L OF L						in the	هند
		Contraction					
		4 . A.					

MX SITING INVESTIGATION

GRAVITY SURVEY - HAMLIN VALLEY

NEVADA

Prepared for:

U.S. Department of the Air Force Ballistic Missile Office (BMO) Norton Air Force Base, California 92409

Prepared by:

Fugro National, Inc. 3777 Long Beach Boulevard Long Beach, California 90807

7 February 1980

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) READ INSTRUCTIONS **REPORT DOCUMENTATION PAGE** BEFORE COMPLETING FORM REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER NI 4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED MIX STUDE Procestigation Bracity Screek - Hominin Colley NU 11,201 6. PERFORMING ORG. REPORT NUMBER <u>FN-TR-33-HV</u> 7. AUTHOR(S) ACT OR GRANT NUMBER(S) Figre National F04704-80-C-CLC4 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 9. PERFORMING ORGANIZATION NAME AND ADDRESS Entre Western Ine Germerly Furne National, PC. 130X 7765 64312 F Long Broch Ca 90507 11. CONTROLLING OFFICE NAME AND ADDRESS U.S. DEPONTANENT & JUE, JUFFORCE STOLE ORICE MISSILE SUSTEMS COOPENING 12. REPORT DATE N.C. 7 Feb 13. NUMBER OF PAGES 10 CHONAERS (OG GULCA (SAMSO) 14. MONITORING AGENCY NAME & ADDRESS(IL dillerent from Controlling Office) 15. SECURITY CLASS. (of this report) 15#. DECLASSIFICATION DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) Distribution Unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) Distribution Unlimited 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse aide it necessary and identify by block number) Statut (Manualy, Depth & Rock, Valley Fill, Faults, Gravity Prefile, Graben 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Gravity measurements were made in Humlin Walky for the perpete destimating the overall shope dure structure win 4 the thickness of allowed fill The estimates will be useful in medeling theolynamic response of ground metion in the basin t in evaluating ground-water resources. DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

FOREWORD

Methodology and Characterization Studies during fiscal years 1977 and 1978 included gravity surveys in ten valleys in Arizona (five), Nevada (two), New Mexico (two), and California (one). The gravity data were obtained for the purpose of estimating alluvial gross structure and shape of the basins and the thickness of the valley fill. There was also the possibility of detecting shallow rock in areas between boring locations. Generalized interpretations from these surveys were included in Fugro National's Characterization Reports (FN-TR-26a through e).

During the FY 77 surveys, the measurements were made to form an approximate one-mile grid over the study areas, and contour maps showing interpreted depth to bedrock were made. In FY 79, the decision was made to concentrate the available funds on the basic Verification Program to verify and refine suitable area boundaries. This decision resulted in a reduction in the gravity program. Instead of obtaining gravity data on a grid, the reduced program consisted of obtaining gravity measurements along profiles across the valleys where Verification Studies were also performed.

The Defense Mapping Agency (DMA), St. Louis, was also requested to provide gravity data from their library to supplement the gravity profiles. For Big Smoky, Reveille, and Railroad valleys, a sufficient density of library data is available to permit construction of interpreted contour maps instead of two-dimensional cross sections.

In late summer of FY 79, supplementary funds became available to begin data reduction. At this time, inner zone terrain corrections began on the library data and the profiles from Big Smoky Valley, Nevada, and Butler and La Posa valleys, Arizona. The profile data from Whirlwind, Hamlin, Snake East, White River and Garden Coal valleys, Nevada were available from the field in early October, 1979.

A continuation of gravity interpretations has been incorporated into the FY 80 contract and the results are being summarized in a series of valley reports. The reports covering Nevada-Utah gravity studies will be numbered, "FN-TR-33-", followed by the abbreviation for the subject valley. In addition, more detailed reports of the results of FY 77 surveys in Dry Lake and Ralston valleys, Nevada are being prepared. Verification Studies are continuing in FY 80 and gravity studies are included in the program. DMA will continue to obtain the field measurements and it is planned to return to the grid pattern. The interpretation of the grid data will allow the production of contour maps which will be valuable in the deep basin structural analysis needed for computer modeling in the Water Resources Program. The gravity interpretations will also be useful in the Nuclear Hardness and Survivability (NH&S) evaluations.

The basic decisions governing the gravity program are made by BMO following consultation with TRW Inc., Fugro National and the (DMA). Conduct of the gravity studies is a joint effort between DMA and Fugro National. The field work, including planning, logistics, surveying, and meter operation is done by the Defense Mapping Agency Hydrographic/Topographic Center (DMAHTC), headquartered in Cheyenne, Wyoming. DMAHTC reduces the data to Simple Bouguer Anomaly (see Section Al.4, Appendix Al.0). The Defense Mapping Agency Aerospace Center (DMAAC), St. Louis, calculates outer zone terrain corrections.

Fugro National provides DMA with schedules showing the valleys with the highest priorities. Fugro National also recommended locations for the profiles in the FY 79 studies within the constraints that they should follow existing roads or trails. Any required inner zone terrain corrections are calculated by Fugro National prior to making geologic interpretations.

,

TABLE OF CONTENTS

	<u> </u>	age
FOREW	ORD	i
1.0	INTRODUCTION	1
	1.1Objective	1 1 4
2.0	GRAVITY DATA REDUCTION	6
3.0	GEOLOGIC SUMMARY	7
4.0	INTERPRETATION	9
	4.1 Regional - Residual Separation4.2 Density Selection4.3 Modeling	9 10 11
5.0	CONCLUSIONS	15
BIBIL	OGRAPHY	16

LIST OF APPENDICES

APPENDIX

A1.0	General	Princi	iples	of	the	Gravity	Exploration	Method
A2.0	Hamlin N	Valley	Gravi	ty	Data	a _		

ł

LIST OF FIGURES

Figure Number

1	Location Map - Hamlin Valley, Nevada-Utah
2	Profile Location Map - Hamlin Valley, Nevada-Utah
3	Gravity Station Location Map - Hamlin Valley, Neveda-Utah
4	Interpreted Gravity Profile HV-1
5	Interpreted Gravity Profile HV-2
6	Interpreted Gravity Profile HV-3
7	Interpreted Gravity Profile HV-4
8	Interpreted Gravity Profile HV-5
9	Interpreted Gravity Profile HV-6
10	Interpreted Gravity Profile HV-7
11	Interpreted Gravity Profile HV-8

.

LIST OF FIGURES (CONT'D)

Figure Number

Interpreted Gravity Profile HV-9
Interpreted Fault Relationships

1.0 INTRODUCTION

1.1 OBJECTIVE

Gravity measurements were made in Hamlin Valley for the purpose of estimating the overall shape of the structural basin and the thickness of alluvial fill. The estimates will be useful in modeling the dynamic response of ground motion in the basin and in evaluating ground-water resources.

1.2 LOCATION

Hamlin Valley is located principally in Lincoln and White Pine counties in east-central Nevada with portions in Millard, Beaver, and Iron counties, Utah (Figure 1). Hamlin Valley is approximately 180 miles (300 km) NNE of Las Vegas, Nevada. U.S. Highway 50 crosses the north end of the valley. There are no paved roads within the valley, but access is generally good along well maintained ranch and mine roads. The nearest towns are Baker, Nevada and Garrison, Utah, along Highway 73 near the northwest corner of the valley.

Hamlin Valley is bounded by mountain ranges on three sides and open to Snake Valley on the north (Figure 2). The Burbank Hills and the Needle Range form the eastern boundary of the valley. The Snake Range and the Limestone Hills comprise the western side, and the White Rock Mountains form the southern border. Most of the valley is undeveloped rangeland with several ranches and agricultural fields along Hamlin Wash.

1.3 SCOPE OF STUDY

The Defense Mapping Agency Hydrographic/Topographic Center/-Geodetic Survey Squadron (DMAHTC/GSS) obtained 255 gravitational field measurements along nine cross valley profiles in Hamlin Valley. Profile positions are shown in Figure 2 and the locations of the individual stations are shown in Figure 3. The profiles are oriented approximately east-west. They are between 6 and 14 miles (11 to 23 km) long and are spaced approximately 5 miles. (8.5 km) apart. The gravity sampling interval was 1 mile (1.6 km) over the central valley section and .25 mile (.4 km) near the valley boundaries. The more dense sampling was used on the valley flanks to define any steep gravity gradients associated with boundary faults and to resolve anomalies with high spatial frequency that could be associated with shallow bedrock.

The tolerance for establishing the station elevations was 5 feet (1.5 m), which limits the gravity precision to .3 milligals.

+

2.0 GRAVITY DATA REDUCTION

DMAHTC/GSS obtained the basic observations and reduced them to Simple Bouquer Anomalies (SBA) for each station as described in Appendix Al.O. Up to three levels of terrain corrections were applied to convert the SBA to the Complete Bouguer Anomaly (CBA). First, the Defense Mapping Agency Aerospace Center (DMAAC), St. Louis, used its library of digitized terrain data and a computer program to calculate terrain corrections out to 104 miles (167 km) from each station. When the program could not calculate the terrain effects near a station, a ring template was used to estimate the effect of terrain within approximately 3000 feet of the station. The third level of terrain corrections was applied to those stations where 10 feet or more of relief was observed within 130 feet. In these cases, the elevation differences were measured in the field at a distance of 130 feet along six directions from the stations. These data were used to calculate the effect of the very near relief. The CBA data for the Hamlin Valley stations are listed in Appendix A2.0.

3.0 GEOLOGIC SUMMARY

The structural geologic setting, major rock types, and depositional regime of the valley fill material are important considerations in the interpretation of gravitational field data.

Hamlin Valley is an elongate north-south trending alluvial basin exhibiting typical Basin and Range structure. Block faulting has formed this strong north-south physiographic framework. According to Hintze (1963), a fault concealed by alluvium parallels the eastern margin of the valley. Rocks in the Needle Range are cut by predominantly north-south trending faults. Most faults in the Snake Range, White Rock Mountains, and Limestone Hills have northwest or north-south orientations.

There is evidence of recent upwarping of the southern end of the valley. The southwestern lake beds are at a relatively high topographic level and are being actively eroded, and the drainage trends anomalously to the north. The alluvium is offset by numerous small faults in this part of the valley (Fugro National, 1979).

The mountains in the northern section of the valley are composed of an assemblage of Paleozoic limestones, dolomites, shales, and sandstones (Hintze, 1963; Hose and Blake, 1976; Tschanz and Pampeyan, 1970). The White Rock Range, on the south and the central portion of the Needle Range, on the east, are composed of undifferentiated Tertiary volcanic rocks.

Most of the surficial deposits in Hamlin Valley are late Tertiary and Quaternary alluvial fan and lake deposits. Basin fill deposits are described in the Verification Studies (FY 79, FN-TR-27-1A). Three relative ages of alluvial fans are recognized. The older fan deposits, consisting of well-indurated gravels and sandy gravels near the Needle and Snake Ranges, are the least extensive unit. Intermediate age alluvial fan deposits are the most extensive surficial unit. They are composed chiefly of silty to clayey sands. Younger alluvial fan, terrace, and modern stream channel deposits consist dominantly of silty sand, and generally occcur in the central part of the valley. Lacustrine deposits, primarily clayey sands, underlie about one-fifth of the valley and are generally restricted to the west side of Hamlin Wash (Fugro National, 1979).

4.0 INTERPRETATION

A negative gravity anomaly over a valley such as Hamlin Valley is created when low density alluvial material filling the valley is surrounded by dense rock in the mountains. Gravity profiles across such a valley are often U-shaped, low in the middle where the fill is thickest, and high on the ends where the fill thins and disappears. Interpretation requires removal of regional trends leaving the gravity reflection of the valley fill. The gravity data and interpreted geologic model for the nine profiles across Hamlin Valley are shown in Figures 4 through 12.

4.1 REGIONAL - RESIDUAL SEPARATION

A fundamental step in gravity interpretation is isolation of the portion of the CBA which represents the geologic feature of interest, in this case the relatively low density valley fill. The portion of the CBA which corresponds to this alluvial material is called the 'residual anomaly'.

The residual anomaly was isolated by first estimating the way the CBA field would have appeared if there had been no valley fill present. This estimated field is called the 'regional' gravity. The regional gravity is subtracted from the CBA to produce the residual anomaly. For this study, the regional field was calculated by linear interpolation between the CB^{*} values at bedrock stations on opposite ends of the profiles. Where only one end of a profile was on bedrock, the regional value on the other end was assigned a quantity consistent with the regional trend in the area. This separation technique is

only approximate. Some regional effects may still remain after the subtraction but the error is probably small compared to the large residual anomaly values on these profiles.

The regional field used for each profile is shown together with the CBA in the top portion of Figures 4 through 12. The residual values along each profile are shown by the crosses (x) in the center portions of Figures 4 through 12.

4.2 DENSITY SELECTION

The construction of a geologic model to account for the residual anomaly requires selection of density values representative of the basin fill and of the underlying rock. Since only very generalized density information is available, the geologic interpretation of the gravity data can only be a coarse approximation. Average in situ density of the alluvial fill material was measured between a depth of 100 and 160 feet by six shallow borings in Hamlin Valley. The observed density range for the soil was 2.0 to 2.3 g/cm³. These borings were drilled during the Verification Studies of Hamlin Valley (FY 79, FN-TR-27-IV). The larger density value was used in the modeling process to approximate the overall density increase in the alluvium due to compaction with depth (see Grant and West, 1965).

Published values for carbonate rocks typically range between 2.6 and 2.8 g/cm³. The Paleozoic carbonate rocks in Nevada are generally reported to be relatively high in density, on the order of 2.8 g/cm³. The Nevada volcanic rocks are highly variable in density, ranging between 2.2 and 2.5 g/cm³.

The calculated basin depths are very dependent on the density values assigned to the various valley materials. A one percent change in the average alluvial fill density will result in a five percent change in the calculated fill thickness.

4.3 MODELING

An iterative computer program that calculates the gravitational field for two-dimensional models was used to establish a thickness of alluvium under each profile. The cross-sectional models appear as a set of either 1 or 0.5-km-wide blocks whose tops are at surface elevation and whose bottoms represent the alluvium-bedrock boundary. The elevations at the bottoms of the blocks were adjusted by iterative computation until the computed gravity anomaly for the valley fill differed by less than 1 milligal from the observed residual gravity anomaly. The computed gravity anomaly form the final model is shown as a continuous line in the center portion of Figures 4 through 12. The resulting basin models are shown in the lowest section of Figures 4 through 12. The cross sections have a five times vertical exaggeration so that gentle slopes appear steep.

The gravity survey of Hamlin Valley indicates a structural basin which was formed as a deep graben bounded by steep faults. The basin appears to be several thousand feet deeper in the center, near profiles HV-5 and HV-6, than it is at either end. Actually, it is effectively terminated near profile HV-8. Another basin appears to lie southeast of profile HV-8. Even though the basin is elongate N-S, there appears to be a

component of E-W deformation. The rock outcrop lines strike approximately E-W for about 6 miles on both sides of the valley. On the east side, this trend occurs near profile HV-2 and on the west side it occurs near HV-3. South of profile HV-6, the strike of the rock outcrops is NW-SE. The gravity profiles indicate that the axis of the basin also shifts in direction, or is offset laterally, at several places in the valley. The axis at profile HV-1 (which may actually be the axis of Snake Valley) appears to be approximately 5 miles east of the axis at profile HV-2, and it apparently trends N-S between profiles HV-2 and HV-3. The basin appears to be wider and more complicated beneath profiles HV-4 and HV-5 and the location of the axis is subject to question. However, it seems to be a mile or so west of the axis at HV-3. The orientation of profiles HV-7 and HV-8 is such that they probably do not show the axis of the structural basir.

Steep gravity gradients in this basin and range valley are interpreted as being caused by bedrock faults. The faults are interpreted on the gravity profiles where the gradients are maximum. See Figure 13 for an interpretation of possible fault relationships between the profiles. Major-range bounding faults can be interpreted with confidence on profiles HV-2 through HV-6. The displacement associated with the boundary faults increases progressively from profiles HV-2 through HV-5, and decreases from HV-5 to HV-6. If these faults intersect profiles HV-7 and 8, they cross at oblique angles and show only a component of offset.

Neither of the boundary faults show clearly on profile HV-1. According to the trend established from profile HV-5 to HV-2, the offset at HV-1 would be relatively small and the gravity expression would be correspondingly subtle. If the suggestion that there has been E-W deformation between profiles HV-1 and HV-2 is correct, HV-1 may have crossed only the west-boundary fault.

Hintze (1963) shows a fault covered by alluvium along the eastern boundary of the valley. However, the gravity interpretation indicates that there is a pediment-like feature on the east side of the valley and that rock extends westward from the outcrop at shallow depths for 2 to 4 miles (3 to 7 km) before being faulted downward. No corresponding feature is shown on the western valley flanks, where the boundary fault appears to be much nearer the rock outcrop line.

Profiles HV-4 and HV-5 indicate that there may be one or more smaller faults within the basin, forming a local graben along the western boundary. The interpretation, Figure 13, shows a fault roughly parallel to and approximately 1 mile (1.6 km) east of the western boundary fault.

The gravity survey shows the southeastern end of the valley to suddenly become substantially shallower at Profile lines 7 and 8. The maximum depth of the basin shown on these profiles varies from about 1300 to 500 feet (397 to 153 m). The alluvial fill is very thin at the center of each of these profiles suggesting an E-W trending bedrock ridge extending toward the extrusive

volcanic rock outcrops mapped in this area. This bedrock ridge could restrict north-south movement of ground water. An alternative interpretation of profiles HV-7 and 8 is that they cross a shallow flow of igneous material with a density greater than the alluvium. If this is the case there may be substantial thickness of alluvium beneath the flow.

Profile HV-9 crosses the southern end of the valley where it trends NW-SE. The profile extends across the Needle Range into Pine Valley. The pediment feature is absent here, and the gravity interpretation is consistent with the fault suggested by Hintze (1963) in this part of the valley. This portion of the Needle Range is interpreted to be a horst since a fault is interpreted also on the western flank of Pine Valley. A boundary fault is also suggested near the southwestern end of profile HV-9. It is assumed that this fault runs parallel to the northern boundary of the White Rock mountains. It may also be seen on the southern end of profile HV-8. The depth of the basin beneath profile HV-9 is about 2800 feet (853 m).

5.0 CONCLUSIONS

The interpretation of the gravity survey of Hamlin Valley indicates that there are major range bounding normal faults on both sides of the valley. The major graben block between these boundary faults is oriented NNE-SSW. It is calculated to be between 2450 feet (747 m) deep in the north end of the valley and 6700 feet (2042 m) deep near the valley center.

There may be a smaller graben trending NNW along the western side of the major block, near profiles HV-4 and HV-5. This smaller block appears to be from 1000 to 2000 feet (305 to 610 m) deeper than the main block.

A bedrock ridge, which could restrict all but the shallowest ground water movement is interpreted near profiles HV-7 and HV-8.

There is a large, well defined negative gravity anomaly associated with Hamlin Valley. An average density contrast of 0.50 g/cm³ between the alluvium and bedrock was used to calculate the thickness of the valley fill material. The calculated bedrock depth can only be an approximation since little is known about the actual density distribution in and around the valley. Future studies that acquire better density data or depth to bedrock in deep parts of the valley can be used to refine the gravity interpretation.

BIBLIOGRAPHY

- Fugro National, Inc. 1979, MX Siting Investigation Geotechnical Evaluation, Verification Studies, Volume 1A, 1B, IV, FN-TR-27.
- Grant, F. S. and G. F. West, 1955, Interpretation Theory in Applied Geophysics: McGraw-Hill Book Co., New York.
- Hintze, L. F. (compiler), 1963, Geologic Map of Southwestern Utah: Brigham Young University and Utah State Land Boards, scale 1:250,000.
- Hose, R. K., M. C. Blake Jr., and R. M. Smith, 1976, Geology and Mineral Resources of White Pine County, Nevada: Nevada Bureau of Mines and Geology, Bulletin 85, University of Nevada.
- Stokes, W. L., 1963, Geologic Map of Northwestern Utah: Washington D. C., Williams and Heintz Map Co., scale 1:250,000.
- Tschanz, C. M. and E. H. Pampeyan, 1970, Geology and Mineral Deposits of Lincoln County, Nevada: Nevada Bureau of Mines, Bulletin 73, University of Nevada.
- West, R. E., 1971, An iterative computer program for calculating two-dimensional models for alluvial basins from gravity and geologic data (modified and extended by H. W. Powers Jr., 1974): University of Arizona, Geoscience Department, Geophysics Laboratory.

3

ł .

ł

HORIZONTAL SCALE 1 1 15 20 25 30 NILUTE	VERTICAL SCALE 0 1000 METERS VERTICAL SCALE 0 1000 E00 1000 METERS 10P CBA (Y) & REGIONAL () NIDDLE RESIDUAL GRAV: DBSERVED VALUES (INTERPOLATED) (X) BOTTOM ELEVATION: STATION ELEVATIONS (Y) & IDENTIFICATION (WWDI12) INTERPOLATE SURFACE ELEVATIONS (Y) & IDENTIFICATION (WWDI12)	$\begin{array}{c} muulue of Beukous Sufface \left(\begin{array}{c} o \\ Dens \end{array} \right) \\ g cm^3 \end{array}$	UISTANCE SCALE 1:125.000 GRAVITY INTERPRETED FAULT LOCATION
	INTERPRETED GRAVITY PROFIL HAMLIN VALLEY, NEVAD MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BM	LE HV- IA	2 FIGURE 5
	UGRO NATION	AL ,	INC.

ł

7 FE8 80

ł

t)

FN-TR-33-HV

	$I(1) = \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	III LITITI TETT I III LITITI TETT I III LITITI TETT I III LITITI I III LITITI I IIII LITITI I IIII LITITI I IIII LITITI I IIIII LITITI I IIIII LITITI I IIIII LITITI I IIIIII LITITI I IIIIII LITITI I IIIIII LITITI I IIIIIII LITITI I IIIIIII LITITIIII LITITII IIIIIII LITITIIII LITITIIIII IIIIIIII LITITIIIII LITITIIIIIIIIIIIIII					
		· · · · · · · · · · · · · · · · · · ·	- 2	-		
F. CHIER TRAFF. The FLORE TRAFF. 1. The The The The FLORE TRAFF. 1. The The The The The FLORE TRAFF. 1. The	<pre>11.1.1(1.1.1.1.2(1)) 1</pre>			M LF (110		
<pre>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1</pre>	<pre>(1)(1) 1</pre>				ž	
3. 00 6.1000000000000000000000000000000000000	1. 11. FILTIN 1. AMARINA 1. AMARINA 1. AMARINA 1. ANTOLE FOR ALL ANTOLE FOR 1. ANTOLE FOR ALL ANTOLE FOR A		A	-1.8.1.00 1.1.1 1.1.1.1.1.1.1 1.1.1.1.1.1.1.1 1.	66-4 FF - 4.81 1 - 1 A61 E1 -	
				V # 1 1111		
					a	
		=				

INTERPRET HAML	TOP CBA (Y) & REGIONAL () MIDDLE RESIDUAL GRAY: DBSERVED VALUES (INTERPOLATED) (X) CALCULATED FROM MODEL ()	BOTTOM ELEVATION: STATION ELEVATIONS (Y) & IDENTIFICATION (WWOI12) INTERPOLATED SURFACE ELEVATIONS ($$	DISTANCE SCALE 1:125.000
NX SETING	IN VALLE INVESTIG	ATION RCE BNO	FIGURE
UGRO	NAT	, ⁽)	<u>_ inc.</u>

ŧ

- Araba -

7 FEB 80

.

.

.

APPENDIX A1.0

GENERAL PRINCIPLES OF THE GRAVITY EXPLORATION METHOD

A1.0 <u>GENERAL PRINCIPLES OF THE GRAVITY</u> EXPLORATION METHOD

A1.1 GENERAL

A gravity survey involves measurement of differences in the gravitational field between various points on the earth's surface. The gravitational field values being measured are the same as those influencing all objects on the surface of the earth. They are generally associated with the force which causes a 1 gm mass to be accelerated at 980 cm/sec². This force is normally referred to as a 1 g force.

Even though in many applications the gravitational field at the earth's surface is assumed to be constant, small but distinguishable differences in gravity occur from point to point. In a gravity survey, the variations are measured in terms of milligals. A milligal is equal to 0.001 cm/second² or 0.00000102 g. The differences in gravity are caused by geometrical effects, such as differences in elevation and latitude, and by lateral variations in density within the earth. The lateral density variations are a result of changes in geologic conditions. For measurements at the surface of the earth, the largest factor influencing the pull of gravity is the density of all materials between the center of the earth and the point of measurement.

To detect changes produced by differing geological conditions, it is necessary to detect differences in the gravitational field as small as a few milligals. To recognize changes due to geological conditions, the measurements are "corrected" to account for changes due to differences in elevation and latitude.

Given this background, the basic concept of the gravitational exploration method, the anomaly, can be introduced. If, instead of being an oblate spheroid characterized by complex density variations, the earth were made up of concentric, homogeneous shells, the gravitational field would be the same at all points on the surface of the earth. The complexities in the earth's shape and material distribution are the reason that the pull of gravity is not the same from place to place. A difference in gravity between two points which is not caused by the effects of known geometrical differences, such as in elevation, latitude, and surrounding terrain, is referred to as an "anomaly."

An anomaly reflects lateral differences in material densities. The gravitational attraction is smaller at a place underlain by relatively low density material than it is at a place underlain by a relatively high density material. The term "negative gravity anomaly" describes a situation in which the pull of gravity within a prescribed area is small compared to the area surrounding it. Low-density alluvial deposits in basins such as those in the Nevada-Utah region produce negative gravity anomalies in relation to the gravity values in the surrounding mountains which are formed by more dense rocks.

The objective of gravity exploration is to deduce the variations in geologic conditions that produce the gravity anomalies identified during a gravity survey. FN-TR-33-HV

A1.2 INSTRUMENTS

The sensing element of a LaCoste and Romberg gravimeter is a mass suspended by a zero-length spring. Deflections of the mass from a null position are proportional to changes in gravitational attraction. These instruments are sealed and compensated for atmospheric pressure changes. They are maintained at a constant temperature by an internal heater element and thermostat. The absolute value of gravity is not measured directly by a gravimeter. It measures relative values of gravity between one point and the next. Gravitational differences as small as 0.01 milligal can be measured.

A1.3 FIELD PROCEDURES

The gravimeter readings were calibrated in terms of absolute gravity by taking readings twice daily at nearby USGS gravity base stations. Gravimeter readings fluctuate because of small time-related deviations due to the effect of earth tides and instrument drift. Field readings were corrected to account for these deviations. The magnitude of the tidal correction was calculated using an equation suggested by Goguel (1954):

 $C = P + N\cos \phi (\cos \phi + \sin \phi) + S\cos \phi (\cos \phi - \sin \phi)$ where C is the tidal correction factor, P, N, and S are timerelated variables, and ϕ is the latitude of the observation point. Tables giving the values of P, N, and S are published annually by the European Association of Exploration Geophysicists.

A1-3

FN-TR-33-HV

The meter drift correction was based on readings taken at a designated base station at the start and end of each day. Any difference between these two readings after they were corrected for tidal effects was considered to have been the result of instrumental drift. It was assumed that this drift occurred at a uniform rate between the two readings. Corrections for drift were typically only a few hundredths of a milligal. Readings corrected for tidal effects and instrumental drift represented the observed gravity at each station. The observed gravity values represent the total gravitational pull of the entire earth at the measurement stations.

A1.4 DATA REDUCTION

Several corrections or reductions are made to the observed gravity to isolate the portion of the gravitational pull which is due to the crustal and near-surface materials. The gravity remaining after these reductions is called the "Bouguer Anomaly." Bouguer Anomaly values are the basis for geologic interpretation. To obtain the Bouguer Anomaly, the observed gravity is adjusted to the value it would have had if it had been measured at the geoid, a theoretically defined surface which approximates the surface of mean sea level. The difference between the "adjusted" observed gravity and the gravity at the geoid calculated for a theoretically homogeneous earth is the Bouguer Anomaly.

Al-4

Four separate reductions, to account for four geometrical effects, are made to the observed gravity at each station to arrive at its Bouguer Anomaly value.

a. <u>Free-Air Effect</u>: Gravitational attraction varies inversely as the square of the distance from the center of the earth. Thus corrections must be applied for elevation. Observed gravity levels are corrected for elevation using the normal vertical gradient of:

FA = -0.09406 mg/ft (-0.3086 milligals/meter) where FA is the free-air effect (the rate of change of gravity with distance from the center of the earth). The free-air correction is positive in sign since the correction is opposite the effect.

b. <u>Bouquer Effect</u>: Like the free-air effect, the Bouquer effect is a function of the elevation of the station, but it considers the influence of a slab of earth materials between the observation point on the surface of the earth and the corresponding point on the geoid (sea level). Normal practice, which is to assume that the density of the slab is 2.67 grams per cubic centimeter was followed in these studies. The Bouquer correction (B_c), which is opposite in sign to the free-air correction, was defined according to the following formula.

 $B_c = 0.01276$ (2.67) h_f (milligals per foot)

 $B_{C} \approx 0.04185$ (2.67) h_{m} (milligals per meter) where h_{f} is the height above sea level in feet and h_{m} is the height in meters. c. Latitude Effect: Points at different latitudes will have different "gravities" for two reasons. The earth (and the geoid) is spheroidal, or flattened at the poles. Since points at higher latitudes are closer to the center of the earth than points near the equator, the gravity at the higher latitudes is larger. As the earth spins, the centrifugal acceleration causes a slight decrease in gravity. At the higher latitudes where the radii of the circles of latitude are smaller, the centrifugal acceleration diminishes. The gravity formula for the Geodetic Reference System, 1967, gives the theoretical value of gravity at the geoid as a function of latitude. It is:

g = 978.0381 (1 + 0.0053204 sin² ø - 0.0000058 sin²2ø) gals where g is the theoretical acceleration of gravity and ø is the latitude in degrees. The positive term accounts for the spheroidal shape of the earth. The negative term adjusts for the centrifugal acceleration.

The previous two corrections (free air and Bouguer) have adjusted the observed gravity to the value it would have had at the geoid (sea level). The theoretical value at the geoid for the latitude of the station is then subtracted from the adjusted observed gravity. The remainder is called the Simple Bouguer Anomaly (SBA). Most of this gravity represents the effect of material beneath the station, but part of it may be due to irregularities in terrain (upper part of the Bouguer slab) away from the station.

A1-6
d. <u>Terrain Effect</u>: Topographic relief around the station has a negative effect on the gravitational force at the station. A nearby hill has upward gravitational pull and a nearby valley contributes less downward attraction than a nearby material would have. Therefore, the corrections are always positive. Corrections are made to the SBA when the terrain effects were 0.1 milligal or larger. Terrain corrected Bouguer values are called the Complete Bouguer Anomaly (CBA). When the CBA is obtained, the reduction of gravity at individual measurement points (stations) is complete.

A1.5 INTERPRETATION

The first step in interpretation is to separate the portion of the CBA that might be caused by the lightweight, basin-fill material overlying the heavier bedrock material which forms the surrounding mountains and presumably the basin floor. Since the valley-fill sediments are absent at the stations read in the mountains, the CBA values at these bedrock stations are used as the basis for constructing a regional field over the valley. A regional field is an estimation of the values the CBA would have had if the light weight sediments (the anomaly) had not been there.

The difference between the CBA and the regional field is called the "residual" field or residual anomaly. The residual field is the interpreter's estimation of the gravitational effect of the geologic anomaly. The zero value of the residual anomaly is not exactly at the rock outcrop line but at some

A1-7

distance on the "rock" side of the contact. The reason for this is found in the explanation of the terrain effect. There is a component of gravitational attraction from material which is not directly beneath a point.

If the "regional" is well chosen, the magnitude of the residual anomaly is a function of the thickness of the anomalous (fill) material and the density contrast. The density contrast is the difference in density between the alluvial and bedrock material. If this contrast were known, an accurate calculation of the thickness could be made. In most cases, the densities are not well known and they also vary within the study area. In these cases, it is necessary to use typical densities for materials similar to those in the study area.

If the selected average density contrast is smaller than the actual density contrast, the computed depth to bedrock will be greater than the actual depth and vice-versa. The computed depth is inversely proportional to the density contrast. A ten percent error in density contrast produces a ten percent error in computed depth. An iterative computer program is used to calculate a subsurface model which will yield a gravitational field to match (approximately) the residual gravity anomaly.

A1-8

APPENDIX A2.0 HAMLIN VALLEY GRAVITY DATA

FRUFILE #1 HARETN VALLEY GRAVITY DATA

STATIO	EAT.	- 1.01	NG	ELFV.	TEP-F	08.	NORTH	FAST	OPSV	THEC	FAA	CBA
IDENT.	DEG MIN	DFG	MIN	+0005	7.54	CUT	1/11	ù bh	GPAV	GRAV		41000
	***	*		<u>-</u>		ئيہ سے	*****					
HV0101	.385147	114	962	6733H	3	470	430463	7404	145080	200/63	1092	19205
HV0102	385159	114	865	6531V	4	435	430489	7078	146526	206780	1212	79377
HV0103	385155	114	769	64638	Ű	286	430426	74921	147055	206774	1708	79451
HVOLCU	365147	114	735	6286v	ι.	325	430473	74960	144195	206765	597	79481
HV0105	385143	114	099	62376	0	281	430467	75022	144581	200150	526	79530
HV0106	385138	114	671	6103r	43	524	456459	7506	\$146951	200749	د در	79592
HV0107	385128	114	641	61266	U	271	4304"2	75107	149353	206734	217	79653
HV0108	385123	114	513	60955	Ú	250	430434	75147	149024	206727	265	79733
HV0109	385100	114	593	61413	Û.	272	430403	75177	1140299	206702	3.02	79670
HV0110	385109	114	561	60446	0	204	430411	7522	3144037	206/00	295	79709
HV0111	345112	114	531	601134	ţ.	194	036417	15261	1 JANRO	200711	134	19728
HV0112	385114	114	495	SOTAV	e.	184	430423	7531	150424	206714	- 34	747n7
HV0113	385113	114	465	5929V	С	182	430422	7536	2150775	200713	=130	19020
HVn114	385109	112	435	54424	()	174	0.5041n	75400	151008	206706	-245	74032
HV0115	385100	114	345	57514	e	157	430415	15536	152191	206702	= 5:10	50156
HV0116	385120	114	258	5651v	ų.	144	430445	7566	152753	206723	-791	80051
HV0117	385140	114	175	55638	t)	1.34	456 185	7578(153440	200152	- 456	80203
HVOLIA	365205	114	R 1	54395	ü	130	436011	15910	154400	205003	-1194	80391
HV0119	385250	114	18	53778	1	149	430697	7600	1155310	206914	-1636	80810

FND OF LIST

•

PROFILE #2 HAMITA VALLEY GRAVITY DATA

STATION	LAT.	Lui	IG. F	LEV.	TEP=(nOR.	NORTH	EAST	∩¤\$V	THEC	FAA	СВА
LOENT.	DEG MIN	ŨF G	MIN	+CODE	T Pa	VOUT	UTM	UTM -	GRAV	GRAV		+1000
	28/820	114	891		 2	484	429861	74763	145380	205281	1956	79064
	304020	117	BAR	45828	1	158	424874	74797	145877	206259	1503	79574
N0202	304003	11.	600				429517	74632	146479	1205245	1179	79521
HV0203	304/47	114	044	- C4130 - 67176	,	101	129403	7/1470	147206	206233	714	79472
HV0204	384787	114	701	03470		270	420744	7/1910	147/26	852405	291	79354
HAUSU2	364784	134	141	00010		214	120768	7/10/10	1.4.4.1.4.1	1206221	+175	7918c
HAU508	384785	114	Inc.	01520	0	240	430106	79722	(nodu)	1206215	-594	79007
HV0207	384775	114	757	50756	0	361	029785	15176	1 4 7 4 4 4	1206210	-1032	78617
HA0508	384772	114	705	59935	· • •	291	429750	77935	140171	205197	-1.19	78686
HV0504	384763	114	673	59130	6	214	424765	12002	14412	1200171	-1-17	78-14
HV0210	384759	114	645	58516	U U	253	150220	25122	144446	200171	-1997	70014
115044	384745	114	650	57974	, V	5.25	429134	75159	149/1	7200170	- * 1900	10316
HV0212	384730	114	595	57341	ч ()	231	429708	7519n	15102	3200148	-5124	10314
HV0213	384719	114	571	56900	4 U	-218	950680	75232	12059	1509135	-5350	78496
HUDZIA	384712	114	515	56225	<u>х</u> - 0	195	429670	75313	15071	5500155	-2499	78520
HUADIE	28/1097	114	404	55254	<i>,</i>)	150	429650	75475	15231	42)6100	-1/64	19527
HUD316	184686	114	224	5479	i 0	145	429633	75570	15296	6506059	-1562	79099
	78/450	114	203	54615		135	429574	75639	15 137	1206030	-1205	80582
E 40217	304030	117	202	6/1490	i d	1 30	420459	75644	15340	3205940	-1344	60230
mv0218	304000	114	- <u>2</u> *2 - 759	19210	: 0 : 0	127	120350	75697	15309	S205852	-11ªc	81254
mv0516	304250	114	600	20.01/1) V	3 4. 1	·	,,				

END DE LIST

.

PROFILE #3 HAMLIN VALLEY GRAVITY DATA

STATIO	LAT.	LONG.	ELEV.	TER-C	OR.	NURTH	EAST	GBSV	THEC	FAA	CBA
IDENT.	DEG MIN	DEG MIN	+CODF	Ţ'nZ	(IUT	UTE	61.4	GRAV	GRAV		+1000
		***			[•]				·		
HV0301	384226	1141064	69218	G	489	428754	74540	143749	1205407	3480	803n5
HV0302	784212	1141046	6737R	0	380	428729	74573	144935	205387	2953	80357
HVOSOS	*84194	1141024	1 65828	0	352	428697	74599	145903	5205360	5492	80307
HV0304	384177	1141014	1 n4738	0	351	428660	74621	146585	205335	2173	80446
HV0305	184168	114 980	1 6342P	e e	351	428-50	74058	147375	5205322	1742	69465
HV0306	384155	114 968	1 02021	0	294	428627	74689	147845	205302	1484	89453
5v0 307	384137	114 95	n 166V	́ О	252	428595	74715	148420	1205270	1174	80396
HV0308	384125	114 929	9 60739	0	255	428573	74748	148933	3205259	835	80375
HV0309	384116	114 902	2 59738	0	227	428562	74787	149402	205248	365	80551
HV0310	384117	114 874	58808	0	218	428561	74029	149830	205247	=76	80088
HV0311	38/1115	114 84)	7 57055	; U	204	428545	74867	15019/	1205241	- 215	79927
HV0312	384115	114 76	7 56618	, n	170	128550	74483	150428	205241	-1535	79355
HUA312	384067	114 040	50080	ι, j	143	423477	75112	150458	1205173	-2340	74071
HVORIA	184619	114 608	55081	/ 0	129	128372	75219	15043	205102	-1980	79655
HV0315	282975	114 53	55811	r e	120	128314	75335	15100	3265030	-1510	79783
HV0316	183972	114 45	0 56105	3 0	155	428312	18437	15143	4205034	-905	30197
HV0317	181942	114 26	n 5760r	4 (°	141	428261	75575	15099.	1504040	21H	80715
HV0318	783415	114 51	0 58771	4 U	14.2	428210	75058	150400	4203947	631	R0438
HV0319	363906	114 28	3 50334	, u	155	424196	75047	15018	7294937	1(28	51009
HV0320	383898	114 25	9 59891	/ 0	162	428184	75733	13987	2204925	1314	81049
HV0321	183886	114 23	5 60571	5 U	171	128167	15768	14951	7204910	1613	01126
HV0322	383875	114 21	4 61178	: 0	18.	428104	75799	1:1022	2204291	1962	81227
- HV0322	783864	114 19	1.61811	· 0	189	428125	75833	14826	6204675	2106	81274
HV0324	181850	114 16	9 62441	ч () ()	÷05	428100	75866	14852	0204054	2471	81364
HV0325	383844	114 14	5 63231	а ()	210	428940	75904	14805	2204845	2714	81367
- HV0326	183840	114 11	7 1386	· · · ·	252	J28084	75442	14717	3594636	303n	91508
			-								

END OF LIST

•

.

PROFILE 46 HANDTH VALLEY BRAVITY DATA

STATIC	LAT.	LONG.	ELEV.	TF4=r	OR. NORTH	FAST	UASV	THEC	FAL	CHA
IDENT,	DEG MIN	DEG MIN	+CODF	TN/	индт нтн	014	URAV	GRAV		+1000
	***	***	****_	~~~_						
HV0401	383440	1141564	61328	8	303427278	73065	147553	204252	1015	80411
HVn4n2	383441	1141536	60128	U	152427281	73905	148260	204253	595	80240
400403	383439	1:41508	59355	9	145427279	73440	148531	204250	1.58	80041
HV0404	383438	1141479	58618	Ø	135427278	73488	142805	2042/18	-583	74062
HV0405	383439	1141457	58258	ė.	130454551	74020	148960	204250	- 18 H	79770
HV0406	383436	1141423	57165	և	126427277	74070	190715	204245	-775	79652
HV0407	383435	1141387	5748v	ů.	117427277	22147	120150	504542	-1031	79485
HV0408	383436	1141352	57318	0	115427280	74175	148995	204245	-131 4	79254
HAURUA	383437	1141317	57228	ti.	110452583	74224	148828	204247	-1567	79Ċ26
HVN410	383436	1141581	57175	Ú	106427283	74276	148716	204245	-1155	78882
HV0411	383437	1141245	5705Y	t)	104487587	74328	142030	1204247	-1652	7~121
PA0415	383476	1141197	57084	()	102027361	74396	148850	204305	-1764	74669
HV0413	3#3511	1141153	57014	()	99427428	74458	148821	120435n	-1022	78869
HV0414	383508	1141070	56888	. 0	96427626	74578	148761	564325	-5620	75039
HV0415	383507	114 985	56674	G	98457426	24105	148779	1204350	-2087	18483
HV0416	383517	114 862	50724	0	98427456	74880	142591	204365	-2305	78367
HV0417	383533	114 813	Shhty	(i	105052080	74450	144789	1201284	-5351	78472
HV0418	383540	114 723	50574	Ð	104427512	75080	149365	204407	=1003	79007
HAU418	383552	114 651	200111	U	104427521	75184	149991	204410	-1148	79652
HV0420	383529	114 575	5726V	U U	111427487	75296	150003	1204382	-100	80181
HV0421	383511	114 499	5796Y	U	126427457	75407	150107	1204350	360	80/17
HAU855	383504	114 388	59416	0	139427444	75569	149471	214 345	1:39	A0917
HA0453	383505	114 277	61358	Q	105427458	1 75730	148413	15/14 3/14	10.19	61047
HAGASa	383505	114 236	62554	0	180427460	1 75749	147871	204348	5043	81041
HV0425	363513	114 209	95811	Ų	189427474	1 75824	147421	204354	2234	80983
HAU454	383521	114 183	6 83516	- 0	213427450	75000	147026	12114370	2435	40986
HV0427	383524	114 155	6423P	0	216427506	75906	146047	204381	2720	81029
HV0428	38 35 37	$114 \ 130$	6491V	() ()	251427523	5 15942	146294	1204 394	5904	81086
HV0429	383542	114 103	6571V	0	253427533	5 75930	144922	204402	3355	R1207
HV0430	383550	114 70	6670Y	5	280427560	76028	145772	504455	4166	81465

FND UF LIST

PROFILE #5 Hamith Valley Gravity Data

STATION	LAT.	LONG.	ELEV.	168-0	ΟR.	NORTH	EAST	UHSV	THEC	FAA	CBA
IDENT.	DEG MIN	DEG MIN	i +CODE	TN,	VUUT	UT M	111.1	GRAV	GRAV		+1000
HV0501	382964	1141360	 } K2//8k	· · · · · · · · · · · · · · · · · · ·	271	d26496	741761		203552	1440	86406
HV0502	382970	1141340) 6163V	· 1	210	426/119	742161	46599	203561	1041	80232
HV0503	302980	1141314	1 n078V	1	184	425435	742541	46902	203570	527	79983
HV0504	382992	1141291	60008	0	170	426461	742861	47349	203594	220	79957
HV0505	383004	1141266	59228	U	164	426485	7:13221	47063	203011	-214	79752
HV0500	383018	1141245	5802Y	0	152	426512	743521	47887	203032	-574	79584
HV0507	383035	1141200) 5774Y	0	1 37	426541	744161	47580	203654	-1085	18742
HV0508	383050	1141167	7 57698	υ	154	426574	744631	46928	203079	-2458	77990
HV0509	383059	1141141	1 5763Y	Û	118	426592	745011	46063	503695	-2790	77672
HV0510	383085	1141057	1 57594	U	100	1156444	740211	46645	203730	-2085	77519
HV0511	383083	114 977	7 57674	43	100	1255111	74738	146663	203727	• ~ / •	17682
HV0512	283075	114 910	57745	0	44	420035	740301	4.5761	203/10	-2613	77793
HV0513	383082	114 844	\$ 57/91	u	99	420010	74931	47017	203726	-2320	78065
HV0514	383084	114 742	2 57444	¢.	107	426665	75079	47915	203/36	-1762	78754
HV0515	363035	114 64	581401	I	110	420003	75233	148362	503730	- 05 D	7963)
HV0516	303007	114 500	5 58518	ų	113	420580	752761	48385	203746	-~95	79865
HV0517	383107	114 57	5 5901Y	t.	110	466700	753231	198593	203163	24	80013
HV0518	383102	114 547	2 59-01	· ()	123	446694	753691	48011	205755	351	80145
HV0519	383100	114 510	50424	- U	163	4cnt-9r	75415	47811	203752	+79	80155
HV0520	383090	114 481	60394	Q	155	426690	75458	47032	203746	719	80250
HV0521	383096	114 451	1 60858	0	1 57	426092	755011	47588	2:3740	1107	80491
HV0522	383105	114 422	2 n1 50H	ા છે.	144	126735	75543	47467	245156	IntS	80649
HV0523	54 41 10	114 54	6176Y	' D.	147	426720	75586	17462	201767	1022	80904
HV0524	- 383112	114 364	5 85146	0	153	420725	75030	47479	205170	62.59	81151
HV0527	583098	114 275	5 6550Y	0	0	420764	75/57	469.50	205/49	2740	01200
8550 V H	585045	114 207	1 65274	υ	100	426611	75859	45597	203073	55/5	H1242
PV0529	38 3042	114 9	5 67819	U	241	126611	760251	43557	205007	2/14	811827
mv0530	58 50 90	114 1	5 79674	0	50.5	426527	761411	45508	205579	2040	61255

END OF LIST

.

.

FROFILE #6 HAMLIN VALLEY GRAVITY DATA

STATIO	V LAT.	LUNG.	ELEV.	TFR-CUR.	NORTH	FAST	URSV	THED	FAA	CBA
IDENT.	DEG MIN	DEG MIN	+0000	TNZOUT	1114	HTM	GRAV	624V		+1000
		* - *								
HV0601	382595	1141493	65200	v 159	425718	74015	142870	203011	1559	74141
HA0905	382596	1141466	6512C	0 153	425721	74054	143314	203013	1592	79535
HV0603	385905	1141440	64628	0 150	425733	74091	143950	150205	1749	79665
HV0604	382604	1141414	64168	0 101	425738	74129	144276	203024	1540	79917
HVAGAS	382000	1141385	64173	0 152	425743	74171	144241	150205	1209	19075
HV060n	382009	1141358	53048	0 153	425750	74210	144303	203031	14.17	79108
HV0607	362010	1141330	6350Y	0 159	425753	74251	144502	203033	1234	79/35
HV0608	382015	1141301	6320R	0 173	425760	74293	144810	203030	1250	79873
HV0609	382611	1141272	62403	0 173	425757	74335	145004	203034	1170	79896
HV0610	395908	1141242	62578	ũ 159	425753	74379	145218	203030	1075	79894
HV0611	395001	1141214	n244R	0 145	425755	74420	145571	850864	1109	74950
HAU915	382010	1141184	62208	0 130	425760	74463	145485	203033	492	70014
HVD613	362606	1141155	0103Y	0 155	425755	74506	145000	203027	172	79010
HV0614	382611	1141110	01578	0 121	125765	74571	145191	203034	109	79235
HV0615	3952545	1141058	nin4Y	4 117	425733	74690	144976	203000	-774	78594
HV0616	382586	114 910	59974	0 109	425721	70055	149232	20249#	-1327	78329
HV0617	382578	114 642	50774	0 107	125710	74963	145470	202480	-1320	78425
HV0e1h	382569	114 777	5955Y	4 100	425702	75058	1.581a	202913	-1113	7tote
HV0619	382590	114 674	Sames	0 :12	425757	75206	146788	203013	-Lute	79089
HV0650	382634	114 577	59741	0 111	425831	75345	146306	203668	-534	79197
HV0621	302643	114 497	60598	0 122	425852	75461	146135	203081	74	79536
HV0055	382642	114 416	01521	0 150	425854	75579	145765	203080	584	79127
HV0623	382032	114 396	6197:-	0 100	125636	75023	1-5510	203005	168	74750
HV0624	3826-4	114 354	62364	0 1 5 1	465860	75069	125422	203083	971	14655
HV0625	382647	114 317	02751	u 133	425451	75723	145177	203087	1149	79080
HV0626	382644	114 288	6320F	ំ រុមា	425505	75765	144942	203083	1338	19424
HV0527	302649	114 259	63576	6 142	425872	75807	144085	203085	1032	HA690
HV0628	382651	114 230	6393d	0 148	425874	75049	144839	203093	1913	HU257
HV0629	342046	114 200	64270	0 151	425871	75393	144660	203085	2070	80298

FND OF LIST

,

PROFILE #7 HAMLIN VALLEY GRAVITY DATA

STATIO	N LAT.	LÜ	NG. H	ELEV.	TEP-(fiR.	NORTH	FAST	ÜRSV	THEC	FAA	L BA
IDENT.	DEC MIN	DEG	NIN	+CUDE	T. 1.	1001	HTE	UIN	GRAV	GRAV		+1000
	• • • •	~										
HV0701	381915	114	568	64888	0	- 218	424487	74928	141801	202013	640	78939
HV0702	381943	114	895	64206	6	217	424539	74922	142281	202055	650	78470
Hv0703	381970	114	900	63094	Ģ	382	424580	74913	142527	202094	513	781:34
HV0704	381996	114	893	63298	Û	165	424637	71422	142716	551505	151	78731
HV0705	382025	114	805	62985	Ų	153	424685	74922	142488	2.2170	₩ f.	Innne
HV0707	382199	114	803	01500	0	150	421740	15042	144171	202413	- 35 5	75785
HV0708	395593	114	744	61066	9	114	425137	75124	145041	202525	-19	79271
HV0709	382341	114	700	60428	0	110	425284	75183	146268	850505	494	79497
HV0710	382410	114	034	59694	đ	110	425414	75275	146926	202739	364	60116
HV0711	382435	114	527	59191	U	154	425465	15430	147044	202776	- 25	79511
HV0712	*82483	114	437	DN79B	Û	121	425566	75558	145900	202846	27h	19603
HV0713	382531	114	344	0178Y	()	122	425652	75590	145441	202917	€76	79721
HY0714	382566	114	300	6255Y	U	131	465718	75/52	145188	202960	1091	79680
HV0715	392578	114	274	6244R	ა	135	425742	75789	145691	コリアシウ	1342	60008
HV0710	302580	114	249	63258	0	145	4257+1	75025	145010	203001	1:01	86113
HV0717	382002	114	553	63608	Ú	140	425789	75002	144911	203021	1/40	80197
HV0718	362010	114	201	64048	Ó	145	425815	15893	144742	203021	1 57	HU253
HV0719	-382030	114	177	n455Y	() ()	153	425542	75428	144500	203003	2190	10335
410720	382641	114	157	04934	C.	150	425664	75450	1.14390	213170	2430	86441
HV0721	382053	114	136	6535Y	0	164	425881	75946	14/1159	243090	2571	80446

FRO DE LIST

.

PROFILE AR HANTEN VALLEY GRAVITY DATA

STATIO	LAT.	LU	vG. I	FLEV.	168-0	:0R.	NORTH	FAST	บรรง	THEC	FAA	CRA
IDENT.	DEG MIN	DEG	14 I N	ACODE	ر د⊴ ۲	יחניד	чтм	可非种	624V	GRAV		+1 000
HV0801	381925	114	785	64300		189	424507	75084	141740	202025	234	76492
5080VH	381941	114	769	64755	0	192	424541	75106	142076	202052	967	79074
HV0803	381962	114	760	63820	0	168	424582	75115	142722	502082	707	79100
HV0804	381983	114	754	63480	U	154	424619	75125	142429	202113	565	79000
HV0805	382007	114	153	6294E	G	140	424665	75125	143195	202140	r 11	70962
HV0806	365055	114	744	+202h	Q	139	42-1592	75136	143333	202170	11c	76582
HV0807	382042	114	732	02194		133	424129	75154	143487	202199	105	78922
HV0808	382060	114	720	02156	0	131	424763	75170	143798	922202	67	79006
HV0809	382077	114	704	61936	0	120	424795	75193	143988	202251	2.6	79629
HV0810	382095	114	687	01/18	Ŭ.	123	424829	75210	144263	175595	65	79141
HV0811	385155	11-	013	41103	13	114	484883	75525	144040	202317	-60	79169
HV0812	382157	11-1	540	obnur	Ú.	111	424956	75414	145124	202308	−1 7∟	19265
HV0813	395180	114	495	60548	Ū.	110	42500n	75491	145324	202411	-109	79359
HV0814	385541	114	391	59723	()	155	425115	75039	146376	202491	95	79840
HV0815	382240	114	334	SOARS	v	129	425125	75710	146183	202495	*t	79717
HV081n	382245	114	269	61426	G	155	425120	75016	145030	192391	342	79514
HV0817	382580	114	164	. 65aab	τ ι	130	425140	75967	144091	20254A	706	79454
HV0818	- 385588	114	138	0334n	G	1 5 3	425215	76005	143891	205245	442	79472
HV0819	382300	114	115	- m 31- 4 Y	U.	142	425255	70037	143001	202576	1120	79550
NO BROVH	362317	114	97	n 3925	Q.	140	425267	70063	143791	202003	1 549	79088
HV0821	382334	114	77	n427r	Э.	149	425300	76091	143773	202020	1030	79850
HV0855	382344	114	51	F4954	U.	146	425319	70128	143689	262042	1066	79972

FUR HE LIST

A2-8

ŧ

.

PROFILE #9 HARLES VALLEY GRAVIES DATA

STATE	N LAT.	LUNG.	ELEV.	TERAC	GR.	NORTH	EAST	URSV	THEC	FAA	CPA
IDENT,	DEG MIN	DEG MIN	+CODE	TNZ	19 01	114 M	HTM	(, , , A V	GEAV		+1000
	***									**************************************	701.1
HV0901	301023	114 219	65778	6	2401	162412	/ 20.39	141028	201000	1343	79103
HV0405	381642	114 265	64828	1	2334	124311	12028	141253	201015	5.21	14115
HAUAUS	381659	114 250	5419H	0	5120	484095	75574	141612	201030	340	74708
Hv0904	381664	114 550	6374B	0	1936	124055	75922	141812	201045	154	77609
HV0905	381673	114 190	63148	0	18.04	159015	75966	142124	201659	-107	75538
PA0309	381676	11- 162	652003	Ģ	1710	154001	76010	1 4 2 3 1 7	201077	-245	18594
HV0907	381099	114 134	62458	()	1640	154155	76046	142490	201097	-432	78433
HV1908	191250	114 115	62938	0	1501	124142	76072	142744	201727	-549	78403
HV0909	381742	114 100	61298	0	1690	159503	76093	143237	201759	+≥40	78425
HV0910	381764	114 Bo	A1168	é	1716	124245	20112	143401	201792	- 450	14420
HV0911	381761	11+ 54	01319T	U.	Inne	124241	70150	143257	201780	-017	72434
HV0912	381768	1135958	62528	0	1014	124250	76298	142093	201796	-202	78575
HV0913	381805	1135860	64524	Q.	1750	124381	70439	121477	201-52	555	79023
HV0914	381851	11 15790	66524	0	1000	1211425	70534	141451	201920	21.54	10000
HV0915	381889	1135720	64145	()	2124	12444	75029	141017	201775	3497	00370
HVA916	381917	1135044	69298	a.	2541	124549	7 ~ 7 4 7	140719	202116	3925	80544
HV0917	381983	1135572	72688	t.	34.12	ican74	76848	1 38345	2.2115	4034	80191
HV0918	382065	1135528	74858	<i>v</i>	2871	124825	75407	136260	201230	50mm	79845
HV0919	382000	1135435	71155	i,	25.00	122495	17040	139080	2.22285	3706	79759
HV0920	382105	1135410	70554	0	20-6	124908	77076	1 59525	505605	3034	74782
HV0421	362112	1135382	70350	0	1930	124922	17117	139742	502502	3053	19052
HV0922	382120	1135350	6952H	Q.	191.	1511344	77154	140154	202314	337H	19822
HV0923	382129	1135331	69103	ι.	1804	124956	77190	-	752505	3191	79404
HV0924	382140	1135308	68044	ų.	1704	124978	17222	1-769	202343	3.130	74795
HV0925	382152	1135284	68168	0	1714	125001	77257	141128	202361	2917	79842
HV0926	382167	1135265	67558	0	1574	1251130	77284	141550	202583	2744	19012
440427	382185	1135246	67183	Ū.	-	125000	17510	141847	202400	2-74	79421
HV0928	382201	1155227	60074	0	1640	125095	17337	142627	202433	به به د نے	79976
HV1920	382210	1135211	66880T	ð	1594	125123	77359	142141	202455	2534	79982

END OF LIST

