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\\\ ABSTRACT
3
N

An expression is found for the flux due to earthshine
incident at any point on a spherical target as a function of
target height above ground. Curves showing the variation of
reflected signature (or view factor) with observer position and
target height are presented for the case of a diffuse target
surface. An expression is given for the view factor in the
specular case, which is shown to be independent of obserxver

position.
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I. INTRODUCTION

An important component of the infra-red (IR) signature of
a target outside the atmosphere is the earthshine it reflects.
This report will present curves showing the amount of earthshine
reflected by an idealized spherical target towards an IR sensor
as a function of target altitude and sensor position for the two
limiting cases of diff-ise and specular target surfaces. A
cloud of convex particles of arbitrary shape and random orienta-
tion will exhibit the same behavior as a sphere of the same

surface characteristics.

The amount of energy incident on an area element dA of the

target in a wavelength band 4) is

E(AX) = N_(A)) cos8 cosy & ds (1)
E LZ
all ds
visible
to dA
where LE(AX) is the energy incident on dA (in Watts)
NF(AA) is the radiance of the earth at 45 in Watts per

square meter per projected steradian-assumed
constant over the earth's surface.

8 and Vv are the angles between the line joining dA and dS
and the local normals.

'3 is the distance between dA and A4s.
(See Fig. 1).

If the bidirectional reflectance of the material is known,
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Fig. 1. Gecmetry of earthshine reflection from generalized target.
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then the power reflected per steradian in the direction of the

sensor can be calculated as

J(AX) = / / NE(AA)cosO cosy coséE p(w,¢l,£,¢)2)(i—§) ds da
all da all das
visible visible (2)
to sensor to dA

where ¢1 and ¢2 are the azimuthal angles of dS and the sensor

measured at dA, To simplify calculation, in this report we
characterize the fraction of the input power which is reflected
with a single number p (which is therefore assumed independent of
incidence angle and wavelength over the range of measurement),
Where this reflected power is directed will depend on our
assumptions apout the surface., A smooth surface will reflect

specularly, i.e., the output distribution is a narrow peak

centered on Y=f, A rough surface will diffuse the output power
isotropically into the hemisphere above it.

This simplification permits us to split up the integral into
two parts, and first find the incident energy per unit area at
any point on the target sphere as a function of postion on the
sphere, and the sphere's height above ground. From this, the

total amount of energy incident upon the target, and the fraction

of it which is reflected toward a sensor in a given direction

can be calculated.
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II. DISTRIBUTION OF INCILENT FLUX ON THE SPHERE

T2 find out how much energy-is falling on any small patch
<" the target sphere with area dA, it is necessary to integ:rate
the radiation emitted in the direction of the patch over all the

earth visible to that part of the sphere.

Enercv density at the position of dA = E = ./(. Ny cosy ;ose as
visible .
surface (3)
of earth

Jhere 2 is the distance from the sphere to dS., (See Fig. 2).

This is a very difficult problem for all but the simplest
cases, but for an isotropically emit+ing earth it is permissible
to replace the earth by a flat circular disc of the same emittance

subtending the same solid angle at the sphere. 7The incident flux

at dA is then

E = ﬂ NE cosf cosy tanbd dedé (4)

visible
earth-disc

where the portion of the earth-disc visible to dA is described
by 6 ;, <9 <8, and -p < ¢ < p as shown in Fig. 3, where B
is the horizon angle and p depends on x, the position of dA on

the sphere. enin derends on p and ¢. Hence

p B
E = f/ NEsin 0 {(cosd sinb sin x + cosb cos x)doédé (5)
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Three regions of the sphere may be distinguished, each with a
different form of expression for E. The arrangement of the
regions is shown in Fig, 4(a), and their sizes as a function of
height in Fig. 4(b).

Region 1 Contains those areas of the sphere which can "see" all
the earth-disc out to the horizon, and are not shaded by other

parts of the sphere. The range of values for x is
0 <x<5-8 (6)
and for this region

®nin = 07 p o= T

since the integration is over the whole disc. This yields

o & vabewn v v

E = NEW cos X sin28 (7)

Royion 2 Contains those areas of the sphere which can "see"
some of the earth-disc, but are shaded by other parts of the sphere
from seeing the remainder. If a part of the earth can be seen 5

by a given patch on the sphere, it will have

cos ¥ = cos ¢ sin 6 sin x + cos 6 cos x > 0 (8)

Hence for the range

5 = B <x <+ B
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Fig. 4(b). vVariation in the sizes of the three target

regions with target height.
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we have
-1 =1 . Y s
emin = tan (cos¢ tan x) d p = cos (tanB tan x) (9)

which after considerable manipulation yields

E = NE{p cos X sinZB-sin P sin x sin B cos B-tan-l(tan p cos x)}
) (10)
_ -1 -1 2, 2.2
= NEgcos (EEHE_EEH_E) cos x sin“B-cos R sin“x-cos“B
(11)

+ cos t(cos B/sin x%

Region 3 1Includes those areas of the sphere which are completely
screened from any view of the earth. This is true for the areas

which have
x> 3+ 8 (12)
Not surprisingly, this gives
E=0 (13)

If the height of the sphere above ground is h, and the earth's

radius is R, then
sin B = = = - if o = h/R (14)
h+R 1+o

The function E' = E/NE is plotted in Fig. 5 as function of
x(in degrees) with h as a parameter., To facilitate comparison
of the angular dependence of E' at different heights, Fig. 6

shows the same curves but normalized to unity at x = 0 (i.e.,
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the curves are of E'(x,B8)/E'(0,B)). This format shows the differ-

ent behavior in the three regions; i.e,, following the cosine

curve in region 1, intermediate behavior in region 2 and identj-

cally zero in region 3.

Special Cases When h is either very small or very large, the
expression for E can be simplified.

As h -+ 0, B + w/2, and the region 2 solution is valid for
most of the sphere. Looking at this solution as B + w/2 and

therefore p + /2 we find
E(x, B + 1/2) = NEn(l+cos x)/2 (15)

At the other extreme, when the earth is very far from the

sphere, it acts like a point scurce, and the region 2 disappears.

Hence

E(x,B ~ 0) = NE TCOS X sinZB X < w/2 (16)
0 X >m/2

13
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III. TOTAL POWER

From a knowledge of the incident flux on the sphere as a
function of position, the total power incident on the sphere can
be found at any height by integrating E over its surface. 1In
practice, the form of equation (11) makes the integration rather

arduous, but it eventually yields the result

P = ZNE nrzn(l-cos B) (17

ZNE Ap m(l~-cos B8)

where r = the sphere's radius and Ap = nrz = the projected area

of the sphere.
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IV. OBSERVED BRIGHTNESS

The infra-red brightness of the sphere, as seen by a sensor
in the far field, is obtained by integrating the power reflected

by the sphere in the direction of the sensor, over the hemisphere ‘

visible to the sensor,

Case (a). Specular Surface

If the surface of the sphere reflects specularly, then its
spherical shape will diverge an incoming beam of radiation so
as to put equal power in all directions, &s will now be shown.

Let a plane wave be incident on a specularly reflecting
sphere of radius r. (See Fig. 7). To calculate the power
scattered by the sphere as a function of angle measured from the
direction of origin of the plane wave, we find the power incident
on an imaginary enclosing sphere of radius R>>r as a function of
position., If r>>) the wavelength of the radiation, each (92, ¢2)
point on the outer sphere will receive radiation from only one
point (91,¢l) on the inner sphere. The small area dAl=rzsin8d9d¢
on the inner sphere has a total incident power of P dA1 cos 6
Joules/sec if P Joules/mzsec is the power density in the plane
wave. A fraction (p) of this is reflected., The corresponding

area on the outer sphere is dA2=stin62d62d¢2, and by the law of

specular reflection 62=261; dez = 2ael; ¢2=¢1. This means

dA2=4(R2/r2)dA1 cos 0, All the power reflected by dAl falls on

15
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Fig. 7.

113681-N

Reflection of a plane wave by a sphere with a smooth surface.
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dAz, which therefore has a received power density equal to:

deA1 cos %1 pPr2 independent
= of
dA2 4R2 position,

Hence a plane wave incident on a specularly reflecting sphere
is reflected in all directions equally. The radiant energy

from the earth can be considered as made up of an angular spectrum

of plane waves., Each plane wave will be reflected isotropically
and so the total brightness also will be isotropic.
The received power per steradian of sensor is therefore just

(the total power reflected from the sphere) /4w, which is

J 2NEApn(l~cosB)p/4w (18)

J = NEApp(l-coss)/Z {(19)

A va_ue frequently used to characterize a particular geometry

is the view factor F, defined by

F = (20)
NEpAp
For the specular case therefore,
F = (l-cosB)/2 (21)

and is independent of sensor position,
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Case (b). Diffuse Surface

If the sphere is a diffuse reflector, then the observed

brightness will depend on the sensor angle Y (see Fig., 8). The

radiant intensity seen by the sensor ..s obtained by integrating

(E cosg)/m (since the incident earthshine is scattered into 7

projected steradians ) over the half of the sphere visible to

the sensor (0<|§ <1). In the previous sextior expressions for
= ) p

E were obtained, but as a function of x, which is not equal to

¢ unless y=0 (sensor below target). Expressing E as a function

of £ and Yy in the general case leads to a form too complicated

fcr analytical integration. Numerical integration of E from

equations (6) to (13) was therefore used to produce the curves

of Fig., 9. They snow the view factor F(y,B) for the sphere as a

function of sensor angle for various target heights., As before,

the curves are replotted in Fig. 10 normalized to unity at y=0,

to show the anqular deper lence more clearly, Figure 11 shows

F(vy,B) as a function of height for several values of vy,

Special Cases When the target height is either very small or very

large, the formulae of equations (15) and (16) can be used to

yield cl sed form expressions for the view factor of a diffuse

target, since they are easily integrable.

are

The resulting expressions

F(y,s+%) = % + % cos Y (22)
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F(y,B8~+0) = % sin y + (m~y) cos Yy sin28 (23)

(

These curves are shown as h=0 and h=~ on Figs, 9 and 10.
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V. SUMMARY

Simple expressions have been obtained for the distribution
of earthshine incident on a spherical target, as a function of
target height. These results apply to the case of a uniformly
and isotropically emitting earth.

Curves for the reflected signature (or view factor) measured
by a sensor at an arbitrary location have been obtained by inte-
grating the reflected earthshine over the portion of the target
visible to the sensor, for the case of a diffuse target. A simple
expression is given for the view factor of a specular target.

The view factor results are also valid for clouds of small
randomly shaped convex particles of corresponding surface

characteristics.
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