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Hamparsum Bozdogan and Stanley L. Sclove
University of I11inois at Chicago Circle

ABSTRACT

e mmtsn e e e wan o

Multi-sample cluster analysis, the problem of grouping samples, is

studied from an information-theoretic viewpoint via Akaike's Information

Criterfon (AIC). This criterion combines the maximum value of the 1ikelihood ﬁ
with the number of parameters used in achieving that value. The multi-sample |
cluster problem is defined, and AIC is developed for this problem.

The form of AIC is derived in both univariate and multivariate analysis
of variance models. Numerical examples are presented and results are shown to

demonstrate the utility of AIC in identifying the best clustering alternatives.

Key Words and Phrases: Multi-sample é]uster analysis; Akafke's Information

Criterion (AIC); ANOVA Model, MANOVA Model; maximum 1ikelihood.
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MULTI-SAMPLE CLUSTER ANALYSIS
USING AKAIKE'S INFORMATION CRITERION*

Hamparsum Bozdogan and Stanley L. Sclove
University of Illinots at Chicago Circle

1. Introduction

In this paper, we shall develop Akaike's Information Criterion (AIC) for
multi-sample cluster analysis. The problem of multi-sample cluster analysis
arises when we are given a collection of samples (groups, treatments), to be
clustered into homogeneous groups.

It is reasonable to provide a practically useful statistical procedure
that would use some sort of statistical model to aid in comparisons of various
collections of samples, identify homogeneous groups of samples, and tell us
which should be clustered together and which samples should not.

Examples of multi-sample clustering situations are abundant. Here we
mention a few.

Example 1.1. Botany: grouping of three types of species of iris, namely Iris

setosa (S), Iris versicolor (Ve), and Iris virginica (Vi), given in Example 6.2

and Table 6.3 in Section 6, on the basis of each and of all the four variables.

Example 1.2. Zoology: grouping of geographical locations to study the differ-

ences of populations of two types of species of Crocidura. Delany and Healy
[7] studied variation in white-toothed shrews, that is, nocturnal mammals, in
the British Isles. White-toothed shrews of genus Crocidura occur in the
Channel and Scilly Islands of the British Isles and the French mainland. From
p = 10 measurements on each of n = 399 skulls obtained from the K = 10 loca-
tions, Tresco, Bryher, St. Agnes, St. Martin's, St. Mary's, Sark, Jersey,

Alderney, Guernsey, and Cap Gris Nez. The sample sizes for the data from the

*presented by the first author as an Invited Paper, Special Session on
Cluster Analysis, 789th Meeting, American Mathematical Society, University of
Massachusetts, Amherst, MA, October 16-18, 1981,




ten locations are, respectively, n = 144, n, = 16, n, = 12, n, = 7, ng = 90,
ng = 25, n, = 6, ng = 26, ng = 53, Mo ® 20, Attempts were made to analyze th2
pattern of variation between these ten populations to examine the belief that

there may be two species of Crocidura, namely Crocidura russula, Crocidura

suaveolens. The locations were geographically close, but it is assumed that
only one sub-species was present in any one place. Thus the problem here 1s to
cluster the locations, that is, “samples" into homogeneous groups to discover
the origin of the two species.

Example 1.3. Air and Water Pollution: grouping of weather class types or

nitrate sites to distinguish whether the source of nitrate is weather type or
local. Heidorn [12] studied synoptic, that is, general weather patterns
associated with nitrates in southern Ontario. In recent years, there has been
growing concern over the potential hazard of particulate nitrate in the atmos-
phere which_acts as a respiratory irritant, especially to those who have asthma
problems. Nitrate is also suspected to lower the pH level in freshwater lakes.

A sample of n = 17 cities across southern Ontario from Windsor in the west
to Kingston in the east was chosen as the location of nitrate sites. Nitrate
concentrations for the 17 sites were measured. In order to determine the
effect of weather patterns on the measurement of nitrate, eight weather class
types were defined for the nitrate sites. Thus the problem here is to cluster
the weather class types or the sites into homogeneous groups to determine
whether the source of particulate nitrate fs due to weather class type or is
local,

Example 1.4. Business and Economics: grouping of corporations by thetr

financial characteristics. Chen et al. [6], Williams and Goodman [16], and

others, studied the statistical methods for clustering corporations on the
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basis of yearly data concerning several of their financial characteristics.
Thus the general problem here is to cluster the sets of corporations in order
to detect, describe and distinguish relatively homogeneous groups of companies
so that the formation of the groups and organizational behavior of companies
can be studied and compared.

So, as we see, multi-sample cluster analysis examples are quite rich and
varied,

The analysis of variance (ANOVA) is a widely used model for comparing two
or more univariate samples, where the familiar Student's t and F statistics are
used for formal comparisons among two or more samples. Multivariate analysis
of variance (MANOVA) is a widely used model for comparing two or more multi-
variate samples. In the MANOVA model, the 1ikelihood ratio principle leads to
Wiiks' [17] lambda, or 1n short Wilks’' A criterion as the test statistic. It

plays the same role in multivariate analysis that the F-ratio statistic plays
in the univartate case.

Often, however, the formal analyses involved in MANOVA are not revealing
or informative, Therefore, in this paper we shall propose Akatke's Informa-
tion Criterion (AIC) as a new procedure for comparing the clusters, and use it
to identify the best clustering aiternatives,

In 1971, Akatke first introduced an information criterion, referred to as
an automatic (model) identification criterfon or Akaike's information criterion
(AIC), for the identification and comparison of statistical models in a class
of competing models with different numbers of parameters. It {s defined by

(1.1) AIC = -2 loge (maximized 1ikelthood)

+2 (number of independently adjusted parameters within the model).
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It was obtained with the aid of an information theoretic interpretation of the
method of maximum likelihood by Akaike ([2], [3]). It estimates minus twice
the expected log likelihood of the model whose parameters are determined by the
method of maximum 1ikelihood. When several competing models are being compared

or fitted, AIC is a simple procedure which measures the badness of fit or the

discrepancy of the estimated model from the true model when a set of data is
given,

The first term in (1.1) stands for the penalty of badness of fit or

downward bias when the maximum 1ikelihood estimators of the parameters of the

model are used. The second term in the definition of AIC, on the other hand,

stands for the penalty of increased unreliability or compensation for the bias

in the first term as a consequence of increasing number of parameters. If more
parameters are used to describe the data, it is natural to get a larger
likelihood, possibly without improving the true goodness of fit by penalizing
the use of additional parameters.

Thus, when there are several competing models, the parameters within the
models are estimated by the method of maximum 1ikelihood and the AIC-values are
computed and compared to find a model with the minimum value of AIC. This

procedure 1s called the minimum AIC procedure. The model with the minimum AIC

is called the minimum AIC estimate (MAICE) and fs designated as the best model.

In Section 2, we shall define the general multi-sample cluster problem,
and in Section 3, we shall briefly discuss the number of clustering
alternatives for a given K groups or samples into k nonempty clusters. In the
subsequent sections, that is, in Section 4 and in 5, we shall derive the AIC

procedure for the univariate analysis of variance (ANOVA) model, and the multi-

variate analysis of variance (MANOVA) model. In Section 6, we shall give

[P
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numerical examples for both univariate and multivariate multi-sample cluster
analysis on real data sets to demonstrate our results of AIC and minimum AIC

procedures obtained from different computer analyses.

2. The Multi-Sample Cluster Problem

Suppose each individual, object, or case, has been measured on p response
or outcome measures (dependent varfables) simultaneously in K independent

groups or samples (factor levels). Let

(2.1) X(nxp)=

be a single data matrix of K groups or samples, where Xg (ngxp) ;epresents the
observations from the g-th group or sample, 9=1,2,...,K, and n J Ng. The
goal of cluster analysis is to put the K groups or samples 1ntog;1homogeneous
groups, samples, or classes where k is unknown, but kﬁK.

Often individuals or objects have been sampled from K>1 populations. For
multi-samples or multiple groups of individuals or objects the data matrix may
be represented in partitioned form as above. Let Ng represent the number of
individuals in the g-th (random) sample, g=1,2,...,K. The ng are not restrict-

ed to being equal or proportional to other ng's. The total number of observa-
K

tions is n = § nge Let X91 be the pxl vector of observations in group
g=1
9=1,2,...,K, and for individual 1=1,2,...,nq.




3. The Number of Clustering Alternatives for a Given K
Samples 1nto k Nonempty Clusters

In this section, we shall briefly discuss how to obtain the total number

of clustering alternatives for a given K, the number of groups or samples. For 1

this, we shall recall some established results.

Theorem 3.1. The number of ways of clustering K groups or samples into k

clusters such that none of the k clusters is empty is given by

k
g K
3.1 ky(-1)" (k-g
(3.1) g§0 () )" (k-9)" ,
where the order of groups or samples within each cluster is irrelevant.

Proof. Duran and Odell [9].
In this theorem the k clusters are assumed to be distinct. However, in

clustering K groups or samples into k clusters, none of which is empty, the

order of the k clusters is irrelevant. Consequently, from this fact and

Theorem 3.1, it follows that the total number of ways of clustering K groups or

samples into k clusters is given by

k
(3.2)  s(kk) =gy L (§) (-1)7 (k-0)"
ga

which 1s known as the Stirling Number of the Second Kind (see, e.g., Abramowitz

and Stegun [1]) and also called the number of clustering alternatives.

I1f k, the number of clusters of groups or samples is known in advance,
then the total number of clustering alternatives is given by S(K,k). However,

if k 1s not specified a priori and varies, then the total number of clustering

by Wt ing oo e v - - B

s e S SA———
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alternatives for a given K, the number of groups or samples, is given by
K
(3'3) 2 S(K,k) .
k=1

Table 3.1 gives S(K,k) for values of K and k up to 10,

TABLE 3.1, NUMBER OF CLUSTERING ALTERNATIVES FOR VARIOUS VALUES OF K AND k

k|1 2 3 4 5 6 7 8 9 10 | Total

K

1 1 i 1
2 1 1 2
3 1 3 1 5
4 1 7 6 1 15
5 1 15 25 10 1 52
6 1 31 90 65 15 1 203
7 1 63 301 350 140 21 1 877
8 1 123 966 1701 1050 266 28 1 4136
9 1 255 3021 7770 6951 2645 462 36 1 21142
10 1 511 9318 34101 42525 22821 5879 750 45 1 [ 115952

Conﬁider, for example, K=3 samples. We now wish to cluster K=3 groups or
samples first into k=3 groups or samples, then into k=2 groups or samples, and
k=1 group or sample in a hierarchical fashion.

From Table 3.1, we have the total number of ways of clustering K=3 groups
or samples into k=3 homogeneous groups or samples is 1. The total number of
ways of clustering K=3 groups or samples into k=2 homogeneous groups or samples
is 3. The total number of ways of clustering k=3 groups or samples tnto k=1
homogeneous group or sample ifs 1. Thus adding up these results, we obtain, in
total 5 clustering alternatives as the total for K=3 groups or samples into

k=1,2, and 3 homogeneous groups. We note that 5 is nothing but the sum of the
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values of row 3 in Table 3.1.
The 5 clustering alternatives can be classified according to their

representation forms to make it easy to 1ist all 5 possible clustering

alternatives. The representation forms in this case are denoted by
(1) {1} {1} {1},
(i1) {2y (1},
(111) (3},
where each of the components in a representation {g} denotes the number, g, of
groups or samples in the corresponding cluster. The components of a represen-
“tation form will always be written in a hierarchical order to depict the
patterns of clustering alternatives. In our example there are 5 clustering
alternatives but only 3 representation forms. In general the number of repre-
sentation forms is much smaller then the number of clustering alternatives.
We now 1ist the clustering alternatives corresponding to their representa-
tion forms in Table 3.2 as follows:

TABLE 3.2. A SIMPLE PATTERN OF CLUSTERING ALTERNATIVES
WHEN K=3 AND k=3, 2, and 1

Number of
Alternatives Clustering Parameters m
1 (1) (2) (3) 3
2 (1 2) (3) 2
3 51 3) (1) 2
4 2 3) (1) 2
5 (123) 1

For example, in alternative one, the group or sample 1, 2, and 3 are

clustered as singletons. In terms of a hypothesis on means, this corresponds
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to uys Uy and My all being different, and therefore, the number of parameters,
m, s equal to 3. Hence, indicat®ng that group 1, 2, and 3 are all hetero-

geneous. In alternative two, groups or samples 1 and 2 are clustered together
forming a homogeneous subset, and group or sample 3 is clustered alone forming
a heterogeneous subset. In terms of a hypothesis on means, this corresponds to

UTL P and My is different from both My and ¥, with the total number of

1
parameters m being equal to 2. In a similar fashion, we interpret the other
clustering alternatives continuing down the line of Table 3.2.

As a last example, we shall just 1ist the results of the total number of
possible clustering alternatives when K=4 groups or samples tn Table 3.3 as
follows.

TABLE 3.3. A SIMPLE PATTERN OF CLUSTERING ALTERNATIVES
' WHEN K=4 AND k=4, 3, 2, AND 1

Number of
Alternatives Clustering Parameters, m
1 (1) (2) (3) (4) 4
2 12) (3) (4 3
3 13) (2) (4 3
4 14) (2) (3 3
5 2 3) (1) (4 3
6 24) (1) (3 3
7 (34) (1) (2) 3
8 1 2} 34 2
9 13) (24 2
10 14) (23 2
11 123) (4) 2
12 12 4; (3) 2
13 51 34 §2) 2
14 234) (1) 2
15 (12334) 1

In concluding this section, we see that in general the total number of
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ways of clustering K groups or samples into k homogeneous groups or samples is
given by equation (3.2), and the total number of possible clustering alterna-
tives is given by the expression (3.3).

4, AIC For The Univariate Model

We now turn our attention to consider situations with several univariate
normal samples. The general layout for such data (one-way ANOVA) is

represented in the following tabular form,

TABLE 4.1. GENERAL DATA REPRESENTATION FOR ONE-WAY ANOVA

Groups

2, %5 e zKz

2, 2, o zKz
Observations : : : : : :

. . c o s

z

lnl Zan L anK

TOTALS T1 Tz e oo T T
K
K
SA"PLE SIZES nl nz e o » nK ns= gglng
SAMPLE MEANS zl. zz. e o o K 4
VARTANCES ¢ & s2 s
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For example, we may have multi-sample data with samples of sizes
"1'"2""’"K which are assumed to have come from K populations, the first with
mean u, and variance cz. the second with mean ¥, and variance uz...., the Kth
with mean uK and variance 02. We may want to compare these K group or sample
means “1’“2""’"K given that all have a common o2, Hence, this is the well
known analysis of variance (ANOVA) model. In terms of the parameters the
ANOVA model is ¢ = (ul,uz,....uk,az) with m=k+l parameters, where k is the
number of groups.

We shall derive the form of AIC for this model. Recall the definition of
AIC from Section 1,

AIC = -2 loge L(8) + 2m
= -2 loge (maximized 1ikelihood) + 2m ,

where m denotes the number of independently adjusted parameters within the
model,

Suppose there are K independent samples of independent observations, with
Ngs g=1,2,...,K, observations itn the g-th group and n = § Nge Denote the

g=1
unknown means of the groups by "1’"2"”’"K‘ Assume that the samples

(211'212""’21 HEPRR zkl""'zk ) are drawn randomly from K populations

which are N(ug,oz). If the groups can differ only in their means, we may

express this as

(4.1) Zgi = ug + €gi, 921,2,..0,K; 121,2,...,ng,

where zgi 1s the value of the response or outcome variable in the g-th
group for the i-th individual or object,
ug are parameters,

cgi are independent N(o,az) error variables.
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This equation is called the one-way ANOVA model.

Thus, the basic null hypothesis of interest in this case is given by

(4.2) Ho H ul’ uz B o 0 e = uKo

The alternative hypothesis is given by

H1 : the K population means are not all equal.

Every analysis of variance involves a partitioning of the total sum of
squares of deviations, SST, into the within-group sum of squares of
deviations, SSW, and the between-group sum of squares of deviations, SSB. For
more details on this, we refer the reader to any basic text on statistics,
e.d., Anderson and Sclove [4].

We now derive the form of Akaike's Information Criterfon (AIC) for the
one-way ANOVA model given in (4.1).

The 1ikelihood function is given by

2 2,~N/2 K ng 2092
(4.3) L({ug},o ;f) = (2n0°) ~ exp[- 21 121(291 - ug)/(20%)].
ga =

The log Tikelihood function is

(4.4) 1({ug}.02;3) z log L({ug}.oz;f)

K
= - % log(2r) - 5 log(s”) - 921 133(191 - ug)/(20%),

As 1s well known, the MLE's are

~ 1 ng
(4.5) ug- ib 121 291 = 2g.| g‘l.Z.....K.
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and
K n
A 1 g - 2 ssu
(4.6) &2 =2 1 1 (g1 - g) =2,
"gagm o ? n

K Mg - 2
where SSW = ] ] (zg1 - Zg,)"» the Within Group Sum of Squares.

g=1 {=l

Substituting these back into (4.4), we have
a A a2
]({"g}’°2;f) = log L({u},0 ;2)

= --3-[109(21) + logsi—w --’2'-.

Since
(4.7) AIC = -2 loge L(;) + 2m,
where m is the number of parameters, and since
(4.8) -2 log L({ﬁg}taz) = n log(2x) + n log §§E'+ n,

then AIC becomes

(4.9)  AIC = n Tog(2r) + n Tog S 4 n + 2(ke1).

Since the constants do not affect the result of comparison of models, we

could ignore them and use the simplified version
(4.10) AIC* = nloge SSW + 2(k+1)

K
where n= ] ng=the total samle size,
g=1
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SSW = Within Group Sum of Squares, and
k = number of groups or samples compared, or the number of
independently adjusted parameters within the model,

However, for purposes of comparison we retain the constants and use AIC.

5. AIC For the Multivariate Model

In this section we shall study the natural extension of the univariate
model we considered in Section 4 to its multivariate analogue. Therefore,
throughout this section we shall suppose that we may have {ndependent data
matrices 11 ,12,....1'(, where the rows of Xg (ngxp) are independent and
identically distributed (i.1.d.) Ng(ug,Z), 9=1,2,...,K. In terms of the

parameters o = ("1’“2""’"K*§) the model we shall consider here is

8 = (Hpstpaeeesyy 2)

with m = kp + p(p+1)/2 parameters, where k is the number of groups, and p is
the number of variables,
As in the univariate case, consider K normal populations with different

man Vectors ug’ g'l,z.....k...o,x. Let 291, g'l.z,..o,K; i'l,z,.oo,ng. be a

random sample of observations from the g-th population Ny(ug,Z). If the
groups or samples can differ only in their mean vectors, we can write the

multivariate one-way analysis variance (MANOVA) model as
i (5.1) Zgi = ug + €gi » g=l,e.0,K; 121,2,000,ng ,

where 2gt 1s the (p x 1) response or outcome vector in the g-th group for

i-th individual or object,
ug are vector parameters, and

cgi are independent N,(0, L) random vector errors.
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Thus, the basic null hypothesis we usually are interested in testing s

given by

(5.2) HO:ESH.QQU’ O

The alternative hypothesis is given by

H1 : Not all uK are equal.

Wilks' lambda is a general statistic for handling this problem.
Although, there are several other conventional statistics for this purpose,
they all can be viewed as special cases of Wilks' A which we shall not discuss
here.

For notational purposes, we shall denote T to be the “total" sum of
squares and products (SSP) matrix, W to be the "within-group" or "within-
sample" SSP matrix, and B to be the "between-group" SSP matrix. Hence, it can

be shown that

(5.3) T=W+B,

where
K n _ _
(5.4) I~ 9’2_1 121 (2g1 - 2)(zg1 - 2)',
K ng - _
(5.5) W= gzl 121 (2g1 - Zg)(zg1 - Zg)"s
and

K
(5.6) _B_' 21 ﬂg (ig'.z-)(?g'-).o
gs <o

S S P et P oG W TG SOt oy np ' : [ ’ By~ N
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- 1 9
9° g 121 Zgi » 921,2,..05K ,
K n K
= _1 9
zsi-z ngi'nszng'
- g=1 i=l g=1

Therefore, we can present multivariate one-way analysis of variance

(MANOVA) table as follows.

TABLE 5.1, MANOVA TABLE

Source d.f. SSP matrix Wilks' criterion
Between samples K-1 B L1
17|
Within samples n-K L] “A(p ; n=-K; K-1)
Total n-1 I

Now, we derive the form of Akatke's Information Criterion (AIC) for the
MANOVA model given in (5.1), subject to the constraint given in (5.2). The

1ikelihood function of all the sample observatfons is given by

K
(5.7)  L(pgeZg:Z) = nng(ug.gg;_Ag).
g.
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or by
-np/s2 K -n_/2
(5.8) L= (20)"™"% 1 |zg "%
g=1
K -1 K -l
exp (-1/2tr ] Zg Ag - 1/2tr | neZq (Zg - ug)(Zg - ue)'} »
o= gs

K n
where n= ] ngand Ag = Zg(;g1 - Zg)(zgi - Zg)' -
g=1 i=]

The log 1ikelihood function is

(5.9) 1(ugsZ:2) = loggl

K K
- 2% Tog(2x) - 172 § nglog|Zgl - 1/2tr 2515.9
g=1 g=1

K -1
- 1/2trg21n@_g (2g - u)(zg - ug)' -

Since the common covariance matrix is I, then the log 1ikelihood function

becomes

(5.10) {ug},Z;2Z) = logel({ug},Z;Z)

n n -1 K
= - —% Tog(2x) - 3 log |Z| - 1/2trE 25‘1
g=1

1K a
- l/ZtPE gzlﬂg@g - Eg)(zg - Eg)' ’




T
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and the maximum-l1ikelihood estimates (MLE's) of ugs and I are

(5.11) »

%9 = ?g ’ 9'1,2,...,K.

Substituting these back into (5.10) and simplifying, the maximized log

1ikelihood becomes

(5.13)  ¥({n.},L;Z) = Tog L({n },Z;Z)

b - [ g -

- 3 Tog(2x) - 3 log|n~'y] - 3,

where W is the “within-group” SSP matrix.

Since

(5.14) AIC = -2 logeL(g) +2m,

where m = kp + 21%111 i{s the number of parameters, then AIC becomes
(5.15) AIC = nplog(2x) +nlog|n'1!j +np + 2[kp + +1 1.

Since the constants do not affect the result of comparison of models, we

could ignore them and reduce the form of AIC to a much simpler form

(5.15)  AIC* = nlog, |W| + 2[kp + E(B*L)y
el=




K
where n= ) ng = the total sample size,
9=1
W] = the determinant of "within-group" SSP matrix,

»~
[ ]

number of groups or samples compared,

number of variables.

A~}
]

However, for purposes of comparison we retain the constants and use AIC.

6. Numerical Examples of Multi-Sample Cluster Analysis on Real Data Sets

In this section we shall give numerical examples of both univariate and
multivariate multi-sample data, and cluster the groups or samples, and choose
the best clusterings by using Akaike's Information Criterion (AIC) as derived
in Sections 4 and 5.

Our computations were carried out for all the examples we shall present
here on an IBM 370, using various statistical software packages such as ?
MINITAB, SPSS, and SPEAKEASY (VM/CMS version).

6.1. Univariate Examples

For the univariate numerical examples we shall illustrate our results on
two data sets, a biomedical data set of Dolkart, Halpern, and Periman [8] and
Fisher [10] iris data. Here we shall take 150 iris specimens on each of the ’
four morphological varfables: sepal length and width and petal length and
width and demonstrate our results on these variables individually rather than

considering all of them together,

Example 6.1. (Brown and Holiander [5]) Antibody Responses in Three Groups of

Mice: "Dolkart, Halpern, and Periman [8] compared antibody responses in

normal and alloxan diabetic mice. Their investigation was designed to study

the circulating antibody response in alloxan diabetic, fnsulin-treated
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diabetic and normal CF-1 mice injected with serum albumin,

"Only those animals treated with alloxan who had elevated serum glucose
levels (250mg/100 ml or higher) were included in the study, together with a
group of normal animals. Animals were bled from the orbital sinus, and the

serum analyzed for antigen binding capacity of BSA, glucose concentration, and

Rl i T

serum proteins. BSA was jodinated with I-131, and the antigen-binding
capacity of each serum sample was determined as micrograms of BSA nitrogen
bound by 1 ml of undiluted serum." The data are given in Table 6.l.

TABLE 6.1 MICROGRAMS OF BSA NITROGEN BOUND PER ml OF UNDILUTED

! MOUSE SERUM ON DAY 39, FOLLOWING INJECTION OF 5 mg
BSA ANTIGEN INTO EACH ANIMAL ON DAY O AND 28

Alloxan Diabetic-

; Normal Alloxan Diabetic Treated with Insulin
155.76 390.72 82.50
282,00 46.20 99.66
197.34 468.60 97.66
297.00 86.46 150.48 ,
115.50 174.02 242.88 i
126.72 132.66 67.98 :
119.46 13.20 227.70
29,04 498,96 130.68
252.78 167.64 73.26
122.10 62.04 17.82
349,14 127.38 19.80
108.90 275.88 100,32
143,22 176.22 71.94
r 64.02 145.86 133.32
25.54 108,24 464.64
§ 85.80 275.88 36.96
? 122,10 50,16 46.20
; 454,85 72.60 34,32
655.38 43.56
13.86
Source: R.E. Dolkart, B, Halpern, and J, Periman 18].

In this example we are given K=3 groups or samples and we wish to cluster

them into k=1, 2, and 3 homogeneous groups. From Table 3.1, as we know, there
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are 5 total possible clustering alternatives, namely, (1) (2) (3) all separate,
and (1 2) (3), (13) (2), (2 3) (1), and (1 2 3) all together. Let us code
Normal Group=1, Alloxan Diabetic Group=2, and Alloxan Diabetic-Treated with

Insulin Group=3. Considering the ANOVA model as our underlying model for

comparisons of these groups, from a simple ANOVA run on the computer we
computed the AIC's for each of the 5 clustering alternatives, The results are

shown in Table 6.2.

TABLE 6.2 THE AIC'S FOR ANTIBODY RESPONSES IN THREE GROUPS OF MICE

Alternative | Clustering nloge(2x) nloge§5"/n n k | 2(k+1) AIC

1 (1) (2) (3) | 104.758 569.139 57 | 3 8 728.897¢
2 (12)(3) 104,758 559,149 57 | 2 6 726.9072
3 (13) (2) 104,758 561.945 57 | 2 6 729.703
4 (2 3) (1) 104,758 561.513 57 | 2 6 729.271
5 (123) 104.758, | 562,581 57 |1 4 728.339°

n=20+18+ 19 = 57

AIC = nloga(2x) + nloge SW/p + n + 2 (k+1)
aFirst Minimum AIC

bsecond Minimum AIC

CThird Minimum AIC

In this example the first minimum AIC occurs at the alternative submodel
2. That is, the MAICE is submodel 2 indicating to us that in terms of cluster-
ing, Normal Group=1 and Alloxan Diabetic Group=2 should be clustered together,
and Alloxan Diabetic-Treated with Insulin Group=3 should be clustered by

itself. Therefore, in terms of a hypothesis on means, (1 2) (3) corresponds to

upm o, Foug indicating that Normal and Alloxan Diabetic Groups form the best
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hsrogeneous set in terms of their nitrogen-binding capacities, and the Alloxan
Diabetic-Treated with Insulin Group forms a set by itself. On the other hand,
the second minimum AIC occurs at the alternative submodel 5, and the third
minimum AIC is at the alternative submodel 1 indicating that either we should
cluster all the groups together or treat each group separately, but if we were
to compare each group separately to the Normal Group=1, then we should choose
Normal Group=1 with Alloxan Diabetic Group=2 together as the best chofce by
the minimum AIC procedure.

Example 6.2. Clustering of Irises by Groups: As we mentioned in Example 1.2,

the iris data set is composed of 150 1ris species belonging to three groups or

‘species, namely Iris setosa (S), Iris versicolor (Ve), and Iris virginica (Vi)

measured on sepal and petal length and width. Each group is represented by 50
plants. The data set for the 150 irises are given in Table 6.3.

This data set has been quite extensively studied in classification and
cluster analysis since it was published by Fisher [10], and still today, is
being used as a "testing ground" for classification and clustering methods
proposed by many investigators such as Friedman and Rubin [11], Kendall [13],
Solomon [15], Mezzich and Solomon [14], and many others, including the present
authors,

lor each of the 159 plants we already know the group structure of the
iris specifes, namely K=3 groups or samples. Even though the two species, Iris

setosa and Iris versicolor were found growing in the same colony, and Iris

virginica was found growing in a different colony, Fisher reports in his
1inear discriminant analysis the separation of I. setosa completely from I.

versicolor and 1. virginica. Since then other investigators have shown

similar results in their studies such as the ones we mentioned above.
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With this in mind, lTet us take K=3 groups or species on each of the
variables separately and cluster them into k=1, 2, and 3 homogeneous groups.
Since we are dealing with K=3 groups, by now we know that there are 5 total

possible clustering alternatives. Denoting I, setosa by S, I. versicolor by Ve,

and 1. virginica by Vi, we have (S) (Ve) (Vi), (S, Ve) (vi), (S, vi) (ve), (Ve,
Vi) (S), and (S, Ve, Vi) as all the possible clustering alternatives of three
iris species. Using the ANOVA model as our underlying model for comparisons of
these iris groups, from a simple ANOVA run on the computer by using SPSS MANOVA
program which performs both univariate and multivariate linear estimation and
tests of hypotheses, we obtained the AIC's for each of the 5 clustering
alternatives of iris groups on each of the four variables separately. We report

our results on each of the four variables, respectively, as follows.

TABLE 6.4. THE AIC'S FOR IRISES BY GROUPS ON VARIABLE SEPAL LENGTH

Alternative | Clustering nloga(2r) | n10geSSW/n | n [ k | 2(k+1) AIC

1 (S) (ve) (vi) | 275.681 -200.295 | 150 | 3| 8 233.3862
2 (S, ve) (vi) | 275.681 -135.669 | 150 [ 2| 6 296.012
3 (s, vi) (ve) | 275.681 -68.550 | 150 | 2| 6 373.131
4 (Ve, Vi) (S 275.681 -163.740 | 150 [ 2| 6 267.9410
5 (S, Ve, Vi 275,681 - 56.966 | 150 | 1 4 372.715

TABLE 6.5. THE AIC'S FOR IRISES BY GROUPS ON VARIABLE SEPAL WIDTH

Alternative | Clustering nloge(2x) | nlogeSSW/n | n | k | 2(k+1) AIC

1 (S) (ve) (Vi) 275.681 -326.949 150 | 3 8 106.7322
2 (S, ve) (Vi) 275.681 -252.915 150 | 2 6 178.766
3 (S, vi) (ve) 275.681 -287.1587 150 | 2 6 144,524
4 (Ve, Vi) (S 275.681 -318.019 150 | 2 6 113.662°
5 (S, Ve, Vi 275.681 -250,129 150 | 1 4 179.552
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TABLE 6.6. THE AIC'S FOR IRISES BY GROUPS ON VARIABLE PETAL LENGTH

Alternative Clustering nloge(2r) nlogeSS"/n n k | 2(k+1) AlIC

‘ 1 (s) (Ve; Vi; 275.681 -255.988 150 | 3 8 177.6932

; 2 (S, ve) (Vi 275.681 59.442 150 | 2 6 491.123

i 3 S, Vi) (ve 275.681 163.259 150 | 2 6 594.940
4 Ve, Vi) (S 275.681 -116.579 150 | 2 6 315.102b
5 (S, Ve, Vi 275,681 169.493 150 | 1 4 599.174

TABLE 6.7. THE AIC'S FOR IRISES BY GROUPS ON VARIABLE PETAL WIDTH

Alternative | Clustering nloge(2x) | nlogeSSW/n | n | k | 2(k+1) AIC

1 (s) (Ve; (vi) 275.681 -478,966 150 | 3 8 -45,2852
2 (S, ve V1; 275.681 -216.942 150 | 2 6 214,739
1 3 (S, vi) (ve 275.681 - 84,552 150 | 2 6 347.129
4 (ve, vi) (S 275.681 ~314.688 150 | 2 6 116.993P
5 (S, Ve, Vi 275.681 - 82.452 150 | 1 4 347.229

—

AIC = nloge(2x) + nlogg SSW/. + n + 2(k+1)
aFiprst Minimum AIC
bsecond Minimum AIC

Looking at each of the tables above, we see that on each of the variables
the first minimum AIC occurs at the alternative submodel 1, namely (S) (Ve) (Vi).
i That is, the MAICE 1s submodel 1 indicating that indeed there are three types of
species across all the vartables. But the second minimum AIC is at the alterna-
3 tive submodel 4 again across all the variables indicating that if we were to

cluster any iris spectes, we should cluster I, versicolor and I. virginica

together, as one homogeneous group.
Thus our minimum AIC results for each of the variables confirm other investi-

gators' findings, including Fisher's results on the iris data. Moreover, if we
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were to choose among the submodels then we would choose the one with smallest
minimum AIC as the best submodel. Examining the Tables 6.4, 6.5, 6.6, and 6.7,
we see that the smallest minimum AIC occurs at the submodel 1 in Table 6.7 on

variable petal width. This indicates that petal width alone separates the

three iris species with virtual certainty, confirming again Fisher's results

(see, e.g., Fisher [10]).
6.2. A Multivariate Example
Now we consider Fisher iris data again and this time we cluster K=3 groups i
b or species into k=1, 2, and 3 homogeneous groups on the basis of all the four ?
4 variables, assuming the MANOVA model as the underlying model for comparisons

of these three iris groups. On the iris data, running SPSS MANOVA program, we

obtain the following "within-group" sum of squares and products (SSP) matrices

for each of the clustering alternatives. These are:

39.462 13.818 24,729  5.6554
13.818 16,962  8.1208 4.8084 |
24,729  8.1208 27.223 6.2718 i

5.6554 4.8084 6.2718 6.1566 |

-1
150 1oge|150 W, | = -1,504.2

(1) (s) (ve) (vI)

J_t

f 60.714  -1.3489 89,222  30.549
: -1,3489 27.786 -37.906 -12.958
89,222 -37.906 222,94 81.818
30.549 -12,958 81,818 35,317

(2) (S, VE) (VI) W, =

-l
150 loge|150 !gl = -1,085.9

s 'w-wﬂ“*--‘n\m':‘wvxm,,, oA



27 =

101.52 -4,3257
-4.3257 22.115

186.38 -38.301

(3) (s, vI) (VE)

‘Lt

76.044 -15.395

-1
150 loge|150 !al = -988.39

50,352 17.184

17.184 18.002
(4) (VE, VI) (S) N, =
46.047 14,71

17.205 8.3784

winm

-1
150 loge 150 [ = -1,129.

102.6 -6.0197
-6,0197 28.307
189,78 -49.119
76,884 -18.124

(5) (S, VE, VI)

J;:

-1
150 109,]150 !sl = -941,.73

186.38
-38.301
445.43
188.28

46.047
14,71

68,954
28.882

6

189.78
-49,119
464.33
193.05

76.044

15.395
188.28

85,367

17.20%
8.3784

28.882

18.407

76.884
-18.124
193.05

86.57

After carrying out all our computations for each of the clustering

alternatives (using the Matrix Algebra Routines fn SPEAKEASY interactive

computer package), we obtain the AIC's from (5.15).
Table 6.8.

The results are shown in
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TABLE 6.8. THE AIC'S FOR IRISES BY GROUPS ON ALL VARIABLES

)
Alternative Clustering nploge(2w) | nlogein W| | np k| 2m AIC

1 (S) (ve) (vi) | 1,102.724 | -1,504.2 600 | 3 | 44 | 242.5242
2 (S, ve) (vi) | 1,102.724 | -1,085.9 600 | 2 | 36 | 652,824
3 (S, vi) (ve) | 1,102,724 | - 988.39 | 600 | 2 | 36 | 750.334
4 (ve, vi) (S) | 1,102.728 | -1,299.6 600 | 2 | 36 | 439.124P
5 (S, Ve, Vi) | 1,102,724 | - 941.73 | 600 | 1] 28 | 788.994

n = 150 plants, p = 4 variables

m = kp + p(p+1)/2 parameters

AIC = nploge(2x) + nlogg|n -ij +np +2m
3First Minimum AIC

bSecond Minimum AIC

Hence, looking at the Table 6.8, we see that, using a1l four variables
simultaneously the first minimum AIC occurs at the alternative submodel 1,
that is, when (S) (Ve) (Vi) are all clustered separately. This indicates
again that indeed there are three types of species. Therefore, the MAICE is
submodel 1. Not surprisingly, the second minimum AIC occurs at the
alternative submodel 4 telling us that if we were to cluster any one of the

two iris groups, we should cluster I, veriscolor and I, virginica together as

one homogeneous group, and we should cluster I, setosa completely separate as
one heterogeneous group,

Here, it 1s important to note that we obtained also the same results when
we used the four variables separately in our computation of AIC in the
previous section, which is encouraging.

Thus, in concluding, we see from these numerical results that AIC and

consequently minimum AIC procedures are very successful indeed in identifying
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3 the best clustering alternatives when we cluster samples into homogeneous sets
both in the univariate and the multivariate cases.

Moreover, the definition of MAICE gives a clear formulation of the
principle of parsimony in statistical model building or comparison as the
: above examples demonstrate. And MAICE provides a versatile procedure for
statistical model identification which is free from the ambiguities inherent

in the application of conventfional statistical procedures,
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