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I INTRODUCTION

The continuing development of the laser technology has resulted

in a proliferation of laser-guided weapons in the visible and the

infrared (IR) ranges of the spectrum. So far, the performance of these

weapons in both the conventional and the nuclear dust environments is

not well understood. To increase the knowledge in this area, SRI

International performed measurements using a three-wavelengths (0.53,

1.06, and 10.6 pm) autotracking lidar at the two MISERS BLUFF II (MBII)

High-Explosive Tests, to determine the volume backscatter and extinction

coefficients of the explosion-produced dust cloud. To this end, two-

way transmission and backscatter radiation measurements were attempted.

Such measurements allow not only an evaluation of the system performance,

but also an evaluation of the cloud formation and the distribution of

particle size.

The three wavelengths used in the experiment (Figure 1) are

representatives of those designators, range finders and lasers proposed

or existing in military systems.

The laser experiment was one of four experiments fielded by SRI

for MBII. The other three involved measurement of scattering and

transmission effects in the HF, UHF, SHF, and EHF bands. These experi-

ments and their preliminary results are described and discussed in

earlier reports. 1
2

*

All references are listed at the end of the report.
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FIGURE 1 OPTICAL WAVELENGTHS RELEVANT TO PROJECT
MISERS BLUFF

Both MISERS BLUFF II (MBII-l and MBII-2) tests took place at the

Planet Ranch test site on the dry bed of the Bill Williams River, Lake

Havasu City, Arizona. The location of the radar/laser vans is shown in

the lower left corner of the map in Figure 2. The first test, MBII-I,

which was a 120-ton ammonium nitrate and fuel oil (ANFO) detonation,
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took place at 1300 MST on 28 June 1978. The second test, MBII-2, took

place at 1100 MST on 30 August 1978, and consisted of the simultaneous

detonation of six such 120-ton ANFO charges uniformly spaced on the peri-

phery of a 100-m-radius circle. Although the primary objective of the

MBII tests was the study of ground motion in a multiple-burst environ-

ment in support of the MX program, the tests provided a good opportunity

to measure dust effects as well. Our experiments were added and were

conducted on a noninterference basis along with other activities, which,

because they were primarily shock and blast related, were confined to

the immediate area around ground zero (GZ).

The experimental geometry was such that GZ of MBII-l was located

on a line between the lidar van and a retroreflector placed on a 365-m.

bluff. From the observation of the cloud movement caused by the wind

during MBII-l, it was decided to retain this arrangement during MBII-2.

Thus, because of the slightly different azimuths of the two GZs, the

line between the lidar and the retroreflector was slightly offset to

the northwest from the GZ of the second event. To extend the time of

data collection beyond the time the cloud was between the lidar and the

retroreflector, a helicopter was outfitted with a retroreflector and

flown behind the cloud several minutes after the detonation.

Hawley and Burns 3 have already presented a description of the lidar

system, the techniques used for measuring, and the general range data

showing the range of the scattering centers as a function of time. This

document is the final report on the analysis and interpretation of the

MBII laser experiment data. Because of equipment difficulties and ad-

verse wind conditions during MBII-I, the MBII-2 data were very much su-

perior (although there were problems with the hardware then as well);

therefore, to gain the most from the analysis effort, we concentrated

entirely on the larger MBII-2 event. Because of the close proximities

of the two GZs, the soil and cloud properties (other than the size of

the cloud) of the two events are likely to be very similar to one

another. Thus, the results of the MBII-2 analysis that are presented

here should also apply equally well to the MBII-I test.

6



This report is organized as follows: In Section II is an evaluation

of system performance. Section III is a theoretical exposition of con-

cepts that provide e background for the data analysis. Section IV con-

tains the data. Section V contains the analysis of the data. Section VI

is the conclusion and summary.
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II EVALUATION OF THE SYSTEM PERFORMANCE

The data that are used in this and the following sections were re-

corded during MBII-2 as explained in the Introduction.

Before MBII-2, the lidar system was checked by firing each laser

separately for a certain length of time. Based on these tests, both the

lasers, the receivers, and the data-acquisition system appeared to func-

tion normally. However, during MBII-2 when the video data switch in

Figure 3 (for more information about the instrumentation in this figure

see Hawley and Burns 3 ) was operating betwee~i the three receiver outputs

synchronously with the firing of the lasers, the stored data show that

part of the data was perturbed. Besides the receiver signals, which

were stretched using a Gaussian filter and then sampled every 0.1 "is,

the data consist of several status words (SW), of which three contain

information about the wavelength and the data from the laser energy moni-

tors and the azimuth/elevation (Az/El) monitor shown in Figure 3. The

wavelength information is found in SW No. 3; SW No. 4 stores in alternat-

ing order the azimuth (Az) and elevation (El) of the telescope. SW No. 5

lists the energy of the transmitted laser pulse. Of these three words,

only SW No. 3 appears reasonably reliable (about 80 percent). The data

of the other words appear to have been perturbed. Although the data of

SW No. 4 show some indication of alternating between two values, all at-

tempts to recover the data by bit inversion or permutation of the bit

positions have failed. The data in SW No. 4 show no change even though

the receiver data show clearly that the telescope direction was changed

(during the experiments with the moving retroreflector on the helicopter).

This lack of correlation is sufficient reason to consider the Az/El data

lost. We have reached a similar conclusion for the data contained in

SW No. 5 because we were not able to get them to match with the expected

laser output energies.
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1

All l0.6-pm data were lost as well. The data acquisition system was

designed to record the 1.06- and 0.53-pm receiver outputs on alternate

10-pps Nd:YAG laser shots, except every tenth pulse when the slower (l-pps)

CO2 laser fired. But when the recordings were carefully inspected, we

found that the preceding 0.53-&m data were repeated where the l0.6-.m out-

":1I put should have been.

The source of the problems appears to be in the video data switch

and associated circuitry. Examination of the wiring diagrams does not

provide any clues to the exact cause of the problems. A full understand-
ing of the failure requires an examitiation of the actual system, an exer-

else of little value at this point.

The lidar system was calibrated by recording the return signal from

a white target located at a distance of approximately 1 km from the li-

dar van. Figures 4 and 5 show the relative return signal at 0.53 and

1.06 "m, respectively. The return near the origin is caused by near

scattering and is most pronounced at 0.53 "m. Comparison of the near-

scattering signal in Figure 4 with those obtained on the oscilloscope

show that the time in Figures 4 and 5 should be increased by about 0.3 gs

placing the return from the target at 6.6 us, corresponding to a distance

of 990 m.

The receiver response to the 10-ns laser pulse reflected by the

calibration target is basically the much wider receiver impulse response.

To remove the distortion present in Figures 4 and 5 because of the log

scale, we have plotted the impulse responses on a linear scale in Figure 6.

A half width of slightly less than 0.2 "s for the 0.53-am receiver agrees

reasonably well with the impulse response of a receiver band limited by

a Gaussian filter with a 3-dB bandwidth of 2.5 MHz. The impulse response

of the 1.06-am receiver is a little more difficult to evaluate because

the sampling time is such that it truncates the receiver signal. It is

obvious, however, that the 1.06-gm signal is much wider than that at

0.53 urn. We believe that the relatively slow fall time is caused by a

long tail of the Nd:YAG laser pulse. Although this laser was also used

to generate the pulse at 0.53 um by a second harmonic generation, the

10
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pulse at 0.53 ,r does not show any pronounced tail because the efficiency

of the second harmonic generation is proportional to power. Based on

the half width of the pulses in Figure 4, the resolution of the lidar

system is about 30 m at 0.53 =u and about 60 m at 1.06 um.

The rms fluctuation of the return signal, based on 80 returns, is

in terms of percentage of the mean, 10.8 percent at 1.06 u and 17.6

percent at 0.53 =m. These figures agree well with the expected fluctua-

tion of the laser output power. Because of the loss of data from the

laser output monitor, the figures present the basic limitation of the

accuracy of the collected data.

13



III THEORETICAL ANALYSIS

In the following we develop a simple theory for the backscattered

radiation that allows calculation of the volume backscatter coefficient

from the lidar data in the presence of attenuation of the laser signal

by the dust cloud. It is based on the lidar equation given by: 4

P AR
P (R) =__t r exp - f(r)d

r2R 4 R2

that expresses the power received, P r(R), by the lidar system from a

scattering event at a distance, R, in terms of the following parameters:

Pt = transmitted energy

Q = solid angle of transmitted laser beam

a(R) = scattering cross section

A = receiver aperturer

y(r) = extinction coefficient

r = variable of integration

T = transmittance of optical receiver.
o

In Eq. (1) it is assumed that:

(a) Only a single scattering event takes place.

(b) The energy is scattered uniformly over the entire 4n
solid angle.

(c) The scattering area is larger than the cross-sectional
area of the laser beam at the scattering medium.

The assumptions (a) and (b) simplify the theory greatly and are reason-

able in view of the lack of any a priori information about the details

of the scattering process. As more information is obtained more sophis-

ticated models can be applied later.

14



To conform to the standard notation, we introduce the volume back-

scattering coefficient O(R) given by:

O(R) an a(R) (2)
41rTV ~R2)

where c is the speed of light and T is the length of the laser pulse.

The factor cT/2RR2 is the scattering volume that contributes to the re-

ceived lidar signal at a fixed time, and 4n is the total solid angle.
-l -l

Thus, the dimension of O(R) is m sr . Inserting Eq. (2) in Eq. (1)

we obtain:

RP R CT (R) exp L a~r/Jr T0  3

Before we find O(R) from Eq. (3), we normalize P r(R) with respect to

the received power, Pr (RCal), measured during the calibration of the

lidar system. The calibration consisted of measuring the signal returned

from a white sheet of known reflectance placed a distance, RCal, from

the lidar van. The received power is given by:

Pr(Ra) Pt r T2 (Rl) T (4)

cal

where p is the reflectance of the calibration target and T2(Rcalis the
a cal),two-way transmittance to the target given by:

aexp 2 O r) (5)

The subscript, a, has been added to indicate that the transmittance is

that of air over the specified range. Eq. (4) takes into account that

the beam diameter at the target is smaller than the target and that the

15
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illuminated target area is within the field of view of the receiver.

The expression also assumes that the reflection of the target is

Lambertian.

By using Eq. (4), the normalized version of Eq. (3) takes the form,

Pr (R)/P( ) T (R,R) (6)

where we have used the notation,

T2 (R,R ca) -exp [ 1 2 (r)dr(7

The backscattering coefficient in Eq. (6) has been normalized with

respect to the equivalent backscattering coefficient of the calibration

target, $0, given by

00 = 2- (8)
cTr

In addition to the unknown, O(R), that we wish to find, Eq. (6) contains

via Eq. (7), another unknown, the extinction coefficient, ct(r). To

circumvent this problem we shall use the customary assumption3 that

extinction is proportional to scattering as expressed by:

o(R) = kO(R) (9)

where k is a proportionality constant. Using this relationship in

Eq. (6) we obtain by rearrangement of some of the terms the following

integral equation for $(R):

x(R) = $(R) exp [2k (r)d (10)

0

16



/I
where

2I
P r(R) R 2

x~~ (R T Rcal) G2 1)R1

In Eqs. (9) and (10) we have assumed that the scattering events start

at Ro, the beginning of the dust cloud. The factor, 00, is the equiva-

lent backscattering coefficient of the calibration target. By differen-

tiating both sides of Eq. (10) and dividing by x/0, Eq. (10) can, after

rearrangement of the terms, be written

dB(R) dx(R) O(R) + 2 ko2(R) (12)
dR x(R)dR

This is the "Riccati" equation. The details of the solution of this

equation are given in Appendix A. The solution is

Pr(R) 2

Pr (Ro12

O(R) r R 00 , (13)

I/O(Ro) - 2k rfPr) (•-dr
Ro

0

which is similar to the expression given by Davis 6 .

Although we eliminated a(R) by using the relation in Eq. (9), the

problem of finding the proportionality factor, k, still remains. To

solve this problem we follow the approach of Fernald, et al. 8 , who

showed that k can be obtained from transmittance measurements.

The general expression for the two-way transmittance is given by

the exponential term in Eq. (1). If we used the relationship between

the extinction coefficient and the backscattering coefficient in Eq. (9)

the transmittance can be written as

T2(R) exp 2k J% (r)dr] (14)

f

17
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By differentiating this equation with respect to R and inserting the

result in Eq. (6) we obtain, after a few mathematical manipulations,

which are described in Appendix B, the following expression for k:

I - T RI,R°) PrP (R 2)

aklo/ (R 2)
k ... .(15)

20T 2 (R) r ) (r dr
oI0 ca) Pr Rcal (call

0

where R 0 R • R1 is the range of the cloud, R2 the distance to the

retroreflector and P (R ) the power received from the retroreflector
ra 2

when no cloud is present.

The remaining factor to be discussed in the expression for $(R) is
O(R ), the value of O(R) at the front edge of the cloud. It is found

by setting R = R in Eq. (6) and is given by
0

P r(R o) /i~ R
O (RO) = 0 0 TIRcl T aIR9R ca)(6

o o oP ~rca)\ l a cal) (6

It assumes that the effect of the scattering on the transmittance of

the first small increment of the cloud is negligible.

18
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IV PRESENTATION AND DISCUSSION OF THE DATA

In the following we show a sequence of figures covering the first

four minutes of MBII-2. To help in the interpretation of the data we

present Figure 7, which shows the approximate position of the laser
beam projection in the GZ plane in relation to the detonation charges,

/LASER BEAM

N

6 w E 3

S

DETONATION
CHARGES

5 4

FIGURE 7 PROJECTION OF LASER BEAM ON THE GROUND-ZERO PLANE

and Figure 8, which is an overhead photograph of the GZ area slightly

after detonation. The latter figure shows that during this early stage

of the detonation six separate dust clouds are formed centered around

the positions of each of the explosive charges.

19
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FIGURE 8 OVERHEAD PHOTOGRAPH OF GROUND ZERO AT AN EARLY STAGE OF THE
DETONATION
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I
The presence and development of these separate clouds are shown

clearly in the lidar data (Figure 9). The data shown are for 0.51 pm.

Figure 9(a) shows the first intercept of the laser beam by the two

clouds that formed around the two detonation charges (No. 1 and 2) close

to the laser beam projection as shown in Figure 7. The ranges are 4.83

and 4.98 km, respectively. The signal close to 6.0 km is the return

from the retroreflector. In Figure 9(b) this signal is greatly atten-

uated; and it is completely obliterated in Figure 9(c) and the following

figures; and it reappears three minutes later. Figures 9(b) to 9(e)

show the growth of the front cloud and its effect on the return from the

cloud behind it. At T + 14.047 s the clouds from the two detonation

charges have merged completely and are so dense that the return is

limited to a thin layer of dust at the front edge of the cloud associated

with charge No. 1.

Further development is depicted by Figures 10(a) through 10(i),

and 11(a) through 11(e), which show the return signal every 15 s. The

sequence is broken during the period from T + 2 min to T + 2 min 36 s

because of a transient computer malfunction that required restarting

the data-acquisition program. The figures show that the returns are

limited to a few thin layers in the range from 4.7 to 5.0 km. Any

radiation propagating beyond that range either was absorbed totally or

was scattered out of the receiver field of view until T + 3 min when

the return from the retroreflector reappears. This occurred when the

main part of the cloud drifted out of the line of sight. Examination of

a tape from a TV monitor covering the field of view of the lidar tele-

scope shows that during the time when the return from the retroreflector

was observed a faint haze was present, suggesting the presence of fine

particles.

During the time the data in Figures 9(a) to 11(c) were taken the

dust cloud drifted slowly in a north-northwesterly direction, a direction

essentially perpendicular to that of the laser beam (see Figure 7).

Thus, the return signal in the range of 4.7 to 5.0 km appears to be from

a thin layer of dust at the front edge of the moving dust cloud.

21
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Slightly after T + 4 min the telescope direction was changed to

scan the entire cloud. Except for changes of the range, the return

signals look similar to those already shown in Figures 9 to 11. Because

of the loss of the Az/El data, the data from the scanning experiment do

not provide any further information.

After T + 8 min the laser was aimed at a retroreflector dangling

below a flying helicopter; however, because of tracking problems, this

experiment was not successful. The data that were obtained indicate the

presence of small dust pockets in the range from 5 to 15 km. These

pockets were small because they moved in and out of the laser beam within

0.2 s when the helicopter was tracked at a distance of 13 km.

The data shown in Figures 9 to 11 are all for 0.53 pm. Corroborating

data were obtained at 1.06 hm, but, because of the poorer resolution of

the receiver and the smaller backscattering coefficient at that wavelength,

the resolution of the data were not as good as those obtained at 0.53 pm.

Figures 12(a) to 12(c) show examples of the data at 1.06 pm. They are

from the earliest times of the cloud formation, and show the same two

peaks, and the disappearance of one of the peaks as shown in Figure 9

for 0.53 pm.
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V ANALYSIS OF THE DATA

The data collected during the first four minutes of MBII-2 at the

wavelengths 0.53 and 1.06 im were sufficiently complete to warrant

further analysis. The direction for the telescope during that period

was fixed and known. Furthermore, because the backscatter coefficient

in Eqs. (6) and (13) are expressed in received power relative to that

obtained during the calibration, the loss of the data from the laser

energy monitor has only a minor effect expressed by the rms fluctuations

of the laser output power as discussed in Section II.

The major limitation of the analysis resulted from the great width

of the impulse response of the lidar system compared to the short pulse

width of the return signal. In reviewing the data in Figures 9 to 11,

note that the return signals at the first minute and a half (Figures 9(a)

to 10(e)) are identical or very close to the impulse response of the

receiver. The impulse response can be seen clearly from the return

signal from the retroreflector at the range of 6 km in Figure 9 and

Figure 11. In the comparison, remember that because of the logarithmic

scale only the upper part of the peaks is important; the tails would not

be noticeable in a linear display. As the dust cloud evolves the pulse

spreads and often two or more peaks occur that tend to broaden out after

T + 3 min.

The only data that seem usable for estimating 0 from Eq. (13) are

the data after T + 3 min, at which time the width of the return pulse

is much broader than the impulse response. However, even for those data,

the calculations show that the impulse response contributes significantly

to the integral in the denominator of the expression for 0 with the

result that 5(R) becomes a monotonic increasing function of R in the

entire range of the cloud from 4.7 to 5.0 km.

As mentioned before, the return signal during the first minute and

one half is close to the impulse response of the receiver. This suggests

27

was



that the effective scattering region of the cloud is limited to a thin

surface layer. If we assume that the layer is infinitely thin, an

effective or equivalent volume backscattering coefficient, 0, can be

found from Eq. (6) by setting the two-way transmittance equal to one

and letting the range, R, be the range corresponding to the peak of the

return pulse. Because we have assumed an infinitely thin layer, it is

perhaps more meaningful in this case to talk about a reflectance. Such

a value is obtained easily by multiplying 0 by the factor c'rT/2

(- 4.71 m sr) in Eq. (8). In this case we are comparing the reflectance

of the cloud directly with that of the calibration target.

. The assumption of an infinitely thin layer is the same as assuming

a thin layer with a constant 0 and a zero extinction coefficient because

the range is large compared to the thickness of the layer. Such assump-

tions are hard to justify if we are interested in the actual value of 0,

but for the comparison of 0 at different wavelengths or times, the use

of an average value of 0 seems reasonable.

Even with these assumptions an uncertainty in the calculated value

of 0 remains because during times just after the detonation the return

signals have a pulse shape identical or close to that of the receiver

impulse response. Thus during that period of time, the actual pulse

width of the reflected signal is unknown and could be as short as 10 ns,

the width of the laser pulse. From Figure 13, which shows the relative

output of the receiver as a function of input pulse width, we see that

this introduces an uncertainty factor close to ten. In our calculations

we have assumed a pulse width of 200 ns or larger, an assumption that

seems reasonable for most of the time interval considered, but an assump-

tion that may result in a value of 0 that is up to ten times too small

imnediately after the detonation.

To be able to calculate 0 from Eq. (6), we must know 0 given in
0

Eq. (8). This implies that we know the reflectance, p, of the calibra-

tion target. To obtain this value, we compared the return signal from

a small sample (about 4 cm X 4 cm) of the target with that from a

similarly sized sample consisting of Eastman Kodak white reflectance
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coating (No. 6080) on a glass slide. With the beam at normal incidence

we were not able to distinguish between the two targets at 1.06 I.Lm. At

0.53 pm the reflectance of the target material used during the calibration

appeared to be a few percent lower than that of the Kodak coating. Because

the Kodak coating has a known reflectance of better than 0.99 at both 0.53

and 1.06 pm, we can set p = 1.
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FIGURE 14 AVERAGE BACKSCATTERING COEFFICIENT AT 0.53 AND 1.06 pim AS A
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The calculated backscattering coefficient 0 is shown in Figure 14

as a function of time after detonation. We have extended the calculation

to T + 2 min and have used the tallest peak in cases where more than one

peak occurs. The curve presents a value for $ averaged over all the values

calculated for each interval of 1 s. The slow variation of 0 with time

represents the change of the density of the scattering particle of the

front edge of the cloud as it drifts in a north-northwesterly direction

that is almost perpendicular to the direction of the laser beam (see

Figure 7). The broad maxima may reflect an increased density of the

scatterers in the part of the cloud that was created in close vicinity

of the explosive charge. Close to two minutes after the detonation the

movement of the main cloud indicates that the portion of the cloud

formed predominantly by charge No. 5 has passed the laser beam. After

that time the value of 0 decreases and the penetration of the laser

beam into the cloud increases slowly.

The value of 0 at 0.53 whm is on the average about a factor of six

larger than at 1.06 pm. This ratio may be too large because, as

Figure 6 shows, the pulse at 1.06 im is truncated by the sampling

process. On the average this might increase the value of 0 at 1.06 pm

by a factor of about 1.5, which results in a value for 0 at 0.53 pm of

about four times that at 1.06 phm. This rapid increase of 0 with

suggests that we are dealing with scattering particles of submicron

size, a contention supported by the observation of the haze that pro-

duced the scattering during the period from T + 3 min to T + 4 min.
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VI SUMMARY AND CONCLUSIONS

This report describes the evaluation and analysis of the data col-

lected with the lidar system at the wavelengths 0.53, 1.06, and 10.6 Pm

during MB 11-2. A problem with a video switch and its associated circuitry

prevented recording of the data at 10.6 gm and destroyed the data that

contained information about the laser output power and the position of

the telescope. The loss of the two last items does not have any signifi-

cant effect on the analysis presented. The major limitation of the analy-

sis is caused by the unexpectedly small width of the lidar return signal

that rendered the 2.5-MHz receiver bandwidth inadequate for fully resolv-

ing the signal. The data suggest that the laser beam at 1.06 and 0.53 gm

penetrated at most 20 to 100 m into the cloud. During much of the first

two minutes after the detonation the penetration may have been signifi-

cantly less than 20 m because the pulse shape of the return signal was

almost identical to the impulse response of the lidar receiver.

To allow transmission measurements a retroreflector array was placed

atop Black Mesa. During the first four minutes the laser beam was aimed

at this reflector with the beam passing near GZ. The first return sig-

nal from the cloud was observed at T + 13 s. Half a second later the

signal from the retroreflector disappeared and did not appear again until

three minutes later when the main cloud had drifted away from the laser

beam. At this time the return signal had become broader and was 20 dB

smaller than at the beginning of the event. In many cases the signal

consisted of two or three overlapping pulses.

During the entire four minutes that the lidar was aimed at the re-

flector, the range of the return signals was relative constant varying

between 4.7 and 5.0 km. The constancy of the range is attributed to a

drift of the cloud in a direction perpendicular to the direction of the

laser beam. After T + 4 min the cloud was scanned manually; the pulse

shape of the signal remained approximately the same as that observed
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when the cloud drifted past the laser beam showing that at 1.06 and

0.53 gun the outer region of the cloud is about the same everywhere. At-

tempts after T + 8 min to continue measurements of the drifting cloud by

using a helicopter that was outfitted with a retroreflector was not suc-

cessful because of problems with the tracking system and the small pene-

tration of the laser into the cloud.

Before the experimental data were processed, a theory was developed

for calculating the volume backscattering coefficient, 0. The theory is

based on the radar-range equation and the assumption that extinction co-

efficient is proportional to 0. Although the theory is presented in its

entirety, most of it was actually not used in the analysis because the

width of the return signal was of the same order of magnitude as that

of the receiver impulse response.

The analysis is limited to data that were collected during the

first two minutes after the detonation. An average value of $ is calc-

ulated based on calibration data from a target of known reflectance.
-2 -I -l

The range of the calculated values of 0 is 2 to 9 x 10 m sr at 0.53 pm
-3 -1 -l1and 3 to 15 x 10 m sr at 1.06 pm. The corresponding ranges of reflec-

-2 -2tance values are from 9 to 42 x 10 and from 1.4 to 7.10 , respectively.

These remarkably high values are comparable to those obtained from many

rough solid surfaces. The wavelength dependence of 0 indicates that the

scattering centers are of submicron size, a fact corroborated by observa-

tion of a haze after the main cloud had disappeared, but with the scat-

tering centers still present.

The data show that lasers with the wavelength in the range from

1.06 to 0.53 pm would be completely inoperative in a dust environment

such as that created by MBII-2, a result that is not too surprising.

However, the small penetration of the laser beam into the cloud was

unexpected. It is unfortunate that the 10.6-ýim data were lost because

we expect that any system using this wavelength would fare significantly

better. Even after the main cloud had disappeared scattering particles

were still present for a few minutes that could trouble most systems.
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It is equally clear that these types of lidar measurements are not

well-suited for investigation of cloud formation with particle densities

as high as those developed during MBII-2. Extinction coefficients at

0.53 and 1.06 gm were so high that it was not possible to make cross-

section per unit volume estimates without making certain assumptions

that may not be very realistic.

The lidar signals did not penetrate very deeply into the dust

clouds until dust densities fell to very low levels. This is consistent

with the appearance of the clouds, which seem "hard" at early times, but

become a diffuse haze much later. Measured reflectance values at early

times were indeed similar to those from many solid rough, diffusely-

reflecting surfaces. Within our ability to resolve range, those echoes

also could not be distinguished from ones coming off a solid surface.

This means that it would be appropriate to treat many parts of a dust

cloud produced by a nuclear or conventional explosion as a solid object

in estimating their effects on laser-based military systems.
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Appendix A

SOLUTION OF THE RICCATI EQUATION

In Section III the equation (Eq. (12)] for finding O(R) was found

to be the Riccati equation given by

0' - f(R)O + 2kU2  (A-1)

where the apostrophe denotes differentiation with respect to R, and

where f(R) is given by

f(R) - xd(R) (A-2)x(R)dR "

In these equations R is limited to the range where x(R) 1 0, i.e., the

range of the scattering centers. Moving the term f(R)o to the left side

of Eq. (A-1) and multiplying both sides of the equation by exp[-g(R)J

where

R

g(R) f f(r)dr (A-3)

0

we obtain

C - f(R)0] exp C-g(R)] - 2k82 exp C-g(R)] (A-4)

Eq. (A-4) can be written as

(0 exp [-g(R)])' = 2kW2 exp C-g(R)] (A-5)

or,

ul 2ku2 exp (g(R)] (A-6)
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where

u - exp [-g(R)] (A-7)

From Eq. (A-6) we have

u

2 2k exp [g(R)] (A-8)

2

that is identical to

- ~) 2k exp Cg(R)] .(A-9)

Eq. (A-9) has the solution

R

- 2kI exp £g(r)]dr + c (A- 10)

fR
0

/1. where c is a constant. From Eqs. (A-7) and (A-10) we obtain,

exp Cg(R)] (A-1l)

fR
4 0

From Eqs. (A-2) and (A-3)

g(R) =In x(R) (-2
x(R) 0A1

so that

5(R) x()/( 0 (A- 13)

2k fx(R)/x(R)0 + c

R
0
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The integration constant c is seen to be

c - 1/0(R ) (A-14)

by setting R - R in Eq. (A-13). Using the expression for x(R) in Eq.
0

(11), the final expression for O(R) is,

P r(R) R2
1 ~Pr(Ro

O(R) r R 0P (r) 2 d (A-15)
1/0(R 0P r ( r) dr

Ik P r(R 0) IR 0

0
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Appendix B

DERIVATION OF EXPRESSION FOR k

Differentiating Eq. (14) with respect to R and solving it for O(R)

yields

O(R) - - I dT 2R (B-1)
2kT2 (R)

Using this expression in Eq. (6) we obtain

Pr(R) 2
dT2 (R) W k r R T 2 R~ ( 1 )dR (B-2)0 ~ cR:l ~ca,

where we have used

T2 ()-T 2 (R)T 2(RR) (B-3)

consistent with the notation used in Eqs. (5) and (7). If we assume

that the scattering events are confined to the range R 0e R 5 R we ob-

tain the following expression for k by integration of Eq. (B-2),

I - T 2(RI,Ro)

2 fR1 P r(r) 220oT2 (Ra _ (T dr

"0 a P(Rcal

0

If the transmittance is measured over the range 0 S R 5 R where R > R,2 2
we must use the following relationship in Eq. (4) to find k:

T2(R2) T2(Ro) T 2(RR)T'4(R R) (B-5)
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where Ta 2(R) and T 2(R 2 ,R 1 ) account for the air transmittance in the part

of the range 0 ! R : R2 that is free of scattering centers. If the air

transmittance over the whole range R2 is also measured, then

or in terms of received power

Tr 2(RR2T2 R, O (B-7)

where Pr,a(R 2 is the power received when no scatters are present in

the range 0 • R r R2 .
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