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ABSTRACT

An expression is found for the flux due to earthshine

incident at any point on a spherical target as a function of

target height above ground. Curves showing the variation of

reflected signature (or view factor) with observer position and

target height are presented for the case of a diffuse target

surface. An expression is given for the view factor in the

specular case, which is shown to be independent of observer

position.
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I. INTRODUCTION

An important component of the infra-red (IR) signature of

a target outside the atmosphere is the earthshine it reflects.

This report will present curves showing the amount of earthshine

reflected by an idealized spherical target towards an IR sensor

as a function of target altitude and sensor position for the two

limiting cases of diff'ise and specular target surfaces. A

cloud of convex particles of arbitrary shape and random orienta-

tion will exhibit the same behavior as a sphere of the same

surface characteristics.

The amount of energy incident on an area element dA of the

target in a wavelength band LX is

fA
E = NE (AX) cosO cos ! dS ()

all dS
visible
to dA

where E(AX) is the energy incident on dA (in Watts)

NE(AX) is the radiance of the earth at dS in Watts per
square meter per projected steradian-assumed
constant over the earth's surface.

e and V are the angles between the line joining dA and dS

and the local normals.

£ is the distance between dA and dS.

(See Fig. 1).

If the bidirectional reflectance of the material is known,
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Fig. 1. Geometry of earthshine reflection from generalized target.
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then the power reflected per steradian in the direction of the

sensor can be calculated as

J (ýA) f f N E(~A)cosO cosýP cosý (, 1~,~)(- dS dA
E £

all dA all dS
visible visible (2)
to sensor to dA

where i and ý2 are the azimuthal angles of dS and the sensor

measured at dA. To simplify calculation, in this report we

characterize the fraction of the input power which is reflected

with a single number p (which is therefore assumed independent of

incidence angle and wavelength over the range of measurement).

Where this reflected power is directed will depend on our

assumptions about the surface. A smooth surface will reflect

specularly, i.e., the output distribution is a narrow peak

centered on p=•. A rough surface will diffuse the output power

isotropically into the hemisphere above it.

This simplification permits us to split up the integral into

two parts, and first find the incident energy per unit area at

any point on the target sphere as a function of postion on the

sphere, and the sphere's height above ground. From this, the

total amount of energy incident upon the target, and the fraction

of it which is reflected toward a sensor in a given direction

can be calculated.
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II. DISTRIBUTION OF INCIbENT FLUX ON THE SPHERE

Ti. find out how much energy is falling on any small patch

Lhe target sphere with area dA, it is necessary to integ-ate

the radiation emitted in the direction of the patch over all the

earth visible to that part of the sphere.

Enerry density at the position of dA = E N cosi cose dS

- E 2
visible
surface (3)
of earth

.ihere £ is the distance from the sphere to dS. (See Fig. 2).

This is a very difficult problem for all but the simplest

cases, but for an isotropically emitting earth it is permissible

to replace the earth by a flat circular disc of the s-Ame emittance

subtending the same solid angle at the sphere. The incident flux

at dA is then

E= ff NE cosO cosP tanO dedý (4)

visible
earth-disc

where the portion of the earth-disc visible to dA is described

by m < e < 6, and -p < 0 < p as shown in Fig. 3, where

is the horizon angle and p depends on x, the position of dA on

the sphere. 6min depends on p and •. Hence

E = NEsin 0(cosý sinO sin x + cos8 cos x)d~d4 (5)
min

4
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Fig. 2. Earthshine incident on spherical target.
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Fig. 3. Radiation from flat disc incident on spherical target.
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Three regions of the sphere may be distinguished, each with a

different form of expression for E. The arrangement of the

regions is shown in Fig. 4(a), and their sizes as a function of

height in Fig. 4(b).

Region 1 Contains those areas of the sphere which can "see" all

the earth-disc out to the horizon, and are not shaded by other

parts of the sphere. The range of values for x is

0 <x <T-- (6)

and for this region

min = 0; p= IT

since the integration is over the whole disc. This yields

E = N E cos x sin (7)

Region 2 Contains those areas of the sphere which can "see"

some of the earth-disc, but are shaded by other parts of the sphere

from seeing the remainder. If a part of the earth can be seen

by a given patch on the sphere, it will have

cos t cos • sin e sin x + cos 6 cos x > 0 (8)

Hence for the range

< x < ~+

71
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we have

8si tan- 1 c sClos-i( 1a (9)
min= t cos tan x) ; p = cos an x)

which after considerable manipulation yields

E = NE{p cos x sin 2-sin p sin x sin S cos 5-tan- (tan p cos x)}
(10)

(-1- 2 [2 2
N NE ICos ktana tan i) cos x sin 2-cos a V5 in x-cos 2

(11)

+ cos- 1 (cos S/sin X)I

Region 3 Includes those areas of the sphere which are completely

screened from any view of the earth. This is true for the areas

which have

x > E + 5 (12)

Not surprisingly, this gives

E = 0 (13)

If the height of the sphere above ground is h, and the earth's

radius is R, then

sin R 1 if = h/R (14)sin8 =h+--R =+---

The function E' = E/NE is plotted in Fig. 5 as function of

x(in degrees) with h as a parameter. To facilitate comparison

of the angular dependence of E' at different heights, Fig. 6

shows the same curves but normalized to unity at x =0 (i.e.,

10
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the curves are of E'(xF)/E'(OS)). This format shows the differ-
ent behavior in the three regions; i.e., following the cosine
curve in region 1, intermediate behavior in region 2 and identi-
cally zero in region 3.

Special Cases When h is either very small or very large, the

expression for E can be simplified.

As h -+ 0, n ÷ i/2, and the region 2 solution is valid for
most of the sphere. Looking at this solution as n ÷ r/2 and

therefore p -+ Tr/2 we find

E(x, 7 + r/2) = NE T(l+cos x)/2 (15)

At the other extreme, when the earth is very far from the
sphere, it acts like a point source, and the region 2 disappears.

Hence

E(x,- 0) = NE frcos x sin 2 x < 7r/2 (16)
= 0 x > 7r/2

I



III. TOTAL POWER

From a knowledge of the incident flux on the sphere as a

function of position, the total power incident on the sphere can

be found at any height by integrating E over its surface. In

practice, the form of equation (11) makes the integration rather

arduous, but it eventually yields the result

P = 2NE 7rr 2r(1-cos 8) (17)

= 2NE Ap r(l-cos $)

where r = the sphere's radius and A = rrr2 = the projected areaP

of the sphere.
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IV. OBSERVED BRIGHTNESS

The infra-red brightness of the sphere, as seen by a sensor

in the far field, is obtained by integrating the power reflected

by the sphere in the direction of the sensor, over the hemisphere

visible to the sensor.

Case (a). Specular Surface

If the surface of the sphere reflects specularly, then its

spherical shape will diverge an incoming beam of radiation so

as to put equal power in all directions, as will now be shown.

Let a plane wave be incident on a specularly reflecting

sphere of radius r. (See Fig. 7). To calculate the power

scattered by the sphere as a function of angle measured from the

direction of origin of the plane wave, we find the power incident

on an imaginary enclosing sphere of radius R>>r as a function of

position. If r>>» the wavelength of the radiation, each (02, 02)

point on the outer sphere will receive radiation from only one

point (01,1I) on the inner sphere. The small area dA1 =r 2sin~dedd

on the inner sphere has a total incident power of P dA1 cos 0

Joules/sec if P Joules/m 2sec is the power density in the plane

wave. A fraction (p) of this is reflected. The corresponding

area on the outer sphere is dA2 =R2 sin02 d0 2 d 2 , and by the law of

specular reflection 02=261; dO2 = 2de 1 ; 0 2 =i. This means

dA2=4(R 2 /r 2 )dA1 cos e. All the power reflected by dA falls onp
2 11
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Fig. 7. Reflection of a plane wave by a sphere with a smooth surface.
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dA2 , which therefore has a received power density equal to:

21

pPdA1 cos pPr2 independent
of

dA2  4R2 position.

Hence a plane wave incident on a specularly reflecting sphere

is reflected in all directions equally. The radiant energy

from the earth can be considered as made up of an angular spectrum

of plane waves. Each plane wave will be reflected isotropically

and so the total brightness also will be isotropic.

The received power per steradian of sensor is therefore just

(the total power reflected from the sphere)/4n, which is

J = 2NE A 7r(l-cosý) p/47 (18)

J = NE A pp(l-cos8)/2 (19)

A va-ue frequently used to characterize a particular geometry

is the view factor F, defined by

F J (20)
NEpAp

For the specular case therefore,

F = (l-cos$)/2 (21)

and is independent of sensor position.
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Case (b). Diffuse Surface

If the sphere is a diffuse reflector, then the observed

brightness will depend on the sensor angle y (see Fig. 8). The

radiant intensity seen by the sensor .3 obtained by integrating

(E cosý)/rr (since the incident earthsh.'.ne is scattered into 7

projected steradians ) over the half of the sphere visible to

the sensor (0<1I<i). In the previous section expressions for

E were obtained, but as a function of x, wtiich is not equal to

ý unless y=0 (sensor below target). Expressing E as a function

of i and y in the general case leads to a form too complicated

fcr analytical integration. Numerical integration of E from

equations (6) to (13) was therefore used to produce the curves

of Fig. 9. They snow the view factor F(y,ý) for the sphere as a

function of sensor angle for various target heights. As before,

the curves are replotted in Fig. 10 normalized to unity at y=0,

to show the anqular depernence more clearly. Figure 11 shows

F(y,3) as a function of height for several values of y.

Special Cases When the target height is either very small or very

large, the formulae of equations (15) and (16) can be used to

yield cl sed form expressions for the view factor of a diffuse

target, since they are easily integrable. The resulting expressions

are

F(y'8÷-) + I cos y (22)
2 1

p 18
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F(ya-3O) 2sin y + (7T-y) cos 4 sinr2 a (23)

These curves are shown as h=0 and h=- on Figs. 9 and 10.
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V. SUMMARY

Simple expressions have been obtained for the distribution

of earthshine incident on a spherical target, as a function of

target height. These results apply to the case of a uniformly

and isotropically emitting earth.

Curves for the reflected signature (or view factor) measured

by a sensor at an arbitrary location have been obtained by i.nte-

grating the reflected earthshine over the portion of the target

visible to the sensor, for the case of a diffuse target. A simple

expression is given for the view factor of a specular target.

The view factor results are also valid for clouds of small

randomly shaped convex particles of corresponding surface

characteristics.

24
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