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I.  INTRODUCTION

When the geometrical theory of diffraction (GTD) [1,2] is
employed to analyze the problem of high frequency plane wave
scattering by smooth convex surfaces, a modification of this
method is required for analyzing the fields in the vicinity of
the shadow boundaries associated with this problem. This modi-
fication of the GTD forms the subject of the present paper.

In the GID analysis of the diffraction of waves by a smooth
convex cylinder [3], the total field exterior to it is associated
in a simple manner with the usual incident and reflected rays of
geometrical optics together with the surface diffracted rays
introduced by Keller. The geometric optical rays are present
only in the 1it (or illuminated) region, so that the surface dif-
fracted rays alone account for the field in the shadow region
(these surface diffracted rays are also present in the illumin-
ated region if the cylinder cross-section is closed). However, pure
ray optical field descriptions fail at and near shadow boundaries,
and at caustics of ray systems; consequently, the GTD ray solution
for the probiem illustrated in Fig. 1 is valid in regions I and III,
but it fails in regions II, IV, V, and VI. Region II constitutes the
penumbral or transition region adjacent to the shadow boundary (SB).
The angular extent of this transition region is

1/3
0 [2 (FEgrﬁ‘f) ~I where k refers to the wavenumber of the
g =1

surrounding medium which is assumed here to be free space, and
p,(Q1) is the radius of curvature of the cylinder at the point of
ggazing incidence, i.e., at Qi. Regions IV, V, and VI are usually
referred to as the surface or caustic boundary layer regions. In
shadow regions IV and V, the surface of the obstacie is a caustic
of the surface diffracted rays; whereas, region VI is in the neigh-
borhood of Qy which is a caustic of the reflected ray for grazing
incidence. }he mathematical representations for the field within
the transition regions, the surface boundary layer regions, and
also their common regions of overlap are complicated by the fact
that they must change rapidly but smoothly from one form to an-
other across these regions.

It is evident that the usefulness and versatility of the GTD
solution is further enhanced if it can be modified within the region
where it fails; such modifications may be achieved by introducing
uniform solutions which not only remain valid in one or more of
these regions, but which reduce to the conventional GTD results
exterior to these regions.

The development of a simple, uniform solution which remains
valid in region II that is exter‘nr to the urface boundary layer
is considered in this paper. Th' - wapk ¢ otivated by the need
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Fig. 1. Rays associated with the plane wave scattering
by a smooth convex cylinder.




B to analyze the radiation patterns of antennas mounted on the wings
g or tails of aircraft [4,5]. The radiation patterns of such antennas
S are significantly affected due to shadowing by the aircraft fuselage
T surface which is generally smooth and convex shaped. In many such
S wing or tail mounted aircraft antenna configurations, a knowledge

of the field in the transition (or penumbral) region is essential
for the purposes of antenna design. One can develop a solution for
the transition region via an asymptotic high frequency analysis of
. a canonical problem which closely models the local geometry of the
g-f convex cylinder at Qq.

. In this paper, the canonical problem of plane wave scattering
N by a perfectly-conducting circular cylinder is solved by introducing
certain asymptotic approximations, which are based on physical
considerations, to obtain a uniform asymptotic result that is valid
. 5 in the transition region exterior to the surface boundary layer.

... This uniform result yields a finite, continuous solution for the

By - . total field across the SB within the transition region. Exterior

to this transition region, it reduces to the usual GTD solution

in terms of surface diffracted and geometric optical ray fields

4 for the shadow and 1it zones, respectively. Furthermore, this
1 result is in a form which is simple and convenient for engineering
34 applications. Upon invoking the principle of the local character

of the high frequency fields in the penumbra, one can systematic-
ally modify the uniform result for the circular cylinder to treat
the electromagnetic scattering by arbitrary, smooth convex surfaces
for both two- and three-dimensional problems. These extensions
will be presented in detail in a separate paper.

LW T

| The analysis of the canonical problem is indicated in section

II. Numerical results based on this uniform-GTD analysis are com-

pared in section III against the results obtained from an exact
eigenfunction series solution for the same canonical problem where,

it is seen that the present uniform result is accurate not only

within, but also exterior to the transition region. A summary and

} discussion follows in sectionlV, Before proceeding with the analysis,

3 the present work will be compared with the work of others on this subject.

. -

The problem of asymptotically estimatina the fields within the
transition regions associated with the diffraction of waves by
smooth, convex surfaces has had long standing interest, especially
in connection with the theory of radio wave propagation around the
earth, The fundamental work of Fock on this subject [6] appears to
be the most significant; in particular, his analysis of the fields
near a shadow boundary and within the Fresnel region of a diffracting
spherical surface [7] is of direct relevance to the problem con-
sidered here., Other notable works which are also directly related
to the present analysis are due to Wait and Conda [8], Logan and
Yee [9,10], and Ivanov [11]. An extensive bibliography on various
aspects of the problem of diffraction by a smooth, convex surface
may be found in the papers by Logan [9,10], and Borovikov and
Kinber [12]. Indeed, the present work draws upon the earlier,
important contributions of Fock and Logan,

3

.
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In Fock's analysis [7], the wave equation within the transition
region is solved approximately via the method of parabolic equations;
this solution is initially expressed in terms of a canonical integral
introduced earlier by Fock [13a,b]. For observation points near
the shadow boundary and the diffracting surface (but outside the
surface boundary layer), this canonical integral is reduced by Fock
to integrals which are functions of only a single parameter; in
particular, the sclution is expressed in terms of a Fresnel integral
and a Pekeris-tyvpe integral [9,10], both of which are well tabulated.

Wait and Conda [8] analyze the field in the transition region
scattered by a circular cylinder via an asymptotic evaluation of
the radiation integral which employs the well-known Fock currents
[13a] for this problem; their asymptotic solution near the shadow
boundary is also given in terms of Fresnel and Pekeris integrals
as done earlier by Fock [7]. In addition, the result given in [8]
is valid not only near the surface (outside the surface boundary
layer) as in [7], but also in the far zone. The analysis in [8] is
an extension and generalization of the work of Goriainov [14].

The results in [7], [8], and [14] are quite accurate in the
illuminated region very close to the SB, but in general they do not
join smoothly with the geometrical optics field; whereas, the result
presented here does reduce to the geometrical optics field in the
illuminated region. Also, the present result is valid in both the
near and far zone as in [8]; furthermore, exactly on the shadow
boundary, it agrees with the results of [7], [8], and [14] which
are accurate near the shadow boundary. Logan and Yee [10] give a
result for the illuminated part of the transition region in terms of
the canonical integral of Fock such that it reduces to the geometrical
optics field far from the shadow boundary. This result appears to
have been constructed by redefining certain parameters in Fock's
canonical integral on an ad hoc basis.

Ivanov [11] analyzes the same canonical problem as in this paper
via the method of parabolic equations; his solution which is valid
in the transition and the surface boundary layer regions, and which
reduces to the GTD solution outside the transition region, is also
given in terms of an integral related to the canonical integral of
Fock. The canonical Fock integral-type solutions [10,11] are
complicated for numerical evaluation in the transition region except
when the field point is either very close to the shadow boundary,
or is on the surface; in these exceptional cases, they reduce to
well tabulated integrals which are functions of only a single
parameter,

On the other hand, using a somewhat less formal analytical
procedure than the parabolic equation method employed in [7],
[10], and [11], the present solution is given in termms of the
well tabulated single parameter Fresnel and Pekeris integrals for
the entire transition region (exterior to the surface boundary

4
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layer). In this sense, the present result indicates a simpiifica-
tion over the results in [7], [10], and [11], respectively, for
field points outside the surface boundary layer; furthermore, this
simplification is achieved without any apparent loss of accuracy as
confirmed by the numerical calculations in section III.

I1. ANALYTICAL DETAILS

An asymptotic high frequency analysis of the canonical
problem of electromagnetic plane wave scattering by a perfectiy-
conducting circular cylinder in free space is presented in this
section; both, the TE and the TM polarization cases are considered.
The geometrical configuration of this canonical problem is illus-
trated in Fig. 2.

SB.____(K’?\:_.\_)____ elkx
p ~
=W ——— X
SBom — — — — — CIRCULAR
2 CYLINDER

Fig. 2. Geometry of the canonical problem,

Let the incident plane wave field be denoted by U, and the
scattered field by US; then, the total field is U = Ul + US exterior
to the cylinder. The total field U corresponds to a z-directed
electric field if the excitation is TM, polarized; whereas, it
corresponds to a z-directed magnetic field if the excitation is TE,
polarized. The form of the incident field Ul is:

The total field, U satisfies the reduced wave equation

(2) (v2 + kz) Uu=20 R




where v2 is the usual 2-D Laplacian operator in cvlindrical
, coordinates (p,»). The scattered fig]d US satisfies the Sommer-
g feld radiation condition for an e*'“' time dependence (which is

‘ assumed and suppressed), and the total field U(p,4) satisfies the
ki following boundary conditions on the cylinder:

[

J’], for the TMZ case

(3) Q U(o.¢i1 =0 , at p=a; Q=

l %E, for the TEZ case.

The solution to (2) subject to the radiation condition and (3)

is [15]
(42) =le ; Q J,(ka) ] v
U= i dv [3,(ke) - —Yr H (2)(kp)J. cos Vir o) o 2,
_1_18 v 0 1, D (ka) v Sin v

f or
; (4b) .w-'ie QH (])(ka) 'IV?-
: v=-3 [av|n, M) - (B oy ees v (r olel) o7
3 eie QH, " (ka) sin vn

with ¢>0, and e*0. The quantities Jy, Hv(])’(z) are the usual
cylinder Bessel and Hankel functions. It is noted that Im(v)<0 on
the contour of integration in (4a) and (4b).

The above integral expressions for U may be rewritten by
. employing the decomposition

(5) cos vin - |¢]) = e” ™V cos v¢ + i e'1vl¢| sin v=

Thus, for large ka (i.e., ka>>1), one obtains

omig

Q J,(ka) -iv[|e|-% ]
(6a) U a j dv l:dv(kp) - m Hv(z) (ko)j] e H .
==} g v
6




1

>~

G

or

N —

°°-'ig H (]) k - _ 1
(66) Uy j dv [HV(”(kp) ; —~m-——z v <2)(kp{]. ;b =gl

H, ' (ka) v

_00-1' €

with O<|¢{<n . In going from (4) to (6) via (5), the terms containing
e!V7  cos v¢ are discarded because they can be shown to correspond

to the multiply encircling GTD surface ray modes which contribute
negligibly for large %g Within the transition region, v ~ 0 (ka)

so that Jv(ka) and Hv )(ka) become for large ka:

(7a) J, (ka) ~'-n7-;\/(m V[v-kal) ;
(2) SR
(7b) Hv (ka) o # ;ﬁZ& w;(m [v-kal)

1/3
where mf(gg-) » and the gquantities V and w] are the Fock-type

A1ry f*nct1ons* [9]. Introducing the change of variable
T [v-ka] now allows one to express (6) in terms of (7) a

n.ie
(8a) U wm j dT[Jv(T)(ko) + 1 %_v\:(—(l_ RE (kpil V(¥

—%—ie

3
* Wy H(1) 51-f eﬂ:”t & 2 iV(1) = Wy(t) - Wy(t). The contour Iy
1,2 /o ’ 1 2
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e ' a'w.|(r) (2) iv(r)
(8b) U3 dt [H (M (ke) + ol W (ko) | e VETIY
Jmuie v ) Q wz(T) v(z)
with
N.JH, for the TMZ case
(8c) Q= .

'
37 for the TEz case

Also, v(t) =ka +m t, v El¢|-'% » and Im(t)<0 in the integrands of
(8a) and (8b).

The integral representations for U in (8) will next be
asymptotically approximated for the shadowed zone of the transi-
tion region in part A of this section; whereas, the asymptotic
approximation for U in the illuminated zone of the transition
region will follow in part B,

A. Transition Region - Shadow Zone

One begins by rewriting (8) in a manner analogous to that
done by Fock [7] in the decomposition of a canonical integral
representing the solution of his parabolic equation for the
problem of diffraction by a sphere; namely, U is written as a
superposition of two integrals, one being the inteqral in (8a)
over the contour from 0-ic to =-ie (defined as cunicur C2), and
the other being the integral in (8b) over the contour from
~=-ie to 0-ic (defined as contour Cy). Thus,

where

(10&) I-l =m J JV(T)(kp) e-iV(T)UJ dt - mJ HV(Z)(kO) e-iV(T)W dt
C T

?
C.|+C2 ]

(1)

o e s« g L e e

a . v e M,y e




)
= .

e - 2

and

| .

= (10b) I, = im I LRTGN Hot 23 (ko) SEA
..:'_ W, (1 .
R L T T
* C Q Nz(T)

PPN 7

5 The contours Cy and C, are shown in Figs. 3(a) and 3(b), respec-
0! tively. One notes that Iy is independent of the electrical
properties of the cylinder; whereas, I is strongly dependent
on these properties.

Imt

4 <l

i
3 10 ~D— € o > Ret
C,
3 ! ((])

ImT

N
Re

1 4';— Tooofo m-ie
A Ca

(b)

Fig. 3. Contours of integration for I] and Iz.

For the sake of definiteness, the fields in the transition
region associated with the shadow boundary 5By will be analyzed
here; in this case SB] exists within the domain O<¢<m., The analysis




for the transition region adjacent to SB2 in the domain -m<¢<0Q
is similar.

The first integral in I can be solved by employing the usual
integral representation for Jv(kp), namely,

dee-ikp sin g + ivp

1
Jv(ko) = 5

CA+CB

and interchanging the orders of intearation to yield

(11) m J JV(T)(kp) e-'iV(T)W dr = e-'ikp sin ¥

C]+C2

- olke cos ¢‘ for 0<¢<m and |w|<%

Clearly, (11) is just the incident field. In deriving (11) use is
also made of the following.

de e-imy-8)r

where §(v-8) is the Dirac delta function.

Next, the second term on the R.H.S. of (10a) may be re-
expressed in terms of the standard integral representation for
Hvﬁzi(kp) as

(2) -iv(t)
_%1- l HV(T)(kp) e v dt

m
T2

1
j d e-iv(t)w 1 ’ d8 e-iko sin B + iv(t)8
m
B

which for Im (1) <0 reduces to




Fig. 4. Contours of integration
for Bessel functions.

The contours of integration CA and CB occurring in the defini-
tions of Jv(ko) and Hv(z)(kp) are indicated in Fig. 4, The integrand
on the R.H.S of (12) has a saddle point at 8 = By where B, = cos’] %u
Since Bs is a constant for fixed vajues of p and a, it is conveniently
determined by setting ¢ = o (for which the observation point is on
SB]); consequently, Bg = %-- 8¢ = ¢g - %-, as shown in Fig. 2. Also,
the integrand in (12) has a pole at g8 = Bp' where Bp =y =4 -'% .
let 8 = ¢y ~ BS, then

(13) 6=y ~-B =B «B_=0¢ ¢




e
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When ¢>¢g, the field point is in the shadow region; therefore, it
follows that B,>B. and 6>0 in the shadow region. The integral on
the R.H.S. of ]25 can be evaluated via the method of steepest
descent; hence, this integral over the countour Cg may be changed
to an inteqral along the steepest descen path (SDP) through the
saddle point 85 as indicated in Fig. 5. However, in the process of
deforming the contour from Cg to SDP, the pole at B8, is crossed; it
js therefore necessary to include it's residue in evaluating (12).

I sHADOW REGION
; FOR O<¢<m

Fig. 5. Location of Bg, Bp and SDP for the shadow
region analysis.

The integral in (12) now becomes:

o ikav o-ikolsing - §6]
TN Mias j s &
Cg
. ~ikay -iko[sin 8- &3]
. _oike cos ¢ e’ j e 5

Sop
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where the first term on the R.H.S. of (14) is the residue at 8_,
and H(¢-¢¢) is the unit step function: P
[ 0 » 9 < 0 (1it region)

(15) H{e- ¥ ) = » ¢ > (shadow region)

Therefore, the first term on the R.H.S. of (14) exactly cancels the
incident field corresponding to (11) in the shadow. Approximating

[sin 8- 28] in the exponent of the integrand on the R.H.S of (14)
by its tﬁree term Taylor expansion about the saddle point B85 gives:

-1kaw e-ikp[sin B - 28]
(16) '1?""‘ ds e
B -y
SDP
o iks[X(8~ 8_)2]
e-1ks - jka @ o 2 S
Yo s dg R
k] -
" sop P Bp

where
(17) 2z 52 _ 42 i

The integral on the R.H.S of (16) is now in a form which
can be readily evaluated asymptotically for large ks by the
Pauli-Clemnow modified method of steepest descent [16,17] for a
pole close to a saddie point, to yield the following result for
the integral in (12).

a) -3 | n By e TN ge v - efke oy
C
L
o T e-ikae —1ks
+ FlkLa] & ,
Y2 7k 8 Ys

where the function F[KL3] involves a Fresnel inteqral [17,18].
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(19) F[kL3] = 2 i kLa eikla J e 1T gt

— ;
“kLa
. . . S
in which one takes the positive branch of YkLa .
The distance parameter L in (19) for this case is

(20) L=s H

also, the quantity 3 in the argument kL& of F is

N 62
(2]) a = 7

It is noted that kL is always the large parameter in this
asymptotic solution involving F[kL&]. Plots of the magnitude and
phase of the function F[kLA] versus kL& are illustrated in Fig. 6.
The physical sianificance of the geometric quantities & and s
which appear in (18) is evident from Fig. 7. Combining (11) and
(18), one obtains the following asymptotic result for Ij.

(22a) I] N e1kp cos¢‘+Jr_ elkocos¢ H(¢'¢s)

o T
e-1z' o-1kat (3] e-iks ] 0
+ F La ; . <H< T

X ° N A
Or,
(220 S -ika ® " o-iks
22b I, ~ F[kLa s $76_, 0<¢<m,

7T Vs s’

Turning next to the evaluation of I, in (10b), it 'E observed
that the integrals in (10b) can be simplified if the vatg(ko)

terms appearing therein are replaced by the well known Debye
approximation which is valid for v(t)<ke and v(t) large. Since
v(t) = ka + mt and v(t) ~ O(ka) in the transition reaion, the major
contribution to the inteqrals in (10b) occur for T small. In this

14
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Fig. 7. Geometrical parameters for the shadow region.

v(it) _a maa . . o
case, === =+ T Ko~ 5 SO that v(t) < kp is satisfied,

and the Debye approximation may be employed for H gzg(kp) as
follows. Vit

-ikp sin y + iv(t)y + iT
o2 (ko) 2 e L
v(t) Ko siny

with

v(t)<kp, and cos vy = %3
When v(t)™0(ka), cos y % %-so that y % g, and

N
2 2 2 2

stn v el -‘£V(T)) R ; - = 2 | Incorporating

0 5 5

these simplifications in the Debye approximation yields:

-iks + ix i(ka + m1)8
(23) vafg(kp)w J;%;. e 4 e1 a + mt)B
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Next, incorporating (23), and the relation § H](r) = wz(r) + 240 V(1)
into the integrals in (10b) leads to the following expression for Iyt

J‘ e-1mre dt
C

m ——

JE—— oiks - ikae e |1
ks o |2

(24a) I, n
1

R R TG B

12 can be further simplified in a straight forward manner to obtain:

« T
-i : :
4 _-ika o _-iks . - -iks
.~ .8 e e _ m"%- o-1ka © P (c) e

(24b) —
2 V2 nk b Ys s

h s

where 55(5) is the Pekeris caret function [9] defined by:
h
« T
-]2_

(25) P (£) = e V(1 e-iE’r dr
e _aawz('r) !

and the parameter £ is defined by

(26) £E=m®o (£>0 in the shadow region).

The subscript s on 55 is used to denote the TM, (or acoustical
soft) case; whereas, the subscript h on Py, denotes the TE; (or
accoustical hard) case. Values of Ps(a) versus & are presented

h
in Fig. 8 in terms of related functions p*(¢) and q*(t).

17




Fig. 8(a). Plot of e'1“/4p*(£) versus £ based on Logan's .l
tabulated data [9] for p().
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Fig. 8(b). Plot of e'i"/4q*(€) versus £ based on Logan's
tabulated data [9] for q(¢).
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T Combining the results of (22b) and (24b), one obtains the
b following asymptotic expression for U (of Eq. (9)) which is
valid at the observation point P, in the shadowed portion of the
transition region.

v .
y - . :
3 4 -ikas [ ‘ ~iks
| (27) (P~ - E S— 11 - FIkLa] S
B, V2 mk | j s
g - “iks
| Sn2Etke 5 ()£ s, 506 00,
. S /s S
h

The above result for U may be interpreted geometrically as
a field which after being launched by the incident wave at Qy
propagates along the path QiQ2P¢ to the field point P, as indicated

i3 in Fig. 7. Q7 and Qp are tangent points which correspond to the

{3 point of grazing incidence on the cylinder, and the point of tan-

ol gential shedding of the diffracted wave from the surface, respec-

H tively.

4

'Q One may now examine the result of directly extending the analysis
{3 presented above to 1it region. In the 1it region, ¢<o  and g <3¢ a

2 v

T indicated in Fig. 9 (note: Fig. 5 shows Bp>BS in shadow region).

A Consequently, H(¢-¢S) = 0; also, 6<0 (£<0) for(wws, and the field U

at the point P in the 1it reaion becomes via (22a) and (24b):

1 i N

, - . - ] .

A : 4 -ikas | o-1ks
7 (28)  U(p) n e COSE L __ & 4 p[d] S—
2 /7K ]

; Ty . - -iks

- m\]% e~ 1kad P (€) £ » o e<¢gs 6<0; g<0,
h /s
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?, Equations (27) and (28) may be represented compactly in a
13 single expression as follows:
4
T . T ikae 21| ik
2 . (29) U(P) A eTkD C0S¢ H(-e) _ e e - ‘[] - F kLg e
‘ Y2 wk ] TG
s , . -iks
Cm 2 etk 5 (o) £
b ’ S '/S
h
n gz
with: klLa = kL—? , §=m , L=s3; also,
. m
= P, for £<0, 6<0, and ¢<¢s(in the 1it region),

s = P, for £20, 6>0, and $>¢ ¢ (in the shadow region),

1, 6<0 for P = PL

H(-8) = .

0, 620 for P = PS
3 21
t
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The first term on the RHS of (28) and (29) is just the incident
field U'(P). The geometrical interpretation for the propagation
of the field U in the 1it region is presented in Fiq. 10; this
interpretation is simply an extension of that in Fig. 7 for the
shadow region; more will be said about this later.

Fig. 10. Geometrical parameters for the 1it region.

The result in (29) will be shown to be finite and continuous
across SBy. As one approaches SBy, ¢~ and 6-0; hence,

v 0

a = ?—"0 and ¢+0. The limiting forms of F[kLS] and 55(5) as 6, £-0
are [18,19]: h

I 4+ kL3)

(30a)  F[KLY] %(I/nkLgl- 2 KLY eh‘_) .

22




e

for a given kL as 3»0; and
o, I . -iz
. p*(e)) -iF T

(30b) P (¢) = J L e 4, £

h la*(e)] 2 /me 2 Ve

+ (small contribution from p* or q* which is
continuous w.r.t. ¢), as £-0.

- « T
-i -i
(Note: the p*(g)e z-and q*(t)e I.functions are plotted in Fig. 8.)
Employing the above limiting forms of (30a; 30b) in (29) as
6, &0 from both, the 1it (o, £<0) and shadow (8, £>0) directions,
jt is easily verified that U in (29) is finite and continuous

across SBj; in fact, exactly at SB], U(P) becomes:

. 5 -ig [p*(0)] ikx
(31) u(P) ") e1kx _ 2 4 L e
? i g+(0) | Vx|

(M case
for 3

lTEz casej ’

where x = pcos ¢ = - s along SBy (a similar result holds for SBZ).

The first term on the R.H.S. of (31) is simply one-half the incident
field on the shadow boundary as in the diffraction by a half-plane;
the second term is dependent on surface properties.

Turning now to the evaluation of the field in the shadow region,
but away from SBy and exterior to the transition region (i.e., in
region 111 of Fig. 1), one notes that F[kL3]*1 since 6, and hence
kL& become large in this case (see Fig. 6); only the term containing
Ps(g) in (29) now remains significant. Far from SBy the integral

h .
for Ps(g) in (25) may be replaced by a rapidly convergent residue

h
series [9]:
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EE Iy, ,
S Ts

S el M e et o bt e

O SN

,for 6=1 or TMZ case

(32) P.(¢) =4 5
< LT
h £>0 -1z . ig &9, e

(2]
o~

[£+]

(1]

L 7 on o am(E)Y T,

where Ai is the Miller-type Airy function* (which is related to the
Fock-type Airy function [9]), and Ai'_is it's derivative with
respect to the argument. The gn and gn are roots of Ai(-q,) = 0
and Ai'(-q,) = 0, respectively for n = 1,2,3, .-, These roots
are tabulated in [9].

lhen the above residue series representation ot (32) is
employed in Ps(g) of (29) for kL¥>10 (i.e., as F[kL3P1), it
h
can be readily shown that (29) reduces to

S
S . h S .
. -ikaé - o _ad -iks
(3 ey ~ue) | Lobap e " o, | €

n n s
s s .
where 02 and a: are the Keller diffraction and attenuation coef-
ficients [3] associated with the GTD surface ray modes, respec-
s s
tively, with D:(Q]) = 02(02) for the circular cylinder. The
3 3
§uperscrints in 02 and a: correspond exactly to the subscripts in

Ps(g) for the two polarizations; also, the subscript n denotes the
h

. 3 .
* A'i(‘f) = V(T)//'n-= %—;J dt e‘1(Tt+t /3) : Ai'(r) = df'lg'r! )

, for 35 2_ or TE_ case
RS z

=y
i e

atmihini




surface ray modal index. The U1(Q ) in (33) represents the incident
field at Qy and is unity for this problem. Thus, in the deep shadow
(i.e., corresponding to region III of Fig. 1). (29) reduces to the
GTD surface diffracted ray field given by (33) as it should. The
geometrical interpretation of the GTD field in (33) is, of course,
identical to that in Fig. 7. For the sake of convenience, and

completeness, the diffraction and attenuation coefficients in (33)
are listed below.

. ) /= ,=5/6 1/3 -in/12 1/3

v: lDi]z N T 2 Pg e ' s S~ h oin/6 l(f_g.)

i 176 [sv 1] nooeg 2

135 K Ai (-qn)J :
8 |

/i p=5/6 | 1/3 in/12 =

. o 1/3
R il . g I sk
“a n 16 = [ =12 " °

' K7P [51(-qn)] g

o P

¥

B. Transition Region - Iluminated Zone j

Although the result in (29) is applicable to both the shadow

and 1it portions of the transition region, it does not reduce to

> the geometrical optics field in the 1it region. Consequently, the

iy result in (29) is expected to be accurate in the shadow region

| both near and far from SB1; whereas, it is expected to be accurate
only for 6 small in the 1it region (£, 6<0). This deficiency of
(29) for the 1it region where 61is not small is briefly discussed,
and an improved solution which overcomes this difficulty is presented.

For the shadowed part of the transiticn region, the result in

(29) has the geometrical interpretation illustrated in Fig. 7
: which is identical to the GTD surface diffracted ray picture as
e shown in Fig. 1; consequently, it is not too surprising that
Eq. (29) does indeed reduce exactly to the GTD solution of Eq.
(33) in the deep shadow. On the other hand, the geometrical
interpretation of the scattered field in (29) for the 1it region
(6<0) is illustrated in Fig., 10 which constitutes a direct
generalization of the interpretation in Fia. 7 (for 6>0); clearly,
the ray geometry in Fig. 10 is in disaareement with the geometrical
optics reflected ray picture of Fig. 11 which is known to be valid
in the 1it region. Consequently, one might anticipate the failure
of £q. (29) to reduce to the geometrical optics field in the 1it
reqgion as a result of the differences between the scattered field
propagation mechanisms of Figs. 10 and 11.

i
:
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Fig. 11. Reflected ray system.

From Fig. 10, it is observed that the scattered field at P|
traverses the path Q1Q3PL after being launched by the incident
wave at Qy. This interpretation requires the field to propagate
backward lrom 01 to Q3 and then shed to P_ along the backward
tangent at Q3; 1n con%rast, the geometric optical reflected ray
trajectory touches the surface only at Qp as in Fig. 11. The
paths in Figs. 7 and 11 satisfy the extended Fermat's principle;
whereas, the ray path in Fig. 10 does not. The inability of Eq.
(29) to reduce to the geometrical optics field may be explained
on the basis of the approximation in (23) for the Hankel function

vafg(ko) which is employed in the evaluation of the transition
region field; more will be said about this shortly.

For the sake of completeness, the behavior of Eq. (29) in
the deep lit region is examined. As before, F[kL¥]*1 as the
field point moves away from SBy in both the 1it and shadow zones,
thereby leaving the term containing Ps(g) as the dominant con-

h
tributor to the scattered field. Hence, in the 1it region far
from SB] where £<<0, Eq. (29) reduces to
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(38)  U(P) v e'*® OS¢ () L

8<0, £<<0,

When £<<0, ﬁs(g) has the following asymptotic value [9]

h
3

(38)  P(e) velite o s s
h

Incorporating (35) into (34), one arrives at the following

3
A eika[|el 'J%i—] -iks
s

(36) v ~ i) 7Y

]m ;
for < case when £<<0,
TE 'r

On the other hand, the geometrical optics field represents
the correct asymptotic result far from SBy in the 1it region,
and its field associated with the incident and reflected rays
is well known to be

R s p .
(37) ) ~UT(P) FUTQR) [ e

r

where U’ (P ) = elkp €OS 6 L4 ] (Q ) = eika cos o (see Fig. 11).
The first term on the RHS of Eq. (37) 1s the incident field at P,
and the second term denotes the reflected ray field. Qg is the
point of reflection on the surface as shown in Fig. 11, and the
{*} sign in front of U’ (Qr) denotes the value of the surface

TE
reflection coefficient at Qp for the TMZ }case. The spatial

distance % is given by & = 5 # whereas, the caustic distance op
associated with the reflected field is

27
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! (38) o, = a co; 0

f The quantities £ and ' are also shown in Fig. 11.

One notes that Eq. (36) and Eq. (37) are nearly equal only for
o very small. In general, therefore, the result of Eq. (29) fails
to reduce the geometrical optics result when g£<<0 (this failure is
similar to that which occurs in the results of [7], (8], and [14]);
consequently, in order to overcome this limitation, one must employ

an approximation for vafg(kp) in the 1it region which is different

from that in (23), and which leads to a geometrical interpretation
for the scattered field in the 1it region which is in agreement
with the reflected ray geometry of Fig. 11.

The approximation of H ég;(kp) in (23) is valid for v(t) ~0(ka);
the condition v(t) ~0(ka) hoY s in the transition region near SBjy
and also in the deep shadow zone where only the first couple
of GTD surface ray modes (corresponding ton =1, 2, etc., in (32)
i . and (33)) are necessary to describe the field accurately; whereas,
i deep in the 1it region v(t) can be significantly different from ka.
¥ Thus, Eq. (23) leads to the result of Eq. (29) which is accurate in
» the shadow region, but it is not expected to be accurate in the 1it
¥ region if the field point is not close to SBj.
4
s
%

A% Y
The Fock-type Airy terms Q V(t), and Q w](T) in (10b) which

. 2
! approximate Jy(ka) and Hv(z)(ka) for va0(ka) reduce uniformlv to
; the Debye asymptotic approximations when t becomes large (r =
: v - ka

- ) ; hence, in contrast to the approximation for Hvéfg(kp)

in (23), these Fock-type Airy functions remain valid as v(t) becomes
different from ka (i.e., for |v - ka|> 0(m)) deep in the 1it region.
Instead of the approximation in (23), one could also approximate
1 vafg(kp) for the near zone case by the Fock-type Airy function
. W, as follows, provided k[p - al<<ka.

i

m

. (39) vafg(kp) N Wy (v = m ko = al) 5 K[p-ale<ka. ;

But, employing the near zone approximation of Eq. (39) in I, of l
Eq. (10b) leads to integrals which are complicated functions of

i two parameters (namely, y and [p - a]l); on the other hand, the
result in (29) is in terms of simpler F and P integrals which are

h _:»

each functions of only a single parameter.

28 i




.

——

A representation for U in the 1it region which is interpretable in
terms of the desired reflected ray geometry of Fig. 11 and which also
is in terms of the F and Ps functions may be obtained in the follow-

h
ing manner by incorporating an approximation for vafg(kp) which unlike

(23) is valid even if v becomes quite different from ka in the lit region.
One begins by introducing the Debye approximation for Hv f%(ko) which

was previously indicated as

T ——————— . . N . ‘n'
- + +
2 iko siny+ ivit)y iz

VY| e———— e M
JkKp sin y ’

v(t) = ko cos vy and v(1)< kp.

The condition that v(t)<kp be satisfied in the 1it zone is verified
in the Appendix where the geometric optical reflected field result
(corresponding to the second term on the R.H.S. of Eq. (37)) is
developed in detail. Referring to this development in the Appendix,

it is seen that in the 1it region where v<ka, the following approxi-
mations are valid:

~ a")
(41a) vit) ® Vo = ka cos v, = ko cos vy ;oY N Yo
LN j . vo_m i
(41b) sin vy, =cos 6, since y ==x-8
. . LN i
(41c) p sin v ~ p sin Yo = ¥ tasiny =2 +acos g’

4"
(41d) v Yyt 2y,

(Note: the geometrical signficances of (41) is shown in Fig. A-I
in the Appendix.)

The quantity v has already be defined, and ?6 is introduced
in the Appendix. The subscript o in vp(t), vp and y, refers to
the geometrical optics reflected field saddle point condition
which is also discussed in the Appendix. Incorporating v{t)y *
v(t) vos o siny ¥ 2 + a cos o1 for the phase; and p sin y& for
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the far zone amplitude via (41a) and {41c) leads to the following

of Eq. (39)) for vafg(kp) in the 1it zone.

-~

Ezg(ko) n J 2 ~ik(2 + a cos 6') + iv(c)y, + 17

Next, incorporating (41d), (42), and a Wl(r) = GIWZ(I) + 2 ia V(1)
into (10b) yields:

far-zone approximation (in contrast to the near-zone approximation l

(43) L 2 o-1ke <ika cos o1 -ka(-2 QE)
» v -\ me
LT il ©
- - n, > v —
e ® , e g J Q V(<) e-1m(-2 Yo) . .
2/r (-2 v,)] Voo 4 0 Hy(x) | .
{
One now defines ¢' for the 1it region as
(44) g' = - 2 msin ?0 =-2mcos o1 :  £'<0 in the 1it region.
Thus, the exponential terms involving 30 in (43) may be written as '
-1ka(=2 ) 5 fka cos of - i(c) 312
(45a) e e
and
-in(-2 ¥ ) i
(45b) e 07Ty gm1E't
provided that ¢' is sufficiently small in comparison with m which {
is assumed large so that terms O(El—i?) and higher may be neglected
2m .

30

B T A Y e

Pty ey




in the exponent. This approximation is valid in the transition
region. One notes that the approximation in (45a) and (45b) follow
directly from the expansion

2P =2 (e)°

. =1¢' 1
(45c) -y = sin te . L gt + ('
Yo 3 40(2m)

]
2m  2m 6(2m)

Employing (45a) and (45b) into (43) yields

(46) I~ - Jé:? o-ike -ika cos 6! m el2ka cos 6!,
2 k2 ~

Si(e9)3n2
>+ e

€ +P_(£') ,
2/ng! ﬁ

which is valid in the far zone. In the 1it region far from SBy,
£'<<0, and Ps(g) may be replaced by (35) to yield

h .
., 1 o] .
(47) 12 - e1La coS 6 ‘,Eﬁ e-1k2 ,

which does indeed agree with the far zone geometrical optics

; i
refiected field. The term e1ka cos 8 cotr responds exactly to
U1(Or)’ and {¥}denotes the reflection coefficient values as in (37),

It is now evident that one can employ ray optics to generalize (46)
so that it yields the near zone geometrical optics reflected field
as in (37). According to ray optics, the far zone energy spread
0
factor J;E-in (47) must be simply replaced by its corresponding near
0
zone factor\égzlg:; (as in (37)) for the reflected ray tube in order
r

to extend (47) to the near zone case; the latter is tantamount to

. 1 . .
replacing — in (46) with thereby generalizing (46) to the
7z 3 )
near zone case. r
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To be consistent, it is also necessary to modify the result
for I of (10a) for the 1it reaion in the same manner as done above
for 1o of (10b). Without giving all the details (since these involve
essentially the same physical arguments as in the treatment of I»),
the result for I} in the 1it region becomes

. ) ;
(48a) I] " eTko cos¢ H(-8) - e1ka cos 6
T . 3
-7 RICED) .
me 4 , E;'Z \ —Tz-—— e_-lkgl
——— |- F[kL _2.] >e ’
L 72k ¢ 2m J Vi o
with

(48b) L' = 2, for £'<0

Finally, combining (46) (together with it's near zone modifica-
tion) and (48), one obtains the required result for U in the 1it
region; namely,

_ o 13
_ . -ig -ile!)
(49) U(P,) ~ u‘(PL) + u‘(oR) ne e 12
/2 rk 6'

-

, 2 \ -ik&
e f’—‘z]L &

' 2m e pr
T3
-i(g") .
. N -iks
+ U7 (Qq) -m[z e 12 p(en] E—— ; g,
R K 5 JTF o
L h Pr

|2
It is easily verified that far from SB, (£'<<0), F[kL' &—]~1
‘ 2n?

and ﬁs(g') behaves as in (35) <2 that in the deep 1it regions Eq.

h
(49) reduces exactly to the geometrical o?tics result of Eq. (37).
Furthermore, Eq. (49) is also valid for e'»n/2 (i.e., near SBy)
since it agrees in this limiting case with the expression in 129)
for £<0. In addition, Eq. (49) reduces to Eq. (31), thereby
assuring the boundedness and continuity of the field across SBj.
Thus, the result for U in (49) for the 1it region reduces to the
geometrical optics field deep in the illuminated reqion where the
latter is indeed valid, and at the same time it has the proper
behavior required to ensure the continuity of the field across
SBy.
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IIT. HNUMERICAL RESULTS

In this section, numerical results are presented for the near
zone total field surrounding a perfectly-conducting circular
cylinder excited bv a plane wave. The GTD method is employed to
describe the field exterior to the cylinder in terms of the
geometrical optics incident and reflected rays for the 1it region,
and in terms of the surface diffracted rays for the shadow region,
respectively; these results for the TE, (hard boundary) case are
indicated in Figs. 12(a) - 20(a) for different size cvlinders
and near field distances. It is seen that the GTD solution shown
by a dashed line becomes discontinuous at the shadow boundaries.

On the other hand, the present transition region solution (based

on (27) for the shadow, and on (49) for the 1it region) as indicated by
a solid line is continuous across the shadow boundaries, and it
blends smoothly into the GTD solution outside the transition region.
These GTD and transition region solutions corresponding to Figs.
12(a) - 20(a) are combined into a single, composite GTD-transition
solution which is shown by a smooth solid curve in Figs. 12(b) -
20{b), respectively. The composite GTD-transition results are
compared against results which are based on an exact eigenfunction
series solution for these cases; the eigenfunction results are
shown by dots in Figs. 12(b) - 20(b) for these cases. Figures
12(b) - 20(b) indicate that the comparison between the numerical
results obtained from the exact eigenfunction solution, and the
composite GTD-transition solution is very good, thereby confirming
the accuracy of the uniform result for the transition region
presented in section II., Additional comparisons of the composite
GTD-transition solutions with the corresponding eigenfunction
solutions are indicated in Figs. 21-22 for the TM, (soft bound-
ary) case, respectively; again the aareement is very good for these
cases. It is seen that the accuracy of the transition region solu-
tion for very small ka and ke is as good as the accuracy of the
geometrical optics result.* As ka and ko increase, our asymptotic
transition field solution becomes increasingly accurate as do the
GTD (surface diffracted and geometric optical) ray fields which
also are asymptotic approximations, For calculating the GTD field
in the shadow region, the inclusion of only two surface ray modes
are found to be sufficiently accurate (see (33)). Unfortunately,
there appears to be a small error in the p* function plotted in
Fig. 8(a); this error is nnticeable for ranges of & which occur for
small ke and ka in the TM; case. Presently, improved curves for the
amplitude and phase of p*(¢) are being obtained.

*In the GTD calculation for the 1it region (or the geometrical optics
region), the surface rays that have crept around the opposite side
of the cylinder have been neglected; but the field of these rays is
included with the transition field in the calculation shown by the
solid line,
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Fig. 12(a). Field surrounding a circular cylinder illumi-
nated by a TE, plane wave. Calculations based
on GTD and the transition solution, ‘
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Fig. 12(b). Comparison of the composite GTD plus transition
solution of Fig. 12(a) with the exact solution.
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Fig. 13(a). Field surrounding a circular cylinder illumi-
nated by a TE, plane wave. Calculations based
on GTD and the transition solution.
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Fig. 13(b). Comparison of the composite GTD plus transition
solution of Fig. 13(a) with the exact solution.
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% Fig. 14(a). Field surrounding a circular cylinder illumi-
. nated by a TE, plane wave. Calculations based
on GTD and the transition solution.
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Fig. 14(b). Comparison of the composite GTD plus transition
solution of Fig. 14(a) with the exact solution.
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Fig. 15(a). Field surrounding a circular cylinder illumi-
nated by a TE, plane wave. Calculations based
on GTD and the transition solution,
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Fig. 15(b). Comparison of the composite GTD plus transition
solution of Fig. 15(2' with the exact solution.
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Fig, 16(a). Field surrounding a circular cylinder illumi-
| nated by a TE, plane wave. Calculations based
on GID and the transition solution.
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Fig. 16(b). Comparison of the composite GTD plus transition
solution of Fig. 16(a) with the exact solution.
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Fig. 17(a). Field surrounding a circular cylinder i1lumi-
. nated by a TE; plane wave. Calculations based
- on GTD and the transition solution.
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Fig. 18(a). Field surrounding a circular cylinder illumi-

nated by a TE; plane wave. Calculations based
on GID and the transition solution.
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Comparison of the composite GTD plus transition
with the exact solution.
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Fig. 19(a). Field surrounding a circular cylinder illumi-
nated by a TE, plane wave. Calculations based
on GTD and the transition solution.
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Fig. 19(b). Comparison of the composite GTD plus transition
solution of Fig. 19(a) with the exact solution.
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ﬁ Fig. 20(a). Field surrounding a circular cylinder illumi-
: nated by a TE, plane wave. Calculations based
; on GTD and the transition solution.
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Fig. 20(b). Comparison of the composite GTD plus transition
solution of Fig. 20(a) with the exact solution.
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Fig. 21(a). Field surrounding a circular cylinder illumi-
nated by a TM, plane wave. Calculations based
on GTD and the transition solution.
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Fig. 21(b). Comparison of the composite GTD plus transition
solution of Fig. 21(a) with the exact solution.
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Fig. 22(b). Comparison of the composite GTD plus transition
solution of Fig. 22(a) with the exact solution.
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IV. SUMMARY AND DISCUSSION

A uniform asymptotic result is developed for describing the
fields in the transition regions adjacent to the shadow boundaries
which are associated with the problem of plane wave diffraction by
a perfectly-conducting, circular cylinder. This result yields
a finite, continuous solution for the total field across the shadow
boundaries, and exterior to the transition regions it reduces to
the usual GTD solution (in terms of the surface diffracted fields
and geometrical optical ray fields) for the shadew and 1it zones,
respectively.

Summarizing this result for convenience, one expresses the
total field U exterior to the cylinder via (27) and (49) as

TRANSITION REGION - SHADOW ZONE

. . -7 2V s, -iks :
2 1 ikt
(512) U(p,) v U'(a,) | -n /2 (Ps(a) e {1 _F \.ks ET’I)JE ikt e % f

h 2m°- Vs
with ¢ = me>0,
ka'7/3
where t = a8 = Q%Qz, s = Q2PS as in Fig. 7; and m = 7 . The

functions F[ks 5—2] and 55(5) are tabulated in Figs. 6 and 8,
2m
h

respectively; one should note that P (£) is associated with the
acoustic soft boundary case (TM,), and Pn(&) is associated with
the acoustic hard boundary case (TE;). Also, UT(Qy) denotes the
value of the incident field at Q.

TRANSITION REGION - LIT ZONE

P » g')’
(51b) U(PL) n U1(PL) + U‘(QR) -m «;g:: e 1£13T'

r

, L _ —
~ 4 J' 2 0 .
-jke
[p(er) + 2= ]'Flk“] J” e Ky
( ﬁ 2/ng! L E;Z pp + 2
with &' = -2m cos g1 <0,

a cos ei 5'2 0 (et
where £ = QRPL’ Pp = =3 and m, F[ke ;;2] , PS(E )
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and_Ui have the same meaning as before. The geometrical quantities
%,61 and the point of reflection Qg are indicated in Fig. 11. One
-i% 3 iz
- * -z
notes that Ps(é;) + & ={p*§8je 4 in (51a) and (51b),
h o/m g 9
respectively. The functions p* and g* are plotted in Fig, 8.

Equation (51) is valid for both, the near and the far zone;
however, in the near zone case, the field point must lie exterior
to the surface boundary Tayer. Within the surface boundary layer,
(51a) tends to become singular (as s*0) in exactly the same manner
as the GTD surface diffracted ray field of (33) which becomes
singular as s*0., In order to remove this limitation, one must
employ (39) instead of (23) in the analysis as s>0; however, the
case s*0 is not considered in this paper. One could employ the
results of Ivanov [11] which allows the field to be calculated near
the surface (within the surface boundary layer) as s*0. However,
as mentioned earlier, his result [11] is in terms of the canonical
Fock integral which is complicated for numerical calculations except
at s=0; when s=0, the canonical Fock integral reduces to the single
parameter Fock current integral which is well tabulated. It would
be worth investigating an alternative approximate solution which
matches our solution of (51) outside the surface boundary layer,
but which reduces to the Fock currents on the surface (s=0), and
at the same time is such that it is simple for numerical processing.

The result in (51) yields a finite and continuous field solution
across the shadow boundaries. Away from the shadow boundaries, and
exterior to the transition region (51a) reduces to the GTD surface
diffracted ray field of (33); whereas, (51b) reduces to the geometrical
optics incident and reflected ray fields of (37). The F[+] term in
(51) dominates in the region at and near the_shadow boundaries;
whereas, far from the shadow boundaries the PS(-) term dominates.

Since the F(-) and ﬁs(-) functions are well tgbulated [9], the result

in (51) is simple tohuse which makes it well suited to solve practical
problems. Furthermore, this result can be readily generalized to
convex surfaces of variable curvature in both two and three dimensions
by employing the local nature of high frequency fields and recipro-
city. These extensions will be presented in a separate paper.
Finally, the field at (p,¢) due to ™, (or TE,) plane wave scattering
by the cylinder is directly related via reciprocity to the problem

of calculating the radiation pattern (along the incident field direc-
tion) of an electric (or magnetic) line source at (p,s) in the presence
of the same cylinder; the Tatter problem is of interest for estimating
the radiation patterns of antennas mounted off the fuselage of a
typical aircraft.
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APPENDIX

The result for the geometrical optics field reflected from

a perfectly-conducting cylinder which is illuminated with a plane

wave is developed in this Appendix; this development is useful to

the analysis of section II B. Although this development is avail-
able in many texts (e.g., [15]), it is rederived here in terms of

the notation employed in section II so that the connection between
the results derived here with the analysis in section II B may be

established in a convenient fashion. Only the TM, case is treated
here; the results for the TE, case are exactly the same except for
a change of sign.

Referring to Fig. 2, it is seen that the total field exterior
to the cylinder in this case is (see (6b)):

(A1) uR el - 2]

(1) 7

H k

j dv Hs])(ko) - ! v (ka) Hsz)(kp) {e
mie Q H,“'(ka) |

For the TMZ case, Q = 1, and the first term on the RHS of (A1)
yields the“incident field [15]; on the other hand, the second term
cn the RHS of (A1) yields the reflected field for v<ka. One is
concerned only with this second term which is denoted below by U,

==ie 11 (ha) Sivlle] - ]
(A2) u, = - %- J ;%271127 Héz)(kp) e 24y
\'}

—omig

Employing the Debye approximations in the Hankel functions

leads to:
(A3) U, % 1 e-i%eik[ZasinQ-(kZ_VQ:)-psinY+]\ZI_Y_ %)
. JFFZZ§73—§ dv .
where L
(A4) v =kacosy = ke cosy , ;
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and the contour of integration, Cy, is indicated below in Fig. A-I.
Also, v = (|¢]| - n/2) as before.

N

Imy |
vo{<Ka) ?
Ka
— Re v
‘—CV

Fig. A-I. Contour of integration CV.

Rewriting the integral in (A3) as %

-/T- -1 J o TKF(V)

(A5) u_x e S —— dv
" 2 wk c  Yesiny
v
where
(A6) f(v) = 2 a sin vy - (%¥-¢)- p siny + %.Y - ¥.¢ ,

one obtain. the following saddle point (v = Vo) condition:

Y= vy atvs=y
3 0 0

(A7) 'a‘;;/ =0 H ¥y = YO -2 ";’0’ .
V¥V Y= ?o atv=y




The following relations hold as a consequence:

: i LN
2 (A8) cos 8 =siny, , when v=v

g
£ o

8- | N ;
o8 (A9) p sin Y/ © =psiny =% +asiny = L+acoss )
’1 V™V

=~
k-
=
g ¢

T

v3‘
44
1
' — X
6; 70 O/
¢ OQR=0 = RADIUS
3 Fig. A-II. Reflected ray geometry.
El
14
: The geometrical significance of (A7), (A8), and (A9) is shown
s in Fig. A-II. Also,
f(v,) = a cos 6! - 2
f'(vo) =0
i
i f..(vo) 2%+ acos 6 ’

(ka cos 6')(ko sin Yo!
where the primes denote differentiation w.r.t. v
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Incorporating the above expressions into the saddle point
result for (AS) gives

L — p ————  ikf(v)
(A10) urw-\/-l- e 4‘/ =21 & .

. ikf"(vo) dkp sin v,

One finally obtains

i
- _
= ; a _cos 6 ;
}ﬂ (A11) u. - glka cos 87 ._-__211-—-—— e'1k£, for TM, case; ’
b- 256 4 |
:
- which in the notation of section II B reduces to ;
- — ™
»: (A~|2) Uu ~ R . U'i( ) DI" _'ik,Q, . R = by ‘I. z {
. r s W \[F-Fre L TE : ‘
A h r h 4 !
g < i
!
3 i
- which is the required reflected geometrical optics field. -
l !
1
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