

MX SITING INVESTIGATION GRAVITY SURVEY - PINE VALLEY UTAH

Prepared for:

U.S Department of the Air Force Ballistic Missile Office (BMO) Norton Air Force Base, California 92409

Prepared by:

Ertec Western, Inc. 3777 Long Beach Boulevard Long Beach, California 90807

> 2 March 1981 Revised 15 May 1981

> > 🗏 Ertec

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) READ INSTRUCTIONS BEFORE COMPLETING FORM **REPORT DOCUMENTATION PAGE** 1. REPORT NUMBER E-TR-33-PT 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER -E-there -4. TITLE (and Subtitie) 5. TYPE OF REPORT & PERIOD COVERED Mr Siture Tirest. Switce Surg Final Pinevelley utak 6. PERFORMING ORG. REPORT NUMBER E-TR-33-PT 7. AUTHOR(S) F 04704-80-C-0006 Erter Western Inc. 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Ertec Western Inc. Germerly Furre National PC. BCX 7765 64312 F Long Beach (a 90507 11. CONTROLLING OFFICE NAME AND ADDRESS U.S. DEPARTMENT & THE ATTFORCE Space and Missile Systems Cicconization 12. REPORT DATE UNC 15 MO- 81 13. NUMBER OF PAGES 14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) 15. SECURITY CLASS. (of this report) 15. DECLASSIFICATION / DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) Distribution Unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, 11 different from Repart) Distribution Unlimited 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Survers . Geology, Bouguer Anomaly Valley Fill, Fault 5, gravity profile, Depth The Reck Arabon ABSTRACT (Continue on reverse aide II necessary and identify by block number) Pine Valley - Leaner zhat the reason where yourson of an a epor in most fait where he represented from the wanter of A second and a second of a DD 1 JAN 73 1473

EDITION OF I NOV 65 IS OBSOLETE

1.15

- 18 M

SECURITY CLASSIFICATION OF THIS PAUE (M. H. Date Entered)

FOREWORD

Methodology and Characterization studies during Fiscal Years 1977 and 1978 (FY 77 and 78) included gravity surveys in tenvalleys in Arizona (five), Nevada (two), New Mexico (two), and California (one). The gravity data were obtained for the purpose of estimating the gross structure and shape of the basins and the thickness of the valley fill. There was also the possibility of detecting shallow rock in areas between boring locations. Generalized interpretations from these surveys were included in Ertec Western's (formerly Fugro National) Characterization Reports (FN-TR-26a through e).

During the FY 77 surveys, measurements were made to form an approximate 1-mile grid over the study areas, and contour maps showing interpreted depth to bedrock were made. In FY 79, the decision was made to concentrate on verifying and refining suitable area boundaries. This decision resulted in a reduction in the gravity program. Instead of obtaining gravity data on a grid, the reduced program consisted of obtaining gravity measurements along profiles across the valleys where Verification studies were also performed.

The Defense Mapping Agency (DMA), St. Louis, was requested to provide gravity data from their library to supplement the gravity profiles. For Big Smoky, Hot Creek, and Big Sand Springs valleys, a sufficient density of library data was available to permit construction of interpreted contour maps instead of just two-dimensional cross sections.

In late summer of FY 79, supplementary funds became available to begin data reduction. At that time, inner zone terrain corrections were begun on the library data and the profiles from Big Smoky Valley, Nevada, and Butler and La Posa valleys, Arizona. The profile data from Whirlwind, Hamlin, Snake Fast, White River, Garden, and Coal valleys, Nevada, became available from the field in early October 1979.

A continuation of gravity interpretations has been incorporated into the FY 80-81 program, and the results are being summarized in a series of valley reports. Reports covering Nevada-Utah gravity studies are numbered "E-TR-33-" followed by the abbreviation for the subject valley. In addition, more detailed reports of the results of FY 77 surveys in Dry Lake and Ralston valleys, Nevada, were prepared. Verification studies were continued in FY 80 and 81, and gravity studies were included in the program. DMA continued to obtain the field measurements, and there was a return to the grid pattern. The interpretation of the grid data allows the production of contour maps which are valuable in the deep basin structural analysis needed for computer modeling in the water resources program. The

🗏 Ertec

gravity interpretations will also be useful in Nuclear Hardness and Survivability (NH&S) evaluations.

The basic decisions governing the gravity program are made by BMO following consultation with TRW, Inc., Ertec Western, and the DMA. Conduct of the gravity studies is a joint effort between DMA and Ertec Western. The field work, including planning, logistics, surveying, and meter operation is done by the Defense Mapping Agency Hydrographic/Topographic Center (DMAHTC), headquartered in Cheyenne, Wyoming. DMAHTC reduces the data to Simple Bouguer Anomaly (see Section Al.4, Appendix A1.0). The Defense Mapping Agency Aerospace Center (DMAAC), St. Louis, Missouri, calculates outer zone terrain corrections.

Ertec Western provides DMA with schedules showing the valleys with the highest priorities. Ertec Western also recommended locations for the profiles in the FY 79 studies with the provision that they should follow existing roads or trails. Any required inner zone terrain corrections are calculated by Ertec Western prior to making geologic interpretations.

i i

🛢 Ertec

TABLE OF CONTENTS

			Page
FOREWO	DRD		i
1.0	INTRO	DDUCTION	1
	1.2	Objective Location Scope of Work	1 1 1
2.0	GRAVI	TY DATA REDUCTION	5
3.0	GEOLO	DGIC SUMMARY	6
4.0	INTER	RPRETATION	8
		Regional-Residual Separation Density Selection Modeling Discussion of Results	8 9 10 13
5.0	CONCI	LUSIONS	18
REFER	ENCES		19

I

APPENDICES

APPENDIX

A1.0	General Principles of the Gravity	
	Exploration Method	A1-1
A2.0	Pine Valley, Utah, Gravity Data	A2-1

LIST OF FIGURES

Figure Number

1	Location Map, Pine Valley, Utah	2
2	Topographic Setting, Pine Valley, Utah	3
3	Gravity Profile AA', Interpreted Cross-Section	15
4	Gravity Profile BB', Interpreted Cross-Section	16
5	Gravity Profile CC', Interpreted Cross-Section	17

iii

🖀 Ertec

TABLE OF CONTENTS (cont.)

LIST OF TABLES

Table Number

mber		Page
1 2	Data, Pine Valley, Utah Literature, Pine Valley, Utah	

LIST OF DRAWINGS

Drawing Number

1	Complete Bouguer Anomaly Contours	
		In Pocket at
2	Depth to Rock - Interpreted from Gravity Data	End of Report

iv

🗮 Ertec

1.0 INTRODUCTION

1.1 OBJECTIVE

Gravity measurements were made in Pine Valley for the purpose of estimating the overall shape of the structural basin, the thickness of alluvial fill, and the location of concealed faults. The estimates will be useful in modeling the dynamic response of ground motion in the basin and in evaluating ground-water resources.

1.2 LOCATION

Pine Valley is located in the southwestern part of Utah (Figure 1) in Beaver and Millard counties. The town of Milford, Utah, is approximately 36 miles (58 km) east of the valley on Highway 21. Access throughout the valley is good due to an extensive network of well-maintained, unpaved roads. The valley is principally rangeland.

Pine Valley is bounded on the east by the Wah Wah Mountains and on the west by the Needle Range (Figure 2). The area covered by this report lies between North latitudes 38° 00' and 38° 45' and West longitudes 113° 30' and 114° 00'. The valley is approximately 12 miles (19 km) wide and 40 miles (64 km) long.

1.3 SCOPE OF WORK

A total of 439 gravity stations was used in this report. The Defense Mapping Agency Aerospace Center (DMAAC) supplied 151 gravity stations from its library, and 288 new gravity

Ertec

measurements were made by the Defense Mapping Agency Hydrographic Topographic Center/Geodetic Survey Squadron (DMAHTC/GSS).

4

Pine Valley and Wah Wah Valley were studied together, with the results presented in separate reports. The rectangular region containing both valleys is the area between North latitudes 38° 00' and 38° 45' and West longitudes 113° 05' and 114° 00'. There are 778 gravity stations in the region. All were used to establish a common regional gravity trend for the two valleys.

Following residual separation, the geologic modeling of the two valleys was done independently.

2.0 GRAVITY DATA REDUCTION

DMAHTC/GSS obtained the basic observations for the new stations and reduced them to Simple Bouguer Anomalies (SBA) as described in Appendix A1.0. Up to three levels of terrain corrections were applied to the new stations to convert the SBA to the Complete Bouguer Anomaly (CBA). Only the first two levels of terrain corrections described below were applied to the library stations.

First, the DMAAC, St. Louis, Missouri, used its library of digitized terrain data and a computer program to calculate corrections cut to 104 miles (167 km) from each station. When the program could not calculate the terrain effects near a station, a ring template was used to estimate the effect of terrain within approximately 3000 feet (914 m) of the station. The third level of terrain corrections was applied to those stations where 10 feet (3 m) or more of relief was observed within 130 feet (40 m). In these cases, the elevation differences were measured in the field at a distance of 130 feet (40 m) along six directions from the stations. These data were used to calculate the effect of the very near relief.

🛎 Ertec

3.0 GEOLOGIC SUMMARY

Pine Valley is a closed drainage basin that lies within the Basin and Range Physiographic Province. The rocks that crop out in the adjacent mountains range in age from early Cambrian to Tertiary.

Rocks exposed in the Wah Wah Mountains to the east are primarily north-to-northeast dipping early Cambrian to middle Ordovician sedimentary and metasedimentary quartzite and shale and middle Cambrian to Permian limestone and dolomite. Tertiary mafic to felsic lava flows and ash-flow tuffs crop out along the southeastern and southern edges of Pine Valley. The same type of Tertiary extrusive rocks are predominant in the Needle Range on the west. Tertiary intrusive quartz-monzonite crops out locally on both sides of the valley.

From late Precambrian to late Permian time, a westward thickening wedge of clastic and carbonate sediments was deposited in western Utah along a north-to-northeast trending continental shelf. Thrusting and folding began west of this region in the Jurassic and terminated to the east with late Precambrian and early Paleozoic rocks overthrusting late Paleozoic strata during the Cretaceous Sevier Orogeny (Thorman and Ketner, 1979). Early Tertiary was a time of widespread siliceous volcanism. Beginning in the Miocene, extensional block faulting began in western Utah. It was accompanied by volcanism that produced felsic and mafic-to-felsic lava flows.

🗏 Ertec

The present day Pine Valley is an eastward-tilted graben whose ground-water basin is thought to be interconnected with that of Wah Wah Valley to the east (Stephens, 1976). The valley is bounded by inferred, north-trending, high-angle faults along the western side $\circ f$ the Wah Wah Mountains and eastern side of the Needle Range (Stephens, 1976).

The valley is underlain with uncemented to well-cemented, older Quaternary basin-fill deposits with interbedded volcanic flows (Stephens, 1976). Major surficial Quaternary deposits include fine-grained lacustrine and playa deposits, alluvial fan-gravels, eolian sand, and stream-channel deposits.

4.0 INTERPRETATION

The basis of interpretation is the Complete Bouguer Anomaly (CBA). Drawing 1 shows the CBA gravity field contoured from gridded values and the location of the gravity stations.

Mathematical treatment of irregularly spaced data is inefficient. In order to simplify the computer processing, the station CBA and elevation data are reduced to sets of values at uniformly spaced points (nodes) in a geographic array, or grid. The values at each node are calculated from the station data within a circular area around the node. A bell-shaped weighting function assigns greater weight to the nearer data points. The node spacing is chosen to match the average data spacing. A 1.2-mile (2-km) grid spacing was used for this analysis.

4.1 REGIONAL-RESIDUAL SEPARATION

A fundamental part of the gravity interpretation is the separation of regional effects from the local effects of the valley and its fill. The CBA contains long wavelength components from deep and broad geologic structures extending far beyond the valley. These long wavelength components, called the regional gravity, were approximated by upward continuation of the gravity field. Upward continuations were made to successively higher elevations until the negative anomaly over the valley was essentially smoothed out. The final continuation was calculated at an elevation of 140,000 feet (42,672 m). This regional field was subtracted from the CBA and the resulting residual

🗏 Ertec

gravity anomaly was adjusted by a constant -5.0 milligals so that the zero residual would fit approximately the existing rock outcrops.

4.2 DENSITY SELECTION

The construction of a geologic π del from the residual anomaly requires selection of density values representative of the alluvial fill and of the underlying rock. Since only very generalized density information is available, the geologic interpretation of the gravity data can be only a coarse approximation. Seven borings were drilled approximately 160 feet (49 m) into the alluvium during Verification studies. The average of the densities measured at the bottom of these borings was 2.2 g/cm^3 . To account for compaction with depth (Woollard, 1962; and Grant and West, 1965), 2.3 g/cm^3 was used in the modeling process.

Based on the geology of the surrounding mountain ranges, the basement rocks underlying Pine Valley are composed of Precambrian quartzites and shales and Paleozoic carbonates and siliceous clastic strata. Basement rocks throughout the Great Basin primarily comprise Precambrian and Paleozoic siliceous clastic and carbonate strata with densities generally between 2.6 to 2.9 g/cm³. The Paleozoic carbonate rocks in Nevada and Utah are generally reported to be relatively high in density, on the order of 2.8 g/cm³. This value was selected to represent the density of the basement rock. The density contrast used for modeling was -0.50 g/cm³.

🖀 Ertec

4.3 MODELING

Modeling was done with the aid of a computer program which iteratively calculates a three-dimensional solution of gravity anomaly data (Cordell, 1970). The gravity anomaly is represented by discrete values on a two-dimensional grid. The source of the anomaly (the volume of low-density valley fill) is represented by a set of vertical prism elements. The tops of the prisms lie in a common horizontal plane. The bottoms of the prisms collectively represent the bottom of the valley fill. Each prism has a cross-sectional area equal to one grid square and a uniform density. A grid square of 1.2 miles by 1.2 miles (2 km by 2 km) was selected as representative of the gravity station distribution. Computations were made for five iterations of mutually interactive prism adjustments. The root-meansquare error for the entire grid was less than 0.7 milligal.

The calculated thickness of the valley fill depends upon the density contrast (i.e., fill density minus rock density) used. Since neither density is perfectly known, nor even uniform, the calculated thickness should be expected to contain a corresponding degree of uncertainty. A source of error in modeling Pine Valley as a simple alluvium basement rock system is the widespread volcanic material throughout the valley.

Eight seismic refraction lines (Table 1) and six borings (Table 2) were used as constraints in the modeling process. Their locations are marked in Drawing 2. The seismic refraction

· · · · · · · · · · · · · · · · · · ·			
SELECTED VERIFICATION SEISMIC REFRACTION RESULTS *			
	DEEPE <u>fps</u> (mps)	est la	YER feet (meters)
PI - S-6	<u>9400</u> 2865	@	<u>115</u> 35
PI - S-8	<u>11850</u> 3612	0	<u>28</u> 9
PI - S-12	<u>9150</u> 2789	@	<u>90</u> 27
PI - S-13	<u>8250</u> 2515	0	<u>65</u> 20
PI - S-14	<u>10450</u> 3185	0	<u>60</u> 18
PI - S-16	<u>9300</u> 2835	ê	<u>162</u> 49
PI - S-19	<u>10200</u> 3109	0	110 34
PI - S-21	<u>9350</u> 2850	ø	<u>50</u> 15

LOCATIONS MARKED IN DRAWING 2.
FROM FUGRO NATIONAL 1981

GEOTECHNICAL DATA PINE VALLEY, UTAH

2 MAR 81 15 MAY 81 REVISED

TABLE 1

I.D.	COMPANY	LOCATION	REMARKS
BORING (A)	ERTEC WESTERN PI-104	NE ¼ of SEC. 10 T26S-R17W BEAVER COUNTY, UTAH	<u>1157 FT</u> (353m) SAND AND CLAY
BORING (B)	PHELPS DODGE CORP.	SE ¼ OF SEC.22 T28S-R17W BEAVER COUNTY, UTAH	<u>2006 FT</u> (61 1m) QUARTZITE
BORING (C)	PHELPS DODGE CORP.	SW ¼ OF SEC. 11 T28S-R17W BEAVER COUNTY, UTAH	<u>1305 FT</u> (398m) QUARTZITE
BORING (D)	DESERT EXPERIMENTAL RANGE	SE ¼ OF SEC. 33 T25S-R17W BEAVER COUNTY, UTAH	649 FT (198m) SAND ROCK
BORING (E)	A. ANDERSON	SE ¼ OF SEC. 17 T26S-R17W BEAVER COUNTY, UTAH	801 FT (244m) RED CLAY
BORING (F)	U.S BUREAU OF LAND MANAGEMENT	NE ¼ OF SEC. 27 T30S-R17W BEAVER COUNTY, UTAH	<u>648 FT</u> (198m) GRANITE (SOFT)

Sector Sciences

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

LOCATIONS MARKED IN DRAWING 2.

BORINGS FROM LITERATURE PINE VALLEY, UTAH

2 MAR 81 15 MAY 81 REVISED

TABLE 2

lines located near the mountain flanks recorded high velocities which may represent the basement material. The alluvial fill material in the center of the valley is at least 1157 to 2006 feet (353 to 611 m) thick according to three of the borings described in the literature. The thickness of basin fill (or depth to rock) based on the interpretation of gravity data is contoured in Drawing 2.

4.4 DISCUSSION OF RESULTS

The geologic structure of Pine Valley is interpreted on the depth-to-rock contour map (Drawing 2). The interpretation is based on geologic information from published reports, analysis of aerial photographs, and geologic field reconnaissance as well as gravity data. The analysis of the gravity data included calculation of the second vertical derivative (SVD) of the CBA field. One property of the SVD is that its zero value marks the steepest gradients of the input CBA field. This property was used to guide the placement of faults in the structural interpretation. The interpreted faults represent only the major fault systems which probably comprise many smaller fault zones. There may be other discrete faults that had a minor role in basin formation, but with displacements so small that they were not resolved by the widely spaced gravity data available for this study.

The depth-to-rock contours define a major elongate north-south trending trough coincident with the valley physiography. These contours appear to define two subsurface basins; a northtrending northern basin about 8000 feet (2438 m) deep and a

southern basin which is about 3500 feet (1067 m) deep and trends slightly west of north (Drawing 2).

The northern basin contains a major graben. The eastern side of the graben has a steep linear gradient separating it from the Wah Wah Mountains. This pattern suggests there is a continuous major fault system along the base of the Wah Wah Mountains. West of the northern end of the major graben, a complex pattern of minor steep gradients suggests an intricate arrangement of faults of varying displacements (Drawing 2, Figure 3). Farther south, in the vicinity of profile B-B' (Drawing 2, Figure 4), the smoother bedrock contours on the western side of the basin indicate that the bedrock dips gently eastward from the Needles Range for several miles before it is faulted down into the major graben.

The southern basin is more simple structurally. It is interpreted to be an eastward tilted block instead of a graben (Figure 5).

The two basins are separated by a northwesterly trending transverse fault which has allowed the northern basin to drop more deeply than the southern basin. This interpretation is in accord with studies of surficial geology and geomorphology which indicate that displacement on the eastern basin-bounding fault system diminishes southward. The fault appears to be terminated before it reaches the southern end of Pine Valley where no evidence of major fault displacements is found in Tertiary lava flows.

🗏 Ertec

5.0 CONCLUSIONS

Pine Valley gravity data indicate that the valley occupies the down-tilted portion of an asymmetric fault block. This fault block is separated from the Wah Wah Mountains by a major basinbounding fault system. A narrow graben, which is about 8000 feet (2438 m) deep, underlies the northern part of the valley.

The calculated bedrock depths are only approximations because little is known about the actual density distribution in and around the valley, and the residual gravity anomaly is necessarily based on an interpreted regional field. An average density contrast of -0.50 g/cm³ between the alluvium and bedrock was used to calculate the thickness of the valley-fill material. Future studies that acquire better density data or measure actual depths to bedrock in deep parts of the valley can be used to refine the gravity interpretation.

REFERENCES

- Cordell, Lindreth, 1970, Iterative solution of three-dimensional gravity anomaly data, Geological Survey Computer Control No. 10: U.S. Geological Survey, Washington, D.C.
- Fugro National Inc., 1981, MX Siting Investigation Geotechnical Evaluation, Verification Study - Pine Valley, Nevada, FN-TR-27-PI.
- Goguel, Jean, 1954. A universal table for the prediction of the lunar-solar correction in gravimetry (tide gravity correction), Geophysical Prospecting, v. II, Supplement, March.
- Grant, F. S., and West, G. G., 1965, Interpretation theory in applied geophysics: McGraw-Hill Book Co., New York.
- Hintze, L. F., 1963, Geologic map of Southwestern Utah; Williams and Heintz Map Co., Washington, D.C., scale of 1:250,000.
- Stephens, J. C., 1976, Hydrologic reconnaissance of the Pine Valley Drainage Basin, Millard, Beaver and Iron counties, Utah: Technical Publication No. 51, Department of Natural Resources, State of Utah p. 38.
- Thorman, E. H., and Ketner, K. B., 1979, West-Northwest strikeslip faults and other structures in allochthonous rocks in Central and Eastern Nevada and Western Utah; in Basin and Range symposium, by the Rocky Mountain Association of Geologists and Utah Geological Association, p. 12-133.
- Woollard, G. P., 1962, The relation of gravity anomalies to surface elevation, crustal structure, and geology: University of Wisconsin, Department of Geology, Geophysical and Polar Research Center, Madison, Wisconsin, Report 62-9.

APPENDIX A1.0

GENERAL PRINCIPALS OF THE GRAVITY EXPLORATION METHOD

🖀 Ertec

A1.0 GENERAL PRINCIPALS OF THE GRAVITY EXPLORATION METHOD

A1.1 GENERAL

A gravity survey involves measurement of differences in the gravitational field between various points on the earth's surface. The gravitational field values being measured are the same as those influencing all objects on the surface of the earth. They are generally associated with the force which causes a 1-gm mass to be accelerated at 980 cm/sec². This force is normally referred to as a 1-g force.

Even though in many applications the gravitational field at the earth's surface is assumed to be constant, small but distinguishable differences in gravity occur from point to point. In a gravity survey, the variations are measured in terms of milli-A milligal is equal to 0.001 cm/sec^2 or 0.00000102 g. qals. The differences in gravity are caused by geometrical effects, such as differences in elevation and latitude, and by lateral variations in density within the earth. The lateral density variations are a result of changes in geologic conditions. For measurements at the surface of the earth, the largest factor influencing the pull of gravity is the density of all materials between the center of the earth and the point of measurement.

To detect changes produced by differing geological conditions, it is necessary to detect differences in the gravitational field as small as a few milligals. To recognize changes due to

🛢 Ertec

geological conditions, the measurements are "corrected" to account for changes due to differences in elevation and latitude.

Given this background, the basic concept of the gravitational exploration method, the anomaly, can be introduced. If, instead of being an oblate spheroid characterized by complex density variations, the earth were made up of concentric, homogeneous shells, the gravitational field would be the same at all points on the surface of the earth. The complexities in the earth's shape and material distribution are the reason that the pull of gravity is not the same from place to place. A difference in gravity between two points which is not caused by the effects of known geometrical differences, such as in elevation, latitude, and surrounding terrain, is referred to as an "anomaly."

An anomaly reflects lateral differences in material densities. The gravitational attraction is smaller at a place underlain by relatively low density material than it is at a place underlain by a relatively high density material. The term "negative gravity anomaly" describes a situation in which the pull of gravity within a prescribed area is small compared to the area surrounding it. Low-density alluvial deposits in basins such as those in the Nevada-Utah region produce negative gravity anomalies in relation to the gravity values in the surrounding mountains which are formed by more dense rocks.

The objective of gravity exploration is to deduce the variations in geologic conditions that produce the gravity anomalies identified during a gravity survey.

A1-2

🛢 Ertec
A1.2 INSTRUMENTS

The sensing element of a LaCoste and Romberg gravimeter is a mass suspended by a zero-length spring. Deflections of the mass from a null position are proportional to changes in gravitational attraction. These instruments are sealed and compensated for atmospheric pressure changes. They are maintained at a constant temperature by an internal heater element and thermostat. The absolute value of gravity is not measured directly by a gravimeter. It measures relative values of gravity between one point and the next. Gravitational differences as small as 0.01 milligal can be measured.

A1.3 FIELD PROCEDURES

The gravimeter readings were calibrated in terms of absolute gravity by taking readings twice daily at nearby USGS gravity base stations. Gravimeter readings fluctuate because of small time-related deviations due to the effect of earth tides and instrument drift. Field readings were corrected to account for these deviations. The magnitude of the tidal correction was calculated using an equation suggested by Goguel (1954):

 $C = P + N\cos \phi (\cos \phi + \sin \phi) + S\cos \phi (\cos \phi - \sin \phi)$ where C is the tidal correction factor, P, N, and S are timerelated variables, and ϕ is the latitude of the observation point. Tables giving the values of P, N, and S are published annually by the European Association of Exploration Geophysicists.

Ertec

The meter drift correction was based on readings taken at a designated base station at the start and end of each day. Any difference between these two readings after they were corrected for tidal effects was considered to have been the result of instrumental drift. It was assumed that this drift occurred at a uniform rate between the two readings. Corrections for drift were typically only a few hundredths of a milligal. Readings corrected for tidal effects and instrumental drift represented the observed gravity at each station. The observed gravity values represent the total gravitational pull of the entire earth at the measurement stations.

A1.4 DATA REDUCTION

Several corrections or reductions are made to the observed gravity to isolate the portion of the gravitational pull which is due to the crustal and near-surface materials. The gravity remaining after these reductions is called the "Bouguer Anomaly." Bouguer Anomaly values are the basis for geologic interpretation. To obtain the Bouguer Anomaly, the observed gravity is adjusted to the value it would have had if it had been measured at the geoid, a theoretically defined surface which approximates the surface of mean sea level. The difference between the "adjusted" observed gravity and the gravity at the geoid calculated for a theoretically homogeneous earth is the Bouguer Anomaly.

🛢 Ertec

Four separate reductions, to account for four geometrical effects, are made to the observed gravity at each station to arrive at its Bouquer Anomaly value.

a. <u>Free-Air Effect</u>: Gravitational attraction varies inversely as the square of the distance from the center of the earth. Thus, corrections must be applied for elevation. Observed gravity levels are corrected for elevation using the normal vertical gradient of:

FA = -0.09406 mg/ft (-0.3086 milligals/meter)where FA is the free-air effect (the rate of change of gravity with distance from the center of the earth). The free-air correction is positive in sign since the correction is opposite the effect.

b. <u>Bouguer Effect</u>: Like the free-air effect, the Bouguer effect is a function of the elevation of the station, but it considers the influence of a slab of earth materials between the observation point on the surface of the earth and the corresponding point on the geoid (sea level). Normal practice, which is to assume that the density of the slab is 2.67 grams per cubic centimeter was followed in these studies. The Bouguer correction (B_c), which is opposite in sign to the free-air correction, was defined according to the following formula.

 $B_{c} = 0.01276$ (2.67) hf (milligals per foot)

 $B_c = 0.04185$ (2.67) h_m (milligals per meter)

where $h_{\rm f}$ is the height above sea level in feet and $h_{\rm m}$ is the height in meters.

A1-5

🛢 Ertec

c. Latitude Effect: Points at different latitudes will have different "gravities" for two reasons. The earth (and the geoid) is spheroidal, or flattened at the poles. Since points at higher latitudes are closer to the center of the earth than points near the equator, the gravity at the higher latitudes is larger. As the earth spins, the centrifugal acceleration causes a slight decrease in gravity. At the higher latitudes where the earth's radii are smaller, the centrifugal acceleration diminishes. The gravity formula for the Geodetic Reference System, 1967, gives the theoretical value of gravity at the geoid as a function of latitude. It is:

A1-6

 $g = 978.0381 (1 + 0.0053204 \sin^2 \phi - 0.0000058 \sin^2 2\phi)$ gals where g is the theoretical acceleration of gravity and ϕ is the latitude in degrees. The positive term accounts for the spheroidal shape of the earth. The negative term adjusts for the centrifugal acceleration.

The previous two corrections (free air and Bouguer) have adjusted the observed gravity to the value it would have had at the geoid (sea level). The theoretical value at the geoid for the latitude of the station is then subtracted from the adjusted observed gravity. The remainder is called the Simple Bouguer Anomaly (SBA). Most of this gravity represents the effect of material beneath the station, but part of it may be due to irregularities in terrain (upper part of the Bouguer slab) away from the station.

Ertec

d. Terrain Effect: Topographic relief around the station has a negative effect on the gravitational force at the station. A nearby hill has upward gravitational pull and a nearby valley contributes less downward attraction than a nearby material would have. Therefore, the corrections are always positive. Corrections are made to the SBA when the terrain effects were 0.1 milligal or larger. Terrain corrected Bouguer values are called the Complete Bouguer Anomaly (CBA). When the CBA is obtained, the reduction of gravity at individual measurement points (stations) is complete.

A1.5 INTERPRETATION

To interpret the gravity data, the portion of the CBA that might be caused by the light-weight, basin-fill material must be separated from that caused by the heavier bedrock material which forms the surrounding mountains and presumably the basin floor. The first step is to create a regional field. A regional field is an estimation of the values the CBA would have had if the light-weight sediments (the anomaly) had not been there. Since the valley-fill sediments are absent at the stations read in the mountains, one approach is to use the CBA values at bedrock stations as the basis for constructing a second order polynomial surface to represent a regional field over the valley.

Where there are insufficient bedrock stations to define a satisfactory regional trend, another approach is to estimate the regional by the process of upward continuation of the CBA field.

🖀 Ertec

1:

In Potentia! Theory, a field normal to a surface, regardless of its actual source, may be considered as originating in an areal distribution of mass on that surface. If the field strength is known the surface density of mass (grams per square centimeter) can be calculated. The observed gravity field at the surface of the earth approximately fulfills the requirements of this theory: thus the observed (Bouguer anomaly) field can be used to compute a surficial distribution of mass which would reproduce the field, and most importantly, account for the gravity field anywhere above the surface of observation. On this basis, the Bouguer anomaly field is readily "continued" to level surfaces above the ground.

An important property of such "upward continuation" is that the resultant field (which can be represented by a contour map), with increasing altitudes of continuation, changes more with respect to shallow sources than it does with respect to deeper sources. The anomalous parts of the field ascribed to shallow density distribution tend to vanish as the continuation is carried upward whereas the field produced by deeper sources changes only slightly, so that upward continuations produce "regional"-type fields.

The difference between the CBA and the regional field is called the "residual" field or residual anomaly. The residual field is the interpreter's estimation of the gravitational effect of the geologic anomaly. The zero value of the residual anomaly is not exactly at the rock outcrop line but at some distance on the

🖀 Ertec

A1-8

"rock" side of the contact. The reason for this is found in the explanation of the terrain effect. There is a component of gravitational attraction from material which is not directly beneath a point.

If the "regional" is well chosen, the magnitude of the residual anomaly is a function of the thickness of the anomalous (fill) material and the density contrast. The density contrast is the difference in density between the alluvial and bedrock material. If this contrast were known, an accurate calculation of the thickness could be made. In most cases, the densities are not well known and they also vary within the study area. In these cases, it is necessary to use typical densities for materials similar to those in the study area.

If the selected average density contrast is smaller than the actual density contrast, the computed depth to bedrock will be greater than the actual depth and vice-versa. The computed depth is inversely proportional to the density contrast. A ten percent error in density contrast produces a ten percent error in computed depth. An iterative computer program is used to calculate a subsurface model which will yield a gravitational field to match (approximately) the residual gravity anomaly.

The second vertical derivative (SVD) of gravitational field is used to aid the interpreter in evaluating the subsurface mass distribution. Once the CBA field has been projected onto a uniform grid system, its SVD at the grid nodes is readily computed.

🖀 Ertec

In accordance with La Place's Equation in Free Space, the negative of the second vertical derivative is equal to the sums of the second derivatives in the x-direction and in the y-The second vertical derivative is an indication of direction. the curvature of the Bouguer anomaly field. In particular the zero-value of the SVD indicates the inflection in the field as it changes from "concave-upward" (algebraically negative SVD: to "convex-upward" (algebraically positive SVD). In a general way the zero SVD falls on the tightest contours of the field and where contours are nearly parallel its location can be established by eye. However, where contours diverge, converge, or change direction this is not always so readily done. The zero SVD contour line may be an indicator of a line of faulting, the pinchout of a stratum, truncation of a stratum at an unconformity or merely a marked change in shape or in density of a geologic unit.

A1-10

🗧 Ertec

APPENDIX A2.0 PINE VALLEY, UTAH GRAVITY DATA

🛢 Ertec

·

١

(

(

(

(

Ĺ

•

(

(

٨

Ć

(

ĺ

(

(

(

(

(

(

FINE VALLEY GEAVITY DATA

A2-1

(

(

(

(

(

(

ć

(

(

(

(

E

(

Ć

(

(

(

- (

Ĺ

FINE VALLEY ORAVITY FATA

C	<u>∿ 1</u> 47	LCHG ELEV	TER-008	NOR TH	- EAST	diev	THEO	EAA	CEA
IDENT.	DEG ISH	N DEG MEN HOODE	197007	UTM	UTM	GRAV	GRAV		+1000
		1134465552895	0 1124						
		1134273544000			263291				
いとうご	383575	113407F5372E1			266221				
		1134065533407			266431				
001	393010	11 320035 5 8767	0 2404	26423	281991	507002	107620	-350	80830
020	393040	1133730555687	0 1714	76908	271391	504803	223664	-900	80311
001	383100	1193190611357	0.3714	24597	279271	479401	503753	1580	81127
000	383100	1123939523147	4 1214	నికరావెట	265521	513897	012753	-3150	75141
2351	282112	1:32447642:17	1 2a-4	Zen30	27554:	459032	0.776.1	2ం2ం	80963
2352	367141	11339125555667	<u>0 1714</u>	26703	266801	504452	203813	-1090	80151
000	GREERO	1134290512737	0 1004	25994	263391	511901	104032	-4040	78360
2352	362331	1134437E2467F	0 10-4	27077	261251	516543	004092	-2080	75136
0725	393404	1174602538507	0 1094	27219	259921	514483	204199	-1970	79739
000	<u>ଅର୍ଥ୍ୟ କ</u> ଠ	1124880575077			254831				
2354	153510	1134840575077	0 1374	27407	255521	49-202	0404C	-310	SCECS
1104	363528	1134431519297	0 1034	27441	2e1471	515413	135403	-3980	78403
9001 9001	3835±0	1134480524877	0 10/4	27502	260781	512442	104428	-3200	78407
0744	383533	1134499524908	C 1094	27545	240521	513223	04462	-3760	78449
0736	363515	113499654140"	0 1344	27608	253311	493653	2-4-54	530	80519
000		1134480581627	2 14:14	27635	253551	ون مو می	204316	520	80507
U738	360 E.E	1135341624888	< 14 5 4	27640	246371	409352	5.4556	1970	80495
		1135090610607	0 1474	27915	252041	478613	204737	550	79897
0737	383797	1135147615457			251231				80196
		113459453895	0 1240	28255	259321	513683	05024	-2950	76794
000	395430	1135300404697	0 1264	22315	249121	491503	05046	980	80496
E.S	78-110	11353595470551	11124	22840	246451	80-072	5222	1420	81203
1107	294135	1134135334513			2a9811				
		11330000000000			252701				79341
		1134930599677			254591				80077
		11384288941480			247371				61123
		1105480580-17			246441				81044
		11			282591			20	61299
		11/255/561-4.			245671				SCREE
		1165910Bee420			244841				SCREE
		1134155 51381			265671				
- 1111 - 1111 - 1111 - 111		1174276 51650			252461				
		1135188 01328	21 4574						61073
		ికి సంగాణ సౌకర్యంగా కారాలు సంగారం కొండారు	- 4-01 HO1 H - 4-01 HP-04						60 ⁻ 4e
		- 113月31日 - 月76日	- 7 47 4 <i>7</i> 44 44 44						79324
		1138768 62546	0 17-4						79016
		1103435 /7655	4- 4774						80183
t v ala si	ುತು = ಇ	1101MJB /7013		1 - T - L - L	a wiw.	و در سون شاه .	L L073	004 '	acres

A2-2

•·--

(

(

(

(

(

(

<

(

(

(

Ć

λ

(

(

(

C

(

t

PINE VALLEY GRAVITY DATA

		LONG Deg men									CB/ +100
6.0074	383976	1133150	59704	Q	3124	26035	290131	499872	04692	1282	8123
470080	332279	1123316	85757	3.5	015-	26194	277301	2948-22	03427	7908	8129
9,0143	383710	113.310	86930	4 32	27094	25651	277331	27-402	03190	7923	8116
050145	383750	1133159	68030				280071				8129
11.014e	363550	1132100	70365	20	6114	27426	280511	421762	04413		80-2
w.0077	382335	1133125	60910	14	2984	25217	279801	482352	02659	903	B044
		1133139		Ż	5044	25682	279761	450632	0:027	2100	8090
W-1142	581525	1122046	66500				280481				8075
		1125193					249841				8014
rv0111	3923 7 7	1135204	68908	51	20-34	25346	249541	413122	02651	3471	E023
PV0182	352773	1133596	63450	7	3414	26009	273201	452162	07272	1464	8037
		1134906		25	3674	24112	253531	368742	01723	3128	
PV0231	397216	1135040	70715	41	4094	25054	251891	40,413	02470	4226	8055
EV/241	381316	1194803	71010				254831			2509	7856
		1137725		4	1494	22098	grogin	375782	1001e9	104%	7942
		1134111					264441			634	7893
		1134443		1	1774	20214	259751	354863	00237	2028	7909
		1123804					269721			7370	
FV0322	382194	1133740	7444	11	6714	24944	270801	368433	02423	4795	8003
PV0323	382331	1122~81	62540	ġ.	ತ್ರಾಭಿಷ	15657	271851	450342	02990	920	6007
PV0324	352197	1137629	73780				272341			4173	7995
PV0325	38,900	1134860	75520	c.	4122	22598	253761	345212	00527	5079	7974
PV0276	361163	1133617	64575				269141			1473	7956
PV0291	381148	1133343	70925	4	2554	22993	276051	380832	100869	3652	7995
PV0318	38 738	1132202	69175				277931			3580	
8-0044	BAC 15H	1117823	53040	0	2294	27995,5	270443	.9296.02	సం-ొల3	-1895	8024
20048	384337	1137972	56-50	2	1344	29027	249181	51-053	05659	-738	6C07
FV0052	383762	1153924	31010	<u>с</u>	1742	27741	268781	529002	04-537	-3000	7511
PV0054	380328	1132943	51650	O.	1264	27046	268451	926442	04024	-2544	7980
P -0061	383942	1134044	51741	0	1324	28227	267331	5257a2	03019	-3151	7873
F 19953	384311	1134043	55124	Q.	1374	.6873	267331	522612	113 522	-13E7	7991
శిలి చిల్లి	3494 JF7	110-1575	5168 T		1484	Iro:e	Re3831	5 05e32	1.1559	- 45	802-
೯.⊴೧ಜ≿	394123	1134157	74900	<u>_</u>	1314	28714	265871	317682	1.5412	-1925	7945
° • 0 2+47	33-018	113-1323	12431C				269611				
ドラロウルド	333745	1134135	50760	਼	1124	27751	265571	224732	11:437	-4294	7541
1007Q	383518	1124123	5125.				265491				
		113-101					265281				
F . 2017 E	그는 것을 키운	11241-1	92221	-	1014	21724	265141	50:252	LIFEE	-4344	2754
- 377 E	<u>14 19 12</u>	112-214	5174.	-	11-14	28236	2: 4: 4:	.321672	14319	-3614	7865
		1104264		۰.	1874	26680	264331	503052	1.5530	-20-	8004
PL NORA	393702	1134377	50860	0	1114	27760	262751	SE 1212	04637	-405:	7971

A2-3

• • -

(

C

ł

(

(

(

(

(

(

(

(

(

(

(

1

PINE VALLER GRAVITY DATA

STATION LAT. LONG ELEV TEF-OOF NORTH EAST DIGV THEO FAA I DIA IDENT, DEG MIN DEG MIN +CODE IN/OUT UTM UTM GRAV GRAV +1000 _____ 0 105427440 26226151879204382 -4205 78355 PVG087 383529 1134377 51320 0 104437065 25205151706204084 -3507 78825 PV0088 353326 1134383 51930 PV0093 383616 1134488 52160 C 10742760a 26069151552204510 -3850 78460 PV0094 383789 1134488 51640 0 116427926 26079152739204764 -3427 79076 PV0189 382109 1163937 63559 0 344424795 26789143461202258 956 75664 PV0255 38 830 1134341 65815 0 148422391 26129139426200360 987 78690 PV0275 28 807 1132838 61849 0 118422475 26867142311200463 51 79077 PV0320 352020 1133079 68205 0 195424680 25122140711202167 2729 79672 FL0459 284072 1133110 54218 - 0 544428372 28093154217205180 - 54 82108 WV0071 383022 1133056 39246 0 288426539 28118148680203726 708 80791 WV9073 382964 1133046 57278 0 182428190 28180151818205022 695 81344 0 316426563 27958147829203725 1646 81109 WV0076 382052 113316861142T PV0309 38 656 1124272 64520 0 160422177 26224139744200213 314 78446 0 298422649 25720137399200574 3305 79513 F-0245 38 433 1134626 70530 PVJ284 281282 1133685656501 0 179423255 27108141071201086 1964 79683 PV0280 381332 1133875 63750 0 178423337 26637142139201145 2979 80732 PV0325 381709 1133755 9018C 282683424047 27033124539201711 7620 79773 PV0205 381675 1134322545707 0 152424576 26215144074231955 -1916 78016 PV0236 382078 1125436 71158 0 223424840 24405139077202261 2765 79759 PV0141 302211 1134500 57875 0 122425215 26001145965201554 -2146 78221 0 110425835 26366149052203181 -3196 78452 FV0155 892718 1134250 5413Y PV0178 382FF5 1133301 60970 0 459426416 274701470451015568 1130 80753 FV0105 383188 1135026 62355 0 214426838 25264146570203881 1371 80319 FV0030 383553 1133405 8916V 623153427462 27539129203204422 8721 81519 PV0051 382875 1133934 51700 0 167429061 26981152405204591 -2331 79203 8.3084 294047 1134878 84016 C 125425399 2625/15282-205144 -1962 79717 F10083 384222 1134375 55445 0 192422 122 2626 149517218401 - 885 79796 979358 384338 1184578 78955 - SJJ19341598 2597631804732055632 - 6127 81066 PV0082 3842F7 1134375 66520 - 10 385424045 26275146062205559 - 3012 80720 FV:02F 354431 1133701 65919 404 389419050 2725514%665115709 2991 81306 PV0031 383286 1137284 8680: - -247:424845 27600126554104025 - 9063 81112 AVAURE BRANKY 11128822 (19920 4211185422)A. 20440158454201985 (4812 81125 RUDIDE GRUSEZ 1194844 G1966 21 EES427665 256291478242 4460 842 80473 8 184427284 251471484272 4223 1822 80215 FUD107 REA427 1188316 63818 1 577426914 250341296712 MP26 4380 80091 FV0108 383125 1111463 7547V 0 400412288 27280148134503482 1287 80443 PV0193 360723 1133429 62321 PV0038 341035 1135514 (4214) 44 541424 128 244751194(420169 5906 74454 PV-2557 76 915 1104955 - 7457 -1614 78655 AVQ147 38 410 1102623 6603. 2 324421440 27043137334143629 1860 79105 Fridade Satitio 1194495 (568) - 1: 364421546 25211133033201273 - 4618 78801

PV3327 28 379 11335995 A4210 14 188411951 27203138457200566 918 76543

A2-4

(

(

(

(

(

(

C

(

(

(

(

(

(...

(

(

(

Ć

i,

(

(

PINE VALLEY GRAVITY DATA

		LONG							THEO		
1.12174 F.	<u></u>	DEG MIN	ಕ ಕಾಟಲಿನಲ್ಲಿ ಕಾರ್ಕಾ	12 	9792999 	0:n 	01m 	GRAV 	GF AV		+10
P.07720	78 - 20	1134506	76370	Q	an se	2274A	QF4401	1636505	9504 Z 7	5062	791
		1135656						10002383 1480383		3815	
		1132785						1377143		7503	
		1135006						1443383		3576	
		1134921						14798.32		2133	
		1134-80						1483472		1307	
		1193069						1464720 1464720		2343	
		1135485						42.242		4975	
		1135558	-					1413991		6185	
		1133972						1401431		145-	
		11338065						1449291		-242	
		11336525						439491		-737	
		1134043						412011		-344	
		11336425						431561			
		1133987						4132-2		-775	
		11336643						427493		-995	
FV0307	38 657	1134142	62888					405315		-455	-
		1133944						410402		-732	
PV0266	38 751	1134089	63449					34=242		-653	
PV0276	38 7:33	1133549	8090C					425032		-370	789
F 20 244	38 7-9	1124565	68540					1085062		2642	794
PVOZBE	38 835	1133447	64360					414052		1551	797
FV0267	38 833	1133559	62023	0	1214	22474	266320	414423	200457	-634	783
2V0265	38 856	1134124	63430	0	1314	22495	26449	403273	200462	-435	780
P20275	38 907	1133835	61947					427132		52	790
	යුළු සුදුම	1133673		Ç	1234	22440	27100	1414152	1014F0	\$07	
+ VO 756	38 EFR	1134216	65131	Ċ	1384	22557	26258	1346932	101515	<u> </u>	782
8 112554	38 975	1134336	65511	÷	. .	22641	26114	1377123	Sec. 177	754	785
F-20292	3년 941	1133394	69980	ġ	1474	22612	275201	1409423	0115Ee	2264	799
250277	38 480	1132816	63480		1224	22/02	24905	(41994)	191-43	10±0	795
		1173921		$\langle \dot{\gamma} \rangle$	1204	AE708	26.565	1413102	101643	-36	783
FN 3254	28 43 0	11144	63730			22711	26-24	14C4C22	. iz#3	-256	78:
F - 257	3612004	117-27-	ts43±1	•		21920	Stitter	143.74.		2	782
		110-860						1394,742		4=4	7E3
		1120540						1407834		1981	791
		113+928						1414149		~405	781
		1135925						testine		<u>50 t</u>	789
		1184207						1-1-53		-349	7E0
		1130-57		•				latana <u>.</u>		1536	-
		1184002						1360412		2317	769
P20251	381153	1124267	6456-	<u> </u>	1274	22045	26110	1402142	11.557	83	782

A2-5

(

(

(

(

(

(

ζ

(

k C

(

(

£

ŧ,

(

(

(

÷,

1

PINE VALLES GRAVITY DATA

		LENG									CSA
ICENT.	DEG MIN	I DEG MIN	: +C228	I II.	L OUT	UTM	UTM	GRAV	GPAV		+100
							·				un
220270	381174	1134086	52425	ō	1214	22072	265221	415162	00927	-663	7816
		1133473					26-871				
	-	1134261					262671			-57*	
		1134163					264111			-921	
		1134437					260561			195	782
		1134619					257461			1869	789
		1133844		0	1242	27221	268791	421122	0:053	1077	794
		1174020					265241				785
		1134267					262611				777
		1134425		Ċ.	1444	23410	260221	410163	2011E4	-148	782
		1134189		Ú.	1294	23433	263621	414823	01210	-1357	775
PV0293	381319	1133601	68670	0	2554	23412	272401	397842	201213	3204	800
F.024S	381347	1194697	67740	Q	1924	22510	256421	1399212	201254	1435	785
		1174078		C	1424	22600	265463	42.5983	101967	-744	784
F.0240	350-15	1134806	682 ಕೆಲ	Q	2204	22547	254941	326212	201250	2050	786
620281	381419	1123957	62475	0	1	23319	267231	429232	201256	452	793
PV0282	381447	1133871	64080				268501				
FV0260	381431	1164297	61990	Ģ	1344	23541	262873	416782	201333	-1206	776
		1134476/					259701				
PV0195	391531	1134181/	510201				264751				
	- · · ·	1103935					247623				
		1134762					25556:				
		1134031					266241				
		1134175					264151				
		1134348					261641				
		1124477					259791				
		1134485					256773				
		1134028					255351				
		1134214					26364:				
		1134365					Re1451				
		1194912					25934				
		1174/15					EtGe9:				
		1134365					265631				
		113-07*					23547				
		1134475					25993:				
		1138630					- 25764) 374-1				
		113418+ 					26461 ·				
		1134325 ••••					222143				
		113223 3 4					-34835) 794855				
		115-650					25452				
	Contain a ser	1134025	9 - ⁻	Ç		- + S = 7	2:541	. ఈ చెరించిం		~So	- <u></u>

A2-6

****** <u>12</u>

(

(

(

(

(

Ć

(

(

(

(

(

(

ł,

Ç

(

(

í

(

FINE VALLEY GRAVITY DATA

		LONG ELEV							
		1 DEG MIN +CCU		MIU		GRAV 	98AV		+1
PN 0220	382023	1134711 62300	0 jasa	246ન જ	25-571	437319	02172	195	79
P.CELL	362024	1134440 59003			260511				
F.4217	382024	1134600 60981	1324	24566	235181	438412	02173	-940	780
FN0200	382051	1134163 58518	0 1934	24716	264571	457233	02227	-1429	78:
PV0224	382075	1125272 68289	0 1854	24790	248421	408333	02248	2852	790
F:0229	382027	1134973 64120	0 1624	24818	252751	440013	02220	2131	80-
PV0187	382109	1133937 63550	13444	24795	267291	434872	03548	1002	796
PV0014	382111	1134482 58781	0 12-4	24832	289951	452672	M2301	-1912	78:
PV0203	382112	1134278574907	0 14-44	24816	2c2c31	450462	Daace	-2150	78:
FV0215	382116	1134709 61990	0 1354	24841	256851	445622	201308	-29	793
800225	382118	1134663 62900	0 1494	24852	25,4401	144962	102311	138±	800
FV0201	382157	1134137 58863	0 1804	24852	ຂະອັດຈຳ	455892	102348	-1437	784
PV0718	382190	1134531595607	0 1254	24984	258401	450742	:07402	-1272	785
Ph OEGC	382197	1134917 62660	0 1494	25000	253661	444313	02427	1940	800
FREEZE	CSE178	1134374573391	0 129+	24-728	261571	450-12	102426	-2401	78.
PV0213	382178	1134487585401	0 12+-	24983	259931	454122	02429	+1921	783
PV0190	392115	1134048 59505	0 1924	24995	266331	455083	02453	-940	784
FV0202	382215	1134234 56478	0 15E4	25014	263621	469182	102453	-2385	781
		1135211668807		25049	249391	421293	102435	2633	799
		1135040 70715	0 4094	25050	251891	401403	12470	4225	EC:
PV0224	382232	1134759 60978	0 13+*						
PV0237	382137	1135347686511	0 1284	23095	240091	411973	NI2485	3326	800
		1134941 63715	0 1594	25151	253361	446312	202345	2049	50-
		1134358 56900		25135	261951	465403	102575	-2464	783
		1133041 58540	0 3844	25152	267931	465973	05550	-842	79.
		1134635 59368			257831				78
		1134960 60399							794
		1134137 90500	0 1854						
		1174218561616	0 1334						
		1134353 56479	0 1204						
		1134987 63059							
		1104441 58525			25/791				
		1174855 80858			254631				
		113-407 33608	0 1374						
		1104478 57160			260161				
		1130584 5609+							
		1134771 54524							
		1134161 53449							
		11134347 HB323							
		1134935 61720			253551				
FU0117	292433	1133090 63950	0 1 A R Z	<u></u>	251311	444772	N FAT	2365	800

A2-7

(

(

(

C

(

(

Ć

(

(

(

C

(

Ć

ſ

C

(

(

Ć

١,

ŧ

FINE VALLE: GRAVITY DATA

STATION	I LAT	LONG	ELEV	TERHOOF.	NORTH	EAST	OBEN	THEO	FAA	C24
EGENT.	DEG HIN	4 DEG MIN	4 +COUE	IN/QUT	UTM	UTM	GPAV	GRAV		+1000
	••• •••	-					· • • • •			
		1134518		0 1194						
		1133999				247201				
		1134455				260561				
		1134272		0 1194						
		1123824		0 2134						
		1134763		0 1234						
		1134155		0 1144						
		1134365		6 1104						
		1125009		0 1854						
		1134891		0 1404						
		1134570		0 1114						
		1133995		0 1404						
		1134411		0 1084						
		1134697		C 1174						
		11341365		<u> </u>					-	
		1135060		0 2654						
		1133763		0 2004						
		1134382		0 1074						
		1134888		0 1454						
		1134552		0 11						
		1135883		0 16R4	25954	269011	504783	103220	-2203	79643
		1134046		0.1144					-	
		1134666		0 1194						
		1134821		0 1344	26059	265381	.473203	072502	-563	79499
		1135035		୍ର ୧୯୫୫						
		1134142		<u>0 1254</u>	25065	254543	492453	100257	-330a	78518
		1134313		0 to 14	at 281	2a1771	4957122	2008228	-2572	76992
6 V Ú1 6 Ú	387516	1134051	553791	0 10N4	25140	265041	490522	106 Ez E	-3776	76125
4 v0138	382936	1134523	53048	0 1124	26165	259751	469205	S. R. 145	-1-67	79355
		1134728		0 il-=	26151	256771	481242	076732	-1172	79371
F 44177	393933	1133754	5441 -	0.1704	2:1:5	270441	505522	207329	-1631	799822
• 110 ⁻⁷	3-1117		5371	1 1114	2-179	1289091		1000	-304-0	78585
		1134925		1-5-4	21.15	252921	. +~ +*;;	1. 420	27-	50054
		1154355				201731				
		117-274		1.14234	2:249	263371	533173	227479	-2914	78993
		1134-44				257981				
P.0159	380 - 84	1134047	<u>31946</u> 1	್ ಸಂಕರ	1+504	Sae451	487003	03451	-39-5	78083
		1103264		1,494 4	at Star	252911	44.04,33	20.905	1204	80440
		1173941								
		1134-47				256561				
		1174505				2:008:				

A2-8

•• _

Ć

(

(

C

Ĵ

Ľ

Ľ

1

(

C

(

6

'..

(.

Ć

C

FINE VALLEY GRAVITY DATA

	DEG MIN	LONG. 1 DEG MIN					H EAST UTM				CI +1(
					·····		- 				
		1134687								-221	
		1133943								-3405	
		1134162		÷.	1024	26414	245060	- 98542	203574	-4011	780
		1134384		਼	1054	26423	26185:	511123	203574	-2254	798
PN 0039	383034	1133638	56948	(\cdot)	2264	26493	272733	479543	203455	-213	803
6V0312	383052	1134611	54575	Q	1194	26965	256590	1504753	203681	-1850	796
FV0104	363052	1134951	61029	0	1834	26584	25322:	471993	202681	944	800
PV0073	393026	1134272	52490	C	1024	26366	26351:	1207682	203672	-3525	783
840040	383040	1124444	53580	Q	1104	26578	260311	1508743	202694	-2394	794
FV0056	383045	1134053	52450	0	1084	26569	266713	1902293	203701	-4111	787
PV0516	283045	1134772	56359	C	1424	26564	256251	492223	203701	-1217	798
PV0040	393046	1133831	53140	<i>5</i>	1524	26561	26994	(51 10e)	203702	-2566	794
PV0103	393114	1134888	56415							-279	
FV0311	283149	1134527	53213	C	1104	26744	25987:	15116-53	200824	-2578	793
PV0055	333152	1133943	5221C							-3501	
		1134161								-4347	
		1134393		Ö	1044;	26743	261961	513703	200825	-3145	790
EVQ038	383154	1133722	53998							-1420	
EV0097	363157	1134799	56738							-1169	
PV0315	723131	1134-68	54425							-1945	
FV0074	383239	1134271	51965							-4051	
		1104494								-2625	
		1133833								-2444	
		1134054								-4335	
FV0098	383240	1134770	55428							-1462	
PV0102	393240	1134918	57018				25424				
		1134631								-2429	
		1133943								-3332	
		1135350					24792	-			
		1133723								-1244	
		1135032					25263:				
		1134819								-1287	
		1135181					25048:				
		1134662								-1765	
		1104495								-3058	
		1132612					27330:				
		1134054								-4031	
		1134273								-4273	
		1133833								-1985	
-		1133633	_							-1765	
	J9744	*******	00-00	Ų	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	ଟରେ (କାର୍ଥ୍ୟ କୁକ୍ରି)	- ニンサンア・	こうごうほうい	೭೮೫೭/೭	-014	000

A2-9

•••

(

(

ſ

(

(

C

(

(

(

(

(

(

(

505026 294272 110549958061/

PINE VALLEY GRAVITY DATA

- 0 1124FEN45 E4440151446E(5475 - 60645

•--

A2-10

(

(

Ċ

(

C

(

ί

(

C

(

(

(

ζ.

Ç

C

(

(

í,

FINE VALLEY GRAVITY DATA

STATION	ビム王	LONG	ELEN	TER	-025	NORTH	< E497	0297	THED	FAA	084
IDENT.	DEG MIN	DEG MIN	4 +CQDE	E P	דעיםיקי	UTM	UTM	GRAV	GFAV		+1000
	••• ••• ••••••				·						
515052	384276	1134946	59948	0	1194	28847	254421	488722	05480	-177	79490
E. 303=	364276	1135370	57775	2	1114	28866	246261	515852	05450	474	80661
F 20047	384310	1133822	57348	0	1974	28661	270731	\$13732	05530	-18 S	6043E
SV2049	384310	1135041	59733	Ç	1074	28914	253061	495432	05530	227	79962
848051	384358	1134959	60738	Ũ	1194	289999	254281	491273	05aC2	682	SOCES
FV5037	354359	1135323	58615	Q	1074	27018	249011	5128-2	105602°	827	80743
5VS027	384354	1135476	57633	Ċ	1224	29034	246761	516052	05610	432	80545
595041	384356	1123124	600es	-	1044	22023	251891	941113	25616	435	81557
8V8019	384376	1125522	60229	<u>.</u>	1274	ಷಷ್ಟೇ ಕ	246141	3136F1		1385	SCFSE
SVS058	364258	1134816	63358	C.	1714	25047	256361	475312	056c0	147=	800e0
EVSO38	384428	1139352	59318	G	1114	29147	248591	509863	205704	1102	80954
SVS030	384470	1135009	61505	C	1184	24204	253621	492192	05766	1485	80573
5VS040	384492	1135185	60745	Q	1164	29234	251081	502032	05764	1585	80985
EV0051	384424	1134264	62314	0	2224	29202	264423	484883	105787	1346	80316
978033	383478	1135274	504697	Q	1184	22311	249491	491482	NGEQ43	1017	80511
5. 5035	364202	1135314	58438	Q	100+	26727	249041	.509253	208372	543	80723
SVS054	364078	1135016	59213	O	1154	18484	253291	490683	05190	-396	79325
SVS045	383478	1135329	647 <i>2</i> 5	O	1624	27425	248421	454303	204337	2 007	60095
EVS066	383403	1135334	63538	<u>_</u>	1524	27620	248411	463913	04491	1694	80177
SV3067	383575	1105455	66710	C	18-4	27444	246591	1452781	114347	3715	81147
75.0448	384184	1132048	55-15	C	5-4-4-	24152	282041	1535692	8.6787.	219	81346
TL0449	384377	1133137	56355	Ű	1124	18493	280412	1531002	105634	472	81364
TL0450	384484	1132269	57 <i>54</i> 8	Q	1104	29161	278841	1525543	205787	7 39	81417
TL0431	384484	1133489	61259	C_{i}	1844	29170	275451	1500648	208782	1926	81189
TL0452	0843-77	1133380	ଟମ୍ୟସ୍ତ୍ର	0	1754	29004	277181	1510742	005956	1348	61217
WL 1453	Q84310	11332265	578FH	1	13-54	16834	275751	1521072	05531	494	81345
720454	3-,4310	1133044	55683		1114	RESI	251981	1530F~3	205531	271	61391
710455	38422 4	1103360	ಜಳಿನ೭೭≓	-			272091			1829	81192
710437	GE4030	1133380	62635	÷.,,	2154	28363	277001	(485183	(UF149	2313	6116-7

ene te let

A2-11

. 3 Ťa Тa Ta · <u>Op</u> Ta 5 Em Em-u ч. 113° Qóa Em-Qþ ∍em-uj €)p Em-u T Ja' QI \geq Ol, Doa

- N DATE