voicing for high cepstral peaks and

softens the unvoicing override when the cepstral peak

is low, a case that may occur for a voiced frame when

the signal is low.

As will be demonstrated in the next section these

modifications greatly improve the voicing accuracy.

Also, the pitch accuracy at the same time is well

maintained as compared to the same signal of higher

level.

5.4 Experimental Results

To check the performances of the existing LPC analyz. r

on large dynamic range signals we set up the following

experiment. A speech sample 60 sec long was digitized by a

12-bit linear A/D and then analyzed and synthesized for

reference. Then the original speech data was divided in

three equal parts of 20 sec each. The first section

remained the same, the second section was divided by 8 and

the third section by 32. In this way we formed test speech

with more than 30 dB dynamic range. This test speech has

been analyzed and synthesized by both the existing LPC

algorithm and the improved algorithm described in the last

section. The synthesized speech from the existing LPC
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analyzer was highly distorted mainly because of errors in

voice/unvoice decisions. The improved pitch algorithm

achieves a fairly good synthesized speech without errors in

voice/unvoice decisions and the quality of the synthesized

speech was comparable to the original synthesis.

To illustrate the improvement in the voice/unvoice

detection algorithm, we created a new test speech segment.

This new test segment includes 60 speech frames. The first

20 frames were chosen from the original speech data, the

next 20 frames are the same first 20 frames but divided by

8, and the last 20 frames are the same first 20 frames

divided by 32. In the upper part of Fig. 23 we have the

display of this new test segment, and in the lower part we

show the synchronized pitch and voicing output using the

existing pitch algorithm. A number of voice/unvoice

detection errors at low level speech signal can be observed.

The corresponding pitch and voicing output of the test

segment using the improved algorithm is shown in the lowe-

part of Fig. 24. We can see that with the improved

algorithm no such errors occur.

To illustrate the effect of quantization noise on the

reflection coefficients we present Fig. 25. Fig. 25a

presents the smoothed LPC spectrum of 10 consecutive frames

of the original speech, and Fig. 25b presents the smoothed

LPC spectrum for the same frames with 18 dB lower signal to

quantization noise ratio, and Fig. 25c presents the smoothI
I
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power spectrum for the same frames with 30 dB lower signal

to quantization noise ratio. We can notice from the results

that the distortion introduced by the quantization noise is

fairly low. This confirms our results from informal

listening that the synthesized speech with the improved

pitch algorithm is fairly good for a large dynamic range in

speech input.

5.5 Conclusion

Our main conclusion from the study reported in this

section is that an improved analyzer, as introduced in this

note, solves the dynamic range problem at the LPC input

analyzer. This solution is much more efficient than an AGC

from both complexity and performance points of view.

Although an AGC looks intuitively actractive, a careful

check of its interaction with the entire system leads to the

conclusion that even a highly complex AGC still reduces the

performance of the echo cancelling algorithm.
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6. Experimental Results

6.1 Introduction

The main purpose in developing the test-bed simulation

was to check the efficiency of the algorithms described so

far in the context of the entire full-duplex network.

During the entire period of the project a lot of experiments

were run. In fact, every algorithm inserted in the test-bed

simulation was first tested by a special test program, and

the best parameters for the specific algorithm were chosen.

In this section we report those final experiments that were

done to check the interaction between a specific algorithm

and the full-duplex system, under real time conditions.

Since the decisions on algorithm parameters and their

efficiency are based on the subjective speech quality output

of the system, the description of the results will be more

qualitative.

The organization of this section is as follows. &rst

we describe the options available in the test-bed

simulation. Different network configurations can be

designed with these options. Then we present a number of

experiments done to check the following main points:

I
I
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1. Echo effect, on speech perception, as a function of

the delay length.

2. Effect of LPC vocoder in a full-duplex network

without echo canceller.

3. Performances of echo canceller algorithms without

vocoder in the loop.

4. Study of echo canceller algorithms with vocoder in

the loop.

5. Performances of echo canceller algorithms with

time-variant transhybrid response.

6.2 Test-bed Simulation Options

The test-bed simulation program is very flexible and by

means of "software switches" allows the user to choose

different configurations and different parameters for

various experiments.

The main options are:

with or without vocoder in the loop

with or without double-talker algorithm

with or without echo cancelling algorithm

By means of "software switches", we can choose one of four

different adaptive filter algorithms, we can choose

different hybrid responses or the kind of filter (IIR or FIR

I
.... _ _ i :~ m . -.
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filter as the transhybrid response). We can also make

experiments with one or both talkers active at the same

time.

Each algorithm can be controlled by a different

parameter. Part of the parameters are controlled through

the common array from the ILS system, other parameters are

introduced directly through the simulation program. By use

of these parameters the user can change the conditions or

thresholds of different algorithms.

6.3 Experimental Results

6.3.1 Experiment 1: Echo effect on speech perception
as a function of the delay length.

In this experiment we choose the "software switches" in

the test bed simulation so that we got a very simple model

which included only the programmable delay line and a simple

transhybrid loss. The transhybrid responses chosen in this

experiment were simple gain factors 81 and 82 , as in

Figure 26.

We ran the digitized sentences from two speakers,

collected in the same way as described in section 2.3.1. We

ran the same data with four different parameters: two

different parameters for the transhybrid response,

(81 - 82 - -5DB and -10 DB), and two different lengths for

the delay (L1 M L2 = 100 msec and 400 msec).

I
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By listening to the outputs, with all 4 different

combinations for 8i  and Li , it was perceptually apparent

that the effect of the echo was increased as L. increased1

from 100 msec to 400 msec; of course with higher loss for

the hybrid the effect of the echo decreased. However, with

the higher loss and longer delay, the perceptual effect of

the echo still increased. This result confirmed results

reported in the literature [3 ] on real satellite

communication telephone line. An interesting point to

notice is that even without the psychological effect of the

long delay on the talker's conversation, longer delay

increased the effect of the echo.

6.3.2 Experiment 2: Effect of LPC vocoder in the full
duplex network without echo canceller.

In this experiment the "software switches" were chosen

so that the full-duplex system includes a real simulation of

the transhybrid response represented by 64 points F.I.R.

filter, the LPC analyzers and synthesizers, and a

transmission delay time of 300 msec.

The digitized sentences from two speakers collected

from real telephone lines were used as input to the test-bed

simulation program. The sentences were specially chosen

such that a number of double talker situations occur. The

average transhybrid loss used in this simulation was 9 dB.

We ran the data with and without an LPC vocoder in the loop.

The main result from this test was that, with the same

CI1
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transhybrid response for both cases, the effect of the echo

was much more annoying with the vocoder than without the

vocoder. During double talkers situations, the distortions

introduced by the LPC analyzer were so high that

intelligibility was lost.

The conclusion from this test was that with a vocoder

in the loop a faster convergence rate is needed for the echo

cancelling algorithm.

6.3.3 Experiment 3: Performances of echo cancellers
without a vocoder.

The purpose of this experiment was to check the

performances of three adaptive filter algorithms--the LMS

algorithm, the gradient lattice algorithm and the

unconstrained frequency domain algorithm--as echo

cancellers. The test-bed simulation "software switches"

were chosen so that the full-duplex system would include the

transhybrid response, a transmission delay line of 300 msec

and one of the echo canceller algorithms mentioned above.

j In this experiment the double talker algorithm was active.

With each adaptive algorithm the test-bed simulation program

selected the appropriate double talker algorithm. The

double talker parameters, in this experiment, were selected

to get the best performance.

A digital conversation, between two speakers, was

collected over real telephone lines and run through the

test-bed simulation with the three different algorithms.

I
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The conversation was planned so that the far-end speaker was

silent during the beginning part of the conversation. The

output at the near-end side at the beginning of the

conversation is given in Figure 27, for different

conditions. Since the far-end speaker was silent at the

beginning of the conversation in Figure 27 we observe only

the returned echo at the near-end side. In Figure 27c we

observe the faster convergence of the unconstrained

frequency domain algorithm compared to the LMS Figure 27d

and gradient lattice algorithm Figure 27e. In this case the

UFLMS achieved 43 dB echo cancellation after 250 msec

compared to only 30 dB for the LMS algorithm after 250 msec

under the same conditions. However, both algorithms

converge to the same final echo cancellation of 50 dB.

With the lattice algorithm, the echo cancellation

obtained was 33 dB in 250 msec but the final echo

cancellation was 40 dB. The poor performance of the

gradient lattice algorithm can be seen in Figure 27d.

Faster convergence for the gradient lattice algorithm can be

achieved with higher value for the convergence constants but

serious distortion, such as transient spikes, was

introduced. The poor performance of the gradient lattice

technique is due to the non-stationary behavior of speech.

This conclusion is confirmed on large amounts of speech

data. For a short segment of speech fast convergence can be

achieved with the gradient lattice algorithm, but for long

4.J
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speech data, because of the speech non-stationarity, the

convergence constants must be chosen small enough to avoid

unstable behavior, or else the performance of the algorithm

may become very poor.

A conclusion from this experiment is that the UFLMS

achieves best performance in both fast convergence and final

amount of echo reduction after convergence. The lattice

algorithm has faster convergence than the LMS algorithm but

because of speech non-stationarity the algorithm does not

converge to the optimal solution.

6.3.4 Experiment 4: Performance of echo canceller
with an LPC vocoder in the loop.

The main purpose of this experiment was to check the

interaction between the LPC vocoder and the echo cancelling

algorithm. In this experiment we added the LPC analyzer and

synthesizer to the test-bed simulation set-up which was used

in the last experiment.

The last experiment has been repeated with the vocoder

in the loop. The results are given in Figure 28.

Figure 28a shows the near-end output in a free echo

condition; in fact, since there is no echo this is the

information sent by the far-end speaker, and we see that the

far-end talker is silent at the beginning of the

conversation. Figure 28b shows the output at the near-end

side when the system includes the transhybrid response but

not the echo canceller. Since the far-end talker is silent

!I
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at the beginning of the conversation, Figure 29b presents

the returned echo at the near-end side without the echo

canceller. Figure 28c presents the near-end output when the

LMS algorithm was used as the echo canceller. Figure 28d

presents the near-end output when the frequency domain

algorithm was used as the echo canceller; from this result

we observe the faster convergence of the UFLMS compared to

the Widrow algorithm. Figure 28e presents the near-end

output when the gradient lattice algorithm was used as the

echo canceller algorithm. From Figure 2 8e we observe the

poor performance of the gradient lattice algorithm. The

*interesting result was that with vocoder in the loop the

gradient lattice performs worse than without the vocoder in

the loop. Without the vocoder in the loop we could find a

convergent constant such that for a conversation of 30 sec

the adaptive filter was stable. With the vocoder in the

loop we could not find such convergence constants. With

every convergence constant some instability occurs in one

place or another. Only with very low convergence constants

was the adaptive filter stable; but then we had very poor

echo cancelling. It appears that the main reason for this

behavior of the gradient lattice algorithm is that the LPC

synthesizer output is much more nonstationary than the

original speech; the abrupt change of the prediction

coefficient every frame introduced spikes at the gradient

lattice output since the lattice algorithm is designed for



105

44

4-4
w 0

CL 0

z0

0 >

I 7''



106

stationary input.

In Figures 29a to 29e we have the same output at the

far-end output, we see that the results at the far-end

output behaves the same. The main result from this

experiment was that with the vocoder in the loop, the

frequency domain algorithm has better performance than the

LMS algorithm and that the lattice algorithm cannot be used

at all in our application.

6.3.5 Experiment 5: Performance of echo cancellers with
time-variant transhybrid response.

In the experiments presented so far the transhybrid

response was fixed during all the experiments. As explained

earlier the transhybrid response library includes 14

different loading conditions. In the test-bed simulation

program there is a "software switch" for time variant

transhybrid response. By activating this switch the user

can specify a time interval T so that every T seconds the

transhybrid response is changed successively from the

library.

In this experiment we use the time variable switch with

T - 1 sec and run a conversation of 50 sec through the

test-bed simulation with the LMS and the UFLMS algorithms.

The results of this experiment are given in Figure 30-33.

Figure 30 and 31 show the near-end and far-end outputs

with the LMS algorithm. Figure 30 presents the results with

constant transhybrid response, Figure 31 presents the

!
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I results with the dynamic transhybrid. It is clear from

those results that for such conditions the LMS algorithm did

not achieve good echo reduction. From those figures we can

I observe the high echo in Figure 31 compared to the low echo

in Figure 30 after convergence.

I Those results were obtained with a convergence factor

of U _ 0.1+10 - 7, which was the highest convergence constant

I possible without a stability problem. An interesting point

I to note here is that with constant transhybrid response the

highest convergent constant was = 1.1+106; this means that

I the time-variance of the transhybrid response forces us to

use a lower convergence constant which means slow time

convergence.

Figure 32 and 33 shows the same output for the

I frequency domain algorithm. Figure 32 shows the near and

far-end output with constant transhybrid response, Figure 33

shows the same outputs with time-variable transhybrid

response. From these results we see that the frequency

domain algorithm, because of its fast convergence, has

almost the same performance for time variable transhybrid

response. An important point to notice is that in both

cases we used the same convergence constants (0.2 for the

convergence constant and 0.9 for the power smoothing

constant).

i In summary, conversation of 50 sec length has been

passed through the full duplex channel with time variant

I
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transhybrid response with both the LMS and the UFLMS

algorithms. The test-bed simulation outputs at both ends of

the full-duplex channel has been recorded. From listening

to those outputs the superior behavior of the frequency

domain algorithm is clear. This conversation contains a

number of situations where both speakers talk

simultaneously. In these situations we can observe the

distortion introduced with the LMS algorithm compared to the

good speech quality achieved by the UFLMS algorithm.

"
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Summary

During this program a full-scale testbed simulation of

the interfacing of a telephone to the wideband integrated

network was completed. This simulation includes the use of

different types of echo cancelling algorithms and an LPC

vocoder, and allows for other studies to be carried on.

Echo cancelling algorithms were studied with a number

of interesting conclusions. Because of the non-stationarity

of the speech signals, made more so by the vocoder, standard

LMS algorithms mnd lattice techniques are not adequate

because of their convergence properties. With the vocoder

in the loop, convergence must be faster than without the

vocoder, because synthetic speech signals are not so rich in

components as are the actual speech signals. An

unconstrained frequency domain adaptive filter algorithm was

the most effective.

The echo cancelling is limited by the nonlinearities of

the system. It was found tht a nonlinear adaptive filter

could reduce the signal-to-noise ratio by a few more dB when

used with a stationary system (the hybrid and line

characteristics remain fixed). Further study would be

needed before such a nonlinear adaptive filter should be

used in a dynamic situation.

The possible use of an AGC in the system was studied,

I
I
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and it was concluded that the AGC would cause more problems

than it would help. The dynamic range problem of the analog

signals is greatly reduced by improving the pitch and

voicing detection algorithms.

The next step should be the breadboarding of a real

time system to be tested in realistic situations which might

show up problems not seen in a simulation.

I

I

I
I

I
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