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MULTI-SAMPLE CLUSTER ANALYSIS
USING AKAIKE'S INFORMATION CRITERION*

Hamparsum Bozdogan and Stanley L. Sciove
University of Illinois at Chicago Circle

ABSTRACT

Multi-sample cluster analysis, the problem of grouping samples, is

studied from an information-theoretic viewpoint via Akaike's Information

Criterion (AIC). This criterion combines the maximum value of the likelihood

with the number of parameters used in achieving that value. The multi-sample

cluster problem is defined, and AIC is developed for this problem.

The form of AIC is derived in both univariate and multivariate analysis

of variance models. Numerical examples are presented and results are shown to

demonstrate the utility of AIC in identifying the best clustering alternatives.

Key Words and Phrases: Multi-sample cluster analysis; Akaike's Information

Criterion (AIC); ANOVA Model, MANOVA Model; maximum likelihood.
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MULTI-SAMPLE CLUSTER ANALYSIS
USING AKAIKE'S INFORMATION CRITERION*

Hamparsum Bozdogan and Stanley L. Sclove
University of Illinois at Chicago Circle

1. Introduction

In this paper, we shall develop Akalke's Information Criterion (AIC) for

multi-sample cluster analysis. The problem of multi-sample cluster analysis

arises when we are given a collection of samples (groups, treatments), to be

clustered into homogeneous groups.

It is reasonable to provide a practically useful statistical procedure

that would use some sort of statistical model to aid in comparisons of various

collections of samples, identify homogeneous groups of samples, and tell us

which should be clustered together and which samples should not.

Examples of multi-sample clustering situations are abundant. Here we

mention a few.

Example 1.1. Botany: grouping of three types of species of iris, namely Iris

setosa (S), Iris versicolor (Ve), and Iris virginica (Vi), given in Example 6.2

and Table 6.3 in Section 6, on the basis of each and of all the four variables.

Example 1.2. Zoology: grouping of geographical locations to study the differ-

ences of populations of two types of species of Crocidura. Delany and Healy

[73 studied variation in white-toothed shrews, that is, nocturnal mammals, in

the British Isles. White-toothed shrews of genus Crocidura occur in the

Channel and Scilly Islands of the British Isles and the French mainland. From

p - 10 measurements on each of n - 399 skulls obtained from the K - 10 loca-

tions, Tresco, Bryher, St. Agnes, St. Martin's, St. Mary's, Sark, Jersey,

Alderney, Guernsey, and Cap Gris Nez. The sample sizes for the data from the

*Presented by the first author as an Invited Paper, Special Session on
Cluster Analysis, 789th Meeting, American Mathematical Society, University of
Massachusetts, Amherst, MA, October 16-18, 1981.
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ten locations are, respectively, ni - 144, n2 = 16, n, a 12, n4 a 7, n. Z 90,

n6 = 25, n7 = 6, n. a 26, n9 = 53, no10  20. Attempts were made to analyze t .a

pattern of variation between these ten populations to examine the belief that

there may be two species of Crocidura, namely Crocidura russula, Crocidura

suaveolens. The locations were geographically close, but it is assumed that

only one sub-species was present in any one place. Thus the problem here Is to

cluster the locations, that is, "samples" into homogeneous groups to discover

the origin of the two species.

Example 1.3. Air and Water Pollution: grouping of weather class types or

nitrate sites to distinguish whether the source of nitrate is weather type or

local. Heidorn [12] studied synoptic, that is, general weather patterns

associated with nitrates in southern Ontario. In recent years, there has been

growing concern over the potential hazard of particulate nitrate in the atmos-

phere which acts as a respiratory Irritant, especially to those who have asthma

problems. Nitrate is also suspected to lower the pH level in freshwater lakes.

A sample of n a 17 cities across southern Ontario from Windsor in the west

to Kingston in the east was chosen as the location of nitrate sites. Nitrate

concentrations for the 17 sites were measured. In order to determine the

effect of weather patterns on the measurement of nitrate, eight weather class

types were defined for the nitrate sites. Thus the problem here is to cluster

the weather class types or the sites into homogeneous groups to determine

whether the source of particulate nitrate is due to weather class type or is

local.

Example 1.4. Business and Economics: grouping of corporations by their

financial characteristics. Chen et al. [6], Williams and Goodman [16), and

others, studied the statistical methods for clustering corporations on the
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basis of yearly data concerning several of their financial characteristics.

Thus the general problem here is to cluster the sets of corporations in order

to detect, describe and distinguish relatively homogeneous groups of companies

so that the formation of the groups and organizational behavior of companies

can be studied and compared.

So, as we see, multi-sample cluster analysis examples are quite rich and

varied.

The analysis of variance (ANOVA) is a widely used model for comparing two

or more univariate samples, where the familiar Student's t and F statistics are

used for formal comparisons among two or more samples. Multivariate analysis

of variance (MANOVA) is a widely used model for comparing two or more multi-

variate samples. In the MANOVA model, the likelihood ratio principle leads to

Wilks' [17] lambda, or in short tilks' A criterion as the test statistic. It

plays the same role in multivariate analysis that the F-ratio statistic plays

in the univariate case.

Often, however, the formal analyses Involved in MANOVA are not revealing

or informative. Therefore, in this paper we shall propose Akaike's Informa-

tion Criterion (AIC) as a new procedure for comparing the clusters, and use it

to identify the best clulstering alternatives.

In 1971, Akaike first Introduced an information criterion, referred to as

an automatic (model) identification criterion or Akaike's information criterion

(AIC), for the identification and comparison of statistical models in a class

of competing models with different numbers of parameters. It is defined by

(1.1) AIC - -2 log e (maximized likelihood)

+2 (number of independently adjusted parameters within the model).
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It was obtained with the aid of an information theoretic interpretation of the

method of maximum likelihood by Akaike ([2], [3]). It estimates minus twice

the expected log likelihood of the model whose parameters are determined by the

method of maximum likelihood. When several competing models are being compared

or fitted, AIC is a simple procedure which measures the badness of fit or the

discrepancy of the estimated model from the true model when a set of data is

given.

The first term in (1.1) stands for the penalty of badness of fit or

downward bias when the maximum likelihood estimators of the parameters of the

model are used. The second term in the definition of AIC, on the other hand,

stands for the penalty of increased unreliability or compensation for the bias

in the first term as a consequence of increasing number of parameters. If more

parameters are used to describe the data, it is natural to get a larger

likelihood, possibly without improving the true goodness of fit by penalizing

the use of additional parameters.

Thus, when there are several competing models, the parameters within the

models are estimated by the method of maximum likelihood and the AIC-values are

computed and compared to find a model with the minimum value of AIC. This

procedure is called the minimum AIC procedure. The model with the minimum AIC

is called the minimum AIC estimate (MAICE) and is designated as the best model.

In Section 2, we shall define the general multi-sample cluster problem,

and in Section 3, we shall briefly discuss the number of clustering

alternatives for a given K groups or samples into k nonempty clusters. In the

subsequent sections, that is, in Section 4 and in 5, we shall derive the AIC

procedure for the univariate analysis of variance (ANOVA) model, and the multi-

variate analysis of variance (MANOVA) model. In Section 6, we shall give



numerical examples for both univariate and multivariate multi-sample cluster

analysis on real data sets to demonstrate our results of AIC and minimum AIC

procedures obtained from different computer analyses.

2. The Multi-Sample Cluster Problem

Suppose each individual, object, or case, has been measured on p response

or outcome measures (dependent variables) simultaneously in K independent

groups or samples (factor levels). Let

Xl

X2

(2.1) X (n x p)

be a single data matrix of K groups or samples, where 2g (ngxp) represents the
K

observations from the g-th group or sample, g=1,2,...,K, and n ng. The
g-1

goal of cluster analysis is to put the K groups or samples into k homogeneous

groups, samples, or classes where k is unknown, but k<K.

Often Individuals or objects have been sampled from K>1 populations. For

multi-samples or multiple groups of individuals or objects the data matrix may

be represented in partitioned form as above. Let ng represent the number of

individuals in the g-th (random) sample, gl,2,...,K. The ng are not restrict-

ed to being equal or proportional to other ng's. The total number of observa-
K

tions is n I ng° Let Xgi be the pxl vector of observations in group
gal

gul,2,.o.,K, and for individual i-l, 2,...,ng.
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3. The Number of Clustering Alternatives for a Given K
Samples into k Ronemptr Clusters

In this section, we shall briefly discuss how to obtain the total number

of clustering alternatives for a given K, the number of groups or samples. For

this, we shall recall some established results.

Theorem 3.1. The number of ways of clustering K groups or samples into k

clusters such that none of the k clusters is empty is given by

kK

(3.1) gkO (k)(.l)g (kg)
K

where the order of groups or samples within each cluster is irrelevant.

Proof. Ouran and Odell [9].

In this theorem the k clusters are assumed to be distinct. However, in

clustering K groups or samples into k clusters, none of which is empty, the

order of the k clusters is irrelevant. Consequently, from this fact and

Theorem 3.1, it follows that the total number of ways of clustering K groups or

samples into k clusters is given by

(3.2) 10(k) (-1)g

which is known as the Stirling Number of the Second Kind (see, e.g., Abramowitz

and Stegun [1]) and also called the number of clustering alternatives.

If k, the number of clusters of groups or samples is known in advance,

then the total number of clustering alternatives is given by S(K,k). However,

if k is not specified a priori and varies, then the total number of clustering

I
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alternatives for a given K, the number of groups or samples, is given by

K

k-1

Table 3.1 gives S(K,k) for values of K and k up to 10.

TABLE 3.1. NUM4BER OF CLUSTERING ALTERNATIVES FOR VARIOUS VALUES OF K AND k

k 1i 2 3 4 5 6 7 8 9 10lTotal

K 44
1 1 1
2 1 1 2
3 1 3 1 5
4 1 7 6 1 15
5 1 15 25 10 1 52
6 1 31 90 65 i5 1 203
7 1 63 301 350 140 21 1 877
8 1 123 966 1701 1050 266 28 1 4136
9 1 255 3021 7770 6951 2645 462 36 1 21142

10 1 511 9318 34101 42525 22821 5879 750 45 1 115952

Consider, for example, K-3 samples. We now wish to cluster K-3 groups or

samples first into k-3 groups or samples, then into k-2 groups or samples, and

k=1 group or sample in a hierarchical fashion.

From Table 3.1, we have the total number of ways of clustering K=3 groups

or samples into k-3 homogeneous groups or samples Is 1. The total number of

ways of clustering K-3 groups or samples into k-2 homogeneous groups or samples

is 3. The total number of ways of clustering k=3 groups or samples into k-1

homogeneous group or sample is 1. Thus adding up these results, we obtain, in

total 5 clustering alternatives as the total for K-3 groups or samples into

k=1,2, and 3 homogeneous groups. We note that 5 Is nothing but the sum of the
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values of row 3 in Table 3.1.

The 5 clustering alternatives can be classified according to their

representation forms to make it easy to list all 5 possible clustering

alternatives. The representation forms in this case are denoted by

(ii) {21 (11,

(III) {31,

where each of the components in a representation {g} denotes the number, g, of

groups or samples in the corresponding cluster. The components of a represen-

tation form will always be written in a hierarchical order to depict the

patterns of clustering alternatives. In our example there are 5 clustering

alternatives but only 3 representation forms. In general the number of repre-

sentation forms is much smaller then the number of clustering alternatives.

We now list the clustering alternatives corresponding to their representa-

tion forms in Table 3.2 as follows:

TABLE 3.2. A SIMPLE PATTERN OF CLUSTERING ALTERNATIVES
WHEN K=3 AND k-3, 2, and 1

Number of
Alternatives Clustering Parameters m

1 () (2) (3) 3
2 (1 ()3) 2
3 (1 3 (1) 2
4 (23) (1) 2
5 (1 23) 1

For example, In alternative one, the group or sample 1, 2, and 3 are

clustered as singletons. In terms of a hypothesis on means, this corresponds



to U 1' U2  and Uj3 all being different, and therefore, the number of parameters,

m, is equal to 3. Hence, indfcat'rng that group 1, 2. and 3 are all hetero-

geneous. In alternative two, groups or samples 1 and 2 are clustered together

forming a homogeneous subset, and group or sample 3 is clustered alone forming

a heterogeneous subset. In terms of a hypothesis on means, this corresponds to

via U2 and I3 is different from both u,1 and with the total number of

parameters m being equal to 2. In a similar fashion, we interpret the other

clustering alternatives continuing down the line of Table 3.2.

As a last example, we shall just list the results of the total number of

possible clustering alternatives when K-4 groups or samples in Table 3.3 as

follows.

TABLE 3.3. A SIMPLE PATTERN OF CLUSTERING ALTERNATIVES
WHEN K=4 AND k-4, 3, 2, AND 1

Number of
Alternatives Clustering Parameters, m

1 () 2) 3)(4) 4

3 1 3 2 43
4 (14 2 33
2 (243 1

( 234 1 3 3
7 (4)1 2 3
8 12) (3 4) 2
9 13) (24) 2

10 1 4) (23) 2
11 1 23) (4) 2
12 12 4) (3) 2
13 (13 4)( 2) 2
14 (234) (1) 2
1s (1 2 34) 1

In concluding this section, we see that in general the total number of
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ways of clustering K groups or samples into k homogeneous groups or samples is

given by equation (3.2), and the total number of possible clustering alterna-

tives is given by the expression (3.3).

4. AIC For The Univariate Model

We now turn our attention to consider situations with several univarlate

normal samples. The general layout for such data (one-way ANOVA) is

represented in the following tabular form.

TABLE 4.1. GENERAL DATA REPRESENTATION FOR ONE-WAY ANOVA

Groups

1 2 ... K

Z 11 Z21 z K2.

Z12 Z22 
* K2  1

Observations . . .. .

Z1nl zn2 . 2 K

TOTALS T1  T2  . . T

tK
SAMPLE SIZES n1  n2  . . . n n- ng

K gal

SAMPLE MEANS Zi. 2 z K

VARIANCES s s 2 s2 s2

i | 2
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For example, we may have multi-sample data with samples of sizes

nl,n2,.,,n K which are assumed to have come from K populations, the first with

mean p1and variance a 2, the second with mean p2and variance a 2.. the Kth
2with mean UK and variance a 2  We may want to compare these K group or sample

2
means plP2,*..,MK given that all have a common a . Hence, this is the well

known analysis of variance (ANOVA) model. In terms of the parameters the

ANOVA model is e - (u I 2,...,K ,a2 ) with m-k+1 parameters, where k is the

number of groups.

We shall derive the form of AIC for this model. Recall the definition of

AIC from Section 1,

AIC - -2 loge L(8) + 2m

* -2 log e (maximized likelihood) + 2m

where m denotes the number of independently adjusted parameters within the

model.

Suppose there are K independent samples of independent observations, with
K

ng, gul,2,...,K, observations in the g-th group and n * ng. Denote the
gul

unknown means of the groups by U1'A2 "'**O'K* Assume that the samples

(z zl2,..,Zlnl; . . 0 ; Z K z, ... ,Z) are drawn randomly from K populations

which are N(mg,a2 ). If the groups can differ only in their means, we may

express this as

(4.1) Zgi a ig + egi, g=1,2,...,K; t1i,2,...,ng,

where Zgi is the value of the response or outcome variable in the g-th

group for the i-th individual or object,

ig are parameters,

egi are independent N(O,o ) error variables.
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This equation is called the one-way ANOVA model.

Thus, the basic null hypothesis of interest in this case is given by

(4.2) Ho : Ul U 2 a " " " a UK"

The alternative hypothesis is given by

H: the K population means are not all equal.

Every analysis of variance involves a partitioning of the total sum of

squares of deviations, SST, into the within-group sum of squares of

deviations, SSW, and the between-group sum of squares of deviations, SSB. For

more details on this, we refer the reader to any basic text on statistics,

e.g., Anderson and Sclove [4].

We now derive the form of Akaike's Information Criterion (AIC) for the

one-way ANOVA model given in (4.1).

The likelihood function is given by

2 -n/2 K ng
(4.3) L((uga.2 ;z) . (2va )nexp- I I (Zgt - Ug) 2/(20 2)].

g-l i-1

The log likelihood function is

(4.4) l({Ig}.G2;z) log L({ugla ;z)

K ng

y log(2) - - (zgi ug)/(2

As is well known, the MLE's are

(4.5) 1 ng Zgt a Xg., g-l.2,...,K,gi1

(4.S) r" g t'
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and

(4.6) ;2 1 f g -g2 SSW

I (Zgi g.)2 - n

K ng 2
where SSW I I (Zgt --- g.) 2 , the Within Group Sum of Squares.

gal ial

Substituting these back into (4.4), we have
.2

l({; ,a 2 ;z) log L({u}'a ;z)

j n SSW n
-,Clog(2w) + log -F -

Since

(4.7) AIC - -2 loge L(.) + 2m,

where m is the numer of parameters, and since

(4.8) -2 log L({g} 2) n log(w) + n log 1 + n

then AIC becomes

(4.9) AIC - n log(2w) + n log 1SW + n + 2(k+1).n

Since the constants do not affect the result of comparison of models, we

could ignore them and use the simplified version

(4.10) AIC* - nloge SSW + 2(k+1)

K
where n - I ng the total sample size,

gal

- ... . .. . . .. ... ... J . . .....
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SSW - Within Group Sum of Squares, and

k - number of groups or samples compared, or the number of

independently adjusted parameters within the model.

However, for purposes of comparison we retain the constants and use AIC.

S. AIC For the Multivariate Model

In this section we shall study the natural extension of the univariate

model we considered in Section 4 to its multivariate analogue. Therefore,

throughout this section we shall suppose that we may have Independent data

matrices X9X 0.OXK, where the rows of Xg (ngxp) are independent and

identically distributed (i.i.d.) Np(ug,z), gnl,2,...,K. In terms of the

parameters - (u1,2,* 9..,) the model we shall consider here is

.- - -.2...K,_!2 K

with m kp + p(p+l)/2 parameters, where k is the number of groups, and p is

the number of variables.

As in the univariate case, consider K normal populations with different

mean vectors mg, g-l,2,...,k,...,K. Let Zgi, g-l,2,...,K; i-1, 2 ,...,ng, be a

random sample of observations from the g-th population Np(vgE). If the

groups or samples can differ only in their mean vectors, we can write the

multivariate one-way analysis variance (MANOVA) model as

(5.1) Zgi - ug + egi , gal,...,K; i-1,2,o..,ng

where Zgt is the (p x 1) response or outcome vector in the g-th group for

i-th individual or object,

.g are vector parameters, and

!gt are independent Np(O, E) random vector errors.
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Thus, the basic null hypothesis we usually are interested in testing is

given by

(5.2 ) H 0 : 0 1 a!2 a a •K

The alternative hypothesis is given by

H : Not all P-K are equal.

Wilks' lambda is a general statistic for handling this problem.

Although, there are several other conventional statistics for this purpose,

they all can be viewed as special cases of Wilks' A which we shall not discuss

here.

For notational purposes, we shall denote T to be the "total" sum of

squares and products (SSP) matrix, W to be the "within-group" or "within-

sample" SSP matrix, and B to be the "between-group" SSP matrix. Hence, it can

be shown that

(5.3) T - W +B ,

where

K ng
(5.4) T 1 (Zgt -z)(zgi -z)',

- gi 1.1 "- " -

K ng
(5.5) - (zgi -g)(Zgi Tg)'.g- i 1.1

and

K
(5.6) B I ng ('g - )(Yg - )'

g-



with

g n

1K flg K

gali 14 - gai

Therefore. we can present multivariate one-way analysis of variance

(MANOVA) table as follows.

TABLE 5.1. MANOVA TABLE

Source dM. SSP matrix Wllks' criterion

Between samples K-i B W

Within samples n-K W -A(p ; n-K ; K -1)

Total n-i T

Now, we derive the form of Akaike's Information Criterion (AIC) for the

MANOVA model given in (5.1), subject to the constraint given in (5.2). The

likelihood function of all the sample observations is given by

K
(5.7) L(jVg,.E.1) a L g(Iug..i1).

gal
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or by

o by-np/2 
K -n /2

(5.8) L (2v) a l 'g / g x
gal

K -1 K -1
exp (-1/2tr 19 -g 1/2trg I ngEg (g - g)(Tg - g)'1 .

gal gal

K ng

where n ng and • I l(gi - ?g)(Zgi - Tg)'
g l 1 3 1

The log likelihood function is

(5.9) I(PpgD_;) - igeL

K K
-- log(2v)- 1/2 K1 nl1g1.g1 - 1/2tr I g

gal g-1

K --- /2tr I ngog (-;g - lV)(Tg - Vg)'
g-1

Since the common covariance matrix is E, then the log likelihood function

becomes

(5.10) l{j g,j;j) logeL({Vg}. , ;Z)

- log(2w) - n log I.l - 1ztrAI .A

gal

.i K
- 1/2tr_ I ng(Tg " Ig)(Tg - vg)' ,

gal



-18-

and the maximum-likelihood estimates (MLE's) of .1g. and E are

(5.11) ,g. z.- , -,,..

and

(5.12) z - n W9

K
where W a g

gl

Substituting these back into (5.10) and simplifying, the maximized log

likelihood becomes

(5.13) l(;g},;Z) log L({; },i;Z)

-- log(2l) - 2 ogjn'W_ -

where W is the "within-group" SSP matrix.

Since

(5.14) AIC - -2 logeL(e) + 2m ,

where m - kp + ~l is the number of parameters, then AIC becomes

(5.15) AIC - nplog(2s) +nlogjn' W1 + np + 2[kp + E .].

Since the constants do not affect the result of comparison of models, we

could ignore them and reduce the form of AIC to a much simpler form

(5.15) AIC* nlogelWI + 2[kp +2 p ±2.I1

2 -...
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K
where n - I ng - the total sample size,

gal

IWI - the determinant of "within-group" SSP matrix,

k - number of groups or samples compared,

p a number of variables.

However, for purposes of comparison we retain the constants and use AIC.

6. Numerical Examples of Multi-Sample Cluster Analysis on Real Data Sets

In this section we shall give numerical examples of both univariate and

multivariate multi-sample data, and cluster the groups or samples, and choose

the best clusterings by using Akaike's Information Criterion (AIC) as derived

in Sections 4 and 5.

Our computations were carried out for all the examples we shall present

here on an IBM 370, using various statistical software packages such as

MINITAB, SPSS, and SPEAKEASY (VM/CMS version).

6.1. Univariate Examples

For the univariate numerical examples we shall illustrate our results on

two data sets, a biomedical data set of Dolkart, Halpern, and Perlman [8] and

Fisher [10] iris data. Here we shall take 150 iris specimens on each of the

four morphological variables: sepal length and width and petal length and

width and demonstrate our results on these variables individually rather than

considering all of them together.

Example 6.1. (Brown and Hollander [5]) Antibody Responses in Three Groups of

Nice: "Dolkart, Halpern, and Perlman [8] compared antibody responses in

normal and alloxan diabetic mice. Their investigation was designed to study

the circulating antibody response in alloxan diabetic, insulin-treated
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diabetic and normal CF-1 mice injected with serum albumin.

"Only those animals treated with alloxan who had elevated serum glucose

levels (250mg/100 ml or higher) were included in the study, together with a

group of normal animals. Animals were bled from the orbital sinus, and the

serum analyzed for antigen binding capacity of BSA, glucose concentration, and

serum proteins. BSA was iodinated with 1-131, and the antigen-binding

capacity of each serum sample was determined as micrograms of BSA nitrogen

bound by 1 ml of undiluted serum." The data are given in Table 6.1.

TABLE 6.1 MICROGRAMS OF BSA NITROGEN BOUND PER ml OF UNDILUTED
MOUSE SERUM ON DAY 39, FOLLOWING INJECTION OF 5 mg
BSA ANTIGEN INTO EACH ANIMAL ON DAY 0 AND 28

Alloxan Diabetic-
Normal Alloxan Diabetic Treated with Insulin

155.76 390.72 82.50
282.00 46.20 99.66
197.34 468.60 97.66
297.00 86.46 150.48
115.50 174.02 242.88
126.72 132.66 67.98
119.46 13.20 227.70
29.04 498.96 130.68

252.78 167.64 73.26
122.10 62.04 17.82
349.14 127.38 19.80
108.90 275.88 100.32
143.22 176.22 71.94
64.02 145.86 133.32
25.54 108.24 464.64
85.80 275.88 36.96
122.10 50.16 46.20
454.85 72.60 34.32
655.38 43.56
13.86

Source: R.E. Dolkart, B. Halpern, and J. Perlman [8].

In this example we are given K=3 groups or samples and we wish to cluster

them into k-1, 2, and 3 homogeneous groups. From Table 3.1, as we know, there
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are 5 total possible clustering alternatives, namely, (1) (2) (3) all separate,

and (1 2) (3), (1 3) (2), (2 3) (1), and (1 2 3) all together. Let us code

Normal Group-l, Alloxan Diabetic Group-2, and Alloxan Diabetic-Treated with

Insulin Group-3. Considering the ANOVA model as our underlying model for

comparisons of these groups, from a simple ANOVA run on the computer we

computed the AIC's for each of the 5 clustering alternatives. The results are

shown in Table 6.2.

TABLE 6.2 THE AIC'S FOR ANTIBODY RESPONSES IN THREE GROUPS OF MICE

Alternative Clustering nloge(2r) nlogeSSW/n n k 2(k+1) AIC

1 (1) (2) (3) 104.758 559.139 57 3 8 728.897c

2 (1 2) (3) 104.758 559.149 57 2 6 726.907a

3 (1 3) (2) 104.758 561.945 57 2 6 729.703
4 (2 3) (1) 104.758 561.513 57 2 6 729.271
5 (1 2 3) 104.758. 562.581 57 1 4 728.339b

n 20 + 18 + 19 - 57

AIC - nloge(2w) + nloge SSW/n + n + 2 (k+l)

aFirst Minimum AIC

bSecond Minimum AIC

CThird Minimum AIC

In this example the first minimum AIC occurs at the alternative submodel

2. That is, the MAICE Is submodel 2 indicating to us that in terms of cluster-

ing, Normal Group-i and Alloxan Diabetic Group-2 should be clustered together,

and Alloxan Diabetic-Treated with Insulin Group-3 should be clustered by

itself. Therefore, in terms of a hypothesis on means, (1 2) (3) corresponds to

U10 U2 $ U3 indicating that Normal and Alloxan Diabetic Groups form the best

imL -- mll '- .... . .. ",1 mo m.
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hrtogeneous set in terms of their nitrogen-binding capacities, and the Alloxan

Diabetic-Treated with Insulin Group forms a set by itself. On the other hand,

the second minimum AIC occurs at the alternative submodel 5, and the third

minimum AIC is at the alternative submodel 1 indicating that either we should

cluster all the groups together or treat each group separately, but if we were

to compare each group separately to the Normal Group-l, then we should choose

Normal Group-1 with Alloxan Diabetic Group-2 together as the best choice by

the minimum AIC procedure.

Example 6.2. Clustering of Irises by Groups: As we mentioned in Example 1.2,

the iris data set is composed of 150 iris species belonging to three groups or

species, namely Iris setosa (S), Iris versicolor (Ve), and Iris virginica (Vi)

measured on sepal and petal length and width. Each group is represented by 50

plants. The data set for the 150 irises are given in Table 6.3.

This data set has been quite extensively studied in classification and

cluster analysis since it was published by Fisher [10], and still today, is

being used as a "testing ground" for classification and clustering methods

proposed by many investigators such as Friedman and Rubin [11], Kendall [13],

Solomon [15], Mezzich and Solomon [14], and many others, including the present

authors.

[-or each of the 150 plants we already know the group structure of the

Iris species, namely K-3 groups or sampl's, Even though the two species, Iris

setosa and Iris versicolor were found growing in the same colony, and Iris

virginica was found growing in a different colony, Fisher reports in his

linear discriminant analysis the separation of I. setosa completely from I.

versicolor and I. virginica. Since then other investigators have shown

similar results in their studies such as the ones we mentioned above.
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TABLE 6.3 . MEASURENTS ON THREE TYPES OF IRIS -- -

Sepal Sepal Petal Petal Sepal Sepal Petal Petal Sepal Sepal Petal Petal
length width Tength width length width length width length width length width

5.1 3.5 1.4 0.2 7.0 3.2 4.7 1.4 6.3 3.3 6.0 2.5
4.9 3.0 1.4 0.2 6.4 3.2 4.5 1.5 S.8 2.7 5.1 1.9
4.7 3.2 1.3 0.2 6.9 3.1 4.9 1.5 7.1 3.0 5.9 2.1
4.6 3.1 1.5 0.2 5.5 2.3 4.0 1.3 6.3 2.9 5.6 1.8
5.0 3.6 1.4 0.2 6.5 2.8 4.6 1.5 6.5 3.0 5.8 2.2
5.4 3.9 1.7 0.4 5.7 2.8 4.5 1.3 7.6 3.0 6.6 2.1
4.6 3.4 1.4 0.3 6.3 3.3 4.7 1.6 4.9 2.5 4.5 1.7
5.0 3.4 1.5 0.2 4.9 2.4 3.3 1.0 7.3 2.9 6.3 1.8
4.4 2.9 1.4 0.2 6.6 2.9 4.6 1.3 6.7 2.5 5.8 1.8
4.9 3.1 1.5 0.1 5.2 2.7 3.9 1.4 7.2 3.6 6.1 2.5
5.4 3.7 1.5 0.2 5.0 2.0 3.5 1.0 6.5 3.2 5.1 2.0
4.8 3.4 1.6 0.2 5.9 3.0 4.2 1.5 6.4 2.7 5.3 1.9
4.8 3.0 1.4 0.1 6.0 2.2 4.0 1.0 6.8 3.0 5.5 2.1
4.3 3.0 1.1 0.1 6.1 2.9 4.7 1.4 5.7 2.5 5.0 2.0
5.8 4.0 1.2 0.2 S.6 2.9 .3.6 1.3 5.8 2.8 5.1 2.4
5.7 4.4 1.5 0.4 6.7 3.1 4.4 1.4 6.4 3.2 5.3 2.3
5.4 3.9 1.3 0.4 5.6 3.0 4.5 1.5 6.5 3.0 5.5 1.8
5.1 3.S 1.4 0.3 5.8 Z.7 4.1 1.0 7.7 3.8 6.7 2.2
S.7 3.8 1.7 0.3 6.2 2.2 4.5 1.5 7.7 Z.6 6.9 2.3
5.1 3.8 1.5 0.3 5.6 2.5 3.9 1.1 6.0 2.2 5.0 1.5
5.4 3.4 1.7 0.2 5.9 3.2 4.8 1.8 6.9 3.2 S.7 2.3
5.1 3.7 1.5 0.4 6.4 2.8 4.0 1.3 5.6 2.8 4.9 2.0
4.6 3.6 1.0 0.2 6.3 2.5 4.9 1.5 7.7 2.8 6.7 2.0
5.1 3.3 1.7 O.S 6.1 2.8 4.7 1.2 6.3 2.7 4.9 1.8
4.8 3.4 1.9 0.2 6.4 2.9 4.3 1.3 6.7 3.3 5.7 2.1
5.0 3.0 1.6 0.2 6.6 3.0 4.4 1.4 7.2 3.2 6.0 1.8
5.0 3.4 1.6 0.4 6.8 2.8 4.8 1.4 6.2 2.9 4.8 1-8
5.2 3.5 1.5 0.2 6.7 3.0 5.0 1.7 6.1 .0 4.9 1.3
5.2 3.4 1.4 0.2 6.0 2.9 4.5 1.5 6.4 Z.4 5.6 2.1
4.7 3.2 1.6 0.2 5.7 2.6 3.5 1.0 7.2 3.0 5.8 1.6
4.8 3.1 1.6 0.2 5.5 2.4 *3.8 1.1 7.4 2.8 6.1 1.9
5.4 3.4 14. 0.4 5.5 2.4 3.7 1.0 7.9 3.8 6.4 2.0
5.2 4.1 1.5 O.L 5.8 2.7 3.9 1.2 6.4 2.8 5.6 2.2
5.5 4.Z 1.4 0.2 6.0 2.7 5.1 1.6 6.3 2.8 5.1 1.5
4.9 3.1 1.5 0.2 5.4 3.0 4.5 1.5 6.1 2.6 5.6 1.4
5.0 3.2 1.2 0.2 6.0 3.4 4.5 1.6 7.7 3.0 6.1 2.3
5.5 3.5 1.3 0.2 6.7 3.1 4.7 1.5 6.3 3.4 5.6 2.4
4.9 3.6 1.4 0.1 6.3 2.3 4.4 1.3 6.4 3.1 5.5 1.8
4.4 3.0 1.3 0.2 5.6 3.0 4.1 1.3 6.0 3.0 4.8 1.8
5.1 3.4 1.5 0.2 5.5 Z.5 4.0 1.3 6.9 3.1 5.4 2.1
5.0 3.5 1.3 0.3 5.5 2.6 4.4 1.2 6.7 3.1 5.6 2.4
4.5 2.3 1.3 0.3 6.1 3.0 4.6 1.4 6.9 3.1 5.1 2.3
4.4 3.2 1.3 0.2 5.8 2.6 4.0 J..Z 5.8 Z.7 5.1 1.9
5.0 3.S 1.6 0.6 5.0 2.3 3.3 1.0 6.8 3.2 5.9 2.3
5.1 3.8 1.9 0.4. 5.6 2.7 4.2 1.3 6.7 3.3 5.7 2.5
4.8 3.0 1.4 0.3 5.7 3.0 4.2 1.2 6.7 3.0 5.2 2.3
5.1 3.8 1.6 0Z 5.7 2.9 4.2 1.3 6.3 2.5 5.0 1.9
4.6 3.2 1.4 0.2 6.2 2.9 4.3 1.3 6.5 3.0 5.2 2.0
5.3 3.7 1.5 0.2 5.1 2.5 3.0 1.1 6.Z 3.4 5.4 2.3
5.0 3.3 1.4 0.2 5.7 2.8 4.1 1.3 5.9 3.0 5.1 1.8
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With this in mind, let us take K-3 groups or species on each of the

variables separately and cluster them into k-i, 2, and 3 homogeneous groups.

Since we are dealing with K=3 groups, by now we know that there are 5 total

possible clustering alternatives. Denoting I. setosa by S, I. versicolor by Ve,

and I. virginica by Vi, we have (S) (Ve) (Vi), (S, Ve) (Vi), (S, Vi) (Ve), (Ve,

Vi) (S), and (S, Ve, Vi) as all the possible clustering alternatives of three

iris species. Using the ANOVA model as our underlying model for comparisons of

these iris groups, from a simple ANOVA run on the computer by using SPSS MANOVA

program which performs both univariate and multivariate linear estimation and

tests of hypotheses, we obtained the AIC's for each of the 5 clustering

alternatives of iris groups on each of the four variables separately. We report

our results on each of the four variables, respectively, as follows.

TABLE 6.4. THE AIC'S FOR IRISES BY GROUPS ON VARIABLE SEPAL LENGTH

Alternative Clustering nloge(2r) nlogeSSW/n n k 2(k+1) AIC

1 (S) (Ve) (Vi) 275.681 -200.295 150 3 8 233.386a
2 (S, Ve) (Vi) 275.681 -135.669 150 2 6 296.012
3 (S, Vi) (Ve) 275.681 - 58.550 150 2 6 373.131
4 (Ve, Vi) (S) 275.681 -163.740 150 2 6 267941b

5 (S, Ve, Vi) 275.681 - 56.966 150 1 4 372.715

TABLE 6.5. THE AIC'S FOR IRISES BY GROUPS ON VARIABLE SEPAL WIDTH

Alternative Clustering nloge(21) nlogeSSW/n n k 2(k+1) AIC

1 (S) (Ve) (Vi) 275.681 -326.949 150 3 8 106.732a
2 (S, Ve) (Vi) 275.681 -252.915 150 2 6 178.766
3 (S, Vi) (Ve) 275.681 -287.157 150 2 6 144.524
4 (Ve, Vi) (S) 275.681 -318.019 150 2 6 113.662b

5 (S, Ve, Vi) 275.681 -250.129 150 1 4 179.552
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TABLE 6.6. THE AIC'S FOR IRISES BY GROUPS ON VARIABLE PETAL LENGTH

Alternative Clustering nloge(2r) nlogeSSW/n n k 2(k+1) Al C

1 (S) (ye yj 275.681 -255.988 150 3 8 1763
2 (S, Ve VI 275.681 59.442 150 2 6 491.123
3 (S, Vi) (Ve) 275.681 163.259 150 2 6 594.9404 (e, Vi) (S 275.681 -116.579 150 2 6 315. 102b5 (S, Ve, Vi) 275.681 169.493 150 1 4 599.174

TABLE 6.7. THE AIC'S FOR IRISES BY GROUPS ON VARIABLE PETAL WIDTH

Alternative Clustering nloge(2r) nlogeSSW/n n k 2(k+1) AIC

1 (S) (Ve) (Vi) 275.681 -478.966 150 3 8 -45.285a
2 (5, Ve)( Vi) 275.681 -216.942 150 2 6 214.739
3 (S, Vi) (Ve) 275.681 - 84.552 150 2 6 347.129
4 (Ve, Vi) (S) 275.681 -314.688 150 2 6 116.993b

5 (S, Ve, Vi) 275.681 - 82.452 150 1 4 347.229

AIC - nloge(2w) + nloge SSW/n + n + 2(k+1)

aFirst Minimum AIC

bSecond Minimum AIC

Looking at each of the tables above, we see that on each of the variables

the first minimum AIC occurs at the alternative submodel 1, namely (S) (Ye) (Vi).

That is, the MAICE Is submodel 1 indicating that indeed there are three types of

species across all the variables. But the second minimum AIC is at the alterna-

tive submodel 4 again across all the variables indicating that if we were to

cluster any iris species, we should cluster I. versicolor and I. virgintca

together, as one homogeneous group.

Thus our minimum AIC results for each of the variables confirm other investi-

gators' findings, including Fisher's results on the iris data. Moreover, if we
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were to choose among the submodels then we would choose the one with smallest

minimum AIC as the best submodel. Examining the Tables 6.4, 6.5, 6.6, and 6.7,

we see that the smallest minimum AIC occurs at the submodel 1 in Table 6.7 on

variable petal width. This indicates that petal width alone separates the

three iris species with virtual certainty, confirming again Fisher's results

(see, e.g., Fisher [10]).

6.2. A Multivariate Example

Now we consider Fisher iris data again and this time we cluster K-3 groups

or species into k-i, 2, and 3 homogeneous groups on the basis of all the four

variables, assuming the 1MANOVA model as the underlying model for comparisons

of these three iris groups. On the iris data, running SPSS MANOVA program, we

obtain the following "within-group" sum of squares and products (SSP) matrices

for each of the clustering alternatives. These are:

39.462 13.818 24.729 5.6554

13.818 16.962 8.1208 4.8084
(1) (S) (VE) (VI) W -

24.729 8.1208 27.223 6.2718

5.6554 4.8084 6.2718 6.1566

-1

150 lOgej15O W1 " -1,504.2

60.714 -1.3489 89.222 30.549

-1.3489 27.786 -37.906 -12.958
(2) (S, VE) (VI) W2

89.222 -37.906 222.94 81.818

30.549 -12.958 81.818 35.317

150 loge115o 21 " -1,085.9
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101.52 -4.3257 186.38 76.044-

-4.3257 22.115 -38.301 15.395
(3) (S, VI) (VE) W3

186.38 -38.301 445.43 188.28

76.044 -15.395 188.28 85.367

-1

150 lOgei15O JW1 - -988.39

50.352 17.184 46.047 17.205

17.184 18.002 14.71 8.3784(4) (VE, VI) (S) W =
46.047 14.71 68.954 28.882

17.205 8.3784 28.882 18.407

-1

150 loge1150 Y41 3 -1.129.6

102.6 -6.0197 189.78 76.884

-6.0197 28.307 -49.119 -18.124(5) (s, yE, VI) W
189.78 -49.119 464.33 193.05

76.884 -18.124 193.05 86.57

-1
150 loge1150 W1 " -941.73

After carrying out all our computations for each of the clustering

alternatives (using the Matrix Algebra Routines in SPEAKEASY interactive

computer package), we obtain the AIC's from (5.15). The results are shown in

Table 6.8.
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TABLE 6.8. THE AIC'S FOR IRISES BY GROUPS ON ALL VARIABLES

.1

Alternative Clustering nploge(2-) nlogeln W1 np k I 2m AIC

1 (S) (Ve) (Vi) 1,102.724 -1,504.2 600 3 44 242.524a

2 (S, Ve) (Vi) 1,102.724 -1,085.9 600 2 36 652.824
3 (S, Vi) (Ye) 1,102.724 - 988.39 600 2 36 750.334
4 (Ve, Vi) (S) 1,102.724 -1,299.6 600 2 36 439.124
5 (S, Ve, Vi) 1,102.724 - 941.73 600 1 28 788.994

n - 150 plants, p - 4 variables

m - kp + p(p+l)/2 parameters
-1

AIC - nploge(2w) + nlogeln WJ + np + 2m

aFirst Minimum AIC

bSecond Minimum AIC

Hence, looking at the Table 6.8, we see that, using all four variables

simultaneously the first minimum AIC occurs at the alternative submodel 1,

that is, when (S) (Ve) (Vi) are all clustered separately. This indicates

again that indeed there are three types of species. Therefore, the MAICE is

submodel 1. Not surprisingly, the second minimum AIC occurs at the

alternative submodel 4 telling us that if we were to cluster any one of the

two iris groups, we should cluster I. veriscolor and I. virginica together as

one homogeneous group, and we should cluster I. setosa completely separate as

one heterogeneous group.

Here, it is important to note that we obtained also the same results when

we used the four variables separately in our computation of AIC in the

previous section, which is encouraging.

Thus, In concluding, we see from these numerical results that AIC and

consequently minimum AIC procedures are very successful indeed in identifying
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the best clustering alternatives when we cluster samples into homogeneous sets

both in the univarlate and the multivariate cases.

Moreover, the definition of MAICE gives a clear formulation of the

principle of parsimony in statistical model building or comparison as the

above examples demonstrate. And MAICE provides a versatile procedure for

statistical model Identification which is free from the ambiguities inherent

in the application of conventional statistical procedures.
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