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Abstract

This paper Is concerned with providing automatically generated on-line explanations to the
* user of a functional computer subsystem or too/ about what the tool can and cannot do, what

-4 parameters and options are available or required with a given command, etc.. The
explanations are given through the COUSIN interface system which provides a cooperative
tool-independent user interface for tools whose objects, operations, input syntax, display
formats, etc. are declaratively represented in a tool description data base. The explanations
are produced automatically from this data base, with no incremental effort on the part of the
tool designer, and in a single uniform style for any tool that uses COUSIN as its interface. The
explanation facility takes the form of a fine-grained, tightly linked network of text frames
supported by the ZOO menu-selection system. [xactly what information the net buildingI program, NB, extracts from a tool description, and the way in which this information is
formatted in the text frames is controlled by a second declarative data base called the aspect
description. The declarative nature of the aspect description makes it easy to adapt NB to
changes in and extensions to the tool description formalism, and to experiment with the
structure of the explanation network. We also describe how the appropriate network frame
can be found and displayed in response to specific explanation requests from the use
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1. Introduction
Interfaces to interactive computer systems often appear inflexible and uncooperative to their users.

The COUSIN 1 project at Carnegie-Mellon is engaged in a wide-ranging program of research to

produce more graceful and cooperative user uiterfaces. Our work includes research on more flexible

and robust parsing techniques [2, 6), communication mechanisms that are both natural and efficient

(41, and a number of other topics (see [1, 5, 7]) including the subject of this paper: explanation

facilities.

In order to appear cooperative, any user interface must be prepared to offer its user explanations of

what it can and cannot do, which command the user should issue to get a particular task done, what

parameters and options are available with a given command, etc.. It is these kinds of static

command an interface is currently performing, what kind of information it expects the user to input

next, what was the result of a command issued two hours ago, are equally vital for a cooperative

interface, but will not be covered in this paper.

The most common approach to static explanation facilities in the relatively small proportion of

Interactive systems that provide them at all has been to use canned text messages. Such messages

are either written into the system by the system designer specifically for interactive use as in the SOS

editor [11], or extracted by an indexing scheme from an on-line version of the system manual as in the

RdMail electronic mail system (9], or the CMULisp system [3). However, the structure of explanations

provided this way is often too grainy, so that the user must search through irrelevant matenal to get to

the information he actually needs, and insufficiently interlinked, so that the user may be unable to

locate the information he needs even if he has found a related piece of information, -te [5] for a good

example of this. Much more fine-grained and closely interlinked explanations are necessary.

Happily, the overall approach to interface construction adopted in the COUSIN system forms an

excellent basis for the provision of such explanations. Moreover, the approach allows such

explanations to be constructed automatically from information that the Interface needs In

any case for other purposes, thus r i an interactive system with an explanation facility for

zero incremental effort on the part of tfh ; .. . designer.

Automatic construction of explanation facilities with COUSIN is possible because COUSIN is

independent of the particular functional subsystem or tool being interfaced to. In order to use the

COUSIN interface, all relevant information about a given subsystem must be represented in a

coum a new acroym; previous publications descril the system as a gacefully Interacting IWterface.
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declarative data base called a tool description. This information includes all the commands and
object types that the tool deals with, their parameters and components with filler types and defaults,
their input syntax and display formats, plus other information, liss important for our purposes, about

the tool's operation. Using this information, COUSIN can accept commands from the user, check them
for validity, fill in defaults, correct some errors and ambiguities, interact with the user to correct the
others, and finally transmit the corrected command to the underlying system. More importantly for

our purposes, this information, possibly supplemented by text strings to explain the purpose of
commands and object types, is just what is needed to construct a fine-grained and highly
interconnected static explanation facility for any tool represented by such a tool description.

In what follows, we describe a program, called NB3, for automatically constructing a static

explanation facility from a tool description. The resulting explanation facility is a network of text
frames that the user is able to traverse as he wishes using the ZOG menu-selection system [10].
Which information is extracted from the tool description, and in what format it is presented in the text
frames is controlled by a second declarative data base we call the aspect description. TheI representation of this meta-level information in declarative format makes the NB program very easy to
adlapt to changes in or extensions to the format of the tool description formalism. Because the
COUSIN project is highly experimental, such changes occur frequently. The following sections

describe in turn the tool description formalism, the organization of the explanation network derived
from it the way in which this network Is constructed, and the way in which the appropriate network

*1 node may be found automatically in response to a specific request for help by the user. We conclude
with a discussion of some more problematic requests for explanation.

2. The Tool Description
As mentioned above, a particular functional sub-system, or tool, is characterized for the COUSIN

interface program by information about the types of objects it manipulates and the operations or

commands it can perform. This information is stored in the tool description, a declarative data base
provided by the tool system designer. Given the tool description, the COUSIN interface is able to parse
the user' commands, check them for validity, fill in defaults, correct some errors and ambiguities,
interact with the user to correct the others, and finally transmit the corrected command to the

underlying tool system. The tool description consists of schemes, one for each object type dealt with
by the tool, and one for each operation that the tool can perform.

Object schemas are "declarations" of the types of data object that the tool knows how to deal with.
* The following is a partial schema for the object type, Message, of an electronic mall system that we
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have been using as an example tool for COUSIN.

StructureType: Object
ObjectName: &Message
Components: 0 IC

( Sender: [FillerType: &Person ComposeAs: CurrentUser] .,
Recipient: (FillerType: &Person Number: OneOrMore]
Copies: [FillerType: &Person Number: NoneOrMore]
Date: [FillerType: &Date ComposeAs: CurrentDate]
Subject: [FillerType: &Uninterpreted Number: NoneOrOne]
Body: [FillerType: &Uninterpreted Number:NoneOrOne]
After: [FillerType: &Date UseFor: DescriptionOnly] &.* -
Before: [FillerType: &Date UseFor: DescriptionOnly] /<'c

]4
Syntax:

( SynType: NounPhrase
Head: (message note ?piece ?of mail>)
PostMod: (

<%From tSender> / --.
<%To tReciplent> 0

(%CopiesTo tCoples> , ,/
<%Dated lOate>
<%About iSubject> IT"'
<%After tAfter> /
<%Before tBefore>
<%Between tAfter and tBefore>

The precise details of this slot and filler style of notation are not important for present purposes. The

points to note are that the Components property list gives each of the components of the structured

object, &Message, and for each of these components, the type of object supposed to fill that

component, plus any defaults, etc. that are relevant. The Syntax property list says that a message can

be described by a noun phrase in which the head noun is chosen from the specified list of words and

patterns of words (denoted by angle brackets), and which can be followed by any of the descriptive

cases given - percent means word class (defined elsewhere), and up-arrow refers back to one of the

components of Message. Other information contained in an object schema, but not shown here,

includes display formats for the object, and information on how to resolve a description into an

instance. The formalism can also describe primitive object types, i.e. those that have no components,

and classes of object types.

A tool description schema for an operation Includes a specification of its parameters and the syntax

of commands requesting execution of the operation. The following example is the schema for the

Forward operation from the same example electronic mail tool system.

ij
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[ StructureType: Operation
OperationName: &Forward
Parameters:

M Message: [FillerType: &Message]
Recipient: [FillerType: &Person Number: OneOrore]
Forwarder: [FillerType: &Person MustBe: CurrentU~tr]

J
Syntax:

[ SynType: Imperative
Verb: (forward send mail (pass on))
Object: <tMessage>
Cases: <%To tRecipient>J

The interpretation of the notation is similar to the example above. Using this schema, COUSIN can

determine whether a command specifies all required parameters of the operation, default any missing

optional slots, and check on the appropriateness of those parameters that are given. Operation

schemes also contain descriptions of output formats, how to transmit an operation request to the tool,

and what to do after the operation is finished.

For further details of the tool description and of the way It Is used by the COUSIN interface, the

reader is referred to [1].

The classes of Information in the two examples above are all that are needed to produce a basic

static explanation network from a tool description. However, to give more complete explanations
about the tool system objects and operations, tool description schemas could also contain additional

textual information put in for this specific purpose. This Information might include text explaining the

purposes behind certain objects or operations, examples of object descriptions and instances, etc..

Since the tool description schemas are represented as lists and property lists In our implementation,

augmentation of the schemes with explanatory fields is straightforward. We have not used

supplementary textual fields In our current implementation, but Section 4.1 discusses how such

additional information could be Incorporated Into the explanations we currently produce.

There are many similarities between the structure of objects and that of operations, and In

particular a correspondence between the components of an object and the parameters of an

operation. This similarity is exploited by our program, NB, for constructing an explanation facility

from a tool description, so in the discussion that follows to avoid saying "object or operation" and

"component or parameter" too much, we will refer to objects and operations collectively as tool items

or just as items, and we will refer to the components or parameters of a tool item as its slots. Note that

while a slot name is unique within a particular item, the same name may be used for slots in more than

6
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one item (e.g. the Forward, Answer, and Delete operations in our example tool all have Message

para-meters). This fact cannot be Ignored in constructing an explanation facility, because of possible

questions like "Is there a default for the Message parameter?". For this reason, when we talk of a

slot, we will often be referring to the collection of all slots with the given name.

3. The St ructu re of an Explanation Network
As mentioned in the introduction, the program NB produces an explanation facility for an

interactive functional subsystem or tool from a declarative description of that tool in the formalism we

have just described. This explanation facility is in the form of a net of text frames that the user can

traverse as he wishes by use of the ZOG [10] menu-selection system. The advantages of having the

explanation facility produced automatically are clear. Since the tool designer must provide the tool

description in any case in order make use of the COUSIN interface system, his tool will be augmented

with an explanation facility with no extra effort on his part. The choice of a network of text frames for

the explanation facility requires some justification.

One obvious alternative to constructing a net of text frames is to construct responses to help

requests "on the fly". The same techniques could be used to extract the needed information from the

data base, and responses could be tailored to the Specific question asked, insteadof being selected

from a predetermined get of text franme. While this approach may be unavoidable sometimes (see
Section 5.), it has serious efficiency problems. Extracting the required information from the tool
description proves to be quite an expensive operation, and a practical interface cannot afford to make

its user watt too long for responses to his questions. In addition, such an approach does not help the

* user to obtain Information related to the explanation elicited by his last: question. If each question is

answered separately, there are no asy ways to "Poke around" a topic. This violates the goal of

interlinked explanations established in the introduction.

Since the explanation facility is intended to be used interactively, the structure of the net of text

frames can and should be much richer than the structure of a pninted manual containing the same

* information. Printed documents, being composed of chapters and paragraphs, have a hierarchica

structure, appropriate for describing domains in which there is a hierarchy of concepts. Cross-

references, pointing to concepts on different "paths" or in higher levels of the hierarchy, are legal,

but access to Information via cross-references is done in a way distinctly different from access via
hierarchical links, which is the "preferred - way.

The Inherent structure of a tool system usually does not conform to a strictly hierarchical discipline.

If we chase "Is-component-of" as one of the basic hierarchical relations between tool itemns, each "Is-



fillertype-of" connexion would be a cross-reference. The explanation facility is, therefore, structured
as a true network, providing a variety of semantically meaningful connexions, of equal priority,
between the Information units It contains.

In the remainder of this section we present the structure of explanation networks from an abstract
point of view; discussion of the program that constructs them from a tool descniption is deferred until
Section 4.

3.1. Nodes in the Net
The units of information in the explanation facility, i.e. the nodes in the explanation network, do not

contain as much information as the schemes in the tool description. In line with the goal set in the
introduction, we have chosen a finer granularity in order to be able to answer a user's questions more
succinctly, and to avoid presenting him with a confusingly large amount of information all at once.
There are two basic kinds of information units in the net, containing aspect information and context
information, respectively.

There is an information unit for each relevant aspect of each tool item. For our current system,I aspects of a (compound) object type include the structure of instances of this type, the syntax of
corr esponding descriptions, the possible uses of such objects as components or parameters, etc..
Aspects of an operation include its parameter list, the syntax of requests to perform it, the effect of its
execution, etc. An aspect is thus not the same as a tool description field, but rather Is determined

*1pragmatcaly as agroup of facts about atool Item that ftnaturally together from auser's point of
view. As described in more detail in Section 4.3, the NB program use a declarative data base called
an aspect description to determine for which aspects of a tool item it should construct information
units. This level of indirection adds significantly to the flexibility of the NB program.

For each slot mentioned in the tool description, there is an information unit for each of its contexts,
ILe., for each of Its meanings as a component of an object or as a parameter of an operation. These
information units describe the properties of the slot in the specific context its filletype, its default
value, whether It Is mandatory or optional (for parameters), etc.. Examples of information units are
given in Section 4
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3.2. Edges in the Net

Each tool item and slot name may thus give rise to one or more information units. These

information units may be linked together by various types of binary relations which constitute edges in

the explanation network. Edges may run between information units associated with different tool

items or slots, or between units associated with the same item or slot.

Direct connexions between information units for different tool entities exist in correspondence to

certain semantic relations between the tool items they describe. These relations are called simple

semantic relations. The standard simple semantic relations, existing in any kind of tool, are the

following:

* "is-component-of" (between a compound object type and each of its components)

* "is-parameter-of" (between an operation and each of its parameters)

e "is-fillertype-of" (between a slot and its fillertype)

For a specific tool system, there may be additional simple semantic relations. This depends on

whether there are additional kinds of tool items e.g., classes of object types, and semantic relations

involving them, e.g., "is-member.of"; it also depends upon which of the semantic relations existing in

the tool domain are considered important enough to represent by edges in the net (instead of by
sequences of edges, or not at all). Because which edges are produced is specified declaratively in

the aspect description (see Section 4.3), it is easy to experiment with different combinations of edge

types, and to provide extra edge types for tool descriptions with more information without changing

the basic NB program.

For each item and each slot, one of the corresponding information units, called the entity's base

unit, is distinguished as being the unit that provides the primary information about it. There are edges

from the base unit to each of the remaining information units for the same entity. Conversely, each

information unit contains a reference to its base unit. This implies that all information units describing

the same entity are accessible (possibly indirectly) from each other, and each of them can be

accessed via the entity's base unit.

4. Automatic Construction of an Explanation Network
In this section, we turn to the question of how the explanation network for a given tool is actually

constructed from its tool description. To simplify our task, and to avoid needless duplication of effort,

we chose to build networks in a way that allowed use of the well-developed software support of the



8

ZOG system.

4.1. Implementation of an Explanation Network as a ZOG Net

ZOG [101 is a rapid-response, large-network, menu-selection system for man-machine

communication also developed at Carnegie-Mellon. In ZOG-nets, information is chunked into frames,

i.e., portions of text small enough to be displayed as a whole on a video terminal. ,n addition to the

actual information, each frame contains a menu of options from which the user can select the next

topic and thus the next frame to be shown. Frames are identified internally by unique frame

identifiers, but the user refers to frames by selecting their content. Thus, ZOG is well suited to

handling networks like ours in which connexions between frames are semantic.

The ZOG system accepts files containing descriptions of frames using the 8H formalism [8], and

uses these descriptions to produce the actual frames with appropriate indexing and interconnexions.

For each frame, the external BH format indicates the layout and contents of the information part of the

frame, plus the frames to which it should be connected and short text strings to describe the

connexions. The internal representation of frames and frame connexions, the mechanism for actually

displaying the frames on the screen, and the implementation of other operations on the net are

hidden from the producer of the external net description.

In the Implementation of an explanation network as a ZOG net, each information unit is represented

by a frame (or several frames, depending on its size). Here are some examples of the frames

constructed by NB for our example tool system from its tool description. First, a frame for the

structure aspect of the object type, Message:

MESSAGE (GENERAL STRUCTURE)

Objects of type Message have components:

1. Sender
2. Recipient
3. Copies
4. Date
5. Subject
6. Body

0. how is a Message described?
U. how is a Message used?

This frame, together with a line of general options not shown, takes up a complete display screen.

2 n he comple com. -sim ihe Ito aM Mudly down in one indow or pane of agmr n

1



When the user selects another frame by typing 1, 2, 3, 4, 5, 6, D, or U, this frame is replaced by the
one corresponding to the digit or Iett-r typed, e.g. typing '1' results in the display of a frame
describing the Recipient component of a Message:

RECIPIENT (in Message)

The Recipient component of object Message
contains one or more objects of type Person.

F. about object type Person
0. about object type Message
N4. about other meanings of Recipient

Note that this frame is not the samte as the frame for Recipient as a parameter of the operation,
Forward:

RECIPIENT (in Forward)

The parameter Recipient of operation ForwardI contains one or more objects of type Person.

F. about object type Person
0. about operation Forward
M. about other meanings of Recipient

* I Typing 'M' to either of these Recipient frames would, however, display the base frame for the
Recipient slot, which lists both of these frames, together with similar frames for all other valid contexts

:1 of the Recipient slot.

All of the text in all of these frames is generated automatically from prestored word patternj filled
out by slot and item names extracted from the tool description. The screen layouts are also
prestored, and are subject to the conventions of the underlying ZOG system. In addition to the types
of frame shown, the frames generated by the present system Include frames giving the abstract
syntax for each tool item, and frames showing in which other objects (operations) an object appears
as a component (parameter). Another interesting possibility, not yet implemented would be frames
giving example inputs for each object and operation; we believe these examples could be derived

j automatically from the abstract syntax and vocabulary specifications.

The example tool description we have been using contains only information that is also needed by
other parts of the cousiN interface. A more complete explanation network would result from the
addition of information describing e.g. the purpose of various tool items. The design of NB makes
such an extension easy. It would simply be necessary to define a new aspect for the tool description,
say Purpose, and modify the aspect description (see Section 4.3) to accomodate this extra aspect. In
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ti way, it would be straightforward to translate an extra property in the tool description schema for

Message:

Purpose: "enable the transfer of some text (the Body) from a Sender
to one or more Recipients, with extra copies to the users
specified in Copies."

into corresponding extra lines in the Message frame above (or in a supplementary frame), prefaced by
"The purpose of a Message is to.."

Supplementing a tool description formalism with these kinds of slots for information in the form of

prose has an additional benefit. It offers a very structured way for the tool designer to document parts
of his system, and the ways he intends them to be used. This approach to documentation also

-'I requires less effort from the tool designer because he can let the NB program take care of integrating
his individual comments into, what is essentially, a carefully structured, on-line manual.

4.2. NB3 - the Net Building Progfrm
Our program to construct explanation networks from a tool description is called NB for Net Builder.

NB operates off-line from the rest of the COUSIN system. It takes a tool description as input, and from
it produces a ZOG net which can be used as an interactive explanation facility for the tool in question.
NB itself does not interact with the end user of the COUSIN interface. The choice of the ZOO system

as the support for the explanation network means that all that N8 actually has to do is to produce the
BH file corresponding to the network it wants to construct. All the actual displays, and all the
necessary bookeeping operations are handled by the ZOO system. NB's task then reduces to:

extracting the information for each frame from the tool description and translating it into
the form in which it is to be displayed, and

.specifying the connexions between frames (see Section 3.2 for a list of connexion types).

I NB is composed of a hierarchy of functional modules which produce different levels of detail of the
network. There are three main levels in this hierarchy:

1. functions for building the net

2. functions for building a frame, including:
* aspect modules (one for each kind of aspect)

* context modules (one for object contexts and one for operation contexts)

3. functions for building fram components

The functions of level 1 take care of the bookkeeping necessary for correctly connecting the
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frames built. In addition to the actual frames, NB produces four lists of indexing information:

* two Base Lists associating each tool item and slot name with the frame Identifier of its
base unit, and

* two Frames Lists associating each item/aspect pair and each slot/context pair with the
frame identifier of the curresponding aspect unit or context unit.

Besides being necessary for the action of NB, these lists are also important in finding the correct text

frame with which to answer specific help requests from the user (see Section 5.1).

The level 2 functions are executed for each aspect of each tool item and for each context of each

slot name. They pick the appropriate pieces of information from the tool description and call

functions of level 3 to produce the appropriate BH output. This BH representation for the explanation

net is then compiled into a ZOG net, ready for use as the explanation facility for the interactive tool

from whose description it was derived.

4.3. The Aspect Description

As mentioned earlier, NB does not produce frames for each possible aspect of each tool item in the

tool description. It chooses only those aspects for which there is an entry in a second declarative

data base called the aspect description. This arrangement insulates NB from changes in or additions

to the tool description formalism; only the aspect description and not the code for NB need be

modified in such circumstances. An aspect description, then, does not provide information about a

specific tool like a tool description, but rather gives "mete-information", about the tool description NB

is given to process and about the form of the explanation network to be constructed from iL In

particular, It answem the following questions:

* What kinds of tool items (e.g. objects, operations, primitive objects) are there?

e About which aspects of each tool item should the system give explanations? I.e., for
which aspects should NB construct corresponding information units in the explanation
network?

* How is the information to be extracted from the tool description?

o Which fields of which tool description schemas should be used?

* What level 2 function of NB will produce the frame for a given aspect?

An aspect description is composed of schemas, one for each type of tool item. An aspect schema

for a specific item type contains sub-schema for each information unit to be derived from that kind of

tool item and Incorporated into the net produced by NB. In our example system, the aspect schema
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for the Object item type contains sub-schemas for Structure, Description, and Uses. Each of these

sub-schemas indicates from which fields in the description of its own and other object types its

information unit is derived. It also gives the name of the functional module from level 2 of NB that

does the actual building, plus some other information used to construct the resulting frame. Here is

an abbreviated version of the aspect schema for items of type Object.

[ Entity: Object
Structure: [ Module: BuildStruct

OwnFields: (Components)
Crossrefs: (Description Uses)
SelChar: "SOJ

Description: [ Module: BuildDescr
OwnFields: (Syntax DescrExamples)
Crossrefs: (Structure)
SelChar: 00"J

Uses: [ Module: BuildUse
OtherFields: [Object: (Components)

Operation: (Parameters)]
Crossrefs: (Structure Description)
SelChar: "TI

it indicates information units areto be constructed for the Structure, Description, and Uses aspects of

all tool description items of type Object, using the NB level 2 functions, BuildStruct, BuildDescr, and

BuildUse, respectively. The fields of Object items from which these functions are to obtain thelr

Information are given by OwnFelds, or in the case of Uses by OtherFelds, which says in this case that

all Operations and other Objects must be searched for uses of the object. CrosRefs and SelChar are

used in the obvious way for setting up the links between the three information units constructed for

each item of type Object. Naturally, the Information in the aspect description depends heavily on the

format of the tool description. For Instance, If there was a LsedAs field in the tool description of each

item of type Object, e.g. In the case of Message something Ike

UsedAs: [ParameterOf: (Forward Reply)]

then the corresponding portion of the aspect description for Object could be

Uses: Module: NewBuildUse
OwnFields: (UsedAs)
Crossrefs: (Structure Description)
SelChar: "T"

with function NewBuildUse being much simpler than BuildUse. So there is a certain tradeoff between

the size of the tool description and the amount of information to be provided by the tool designer on
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the one hand, and the complexity of the aspect modules and of the net building process on the other.

While the aspect description itself is declarative, there is non-declarative information associated
with it in the form of the NB function names in the Module fields. The aspect description would

-* insulate NBI from changes in and extensions to the tool description formalism even more if that
information was also made declarative, i.e. if the ;nformation to be extracted from the specified fields
of the tool description was btelt specified declaratively, along with the way it was to be incorporated
into the resulting net frames. Of course, NB would still need to provide functions to interpret such
declarative specifications, but its actual code could be completely independent of any particular tool
description format. We Intend to pursue this line of research in the future.

5. Using an Explanation Network
>1 Now that we have discuse how an explanation network is constructed from a tool description, we

turn to an examination of how the COUSIN interface can use the network to respond to a User's

interactive requests for explanations. Presently, COUSIN uses the network in a way that requires the

user to expend an unnecessarily large amount of effort to obtain the explanation he desires.
However, we also describe a way for COUSIN to use the net more intelligently, so that a user will have

to expend less effort to find out what he wants to know.

The net access mechanism currently used by COUSIN requires the explanation net to have a

distinguished root frame and a set of index frames. The root frame points off to a general help frame
which explains how to move around in the ZOO network, and to two sequences of index frames, one
for tool items, and the other for tool slot names. The index frames in turn point off to the base frames
for each of the tool items and slot names. The root and index frames are, of course, produced
automatically by NB. When the user asks for help, COUSIN switches to ZOO mode and displays the
root frame, from where the user himself, by making appropriate selections, has to find his way to the
frame containing the desired information.

This way of handling help requests requires only minimal involvement on the part of the parsing
component of COUSIN: the parser only has to identify help requests as such, without analyzing them

* further. Also, the explanation component Of COUSIN does not need to know anything about t net.-

ZOO can be made to display the root frame automatically each time the net is entered. But obviously,
this mechanism is far from being cooperative or graceful, since all the work has to be done by the

user, through stepwise selection of the right frame.

A more adequate reaction by the explanation facility Of COUSIN would be to display directly the
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aspect or context frame that provides the information asked for. We have designed a mechanism to

do this. It depends on the Base and Frames lists produced by NB in the course of constructing the

explanation net (see Section 4.2). The Base lists associate each tool item and slot name with its base

unit frame, and the Frames lists associate each item/aspect pair and each slot/context pair with the

corresponding aspect unit frame or context unit frame. The way in which these lists can be used to

provide access to the appropriate frame depends on the type of explanation requested. We

distinguish three types of request: simple and indirect which can be answered by a single frame of the

network, and complex which cannot.

5.1. Simple Requests

A simple request is a question for which the answering frame can be found by direct lookup in the

Base lists or Frames lists. This means that the subject inquired about must be one of:

* an aspect of an item

9 a context of a slot

* basic information about an entity.

The following are examples of simple requests (with the answer frame Indicated in brackets):

What does a message look like?
(Structure aspect of object type Messagel

Where do messages occur?
[Uses aspect of object type Messagel

What parameters are needed forward a message?
(Parameters aspect of operation Forward]

On the dialogue context of being prompted for the parameters of operation Forward)
What does 'recipient' mean?

[Recipient as parameter of operation Forward]

What is a message?
[basic information about object type Message]

While it would be possible for a tool designer to anticipate all these types of requests and include

rules to parse them in the grammar for recognizing commands and object descriptions (see Section 2

for examples of how this grammar is specified in the tool description), it appears unnecessary to

impose this extra burden on him. The grammar description must, in any case, be preprocessed into a

form more suitable for the flexible pattern-matching parser (6] used by COUSIN, and it appears feasible

to modify the preprocessor to supplement the grammar rules It produces with rules to recognize



explanation requests. This would not only free the tool designer from having to be concerned with all
the different forms that help requests could take, but would also mean that the forms of input

recognized as help requests would be uniform across all tools using the COUSIN interface.

Since we have already provided through the aspect description a way of insulating the net building
program, NB, from changes in or extension to the tool description formalism, it would be only logical

to provide the Same degree of insulation to the grammar preprocessor. This would involve providing

grammar patterns for each information unit that the aspect description instructs NB to produce. The
grammar patterns for a given information unit would recognize requests for explanation which are

best answered by display of that unit. This arrangement would also ensure that the simple
explanation requests that could be handled would correspond exactly to the information available in
the explanation net.

X 5.2. Indirect Requests
The concept of simple request does not cover all kinds of help requests that a user might come up

with. Consider a question like:
How do I specify the recipient of the forwarding operation?

It can be answered by displaying the Description aspect frame for Person (since Person is the ier

type for the Recipient parameter of operation Forward). But in the question itself, the Object type

Person is not mentioned at all; It is Identified by making use of the simple semantic relation "is-
filertype-of" (cf. Section 3.1). If all the explanation facility could do was to look in the Frames or Base
lists for items or aspects mentioned directly in requests for explanations, the user would have to
decompose his question into a sequence of two simple requests:

ill What is the filler type of the Recipient parameter of Forward?
[Answered by displaying the frame for Recipient as a parameter for Forward]

How can I specify a Person?
*1 This does not create the impression of a cooperative interface.

This problem can be solved by allowing the user to specify tool items by chains of slot

specifications of length two, as in the example above, or greater, as in:
How do I specify the host of the recipient of the message in resend?

Ouestions with such chains of slot specifications are called indirect requests for explanation, and

should be included in the coverage of the automatically produced grammar discussed in Section 5.1.

In general, we expect to be able to accomodate within this grammar all questions. but the most

obscure, that can be answered by displaying a single frame of the explanation network.
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5.3. Complex Requests

While simple and Indirect requests for explanation can be answered by displaying a single frame of

the explanation network, this is not true in general:

Which components of a message are of type mailbox?

There is no single frame in the explanation network we have been considering that shows all

components of Message together with detailed information about their filler types. This is a reflection

of our principle of making information units very small, in order to avoid bothering the user with more

information than he actually asked for. But whatever organization were chosen for the net, there

would inevitably be questions whose answers were not contained in a single frame.

If the answer to the above question is to be a single frame, the explanation facility would have to

create this frame dynamically. However, it is unclear how this could be done in a style consistent with

the other frames in the net, and in any case, constructing the frame may result in an unacceptably

long delay In answering the question. An alternative is to produce the answer in the form of a single
text string, However, this will result in two radically different kinds of responses to requests for

explanation, and such non-uniformity, especially if it cannot be predicted by the user, is probably

undesirable. A third alternative is for the explanation facility to determine which frames in the
explanation net would contribute to the answer of a complex question, inform the user that more than
one frame is involved, and provide a simple mechanism to allow him to examine each of the frames at

his leisure. The production of answers to complex questions is a research topic we intend to pursue.

6. Summary
This paper has been concerned with providing an explanation facility for an interactive subsystem

or tool to answeir such "static" questions as what the tool can and cannot do, what parameters and
options are available or required with a given command, etc.. We addressed the problem In the

context of the COUSIN interface system which provides a cooperative tool-independent user interface
for tools whose objects, operations, Input syntax, display formats, etc. are declaratively represented In

a tool description data base. Our approach was to construct the explanation facility automatically

from this data base, thus allowing the facility to be produced with no incremental effort on the part of
the tool designer, and in a single uniform style for any tool using COUSIN as Its interface. The resulting

explanation facility took the form of a network of text frames supported by the ZOG menu-selection
system. This format allowed us to meet our goals of fine-grained and closely interinked explanations.

The network of frames was produced from a tool description by the net building program, NB. Exactly

what information NB extracted from the tool description, and exactly how this Information was

formatted in the text frames was controlled by a second declarative data base called the aspect
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description. The declarative nature of the aspect description made it easy to adapt NB to changes in

and extensions to the tool description formalism, and to, experiment with the structure of the

explanation network. We also showed how the appropriate network frame could be accessed in

response to specific explanation requests from the user.
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