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I. INTRODUCTION

I When the geometrical theory of diffraction (GTD) [1,2] is
employed to analyze the problem of high frequency plane wave
scattering by smooth convex surfaces, a modification of this

I method is required for analyzing the fields in the vicinity of
the shadow boundaries associated with this problem. This modi-
fication of the GTD forms the subject of the present paper.

I In the GTD analysis of the diffraction of waves by a smooth
convex cylinder [3], the total field exterior to it is associated
in a simple manner with the usual incident and reflected rays of

*! geometrical optics together with the surface diffracted rays
. .introduced by Keller. The geometric optical rays are present

only in the lit (or illuminated) region, so that the surface dif-
fracted rays alone account for the field in the shadow region

* (these surface diffracted rays are also present in the illumin-
ated region if the cylinder cross-section is closed). However, pure
ray optical field descriptions fail at and near shadow boundaries,
and at caustics of ray systems; consequently, the GTD ray solution
for the problem illustrated in Fig. 1 is valid in regions I and III,

*but it fails in regions II, IV, V, and VI. Region II constitutes the
penumbral or transition region adjacent to the shadow boundary (SB).
The angular extent of this transition region is

, 9 [. _13

0 [2 (kPaQl I where k refers to the wavenumber of the

surrounding medium which is assumed here to be free space, and
P (Ql) is the radius of curvature of the cylinder at the point of

grazing incidence, i.e., at Ql. Regions IV, V, and VI are usually
referred to as the surface or caustic boundary layer regions. InIshadow regions IV and V, the surface of the obstacle is a caustic
of the surface diffracted rays; whereas, region VI is in the neigh-
borhood of Ql which is a caustic of the reflected ray for grazing
incidence. The mathematical representations for the field within
the transition regions, the surface boundary layer regions, and
also their common regions of overlap are complicated by the fact
that they must change rapidly but smoothly from one form to an-
other across these regions.

It is evident that the usefulness and versatility of the GTD
1solution is further enhanced if it can be modified within the region

where it fails; such modifications may be achieved by introducing
uniform solutions which not only remain valid in one or more of
these regions, but which reduce to the conventional GTD results
exterior to these regions.

The development of a simple, uniform solution which remains
valid in region II that is exter-nr to the urface boundary layer
is considered in this paper. Th'. ,.,nrk ,otivated by the need

I
I.
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Fig. 1. Rays associated with the plane wave scattering
by a smooth convex cylinder.
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to analyze the radiation patterns of antennas mounted on the wings
or tails of aircraft [4,5]. The radiation patterns of such antennas
are significantly affected due to shadowing by the aircraft fuselage
surface which is generally smooth and convex shaped. In many such
wing or tail mounted aircraft antenna configurations, a knowledge

iof the field in the transition (or penumbral) region is essential
for the purposes of antenna design. One can develop a solution for
the transition region via an asymptotic high frequency analysis of
a canonical problem which closely models the local geometry of the

I Jconvex cylinder at Q1.

In this paper, the canonical problem of plane wave scattering
by a perfectly-conducting circular cylinder is solved by introducing
certain asymptotic approximations, which are based on physical
considerations, to obtain a uniform asymptotic result that is valid
in the transition region exterior to the surface boundary layer.L IThis uniform result yields a finite, continuous solution for the
total field across the SB within the transition region. Exterior
to this transition region, it reduces to the usual GTD solution

I in terms of surface diffracted and geometric optical ray fields
for the shadow and lit zones, respectively. Furthermore, this
result is in a form which is simple and convenient for engineering
applications. Upon invoking the principle of the local characterof the high frequency fields in the penumbra, one can systematic-ally modify the uniform result for the circular cylinder to treat

1 the electromagnetic scattering by arbitrary, smooth convex surfaces
Ifor both two- and three-dimensional problems. These extensions

will be presented in detail in a separate paper.

S! The analysis of the canonical problem is indicated in section
i II. Numerical results based on this uniform-GTD analysis are com-

pared in section III against the results obtained from an exact
3 eigenfunction series solution for the same canonical problem where,

it is seen that the present uniform result is accurate not only
within, but also exterior to the transition region. A summary and
discussion follows in sectionIV. Before proceeding with the analysis,
the present work will be compared with the work of others on this subject.

* The problem of asymptotically estimating the fields within the

transition regions associated with the diffraction of waves by
i smooth, convex surfaces has had long standing interest, especially

in connection with the theory of radio wave propagation around the
* earth. The fundamental work of Fock on this subject [6] appears to

be the most significant; in particular, his analysis of the fields
near a shadow boundary and within the Fresnel region of a diffracting
spherical surface [7] is of direct relevance to the problem con-

I sidered here. Other notable works which are also directly related
I to the present analysis are due to Wait and Conda [8], Logan and

Yee [9,10], and Ivanov [11]. An extensive bibliography on various
I aspects of the problem of diffraction by a smooth, convex surface
3may be found in the papers by Logan [9,10], and Borovikov and

Kinber [12]. Indeed, the present work draws upon the earlier,
important contributions of Fock and Logan.

3



In Fock's analysis [7], the wave equation within the transition
region is solved approximately via the method of parabolic equations;
this solution is initially expressed in terms of a canonical integral
introduced earlier by Fock [13a,b]. For observation points near
the shadow boundary and the diffracting surface (but outside the
surface boundary layer), this canonical integral is reduced by Fock
to integrals which are functions of only a single parameter; in
particular, the solution is expressed in terms of a Fresnel integral
and a Pekeris-type integral [9,10], both of which are well tabulated.

Wait and Conda [8] analyze the field in the transition region
scattered by a circular cylinder via an asymptotic evaluation of
the radiation integral which employs the well-known Fock currents
[13a] for this problem; their asymptotic solution near the shadow
boundary is also given in terms of Fresnel and Pekeris integrals
as done earlier by Fock [7]. In addition, the result given in [8]
is valid not only near the surface (outside the surface boundary
layer) as in [7], but also in the far zone. The analysis in [8] is
an extension and generalization of the work of Goriainov [14].

The results in [7], [8], and [14] are quite accurate in the
illuminated region very close to the SB, but in general they do not
join smoothly with the geometrical optics field; whereas, the result
presented here does reduce to the geometrical optics field in the
illuminated region. Also, the present result is valid in both the
near and far zone as in [8]; furthermore, exactly on the shadow
boundary, it agrees with the results of [7], [8], and [14] which
are accurate near the shadow boundary. Logan and Yee [10] give a
result for the illuminated part of the transition region in terms of
the canonical integral of Fock such that it reduces to the geometrical
optics field far from the shadow boundary. This result appears to
have been constructed by redefining certain parameters in Fock's
canonical integral on an ad hoc basis.

Ivanov [11] analyzes the same canonical problem as in this paper
via the method of parabolic equations; his solution which is valid
in the transition and the surface boundary layer regions, and which
reduces to the GTD solution outside the transition region, is also
given in terms of an integral related to the canonical integral of
Fock. The canonical Fock integral-type solutions [10,11] are
complicated for numerical evaluation in the transition region except
when the field point is either very close to the shadow boundary,
or is on the surface; in these exceptional cases, they reduce to
well tabulated integrals which are functions of only a single
parameter.

On the other hand, using a somewhat less formal analytical
procedure than the parabolic equation method employed in [7],
[10], and [11], the present solution is given in terms of the
well tabulated single parameter Fresnel and Pekeris integrals for
the entire transition region (exterior to the surface boundary

4



layer). In this sense, the present result indicates a simplifica-
tion over the results in [7], [10, and [11], respectively, for
field points outside the surface boundary layer; furthermore, this
simplification is achieved without any apparent loss of accuracy as
confirmed by the numerical calculations in section III.

II. ANALYTICAL DETAILS

An asymptotic high frequency analysis of the canonical
problem of electromagnetic plane wave scattering by a perfectly-
conducting circular cylinder in free space is presented in this
section; both, the TE and the TM polarization cases are considered.
The geometrical configuration of this canonical problem is illus-
trated in Fig. 2.

y

SBS -eikx

P x

CRULAR

SB2 -.. CYLINDER

Fig. 2. Geometry of the canonical problem.

Let the incident plane wave field be denoted by Vi, and the
scattered field by US; then, the total field is U = U! + Us exterior
to the cylinder. The total field U corresponds to a z-directed
electric field if the excitation is TM, polarized; whereas, it
corresponds to a z-directed magnetic field if the excitation is TEz
polarized. The form of the incident field Ul is:

(1) Ui = eikx

The total field, U satisfies the reduced wave equation

(2) V2 +k 2) U =

5



where V2 is the usual 2-D Laplacian operator in cylindrical
coordinates (p,f). The scattered fi ld Us satisfies the Sommcut'-
feld radiation condition for an e+111 time dependence (which is
assumed and suppressed), and the total field U(p,o) satisfies the
following boundary conditions on the cylinder:

i )! r I, for the TM case

(3) Q U(p,f : 0 , at p : a; Q - z

for the TE case.

The solution to (2) subject to the radiation condition and (3)
is [15]

Q J i Q ka) (2) COw 7rI

U -i I dv IJ (kp) Q H____v (2) (k)co(p si r e

V Q

-* or

U = - -_dv [H (1)(kP) Q Hv(2)(ka) Hv2 j(kP si v (ka)  osi OS v

with E>0, and c-0. The quantities Jv, Hv(1' (2 ) are the usual
cylinder Bessel and Hankel functions. It is noted that Im(v)<O on
the contour of integration in (4a) and (4b).

The above integral expressions for U may be rewritten by
employing the decomposition

(5) cos v(- W) : e iw  cos vo + i e-iv iol sin v

Thus, for large ka (i.e., ka>>l), one obtains

(6a) U R dv V(kp) - V (2) H (2) e

-Fi Q Hv(2ka) v



or

1 dv r Q H v H (2)(k 7  e1 -I
(6b) U 2- dv v Q H (2)(ka) Hv (p2 O---E v1 (p ____

wj th O<' Vit In going from (4) to (6) via (5), the terms containing
elvr cos vo are discarded because they can be shown to correspond
to the multiply encircling GTD surface ray modes which contribute
negligibly for large Within the transition region, v 0 (ka)
so that J v (ka) and H v  (ka) become for large ka:

(7a) Jv(ka) l_2__V(m-l[v-ka]);

(1)

(7b) H(2)(ka) " Wl(m-l[v-kal)7) Hv  "Umr 1

mvr 2

where m= kaV13 , and the quantities V and W, are the Fock-type

2
Airy fynctions* [9]. Introducing the change of variable
T= m [v-ka] now allows one to express (6) in terms of (7) as:

(8a) U Pm dT ((kp) + i '.Vc) H (2) e-iV()
-VT-i v(T)

13
1ITt'e3/3

W1 ,2 (T)- 2  e ; 2 iV() )(W ) - W2 (1). The contour

r1,2
•2Tr-i -

runs from -e to -iE ; whereas, r2 is the complex conjugate of

A

1

I _ _



or

d H(1 I)(kp) + - H (2) (k)e-i V( -14
22 v(T)

. - itQ W2 (T)

with

1  for the TMz case

(8c) Q -

for the TEZ case
Also, v(T) = ka + m , ,Ic~- T' , and Im(T)<O in the integrands of
(8a) and (8b).

The integral representations for U in (8) will next be
asymptotically approximated for the shadowed zone of the transi-
tion region in part A of this section; whereas, the asymptotic
approximation for U in the illuminated zone of the transition
region will follow in part B.

A. Transition Region - Shadow Zone

One begins by rewriting (8) in a manner analogous to that
done by Fock [7] in the decomposition of a canonical integral
representing the solution of his parabolic equation for the
problem of diffraction by a sphere; namely, U is written as a
superposition of two integrals, one being the intenral in (8a)
over the contour from 0-is to -ie (defined as crLkur C2 ), andthe other being the integral in (8b) over the contour from
--- ie to O-ic (defined as contour C1). Thus,

(9) U I1 + 1 2

where

(lOa) I E m Jvfl(kp) e-iv(t)J di m 11 (2)(kp) eiV(t) d&
CI+C2  V(

C I8C



V

and

(l ob) 1 2 im f UT_( H V() v(~t n
C2  W2(t)

(2)

2 - v(T)cI Q 42 (r)

The contours Cl and C2 are shown in Figs. 3(a) and 3(b), respec-
tively. One notes that Il is independent of the electrical
properties of the cylinder; whereas, 12 is strongly dependent
on these properties.

* lint

to -GD- jee- ReT
C,

(a)

Tm-r-

_... to O-ie

(b)
Fig. 3. Contours of integration for I and 12*

For the sake of definiteness, the fields in the transition

region associated with the shadow boundary SBI will be analyzed

here; in this case SBI exists within the domain 0< <ir. The analysis

9



1

for the transition region adjacent to SB2 in the domain -7<0<O
is similar.

The first integral in I can be solved by employing the usual
integral representation for Jv(kp), namely,

= (kp) d=e- ikP sin + iv
v T CA+CB

and interchanging the orders of intearation to yield

I) m Jv(T)(kp) e-iv(T) dr = e-ikP sin
~CI+C 2

eikp cos , *for 0<P<Tr and I1l<-1

Clearly, (11) is just the incident field. In deriving (11) use is
also made of the following.

6(_-) 1 dI e'im(up-8)'r

m =2 dIC1 +C2

where 6(0-) is the Dirac delta function.

Next, the second term on the R.H.S. of (10a) may be re-
expressed in terms of the standard integral representation for
Hv2 (kP) as

*V T

- J I H (2k e-iv( ) dCtV(Tl~p€d

dr e-iV(T)p 1 d e i kp sin a + iv(T)

Cl  C B

which for Im (t)< 0 reduces to

10



(12) - V(-[~ ) d-r = 2 Ti da .
Cl

with 2 for O<o<iT.

t: I

01

Fig. 4. Contours of integration
for Bessel functions.

The contours of integration CA and CB occurring in the defini-

tions of Jv(kP) and Hv(2)(kp) are indicated in Fig. 4. The integrand
on the R.H.S of (12) has a saddle point at a = as , where as = cos-I a.

p°
Since as is a constant for fixed values of p and a, it is conveniently

determined by setting p = qs (for which the observation point is on
IT "iT

SB1); consequently, as 6 = s- as shown in Fig. 2. Also,

the integrand in (12) has a pole at a = ap, where 8p = .

Let e - - , then

(13) 8- - a as =

p s1

11
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When > s, the field point is in the shadow region; therefore, it
follows that a '6 and e>O in the shadow region. The integral on
the R.H.S. of 12 can be evaluated via the method of steepest
descent; hence, this integral over the countour CB may be changed
to an integral along the steepest descen path (SDP) through the
saddle point as as indicated in Fig. 5. However, in the process of
deforming the contour from CB to SDP, the pole at p is crossed; it
is therefore necessary to include it's residue in evaluating (12).

*° *.

SDP--*

imp3

SRe.8

SHADOW REGION
j FOR 0 <1<r

Fig. 5. Location of Bs, a and SDP for the shadow
region analysis.

The integral in (12) now becomes:

-ikao J -ikp[sin a - ]

(14) e P

CB

-eikp cos H(-' 5 )" eika da eik[sin P]

SDP

12

LlI



Swhere the first term on the R.H.S. of (14) is the residue at op,
and H( -Os) is the unit step function:

f 0 ' 0 < s (lit region)

(15) H('s 1 ' 0s (shadow region)

Therefore, the first term on the R.H.S. of (14) exactly cancels the
incident field corresponding to (11) in the shadow. Approximating

[sin 8- a] in the exponent of the integrand on the R.H.S of (14)
by its three term Taylor expansion about the saddle point as gives:

-ika m -ikp[sin a -8 ]
(16) do e p

SDP
1 2

-iks - ika e iks[2(- 8s)2 ]_e f d8e

2 7i SDP p

where

(17) s2 = p2 _ a
2

The integral on the R.H.S of (16) is now in a form which
can be readily evaluated asymptotically for large ks by the
Pauli-Clemnow modified method of steepest descent [16,17] for apole close to a saddle point, to yield the following result for
the integral in (12).

m Hv(2) e iV(T)d eikp cos 0( 1 8 ) 7H V - k ) e TeS- . J v(2)(kp) d (- s

Cl

ei e-ikae e-iks

+ F[kLa]

7'T 6 VS

where the function F[kLa] involves a Fresnel integral [17,18].

13
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(19) F[kLa] 2 i VkLa eikLa dT
L-a"

in which one takes the positive branch of /kL-

The distance parameter L in (19) for this case is

(20) L = s

also, the quantity ' in the argument kL& of F is

o2

(21) a = - .

(21) It is noted that kL is always the large parameter in this
asymptotic solution involving F kL]]. Plots of the magnitude and

phase of the function F[kLai versus kLi are illustrated in Fig. 6.
The physical significance of the geometric quantities e and s
which appear in (18) is evident from Fig. 7. Combining (11) and
(18), one obtains the following asymptotic result for II.

(22a) I I ekp cos+ I- eikPcos H(-ts)

L
7"

-eI- e-ika e  e-iks
+ e F[kLa] - f > s O<<"

Or,

- e i k a e -iks

(22b) I e eika e s0<s

Turning next to the evaluation of I? in (lOb), it observed
that the integrals in (lOb) can be simplified if the Hv T e(kp )

terms appearing therein are replaced by the well known Debye
approximation which is valid for v(T)<kp and v(T) large. Since
v(T) = ka + mi and v(T) ' O(ka) in the transition region, the major
contribution to the integrals in (lOb) occur for T small. In this

14
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S2 = p2 -a12

9-j8S>O

Fig. 7. Geometrical parameters for the shadow region.

case, 4m.) so r~ that v(t) < kp is satisfied,

and the Debye approximation may be employed for 11 (2)(kP) as
follows. Vt)

'2' -ikP sinl y + iv(r)y+ I

H ((kp>) jjikpi e 4;

with

v(T)<kp, and cos y -

When v(-r)' O(ka), cos y so that y and

sin Y=Ikp _ (Vt )2 2k _ as.incorporating
kP kP P

these simplifications in the Debye approximation yields:

(23 H 2)().~2 iks + i!- i(ka + M~

(23) H rks ee
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Next, incorporating (23), and the relation Il W(T) ~'W2 (T) + 2 ij V(T)
into the integrals in (l0b) leads to the followinq expression for I2

(2 2~ e-iks ikae me 1fei'M 6 d,
22 Cv1

f V(T) - -iMT O 1-
C C2 Q W2(-r)

12 can be further simplified in a straight forward manner to obtain:

.7T

(4) I e e- eika e e-iks 2 e-ikaQ e ik

h

where P ( is the Pekeris caret function [9] defined by:

h

acco(25) a Par) cae Vle of P. vyj ersus c rtpeene

h -h

(26 Fi. n em of Oihsao regio untos * n.*()

Thesuscip sonP 5 isusd o dnoe heT~ (r costca

sotAae hratesbcip nk eoe h ~ o
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Fig. 8(a). Plot of e1TT/p*W~ versus based on Logan's .
tabulated data [9] for p(&~).
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Fig. 8(b). Plot of e i/ 4q*( ) versus c based on Logan's
tabulated data [9] for q( ).
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Combining the results of (22b) and (24b), one obtains the
following asymptotic expression for U (of Eq. (9)) which is
valid at the observation point Ps in the shadowed portion of the
transition region.

(2) %-~IT eikae -iks(27) U(Ps) e eL 1-Fk'] e r

_2k 1 - F[kLa] /e.

i -ikao e-i ks

- m k e s /S e > O, > s' E>O.
h Vs

The above result for U may be interpreted geometrically as
a field which after being launched by the incident wave at Ql
propagates along the path QiQ 2Ps to the field point Ps, as indicated
in Fig. 7. Ql and Q? are tangent points which correspond to the
point of grazing incidence on the cylinder, and the point of tan-

* * gential shedding of the diffracted wave from the surface, respec-
tively.

One may now examine the result of directly extending the analysis
presented above to lit region. in the lit region, ¢<ps and ap.s a

indicated in Fig. 9 (note: Fig. 5 shows Bp> s in shadow region).

Consequently, HG(-s) = 0; also, o<O (c<O) for¢<4s, and the field U

at the point PL in the lit region becomes via (22a) and (24b):

(28) U(PL) nueikp cos e i  e -kae F[kLa] %iks

m eikse¢es; e<O; <O.

h
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10 Re/3

Fig. 9. Location of as$ 9a, and SDP for the
lit region.

Equa~tions (27) and (28) may be represented compactly in a
single expression as follows:

TT

(29) U(P) eikp cos4 H(eO) - 12 e-ikae f 1 F jI.2 e-iks

-m 2~ e-ikae P()ek

h s

with: kLa kL m, L=s lo
m

P = PL for &~<Q, 9<0, and *<O5 (in the lit region),
P = Ps ,for 4>0, 0>0, and > (in the shadow region),

1,9<0 for P' = P
H(-O)

0, 6>0 for P = P5
21



The first term on the RHS of (28) and (29) is just the incident
field UI(P). The geometrical interpretation for the propaqation
of the field U in the lit region is presented in Fiq. 10; this
interpretation is simply an extension of that in Fig. 7 for the
shadow region; more will be said about this later.

Y'3

aC11

< 0

Fig. 10. Geometrical parameters for the lit region.

The result in (29) will be shown to be finite and continuous
across SBI . As one approaches SB1 , 0- s and e-,O; hence,
- =s of _' '] and P s ,~~a 0 and C-0. The limiting forms of FkLa a ase,

are [18,19]: h

(30a) F[kLW] ( 2 kLa e'~) e~ 4 '2
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for a given kL as a-O; and

(30b) l e- 4 e

h 2 2

+ (small contribution from p* or q* which is
continuous w.r.t. ), as c-0.

(Note: the p*()e and q*(c)e functions are plotted in Fig. 8.)

Employing the above limiting forms of (30a; 30b) in (29) as
e, -O from both, the lit (e, <O) and shadow (e, &>O) directions,
it is easily verified that U in (29) is finite and continuous
across SBI; in fact, exactly at SBI, U(P) becomes:

1ix - '-1 rp*(Q) e ikx
(31) U(P) 1 _ i - m 2. -e 4

SB1

rTMz case]
for ce

[TEz casef

where x =pcos Os - s along SRI (a similar result holds for SB2).

The first term on the R.H.S. of (31) is simply one-half the incident
field on the shadow boundary as in the diffraction by a half-plane;
the second term is dependent on surface properties.

Turning now to the evaluation of the field in the shadow region,
but away from SB1 and exterior to the transition region (i.e., in
region III of Fig. 1), one notes that F[kLa]l since e, and hence
La become large in this case (see Fig. 6); only the term containing
P () in (29) now remains significant. Far from SB1 the integral

for P () in (25) may be replaced by a rapidly convergent residue

h
series [9]:
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57T

oCq f

/ f =1i)]2 or TM case

(32) Ps( ) 1 .5T1-IT  7T
h C 6 ei6 e

, - or TE case'ViT n 2[Ai(n qn

where Ai is the Miller-type Airy function* (which is related to the
Fock-type Airy function [9]), and Ai' is it's derivative with
respect to the argument. The qn and qn are roots of Ai(-qn) = 0
and Ai'(- n) = 0, respectively for n = 1,2,3, .... These roots
are tabulated in [9].

When thp above residue series representation of (32) is
employed in P () of (29) for kLW>lO (i.e., as F[kLW]-l), it

h
can be readily shown that (29) reduces to

5s -ikae - a h 2

(33) U(P ) ) Ui (Ql Dh(Ql )  e n D h j e-iks

weehnd n are the Keller diffraction and attenuation coef-
n n

ficients [3] associated with the GTD surface ray modes, respec-

S S

tively, with Dn(QI) = Dh(Q) for the circular cylinder. Thenl n(2)
S S

superscripts in Dh and a h correspond exactly to the subscripts in^ •n n
P s() for the two polarizations; also, the subscript n denotes the

h

!3

* Ai(r) = V(-r)/v4- = J dt ei(Tt+t /3) Ai'(T) d .
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surface ray modal index. The U (Q ) in (33) represents the incident
field at Ql and is unity for this roblem. Thus, in the deep shadow
(i.e., corresponding to region III of Fiq. 1). (29) reduces to the
GTD surface diffracted ray field given by (33) as it should. The
geometrical interpretation of the GTD field in (33) is, of course,
identical to that in Fig. 7. For the sake of convenience, and
completeness, the diffraction and attenuation coefficients in (33)
are listed below.

-s2  fi 5/6 g1/3 eiTr/l2  )/
2 Vr] P qn

n 2 n Pg eiS] KI  [A i' (-qn)]

.- -56p1/ e h _/1 q0  kp 1/3
Doh hj 2-/ 1/ ir L n eiTr/ 6

K 1/6  - i (9

B. Transition Region - Iluminated Zone

Although the result in (29) is applicable to both the shadow
and lit portions of the transition region, it does not reduce to
the geometrical optics field in the lit region. Consequently, the
result in (29) is expected to be accurate in the shadow region
both near and far from SB1 ; whereas, it is expected to be accurate
only for a small in the lit region ( , 0<O). This deficiency of
(29) for the lit region where eis not small is briefly discussed,
and an improved solution which overcomes this difficulty is presented.

For the shadowed part of the transition region, the result in
(29) has the geometrical interpretation illustrated in Fig. 7
which is identical to the GTD surface diffracted ray picture as
shown in Fig. 1; consequently, it is not too surprising that
Eq. (29) does indeed reduce exactly to the GTD solution of Eq.
(33) in the deep shadow. On the other hand, the geometrical
interpretation of the scattered field in (29) for the lit region
(e<O) is illustrated in Fig. 10 which constitutes a direct
generalization of the interpretation in Fig. 7 (for 6>0); clearly,
the ray geometry in Fig. 10 is in disagreement with the geometrical
optics reflected ray picture of Fig. 11 which is known to be valid
in the lit region. Consequently, one might anticipate the failure
of Eq. (29) to reduce to the geometrical optics field in the lit
region as a result of the differences between the scattered field
propagation mechanisms of Figs. 10 and 11.
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REFLECTEDP, RAYLI

ILIT

SREGION

p i e r  n.

Fig. 11. Reflected ray system.

From Fig. 10, it is observed that the scattered field at PI_
traverses the path QIQ3PL after beinq launched by the incident
wave at Ql. This interpretation requires the field to propagate

backward from Q1to Q3 and then shed to PL alonq the backward
tangent at Q3; in contrast, the geometric optical reflected ray
trajectory touches the surface only at QR as in Fig. 11. The
paths in Figs. 7 and 11 satisfy the extended Fermat's principle;
whereas, the ray path in Fig. 10 does not. The inability of Eq.
(29) to reduce to the geometrical optics field may be explained
on the basis of the approximation in (23) for the Hankel function

Hvl ~k )which is employed in the evaluation of the transition

region field; more will be said about this shortly.

For the sake of completeness, the behavior of Eq. (29) in
the deep lit region is examined. As before, F[kL ]I as the
field point moves away from SB1 in bgth the lit and shadow zones,
thereby leaving the term containing Ps({) as the dominant con-

h
tributor to the scattered field. Hence, in the lit region far
from SB1 where <<0, Eq. (29) reduces to
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I
I

(34) U(PL) 0 Cik c H(-) - m eikae P -iks

h 7

8<0, <<O.

When <O, Ps( ) has the following asymptotic value [9]

h
.3

(35) Ps) t /-Te T77 [1 + 0( ') <<0.

h
Incorporating (35) into (34), one arrives at the following

(35) UP )a 1 ika[+o ] ] e- iks

(36) U(PL) ui(p L )  4 /ee

ITMZ
for ' case when <<O.

TE

On the other hand, the geometrical optics field represents
the correct asymptotic result far from SB1 in the lit region,
and its field associated with the incident and reflected rays
is well known to be

(3) UPi Pr e-kM
37 UPL) N ui(PL) Ui(QR) "Pr +  i

where Ui(PL) = eikP cos a and U '(QR) ika cos e (see Fig. 11).
The first term on the RHS of Eq. (37) is the incident field at PL,
and the second term denotes the reflected ray field. QR is the
point of reflection on.the surface as shown in Fig. 11, and the
{;I sign in front of UI(QR) denotes the value of the surface

reflection coefficient at QR for the{TMz case. The spatial

distance L is given by Z = QRPL; whereas, the caustic distance Or
associated with the reflected ield is
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a cos i
(38) P2

The quantities 2 and el are also shown in Fig. 11.

One notes that Eq. (36) and Eq. (37) are nearly equal only for
a very small. In general, therefore, the result of Eq. (29) fails
to reduce the geometrical optics result when c<<O (this failure is
similar to that which occurs in the results of [7], [8], and [14]);
consequently, in order to overcome this limitation, one must employH(2)
an approximation for H(,)(kp) in the lit region which is different

from that in (23), and which leads to a geometrical interpretation
for the scattered field in the lit region which is in agreement
with the reflected ray geometry of Fig. 11.

The approximation of H ~2(kp) in (23) is valid for v(T) ,O(ka);
the condition v(T) ',O(ka) ho s'in the transition region near SB1
and also in the deep shadow zone where only the first couple
of GTD surface ray modes (corresponding to n = 1, 2, etc., in (32)
and (33)) are necessary to describe the field accurately; whereas,
deep in the lit region v(T) can be significantly different from ka.
Thus, Eq. (23) leads to the result of Eq. (29) which is accurate in
the shadow region, but it is not expected to be accurate in the lit
region if the field point is not close to SB1 .

The Fock-type Airy terms Q V(U), and Q WI(T) in (lOb) which

(2) 2
approximate Jv(ka) and Hv2(ka) for v O(ka) reduce uniformly to
the Debye asymptotic approximations when T becomes large (T =

v - ka ) hence, in contrast to the approximation for v(2)(kp)
m V

in (23), these Fock-type Airy functions remain valid as v(T) becomes
different from ka (i.e., for Iv - kal> 0(m)) deep in the lit region.
Instead of the approximation in (23), one could also approximate

H (2) (kP) for the near zone case by the Fock-type Airy function

W2 as follows, provided k[p - a]<<ka.

(2)(kp) % - -W2 (T - m' k[p - a]) ; k[p-a]<ka.(39) Hv(t) mr

But, employing the near zone approximation of Eq. (39) in 12 of
Eq. (lOb) leads to integrals which are complicated functions of
two parameters (namely, ip and [o - a]); on the other hand, the
result in (29) is in terms of simpler F and Ps integrals which are

h
each functions of only a single parameter.
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A representation for U in the lit region which is interpretable in
terms of the desired reflected ray geometry of Fig. 11 and which also
is in terms of the F and Ps functions may be obtained in the follow-

h h (2)
ing manner by incorporating an approximation for H ')(kp) which unlike

(23) is valid even if v becomes quite different from ka in the lit region.

One begins by introducing the Debye approximation for HV()(kp) which

was previously indicated as

(40) V(T)(kp) e sin k iej Tpsin

V(T) = kp cos y and v(T)< kp.

The condition that V(T)<kp be satisfied in the lit zone is verified
in the Appendix where the geometric optical reflected field result
(corresponding to the second term on the R.H.S. of Eq. (37)) is
developed in detail. Referring to this development in the Appendix,
it is seen that in the lit region where v<ka, the following approxi-
mations are valid:

(41a) v(T) vo =ka cos kp cosy ; YoYo0 0 0

(41b) sin = cos e , since Yo = 7 -

(41c) o sin y p sin y 4 + a sin yo =o + a cos e i

(41d) Y 2 Y
0 0

(Note: the geometrical signficances of (41) is shown in Fig. A-I
in the Appendix.)

The quantity p has already be defined, and Yo ts introduced
in the Appendix. The subscript o in vo(T), yo and yo refers to
the geometrical optics reflected field saddle point condition
which is also discussed in the Appendix. Incorporating v(T)y
v(T) Yo; P sin y .z + a cos ei for the phase; and p sin y'.k for
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I

the far zone amplitude via (41a) and (41c) leads to the following •

far-zone approximation (in contrast to the near-zone approximation

of Eq. (39)) for H () (kp) in the lit zone.

(4) (p ~-ik(H + a cos el) + iv(T)y ° + i-V) k ) 
(42) H (2)V 2 0

Next, incorporating (41d), (42), and QWI(T): Q W2(T) + 2 iQ V(T)
into (10b) yields:

(43) 12 - -ikk -ika cos e 1 ika(-2 o(43) 1 - e m e "

r-4?[-1 2  -im(-2 Vo)) 0• + eQ V(T e d

2V7 [m(-2 Qo) I' W)

One now defines C' for the lit region as

(44) Z - 2 m sin Yo= -2 m cos i  c'< 0 in the lit region.

Thus, the exponential terms involving YO in (43) may be written as

4ika(- 2  o )  2 ika Cos 3/ 2(45a) e e

and

-im(-2 Y 0)T -i ' I
(45b) e O e

provided that c' is sufficiently small in comparison with m which

is assumed large so that terms 0- ) and higher may be neglected
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in the exponent. This approximation is valid in the transition
region. One notes that the approximation in (45a) and (45b) follow
directly from the expansion

(45c) -0 =sin- - L +6I- 3  3 + -  W) +

2m 2m 6(2m) 40(2m)

with 2m l<.

Employing (45a) and (45b) into (43) yields

(46) 1 2 e- ik -ika cos ei  ei2 ka cos e:>"( 4 ) 2 m9•

-+ 3 12te 1 '

h

which is valid in the far zone. In the lit region far from SB1 ,
c'<<O, and P () may be replaced by (35) to yield

h i kacs6 r ik

(47) 12 " 7 eika cos eik ,

which does indeed agree with the far zone geometrical optics

reflected field. The term eika cos 61 cotresponds exactly to
Ul(Qr) and {LJdenotes the reflection coefficient values as in (37).

It is now evident that one can employ ray optics to generalize (46)
so that it yields the near zone geometrical optics reflected field
as in (37). According to ray optics, the far zone energy spread

factor in (47) must be simply replaced by its corresponding near

zone factor (as in (37)) for the reflected ray tube in order

to extend (47) to the near zone case; the latter is tantamount to

replacing L in (46) with 1 thereby generalizing (46) to the

near zone case. r
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To be consistent, it is also necessary to modify the result
for I, of (lOa) for the lit renion in the same manner as done above
for 12 of (lOb). Without giving all the details (since these involve
essentially the same physical arguments as in the treatment of 12),
the result for I1 in the lit region becomes

(48a) I e iko cos H(-o) - eika cos i

F[e

with

(48b) L' 2. , for '<0

Finally, combining (46) (together with it's near zone modifica-
tion) and (48), one obtains the required result for U in the lit
region; namely,

_i ) 3I- e__ -(

(49) U(PL) U (PL) + u(OR) L e

1-F[kL' 2mJ/T

+ Ui(QR)- m2 e P( ) e-

L h r

,2

It is easily verified that far from SB1 ('<<O), F[kL' 2-]1

and Ps (C') behaves as in (35) .j that in the deep lit regions Eq.

h
(49) reduces exactly to the geometrical oltics result of Eq. (37).
Furthermore, Eq. (49) is also valid for o -"12 (i.e., near SBI)
since it agrees in this limiting case with the expression in (29)
for .cO. In addition, Eq. (49) reduces to Eq. (31), thereby
assuring the boundedness and continuity of the field across SB1 .
Thus, the result for U in (49) for the lit region reduces to the
geometrical optics field deep in the illuminated region where the
latter is indeed valid, and at the same time it has the proper
behavior required to ensure the continuity of the field across
SB1 .
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III. 14UMERICAL RESULTS

In this section, numerical results are presented for the near
zone total field surrounding a perfectly-conducting circular
cylinder excited by a plane wave. The GTD method is employed to
describe the field exterior to the cylinder in terms of the
geometrical optics incident and reflected rays for the lit region,
and in terms of the surface diffracted rays for the shadow region,
respectively; these results for the TEz (hard boundary) case are
indicated in Figs. 12(a) - 20(a) for different size cylinders
and near field distances. It is seen that the GTD solution shown
by a dashed line becomes discontinuous at the shadow boundaries.
On the other hand, the present transition region solution (based
on (27) for the shadow, and on (49) for the lit reqion) as indicated by
a solid line is continuous across the shadow boundaries, and it
blends smoothly into the GTD solution outside the transition region.
These GTD and transition region solutions corresponding to Figs.
12(a) - 20(a) are combined into a single, composite GTD-transition
solution which is shown by a smooth solid curve in Figs. 12(b) -
20(b), respectively. The composite GTD-transition results are
compared against results which are based on an exact eigenfunction
series solution for these cases; the eigenfunction results are
shown by dots in Figs. 12(b) - 20(b) for these cases. Figures
12(b) - 20(b) indicate that the comparison between the numerical
results obtained from the exact eigenfunction solution, and the
composite GTD-transition solution is very good, thereby confirming
the accuracy of the uniform result for the transition region
presented in section II. Additional comparisons of the composite
GTD-transition solutions with the corresponding eigenfunction
solutions are indicated in Figs. 21-22 for the THz (soft bound-
ary) case, respectively; again the agreement is very good for these
cases. It is seen that the accuracy of the transition region solu-
tion for very small ka and kp is as good as the accuracy of the
geometrical optics result.* As ka and kp increase, our asymptotic
transition field solution becomes increasingly accurate as do the
GTD (surface diffracted and geometric optical) ray fields which
also are asymptotic approximations. For calculating the GTD field
in the shadow region, the inclusion of only two surface ray modes
are found to be sufficiently accurate (see (33)). Unfortunately,
there appears to be a small error in the p* function plotted in
Fig. 8(a); this error is noticeable for ranges of E which occur for
small kp and ka in the TM case. Presently, improved curves for the
amplitude and phase of p*(t) are being obtained.

*In the GTD calculation for the lit region (or the geometrical optics

region), the surface rays that have crept around the opposite side
of the cylinder have been neglected; but the field of these rays is
included with the transition field in the calculation shown by the
solid line.
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,TRANSITION
FUNCTION

------ GTD

180 0
-30o -2 -10

cp 0

2700 a =0.4X
p =0.5X
HARD b.c.

Fig. 12(a). Field surrounding a circular cylinder illumi-
nated by a TEz plane wave. Calculations based
on GTD and the transition solution.
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GTD +ITRANSITION
SOLUTION

* 900 * . EIGENFUNCTION

2700

p =0.5X
HARD b.c.

Fig. 12(b). Comparison of the comnposite GTD plus transition
* . solution of Fig. 12(a) with the exact solution.
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TRANSITION
FUNCTION

900 ----GTD

180%0

SS

2700 0.4 X

p = LOX

HARD b.c.

Fig. 13(a). Field surrounding a circular cylinder illumi-
nated by a TEz plane wave. Calculations based
on GTD and the transition solution.
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-GTD + TRANSITION
SOLUT ION

900 *** EIGENFUNCTION

2700 0 =.4

p = I.OX

HARD b.c.

Fig. 13(b). Comparison of the cornposite GTD plus transition
solution of Fig. 13(a) with the exact solution.
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TRANSITION
FUNCTIONgo9o GTD

1. =

4

a =0.5SX

2700 p
HARD b.c.

Fig. 14(a). Field surrounding a circular cylinder illumi-
nated by a TEz plane wave. Calculations based
on GTD and the transition solution.
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'A'-(Tf +TRANSITION
r SOLUTION

9 0  ** EIGENFUNCTION

2700 =1D ~c

Fig. 14(b). Comparison of the composite GTD plus transition
solution of Fig. 14(a) with the exact solution.
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90°0--- GTD
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80SB -" -30 -20 -10

@'=0

2 7 0 0
p =3X

HARD b.c.

Fig. 15(a). Field surrounding a circular cylinder illumi-nated by a TEz plane wave. Calculations based

on GTD and the transition solution.
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-GTD +TRANSITION
SOLUTION

900 e o. 9 EIGENFUNCTION

-30 -20 -10 00

27000.X
p =3X

HARD b.

Fig. 15(b). Comparison of the composite GTD plus transition
solution of Fig. 15(p' with the exact solution.
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TRANSITION
FUNCTION

t0

SSBI

270 °  p=1.5 X

HARD b.c.

Fig. 16(a). Field surrounding a circular cylinder illumi-
nated by a TEz plane wave. Calculations based

on GTD and the transition solution.
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GTD + TRANSITION
SOLUTIONj

900  e o EIGENFUNCTION

1=

2700 p 1.5 X

HARD b.c.

Fig. 16(b). Comparison of the composite GTD plus transition
solution of Fig. 16(a) with the exact solution.
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HARD b.c.

Fig. 17(a). Field surrounding a circular cylinder illumi-
nated by a TEz plane wave. Calculations based
on GTD and the transition solution.
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- ~GTD + TRANSITION
SOLUTION

900o a EIGENFUNCTION
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164

2700 p =2X

HARD b.c.

- Fig. 17(b). Comparison of 0~ cornposite GTD plus transition
solution of Fig.' 17(a) with the exact solution.
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HARD b.c.

Fig. 18(a). Field surrounding a circular cylinder illumi-
nated by a TEz plane wave. Calculations based
on GTD and the transition solution.
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Fig. 18(b). Comparison of the composite GTD plus transition
solution of Fig. 18(a) with the exact solution.
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HARD b.c.

Fig. 19(a). Field surrounding a circular cylinder illumi-
nated by a TEz plane wave. Calculations based
on GTD and the transition solution.
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900 E **sIGENFUNCTION
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HARD b.c.

Fig. 19(b). Comparison of the composite GTD plus transition
- solution of Fig. 19(a) with the exact solution.
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Fig. 20(a). Field surrounding a circular cylinder illumi-
nated by a TEz plane wave. Calculations basedI,. on GTD and the transition solution.
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Fig. 20(b). Comparison of the composite GTD plus transition
solution of Fig. 20(a) with the exact solution.
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Fig. 21(a). Field surrounding a circular cylinder illumi-
nated by a TMz plane wave. Calculations based
on GTD and the transition solution.
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Fig. 21(b). Comparison of the comnposite GTD plus transition
solution of Fig. 21(a) with the exact solution.
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2700 p =7.95X,
SOFT b.c.

Fig. 22(a). Field surrounding a circular cylinder illumi-
nated by a TMz plane wave. Calculations based
on GTD and the transition solution.
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Fig. 22(b). Comparison of the composite GTD plus transition
solution of Fig. 22(a) with the exact solution.
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IV. SUMMARY AND DISCUSSION

A uniform asymptotic result is developed for describing the
fields in the transition regions adjacent to the shadow boundaries

which are associated with the problem of plane wave diffraction by
a perfectly-conducting, circular cylinder. This result yields

a finite, continuous solution for the total field across the shadow
boundaries, and exterior to the transition regions it reduces to
the usual GTD solution (in terms of the surface diffracted fields
and geometrical optical ray fields) for the shadow an lit zones,
respectively.

Summarizing this result for convenience, one expresses the

total field U exterior to the cylinder via (27) and (49) as

TRANSITION REGION - SHADOW ZONE

2 -iks
(51a) UP- U- (QI m e) fl -ikt e

with C = me>O,

where t = ae = Q Q2 ' s = Q2Ps as in Fig. 7; and m = . The

functions F[ks -7] and Ps () are tabulated in Figs. 6 and 8,
2m h

respectively; one should note that Ps(Q is associated with the
acoustic soft boundary case (TM.), and Ph(R) is associated with
the acoustic hard boundary case (TEz). Also, U'(Ql) denotes the
value of the incident field at Ql.

TRANSITION REGION - LIT ZONE

(51b) U(PL U'(PL) + uiR [m 7_ 3L)) (QR) Pr

• 1) + e.=.~{1 - F k 21 })11 r e- ikZ
2P h 72m r----

with ' : -2m cos ei <0 ,

_a cos i  V 2where Z QRPL , Pr = 2 and m, F[kk -- , Ps(')

2m h
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and U have the same meaning as before. The geometrical quantities
Z,ei and the point of reflection QR are indicated in Fig. 11. One

.7T

notes~ tha Ps - -P*(m "

notes that P5 ) + e in (51a) and (51b),
h 21-~~*()

respectively. The functions p* and q* are plotted in Fig. 8.

Equation (51) is valid for both, the near and the far zone;
however, in the near zone case, the field point must lie exterior
to the surface boundary layer. Within the surface boundary layer,
(51a) tends to become singular (as s-*O) in exactly the same manner
as the GTD surface diffracted ray field of (33) which becomessingular as s-O. In order to remove this limitation, one must

employ (39) instead of (23) in the analysis as s-O; however, thecase s-0 is not considered in this paper. One could employ the

results of Ivanov [11] which allows the field to be calculated near
the surface (within the surface boundary layer) as s-O. However,as mentioned earlier, his result [11] is in terms of the canonical

Fock integral which is complicated for numerical calculations except
at s=O; when s=O, the canonical Fock integral reduces to the single
parameter Fock current integral which is well tabulated. It would
be worth investigating an alternative approximate solution which
matches our solution of (51) outside the surface boundary layer,
but which reduces to the Fock currents on the surface (s=O), and
at the same time is such that it is simple for numerical processing.

The result in (51) yields a finite and continuous field solution
across the shadow boundaries. Away from the shadow boundaries, and
exterior to the transition region (51a) reduces to the GTD surface
diffracted ray field of (33); whereas, (51b) reduces to the geometrical
optics incident and reflected ray fields of (37). The F[o] term in
(51) dominates in the region at and near the shadow boundaries;
whereas, far from the shadow boundaries the P() term dominates.

5

Since the F(.) and () functions are well tabulated [9], the result

in (51) is simple tohuse which makes it well suited to solve practical
problems. Furthermore, this result can be readily generalized to
convex surfaces of variable curvature in both two and three dimensions
by employing the local nature of high frequency fields and recipro-
city. These extensions will be presented in a separate paper.
Finally, the field at (p,p) due to TMZ (or TEz) plane wave scattering
by the cylinder is directly related via reciprocity to the problem
of calculating the radiation pattern (along the incident field direc-
tion) of an electric (or magnetic) line source at (p,f) in the presence
of the same cylinder; the latter problem is of interest for estimating
the radiation patterns of antennas mounted off the fuselage of a
typical aircraft.
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APPENDIX

The result for the geometrical optics field reflected from
a perfectly-conducting cylinder which is illuminated with a plane
wave is developed in this Appendix; this development is useful to
the analysis of section II B. Although this development is avail-
able in many texts (e.g., [15]), it is rederived here in terms of
the notation employed in section II so that the connection between
the results derived here with the analysis in section II B may be
established in a convenient fashion. Only the TMz case is treated
here; the results for the TEz case are exactly the same except for
a change of sign.

Referring to Fig. 2, it is seen that the total field exterior
to the cylinder in this case is (see (6b)):

d-ic Q H( 1) (ka) .- v12d -

(Al) U [ v lkp) - H v)(kp) I e
SQ Hv )(ka) rv

For the TMz case, Q = 1, and the first term on the RHS of (Al)
yields the incident field [15]; on the other hand, the second term
on the RIIS of (Al) yields the reflected field for v<ka. One is
concerned only with this second term which is denoted below by Ur

W 1 6 H( 1) (ka) (2)k -iv[i I "
(A2) Ur~ - 1~ j V(k Hv()(kp) e dv

Employing the Debye approximations in the Hankel functions
leads to:

A3) U 1 -i ik[2 a sin - ) - P sin y + y -

(A3) Ur e e e 1

v

• 'I 2s dv
Trkp 2 in y d

where

(A4) v = ka cos y= kp cos y
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and the contour of integration, CV9 is indicated below in Fig. A-I.Also, 7p=(~ r/2) as before.

Ka Re v

S I

Fig. A-I. Contour of integration C,.

Rewriting the integral in (A3) as

(A5) -W1% - iT I e ikf(V). dv
i rk C YP_ sin y

where

(A6) f(v) 2 a sin 2(v~) p sin y+. y -. p

one obtains the following saddle point (v =vo) condition:

(A) af j / o-2' yo at v = v
(Al ~ v~ 0 =0 = y~ 00 ~ cat v =vo9
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The following relations hold as a consequence:

(A8) Cose 8 sin y0  ,when v v 0

(A9) p sin yi * p sin YO=2 + a sin yo + a cos 6

'-0

~L ~REFLECTED RAY

1 \ICDN RAYL

P~ ex
OQY=RDU

00

*~1 f'(v a 2 RADIacUsS

fv0 (a cos 6'(k si 0

where the primes denote differentiation w.r.t. v
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Incorporating the above expressions into the saddle point
result for (A5) gives

- Tr2 ikf(v)
(Ala) U- e -/ -2 eV (lO) Ur I ikf,, (Vo) ikp sin Y

One finally obtains

Ii / 1
U ., .c.. a cos ei-' ' ika cos 6i  2ikz

(All) e e for TM case;-g. Cos o +

which in the notation of section II B reduces to

(A12) Ur v Rs  Ui(QR) e-iki ; Rs  1;

h rh TEz

which is the required reflected geometrical optics field.
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