
AD-AII2 2" AERONAUTICAL RESEARCH LASS MELBOURNE (AUSTRALIA) F/6 17/7
STRAPDOWN INERTIAL NAVIGATION SYSTEMS$ AN ALGORITHM FOR ATTITUO-ETC(U)
OCT 80 R S MILLER

UNCLASSIF IED ARL/SYS'23U IIIIil
EIIEEIIIIIIEEE
EIIIIIIIIIEEEE



0 2.0_
11111 ,o1

4 1111.25 111 .4 Bi'

MICROCOPY RESOLUTION TEST CHART

NAlIONAL AitfkAU f IANPRI iq N A



ARL-SYS-REPORT-23 AR-002-265

DEPARTMENT OF DEFENCE

Fn DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

AERONAUTICAL RESEARCH LABORATORIES
MELBOURNE, VICTORIA

SYSTEMS REPORT 23

STRAPDOWN INERTIAL NAVIGATION SYSTEMS:
AN ALGORITHM FOR ATTITUDE AND

NAVIGATION COMPUTATIONS

-,

LZ
....

__ by

R. B. MILLER

Approved for Public Release.

MIAR 2 2Q8

A
) COMMONWEALTH OF AUSTRALIA 1981

mOCTOBER 1980

J 012



AROO-265

DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

AERONAUTICAL RESEARCH LABORATORIES

SYSTEMS REPORT 23

STRAPDOWN INERTIAL NAVIGATION SYSTEMS:
AN ALGORITHM FOR ATTITUDE AND

NAVIGATION COMPUTATIONS

by

R. B. MILLER

SUMMARY
An algorithm for strapdown inertial navigation and the associated theoretical analysis

are presented. Vehicle attitude is maintained through quaternions, which are updated by a
modified third order method; a split frame technique is used for solution of the navigation
equation.

POSTAL ADDRESS: Chief Supsrlntenddent, Aeronautical Research Laboratores,
Box 4331, P.O.. Melbogrne, Victoria, 300t, Australia.



DOCUMENT CONTROL DATA SHEET

Security classification of this page: Unclassified

1. Document Numbers 2. Security Classification
(a) AR Number: (a) Complete document:

AR-002-265 Unclassified
(b) Document Series and Number: (b) Title in isolation:

Systems Report 23 Unclassified
(c) Report Number: (c) Summary in isolation:

ARL-Sys-Report-23 Unclassified

3. Title: STRAPDOWN INERTIAL NAVIGATION SYSTEMS: AN ALGORITHM
FOR ATTITUDE AND NAVIGATION COMPUTATIONS

4. Personal Author: 5. Document Date:
Miller, R. B. October, 1980

6. Type of Report and Period Covered:

7. Corporate Author: 8. Reference Numbers
Aeronautical Research Laboratories (a) Task:

AIR 78/084
9. Cost Code: (b) Sponsoring Agency:

72 3370 DEFAIR

10. Imprint: 11. Computer Program(s)
Aeronautical Research Laboratories, (Title(s) and language(s)):

Melbourne NONE

12. Release Limitations (of the document):

Approved for Public Release

12-0. Overseas: IN.O. P.R.I I IAI I B I I C I I DI IEI I

13. Announcement Limitations (of the information on this page):
No Limitations

14. Descriptors: 15. Cosati Cce':
Inertial navigation Algorithms 1707
Strapdown inertial guidance Attitude indicators
Navigation Guidance computers
Avionics

16. ABSTRACT
An algorithm for strapdown inertial navigation and the associated theoretical analysis

are presented. Vehicle attitude is maintained through quaternions, which are updated by a
modified third order method; a split frame technique is used for solution of the navigation
equation.



CONTENTS Page No

1. INTRODUCTION I

1.1 The Concept of Strapdown I.N.S. I

1.2 Computation in Strapdown I.N.S. I

1.3 Content of this Paper 2

2. UPDATING THE ATTITUDE REFERENCE 2

2.1 Rotation Vector Updating Concept 3

2.1.1 Calculation of Rotation Vector from Gyroscope Outputs 3

2.1.2 Quaternion Update Using the Rotation Vector 3

2.2 Modification of the Attitude Algorithm 4

2.3 Impact on Sensor Compensation 4

3. SOLUTION OF THE NAVIGATION EQUATION 4

3.1 The Split-Frame Mechanisation 5

3.1.1 Body Axes Calculations (Fast Rate) 5

3.1.2 Navigation Axes Calculations (Intermediate Rate) 6

3.1.3 Navigation Frame Rotation 6

3.1.4 Velocity Transformation 6

3.1.5 Calculation of Velocity Change due to Gravitation Effects 6

3.1.6 Vertical Channel Damping 7

3.1.7 Position and Velocity Integration 7

3.2 Slow Rate Calculations 7

4. SUMMARY OF ALGORITHM 7

5. DISCUSSION OF ITERATION RATES 8

6. ALGORITHM PERFORMANCE 8

6.1 Attitude Updating 8

6.1.1 Computer Loadings 9

6.1.2 Sampling Rates 9

6.2 Navigation Performance 9

REFERENCES

APPENDICES

DISTRIBUTION

iI

i£



1. INTRODUCTION

The various aspects of Strapdown Inertial Navigation Systems have been subjects of
investigation in the U.S.A. for the past 15 years or so. More recently, interest has been shown
from other countries, having been stimulated by the demonstration of suitable sensors and
computing hardware. Problems related to computation, which is fundamental to a strapdown
system, have received the most attention. Reference I is a literature survey of strapdown tech-
nology, with some 300 references. Reference 2 contains a bibliography of approximately 230
references. Reference 3 is a review of the fundamentals of strapdown l.N. systems.

Papers dealing with strapdown inertial navigation systems are often rather fragmentary in
that they deal with certain aspects in isolation, and may be obscure to those not familiar with
the complete subject. In this arnd following papers an attempt is being made to document a
complete and viable system in a form which may be followed by those less familiar with the
subject. To this end, a survey of all the alternative methods has not been included, except for
a few examples for comparison purposes.

1.1 The Concept of Strapdown I.N.S.

An inertial measurement unit consisting of a minimum of three gyroscopes and three
accelerometers is mounted directly or perhaps with vibration isolators to the body of the vehicle.
Associated with this is a computer which processes the sensors' outputs and performs the
navigation calculations. The gyroscopes are usually arranged with their sensitive axes nominally
mutually perpendicular. The accelerometers are similarly arranged.

At a particular time, the en-route vehicle has a certain position, velocity, and attitude
relative to a specified reference. After a short time, the vehicle has moved to a new position,
and the velocity and attitude have changed. During this period, the sensor outputs are observed.
The gyroscope outputs are used to calculate the change in attitude over the period. The updated
attitude of the vehicle is then calculated. With allowances for the effects of gravity, the accelero-
meter outputs are used to calculate increments of velocity over the period. Because the accelero-
meters are fixed to the vehicle, the direction of these increments changes as the vehicle attitude
changes. However, because the attitude of the vehicle is known, these velocity increments can be
expressed relative to the reference, and so the change in position can be calculated.

This process has been going on continuously since the commencement of the flight, so
assuming position, velocity, and attitude were known at the start, navigation has been achieved.
Before commencement of navigation, a "levelling and alignment" sequence is performed. This
is the process of acquiring the initial conditions, and is often referred to simply as "alignment".

1.2 Computation in Strapdown I.N.S.

The computations performed by a strapdown navigator may be regarded as comprising
two major parts: propagation of the attitude reference, and solution of the navigation equation.
The former uses the gyro outputs to calculate the attitude of the body coordinate frame with
respect to a reference coordinate frame. The latter uses this relationship to transform the coordi-
nates of vectors (which may include accelerometer outputs, velocities, gravity effects, Earth
rotation and curvature effects, etc.) between frames and hence to calculate velocity and position
of the body.

Other calculations performed in the navigator include sensor compensation (e.g. correction
of gyro outputs for known drifts, etc.) and, before the commencement of navigation, levelling
and alignment of the system's internal references. Alignment may be carried out with the I.N.S.
nominally at rest, such as when an aircraft is parked on the ground, or when the system is in
motion, if another source of navigation information is available. The latter is known as transfer
alignment.



1.3 Content of this Paper

In this paper an algorithm for solution of the attitude and navigation equations is presented.
The algorithm and the theory behind it are discussed. Where practical, the mathematics have
been confined to appendices, for reference as required.

This analysis is thought to be unique in its presentation in that the process has been split
into sequentially performed modules each of which may be analysed in isolation. This approach
allows clearer insight into the workings of the process and considerably facilitates modification
of the algorithm to provide greater or lesser accuracy (in return for greater or lesser computer
loading) as required.

In particular, the attitude updating part of the algorithm has been split into two parts-
the solution for a "rotation vector", and the update of the quaternions. The navigation part
of the algorithm uses a split frame technique whereby body related quantities are evaluated in
body axis coordinates, and navigation frame related quantities are evaluated in navigation axis
coordinates. Additionally, the algorithm is partitioned into three sections which are performed
at different rates according to the application.

2. UPDATING THE ATTITUDE REFERENCE

All strapdown system mechanisations must maintain a relationship between the body frame
ind some reference frame. The accuracy of this relationship is critical to the successful operation
of the system.

This relationship may be the actual coordinate transformation matrix between the two
frames: that is the direction cosine matrix. Alternatively it may be some parameter set from
which a transformation may be obtained later. The latter approach, using quaternions (see
Appendix 2), is the preferred technique, although direct updating of the direction cosine matrix
is sometimes reported.

Updating is conventionally achieved by the solution of the differential equation governing
the parameter:

for a direction cosine matrix the equation is

al=
and for quaternions the equation is

(see Appendix I for notation).

These equations are derived in Appendix 3. The method of solution is usually by either 3rd
order Taylor Series or 4th order Runge-Kutta (see Appendix 4). Higher order methods seem
to be neither necessary nor practical in these real-time applications.

The analysis presented here uses what will be referred to as the Rotation Vector method.
This concept has not received much attention in the literature. It was used by Bortz (Ref. 4)

in a proposal for a hybrid system. In practice, as here, its application gives an end result very
similar to the Taylor Series of equivalent order. The concept is further developed here because
it is considered that it provides a most useful insight into the workings of the mathematical
process. This facilitates any modification of the resultant algorithm to provide greater or lesser
accuracy as required.

Finite rotations (such as occur in a gyro sampling period) are non-commutative. This
means that the actual net rotation of the vehicle (which is required) is not equal to the integral
of angular rate (the gyro output), unless the rotation of the vehicle is about a fixed axis during
the sample period. In a real system the axis is not usually fixed, so a fast rate of sampling and
updating must be used. For a given level of system accuracy, the use of the higher order algorithms
mentioned above is usually cost-effective in use of computer time-the cost of increased com-
plexity is more than saved by the gain from the lower iteration rate. In both the 3rd and 4th
order methods mentioned above (and in the rotation vector method), the assumption is made
that, during the iteration period, the gyro outputs follow a square law and may therefore be
approximated by a second order polynominal. This r,quires two gyro samples per iteration,
and affords a substantial correction for non-commutativity effects.
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2.1 Rotation Vector Updating Concept

In this method, the gyro outputs are corrected for non-commutativity effects by calculating
an equivalent fixed axis rotation vector, which is then used to update the quaternion.

2.1.1 Calculation of Rotation Vector from Gyroscope Outputs

For a finite rotation about a fixed axis, a "rotation vector" may be defined, its direction
being along the axis of rotation, and its length the rotation magnitude. In Appendix 2 a quaternion
is shown as 0 = C, O S: here, O is the rotation vector. The relationship between rotation vector
and angular velocity is derived in Appendix 5:

=,o+ (8xw)+ A ) x(xw) where A= f{ 'ta('}

and 0o2 = 0O.

Euler's Theorem states that, for any finite rotation, there is an equivalent fixed axis rotation.
The rotation vector approach to the non-commutativity problem is to use the gyro outputs to
solve the rotation vector equation, obtaining the equivalent fixed axis rotation over the period,
and to use this rotation for updating the attitude quaternion. For this case, where two gyro
samples are taken per interval, and the triple vector product (which is very small) is neglected,
the numerical solution for the rotation vector S is given by

0 = 61 + 52 ± R51 x 62)

where 61 and 62 are the incremental gyro sanples, taken at the mid-point and end-point of the
interval. This equation is derived in Appendix 6.

2.1.2 Quaternion Update Using the Rotation Vector

The "equivalent rotation" is about a fixed axis; if the rotation vector 8 is expressed as a
rotation quaternion R, then the updated quaternion is given by the standard rules of quaternion
multiplication:

Q +t) 8= 0(t)• where = C, O S as in Appendix 2

i.e. C = cos (10o), S = (i/0o) sin (10o)

and 002 -0.0

For a given value of 6, the above result is exact, subject to calculation of C and S. These
can be obtained from the series expansions for sine and cosine. The third order expansion has
C = 1 - 002 and S = j - 0 .

For fixed axis rotation, Wilcox (Ref. 5) showed how modified second order expansions of
C and S (C = I - -T002 and S = 0.5) could give drift performance slightly superior to that
of a third order expansion. This simplification is achieved at the expense of increased scale errors.
There is little to choose between this third order and the modified second order methods in accuracy
for fixed axis rotation. In computer loading, the third order requires an extra 4 multiplications
and I addition per iteration, with occasional normalisation; the modified second order requires
more frequent normalisation, which involves 8 multiplications and 4 additions. These figures
do not include multiplication or division by 2. On balance, the modified second order method
has been found preferable.

In this mechanisation, the equivalent rotation vector is computed from the gyro outputs,
and the rotation update quaternion is obtained from this using the modified second order
expansion for C and S. This may be considered as a modified third order method: in Appendix 4,
it is shown how the rotation vector calculation, together with the third order expansion of
C and S, is numerically almost equivalent to the third order Taylor Series solution of the quater-
nion differential equation.

3



2.2 Modification of the Attitude Algorithm

The Rotation Vector Concept gives a useful insight into the workings of the mathematical
process, by splitting the non-commutativity correction procedures from the quaternion update
procedures.

Consider the equation
0 = 6 1 ± 82 ± R(6l X 62)

the quantity (61 + 52) is of course the sum of the gyro outputs over the whole period; i(6i X 62)
is the non-commutativity correction. In an application requiring less accuracy, one sample 6 per
iteration may be taken: then 6 6 and fixed axis rotation is assumed (i.e. 61 X 62 = 0).

Alternatively, more than two gyro samples per iteration may be taken. For example, if
three samples 81, 82, 63 are taken, the gyro outputs are assumed cubic, and the solution of the
rotation vector equation has the form:

0 = 8 + 82 + 63 + cross product terms.
Similarly, the quaternion update accuracy may be varied by taking fewer or more terms

in the expansions for C and S.

2.3 Impact on Sensr Compensation

A considerable amount of computer time may be taken by sensor compensation-allowing
for known biases and acceleration sensitivities, etc. It may appear that taking several gyro samples
per iteration would multiply this time. However, the rotation vector solution is of the form

8 = sum term ± cross product term.

The cross-product term is much smaller than the sum term, so for most applications it
should be possible to compensate only the sum of the gyro outputs at the end of the period,
and calculate the cross-product term from uncorrected intermediate outputs.

3. SOLUTION OF THE NAVIGATION EQUATION

The function of the navigation algorithm is to accept the accelerometer outputs and the
attitude parameters, and to calculate position and velocity of the vehicle.

Accelerometers respond to specific force, which is the difference between inertial and
gravitational ("mass attraction") acceleration. An allowance must therefore be made for gravi-
tation. In practice, it is usual to calculate the value of "gravity", which is defined as the resultant
of gravitational and centrifugal acceleration due to Earth's rotation. The Coriolis effect, which
arises from the measurement of velocities relative to rotating axes, must also be allowed for.

In order to measure vector quantities, a coordinate frame must be specified. Many coordinate
frames are used in inertial navigation analysis (Ref. 6), but for present purposes, only two are
necessary: see Figure 1.

The aircraft Body frame is defined as the orthogonal set having the Roll axis pointing
forward, the Pitch axis pointing out the starboard side, and the Yaw axis pointing "down" relative
to the aircraft. The origin of the body frame is at the aircraft centre of mass, not coincident with
the I.N.S.

The Geographic frame has its origin at the system's location and its axes aligned with the
local North, East, and Down directions. Down is defined as normal to the Earth's reference
ellipsoid. In this discussion, the geographic frame is the navigation frame.

For any terrestrial inertial na'iration system analysis, the concept of an inertial frame is
also required. This frame has its origin at the mass centre of the Earth, and is non-rotating
relative to the stars. For present purposes, it is not necessary to specify the directions of the axes
of the inertial frame.

The set of sensor axes may be arranged in any attitude relative to the body frame, although
conceptually it is useful to consider them as coincident with the body axes. (Whatever their
orientation, a nominally constant transformation will give their outputs relative to the body
axes.) For purposes of this discussion, the sensor and body axes will be assumed coincident
except where mentioned otherwise.

4



Conventionally, the navigation algorithm takes the attitude reference and calculates the
coordinate transformation matrix (if the reference is not already the direction cosine matrix).
It uses this to transform the accelerometer outputs from body to geographic (or whatever set
of axes are being used for navigation) axes coordinates. Present position and velocity are used
to calculate the gravity and coriolis effects. These are added to the accelerometer outputs in
the appropriate coordinates, and the resulting quantities are integrated to get velocity and position.
In a digital system the accelerometers are usually arranged to act as acceleration-integrating
sensors, so the outputs are obtained as velocity increments, integrated along body axes.

Vehicle attitude and transformation matrix are likely to be changing rapidly, therefore the
coordinate transformations must be performed at a fast rate. This imposes a considerable burden
on the computer.

The navigation equation for strapdown inertial navigation is derived in Appendix 7: for
any reference frame K; L tE 1I F + g - (2-E + nE) VE

for example, if K is a "geographic" frame G, and the quantities are expressed in G frame coordi-
nates, we get

[AVE]G = C
G [F]

8 dt +J {[gG _ (2/G + EG) [VE]G} d+.

In a "conventional" mechanisation this equation is solved at a fast rate. The g and U terms
may not have to be evaluated at the fast rate, but JCG [F]B d t does.

In the equation, CB is the body to geographic coordinate transformation matrix, which is
varying rapidly as the aircraft attitude changes. The output of an integrating accelerometer is
J[F]8 d t . The solution of fC1 [F]8 d t has not been widely discussed in the literature, and is usually
solved by rectangular or, preferably, trapezoidal integration. Higher orders have been recom-
mended: e.g. Levinson (Ref. 7) considers that a third order solution is required. Such a solution
fits a second order polynominal to both Ql and F, and requires considerable computer time.

The aircraft attitude rate, of up to several hundred degrees per second, may be far greater
than the navigation frame rotation rate, which is unlikely to exceed one degree per minute.
Changes in gravity, and effects of Earth rotation and curvature are functions of the position
of the navigation axes relative to Earth: although they change slowly, their effects on each of
the system accelerometers change at the body rate.

The split frame mechanisation of the navigation equation takes advantage of the different
frame rates, by performing body-axes-related calculations at a fast rate in body coordinates,
and navigation-axes-related calculations at slower rates in navigation axes coordinates. This
leads to considerable savings in computer time.

3.1 The Split-Frame Mechanisation

This concept is not new, but it has not had much attention in the literature. It was mentioned
by Wilcox (Ref. 5), but it did not appear to attract further study until a mathematical analysis
was reported by Bar-Itzhak (Ref. 8). Wray and Flynn (Ref. 9), in a comparison of various
solutions of the navigation equation, concluded that it was the most efficient in use of computer
time.

The basis of the split frame mechanisation is the fact that changes in position or velocity
caused by specific force and changes in position or velocity caused by gravitation may be calcu-
lated separately. The actual change is the sum of these. The effects of specific force are evaluated
at a fast rate in body axes coordinates. The effects of gravitation are evaluated at a slower rate
in navigation axes coordinates. Coordinates of the incremental velocity are transformed from
body to navigation axes at the slower rate, leading to a significant saving in computer loading.

3.1.1 Body Axes Calculations (Fast Rate)

In this section, the accelerometer outputs and the rotation vector are used to calculate
increments in velocity caused by specific force. This is performed at a fast rate in body axes.
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The velocity of the body, with respect to an inertial frame, caused by specific force, is given
by the equation

[,,]B = [F]B - (B, [VF].

This is derived in Appendix 8. This equation is solved numerically at a fast rate, using the
accelerometer output and the rotation vector calculated for the attitude update. The solution
of this equation is derived in Appendix 9: for present purposes the assumption is made of constant
angular velocity and specific force during the calculation interval. This has been found to give
an adequate trade off between computer loading and accuracy. The resulting algorithm is

viFIB - [V1 ,] + [Al - [6,e]' x {[VF]' + J[A]B}

where [A]B f f[F]' dt - the accelerometer output, and [0,]' is the rotation vector.

In Appendix 10 the relationship between VF and VEF is discussed and it is shown that
subject to restraints on the frequency of the navigation frame calculations, it can be assumed that

[VIFlB [VEF]R .

The [VI]FJ are calculated and accumulated at the fast rate until the next navigation frame
,"alculation is to take place. The assumption is then made that [VEF]8 = [VF]

, and VEF is
transformed into navigation coordinates. The initial condition for fast rate calculations is then
applied (V,, = R, = 0) and a new series begins.

3.1.2 Navigation Axes Calculations (Intermediate Rate)

During the intermediate rate calculation cycle, the attitude quaternion is updated, to account
for rotation of the navigation axes since the last intermediate cycle, normalised, and then used
to transform the coordinates of VEF from body to navigation axes. This is added to the pre-
viously calculated [VEGJ giving the net change in velocity, relative to Earth, over the interval.

The total velocity relative to Earth, and the change in position since the last slow cycle,
are then updated. Using these values, the navigation frame rotation and the [VEO]N are calcu-
lated for use in the next intermediate cycle.

3.1.3 Navigation Frame Rotation

The attitude quaternion required for velocity coordinate transformation relates the body
axes to navigation axes. However, during the fast rate cycles, the quaternion is being updated
with rotations of the body relative to an inertial frame. (The gyroscope outputs are relative to
inertial space). It is therefore necessary to allow for the rotation of the navigation frame relative
to the inertial frame, caused by Earth rotation and aircraft movement over the curved surface
of the Earth. Appendix II shows how a quaternion multiplication is used to account for this
rotation. The quaternion represents the rotation, over the intermediate cycle, of the navigation
frame relative to the inertial frame, and is expressed in navigation frame coordinates.

3.1.4 Velocity Transformation

The VEp coordinates are transformed from body to navigation axes using the quaternion.
However, if body/navigation attitude information is required (e.g. for flight control, bomb
aiming, etc.), it is usually more economical to calculate the direction cosine matrix, and use
that for the transformation. These procedures are well known, but are listed for reference in
Appendix 12.

3.1.5 Calculation of Velocity Change due to Gravitation Effects

The velocity of the body, relative to Earth, caused by the effects of gravitation, is given by
the equation 'uIEG]N = [gN - (20' + 0 ') IvYEG]

6



This is derived in Appendix 8. It can be seen that this equation is of a similar form to the VIFequation: it is solved numerically using the same procedure, the solution being

[VE_N = [gN 1 _ (2-N + illN) ([VEII + j[g1 1 ) 1,.

In this mechanisation, only the vertical component of g is considered.

3.1.6 Vertical Channel Damping

The vertical channel of a pure inertial system has an exponential instability with a time
constant near the earth of about 9.5 minutes. This arises because the value of g is computed
on the basis of the calculated altitude. See Appendix 14.

It is common practice to stabilise the vertical channel by an external altitude reference,
usually the barometric altimeter. For optimal mixing a Kalman filter is used (e.g. Ref. 10),
although in cases where the ultimate in accuracy is not required, or where computer capacity
is limited, such as in the present algorithm, a fixed gains system is used. A typical third order
mechanisation is employed, taken from Reference 11. The equations for this are given in
Appendix 14, and the triple pole time constant of 100 seconds is retained.

3.1.7 Position and Velocity Integration

Having obtained [AVE]N [VEF]N + [VEj]N, the change in position is calculated:

['x]N - [XIN + {(VEIN + i2[1VEI NI tl,

and the updated velocity:
[VE]N VIN + [AVEIN.

In this mechanisation, the [AXIN are themselves changes in position since the last slow rate cycle

3.2 Slow Rate Calculations

During the slow rate cycle, updates of vehicle position, in latitude and longitude, and also
of the sine and cosine of latitude are made. In this mechanisation, the sine and cosine terms
are updated as shown in Appendix 13. New values of Earth radii ant gravity are calculated
each slow cycle: the equations used are given in Appendix 13.

4. SUMMARY OF ALGORITHM

Gyroscopes are sampled twice per iteration period, accelerometers once. The attitude
reference is maintained as a quaternion. Gyroscope outputs are used to calculate an equivalent
(over the period) rotation vector, which is used to update (to third order) the attitude quaternion.

A split frame method is used for solution of the navigation equation: body related quantities
are evaluated in body axes coordinates, and navigation frame related quantities are evaluated
in navigation axes coordinates.

The algorithm is partitioned into 3 rates: fast, intermediate, and slow. Body axes calcu-
lations are performed at the fast rate, navigation axes calculations at the intermediate rate, and
Earth-related quantities are evaluated at the slow rate.

Body axes are Roll, Pitch, Yaw; Navigation axes are the Geographic axes North, East,
Down.

Incremental gyro samples are S1 and 62 at the mid-point and end of the fast calculation
period. Incremental accelerometer samples are A at the end of the period.

The operations are as follows:

Fast rate: (body axes coordinates)

Rotation Vector 0 - 81 + 6 2 + 1(41 X 62)

Attitude Update Q * {( - .0), Ae}

Body axes Velocity VIF +- VIF + A - S x (VF + A).
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Intermediate rate (navigation axes coordinates):

Earth rotation and transport *- {(l - -,c. 'p), - }

Normalise quaternion QL 1 5 - 0 5 Y_ (Qi) i - 0, 3
SQL.Q

Body to nay. axes [VEF]N E * [Vts* VEF VIF
coord. transformation

then VF= 0

Total vel. increment AVE = VEF + VEG

Vertical channel H, H - H a -a H,

AVE(D) <- AVE(D) - (k2 H, + k3 at,) t1

H <- H - {VE(D) + A VE(D)) , - k1 Ht,

VE(D) -VE(D) + AVE(D)

Horizontal channels AX + (VE + !AVE) I

VE - V E + AVE

VEG for next cycle VEG = g t, - (2fi1E + E) (VE + g t) t,

Yp for next cycle -- IN.t.

Slow rate:

Update latitude, longitude, sine and cosine of latitude from the AX; calculate gravity and
Earth radius. Then AX = 0.

5. DISCUSSION OF ITERATION RATES

In the literature, the usual rate for "fast" calculation cycles is around 100 Hz, in the range
50 to 200 Hz. Some mechanisations have a "slow" position cycle in the range of about 0- 5 to 2 Hz.

Similar rates are envisaged for this algorithm: the "intermediate" rate calculation cycle is
limited in respect of its minimum rate as shown in Appendix 10, by an acceleration error of
magnitude approximately 36t, parts per million (p.p.m.), where t, is the period of the inter-
mediate cycle. Thus, if say 10 p.p.m. were acceptable for this error, a higher limit of 1, = about
0.25 sec., that is, a minimum frequency of about 4 Hz is imposed.

The other major factor influencing the choice of intermediate rate is vehicle speed-a high
speed aircraft, particularly if operating at high latitudes, would require a higher iteration rate,
whereas a helicopter, for example, would not. The attitude and body axis calculations have to
contend with the full range of vehicle rates and vibration: their iteration rate should be as high
as possible, unless the environment is unusually benign.

In practice, the capability of the computer is a limiting factor on the iteration rate of any
strapdown system.

6. ALGORITHM PERFORMANCE

This will be discussed in two parts-attitude updating, and navigation.

6.1 Attitude Updating

Presentation of attitude performance test data will be limited to an example of coning
motion. This is a standard test for evaluating attitude algorithms, as it is a highly non-
commutative environment, yet with an analytical solution.

The results demonstrate the effects of iteration and sampling rates and of computer loading;
see Figure 2. Performance of the third order algorithm taking two samples per iteration was
found to be virtually identical to that of the fourth order method.
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6.1.1 Computer Leadings

The third order methods are almost identical in this respect. The modified third order is
slightly more economical, requiring approximately 29 multiplications and 27 additions per
iteration. The fourth order Runge-Kutta method imposes almost twice the loading of the third
order methods. A third order method could therefore be run at almost twice the rate of the
fourth order, and, as can be seen from Figure 2, this gives considerably more than twice the
accuracy in the coning tests.

6.1.2 Sampling Rates

In order to effect the non-commutativity correction, two gyro samples are required. In this
algorithm, as in the Runge-Kutta method, two samples are taken per iteration. However, a
third order Taylor series method often appears in the literature (e.g. Ref. 12), in which only one
sample per iteration is taken. This single sample method has an accuracy equivalent to that of
a two-sample-per-iteration method running at half the iteration rate. In other words, by taking
two samples per iteration instead of one, the computing load may be almost halved.

This is seen in the results, where the single-sample method must run at 200 Hz to give the
same accuracy as the two-sample methods running at 100 Hz.

6.2 Navigatlon Performance

A program (Ref. 13) which simulates the somewhat idealised movement of an aircraft
above the surface of an ellipsoidal, rotating Earth, was used to exercise the algorithm. This
provided the outputs of a strapdown inertial measurement unit (here assumed error-free) in
the aircraft, which performed manoeuvres including balanced horizontal and vertical turns, with
prescribed angular and linear acceleration and turning rates. The program also outputs the
position, velocity, and attitude of the aircraft during flight. The simulation is open loop; i.e.
there is no feedback of the aircraft state to the flight control system, so vibration effects have
been excluded. However, the effects of the dynamic environment of the I.M.U. are primarily
of importance to the attitude segment of the algorithm: this exercise is considered to be a valid
demonstration of the navigation segment.

Details of the flight are shown in Figure 3.
The strapdown algorithm was implemented on a 27 bit mantissa machine: results of two

runs are shown to illustrate the magnitudes of errors which arise from differing navigation cycle
calculation rates. Figure 4 shows the result of running all segments at the fast rate-100 Hz.
Figure 5 was obtained with the fast, intermediate, and slow segments running at 100 Hz, 10 Hz,
and 1 Hz respectively. For many applications, the intermediate and slow segments could run
at even slower rates.

9



Vehicle centre of gravity Yaw

Body axes

oJIE

System location
Greenwich
meridian

East

Latitude

Equator

Longitude

Geographic axes

The Inertial Frame has its origin at the earth centre, Inertial Axes are not defined.

FIG. 1 CO-ORDINATE FRAMES



CL

go

C14

au C

9D m

Cu

Cu C

CL CL C
cc z

~ ~4- L

I-o~ ~-0

oE~.o0

puo ja -ie - w4y



- 30.5 8000

-38.5 0

144.5 147 0 1000
Longitude Time (sec)

600 360

-a)

a.o L

so 
9

0A0 0 _ _ _

50 -90

Time Time

FIG. 3: SIMULATION FLIGHT DETAILS



40

RMS
position
error

(metres)

0
0 1000

Time (seconds)

0.1

RMS
velocity
error
(miS)

0 1000

0.001

Heading
error 0__________ ________

(degrees) 1000

0.001

Pitch
error 0
(degrs)[ 1000

0.001

Roll[

(degrees) 1000

er 0.~~00 L

FIG. 4: ALGORITHM ERRORS - ALL SEGMENTS AT
FAST (100 Hz) RATE



40

RMS
position
error
(metres)

0
0 1000

Time (seconds)

0.1 -

RMS

error

0 1000

0.001

Heading
error 0
(degrees) 1000

- 0.001

0.001

Pitch
error 0
(degrees)1000

-0.001

0.001 [

Roll
error 0
(degrees) 1

-0.001

FIG. 5: ALGORITHM ERRORS: FAST CYCLE 100 Hz,
INTERMEDIATE CYCLE 10 Hz, SLOW CYCLE 1 Hz



REFERENCES

1. Garg, S. C., Morrow, L. D., Mamen, R.: Strapdown Navigation Technology: A Literature
Survey. A.I.A.A. Paper 77-1105, Aug. 1977.

2. AGARD LS-95: Strapdown Inertial Systems, June 1978.
3. Lloyd, I. V.: Fundamentals of Strapdown Inertial Navigation. A.R.L. Systems Group

Report S.O.G. II, Jan. 1975.

4. Bortz, J. E.: A New Mathematical Formulation for Strapdown Inertial Navigation.
I.E.E.E. Trans. Aerospace and Electronic Systems, Vol. AES, No. 1, Jan. 1971.

5. Wilcox, J. C.: A New Algorithm for Strapped-Down Inertial Navigation. I.E.E.E. Trans.
Aerospace and Electronic Systems, Vol. AES-3, No. 5 Sept. 1967.

6. Britting K. R.: Inertial Navigation Systems Analysis. Wiley Interscience, 1971.
7. Levinson, E.: Laser Gyro Strapdown Inertial System Applications. (In Reference 2.)

8. Bar-Itzhack, 1. Y.: On the Navigation Computation in Terrestrial Strapdown Inertial
Navigation Systems. I.E.E.E. Trans. Aerospace and Electronic Systems, Vol. AES-13, 1977.

9. Wray, G. L., Flynn, D. J.: An Assessment of Various Solutions of the Navigation Equation

for a Strapdown Inertial System. R.A.E. TR-79017, Jan. 1979.

10. Farrell, J. L.: Integrated Aircraft Navigation. Academic Press, 1976.

11. Widnall, W. S., Grundy, P. A.: I.N.S. Error Models. Intermetrics Inc., Cambridge, Mass.,
TR-03-73, May 1973.

12. Nurse, R., Prohaska, J., Riegsecker, D.: A New Baseline for the Inertial Navigation
Strapdown Simulator Program, Vol. II. Charles Stark Draper Laboratory Inc., Cambridge,
Mass., July 1978.

13. Miller, R. B.: A Flight Profile Generator Program. (To be published.)



APPENDIX I

Notation

M a vector

[MIR vector M in R frame coordinates

["-J the rate of change of M with respect to frame R

is [-] in B frame coordinates. N.B. L .I I R

C16 the transformation matrix (direction cosines) to transform from R to B coordi-
nates. i.e. [M] s - C [M]R

togE the (vector) angular velocity of the E frame with respect to the I frame

x vector cross product operator

1E the skew symmetric matrix [wEr x

quaternion "multiplication" operator

QRB a quaternion representing a rotation from frame R to frame B

F specific force

R position vector from Earth centre

V, velocity relative to inertial space

VF velocity relative to inertial space caused by specific force

VE velocity relative to Earth

VEF velocity relative to Earth caused by specific force

VEG velocity relative to Earth caused by gravitation
AV increment in V

X position vector

H altitude

HD barometric altitude

VE(D) vertical velocity component

9M, mass attraction (gravitation)

g gravity (includes Earth rotation effects)

W angular velocity

It gyro output j Jw dt

* "rotation vector"



h a time interval

IF fast cycle time period

intermediate cycle time period

is slow cycle time period

CP rotation of navigation axes relative to inertial during t

Lq



APPENDIX 2

Some Properties of Quatefulom

The uses of four parameter techniques to represent rotations are well established in dynamics.
Some properties of quaternions as applicable to this work are listed below:

A quaternion representing a rotation may be cxpressed as a scalar and a three element
vector: (the "Euler Parameters")

Q = cos |0o, el sin (J0o), e2 sin (J0o), es sin (jO).

This may be interpreted as a rotation through an angle Oo measured from reference to
body axes, about a unit vector defined (in both body and reference axes) by its components
el, e2, es.

Alternatively,

Q = cos (10o), (80/0o) sin (10o), (02/00) sin (10o), (Os/0o) sin (Q Oo),

where the 0 are the components of the rotation, and Oo = (012 + 022 1 032)1/2. This may be
written as Q = C, OS where C = cos (JO) and S = (1/0o) sin (10o).

Quaternion "Multiplication"

Quaternion "multiplication" may be defined as follows: given the quaternions A = Ao, A
and A Bo, B, then the product C = Co, C, of these is

' A- • (A0 B0 - A.B), {AoB + AB0 + (A x B)).

For a physical interpretation of this, consider a body, with a quaternion A representing
the rotation from reference to body axes. Give the body a rotation such that the quaternion R
represents the rotation from old to new body axes. The quaternion C as defined above now
represents a rotation from the reference axes to the new body axes.

Coordinate Transformation by Quaternions

The "unit length" rotation quaternion = C, OS has a conjugate * - C, - OS which is

Any 3 dimensional vector M may be regarded as a quaternion R with its scalar part zero:
then if Q represents the rotation from reference to body axes,

[M] _ Q, [MJB * Q-1 {[] ___ [M]B}.

Normalisation of Quaternions

For a rotation quaternion, the sum of the squares of the elements is nominally unity. The
square root of this is sometimes refeirred to as the "length" of the quaternion. Any departure
from unity in this value causes a "scale error".

This effect can be removed by "normalisation", in which each element of the quaternion
is divided by the "length".

A "scale error" occurs in a vector whose coordinates are transformed between two coordi-
nate frames, where its length does not remain constant.

A "drift error" occurs in a vector whose coordinates are transformed between two coordi-
nate frames, where its direction does not remain constant.



APPENDIX 3

Attitude Propagation

A3. 1 Direction Cosines

For any vector M:

IM]" = CA1[MA()

also,

[dM/d:jI =- A[] (2)

Time derivative of (1):

[MIR = dB[MA + CA[IA. (3)
If WJAD is the angular velocity of frame B relative to frame A, then Coriolis' equation, in

B frame coordinates, gives:

[dM/d:JB = [MID + (0A[M1B. (4)

Use (1)4(3) in (4):
CA[M]dA = CA[M]A + eAD[M]A + CID~ CA[M]A

i.e. {6AB + QBB CAB) [M]A 0

M is any vector,

Now

_fB)1 0 and Q- C-1= [CLI41,

This is the differential equation for propagation of the matrix CB.

A3.2 Quaternions

For any vector M:
[MID = Q-1* [MI* AB 6

Differentiate w.r.t. time, and put [M]A = *1 :

-1* QA* [M]BR+ [MID * Q -I AB+ Q-1 [MIA QA (7

where

OADmeans dt(J)
Now

AD* [MIA * QAB =C M'
Using (2) and (4), we get

* E]A QAB = M] +f1,M] (8)



Consider the identity q-1, q 1 1, where q is any rotation quaternion:

q = qo, q and q- - qo, -q.

Differentiate w.r.t. time:

q-1 *q + q-1 ,= 0. (9)

Now, by definition

4-1 ,q = {(4oqo + jqq}, (4o q - iqo - (q x q)} = po, p(say)

and,

q-1 .'4 = 4oqo + j-q), (qo q - qqo - (q x j)) = ro, r (say).

It can be seen that Po = ro and p = -r

however, from (9): Po, p + ro, r = 0 therefore po ro = 0.

In equation (7), let Qj,' * QAB = p and QjO * QAB = -P.

Using (8), (7) may then be written

[M = p * [M]" - [MI" * P + [M], + 0,16 [MJ".

Evaluating the quaternion products, and writing IWABI X for tsAB,

0 - -p[M]" + p x [MI + p. [MB - [M] 8 x p + [WBA]" x [M]8

{2p + [-A] S} X [MJ8 = 0.

M is any vector,

i-B'= -P = QAB OA

OA = i OAS * [WAD]. (10)

Alternatively, if [OA,]A is available, (10) becomes OAa = HABA]A * OAR

(10) is the differential equation for the propagation of quaternion QAa.



APPENDIX 4

Quaternion Update Methods

A4.1 Taylor Series Expansion (to Third Order)

We wish to use the equation

to obtain

Q(t + h).

Using a Taylor Series expansion, we get:

Q(t + h) = Q(t) + h d(t) + (h2/2!) 6(t) + (h3/3!) 6(t) + . . (2)

[for clarity, the (t) will be omitted].

Differentiate (I) w.r.t. time:

Now,

(3)

Differentiate again:

= ( •F)) * + 1( - j(,,.) - tt)(Q • .

Now,
(* ) *, - * ( * ci)

• t * ) - (t') - t t'o + }.(4)

Using (1), (3), and (4) in (2), we get

Q(t + h) = I(t) * U(t) (5)

where:

0=1 + ihia + jh2 {j., - k(wto't)) + jh{ (1* w) - J(wto W) - j(t'o) + 1d.} (6)

Expand 0 into its scalar and vector components: [N.B. ( i, *,) = -w-to + (w x w).]

Uo, U = (l - ih
2(o. o) - 1h(w. ,), { jhw + 4h2 , + h3 (× W X )- h(w.wo + 9hsw}. (7)

The values of tol), 4Kt) and si() must now be found from the gyro outputs. It is assumed that
a second order polynominal may be fitted to the gyro outputs: i.e., 6(t) = at + bt2. Now,
b(t) = fw(t)d over the sample period: this implies that *i.(t) = Q, and u~r) is constant over
the period.

If the gyros are sampled at the mid-point and end of each iteration period, giving I
from t to (t+ h), and 82 from (t+ jh) to (t + h), we get w(t) = ( 361 - 62)/h and
(0 = 4(62 - 81)/ha.



Substituting in (7), rearranging, and putting 6 = (61 + b2), we get

Uo = 1 - (.6) + (6, - 62).(1 - 62)

U = 16 + (1, X 52) - 4 {(0.8) - 86, .(82 - 61)) {6 - 2(02 - 61)).

The last term in each part of 0 may be assumed small: if in these terms only, we put 61 = 52,

then we get
Uo = l - i~s.s)

IJ = P6 + ( x ) - -(6.6)6.

It is interesting to compare this result with the solution obtained from the rotation vector

method using a third order expansion of C and S: in that case;

C, So = (I - 10o2),Q0 - 4-8 o2 0)

where

0 = 8 + 52 + 1(61 X 82) and 002 = .0..

If (81 x 62)2 and 0o2(81 X 52), which are small, are neglected, we get

C= I - ~(6.8)

SO 0 + sl x 82) - -,-(.6) 6

i.e. U0, U C, SO.

A method of estimating u(t) and (,(t) which often appears in the literature (e.g. Ref. 12)
uses the incremental gyro output 6 over the whole calculation period, that is. between time t
and time (t + h), and the previous output 8', between times ( - h) and t.

Using these values, we get w(t) = (8 + 6'),2h and w(t) = (6 - 6')/h2 .

When these are substituted into (7), we get, after rearrangement,

U0 = I - j(8.8) + -L(6 - 8').(b -- 8')

U 6 + , 4(6'x 8) - 9{6.8 - 1(38 + 6').(S - 8')}(b + 6').

The last term in each part of C may be assumed small: in these terms, if one assumes that
6 = 6', the result is obtained:

Uo I - i(6.8)

U =8 + (8'× 6) - (s.)s.

A4.2 Quaternion Update by Fourth Order Runge-Kutta

Runge-Kutta methods are standard tools in numerical analysis. The application of a fourth
order method to the attitude quaternion update is as follows:

Given the equation 0(t) = i1(t) * CQ): to find 0(t + h).

Incremental gyro outputs 6, and 82 are taken at the mid-point (time t + 1h) and end
(time I + h) of the period respectively. Fitting a second order polynominal to these allows
calculation of the angular velocity at the start, mid-point, and end of the period:

w(t) = (361 - 62)/h, w(t + jh) = (61 + 62)/h, w(t + h) = (362- 61)/h
Let

HJwo = h.w(t) and Hw, = h.(t + jh) and HtW2 =hwQ( + h)

= (361 - 2) = (6, + 62) = (361 - 81).



The method is:

2) k0 + h QQt)+ jo

Z ~ho'(t + jh) = JQ'(t + jh).j

3) Q"(t + ja) Q (t) + jjki

k2 = A"(t + j/a) = JQt + jh)*

5) update: Q)t+h ()+jk-+2(~ 2 31
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Rotation Vector Equation

Consider a quaternion Q = C, SO: C = cos (6), S = (1/8o) sin (10 o), 86 - (0.6)112, 0
is the rotation vector.

Differentiate: 0o - (6.0 )+/A 6.0

also C = -sin (W9o).1o = -S(6.0)
o 6e)0(C

ando sin ( 1) + cos (10o). 16o =-- (C - 2S)

and S= ( +A

therefore - j{-S(.0), ( (C - 2S)0 + 2A).

Put (6.)0 = 0 X (O X 6) 0o06

i=4{-S(o.0), + (C - 2S) x(x6)} (I)

also: = -- . -- {-(Q.w), Qo' + (Q X t)}.

Now, (C, SO) (Qo, Q),

.*. 6 = i{-S(.tW), C- + S(o X t)}. (2)

Equating scalar parts of 0 in (1) and (2), we get

Owo = 0 (3)

i.e. the component of 6 parallel to 8 is equal to the component of w parallel to 6.

Equating vector parts of 0 in (1) and (2), we get

C + (C6- 2S 0 × (0 x 6) = CW + S(e X i). (4)

Consider the relations
0 x (6 x 6) (6.0) 6 - (o.o)o

and
O X (6 x W) (O.W)0 - (6.) W .

Subtracting these, and using (3), we get

6 x (6 x 6) = 6 x (0 x W) - 02(i - ).
Substitute in (4):

*(C -2S)
C + (- x (9 x w) - (C - 2SX0.w) = Cw + S(O x w).0o2

Simplifying, we get

6 = + (O x w) + (/Ool ) [! - (C/2S)]6 x0 ( xii). (5)

Making the approximations C - 1 - jOg' and S = J(l - A0o'), we get

6 = W + j(6 x W) + M x (0 x ii).
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Solution for the Rotation Vector

For present purposes, the very small triple vector product term will be neglected, thus:

i(t) = ,(t) + {O(t) x ct)}. (I)

Assume second order gyro output variation:

6(t) = at + bt 2  (2)

where T < t < T + h: T is time at the start of the period of length h. Therefore w(t) = + 2bt,

#A(t) = 2b, and 6(t) = 0.

Now, 0(T) = 0, -(T) = a, 6(T) = 2b.

equation (1) gives 6(7) = W(T) = a

differentiate and substitute: 6(T) = ;(T) = 2b

differentiate and substitute: W(T) = ito(T) x ;(T) = a x b

and 'j'(T) is a triple vector product, which is neglected.

Apply a Taylor Series solution to equation (1):

O(T + h) O(T) + h(T) + (1/2!)h 2e(T) + (1/3!) hsj(T) + ...

therefore

0(T-+ h) = ah + bh2 + h3(a x b). (3)

If bi is the incremental gyro output at the mid point of the period, and 62 is that at the end,

then (eq. 2)

S(T + h) = 61 = iah + bh

and

(T+ h) = 8i + 62 = ah + b/ 2 .

Solving for a and b, we get

ah A - S2 and bWi = 2(S - 61).

Therefore

1h3(a x b) = HSI x 62)

and equation (3) may be written

O(T + h) = 61 + 62 + f(li x 62).

The same procedure may be used for higher order solutions if necessary.
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Derivation of the Navigation Equation

Apply Coriolis' equation to R:

'1R = /K+ ER VE + GR.

Differentiate

td2R' (dVRE\+ (dRj
dt2 1~T,+ Ekt

td2R tdVE + L11VE + LIIE 'IIE R.

Specific force is given by F ==(d2Rfdt2)1 - gm where gm is mass attraction

Gravity is defined as the resultant of mass attraction and centrifugal force: i.e.

g = g. - QE IE ~R

(dV f =F+ g- Drg Vir.

For any frame K, Coriolis' equation applied to 1'E gives

Put QI = ft, + f~mr and substitute for (dVE/dt),:

tdV\
'E, F + .+g-l,± VE
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Split-Frme Medmulsaim

The concept applied here is that changes in position caused by specific force (RF) and
those caused by gravitation (RG) may be calculated separately. The actual change in position
(R) is given by R = R F + RG.

Specific force is given by F = (d2R/dt2), - g,; g. is mass attraction vector

then

and

The initial conditions are RF= 0; (dR,/dt),= V,= 0; (dRF/dt),= V,= 0, and R= R;
(dR/d),= - V, = VI; (dRGfdt)E = VG = VE.

A8.1 The Specific Force Component

Coriolis' equation applied to VI.:
(dVjF (dVIFA

I -\ d,,\ + '11B VF

but

dV,\F (d2R, -F

""\r di,

k-(d-j- = F - 0,9 V,F.

When this is expressed in body frame coordinates, it may be written:

[VJ,]D = [F - 81n[VIFP.

This is the equation for the velocity component caused by specific force.

A8.2 The Gravitation Component

Coriolis' equation applied to RG:

i.e. V1o = VG + tli, RG.



Differentiate:

( - ldi d + fl jdRdt , =k---/ 'E,-i-"

Therefore

(d, dV,G\ _G (d)VEG +"EONR\--I-), ="' k d ) +,

Coriolis' equation applied to VEG for any frame K:( '
1

'EGN = fdVEG\

Substitute for (dVEldt),:
IdVEG \

S. = (d\dt - 1 + 1 LE) VG + QEIl:E R .

RF is small compared with the distance to Earth centre It = R0 + R., so we may put
g --= - 1

also

DIX= '2  + tEK

therefore

(dV 0"k -- J4 = - (20, + "FX) VEG

This is the equation for the velocity component caused by the effect of gravitation.
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Solution of Body Axis Velocity Equaton

We wish to use the equation (Appendix 8)

V(t) = F(t) - fi(t) V(t) (I)

to obtain V(t + h).

Using a Taylor Series expansion, we get [omitting the (t)]:

V(t + h) = V + hi, + (hl/2!) V +.... (2)

Differentiate (1):

V - P - -V). (3)

Using (1) and (3) in (2):

V(t + h) = V + hF - hQV + (h2/2) (F - - (IF + flV).

Assuming that specific force and angular velocity are constant during the interval, and that
the term (h2/2) MfV may be neglected, we get

V(t + h) = V + hF - hil (V + JhF).

Now, hF is the accelerometer output A, and Wl is the skew symmetric of the rotation vector,
i.e. hl = [8' ].

.. V(t + h) = V(t) + A - Sx IV(t) + IA].
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Relationship between VF and VD

Coriolis' equation applied to Rp gives:

tdR\ = (dRE + QIE2 RF
V T kd , dtJ)E

or, in terms of velocity, over an interval h; foV,-- V ,+ QIEJ V,dt

(at the start of the interval, VIF = V-,F = 0).

If constant specific force F is assumed through the interval

f VFdt -- VF. h

therefore

VEF = (I - I[IEh) VIF.

The VEF error per interval caused by assuming that VEF - V,, is IOIE VIF h
this is equivalent to a specific force error JOIE Fh, i.e. approx. 36h parts per million.

L1
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Rtae.im of NaY*Mlt Axes (relative to Inertial)

Body axis rotation obtained via the gyros is relative to inertial space. The attitude quaternion
stored in the computer relates body axes to navigation axes. Therefore, between navigation
updates, the navigation axes rotation must be allowed for.

"I M2

In the diagram, NI and B , and N2 and 32
respectively represent the navigation and body 81
axes at times TI and T2. Rotations are relative
to inertial space. B2

For time TI, the quaternion of rotation from NI to BI is in the computer (Qi).

Between TI and T2, the quaternion of rotation from BI to B2 is calculated from the gyro

outputs (O), and the attitude quaternion relative to the NI axes is updated:

Qla = Qi - QG

(qJa is in NI and B2 coordinates, and represents the rotation from NI to B2).

The rotaLion from NI to N2 during this period is calculated, based on the conditions at TI.
This is represented by jN (in NI and N2 coordinates).

For time T2, the quaternion Q2 representing the rotation N2 to B2 is calculated as follows:

the rotation B2 to NI is represented by (jia-'
the rotation NI to N2 is represented by

therefore the rotation B2 to N2 is represented by -a-1 * i (in B2 and N2 coordinates)

therefore

T-hi = [tqa-i r a]-d qut--r at -Ta

Ibis is the required attitude quaternion at T"2.
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Transformation by Quaternio

For any vector V: [V]G [v]B - 1

where Q is the quaternion representing coordinate rotation from the G to the B axes.

Write Q = (Qo, Q), Q-1 = (Qo, - Q), and evaluate (I) using the rules for quaternion
multiplication:
this gives

[V]G = Qo2[V]l + (Q. [V])Q + 2Qo(Q x [V]B) + Q x (Q x [V]).

Now,
(Q. [VJ8)Q = Q x (Q x [V]B) + (Q. Q) [v]B, also (Qo 2 + Q. Q) =

therefore
[V]G = [V]B + 2Qo(Q x [VJ B) + 2Q x (Q × [V] B) (2)

Writing the elements of [V]B as VBI, VB 2, VB3, and those of Q as Qi, Q2, Qs, (2) may be

written in full:

VBI + 2[QO(Q 2 .VB 3 - Qa.VB 2) + Q2(Q1.VB2 - Q2.VB 1)-Q(Qs.VB, - QI.VBs)] I

IVG= VB 2 + 2[Qo(Q3.VB1 - Q1.VB3) + Q2(Q2 .VB3 - Q3.VB 2) - Q1 (Q1 .VB 2 - Qz.VB1)]

LVB3 + 2[Qo(Qi.VB 2 - Q2.VBI) + QI(Q3.VB1 - Q1.VB3) - Q2(Q2.VB3 - Qs.VB2)]

this is the quaternion transformation.

If we collect the VB's together and take them outside, we get the Direction Cosine Matrix
in terms of the quaternion:

MG I - 2(Q22 + Q32) 2(Q.Q2 - QoQ3) 2(Qo.Q2 + Q1Q3) ] VB]
IV] G 

- 2(Qo.Qs + QI.Q2) 1 - 2(Q, 2 + Qs2) 2(Q2.Qs - Qo.Q1) VB:

2(QI.Qs - Qo.Q2) 2(Qo.Qi + Q2.Qs) 1 - 2(Q, 2 + Q) VB

i.e. [V] G
- CB[V]B.



APPENDIX 13

Slow Cycle Operations

A13.1 Update of Position

Position is maintained as latitude and longitude angles. At the start of each slow cycle,
new values XN and XE of incremental (since the . revious slow cycle) distance travelled in north
and east directions are available.

The change in latitude is given by XN/RN; in longitude by XE/RE cos (A).

A13.2 Update of Sine and Cosine of Latitude (L)

The angular change (A) in latitude is A = XN/RN.

Now,
sin (L + A) = sin (L) cos (A) + cos (L) sin (A), or, if (A) is small,

then
sin (L + A) = sin (L) + cos (L)

similarly
cos (L + A) = cos (L) - A sin (L).

For a vehicle travelling at approximately 640 m/s, and a slow cycle period of one second, this
angle is approximately 0.0001 radian, and the errors in sin (L + A) and cos (L + A) would be
less than 0.01 part per million per second. If this were unacceptable, then a faster slow cycle
rate would be used.

A13.3 Update of Earth Constants

The shape of the Earth may be approximated to an ellipsoid of revolution. This approxi-
mation is widely used to obtain formulae for calculation of gravity and local radius of Earth.

Formulae for the vertical component of gravity g, and the north RN, and east RE, values
of the Earth radius of curvature are given in Reference 11 :

g = go (I + 0-0052884 S - 3" 157 x 10- 6 H + smaller terms)

RN = R(I - 2e + 3eS)

RE = R(l + eS)

where S is sin (latitude), H is altitude (metres), go = 9.78049 m/s2, R - 6378160 m, and
e = 1/298.25,

these may be written

g = 9.78049 + 0.051723 S - 3.088 x 10- 6 H

RN = 6335389 + 64155.84 S

RE = 6378160 + 21385.28 S.

ILJ



APPENDIX 14

Vertical Channel Damping

A14.1 Pure Inertial (Undamped) System

The vertical component of gravity is calculated from g = go(l + A sin 2 L - 2H/R) where
H is altitude, L is latitude, R = 6378160, A = 0 05288, and go = 9-78049.

For an error / in estimated altitude, there is an error in g given by

g -fT. 2go/R.

The vertical channel equations are H = Y and , f- g + Coriolis terms.

The vertical channel error equations are H and v = -g

therefore
1 = t = ft. 2go/R.

The solution of this has the form [I-= A exp[V2go/R t + B exp[-V-2go/Rt].

The time constant of the instability is therefore VR/2go approx. 570 sec.

A!4.2 Baro-Inertial Third Order System

Given a measurement of the barometric altitude H8 , the vertical channel equations are
modified to:

v - KI (H - HB) (1)

wherf -- g - K2 (H - H) - a + Coriolis terms (2)
where

- K3 (H - Hs). (3)

Differentiate (2), substitute for a, then write as error equations:

H = K x (R - f1B) (4)

V= H! 2go/R - K2 (H! - Hl) - K3 (ft -- [t). (5)

Differentiate (4) twice, and substitute for ,:

ts + i H + (K2 - 2go/IR) + K3 f = KI HB + K2 11 + K3 flB. (6)
Following Reference !11, the characteristic equation is of the form

(s + I /,)3,4 = 0
this is satisfied if K!I = 31,r, K2 = 3/-r2 + 2go/R, K3 = 1/,3 .

So, for r 100 seconds, KI =0.03 s- 1, K2 3 3.03 x 10- 4 S- 2, K3 =10 - 6 S- 3.
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