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ABSTRACT

Linearized unsteady lifting surface theory has been applied in the

study of counterrotating propeller systems with equal or unequal number of

blades operating in uniform or nonuniform inflow fields when both units

are rotating with the same RPM. The mathematical model takes into account

as realistica-lly as possible the geometry of the propulsive device, the

mutual interaction of both units and the three-dimensional spatially vary-

ing inflow field. The propeller blades lie on a helicoidal surface of

varying pitch, have finite thickness and arbitrary planform, camber and

sweep angle. The inflow field of the after propeller is modified by taking

into account the effect of the race of the forward propeller, so that poten-

tial and viscous effects of the forward propeller are incorporated. These

additional effects play an important role in determining the unsteady load-

ing of the after propeller. This, together with some refinements introduced

in the numerical procedure, has brought the theoretical results into better

agreement with experiments. A computer program has been developed adaptable

to a high-speed digital computer (CDC 6600-7600, Cyber 176) for counter-

rotating systems of equal and unequal number of blades, in uniform flow for

comparison with existing experiments.
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!* NOMENCLATURE

A subscript index of after propeller

a QroU

SF subscript index of forward propeller

forces in axial, horizontal and vertical

directions

I(f)(x) defined in Equation (7a)

Im(V) modified Bessel function of order m

i subscript index of control point

j subscript index of loading point

Km(V) modified Bessel function of order m

Kji kernel function of integral equation

j i modified kernels, after chordwise-integrations

L(r) spanwise loading distribution, lb/ft

1.0)(p) spanwise loading components (coefficients
of chordwise distribution), lb/ft

A k  integer multiple

m order of lift operator

mk index of summation

NFNA number of blades of forward and after pro-
pellers

n order of chordwise mode

n blade index

P perturbation pressure

Qx,y,z moments about x-, y- and z-axes

qi order of blade harmonic

r radial coordinate of control point

r superscript index of control point

rAo after propeller radius

rFo forward propeller radius

s lifting surface

t time

U uniform velocity

u variable of integration

ix
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V (r) Fourier coefficients of velocity normal to
the blade

Wi(x,r,P;t) induced velocity at control point

x,x' longitudinal coordinate of control point

x(x'),r,cp cylindrical coordinate system of control
points

y horizontal Cartesian coordinate

z vertical Cartesian coordinate

hydrodynamic pitch angle

9 distance between the two propeller planes

9(0) chordwise mode

9 j angular coordinate of loading point

O(Y angular chordwise location of loading point

b 8 projected semichord length, in radians, offorward and after propellers

; n 2 (n-1), n-1, ... N.ijn jj

O (r) geometric pitch angle
p

A(R)(x) defined in Equation (7b)

Xk positive integer multiple

9.9 longitudinal coordinate of loading point

%(),p,G cylindrical coordinate system of loading
points

p radial coordinate of loading point

P superscript index of loading point

pf mass density of fluid

' angular measure of skewness

f(A) generalized lift operator

Ti angular coordinate of control point
9a angular chordw(se location of control point

a3 angular velocity of propeller (absolute
value)

x
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INTRODUCTION

The combination of two counterrotating propellers on fast ships has

been shown to offer considerable improvement in propulsive efficiency when

compared with a single screw [1]. Furthermore, since the total required

power is divided between two propellers, this results in a reduction of

blade loadings and hence the inception of cavitation is delayed. These

are the main advantages of this propulsive system; its principal disadvan-

tage lies in the mechanical complications in transmitting power through a

coaxial counterrotating shaft.

The CR (counterrotating) propulsive system is also expected to have

more favorable vibrational behavior. From tests of a 4-0-5 CR system (4-

bladed forward and 5-bladed after propeller) in the wake of a model of a

fast cargo liner [2], it appears that the ratios of amplitudes of excitation

to mean thrust are comparable to those of a single screw providing the same

power. However in these tests the nonuniform wake is by far the dominating

cause of vibration. The effects of the interaction of both propellers are

small in comparison and the higher frequency excitations cannot be deter-

mined at all accurately.

A better understanding of the mechanism of the interaction can be

obtained by considering the CR system under open-water conditions (uniform

inflow field) so that wake harmonics are not present to mask the interaction

phenomenon.

The calculation procedure is based on the analysis of Reference [3)

for the cases of CR systems of equal and unequal blade number, operating at

equal or unequal RPM in uniform and nonuniform inflow fields. In that

reference, the true geometry of the helicoidal blades was taken into account

with the exception that blade thickness was assumed negligible.

In Reference [4], CR systems of equal and unequal number of blades are

considered operating at equal RPM in a uniform inflow field. The blade

thickness effects are also considered as additional velocity perturbations

References In text matter refer to similarly numbered references listed at
the end of this report (pp. 54-55).
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on the LH (left-hand) sides of the two surface integral equations which state

the kinematic conditions on both units of the CR system.

The development of this pair of surface integral equations is based

on a linearized unsteady lifting surface theory as adapted to the marine

propeller case. Their kernel functions are derived y means of the accel-

eration potential method and the surface integrals are reduced to line

integrals by employing the mode approach in conjunction with the "generalized

lift operator" technique [5J. Then by the collocation method the line integral

equations are reduced to two simultaneous sets of algebraic equations. Finally,

the solution of these is obtained by an iterative procedure, assuming at first

that the effect of the after propeller on the forward propeller, except for

the velocity field due to the thickness of its blades, may be neglected. The

computation procedure is adapted to a high-speed digital computer (CDC-6600,

7600, or Cyber 176).

In Reference [4] calculations were performed for two CR (counterrotat-

ing) configurations for which data are available from tests at the David W.

Taylor Naval Ship Research and Development Center,L 6 ,71 with disappointing

results. Re-examination of the theoretical development has indicated that

two important factors have been neglected: that due to the forward

propeller wake induction on the after propeller, and that due to the effect

of viscosity.

In a series of systematic calculations of the velocity field around an

operating propeller, it was found that at points in the race the character-

istics of the velocity field were quite different from those outside the

race. Since the after propeller is located in the race of the forward pro-

peller, an analysis has been developed taking cognizance of this fact. A

correction has been incorporated in the program at the point where the in-

duced velocity on the after propeller due to the presence of the forward

operating propeller is determined.

It is also recognized that since both components of the CR system are

located in close proximity to each other, the "potential" approach will not

be sufficient to study the interaction phenomenon; the effect of viscous

wake must be taken into account. In the absence of wake measurements at the

plane of the after propeller, an approximate method has been utilized by

adapting the development of Reference [16] to the CR system in order to

2
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provide the harmonic content of the viscous wake of the forward propeller.

I Both of these additional factors have been incorporated in the present

study.

This study is sponsored by the Naval Sea Systems Command General Hydro-

mechanics Research Program under Contract N00014-77-C-0298, administered by

the David W. Taylor Naval Ship Research and Development Center; Davidson

Laboratory Projects 024/4513 and 081/4804.

3
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LINEARIZED UNSTEADY LIFIING SURFACE THEORY

Two counterrotating propellers are operating in the flow of an ideal

incompressible fluid. The propeller arrangement and the coordinate system

are shown in Figure 1.

The basic relation of the interaction phenomenon Is that the negative

velocities induced by the propulsion system on each propeller lifting surface

should be balanced by the downwash velocity distribution at that surface,

thus expressing the requirement of an impermeable boundary. The kinematic

boundary conditions on both lifting surfaces are expressed as two simultane-

ous surface integral equations, symbolically represented as

WF(xFrFCPF;t) - id APF F, PF, eF;t)
SF

KFF (xF rFPF; F' PF' F;t) dSF

+ S'f dPA(91A'A8 ;t)
SA

KAF(xF rF'FpF;A ,pA, A ;t)dSA
(i)

(xrA - S;t APF(CF'RF ;t)

A SF F

K KFA NX/ -,rA, A; gFF, ' F; t)d$ F

+ S APA(91,PA,eA;t)
SA

"K (x/, rA, PA;9,PA,A; t) dSA

where
x(x'),r,cp and C(C'),p,8: cylindrical coor-

dinates of control and loading
points, respectively

F and A: subscripts indicating forward and
after propeller

t: time, sec

S S forward and after propeller sur-
faces, fta

4l
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WFWA: velocity distributions normal to
forward and after propellers,ft/sec

aP PA: unknown loadings; pressure jumps

F' A across the lifting surfaces,lb/ft2 ,

i.e., AP=P.-P+ pressure difference
between back (suction side) and
face (pressure side)

K..: kernel function representing the in-
0 i' duced velocity on an element i of

a blade due to unit amplitude load

located at each and every element J,

ft/lb-sec

The second term on the RH (right-hand) side of Eq.(l) and the first

term on the RH side of Eq.(2) are the interaction effects. The remaining

terms are the self-induced velocities by the individual propellers.

The unknown loadings and the onset velocity distributions are cyclic

in nature. Then for a CR system with right-hand aft propeller and left-

hand forward propeller rotating at equal RPM

APF(CF 'PF'eF;t) =Re Z 'FF (CF'PF9 eF

0 (% k) ix k fit

PA('A'AA ;t)-(AZeA)ek
(3)

w~(x~r~,c~t(R F ~ ) -iq~at
W F (XFtr FF-;t)Re 7F (xF,rF,cpF)e t

q F-O

WA(xA,rA,pA;t)-Re iqt

qA WO WA (xArA'PA) (4)

where qi designates the order of shaft frequency or order of harmonic of

the inflow field, Xk that of the loading distribution to be determined by

the analysis, and C is the absolute value of the angular velocity of each

propeller (qi and Xk are both positive integers). The known downwash veloc-

ities and the unknown loadings are expressed in a complex conjugate form In

(3) and (4), where finally the real part is taken.

5
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The velocities W i are caused by flow disturbances such as those

due (I) to wake, (2) to incident flow angle which is the difference between

the geometric pitch angle e of the propeller blade and the advance angle

(hydrodynamic pitch angle) 5 = tan- u/Cr where U is forward speed and r

is the radial location of the corresponding helix, (3) to blade camber, (4)

to "non-planar" blade thickness, and (5) to the effects of the thickness of

the blades of each propeller on the velocity field of the other. The wake

disturbances of WA also include the wake induction of the forward propeller

on the after propeller since the latter operates in the race of the forward

propeller. Within the limits of the linear theory, the effects of the flow

disturbances can be obtained separately and then simply added together.

Although the analysis applies to both nonuniform and uniform inflow,

as mentioned earlier, the solution by an iterative procedure will be re-

stricted to the uniform inflow case (no wake). Furthermore, the disturbance

due to the so-called "non-planar" thickness (since a propeller blade lies on

a helicoidal surface of variable pitch, its thickness affects its own velocity

field) will be ignored as negligibly small.J910)

After the chordwise integrations are performed by means of the mode

approach and the generalized lift operator technique, the pair of surface

integral equations (1) and (2) are reduced to the following set of line

integral equations for given qi , order of shaft frequency, given ;, order

of lift operator, and n, order of chordwise mode shapes, for the case of

equal RPM:

qF , Fi (rF)-SL(FF' (PF R ,, (R(ml-qF+AI d
Uz ' F NF )  dPFFMM- FF F F

I Z O A (PA)

KAF (ma'qFF.AaNA) dPA (5)

(q A fff)  (X,-qA+2Ja3N F ,

(rA)' F 2L (P )
PF %3 -O m3 -O
. (M,R) (m 3-q A3,~ NF d F

FA A+ F)
(q At p.

+ ALA (PAKm4' (m4-qA+L4NA)dPA (
6)

6
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Here L(;) (PF) and LA() (pA) are the unknown normal loading components of

the n chordwise mode for each blade in lb/ft of span, NF and NA are the

blade number of forward and after propellers, and Lk is integer. The bars

and superscripts ; and n indicate that the quantities have been integrat-

ed along the chord.

The values of k and mk shown in (5) and (6) are arrived at by equating

the time-dependence on LH and RH sides so that

-iqFnt -i% iat
e - e for the first term of the

first integral equation
-iqFOt i (;L 2-2m ) Ot

e - e for the second term of that
equation

e - e for the first term of the
second integral equation

e w e for the second term of that
equation

and from the summation over all blades of a propeller which is represented

by

N ±i(mk- X)6n N for m k-xk-N1 k-O,±l...
nEI {0 otherwise

where 0 n" 2r(n-l)/N
'i n

The respective kernels are derived in Reference [3] for RH forward
propeller and LH after propeller. For LH forward and RH after propeller,

they are given in the following section in final form.

7
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THE KERNEL FUNCTIONS

The Kernels K and A
FF RAA

These functions describe the self-induced velocity at a point on a

propeller blade due to unit amplitude load at various locations on all the

blades of the same propeller. The development for a right-hand propeller

is given in Reference [10] and yields

M=-0 P r -7

m .m {g(O)+ g(u)-g(-u) du (7)m - oT u

where

g(u) = (IK)mB'(u)e a

(IK)m - Im(Iu+aNJp)Km(iu+aLNlr) for p < r

S lm(Iu+aLNlr)Km(Iu+a, Nl p) for r < -P

B'(u) (au + a2 LN + -m)

(au+a= LN+ f-%7) (((q- u) @A()(q-e p)

Pf - fluid mass density, slugs/ft
3

r0 = propeller radius, ft

difference between skewness of the
blade at the control point r and
skewness at a loading point p. radians

a Q ro/U and p and r are also non-
dimensionalized by rO

r Pb' b = subtended angle of projected semichord
of blade at r, at p, radians

Im( ) - modified Bessel function of first kind

Km( ) -modified Bessel function of second kind

-O, *-I, -2,

8
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in this equation the chordwise integration is represented by

I') (x) j (7a)

where #(;) is the lift operator function, and

A() (Y) "- o1 -'1 sinq~Go (T)

0

wherE 8(;) is the chorchise mode shape selected. (See References [3.5,9,10).)

In Eq.(6), the kernel function

No-w A (M 4 =

is given by Eq.(7) with q=qA, N-NA" r-rA, and p-pA" However, ro-rFO, the

radius of the forward propeller.

In Eq.(5), the kernel function

is given by Eq.(7) but with q=-qF9 N=NF", r-rF and P-PF" This is equivalent

to the conjugate of Eq.(7). In both Eqs.(5) and (6), the radial positions

r and p and the inverse advance ratio a are non-dimensionalized by forward

propeller radius rFO .

The Kernels K and K'AF FA

These are the kernels of the cross-coupling terms of Eqs.(5) and (6).

Let the distance between the propeller planes of the two units of the CR
system be c (in terms of rFO). Then for a RH after propeller at a distance

e from a LH forward propeller operating at the same RPM, the derivations of

Reference [3) can be reduced to the following final forms:

9 I
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~( ~ , )( aNpI N ~ ~ { A r rF eim 2( 2 A +ac)

1TTPfU2r 0 a v77-+ a2

F
qe Fq (a F aAac) {A (0) 8(0) _~ (uB )- uB(U)]e ~~~~~~JA ()8( )B -)IL

0

(8)
where

A (u)IM0u-a{ -q)IP)V2 - na- )IF for pA-,rrF
1. (l-(2qldK2 l-fqF A for rF<pA

B(u)=[au-a 2aq F) -1 F) 72.

*e iu(a F cAa 0/a I (n) ((-q u) ebF)

*A(;)(2M2l - q 2 .)8bA

and( 
% q + 3 kO -F A e-f(2aF- )

A

.a ~ a~A {C(O) D(O) - ~ ~C(u)D(u)-C (u) D-u)) LU} (9)

where

I 3(uaM q)P)K 3 uaM- )JA for pF-.rA

I (Iu+a(M3-qp~Ir K M(Ilu+a(M3-qA) IPF) for AF

0() [au+ a 2 (M3-q~i M3. au + a' (ftq -q M'

rA P

-(q a~)ebA)

AA)( .(-2M3 + q, - b

10
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The kernels have been programmed with proper consideration being given

to evaluating the finite contributions of the Cauchy-type singularities in

the u-integrations at u-O and of the Hadamard-type higher order singularities

in the p-integrations when P - r

THE NORMAL VELOCITIES

The LH sides of the integral equations represent the normal components

of the velocity perturbations above that producing zero loading (lift) which

corresponds to a rotating thin plate (i.e., without camber and thickness)

lying on the helicoidal surface of pitch angle (advance angle)

-I U
~=tan

where U = forward speed, r = radial location of the corresponding helix, and

= amplitude of angular velocity.

The perturbations considered are those due to (a) hull wake (non-uniform

inflow), (b) blade camber, (c) incident flow angle, (d) the blade thicknesses

which affect both steady and unsteady velocity field around both propellers

of the CR system, (e) the effect of forward propeller race on the after pro-

peller, and, finally, (f) the induction on the after propeller due to the

viscous part of the forward propeller wake. Since the after propeller is

located in the wake of the forward propeller and it operates in a real fluid,

the velocity induction should include both the potential and viscous effects.

In the absence of wake measurements in the plane of the after propeller when

the forward propeller is in place, an approximate method based on the Kemp

and Sears approach [161 has been utilized. The factors (a) to (e) inclusive

are considered to be the potential part of the induction whereas (f) is due

to the presence of viscosity.

The effects of these imposed flows on the blade are calculated separately

and simply added together as allowed by linear theory.

(A) Hull Wake

The left-hand sides of the integral equations due to the wake contribu-

tion can be harmonically analyzed and written in the form

p 11
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W(r,e) = V(r)e-
i q e

q-0

where 8 can be expressed in terms of the moving coordinate system attached

to each propeller by 9F = - + +0 OA - 0At for the case of
F OF A OA.~ anA

the forward and after propeller, respectively, as shown in Figure 1. The

normal wake velocities Vn(r) can be determined from the harmonic analysis

of the wake measurements, as shown in Reference [9]. After the trigonometric

transformation

° = a -e8COSe
0 b C1

and application of the "lift operator" of order rn

0

the following expressions result for the left-hand sides of the pair of

integral equations relating the unknown loadings with the given "downwash"

at each propeller:

A~q^, )  (qA)
WA (rA) - VA (rA) eiqAaAl ( A1)

for the after propeller, and (10)
.(q F9,i)  (q F)

F U F conj[ I u FF eqF FI (,)(qebF ]

for the forward propeller. It should be noted that the factor exp(±qt)

has been omitted from the above expressions.

(B) Incident Flow Angle

The velocities induced by the incident flow angle and camber effects

are independent of time because the blades are considered rigid so that

only the steady-state loadings will be affected.

For the flow angle (f) effects, tle dimensionless perturbation

12
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velocities after the application of the lift operator become:

F F

and (!!)

W.(r(0(0),

U f A LP A A..U

for the forward and after propellers, respectively, where 0 is the blade

pitch angle and 0 is the advance angle (hydrodynamic pitch angle) of the

reference helicoidal surface (i.e., of zero loading).

(C) Propeller Camber

For the camber (c) effect of the forward propeller, the dimensionless

velocity ratio after the application of the lift operator becomes

.(0,M)

W ~ ~ ~ ~ d (( W'+- f
u nc(rF) as F

where
f(rFsF)- camberline ordinates as fraction

of expanded chord length, measured

from the face pitch line

s F  (l-cospr)/2, chordwise location
non-dimensionalized on the basis

of chord length c(rF)

For the after propeller, the same expression is valid and only the
subscript F must be replaced by A.

The evaluation of the integral of (12) is given in Reference [I]] for

arbitrary camber shape.

13
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(D) Blade Thickness of Each Propeller on the Velocity Field of the Other

In addition to the disturbances of the velocity field about each pro-

peller due to wake, its flow angle and camber, the disturbances considered

are those due to the effects of the thickness of the blades of one propeller

on the velocity incident on the other. These normal velocities on the LH

side of the integral equations have been developed on the basis of "thin"
[12]body approximations. Furthermore, it is assumed that the thickness dis-

tribution is approximated by a lenticular cross-section, an assumption which

has been shown to be a good approximation for determining velocity and pres-

sure [12,13] on a point in the neighborhood of an operating propeller as long

as it is not a point on its blade and particularly near the leading edge. It

should also be recalled that the velocity and pressure fields generated by an

operating propeller even in a uniform i.nflow yield steady and unsteady compo-

nents of the respective field. Thus although it is independent of time, the

blade thickness produces both steady and unsteady components of :he velocity

field.

Following the same procedure as in Reference [12], it can be shown

that the dimensionless velocity normal to the blades of the forward propeller

induced by the after propeller thickness, with maximum thickness-chord ratio

to/c , is given for qF-O by

(0, M)

.Wl o (upA)K(urF) for 4A < rF

()0 LIo(urF)Ko(UPA) for rF < P

i )bA Ub ab pbA C(

in--- - cos -

a F A

F(u,pA)= a

Io( ) and Ko( ) are modified Bessel functions

of first and second kind of
order zero

18
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and for qF 21NA where L1,2, ... , by

(2A NA,M) 
F (rF) F A •

S * j ~A l+a 2 .~

bA Ac 72(A
A

"F(U,PA)EG(u)-G(-u)ldUdPA (14)

where

G~AN (IA Q u4+a INA I)'KA (u+ANA I r)A r] A AF

eiu(aA-a F+ac)/a

for PA < rF " If PA > rF , these factors are interchanged in the modified

Bessel functions.

The velocity normal to the blades of the after propeller induced by
ithe forward propeller thickness is for q A-O

(0, i) 4aarANF F to

ju(IK) o ~ P)..L ~ I fi(~AJd

) I A AWU F) S for rA<PF

s UnbF UbF UebF

SF(upF) - ,, a aa a

0 -a F

U

15
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and for qA UNF' 11,2,

(2NFam)' . a N -iN (2aA+a)

(WA A F e

U /F e

* S F(U,PF)EN(u)-N(-u)]dUdPF (16)

where 0

"(u)I'{8Ua u NF(,a3a' )1I' N(IU+a NF I PF~r KN F ( iu+aLNFi rA)

*eIuVI'a+ac)a n(2NF2A
• I

for PF < ra. If PF> rA , these factors are interchanged in the modified

Bessel functions.

(E) Effect of Forward Propeller Race on the After Propeller

~Since the after propeller of the CR systm operates in the wake of the

~forward propeller, special attention must be given in calculating the velocity

• induced by the forward propeller on the after propeller. As shown in Appen-

dix A for the equal RPM case, the wake induction effect to be added to the
downwash velocity W A(qA~r)/u ii given by

AWA (rA) NeF 1 (l cA

kO Fn(rA)An)(O)l (r)(o) for (17)

and .(2NF, i) f

AWA .NF I___aA_._. .r___A_

U 2rTPfU 2rF0l Il+ar ArA

.o* O')(rA)A()(O)() (2NFeA)eiaNFei2NFaA for qA=2NF (18)

2_ 16

N})l +NFa II l~L 'dKI l~JNFIr
F F

e-iII-F a )/ r) 2L F IIb
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(F) Induction on the After Propeller Due to Viscous Wake
of the Forward Propeller

Since the after propeller is located in the race of the forward propeller,

it operat .. in a viscous fluid and hence the induced velocity on the after

propeller shoud include both potential and viscous flow effects. The potential

flow effects have been considered in the preceding divisions A through E of the

present section. The viscous flow effects are determined approximately by
[16]

following the Kemp and Sears approach adapted to the CR system as shown in

Appendix B.

The induced velocity at any appropriate frequency on the after propeller

is

, / (q,;) u(q) . r R ) r~) (

(Uvis (rA) U(k)-,qa I

after application of the lift-operator given by Eq.(7a),

where

u(q)

U (rA) nondimensional viscous wake velocity at midchord points

on the after propeller at radial locations rA and

frequency q . This quantity is calculated according

to Reference [IQI. (See Appendix B.)

The other symbols have been defined previously.

17
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SOLUTION OF THE PAIR OF INTEGRAL EQUATIONS

It is seen from Eos.(5) and (6) that the loading on each propeller of

the CR system is affected by all the harmonics of the inflow field. Here,

however, the solution will be limited to the uniform inflow case. The viscous

part will be treated separately and it will not be considered as participating

in the iterative scheme which will be discussed later. The normal velocities

in the potential flow case are due to the following contributors: camber (c),

incident flow (f), steady and unsteady effects of the interactions between

the two propellers (i.e., cross-coupling terms), the respective thicknesses

of the two units of the CR system, and, finally, the effect of the forward

propeller race on the after propeller.

(A) Potential Flow

Equation (5) becomes for each ; and n for qF--O

[F F1 L(O)(pp) (q O)dpI
U c+f+tA pF (F FF FO PF

• (2NA) -

+r{LoA'(A ,) (A..o) +L, (),A>,,,
A A

(20a)

and for q-F 2NA

(2NA) ,
(r (2A)

+F '{LO) (pA)AF(ra A)+LA (P AKF ((m 2NA)+ . }dpA

(2O()

18
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Equation (6) becomes for each m and n, for qA= 0

.(0)
rAj IA ( rA) {(0)

,UJ+ uF )FFA(m3"O)Uc+f+tF PF F

CftF L(2NF) (P)F~~IF+... dpi.PF

and for qA = 2NF 2F

. (2NF) (2NF)

L OP ) LFA (mF)FAm-NF

+ F  ( F Ama2F) + ... F

+ f LA (PA) % (qA')dpA (21b)

PA

and so forth, for the higher frequencies.

Even in this simplified problem, a direct solution of the equations

is impracticable; therefore an iteration procedure must be devised. It is

assumed at first that the effect of the after propeller on the forward

propeller (except for the thickness effect) is small and hence the second
terms on the RH of Eqs.(2a) and (20b) may be omitted. Having obtained the

loadings for the forward propeller at any required frequency, the loadings

on the after propeller in the presence of the forward propeller can now be
evaluated by means of Eqs.(2+a) and (21b). Then the loadings of the forward

t and after propellers obtained through this first approximation will be in-

corporated in the next iteration by using the full equations (20a,b) and
equations (21a,b). The calculation procedure will be described later in

where s
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detail in the section "Numerical Solution," but the iteration scheme is

given below for the ith iteration for a CR system with equal number of

blades, NF=NA=N , and for one with unequal number, N F 0 NA* neither being

an integer multiple of the other.

CASE #1: N F=NA=N

i-iteration
_(o,;) _(0,m)

1) LFW [(q_)]-I YWF(rF)) WF (rF)

• U c+f U tL ( (o ( n

L KAF (m2=O,OF-O)
PA L -I

(2N,-) .

+ LA. K (m2=N, q=O)
Ai-I "AF F
(4N, ) .( qF) )(2

+ LA K (m2=2N, qF=O)] (22)
Ai-I "AFF

(2N,;)
(2N,n) ]I F , (r F)2)LFi (PF) E = (q F -2N)] \ FU tA

(on) (;,n)
[LA KAF (m2-N, q =2N)

PA i-q

(2N,n) (m,n)

+ LA._ KA (m2=2N, qF"2N)

(4N,;).(a,)+ LA. KAF (rta3N,qFm2N)] } (23)

.(4N,m

L(4N,n) (q.,)-{ (r F

SLFi (Ft- [KFF(qRF  -4N)'Ik U )tA

S(0,;) ( ;

" ALA-, KAF (F-N, qF-nN)

" L(2N', AF (M2 -3N, qF 4N)Ai-I A

+ L (4N'n)R(;;) (m2 -4N, q - 44N)] } (24)

20
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(o,n) .(o,)r.(r W.(r

and 4) LA ( - [R A(q~- ~ {( A r))KA (A)+ (fA r))
Ai c+f tF

LF. KF (m3 - O, q in0)P F L LF i KFA A 0

(2N,;) (re,;)

+ LFi KFA (ma - N, q A 0)

+ L (M 2N, q 0)] (25)
Fi FA (mA N

t(2N,;) (2N,;)

5) L (2N, ;) = [R,(q-2N)]{(A U (rA)) +(69A (rAb

A i  A) K A ] u tf u

SLLF i  KFA (m3 = N, qA - 2N)p F

+ LF KF (M3 = 2N, qk = 2N)

L KFA (m3 3N, q = 2N)] } (26)

6(4N,)) (4N,{)
(4'Nn) WA (r A5 +(&JA (rA)6) LA i (PA5 [R/A (q A =-'N) ]-1{W U Uf '

iF LLF, KFA(M3 = 2N, - 4N)

(2N,;) _(;,;)
+ L FI K FA (ma = 3N, qA - 4N)

(4N,;)(e,) -(;, ) (27)
+ LFi KFA (ma - 4N, qA 4N)]

21



-',

R-2234

CASE #2 NF  NA

(0,;) ]- F  (r F)

1) L (p)-F(P (q -O)]~ (W
F F CRF U /c+f+tA

r(0,;)-(;,;) " -I

"A [L Ai KA  (ma 0 , qF 0) (28)

(2N - (2NAt)

2) LF (p [ F (q -2NA)] {(WF U (rF) tA

LAi- KAF (m2 - NA,q 2N ] (29)

3) A1  - [ LAq-)J {W U) +F( (A) )

.o) (,) .o

- LL~ F m , = 0)]} (30)

3) LA "A rA)) +(M'A (rd)PF F

_(2N F ; )  (2Npm

4) A i  (PA) =EK/AA=ANF) U tF +( U

(0 ;) (;;
F NOin K' ( N 2NF)] } (31)

where
K 'F(q)  K (q K(,m)

KA(A) = KAA (At m

When subscript i-1-0 , then the quantity under consideration must be taken
to be zero.

It is to be noted that, in contrast to the case of equal number of

blades for the two propellers of the CR system, when the propellers have

22
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an unequal number of blades, N A 0 NF, the series representing the cross-

coupling terms due to the interaction effects are more limited. As will be

shown later, for this case there is no unsteady loading L F on the forward

propeller at frequency 2 NF and no unsteady loading LA on the after pro-

peller at frequency 2 NA. it should be kept in mind that the iteration

scheme has been restricted to the lowest possible frequencies of the inter-

acting CR system. It will be easily generalized by means of Eqs.(5) and

(6) by varying parameters L1' L2 A £3P Y4 (all integers) to other values

than those already used (0, el). The iterations will continue until the

values of the loadings will be stabilized, i.e., they will not change for

consecutive iterations.

(B) Viscous Flow Effects

The last iteration establishes the value of the pitch of the reference

surfaces for both propellers of the CR system. At this stage, the viscous

effect on the induced velocity of the after propeller is calculated by means

of Eq.(19) at the desired frequency. The loadings of the after propeller

are determined through the solution of the integral equation relating the

known upwash with the unknown blade loading.

CASE #1 NF=NA-N

(2N,m)
( )2N)] (rA)

LA A) [ AA~U vis. (32a)

and
(4N,;)

A %U(q - 4N) U)vis.

CASE #2 NF 0 NA (Neither one is an integer multiple of the other.)

In this case (2NF,m)

L F ( ( rA))v i  (.

The viscous flow results should be added to the potential values at the cor-
responding frequencies to determine the combined effects. The same results can

be obtained by adding the viscous inductions to Eqs.(26) and (27) for the case

N -N F-N and Eq.(31) for N FN A at the last iteration of the numerical scheme,

so that the final values of blade loadings will be determined.
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PROPELLER LOADING AND
RESULTING HYDRODYNAMIC FORCES AND MOMENTS

Propeller Loading

Once the values of L (qn)(r), the spanwise loading components, or

coefficients of the chordwise distribution, are obtained, the spanwise

loading distribution L (q) (r) is determined as: L9,1 OJ

(q) T1 nmax qnL~q (r) - I L~q; (r) 8(n-)s in~d% 34
o ;-I

where 8(n) = chordwise modes. Because the interaction phenomenon intro-

duces an angle of attack even in the steady-state case z(n) is taken as

the complete Birnbaum series which has the proper leading edge singularity

and satisfies the Kutta condition at the trailing edge. In this case it

can be shown that

L (q) (r) - L ( q ' l ) ( r) + 1 L (q ,2) ( r )  (35)

Hydrodynamic Forces and Moments

The principal components of these forces and moments which are evalu-

ated for each member of the CR system are listed below and shown in Figure 2

for a RH propeller with the sign convention adopted.

Forces: Fx  thrust (x-direction)

F yand F -horizontal and vertical components, respectively,
y an of the bearing forces

Moments: Qx torque about the x-axis

0 and Qz W bending moments about the y- and z-axis, respec-
tively.

(Subscripts F and A added to these symbols will designate forwird and
after propeller cases.)

The elementary forces and moments can be determined by resolving the

chordwise loadings, acting on an elementary radial strip, normal to the

strip and taking the corresponding moments about any axis as in Reference

[9].
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Thus the elementary forces acting at radius r of an N-bladed propeller

will be given by

NL q (at+_)(
Y nl

N (q) i q(0t4 n)

AFy- n2i L (r)e sn (r)co(tA 0+nAr (6

N (q) (e n)AFz n L L (r) e s inOp ( r) cs n(lt -cPo+§n)(36)

N iq(t+§n)

AFO.2 LI r (q ) (r) e ns inOp(r)snO -co r)A

wQher n rLr(q) (ric cOSpe(r)cos(t- and+e)Ar (37)

N (q) iq('t+gn)
'Q -- L rL (r)e sinp(r)snt -+nr

z n-l P ~ o nA

The summation over all the blades of a propeller involves

1) for thrust and torque

N iq§n N when q-nN,n-0,l,2 ... (38)

n-l0 for all other q

2) for transverse forces and bending moments

i N when q nN;lnin ,l,2 ...

n- for all other q

It Is thus evident that in the steady-state case (q-0) thrust and

torque from each propeller will be present (see Eq.38) whereas, since the

condition under consideration is that of uniform inflow Into the forward

propeller, there will be no transverse forces and bending moments (see Eq.39).
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This will be so whether the propellers are of equal or unequal number of

blades.

As has been shown, the interaction phenomenon induces unsteady load-

ings on both units of the CR system. In the case of equal blade number,those(21N)rF othafeprplrL(2 1N)rA
on the forward propeller are L (r on the after propeller, A

As seen from Eqs.(38) and (39), both propellers generate thrust and torque at

frequencies q=21N, A=1, 2, ... , which correspond to blade-blade crossing

frequency for such propellers, and no unsteady transverse bearing forces and

moments since no combination of integers I and n can satisfy the relation

(22-n)N - ;l.

In the case of unequal blade number, NA 0 NF, the unsteady loadings on

the forward propeller are at frequencies qF=2 1 NA and 212 NF and on the
afterF prple at 2 aafter propeller at qA=23 NF and 214NA . The criterion for thrust and

torque, Eq.(38), yields

q = 2 NA = n N

qF 2 2NF 2 n2F (38a)

q = 21N n NA 23F 3 A

q A = 24N A = n4N A

and the criterion for transverse forces and bending moments, Eq.(39), yields

qF = 2A INA nINF -I

qF = 2 2
2 NF n 2NF 1 (39a)

q 3A = 213NF n 3 NA :1

qA = 224NA A n4NA .1

The conditions of (38a) for thrust and torque are always satisfied for fre-

quency q-qFq A by choosing IIit4=mNF 1 12-1 3 mNA, m1l, 2, ... , so that

q-2mNANF, i.e., the so-called blade-blade crossing frequency and multiples

thereof. Equation (38a) can also be satisfied at lower frequencies (|) if

NAkNF, k being an integer, in which case choosing 21 kh2 2 3=1 4 k yields
q,2mkNF" and (2) if NA and NF are both even numbers, in which case, qmNANF.

In the latter two cases the conditions of (39a) for transverse forces and

moments are obviously not satisfied.
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When NOAkNF and NA and N are not both even numbers, the CR system

generates thrust and torque only at q-2mNAN F (blade-blade crossing frequen-

cies).

The conditions of (39a) are satisfied for

q m q F -1 =  2 1iNA  : l -n ,N F

q m qA *1 = 23NF *1 n3N A

since 21N 3F - n3NA+nNF is possible. The frequencies at which side

forces and bending moments of the CR system occur are

q - 2UINA ji = 2 3 NF ±1

from which 2 1lNA = 2 3NF ±2.

An easy way of determining the frequencies for alternating forces and

moments is to write out the sequence of numbers which are integer multiples

of twice the blade number. For example, for 3 and 5 blades

3: 6 12 18 24 30 ...

5: 10 20 30

The frequencies for side forces will be the mean of any pair of numbers in

the two sequences which differ by 2, in this case ii, 19 .... The fre-

quencies for thrust and torque will be the mean of any pair of numbers

which are alike, in this case 30, 60 .... For 6 and 4 blades, the two

lowest frequencies will be 24 and 48 for thrust and torque. (There is no

side force in this case.)

Another derivation of the frequencies of the alternating forces developed

by interactions between a pair of counterrotating propellers in a uniform in-

flow is given by Reference [14] with the same results.

On the basis of the preceding discussion, the total forces and moments

are obtained from Eqs.(36) and (37) as
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1) For thrust and torque

(F) -N r ai qft L(q)(r)oer dx F F 00 JLF (F) P co~F) dF
0

(FX)Ain N~roeio I LA rA) coseOP rA) drA (40)
0

(QxFm-NF rf0e FS (r F)sin P (r F )r FdrF
0

2 L ir/~ q(1r I (q
('x A ro e L rA)iOP(A rdA (41)

0

where q-0 for steady state, and the lowest frequency of the alternating

thrust and torque is

q NF whnNA~ HF9 k=], 2,

q AN F when NA'N F and both are even numbers

q= 2NANF for all other NO

2) For transverse bearing forces and bending moments when NAON and NA and
AF A

Nare not both even numbers or multiples of each other:

(F)= 05N re LF rFA b )sin() (r F)drF

(FZ) F= ;i (F y)F (42)

i q A± (It I (q A- , ,
(Fy)m0.5N Ar 0( a , LA () - )sine rAdy AooonA

(FZ)Ain ±i(F )A (43)

N i(q F;)Clt I (qn FA~l r*
LE f L ir r ±eb)cosefl(r )drF

(Q)F 2 re on { ()

; rsnep(rF tane (r )A;((rd
bF pF PFF F
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(Qz)F = Q)F (44)

A i(qA:±l)Q'lt 1 (q

Mqp A) r n(Te r )SO(r

(%?A~rO eS± Lr A)rt (bA)) case

SieA sne p (rA)tane (r I (r)}dr A

(Q ±i A  (45)

where A n)(x) is defined in Eq.(7b)

and A ) (x) (n)sine cose e d• [See Refs. 9, 10.]
* 0

The upper signs (at q-qF-I= qA+1) are used when NA > NF, and the lower

signs (at q=qF+] =qA-1 ) are used when NA < NF, and qF = 21INA and qA= 2 "3NF
where A and £3 must satisfy the condition 2 £1NA = 2A3N F2.

It is to be noted that ro=rFo = forward propeller radius and rA and rF

are fractions of r Fo, and that finally the real parts of the forces and

moments are to be taken.

Blade Bending Moment

Following References [9]& E10], the blade bending moment about the face

pitch line at any radius r. of a blade of the forward or after propeller

is calculated from the spanwise loading L (r) at any shaft frequency q

as

(q)--r2 e iq - t L (q)(r)coS[op(r) - 6p(r )](r-r )dr (46)
rj

The instantaneous blade bending moment distribution as the blades swing

around the shaft is

()i qct

SMb = Re Z M q) e (47)b qb

Here q-qF for the forward propeller and q-qA for th1 after propeller.
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NUMERICAL PROCEDURE

On the basis of the theoretical procedures outlined in the preceding

sections, a numerical approach has been established and adapted to the CDC-

6600 or 7600,or Cyber 176 high-speed digital computer. The program furnishes

in the case of uniform inflow to the forward propeller, (a) the steady and

time-dependent blade loadings, (b) the corresponding hydrodynamic forces and

moments, and (c) the blade bending moment about the face-pitch line at any

radius.

The expressions for the kernel functions given by Eqs.(7-9), those

for the normal velocities on the left-hand sides of the integral equations

given by Eqs.(lO-18) (for the potential flow case), or (10-19) (for the

combined potential and viscous flow effects), together with the pair of

integral equations (20a,20b) and T21a,21b) constitute the desired working

form. The computer program prepares all the necessary information for the

execution of the suggested iteration procedure. Before conducting any cal-

culations, a preliminary numerical investigation is performed with the sole

purpose to establish the pitch of the helicoidal reference surface, around

which the perturbation method is applied. [8,9,15]

From experience gained in a series of calculations utilizing the program

developed for a CR system, it was found that the "advance angle," which is

related to the pitch of the reference helicoidal surface,L9,lO '15] is a very

sensitive parameter and that small changes in values have a noticeable effect

on the resulting hydrodynamic forces and moments. It was also found that

time-dependent terms which are involved in calculating the steady-state

hydrodynamic forces and moments (see iterative procedures [Eqs.22-31]) have

insignificant effects and hence can be ignored at the first stage of this

investigation. Furthermore, from experiments conducted at the David W. Taylor

Naval Ship R&D Center with the purpose to establish the "open water" charac-

teristics of a CR system, it was also noticed that each uniL of the CR system

operates with its own advance coefficient which is a little different in

value from that of the coupled system. All these factors have been taken into

consideration in establishing the iteration procedure.

On the basis of these observations the computer program is divided into
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the following two parts:

(A) Auxiliary calculations with the sole purpose of establishing

the pitch of the reference helicoidal surface.

(B) Final calculations where the complete interaction between the

units of the CR system is taken into account.

PART A comprises the following steps:

1) Calculations of the inverses of the self-induction kernels

[K FF I and [K AAj '

i.e., when both loading and control points are on the same unit of the CR

system. They are evaluated at a =a =a = s where Js = advance coefficient

of the CR system.

2) Determination of the inflow velocity field at its own advance coef-

ficient which is very close to the value of Js. It should be kept in mind

that the inflow field remains unchanged during the iteration which will be

discussed in Step #3. Sometimes a slight adjustment of the inflow field can

bring results for KT and in better agreement with experiments.

3) Calculations of the cross-coupling terms KAF and KFA are performed

at values of a= 1 determined by an iterative procedure. In this step only
J

the steady state loadings are considered. The advance angle at each iteration

is determined through the expression

a Oro (48)
U

where U = U+ui; U = ship speed, and ui = induction speed due to interact-

ing lifting surfaces. For simplicity, the value at 0.7r0  is taken as the

representative value of U(i) at the ith iteration. With these values of

a (i) ada(i), the cross-coupling kernels KMi and -A:db U creto
F a A AF a FA a(0, )A (,)

term) are calculated and thus the steady state loadings F  and LA and

the corresponding thrust and torque are determined.

This iterative procedure will be terminated when the values of thrust

and torque converge to their final values. We start at assumed values of

a F=aAaO of the system and after 4-5 iterations, the values of Lr and KO

are stabilized.
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if an adjustment of the inflow field is required so 3s to bring the

results of_T and KQ in better agreement with existing measurements, this

part can be achieved within 2 or 3 iterations with an additional 2-3 minutes

of execution time.

Note while performing calculations for the inflow field for the 4-0-4

and 4-0-5 CR system, it was found that the appropriate values for a F and a A

are the following:

For the 4-0-4: JF = 1.12 r aF - 2.799 - 0.98ao
or

JA = 1.08 a A = 2.913 = 1.02ao

For the 4-0-5: JF = 1.13 raF = 2.756 = 0.96ao
or

JA = 1.11 aA = 2.856 = a0

where ao = Jis and = advance coefficient of the CR system.

PART B
The final values of the advance angles a f) and a(') being thus

aF A
established, the complete interaction problem is now considered. This part

of the program takes into account the contributions from the steady and un-

steady loadings and it is subdivided into the following:

a) Calculate all unsteady loadings by utilizing the steady state

cross-coupling terms determined in PART A.

b) Perform iterations by taking into consideration all the contribu-

tions from steady and unsteady loadings.

The coding of the two parts, A and B, and their subdivisions, will be

clarified to the reader by the following Tables 1 and 2.
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TABLE I

CASE NA = NF -N

PART A

1. Calculate inversion of self-induction kernels using a°  withs

of the system. 
0 s

FF 1 (qF=O)

E KFF]'! (qF= -2N)

ER FF 'l (qF= -4N)

! | CKAA ] -'I(qA=O)

!;[RA
] -' (q A= 2N)

[ , ] ' (qA- 4N)

2. Steady loadings only

Uncoupled: L(Oc+)

,.(0,L )

(O,) (0A)- LKAA(q-O)]- W }
1 A ~ MAc+f

Iterations:

F C+f+tA PA A AF

L(0; P )- ]-A +b A .Z [L (0;)R(;;)(m3=O,q =O)]
A A cAf0) U PF FA A

A

From induced velocity, determine new aF, aAs utilizing Eq.(48) and recalculate
-(O,ff)

the cross-coupling kernels KAF ' KFA ' and A U
33 [Cont 'd]

IA



R-2234

Table I (Cont'd)

PART B

a) Unsteady loadings

((2N,;)

L (P A AF (M2 Nqi 2N)
F  F)= tFF  F t A pA (ma2N'qF2N)J

-(4N,;)(4N,;()= [ (qF -4N)] -1{ Fu !- L(O';-)R(F (M 2NF-N)

F F

-(2N,;)
"A (A= (A =  )-Au F 'FA qA 2n

(,W. 2N' m)

+ --Udue to steady loading of the fwd

prop. in the race of the fwd prop.

L,(4N,;) (pA)=[R,/A(qA 4N)]-IJ W(4,u t. L_(O,;)-('(m,=2.q=N

"m A A( U 'F (m32N, FA= 4N)

A,(4N ', )A

due to steady loading of the J
prop. in the race of the fwd prop.

b) Complete interaction

c+f t A

" L(O' n)('n)(m2 qF=O)+ L(2N,;)K(r,; IM-N=-0

A A AKF F0

+ LNA KAF (m2,2N,q,=O)]

[Cont 'd]
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Table 1 (Cont'd)

2. L (2Nn) F (q ) F 2 ~
F F IF F 2NIl( U

tA

2A A A F Fin A 4

+L (4N,;) R(;,) (m 2-Nq =2N)1
A AF F ,

t g(4N,;)

3. L(41 (q=-NI J(F U3. F4 ~' (PF) EFF F- -'

A [L~ A AF (e2qF N) A A4FF

+L 4N,;R) ~(m-Nq-)A AF F

4.LA (P)U 
C+f + U t F

0 [L OF )nF) (M3 -, A 0+LF F (m3 -mN, q A-)
F

L (4N,fl) (r,ri) (m=2NO'1-
F FA~

+A
U(due to steady and unsteady loadings'

of the forward propeller)

[Cant 'd]
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Table I (Cont'd)

, (2N;) -g(2Nm)

A. LL2N;)((q i2N)7'{1("A
tF

" F L(O,)R(;,;),,,FA (2N)+L(2Nn)R(;, ;) (ma'2NqA-2N)
FL F FA (mamFNq F2N)

+ L (4N,n)K (;~,n) (M3-3N'q2N'1

F FAA

S(2N,;)

+ A
F
U(due to steady and unsteady loadings

of the forward propeller)

g(4N,m)6. L (4N,;) (PA = R [A(qA=4N)]I{ l("AU

tF

Z [(O~)R(,;)(M3-2N q =4)L(2N,;) R(rn')(M38*3 Nqu,4N)

L(4N,n)-(,n) (m -4N,qA0
4 N)7

F FA FA

QA (4N,;)

U (due to steady and unsteady loadings
of the forward propeller)

The above expressions for the interaction problem are now utilized for

the final iterations. At this stage, two or three more iterations are

sufficient to establish the final values of the steady and unsteady loadings

and the corresponding thrust and torque.

36



R-2234

TABLE 2

CASE NF 0 NA

PART A

1. Calculate inversion of self-induction kernels using 
a =a a= sT

where J is the advance coefficient of the system.

[KFF- (q F=O)

S[KFFJ - 1 (qF "2NA)

[KA ]M ' (qA-0)

-,AA ]) 1 (qA= 2NF )

2. 0-iteration (first)

.-(o,m),

,(0,;) (rF)
1) L (0,;) (p) [RF (q=Op{ F (F) }

0 c+f+tF

9 ( 0 ; ) ( 

( 0 

Ai

2-) F(°,n)- ,n) (=0=0) + A 

* PF L.r0

i-iteration:
(0,m)

I) L(0'n)(p) [KFqO)]I( F  rFl

I c+f+tA

2) (0 (mai-0 q i0)]

LA Ni RAFn~)l{W arF))
i:2) L (0'n) (P~l IR/ A(qAO ] " ( U0;)r)

i +1 c+f+tF

r I (o,;)- (m3,q ,w))
F i [Cont'd]
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Table 2 (Cont'd)

From the induced velocities, determine new aF  and a A by utilizing

Eq.(48) and then initiate an iterative procedure by recalculating the

cross-coupling kernels K and K and AWA
FA AF u

PART B

In the case NA#NF' Part B is made up of just section (b) of Table 1

since the steady state loadings only participate in the complete interaction

problem.

-(O,m)w(0'F (r F) F(0),(.)m0,A_)

1. L0'n(PF)-[RF(qF'O)'IF{( F crtFL
FFF U PL Ai F

-(0,m) -(0,;) .
2. L(0 Pn) A (qA= w] A U  (r A)w. A U01 E nR(A'nkm3-0,qA=0)'}

i+! c+f+tA

(2NA) 
W (2NA';)

L. F+ (PF)=ERFF(qF=-2NA)]-{ U tA A -Ai+I AF (:NAtqF=2N)

W+ tA A

_ (2N Ft1 (2N F'51
(2NFn WNW

4. L A (q-N[uo;W ')f- 2
(F )t AF2 F F FA AF Fi+2 [U U P F
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CORRELATION WITH EXPERIMENTS

To establish the accuracy and usefulness of the computational procedure,

a correlation with existing experimental results has been made. Calculations

have been performed for two CR configurations for which data are available

* from tests at the David W. Taylor Naval Ship Research and Development
[6,71

Center. 6''] The data are for the two lowest frequencies, A. O and 2.=I, and
I I

the computations have been limited to these frequencies.

The iterative procedure starts after all the required information has

5 been computed and stored properly. The necessary kernel functions and in-

verse kernel functions are calculated for both a 4-0-4 and a 4-0-5 CR system

for values of m and q as indicated in Tables 3 and 4.

TABLE 3

4-0-4 COUNTERROTATING SYSTEM

In verse InverseVal1ues ValIues|Matrix MatrixMatrix m q Matrix m q

K 0 0 KFA 0 0

4 0 4 0

8 0 8 0

K FF0 K AA0KFF KAA

KAF 4 8 KFA 4 8

8 8 8 8

12 8 12 8

KFF -8 KAA 8

KAF 8 16 KFA 8 16

12 16 12 16

16 16 16 16

KFF -16 KAA 16

3
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TABLE 4

4-0-5 COUNTERROTATING SYSTEM

Matrix Inverse Values Matrix Inverse Values
Matrix m q Matrix m q

KAF 0 0 K 0 0

K0 1K
FF AA 0

K 5 10 K NF-4 2NF=8
KAF KFA F F

KFF -10 KAA 2NF =8

Preliminary calculations have indicated that 4 to 5 iterations are suf-

ficient for the part named "Auxiliary Calculations" whereas additional 2-3 itera-

tions are required in the final stage of calculations (Part B) for both cases

N =NA and N ANA . The execution time for the iterative procedure, however, isFA FA'
minimal since the greatest time-consuming effort is that spent for the calcu-

lations of the inverse of the self-induction kernels [K FF]T and [KAA] and

these are performed only once, are stored in the tape files, and do not

change from one iteration to the next.

The 4-0-4 CR system is composed of the David W. Taylor Naval Ship R&D

Center Propeller 3686 forward and Propeller 3687-A aft, and the 4-0-5 set of

Propeller 3686 forward and Propeller 3849 aft.[6,7] Propeller characteris-

tics and flow conditions are given in Table 5.

TABLE 5

Propeller 3686 Propeller 3687A Propeller 3849
Forward Aft Aft

Number of blades 4 4 5
EAR 0.303 0.322 0.379
P/D at 0.7R 1.291 1.320 1.287
Diameter, D , in 12.017 11.776 11.785
Rotation LH* RH* RH*
n, rps 12 12 12
Speed, ft/sec 13.22 13.22 13.22
Advance ratio, J I. I I. Ij 1 I. l*I

*LH rotation is ccw looking forward; RH rotation is cw looking forward.
**J is based on diameter of forward propeller #3686.
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The axial clearance, e , of both CR systems is set equal to 0.283 of

the forward propeller radius rOF.

Both systems were placed in uniform flow and run at a constant rota-

tional speed of 12 rps. The water speed was varied so as to obtain values

of advance coefficients between J-0.5 and approximately 1.4. A water

speed of 13.22 ft/sec corresponds to the design advance coefficient J=1.1

Design details of the 3 propellers, namely, pitch/diameter P/D, chord/diam-

eter C/D, and thickness/chord t/c ratios are given in Table 6.

TABLE 6

DESIGN DETAILS OF MODEL PROPELLERS

PROPELLER 3686 PROPELLER 3687A PROPELLER 3849
r/roF P/O C/D t/c P/D C/D t/c P/D C/D t/c

0.2 1.426 0.1075 0.2214 1.289 0.1100 0.2161 1.169 0.1075 0.2214

0.3 1.396 0.1250 0.1688 1.291 0.1335 0.1581 1.207 0.1250 0.1688

0.4 1.366 0.1400 0.1321 1.295 0.1530 0.1203 1.243 0.1400 0.1321

0.5 1.336 0.1548 0.1027 1.302 0.1700 0.0935 1.277 0.1543 0.1027

0.6 1.310 0.1695 0.0785 1.311 0.1823 0.0727 1.288 0.1695 0.0784

0.7 1.291 0.1787 0.0604 1.326 0.1898 0.0569 1.287 0.1785 0.0604

0.8 1.278 0.1750 0.0463 1.344 0.1833 0.0442 1.293 0.1750 0.0463

0.9 1.269 0.1500 0.0367 1.361 0.1520 0.0362 1.321 0.1500 0.0367

.95 1.267 0.1220 0.0344 1.369 0.1220 0.0345 1.349 0.1220 0.0344

Results of calculations are given in Tables 7 to 9 for the 4-0-4 CR system

and in Tables 10 and 11 for the 4-0-5 CR system.

Tables 7 and 10 show the results of the "Auxiliary Iterations" for both

systems at the steady state flow conditions, compared with experiments.
[6 ,71

The comparisons indicate excellent correlation.

Results of calculations for the time-dependent thrust and torque of t1.e

4-0-4 CR system at 8 and 16 times the shaft frequency are presented in

Table 8. Table 9 gives results for the potential and viscous flow conditions

and for the combined effects. Experimental results are also included in the

table for comparison. The correlation has improved considerably over the

results of Reference [4] although it may merely be considered as ranging
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from satisfactory to good. It must be kept in mind that the viscous ef-

fects are determined approximately.

Results of the theoretical calculations for the 4-0-5 CR system are

presented in Table 10 for the "Auxiliary Iterations" at the steady state

flow conditions, showing that four iterations are sufficient for convergence

of the results to their final values. The correlation between theory and

experiments is considered very good.

Table 11 gives the results of the potential and viscous flow calcu-

lations separately and combined. The thrust and tory.e coefficients at

steady state flow conditions, and the unsteady horizontal and vertical

force and moment coefficients at nine tmes Lhe shaft frequency are calcu-

lated for the potential flow for both units of the CR system. For the after

propeller, which operates in the wake of the forward propeller, calculations

were made under viscous flow conditions at nine times the shaft frequency.

Table 12 shows more clearly the comparison between calculated and

measured values for both CR systems. Considering that no measurements of

the wake of the forward propeller were made and the viscosity effects were

determined approximately, the calculated amplitude of the forces and moments

may be characterized as satisfactory. The error may also lie in the experi-

mental results. As Reference [7] reports, one possible cause of the differ-

ence between experiment and theory is that the somewhat bulky dynamometer

was downstream of the propellers when the after propeller forces were meas-

ured and upstream for the forward propeller measurements. As for the phases,

Reference [7] also reported inability to obtain good average values because

the phase variations were too great.

Reference [21] reports the results of the latest experimental investi-

gation of the same CR systems, which repeated the tests in uniform flow and

conducted additional tests in a 4-cycle wake, using the same procedure. The

uniform flow results reported in References [7] and [21] are given in

Table 13 together with the theoretically calculated results, showing incon-

sistencies in the phases of the two experiments and the spread in amplitudes,

up to 10% for the 4-0-4 system, but as much as a factor of five in the values

of forward propeller bending moment at nine times the shaft frequency for

the 4-0-5 system for no apparent reason.
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Table 14 shows the differences in amplitude and phase between each

of the experiments and the calculations. It is appreciated that a degree

of difficulty is involved in the measurement of forces and moments exerted

on each component of the CR system. Therefore, the experimental results

should not be considered as final and the existing differences between

theory and experiment must be examined cautiously. Reference [21] recom-

mends that for future experiments the shafts be locked together mechanically

and that a second dynamometer be used so that unsteady measurements can be

made on both propellers simultaneously to insure that conditions are the

same for both propellers.

At any rate, it appears that inclusion of the potential and viscous

effects of the forward propeller on the after, together with some refine-

ments of the numerical procedure, have brought the theoretical results into

better agreement with experimental than was the case in Reference [4].

Particularly in the case of the 4-0-5 system, the vibratory side forces and

moments of the forward propeller are shown theoretically to be higher than

those of the after propeller, which the experiments have consistently shown

although this was difficult to understand physically.

The present analyses can be applied if and when wake measurements are

made in the plane of the aft propeller with the forward propeller in place,

thus providing a more accurate determination of the effect of the forward

propeller race on the potential and viscous flows to the after propeller.

The analysis and coding can be extended also for nonuniform inflow condi-

tions due to hull wake.
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TABLE 7

4-0-4 COUNTERROTATING PROPELLER

FWO 3686 L.H.; AFT 3687A R.H.

________AUX!L (ARY -- TER ATt ONS

ITEMS ITERATION EXPERIMENTS
I 2 3 14 5 _

a 2.856 2.667 2.725 2.699 2.707

2.856 2.559 2.669 2.633 2.647

Re - .1595 .1153 - .1277 .1219 .1237

T Amp. .1595 .1)53 .1277 .1219 .1237 .125

Phase 180 °  1800 180 °  180 °  1800

Re .0332 .0239 .0265 .0253 .0257

Amp. .0332 .0239 .0265 .0253 .0257 .0315

Phase 00 00 00 00--- 00°  -

Re - .180 .1319 - .1539 - .1469 -. 1496
-A

Amp. .180 .1319 .1539 .1496 .1496 .150

Phase 1800 1800 1800 1800 1800

Re .0376 .0275 .0320 .0306 .0315
-A
K Amp. .0376 .0275 .0320 .0306 .0315 .0315

Q0000
Phase 0 00 0 0 .000

Inflow field Is calculated with aF - 98% ao 2.799

and aA - 102% a°  2.913

TABLE 8

4-0-4 COUNTERROTATING PROPELLER

FWD 3686 L.H.; AFT 3687A R.H.

FINAL ITERATIONS

ITERATION #1 ITERATION 12 EXPER.
FREQ ITEMS RE ImI AMP PHASE RE IN AMP PHASE LAMP

-.12305 0 .1231 1800 -.1227 .00066 .1227 179.70 .125

-F a0
Ka .02558 0 .0255 180 .02552 -.00015 .0255 -.31 .03150.0 -a--.0-15

QWO A
A -.1912 0 .1191 1 -.15219 .00126 .152 179.5O .150180 .1712.51gi

-A0
K .03106 0 .0311 1800 1 .03170 -.00026 .0317 -.570 .0315

IT  .01528 .00551 .0162 19.80 !.01551 .00565 .0165 20°  .0285

K -.00319 -.00115 .0034 -160.20 -.00324 -.00118 .0034 -160O .0058

KT  .01006 -.01619 .0191 -58.20 .00968 -.01721 .0.91 -0.60 .0095

_ Q -.00208 .00337 .0039 121.6 °  -.0020 .00358 .0041 119.20 .0022

-F 0K. .00796 -.00126 .0081 -8.99°  .00805 -.00121 .008) -8.50 . .080

-F 0K41 -.00165 .00026 .0016 171.3 .-.00167 .00025 .0016 171.5o .007

-.00618 .00275 .0067 1560 -.00617 .00271 .0067 156.20 .0080

.00129-.00058 .0015 -24.° .00128 -.00057 .O0t1 -23.9 .0020
01 044
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TABLE 9

4-0-4 COUNTERROTATING PROPELLER

FWD 3686 L.H.

AFT 3687A R.H.

COMBINED POTFNTIAL AND VISCOUS EFFECTS

POTENTIAL VISCOUS COMBINED EFFECTS

FREQ ITEMS RE IN AMP RE IN AMP RE IN AMP PHASE EXPER
______________AMP

" -.1227 .00066 .1227 .123 1800 .125

-T

Q K4 .0255 -.00014 .0255 .026 -.30 .0315

"4 -.1522 .00126 .152 .152 1800 .150

" .03170 -.00026 .0317 .032 -.5O .0315

-F
.01551 .00565 .0165 .017 280 .0285

-F
K -.00324 -.00118 .0034 .003 -160 .0058

Q-8 .. . ... . ..... . ..... .. . . .. . .. .... .

.00968 -.01721 .0197 ,00171 .0088 .00898 .01138 -.00838 .014 -36°  .0095

-AK4 -.0020 .00358 .0041 -.00036 -.00183 .00186 -.00236 .00175 .0029 143" .0022

-FK .00805 -.00121 .0081 .0081 -9 .0180

Q ,1 -.00167 .00025 .0016 .0016 1720 .0047
Q-16.. . . . . . .

-.00617 .00271 .0067 .00583 .00038 .00584 -.00034 .0031 .0031 960 .0080

.A0K4 .00128 -.00057 .0014 -.00121 -.00007 .00121 .00007 -.00064 .0006 -83°  .0020
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TABLE 10

4-0-5 COUNTERROTATING PROPELLER

FWD 3686 L.H. 1-Bladed

AFT 384.9 R.H. 5-Bladed

AUXILIARY ITERATIONS

______ITERATION

ITEMS 123EXPER

aF 2.856 2.856 2.756 2,729

a A 2.856 2.579 2.629 2.635

IRe -. 14.83 -. 1364. .12 97 1.i298

K.. Amp .14.83 .1364. .1297 .1297 .130
Phase 1800 1800 1800 1800

Re .0308 .0283 .0269 .0270

KQ Amp .0308 .0283 .0269 .0270 .030

Phase 00 00 00 00

Re io.019 .132.4 .1323 -. 1322

Amp .101.9 .1321. .1323 .1322 .130

Phase 1800 I 1800 180 0 1800
Re__ _ .01 .0268_ .0268_ .0267

Rmp .0212 .0268 .0268 .0267 .2

_ Phase ~ 0000 0 0 0

The Inflow field is calculated with a F 96.5% a0 - 2.756

and a A - a - 2.856
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TABLE 11

4-0-5 COUNTERROTATING PROPELLER

FWD 3686 L.H. 4-Bladed

AFT 3849 R.H. 5-Bladed

POTENTIAL AND VISCOUS EFFECTS

FREQ ITENS POTENTIAL VISCOUS COMBINED_EFFECTS
RE IN AMP PHASE RE IN AMP PHASE RE IN AMP PHASE EP

. . ....... . . .. . ... .. AMP

-.1298 .1298 1800 .130 .130

.0270 .027 0 .027 .03

Q-O

-.1322 .1322 1800 .132 .130

- .0267 .0267 0* .027 .028

-F
FH  .0536 .00319 .0062 30.80 .0062 31a .0075

QH 1 .00260 .00172 .0031 33.50 .0031 3j0 .0040

F" .00504 -.00705 .0087 -540 .00033 .00387 .0039 85.10 .00537 -. 00318 .0062 -30.b" .0057

-A I.08
KOM .00255 -.00396 .0047 -57.20 .00036 .184 .0019 78.90 .00291 -.00212 .0036 -36.10 .0023

Q'9 __ _ _ _ _ _ _ _ _ _ _ _ _ _ . . . . ...... . ......... ........ .._

-F .00319 -.00536 1.0062 1-59.2 .0062 -59
°  

.0074+*V

KV .00172 -.0026 .0031 !-56.50 I 0031 -560 .0041

K .00705 .00504 .0087 35.6" -.00387 .00033 .0039 t750 00318 .00537 .0062 59.4* .o046

jV .00396 .00255 ,0047 32.80 -. 00184 .00036 .0019 168.9 .00212 .0029 53.9
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TABLE 12

CORRELATION OF THEORETICAL CALCULATIONS

WITH RESULTS OF EXPERIMENTS

4-o-4 CR SYSTEM

CALCULATIONS EXPERIMENTS

FREQ ITEMS AMP PHASE AMP PHASE EXP. AMP. EM. PHASE
~ EXP. PHASE

.123 1800 .125 .984
-F 03

Q -0 F- .026 .0315 .826

.152 1800 .150 1.01

-A .032 -50 .0315 1.01

-F .16 56110Kj .017 280 .0285 -136 °  . 596 164

-F 0 08K .003 -160 .0058 -152 .517 -8 °

- .014 -360 .0095 -800 1.47 490

K .0029 143' .0022 -260 °  1.32 43

F .0081 0 .01A .20 .4.50 21 0

0172 .0047 -450 .340 2170

.0031 1080 800 .388 . 160

..A.-l .0006 830 .0020 -10301 .300 j 1860

4-O-5 CR SYSTEM

CALCULATIONS EXPERIMENTS
CAI.C. AMP. CALC. PHASE

FREQ ITEMS AMP PHASE AMP PHASE EXP. AMP. MINUS
EXP. PHASE

.130 1800 .130 1.00

K .027 0 .030 .90
Q..O -A. .

K .132 1800 .130 1.01

"A .027 00 .028 .964

-M .0062 310 .0075 2100 .827 -1790

.! .0031 310 .00450 .775 790
-A H .__ 0..... ..

K .0062 -30.60 .0057 123 1.09 -15140
FHI

-A 0 0 0K .0036 -36.1 .0023 -2 1.56 -3.K QH __ .. . . 1

-FV .0062 -590 .0074 1200 .836 -179°-FV

K .0031 -560 .0041 47 .756 -1030

0 oo62 59.41 .046 30°  1.35 290

1v .0036 53.90 .0023 970 1.56 -430
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TABLE 13

RESULTS OF EXPERIMENTAL MEASUREMENTS OF REFS. [7] AND [21]
IN UNIFORM FLOW COMPARED WITH CALCULATIONS BY THE PRESENT THEORY

]EXPERIMENTS REF. 7 AMP
CALCULATIONS REF.[7] REF.[21] REF.21 AMP

FREQ, ITEMS AMP PHASE AMP PHASE AMP PHASE

4-0-4 CR SYSTEM

Q8 ~F .017 280 .0285 -1360 .0270 -1530 1.05
T

-F 0 005-6 15
KQ .0030 -160 °  .0058 -152 .0055 -1680 1.05

K A .014 -360 .0095 - 800 .0095 -1340 1.00
T

KAK"  .0029 1430 .0022 +2lOo .0020 -147 °  1.10

4-0-5 CR SYSTEM

Q9 KF .0062 31 .0075 210 .0059 215 °FH 12

-F .0031 340 .0040 -450 .0198 -370 0.20
KQH

-A 0 00
KAH  .0062 -31 .0057 123 .0047 -50°  1.21

KH .0036 -360 .O03 -2 .0020 - 1.15

-F 0 0

Ki "  .0062 -59 .0074 120O .0073 1400 1.01
iFV

KQV .0031 -560 .0041 470 .0203 470 0.20

t- .0062 590 .0046 300 .0042 -390 1.10
FV

V .0036 540 .0023 970 .0018 - 1.27
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TABLE 14

COMPARISON OF EXPERIMENTAL RESULTS OF REFS. t7] AND [21]
WITH THEORETICAL RESULTS

REFERENCE [7] REFERENCE L21J
CALC. AMP CALC. PHASE CALC. AMP CALC. PHASE

FREQ ITEMS EXP.L7J AMP MINUS EXP.L21JAMP MINUS

EXP.[7] PHASE _EXP.[21] PHASE

4-0-4 CR SYSTEM

Q=8 KF 0.60 1640 0.63 1810KT

-F 0.548KQ 0.52 0.54

KA 1.47 440 1.47 980
T

1.32 430 1.45 -70

4-0-5 CR SYSTEM

Q=9 KF 0.83 -)790 1.05 -1840KFH

-F 0.77 790 0.16 710

-A 0
KFH 1.09 -1540 1.32 19

-H 1.56 -340 1.80

KF 0.84 -1790 0.85 -199 °

Fv

% 0.76 -103 °  0.15 -103 °

-A 0
K 1.35 29°  1.47 980FV

-A0
KQV 1.56 -43°  2.00
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SUMMARY AND CONCLUSIONS

Linearized unsteady lifting-surface theory has been applied in the

study of two interacting propellers of a counterrotating system, when both

units operate in a spatially non-uniform inflow. A mathematical model is

introduced taking into account the exact geometry of the propulsive system

as well as the three-dimensional spatially varying inflow. The propeller

blades are considered to be of finite thickness and lying on a helicoidal

surface of varying pitch. The blades have arbitrary planform, camber and

sweep angle. The flow conditions have been taken as realistically as

possible by considering the fact that the after propeller operates in the

race of the forward propeller so that potential and viscous effects of the

wake are incorporated in the analysis and program.

The computational procedure, however, has been developed and adapted

to the CDC 6600 and 7600, or Cyber 176, high-speed digital computer, for the

case where both units operate w!th the same RPM in a uniform inflow field.

The uniformity of the inflow field provides for a better understanding

of the mechanism of interaction of the CR system since the presence of wake

harmonics would have such a dominant effect as to mask the interaction

phenomenon.

The study provides information about the steady and unsteady blade

loading distributions and the corresponding hydrodynamic forces and moments

on both components of the propulsive device.

Rules have been established for the presence or absence of the steady

and unsteady hydrodynamic forces and moments when the CR system is made up

of equal arid unequal numbers of blades. In fact, when the propellers of the

CR system have equal number of blades only the steady and unsteady thrust

and torque will be generated on each propeller of the CR system, at zero and

blade-blade crossing frequencies or multiples thereof (q-21N, 1-1,2,3,

and N - common number of blades). When the CR system is made up of propel-

lers with unequal number of blades, i.e., NFINA, then steady thrust and

torque will be generated and unsteady side forces and moments will be pres-

ent at frequency order qm21NF+l or qm2LNA-l.
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From a limited number of calculations, the correlation with experi-

ment varies from very good to satisfactory. The steady-state calculated

thrust and torque compare very well with experimental values; for the

unsteady flow condition, the correlation can be classified as satisfactory

to good. The results for 4-0-5 CR system show better agreement than those

for the 4-0-4 CR system.

The additional effects of the forward propeller race on the after

propeller, due to potential and viscous flow conditions, play an important

role in determining the unsteady loading of the after propeller. This,

coupled with the fact that more refined numerical methods have been used

in the potential part of the interaction problem, has brought the final

results into better agreement with experiment than those reported in Refer-

ence [4].

The viscous contribution, a decisive factor, has been calculated by

an approximate method, [l6 and hence there is still room for improvement.

By measuring the wake in the plane of the after propeller with the forward

propeller in place, a more accurate determination can be made of the effect

of the forward propeller race on the potential as well as the viscous flow

to the after propeller. Of course, the error may also lie with the experi-

mentation. As reported in References [7] and [21], one possible source of

error is that the dynamometer was downstream of the propellers when the

after propeller forces were measured and upstream for the forward propeller

measurements. Also, phase variations were too great for good average values

to be obtained in the measurements.

Because of the existing differences between the two sets of experi-

mental measurements, both taken by the same procedure but at a different

time (a year apart), the measured values cannot be considered as final and

therefore the existing differences between experiment and theory should be

examined cautiously.

It can be stated that inclusion of the correct race and viscous effects

of the forward propeller has brought the calculations into much better agree-

ment With measurements. Indeed, in some cases the vibratory hydrodynamic

forces of the forward propeller are larger in magnitude than those of the

after propeller, a fact which was shown in all the experiments.
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It is highly important to note that for the 4-0-4 set, the magnitudes

of the measured and calculated vibratory thrust and torque of both the

forward and after propellers at the passage frequencies of 8 times shaft

rate are large in relation to the mean values. They are large in respect

to the experience gained in calculating the amplitudes at blade rate for

single propellers abaft merchant hulls.

For the 4-0-5 system, the vibratory side forces and moments also

appear large relative to single propeller experience but not as large as

in the 4-0-4 system. This indicates that increased spacing of the propel-

lers should be examined by systematic calculations to determine those

spacings at which these mutually induced vibratory forces can be ameliorated.

Otherwise both the experimental and the calculated results indicate that sys-

tems of counterrotating propellers may have highly objectionable excitations.

The present analysis and basic program can be extended for nonuniform

inflow conditions due to hull wake, and also can be used as a nucleus for

the analysis for another propuision system such as a ducted propeller,C
18J

or a pump-jet configuration. 191

The developed programs require approximately 15-20 minutes execution

time on the CDC 6600 for each configuration, performing the required itera-

tions, calculating the steady and unsteady loadings and resulting hydro-

dynamic forces and moments on each member of a set due to potential and

viscous effects, and computing the corresponding blade pressure distribu-

tions on each propeller.

5
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APPENDIX A

RACE EFFECT ON THE AFTER PROPELLER

In the course of a re-examination of the theoretical development of

Reference 4, it was found that the behavior of the velocity field for points

inside the propeller race is quite different from that at any other point

in the field around an operating propeller. The existing theory and program

* dealing with the propeller-induced velocity field have therefore been modi-

fied to include the region of the propeller race in which the after propeller

operates. This additional wake effect, designated by 4W /1U, has been de-

veloped and incorporated in the program as "Correction Term." Thus, the

exact wake-velocity field is determined in which the after propeller operates.

The WA Induced velocity at points on the right-handed after propeller

by the presence of a left-handed forward propeller is given by

NF () -i Ft

WA(xA'rACPA't) - 4rPf ni0 XF O FPPFF ( FpFF

f - I ___

e ( XF I d dddT' (A-1)
A- dF P2 e FA

where
rA (aA a I a

A 2/~~ A rA O
A A

since

!OA +_ 1 anxA a
aA A A

I. a
37 1 ( Ar A .77) Tx
A Dl+azr2A A

In AF A F LOF 1'POA('iF'A FnFA A

*As devised by Drs. J.P. Breslin and T.R. Goodman.
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In the equal RPM case: I I = (1 ) -2, a A a =aA F A F

and with -Qt = + , -(CF+CA)t =+2@

Let T' - XA =T , dT' =dT

o - - '
-I= F OF FA

where

RFA= (T+XA-F)
2 +r 2A+p-2rA pFCos-eF, OA+2 +OFnaFTJ}

Then

a o iX(aFT-;Fn) a I 2 I dd dT
x Ie aF F  --- 2 aR- PFdPFd{F

A -COT A OF FA

a2  a2But . ...-

aXAaC F  axA

Therefore

aIT o 0 i a- F n ) ( a a 2  1 1 'd
- aFx2  2 aX AeO , )PFdPFdFd (A-2)

A axA PF AOF F

Furthermore for points inside the propeller race, Laplace's equation

written in cylindrical coordinates takes the form

2 1 1 1aI a I+ I a2  V 4r
AX2 P -T e2 \R/ 8(T'+xA CF)8( rA-PF)

8 ( OF4%PA+ 2o+6 Fn-aF)

Thus whenever the field point coincides with the helices of the wake,

a 2  
1'" 4T-T.A2 ""'PF '(T+XA'gF) 6 (rA'PF)8 ('OF+'POA+2e [:F')-L, t "p-, F TPE F/ '  R'

A FF F FF
+ L -Z 1,k1 (A-3)P2 a (A'2

F OF

A2
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The induction 4W is the first term of
AI

~A TTTWU ArAaIf'"a . r A A
A A

N F MX ixO o -ik(aFT4 Fn)
*~ &P1 8~'~Ar.(,)e j e P dp d9F

L+Tra F 6 T X - P A 2)d (}4
PF A ( x 8( rA-PF)6BF 05nV I

r(X) o 1ka -
t}= APF (YFrA e)ee S erAdt

rA 8(T gAF) 6 (eOF. POA +§F -.r

-0 2 F (CFPAeeea~AFF rA rA

6[%0FPOA +28+6F +aF X-F)d

r

al dC- er sine deF F bF to

YOA aAxeA xA aA

A3A
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The induction can be expressed as

(1) 1 A -in

AWA C n Y'A n=- n

Let e 01
nT TT ix-E 0a-eF+e

MX (Xne a F aF OF +6Fn)r n in' S L (-n@e A
= - o E2 e % = 0 e ' = - F ( r A ' 0 ,'n)e '

1A 1+ AF)'OA+aFe+9Fn +201 ]sine dede'
A

or

= ni t + iFn_.F
r M=2.3O 2eine JD L )(rA'eBc) e 2 " O  " OA)

ox
'aFe + Fn

L7;2+ a 2 7IOA J  1

AA•e rA s inede,

A
e nr i(X+n) ( i(k+n) aF

2e SFn I 2 (aF Fne 2 aA OA
n=- r A  LF A 2t

ixeF ~i( X-n~ 0

- e F e- i( ) sinO d

NF i(+n) NF when X+n = 2 1NF, 1-,O,±1,±2,Since Ee

n-I 2 Fn 0 otherwise

Equation (A-4) becomes

(1) NF 1 r I _ e
bwA 21pfU f/1+ *7* "-AA rA n"-

A A

"' M i2NFaF €  ixeOF aiX OOA _i F I+ )OA

o L F (rA ' e F)e • •

Ssine deO (A-5)
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Assuming

V (xM (Xn)-
L F (rA8 L LF rA) an

where 9(n-) represents the Birnbaum chordwise modes, then the integral part

of (A-5) becomes

man (X,n) i IN Fa F -ik(oF+arA)
I Oc '2 L F (r A) e e n

n-l X0Ob

iAN F(l+ 3aE)CA _'L'NF('+ e-) ]abA coscpa (A-6)
A Ae e

Taking the lift operator at each ; and nondimensionalizing with re-

spect to r FO ,Eq.(A-5) can be expressed as

AW(n,rn) NF ( I

( i 2TTp f u'F r aA A rA
A A

Go i .+ aA) i Aa OaA (.X,)
e e ~ ~ 2D F (rd)no-w n-i X-0

e A(;) F-,\ )I(;)( LN a- _F ))GbA](A7
C bF L( n+F~l aA(A7

it can be shown by a similar approach that the second ten" on the

right-hand side of Eq.(A-3) does not contribute to 2-(1) . Therefore
R

Eq.(A-7) is the only contribution in forming the additional wake effect

Ubecause the after propeller operates in the race of the forward propeller.
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APPENDIX B

THE VISCOUS WAKES OF COUNTERROTATING PROPELLERS

In a counterrotating propulsive system the after propeller, being

located in the wake of the forward propeller, operates in a real fluid

and hence should include both the potential and viscous effects. In the

absence of wake measurements in the plane of the after propeller when the

forward propeller is in place, it is necessary to devise a method which

will take cognizance of the fact that the after propeller operates in a

wake in which the potential and viscous effects should be taken into account.

The potential contribution has already been dealt with in Appendix A. The

effect of the viscous wake is approximately considered by the Kemp-Sears

method described in Reference 
16.*

The configuration of viscous wakes of propeller blades is approxi-

mated from single airfoil experiments. The unsteady force-and-moment on a

downstream blade passing through such wakes is then calculated on the basis

of the theory of isolated thin airfoil in nonuniform flow. The same approach

has been adapted to the unsteady lifting surface theory. (See Figure 3.)

Silverstein, Katzoff, and Bullivant17 have shown that the half-width

of the wake, y , may be calculated from the following formula

Y 0.68 7 CoD c(x/c - 0.7) (B-I)

where
c -airfoil half-chord

x - distance measured along the wake axis (free-stream direction)
rearward from the center of the airfoil

CD - the airfoil profile-drag coefficient

Note: CD will be calculated according to Hoerner's method.
20

For convenience, a new coordinate x along the wake axis is intro-

duced in Eq.(B-l):

x * x - 0.7c (B-2)

Kemp and Sears" have shown that in terms of x the wake half-width and

*Suggested by Dr. J.P. Breslin.I-sugestTTYBI
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the velecity at the center become

y - 0.68 .12 c(CDx'/c)i (B-3)

uc/V - -(2.42C 0 r)/(x"/c + 0.3) (B-4)

and that the velocity profile to be used is

2__ M exp - 1 (B-5)

C

Since the propeller blade moves along a line oblique to the x

(or x') axis, it is convenient to introduce oblique coordinates x',y' as

shown in Figure 3. The relation between x", y and x',y' is given by

" ycos F y sineF (B-6)

where the superscripts F and A refer to the forward and after propeller
blades, respectively.

Since the wake is narrow in the region of interest, see Figure 3,

y'/xI is small in the wake itself, and one may write, approximately,

x * xt y.yls()

p (B-7)

Then the wake half-width and centerline velocity are as follows:

rj=0. 68r- )(S (B-8)

V F0 CF

F
where c is the total chord length of the forward propeller.

The velocity profile from Eq.(B-5) is now

u_ exp[-- yF V (e-1o)
u c Y /

and
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ys = s(e - - Y)
U

u = expn 2 (B-Il)
uc Y "

whe re

e - angular coordinate of the forward propeller

Y - angular coordinate of the aft propeller

S - radial position (see Fig. 3)

Equation (B-li) can be expanded in a Fourier series in terms of (6-Y)

IL = z, (ancosn(e-Y) + b sin n(e-Y)) (B-12)U n n
c

or

u. Z (a cosn P + b sin np) (8-13)U c  n n n

where

(u =c - ( (B-15)

2 T) ndp (N = no. of blades of aft propeller)(8-15)

bn = 2T 1r Uc' s in ny d P  (B16

0 c

The velocity, uc , is in the direction of x", which makes an angle

(eF+eA) with the after propeller blade so that the component giving upwash

at the blade is
n
-= vF - sin(eF+eA) (B-17)

U V F U p p

and since

VF
U sineF

p

then from Eqs.(B-9) and (B-17), we have
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c_ 1 s in(e+e) (B -18)
U F s p  p(

+ 0.3) sine
C

whe re

x A c s c p + • - 0.7 (B-19)

A
Choose 2Lx 0, which means the point is at the mid-chord of the

c
aft propeller blade. Then

6

1 T- csc F _ 0.7 (B-20)
_F cF  P

The viscous wake, then, can be expressed in the following form:

= . (ancosn 0 + b sin ncp) (B-21)
U U n

where
q = 2n (B-22)

o= e - Y - 2e (B-23)

The left-hand side due to unsteady wake in the PPEXACT (Propeller-

propeller Exact) program (Reference 9) is, in lift operator form,

-, (r) = ((r) e" Ir [(;) (q 0lr) (B-24)

where
iqe cosp.

I( )(q ) b , S (;) e dya (B-25)
0

4() - 1 - coscpt

t (2) - I + 2cOscpO

§(;) - cos(;-l)(p0 for ; > 2

Thus, the resulting unsteady force and moment or unsteady side force and

moment, at the specified blade frequency, can be determined as in the

PPEXACT program. These viscous effects are then superposed on the results

from the potential flow of the CRP system.
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