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Application of Ti.e-Resolved Laser Spectroscopies
to the Study of Energetic Materials - 198]

Summary Report

I. Introduction

This report describes recent progress in NRL's research involving the
application of advanced spectroscopies to the study of energetic materials.
This program is currently jointly funded by the Office of Naval Research and
the Naval Research Laboratory as part of their collaborative Special Focus
Program in the area of energetic materials.

The goal of this initial spectroscopic studies are to provide the
appropriate species identification protocols suitable for the study of fast
energetic reactions stimulated by light, heat, and/or shock.

One of the major objectives of this Special Focus Program is to identitvy
and characterize the important initial stages of energetic reactions as a
function of initiation mode. 1In order to do this, techaniques must be
developed to observe the critical chemical fragments in the required time
scales [e.g. 10711 sec) and to elucidate the kinetics, Using these data
attempts will be made to modify and control the course of the observed
energetic reactions,,

The initial species identification experiments have been performed in the
Short Pulse Section of the Optical Probes Branch {Code 651N] at NRL.
Collaboration with the Chemistry Departuents of Georgetown Universityv, Johns
Hopkins University and Washington State i'miversity, have been quite useful to
the program during the past vear,

11. Progress FY 81

The time definition iaherent in picosecond pulse excitation enables the
near-iastantaneous deposition of eneryy into the nolecular system hefore
secondary redctions or collisions can occur. As a consequence of the high
optical flux densities obtainable from our short pulse lasers, we can readity
excite molecular systeas through either sinple or multiphoton absorption

processes,

Unimolecular processes are of interest in regard to the determination of
primary photo-induced eveats. There are amany questions about animolecular
photodissociation which are likely to be answered through the application of
recently developed short pulse techniques. For isolation of specifically

Manuseript submitted December 17, 1081




r——————-——-—-——-—————-——-—-—-———r

unimolecular and early collisional processes, we have been performing 4
experiments on a variety of simple gas-phase organic molecules. (Table 1) 1
Table 1

GASES EMISSIVE SPECIES/STATES

CH3HU» Cy dd, ady el al

CoH) CN Bt - x20t

CH3CN CH A2y > X27

CHoCO Hy, H» Balmer Series

o c 3lpo 5 2lg

CHy ct 32p0 » 223

HCN 0 3% » 3355 3% 335 1

A. Acetylene

Extensive data have been collected for short pulse uv photolysis
(25 ps, 266 om, 10 mJ) of CyHy. The dominant emissive fragment product is the
carbon diradical, Cy d3lg, and its consequent Swan emission (d3, - a3fd). The
characteristic approaches which we have developed fix upon individual species
isolated spectroscopically and detected in emission. Our results have given
conclusive evidence that the lowest order process yielding emissive Cp7 is
unimolecular and occurs in less than a nanosecond. Streak camera data
indicate a grow-in time for this fragmeut of about 200 picoseconds. The
unimolecular nature of the process was confirmed by perforuing isotopic
labeling experiments utilizing mixtures of 1202H2 and HCgH). “mission
characteristic of the collisionally produced fragment (12¢ T*C)* was sought,
but very little signal attributable to this species was observed at early times
of less than a few nanoseconds. After several nanoseconds, a grow in of the
(12¢ 13¢)* fragment was detected.

Thus C2* also is produced intermolecularly from fragments of acetylene {n
secondary processes that are exhausted within several nanovseconds (~ 7ns at
5 torr). This development must be regarded as fast on the scale of collision
‘ rates, although it (s readily observed by our instrumentation, The collision
! partners in this CZ* formation process appear to be pairs of excited o
radicals., FEmission spectra from CH A7 have been ohserved. Thesc spectra
exhibit parent quenching with ko ~ 3 X 1n~19 sec™l, which is typical for
radicals and/or excited electronic states. (Normal molecules give
substantially lower rates.) FEmploying the hypothesis of a collisional
formation rate proportional to (CH*)2 and considering known Cz* decay rates,
the CI* emission time profiles indicate that these are pertinent rates of
precursor exhaustion,




B. Carbon Monoxide

Co a3, is also formed upon the irrvadiation of CO with intense picosecond
pulses at 266 am, The processes involved in the formation of €y from CO are
clearly different from those for other molecules studies, e.,g, acetylene,
acetonitrile, ketene, methane, etc. There {s in fact an extensive literature
on related observations of €, Swan emission from CO parents. The anomalous
features in the emission spectrum, first reported by Fowler some 70 years ago,
have attracted repeated spectroscopic and kinetic studies. There has,
however, been a deficiency in temporal studies, probably due to lack of
instrumental capability,

The most striking feature that is observed is a4 strong relative
enhancement of V' = 6 in the Swan spectrum. This is not quite unique to Cn,
having been also observed in CHy and flames. Our time resolved studies reveal
that Swan excitation occurs through distinct early and late processes,
However, even the early process produces emission protracted far beyoud the
radiation lieftime of 1200 ns. The late process endures for over 20 us and is
not affected by pressure., 1In addition, we have demonstrated that it is the
late process which is exclusively responsible for the v =6 enhancenent; the
early process yields a vibrational distrihution tvpical of the other parent
species listed above,

Our results are consistant with a hypothesis that resonant curve crossing
within Cz* is responsible for V' = 6 enhancement; indeed a single-triplet
transfer Tla, » d31 may even account for 20 us delays., Protracted
chemiluminescence from such a simple parent as €O is quite unusual and was aot
expected,

C. Acetonitrile

The temporal profiles of fragment emission from CH3CN have been obtained.
Both the Gy d3ﬂ’ Swan and the CN BZ27+ violet Systems have been observed., The
populations develop with characteristic pressure dependent formation rates
which are linear in pressure and linear {n additive methane., Alternative
kinetic hypothesis are:

i. Initial two~-quantum excitation of a bound state of the pareat, 314"D, and
subsequent predissociation thcough competing unimolecular and collisional
processes.,

ii. Prouwpt scission yielding CN fragments in the ground electronic state X2t
put with very high levels concomitant vibration (a 'dark channel')
extending above the emissive B state., This would then be followed by
collisional crossing to the B state - essentially an inverse conversion,
There {s some basis for such an hypothesis in observations and
interpetations within the literature and in some ohservations of our own,

We are currently studying Lsotogic materials 12CH313CIQN, lZCHgllC[7N,
and 13CH313C14N, as well as normal l-CH312C1"‘N. With these compounds we
expect to obtain valuable information similar to that found with acetylene,
For tastance, we believe that the CN fragment derives only froa the cvano
group of the parent and that the £y fragment originates from carbons ia the
parent methyl zroups. Preliminary work with HCN indicates that € is not
formed, though CN is abundent,
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D+ Photolysis of Gas-Phase Nitromethane

While the single beam experiments described previously have proven to be
quite fruitful in elucidating processes involving excited-state products, they
provide no information about the non emissive ground-state fragments. These
fragments might well be the major products of the fast energetic reaction
under study. As a consequence, a two-beam excite and probe experiment has
been undertaken during the past year, The experiment utilizes a Nd:phosphate
#lass laser system in which the 4th harmonic at 264 nm dissociates the
molecule under investigation and a second beam at 527 nm probes for the
absorption of the fragments utillzing the technique of laser-induced
fluorescence, The laser system was perfected during the past year and has
been applied to study the gas-phase photolysis of nitromethane,

The fluorescence signature of the expected N0y fragment was first
determined in NO5 vapor before attempting the nitromethane photolysis
experiments. The observed fluorescence decay curves could be constructed from
single-exponential fits and were consistant with previously published work on
NOs. [t was found that pressures of > 5 torr nitromethane strongly quenched
NOy fluorescence. Therefore, the two beam photolvsis experiment was conducted
at pressures between 0.1 and 2 torrc,

Nitromethane was then photolysized and probed for ground-state fragments
with the 527 nm pulse. Induced fluorescence was observed which was identical
in spectral and temporal behavior to that observed in NOs/nitromethane
mixture studies. The formation kinetics of the attributed NO; fragment were
investigated by varying the delay time hetween the 264 nm and 527 nm pulses,
A sharp step in the intensity of the iaduced fluorescence vs. delay was
observed. The position of the onset and rapid rise in signal appear to
indicate extremely rapid (< 20 ps) formation of the fragment. The fluorescent
signal was found to be linear in UV excitation and probe laser energy
indicating dissociation from the lowest energy n » 1% transition of
nitromethane.

The papers that have resulted from the work described above are iacluded
in the following pages. In the coming year work will proceed on the
development of the species identification techniques. One technique that
looks particulary promising is the recent development in our laboratory of a
picosecond-white light CARS [coherent-antistokes Raman scattering] technique
in which for the first time an entire Raman spectra can be observed with one
picosecond laser pulse. We are now investigating the applicability of this
technique to the study of energetir reactions,

4
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1. Introduction

Phe Swan band cmission svatems of (‘_a{d ;JIL, -
4 3lIu vare well kinown for their prominence in flames
and appearance under diverse conditions of excitation
{1]. €5 Swan band cmission from pubsed excitution
of CO includes the high-pressure bands ot Fowler [2].
now attributed to an enhancement of v’ = 6. The very
wdentification of the spectroscopic anomalies as com-
ponents of Swan emission [ 3] and the pecubar popu-
Latton kineties 4.5 have attorded chiallenge 1o analy-
siv CO s notentirely untque i producing such fea-
tures. Several other systems (with parents not neces-
\.nll} CONLENINE OXM EeN Jloms) necessitate distingt
reaction schemes, The current understandimy of the
exneess v = 6 population hus depended heavily upon
high-resolution spectioscopy and term analysis [6.7],
and upon potentiadcurve caleulations |8 9. Although
investizated for many years, the ongin ot the normal
and bighpressure Swan emission remains ynresolved,

It the current work . we have studied the spectral
amd temporal development of band and hne ennission
from photolysis products, subsequent to multiphoton
266 nm esatation of CO(S 100 Torrywith a 23 ps
pulse. Through signal digitization and averaying, rec-

Ty oand bate proces ov et

tandsy and ot dn

~a 3111,1 et e LU ot mualtirhoton UV evartaton ol CO - Popalanon of

IS S TNV T S NG A saeston Phe lee pro

o gl bands g

ords have heen obtained over @ timie seele ranying
trom a subnemosecond detection risetime to over S0
s, Toas found that exatation of Swan band eonsson
oceurs through two disunct mechanisms, carfy and
fare. The high-pressure hands atise only from the late

process,

2 Experimental

Eacitation was provided by the founh hanmome o
a modedocked NdYAG Liser system [10] The 266

-

nm single pulse (210 mY 285 poywas focused

Wy
static gas cell with Tl windows producing flus dens
sities i enveess of 10D W em 1 nnsion was collect
ed at nighi angles and tocused into a Janrell Ashiim
spectiometer (resolution 1 mm), The imstrument was
coupled at the exit sht toa Vanan VPM-1533\
crossed-field photomultiplier (GaAs spectral tange
200900 nm. G185 nornetined, or through g side
mirror to an FG&G OMA 1 300 channel imtensitied
(ISITY vidicon system. The mtensifier section of the
vidicon could be gated by« hiphwvoltaee pulse gene-
ratar trigeered from the laser pulse Timeresolved
waveforms trom the photomultiplier were signal-




wveraped (eg 64 shots) by s Tektromx 7912 AD digi-
tsmy osclfoscope (system step-tunction risctime
O.X5 vy intertaced to s Tektonin 4052 computer.
Background und insttumental inregularities were sub-
tracted by use of the computer system, e.g. emission
bands penerally are represented by the difterence be-
tweett signals at the band head and =1 nm to the red.

Carbon monoxide was ultrachigh-purity grade
Matheson) and was freed of any metal carbonyl
contaminants [11]. Pressures were measured by a
Wallace  Tieran gauge (* 0.1 Torr), No evidence of
changes i the temporal or spectral distribution of
cinesing Jue to formation of stable photolyiic pro-
Juets was obyerved dunng a typical series of several
huaridied pulses (finng rate 3 He,

3. Results

20 Phorolvas spectra normal Swan and high-
Prossure fodiures

The Swan bands of Cy(d T, = a ) presemt
viotetadesraded heads (0 U7 ) spanning much o the
visible Spectral and Kineiie observations by othiens
support two classifications tor Cy emsson noml
Swan bands associated with ' = 0 6, and high-pres
suse Swan bands avodnted waith an excess population
7o “ —’].\'!?\Iiﬂlﬂn\ l\' 6 cotrespond 1o headless
ar tad Pands which are not evident moany o aar cars
rent obhsenvations, Photolysiy ot many senple pases
te.s Oy A CHGON CHyyvefds ondy the aered
Swan bands [T00 2] Fig ta s o ume-dverared G 2

=41 spectrum from 25 Torr of CHLON Noexception:

al intensity is associated with ¢ = 6. This Swan e
sion 1s fully developed very carfy after exatation
pwithin a few aanosecondsy and persists Jess than 200
ns {12]. All vibrauonal rotanonal features ot these
Swan bands share a common tiune development Jor g
given gas and pressure,

Curves band ¢ in fig. ) are nme gated vidicon
spectra from 25 Torr of COCFor b osignal was aceept:
ed thraughout aninterval o 900 ps aftes the lases
pube (so that no emission was rejectedyand s Gy pieal
of reported ume-averaged €, spectra produced from
a CO discharge [6.7]. Swan enission following €O
photolysis displavs less rotational excitation than is
ty pical of other parent molecules. This eftect can be

.a I
s A4 - e )
% et -
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T 8
/W’ G4 43 (32 20 1o
456 1 nm HP 474 3 nm

Par o 1. Senal-averared vidicon spectra ot Cy Swarnicuaon
(A1 = 41 ) 25 Torr of CHAON L po patng S0 Leser palses
(b 25 Tarr of COL9UN Lo pate, 20 Laser pulses. 0) 25 Togr o
COLY s gatel 500 Laser pulses, Note that the hgh-presaare
ssatei s doubleheaded. bty bands are abaent i spectrarm
[C}

recoenized in companson of figs. T and Th, butit s
more evident with better resolution and with bawehne
subtraction [7.10]) o fig. 1b . the (6.3) Inghiressare
band s very prominent. 0,18 nm to the red of the
(S band hesd .

Forcurve ¢cof fig, T the mtensificn pate was set to
docepUsignial for aninterval of s followimg the Taser
pulses To obtam adequate signgl-tonone within thns
hiented pate mtenval we accumulated sgnal trom 300
Lases pulses. The notmal Swan enusaon s present at
this carly tme, but the Figh-pressure bund v coen-
talhy shsent. Clearhy | there are at least two divnnaa
mechansms for exataton an early one developed
within <2 1 psand another whch assumes importance
At later e,

2

20 Dime dovdlopmient of spoctrdl feadtres

Fonliostranon ot the gross tempornal features, ties
Jaand Ihidnplay digad oscilloscope traces recorded
at low sweep apeed . over w CO pressure tange of 13
60 Torr Hereo the notmal Swan systems are tepre-
sented by the intense (0O band head at 316 3 nm.
which iowelbnolated. Acun example of the hagh-
pressute svstem we have selected the (6.5 hand head
at 589 9 nm_which 18 better polated than the (6.5)
head shown in fig. 1 but iostll underlain by a mmnuoe
P The band hoad assymments are token frone the Tgek ey

tion worh of Memnel and Messerle |7
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Py 2 Digitatoscilloscope traces (sienal averaze of 64 pulses)
Comparnen of normal and high-prossure Cy cmisdon profiles
at a sdow sweep speed (S px/divy (@), (D) Demonstration of
sross indifference to CO pressure. (0, (8 Overday s to cinpha-
swze diftferences of vf = 6 and o' ¢ O emission. For suppression
ot hghfrequency shot notse, the dats have been smoothed
over 0.7 ps windows,

component of rotation sitached to normal Swan
heads (5.7). cte. The inference from the vidicon
spectra of carly and late processes is confirmed. For
pressures > 10 Torr of (O, the late process dominates
time-averaged emission i, both the normal Swan and
high-pressure bands. Apart from subtle differences of
substructure, the duration of the late process is very
similar for v’ = ¢ and ¢’ = 0.

3.2.1 Farly process

Figs. 32 and 3b resolve the time development of
early Swan emission, (0.0) band head, for 25 Torr of
CO. Since the C5 d 31, coltisionfree lifetime is = 120
ns {13}, the comparatively slow decay process in fig.
3a reflects not the kinetics of the d 3”g *a 3llu tran.
sition, but rather the destruction ot a longer-hved pre-
cursor whose lifetime can be expressed simply as 7y =
17k, (where k| is a pseudo-first-order rate constant rep-
resenting a sum of the rate constnts responsible for
loss of the precursor). The rise of the trace in fig, 3b
is governed then by the loss of €, d 31,. When the
mean pulse energy is changed from =4 to 12 mJ the
risctime decreases, Hence, at least two processes must
he considered to describe the foss of €y d -‘Hg: a bi-
molecular process {rate constant k3) 10 account for

0 a 100 ns div b 10 ns div

a3 Model curves fring carly processerisaon (o0 = O at
S16.3 iy, 28 Torr of CO- Two leniting 72 values twe teat)
have been cmployed,

the enerpy dependence und s pseadofint<order decay
(time constant 75 = 1A~ ) k5 is tahen to be lineur in
CO pressure and to have a zero-pressure himit corre.
sponding to 75 = 120 ns. The proposed scheme s out-

“lined by

k

Xheydin, ()

g e N

Cydi, -y atny Q)
k

Cad 3l +T -0, (3)

X represents an unspecified precursor. &y and &5 each
represent sums of first-order or pseudo firstorder rate
constants deseribing the overall decay of Xand of

Ca d ML respectively. A 3 is the bimolecular rate con-
stant for reactions of Cy d 31, with itself or another
transient of similar abundance. The above model al-
lows satisfactory fits to the expenimental curves over
the range 5 -60 Torr, where analvsis is feasihle, Two

.

analvses were performed tor cach pressure, represent-
ing limits of no quenching (7, = 12 % 10 7 s [13])
and of strong guenching by CO. As a lower limit for
7y we employed a value extrapolated from data for
quenching of C4 d 3”1: by CH3ON* [according to 74
=1(1.2X10 ) T+ k,[COJ Vand kg = 70 % 10°
Torr }s 1 {12]. These extremat for 75, in curve fits
to the initial fall of the traces at any given pressure,
force no more than 107 change ing ) A plotof &

* We assume that CHON s a more ethicient quencher o
yd -‘IIF than CO, since CHRCN contains an unsitutated
proup similar 1o CO n addition 1o three reactne C H bonds
Thus the A value of CHRON [12) wavadopted asan upper
Himit.




versuy CO prossare is near-guadnatie (7, 25 and oo
ns ot 3 and U Ton respectively ) At Tow pressares,
the rise and decasy cunves can be it adegquately withe
out g benoleaular terme In fitting the nise of the tran-

stientstrnal Ay s esental at 25 Torr and dooinant

ahove 33 Torr The exattation conditions generate o
spatially inhomoyeneous concentration of enutuny
species. A corsequence s that no simple s eoticanee

vt be sttached 1o the absolate value ot A ;.

S22 Lar [ e

In ey Taand 2b, neither the protracted rise nor
tall of the oo intensity van reflect the i
taster '{”»; - ‘Hu ciissien hinetivs, Clearly there
are mtermaiate Chenical spedies s cn state s ) ol
exdattion precodime Cy d 311‘_. formation

Attermprs todetermine the fependence of the tates
on tragment concenttations thenice pabsoenerny Jdee
pendence)are compromised by the norispeariaty of
the excrtation mechuninm toyether with: o tuatnons
ot the Laser pubse enerey  Neverdhicless o with varntion

of the exaitation ericrgy over an adedquaaic range. the

enerey depeidence of coavaon e and decay tmes

cir be evglaated Guabitaonely - Sach studies show that
Bagher Laser encrey tavors the Late process. and the
nsetiine of the late process vandependent of pulse
energy from 23410 12 mJ. A ample Kinetic tresiment
i terms of exponentidd tme constants s not adeguate

to desenibe erther the nise or the decay ot the tete pro-

cess. However the rate of tise s roughiy proporionad

1o CO pressure. The duration of eonssion from ¢ - o
atid rom " = O are not gieatly diterent (1. 2).
which may sugeest g common mtermuediate, The

tecay profiies are complex though the stiucture i
sabtle . and they are not wdentcal for g’ - oand e’ = 0
(ties 2o and 230 The shape features essennially be-
lenging to the decay profile are misensitine to pressure
Gt miast he recogntzed that the presure-dependent
rate of i af1eots to some extent the apparent mitial
stope of tall).

As mientioned above the normal Swan O d "lli
populations produced trom C.Haand other simple
vases develop rapidiy Cand they e totgtonalls hot
[0.710. 14 whereas trom CO the tme-averaeed O,
spectry are rotationally cold [T 10} Thicsgeests ’
that for COn the present study the eardy process
nudy renerate rotationatly hot normal Swan emisaon

which vmasked ona time v crased basas by gomiuch
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Comparison of temporal prufiles for €y Swan emission at band heads and anid
rotation; averages of »4 pulses,

The curves have been scaled to equal peak heights.

5 torre of l7C2Hz; the same tntal pressure pertains for each figure,
uv pulse energy ca. 12 mJ,

a) (1,0) band head at 473,9 nn,

h) Rotation associated with the (1,0) head, at 472,7 nm.
c) (2,1) head at 471.7 nm,
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Figure 2

Streak cameri record of the rise of Swan emission in the Av
bands; the average of 10 pulses,

Also shown are a model curve with time coastant 215 ps, and
reference pulses at a pair separation of 500 ps.
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Spectra of early eanission (first 5 ns; see Fig, 1) in the ©) v = 41 3wan
saeries; uv pulse energy ca, 2.5 mJ,

Curves for {sotopically-distinet pareat acetylenes, and fHr g 1l migtare ot
7 S
LMoo, and ((,-)_i'{) .

The notations HH, 1L, and LI, attached to band heads reter o heavy add v Tiaht
i{sotopes of carbon,
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Figure 5

~

Construction of the time history of Swan -7 -0 arising {1 the collisional

process; uv pulse enerqsy ca. 12 ad,
t:1 ! TOolh I mistare,

a) Primary vecord of emission at the ot (1,0 head, $74%.5 nn.

b) Reference waveform obtained by appropeiate scaling of the emission record at
the *'Cy (1,0 head, 475.3 nn,

¢) Subtriction of curve b from carve a, representing collisionally=-formed
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Figure 7

Comparison of temporal profiles for C) Swan emission amid states of hish
rotation and at a band head.

The curves iave been scaled to a common late-tern siznal level,

a) 473.9 nm, the (1,0) band head.
h) 462.8 nm, hot rotation.
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Figure 8

< : * . .
Schematic of preferred channels of = » -7 excitation (vertical arriws),
intranolecular relaxation (wavy arrow), ind unimolecular fragmentation (dashed

arrtows) for photolysis of CoH> by 2606 am 25 ns pulses,
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Picosecond 'V Photolysis and Laser Induced Fluorescence

Probinyg of Gas-Phase Nitromethane*

by

P, E. Schoen, M, J. Marrone, J, M, Schinur, and L. S. Goldberg

ABSTRACT

In a dual-beam picosecond experinent, we have performed UV photolysis
af pas—phase aitromethane and have monitored the subsequent evolutinan of the
N0y frayment population by laser induced tluorescence. The NO» radicals are
formed nromptly, within the ~ 5 ps pulse resolution of the experiment. Their
populatinn remaias roughly constant for a probe delay time extending to 20 ns,
The fluorescence intensity depends linearly upon both the photolyzing and the
527 -m probe pulse enersgies. The photolyzing 264 nm pulse itself uenerates

some N0y 11 an excited fluorescing state.

* A preliminary account »f this work was presented at the Xth International
Conference on Photochenaistry, The ilniversity of Iraklion, Crete, Greece,
6=-12 September 1981; M. J. Marvone, P, E, Schoen, L. S. Goldbery,

R. G. Weiss, J. M, Schnur and W. L. Faust,
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The UV photolysis of nitromethane has been studied extensively for many
years [1-9]. A number of authors have inferred, generally on the basis of
chemical analysis of final products, that the primary photodissociation
process leads to formation of the free radicals CHg and NO). However, iden-
tification of these fragments has been difficult because of their high
reactivity, The first direct evidence for their presence among the photolysis
products of nitromethane was provided by the electron paramagnetic resonance
experiments of Bielski and Timmons [3]., Colles et al, ntilized opto-acoustic
detection to provide the first spectral identification of the N0y frapment
from continuous photolysis of nitromethane [7]. More recently, laser tech-
niques using UV (8, and multiphoton IR [10,11] excitation have led to the
sieneration and detection of the NO» fragmeat. 1In the case of UV laser
photolvsis in the jpras phase, Spears and Brugge observed vibrationally excited
NO» fragments by means of laser induced fluorescence (LIF) on a microsecond
time scale [3]. However, experiments by RKwok, et al., employing nano-second
Liser photolysis and aass spectroscopic fragment detection techniques observed
no photodecoaposition products {127,

In this letter, we rveport the first direct observation on a picosecond
time scale of frayment formation in the UV photolysis of gas—-phase nitro-
aethane.  Usiay a dual-bean experiment with LLIF probing, we have determined
that N> frayments, ideatiried from their fluorescence spectrua and quenching
kinetics, are generated nroaptly by the UV excitation, within the 5 ns pulse
resolation of the experiment,

This supports assiznmeat of the observed reaction as:

nw
ClyNO, o+ CHy + N0y (D

W)




Experiment

Our nitromethane samples were obtained trom Baker reagent srade material,
which we distilled under nitrogen, collectim the middle fraction, hep. 191 -
102°¢. Individual samples were degassed by several freeze/thavw-vacaum pumpiage
cveles, Samples of 0,1 to - 3.0 Torr pressure were loaded into a 15 cm diameter
stainless steel cell wvhose iaterior walls had bheen coated with black Teflon to
reduce scattered light. The entrance and exit cell windows were of lithiun
fluoride, and internal baffling was provided to prevent window fluorescence
induced by the laser pulses from reaching the photodetector, Lisght enitted at
907 rfrom the laser path was collected by a lens and focused throuyh lonyg-
wavelength-pass color filters onto a slit in froat of an EMI 9n358 phototube,
The tube had an 3-29 photocathode (red sensitive to 90 nm) aad a pulse
response (FWHM) of - 20 ns, The signal was processed by a Tektronix 7912AD
digitizing oscilloscope coupled to a Tektronix 4752 computer for time iateyra-
tion of waveforms, and for data manipulation and stordge,

The laser was a passively mode-locked Nd:phosphate slass oscillator”
anplifier system [13] which venerated 1054 am single pulses tvpicallv of 5 ps
duration and ca. 29 mJ energy at a repetition rate of 1/5 Hz. The IR pulse was
frequency-doubled twice to give a photolyzing UV pulse energy of up to 3 nml at
264 am. The residual [R pulse energy was separated from the direct laser path
by a beam splitter and was frequency-doubled iidependentlv, to give a probe
pulse of up to 10 mJ at 527 nm. The probe pulse was directed along an optical
delay line, and subsequently recombined co-axially with the photolyvzing pulse,
Bnth pulses were then sent into the sample cell without focusim, givim: a
photolyzing beam diameter of 4 mm,  Pulse energies were recorded on each shot,
and were used to normalize the observed sample fluorescence data,  The teaporal
and spectral quality of the pulses wore monitored as the experinent

=




progressed by a two-photon lusrescence cell/vidicon

spectrograph,/Reticon arrav.

hy

i

The zero time delay between the UV and probe pulses was

fotermined

Hy

vhotobleaching measurement in which the two pulses were focused into a thia
I 8 I

cell filled with rhodomine 6 G dve solution, The UV pulse depopulated the

dye ground state sufficiently that 1 weak probe pulse arviving afzer the

pulse was transmitted,

Results

Figure ! shows two represcatative traces of flunrescence

time, averaged over 2 liser shots, for a altromethane pressure

Pate o

o f

The lower trace shows the fluorescence sianal for the UV photolvzi
N r -

Alone., The upper trace was Jeneriated hy a UV pulse plus a 5127
delaved by - 200 ps. A probe pulse alone produced virtually

initially or after hundreds of "'V shots iato the cell,

was filtered bv a Corning 2-73 filter, which trdansnits wavelengths

c

The

amopr

a0 o5iornal

emissiog

than - 560 am. While the UV pul-c itself obviouslv produces

lonrer

flwnrwSﬁiWﬂ

fragment, input of the 527 am pulse has increased the {luorescence iatensitv
» I

roughly 3-fold. The observed fluorescence has a risetime

that

is phatotnhe-

limited; its deciay shows a single exponential fall time whicsh is strongly

dependent on gas pressure. The decay time for the W-only case {s rouphly

same as that for UV + probe. The integrated fluorescence iateasity reaches

maximum at about 19 [orr. of nitromethane, hat the quenchia rate it

pressure is too fast to be resolved with our photatabe,

The callisinn free (1 m Torr) lifetime reported tor NOo tlanresceace 15

approximately 55 usec [141. At our lowest nltronetihaae
<00 mTorre observe a decay time of o microseconds,

tapldly quenched at still adlcher pressure; ar 205 Torr
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INTEGRATED FLUORESCENCE INTENSITY

0 L L0 b
-20 0 20 40 60 80 100

PROBE DELAY/ psec

Vig. 1= Pluerescence tron photolvred nitromethane at a presenre or LY o opy.
lower trace shows cmission resulting tror p singic H psec vnlae o L a1y
Fights upper trace showes emission produced bo v drpadiatior 1olbowed ¢ oa

200 psec delav by a 577 nm probe pulse,  boiscion Qo ilrered fo bt Cnue .

with a Corning "=7% filter vhich transmits wavelenethae > an0 e,




the pressure range of our experiment, indicating the collision-free lifetime of
the enmitting species 1. loayg, This 1s qualitatively coasistent with the known
queanching behavior of NO» in various gases [15].

Although the fluorescence signal intensity was too weak tu yield a
spectrum, use of a sequence of long-wavelength-pass filters indicated that in
the region from the probe wavelength to ~ 750 nn the probe-induced emission was
broad and featureless., No significant emission siznal was observed on the
antistokes side of the probe waveleagth. Thus the spectral characteristics and
long lifetime of tne emitting species are clearly consistent with NO;,

We performed a4 series of experiments to determine the power-law depead-
euve of the fluorescence. Figz. 2 shows a log-log plot of the time-integrated
Fluorescence intensity as a functioa of UV pulse enersv, for iadividaal laser
shots. The lower curve shows tihe 'V + probe induced fluorescence, nornilized
by prube pulse enersve The upper curve shows UV-only induced tluorescence,
Both cutves exhihit 1 anit slope extending over almost 2 decades ia V'V eneragyv,
indicating an effect linear {n excitation pulse energv.  Since the cnorgy f
the photolyzing photon 15 - 4.7 ev and C=N bond cleavave requires - 2,0 ov [17]

the excess anersv for sinyle UV ophoton Paduced photolyrsis shonld viold

fluorescence only as waveleagths Longer Lthan AT . This gqarees with ar
abservatinns,

A variable time telay was inteoduced between the PV oand probe aaises o)
deternice whether fher oowas g aeasurable (aduer (oo ceriod bet oo o 0 g boe

of the nitromet vie oleculeos awl Lhe appearaace of N et a5, i

resalts Showa fa Fics Voiadicate that the popad Cioan of  oroand st 0o

prosd by orhe 07 s e [EETURNL toyoa bt i 1t [
dvafse revolatior ot e e e, by de b v b !

et rht ot the poatean reaad s o appraainit el conat !, (R AR R B ST U U TR IR IR
viaf oeted by cbhcones 0 it rcmet e e ssare, IR R B A T
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sents the time—integrated fluorescence intensity averayed over ten aser shots
and normalized to the UV and probe pulse energies, The non-zero {luorescence
signal for negative delay tlmes represents the effect of the UV pulse alone,

We have estimated the quantum yield for formation of N0, i1 our experi-
ment to be on the order of 145, This is the equivalent of I wTore o0 N0y
pr-fuced i the laser heam. The calculation assumes unity gquantuan efticiency
tor tluorescent re-emission of absorbed 527 nm quanta by unquenched Noao only
about 17 of the excited NOy nolecules radiate before they are collisionally
quenched at these pressures of nitrvmethane,
Discussion

In most earlv photolysis experiments on nitromethane the fiaal products
wevre determined by chemical analyvsis, in which case 4 Large number Hf second-
ary products were found, including CH30NO, CHoo, CHaNO, NO, and NyO [4,6,12].
This, and the dependence of the relative quantum yield of methyl nitrate [2]
upon the exciting UV wavelenyth led to the sugestion that there are other

primary photnlysis processes besides (1), specifically: [5]

b 0
CH3NOy > CHy = N s CHLO + NOH (11
OH
and
hv
CH3NO»> > CH3NO + (1,

Rebbert and Slagy [2] sugpested that amore than one excited state of
nitromethane was involved in its decomposition, and fHonda ot al, {6] and
Flicker et al, [18] have supported this idea,

Three excited states of aitromcthane have been experimeatally identified

and connected with its photolysis,  Two are observed i1 the optical absorption

spectrum [[8=20]1 a4 stroay feature at 199 i assioned to a » - 2% transi-
tion, and a weak satellite at 2h0 s swmested to o be o s ok 0 ginglot -
V7




singlet excitation, A third, still lower energy state has been found by
electron energy-loss spectroscopy [18] at - 326 nm, which the authors sugyest
has n » n*  singlet—triplet character, but which may be a composite of
overlapping transitions of different character. Theoretical calculations
indicate that other transitions may exist in this enerpy region [21-24], but
they have not been identified experimentally.

Most investigators have supported process (I) as the main primary
photolysis channel for uitromethane [1-5]. Flicker et al. [18] and Honda ct
al. [6] suggest that the lower energy transition to the triplet state at
- 326 num addresses process (I) particularly while the singlet-singlet
excitation near 260 nm induces reaction (II).

Both the experiment of Spears and Brugge [8] and our experiment used
photolyzing wavelengths in the vicinity of the 260 nm transition and both
observed the formation of some NO). However, considering the low quantnm vield
estimated tor NO» formation in our experiment, the possibility of other .Jecay
channels cannot he excluded,

Summary

We have studied photolysis of nitromethane gas at pressures of < 3 Torre,
The photolyzing 264 nm pulse itself produces some NO» i1 an excired tluoresc-
ing state, lLaser—-induced-fluorescence probing using a time delaved wecond-
harmonic pulse reveals formation of a ground state NO> popalation in N opses,
which remains rouphly constant for probe delay times exteadiag to 29 as,

An estimate of quantum yield for the phcetodecomposition appears to be rither
low (- 1%) at this photolyzing wavelenyth,

The obhserved fluorescence intensity scales linearly with W pulse
enerygy.  The LTF signal which monitors proand state NO> 1w also Tiaear iy both

UV and probe pulse enerices,

i
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Tt utilfired an act{ve acoasto-aptic Toug = fglatar (Ngetraonts)

and a pasnsive saturable ahaorking dve (Faarenan A9TG0Y 4noa low
cell, The single 1064 mm pulse, wwitched from near the peak
the tratn, had ca. 0.4 n] enerpy and tvpically 30 ps daration,

Two atapes of anplificatton, apodizarion, and wpatial fiteerine of

the bheam provided a Piph-spatfal-qoalfey I polae of 30-00 -1
ene ey, Yfficlent  freauenevy doubhline and oro bohling i VDER
crverals poeaerated g Sty Yare ade (D66 0 Y g hataivs oy anloe o F g
to 10 = Cergy. e Toaer team owos flenaed ot on 010 e et
Mleveter Inoa statfe pcas ool Lo, 100 oY et raaph g
window. The ermtrred Tipht peaerated Trom ot ietdaal laor T
wias  collected  at ripht oo tes and s rared ot a0 s ey
ronochromator coupled to a Maelear " ata D00 fatencifie? ol

~alt{-channel  recording  svoten (opectral wepsitivity 20 ¢
rm Y, Trroved sienal-to-notae was oY doved whore o TR
docr-niatine data frosr tvpleally 37 Yoaer W, o
spectra were ohtafined with a Spex 0% e o -
svaten resolution),  For tioc-resolved stadfes, a o
croseed-field photor-altiplier wus coupled to the HAREY
coanehromator, The transfent sipnal was ddaplaved on g Tektprooiy
TING onct Y loscore, wiving a deteection risetinme of 490 pa, Otoorp-
vatlons were atso cade with oan Plectooph. tonfes streak overa

(S=29 phorocathode) Yaving time resnlIntion of 10 ps,
Metbhane  was resear b prade parite sapplied? :
Prolucts  and  was  aved without  farther  curificat fon, Carh o

crade OO and was freed o

aonavide was altra-n!

anv. metal cartonv! o ocont oby tasedng thron
(200°C, atrmaspheric pressore) pacved with plass wenl (R,
aethane was Baber reavent prade and was distiiled under
collecting the middle fraction, hop, 101-102°C,  Verone,
prepared by a standard procedure (7Y involving  debivdration of
acetic anhvdride at S00-5950°C and was puarifted by trap-te-tran
dist{llation. Tt was stored In the dark under vacuum {0 a Tioold
nitroysen Bath, A walt-fee Path placed hetween the recorecir and

the vraple cell was used to condense traces of aeetde acfd and
other hipgh=ha{ling f-ourities,

RESULTS AND DISC!

YION

Hiph power, 1 ns pulses at 766 un focused fato the capors
under study (10-500 torr) venerated a visi®le streak near the
focal reyion, Tow=- and higt.~resolution wpeetry of the

Tinfanescence  exhibited no differences in intencity or eonectral

distribution during a tvplecal experirent favolving coveral Yandred
laser shots, This fTndicates that <tabhlye phataivi (e roducts do
not sienfficantly affect the prinary Jecosaosition procesves,  The
resalt s not surprising since the photolvoe! roeion {a at Teast
10Y gmaller than the total samnle volume. 1t should be empbasized
that our analvtical techalaues pive evidence only of lusinescent

specles; other intermediates are andouhtedly proctaced.




Fivure 2 deplcts the simiflarity of the low-resolution
ermission spectra from ketene and carbon monoxide, each at 100
torr, High resolution spectra indicate that the predominant
enfosion belongs to the C? diradical {n {ts triplet d3ng + a3'1u
Swan transition (8).

esssevacnas CHZCO

— CO

INTENSITY

EMISSION

1
400 500
WAVELENGTH (NM)

Fipare 2, Low-resotuation (2 mn) emission spectra ohtaived when
votene  and  carbon nmonoxide, at 190 torr, are dirradiated with
individual laser pulees at 266 nm,

Figures 3 and 4 show the Av = 0 and Av = =1 transitions for C,
from carbon wonoxide, rethane, and ketene, The emission spectra
from methane and ketene exhibit a strone attendant rotational
structure, In additi»u, a weak, underlving continunn enfasion,
associated with a  plasma formation,  extended  throuchont  the
visible revions  The int. ity of this hackeround varied fer each

gas studied but was most pro-iment for methane,  Fiyures © and 6
compare the regions of Swan v = #] and *v = 42 ¢riscion from
carbon monaxide and ketene,  Strikine discinilarities are evident
at this resolution, Nnlv in the case of CO are the € "hieh-
pressure”  hands (9)Y  ahccrved. These are a conceguence’ of the

selective population of an upper vibrational level (pencrally
attribated to v° = 6) (9 of the d)"'y ctate and necessitate dis-
tinct formation mechanisns for theé € produced from  carban
monoxide and ketene, ‘
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Figure 3. High-resolution (0.1 mm) spectra of the Swan systenm
emission (Av = 0) derived from 266 mm irradiation of carbon
monoxide, methane, and ketene, at 100 torr. Data are accumulated
from 30 laser shots, Note the strong rotational decoration, to
the high-energy side of the band heads, for methane and ketene,
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Figure 4. Spectra of the Swan svstem emission (Av = ~1),

Conditions as in Figure 3,

Y6




C; SWAN SYSTEM HP’/- 6.5
dimg—adm, Av=+1 ‘

(\/v
oo ccan i ccim :x.w»f;xzfd:’,ﬂ T e ot wmeremeer o,
My b
LA
AR ¢ i
Jvnﬂw’wﬁm v LF X f/%
AN athbh R CH,CO
rﬁVVVVVVJ\wV’A v i 2
as72 Jaaas 21 o 4785
) 54°4332 21 1,0 -
WAVELENGTH (NM)
Figure 5.

Spectra of the Swan system emissfon (Av = +1) derived
from carbon monoxide and ketene, at 100 torr, Data are
accumulated from 30 laser shots. The spectrum from CO also shows
the high-pressure 6,5 band.
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Figure 6. Spectra of the Swan system emission (Av = +2).

Conditions as 1{1n Figure 5. The spectra also show the high-
pressure 6,4 band and CH emissions.,
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“his diftterence of mechanisas tinds further oxprecsion in the
tIne-dependent osctllaoscope data shown in Figure 7.
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emissive state (at 516 nm) of ¢ derived from ketene, ibe
risetime {o indistinpuishable from that of the plasma radiation

Figure /A chows the risetive-limited foration ol the d




(upper  trace), menitored at 616 nm where  Suan cciccfon is
nepligihle, By contrast, no prompt € emission {6 ceen from N
(Fig, 7B) when either the normal or the hiph-precoure Saan boads
are monitored.,  The oscilloeran fa Figure 7B shows onlv the VYricf
plasma enission, which can he detected throued sut the vicihle
recion, Over  nuch Tosver  timescales (Fie, 70),  the ol

tn vued, An
coutir pettwav Teading to the forsrion of o, Tive tiat

by et al, (o) (Mg b oot 2y i o ittt with

callisional foreation  of  the d Wlate i LN
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thove datas
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Tation of  the excited wiate is then rationaliced

there is a4 relaxation of the initial C state o
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side of the v ocresponting normal Swan boand s eooar
1o torn ditteronces, For esomple, the ot oeated 6,9
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W
Ve

Siure the 4 state colli<ion-{ree Vit tiee [ REY] oo
determined as ca, IL‘-' ns (3}, it {v clear that the

< Vower decav o in
Figure 7D does not reflect the kinetics of the d°7, + a "
”
transition. Fvidintly we are following the forr stion and decav
soof an ot

atope

sediate (concistent with Vanation T oand 2 wich
Pocome the rate=detersiningeg pro ceses for the C dj")' et ian,
Fivare 7C indiocartes rhaat o rthe C.d 2"‘, state has a 1i0 v ine o ey,
S when produced in 10D torr of Keteneo  Ttois Tikelv thoe o the
poareat s teenle wnd’or other photolvsis fraements are invelved in

i wteps, For instance, all the bhydrogen bearioe oo

1t wtrony pressare-hroadened cmission

B v

o the Byloer Ha line of atomic hedrosen (Fig, ),

Ferurningy ta Fivare 7A, the €, derived from ketene apie ors
with deteetion~svaten ricetime (the “contribution of the plaeswa to
the lower trace s lizited). Such proapt C formation suyyests a

Tani s However, a rapid collisiiona]l for=ation

unimaleenlar me.

mav be  cnvicaced if the reacting fraements are created with

bt antial Fireric cnorev, Atteapts to obaerve  the toae 4t ion

asine g o streas camera have proved  inconclusive, The cpectral

tecolution required to uninimize the prompt  Fack,sroond hao not

AlTowed cutficicnt sipnal to be detected from the ¢ emisston, In
7
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the case of methane, where C, production must bhe a collisional
process,  we have nonetheless” heen unable to follow it kinet-
ically, The plasma radiation dominates the transient sipnal at
100 torr of methane for several nanoseconds, by which time the c,
signal is fully develuped.

. BALMER SERIES ’
‘ H,, LINE "v
‘; - 100 TORR
| - “
a4
‘ CH2CO . - .'.”,"r" A 10 TORR
e v o ) g )
I\'l R R e “"‘VI"‘“-'\Y' . .,. e o~ [N .
648.2 656.3 668.4

WAVELENGTH (NM)

Figure 8, Spectra of the atonic hvdrogen Ha vmission line derived
from 266 mm irradiation of ketene. Note the =trony proosure-
broadening effect.

The C€_ emission from wmethane and ketene show considorable
rotational ‘excitiation, which implies a non—thermallv-ecuilibrated
population of excited va nolecules, €, emission spectra shoging
such abnormal rotation Are ubiguitons in discharpe (13 and loaer
photolvsis 3) studies of simple organic rolecules, Tn an
intermolecular mechanism, "of f-axis” collisions between {rapywnts
wonld be expected to impart excess rotation to a € product, Tt
is also possible that ketene underpoes unimolecnlar elimin:tion of
hvdrogen and oxvgen via out-of-plane bending motions, leavine €
with rotation. 1In the case of CH, the C_ hipl-pressure sveten s
obtiined topether with the normal Swan svetem, both showing the
satie protracted time developments This now pives temporal as well
as  spectral  inference that € s formed from €0 by processes
entirelv distinet from those in ketene and methane, Consegoent 1y
it i« not sorprising that the epission spectrun exhibits ~ueh lews
rotational fine structure  than that derived from Veteae  and

met hane

Weak Tines were ohserved at 410,20 ar oand 40608 o enly when

Fotene wits  photolvaed, Thev are attributed to the Deslandr.s-
d'Arambuia siaplet €. svstem ((‘XW' > ;\“1“' Av o -1 Y (RY, A wedk
fluarescence at 4314 nm (Fip, 6),) observed for ¥otene and sothane
i attributed to CH emission (A7A X""'., L= 0Y ("),

The  power dependence  of the € emission is displaved in
Fipure 9. At high inpst palse energics, both carbon monoxide and
Vetene (100 torr) show a near-lirear power dependonce indicat ive
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of a saturatifon regime. The high-order nature of the excitation
process is clearly evident from the steepening of the curves
towards lower 1input cnergles, Furthermore, focusing of the
excitation beam was essential for producing observable emicsion.
Carbon monoxide and methane showed no emission at pressures below

10 torr, Ketene, however, which possesses a  single-photon
transition at 266 mm (e~ 0.5 mol ! cm !) (14), exhihited lu- ines—
cence even at pressures helow 1 torr,. The streak ot visible

emission extended somewhat bevond the focal repion and had a nore
diffuse appearance than that observed at hipgher pressures. The
excitation processes may well be different at lower pressures, but
the observed luminescent products appedar the same,
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Figure 9. Dependence of the €. Swan emission intensity on input
laser pulse cnergy at 266 nmy from ketene (left) and carbon
monoxide (right), at 100 torr.

Figure 10 conpares the Av = 0 C_ Swan svstem observed from 15
torr of nitromethane with that from 10 torr of ¥Fotene, The €
band is substantially weaber in the case of nitremethane, 1t
shows excess rotational excitation, as for ketene and rmethane,
Furthermore, two new strong emissions were observed with hana
heads at 421,6 mm and 388.3 mm (Fig. 10, helow). These are
assipgned to the violet svstem of CN and arise from piet Loyt
transitions (R).  The Av = 0 transition was also weakly observed
in the case of Ketene and carbon nonoxide, indicating a slight
nitrogen impuritve.
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