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I. INTRODUCTION

in the National Airspace System (NAS), the corrected slant range R(S,H) of a target

relative to a radar is determined from the measurement S of slant range and the

reported altitude H. The computation of R(S,H) involves the calculations of a

square root function using an approximation technique. The present approximation

was developed at a time when the only use made of radar surveillance data was for

display purposes involving movement of the data block on the planned view display

The computational accuracy requirements for this purpose were of little signifi-

cance. Evolution of the air traffic control system towards a greater level of

automation (in providing advanced air traffic control functions such as conflict

alert) now places substantially increased requirements on the accuracy of the

functions which support the radar tracking algorithm. Unfortunately, the need for

increased computational accuracy in support of the advanced automation features has

been recognized only recently. It is the objective of this report to provide an

approximation technique with a specific predetermined error boundary which will

guarantee that the computational errors resulting from the function approximation

will have absolutely no measurable impact whatsoever on any aspect of system per-

formance. It is important for whatever technique is employed that the algorithm

be adaptable to the accuracy of the present radars as well as those in the

immediate future.

If the radar site is located at an altitude HR above mean sea level, then

(reference 1)

R(S,H) = (S
2 -[H-HRI 2) 1/2

Due to the necessity of performing such computations in real time for numerous

targets, an approximation of the square root function is employed in NAS that does

not severely tax available computational resources. A previous investigation of

this approximation (reference 2) demonstrated that errors as large as 0.3 nautical

miles (nmi) can be introduced in the corrected slant range. Also, it is shown
there that an adjustment of the parameters used in the current approximation

algorithm would eliminate errors in excess of 0.125 nmi, the present quantization

of slant range measurements. However, this parameter change will not reduce the

computation time for slant range correction. Also, because of the structure of

the present FA algorithm it is not easily adaptable to an increased approximation

accuracy specification. This report deals with an alternative to the approximation

in current use. It can be adapted to meet any reasonable specification of the

maximum allowable approximation error.

Briefly stated, our problem is as follows. The altitude HR of the radar site is

a known constant, S is observed at the radar site, and H is observed at the target

and then transmitted to the ground in response to an appropriate interrogation

signal from the radar. In addition, there is a well-defined region of admissible

values for S and H, that is determined by the measurement capabilities of the radar

and the altitudes of targets of interest. The objective is to find a simple

estimate R (S,H) of R(S,H) such that the absolute value of the difference between

the two does not exceed a predetermined error bound c over the admissible region.
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The region of admissible values for the measurement vector (S,H) is defined in
section 2. Basic elements of the algorithm and machine implementations of the
algorithm are described in section 3.

Section 4 describes how to choose the parameters of the algorithm so that the
approximation error will never exceed the predetermined error bound E over the
admissible values of S and H. The algorithm is illustrated by a numerical example
in section 5, and comparisons are made with the estimation procedure currently
employed in NAS. Section 6 contains possible modifications of the algorithm and

section 7 contains conclusions.

2. CONSTRAINTS ON SLANT RANGE AND ALTITUDE

There exist combinations of reported altitude and slant range measurement that are
unacceptable in the determination of corrected slant range. For example, admis-

sible values of S are limited by the maximum effective range SM of the radar as
well as interference phenomena encountered at distances less than some minimum
range Sm .  In addition, due to limitations on altitudes of targets of interest, H
can be assumed to be bounded above by some constant K. Moreover, the ratio of
IH-HRJ to S is constrained by the so-called cone of silence of the radar to be
less than another constant J. In other words, S and H can be viewed as being
restricted under practical operating conditions by the following inequalities:

0<S m < S < Sm  (2)

IH-HRI <K (3)

IH-HRI /S<J<l (4)

In a typical NAS air route traffic control center, radar site altitudes are less
than 1.646 nmi (10,000 feet), SM does not exceed 200 nmi, Sm is at least 2 nmi, J
is sin 70, and controlled traffic consists mainly of aircraft at altitudes less
than 9.875 nmi (60,000 feet). Thus,

K/SM Q (5)

in the case of NAS, and this inequality will be assumed to be satisi 2d throughout
the remaining discussion.

3. ALGORITHMIC STRUCTURE

The reported altitude H and the measured slant range S are hereafter assumed to be
constrained by relations (2) - (4) where HR, SM , SM ) K, and J are known constants.
Subject to these constraints, our objective is to find a simple approximation
R.(S,H) of R(S,H) such that

2
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IRo(S,H) - R(S,H)I< _ (6)

where E is some prescribed error bound, say 0.125 nmi. In what follows, it will be
shown how this desideratum can be accomplished by an aigorithm based upon a parti-

tion of the interval between 0 and j2 into a finite number ni of subintervals by
boundary points

o=yo<Y,<...<y n = j2 (7)

The algorithm is of the following form: if

Yk-I <(IH-HRI /S)
2<yk (8)

where k is any one of the integers 1 through n, then set

Ro(S,H)=S EAk + Bk (IH-HR I/S )2 ] (9)

The problem is to find n, the n-I interior boundary points Yl,"',Yn-l, and the 2n

coefficients A,,...,A n , B1 ,...,B n . As will be seen, these depend upon the

error bound c. Moreover, it will be shown how these parameters can be selected so
that R (S,H) is never less than R(S,H). Thus, if instead of R (S,H), the

corrected slant range is approximated by Ro(S,H)-e/2, then the approximation error
will be c/2 rather than c. In fact, it will be shown that if the latter approxi-
mation is used as an initial estimate, then after p applications of the Newton-

Raphson iteration (reference 3), the corrected slant range can be found to within

an error of (c/2) 2 p .

Before proceeding with the mechanics of parameter selection for the approximation
algorithm, its implementation will be discussed. First of all, we point out that
the ratio of IH-HRI to S is determined in NAS for the purpose of controlling bias

errors in radar measurements. Thus, only the square of the ratio is unique to the
algorithm. However, we will show that it is possible to eliminate the squaring
operation at the expense of memory. On the other hand, as will be seen shortly,

the difference S2 -(H-HR) 2 is required by the Newton-Raphson iteration.
Hence, if the approximation algorithim is to be used to supply that iterative
technique with an initial estimate of the corrected slant range, then there is
little reason to .icrifice memory to eliminate an operation that can be efficiently
employed to determine a necessary element involved in the calculation of the final
result.

The second implementation item to consider is the obvious need for some procedure

to identify the particular integer k for which the relation (8) is satisfied. This
can be accomplished by a linear search. Another possibility is to subdivide the
continuum from 0 to I into intervals of identical length, equal to some negative
power of 2, and employ a hashing technique in which higher order bits of a fixed

__LI..J. t I _| I m : - .3



point representation of (RH-HRI/S) 2 are used to make the appropriate

identification. For example, suppose m is any integer for which 2-m does not

exceed j2 , and let N(m) represent the smallest integer j for which j2 -m exceeds or
is equal to j2 . Then the sets defined by

{t:(j-1)2-m <t < j2 - m }  if j = I,-., N(m)-l

Uj =

{t:[N(m)-lJ 2-m~t<j 2 } if j=N(m) (10)

partition the continuum from 0 to J2 into N(m) disjoint intervals. Suppose that
IIH-Hj)/S) 2 is a member of Uj. Then the m highest order bits in a fixed point
representation of that ratio constitute the binary representation of j-l, and this,
in turn, is an automatic signal to the effect that the ratio is indeed a member of
U-. Now choose m to be sufficiently large that each interval contains no more
tdan one of the boundary points yo,...,yn; e.g., choose m large enough to satisfy

the relation

2- ' <rin (Yk -Yk-d )
(i

l< k< n

In the event that Uj does not contain any one of the interior boundary points

y,. .. Ynl, our binary signal is tantamount to an automatic identification of
the integer k for which (8) is satisfied. Otherwise, a collision occurs in the
sense that Uj contains both the ratio and one of the interior boundary points. In
this situation, we are confronted with one of the possibilities; i.e., the
offending boundary point is identical to the smallest element (j-) 2-m in the
interval, or else it exceeds this number. If it exceeds the minimum element, then
it must be compared with the ratio in order to make the correct identification of
the integer k for which (8) is satisfied. If it is equal to the minimum element,
then the relative positions of the ratio and the boundary point are known, and
there is no need for a co-parison. Needless to say, the likelihood of a collision
decreases as m increases. In this way, computational speed can be increased at the
expense of memory.

The hashing technique that we have described will never require a comparison if the
minimum element of each interval, but the first is an interior boundary point;
i.e., naN(m) and yj - j2-m for all j=l,...,n-l. As will be shown later, subject
to the condition that the minimum elements of the U 's meet this requirement, there

is a way to pick the smallest number m of intervals such that the approximation
error satisfies (6). In other words, without sacrificing an undue amount of
memory, we will show how to subdivide the continuum from 0 to j2 in such a way
that collisions do not require comparisons.

4. PARAMETER SELECTION

Turning now to the problem of parameter selection, we find it convenient to work
with the independent variables S and

4



x = (IH-HRI/S) 2  (12)

rather than S and H. Obviously, the corrected slant range (1) can be expressed as

a function of these variables, namely,

R (S, x) = S (1-x)1 /2 (13)

Likewise,_ the estimate (9) provided by the algorithm can be represented as a
function Ro (S,x) of the same variables. Also, the constraints (2) - (4) can be
expressed in terms of equivalent restrictions on S and x. In particular, letting
x17 2 represent the positive square root of x, (3) implies

S = H-HR[x-1/ 2 <Kx - 1 / 2  (14)

On the other hand, the right side of (14) exceeds SM only if x falls below (K/SM)2 .
From this we conclude that the constraints (2) - (4) are equivalent to the relations

0 < x < j 2  
(15)

0 < Sm <S <SM if 0 <x < (K/SM) 2  (16)

0 < Sm <S <Kx- 1/ 2  if (K/SM)2 <x < j2 (17)

It now remains to show how one determines the estimate R (S,x) of R(S,x) so that
the absolute difference between the two does not exceed c for all vectors (S,x)
satisfying relations (15) - (17).

Suppose B is a nonnegative number less than I. Then the tangent line to the graph
of (l-x)1 /2 at x=B can be represented by the function

a(x,B) - A(O) - B(B) x (18)
where

A( p)=(a- 2) (1- B/2 1 2  (19)
and -1/2 (20)

Since the second derivative of (l-x) 1/2 is negative, it follows that

e(x,6)fa(x,S) - (l-x) 1/2 > 0 (21)_I
for all x in the continuum from 0 to 1. Hence, if corrected slant range (13) is
approximated by Sa(x,B), then, after multiplying (21) through by S, 4
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Se(x.0) = S a (x,o) - R(S,x) (22)

is the error, and it is always nonnegative. Moreover, it follows from (L6) and

(17) that
0 <Se(x,O) < E (x,B) (23)

where

{SMe(xB) if 0 <x<(K/SM)2
E(x,8)=

Ke(x,o)x-1 /2  if (K/SM)2 < x <j2 (24)

In fact, it is clear that E(x,O) is the maximum error that can be incurred through

use of the approximation Sa(x, 0) so long as S and x satisfy the constraints

(15) - (17).

It can be verified by differentiation that when E(x,O) is viewed as a function of x

alone, it decreases monotonically as x increases from 0 to B, it vanishes at x= 0,

and it increases monotonically as x increases from 0 to 1. Thus, corresponding to
any positive value that one might care to assign to c, there must exist numbers

xj(B) and x2 (0) such that

0 <xl (0)< B <x2 (0)(<  (25)

and
E(x,B)< C (26)

so long as

X1(B) < x < X2 (0) (27)

The situation is illustrated in figure 1. In other words, if the restriction (27)
is added to the constraints (15) - (17), then S a(x,0) approximates the corrected

slant range to within an error c. Thus, from figure 1, it appears that by picking

several different O's between 0 and 1, we should be able to develop an algorithm
along the lines of (7) - (9) that will estimate the slant range correction to

within an error c for all possible values of x between 0 and j2 .

The assertion at the end of the preceding paragraph can be established in a
rigorous fashion. In particular, let us consider the case where the number n of

boundary points is identical to N(m); i.e., the smallest inter er by which 2-M can
be multiplied to yield a number greater than or equal to Jf, and the interior
boundary points are given by

yj = 2-m; j - l,...,n-1 (28)

It is shown in appendix A that for each k1l,...,n there is one and only one number

Sk between 0 and J2 such that E(Yk I , Bk) and E(yk,Ok ) are the same. Moreover,
it is shown that there exists a positive integer m such that

6
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DATA RECORDED AND PROCESSED

E(x, 0) BY THE FAA TECHNICAL CENTER

-112

a SM[( 1-,12)( 1-P) 2- i
1/2

b=K (1-p) 12
a

SM e (x,p)

b

-112
K e (x,p)x

I I

2I
S2) II I

6 I
I I

III I
I I - , I'

2
(KIS M) X1(1) 13 x2(131 1,0

81-30-1

FIGURE 1. ERROR DUE TO THE APPROXIMATION a(x;O) .1
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(Yk Bk) <  efor all kl,...,n (29)

if m=m., and in this case

E (x,Bk)< whenever Yk-I < x < Yk (30)

for all k = 1,...,n. Now let us choose the coefficients A,,..., An, Bl,..., Bn of
the algorithm (7) - (9) in accord with the relations

Ak = A (Bk) and Bk = B(Ok) (31)

where A(B) and B(B) are defined by (19) and (20). Then, when (IH-HR I /S) 2 is
substituted for x, the estimate R.(S,H) provided by the algorithm is just

n

R (S,x)- E Sa(xBk) 1(x,k) (32)

k=I

where a(x,B) is given by (18) and

I if Yk-l _x <Yk
I(x,B8k)-- {0O

0 otherwise (33)

It remains to show that (32) approximates the corrected slant range (13) to within
an error c.

Using (21) - (23) and (32), it follows that the difference R (S,x) - R(s,n)
between the estimate and the corrected slant range must satisfy the inequality

0 <R (S,x) - R(s,x) <E(x) (34)

where
n

E. (x)=E E(xBk) I(x'Bk) (35)

k-i

Moreover, since (23) holds for all S and x satisfying (15) - (17), the same is true
for (34). Needless to say, if m-mo, then (30), (33), and (35) imply that Eo(x) can-
not exceed the error bound c for all x in the continuum from 0 to j 2 . In other
words, when m-m., the estimate (32) provided by the algorithm cannot be less than
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the corrected slant range, nor can it exceed the corrected slant range by an amount
greater than c . Thus, the estimate Ro(S,x) - c /2 must approximate the corrected
slant range to within an error c/2.

By now the reader should be cognizant of a systematic approach to the design of an

algorithm for estimating corrected slant range subject to a prescribed limitation
on the estimation error. In particular, starting with m=l, one determines for each

k=l,...,N(m)-1 the number Bk for which E([k-1J2-m,Pk) and E(k2-m,Bk) are equal as

well as the number ON(m) for which E([N(m)-lJ2-m,BN(m)) and E(J2 , BN(m)) are the

same. If E([k-1J2- m ,Bk) does not exceed c for each k=l,... ,N(m), then m is

identical to m. In this case, one sets n=N(m), chooses the coefficients

A1 ,...,AnBI,...,Bn in accord with (31), and selects the interior boundary point Yk

to be k2-m for each k=l,...,n-l. Otherwise, m is increased by 1, and the entire
procedure is repeated.

5. EXAMPLE

We point out that the integer m, is dependent on the error bound c . In fact,
as £ decreases toward 0, m increases without bound. Thus, the cost in terms of
memory of implementing the algorithm becomes prohibitive as c approaches 0.

However, this does not mean that the algorithm has no practical value. For
example, in current NAS operations, slant range measurements are quantized into
units of 1/8 nmi, and altitude is reported in units of 0.0165 nmi (100 feet).
Suppose we choose c to be 1/8 nmi. Then, under the assumption that Sm = 2 nmi,

SM = 200 nmi, J = sin 70 ° , and K = 9.875 nmi in accord with the operation of a

typical air route traffic control center, it turns out that m. = 2 and

B1 = 0.0630 , B2 = 0.3705, B3 = 0.6294, B4 = 0.8214

The coefficients of the algorithm can be determined from (19), (20), and (31).
From (34), the minimum error incurred through use of the estimate (32) provided
by the algorithm is 0, and the maximum error is E (x). As shown in figure 2,
E (x) never exceeds the prescribed error bound of 1/8 nmi. Hence, by subtracting
1/16 nmi from the estimate supplied by the algorithm, it is possible to determine
the corrected slant range to within an error of no more than 1/16 nmi.

A bimodal algorithm is currently employed by NAS to determine corrected slant
range. In the case where the ratio IH-HRI/S is greater than or equal to 6/10, the

algorithm computes S2 and (H-HR)2 , and then, by means of a linear search procedure,
it applies a continuous approximation consisting of six straight line segments to
the difference. When the ratio is less than 6/10, the algorithm approximates the
corrected slant range by the expression S2 - (H-HR)2 /2S which is equivalent to the
product of S and the tangent to the graph of (l-x)1/2 at x - 0. Obviously, both

modes of the algorithm require division and squaring operations. Moreover, using
the values assigned to Sm , SM , J, and K in our example, it can be shown that
errors in excess of 1/8 nmi are possible within the constraints (2) - (4).

91#1
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Although the bimodal algorithm has met the needs of the air traffic control system
for many years, it is evident that the alorithm of our example offers some very
definite advantages in terms of accuracy, utilization of memory, and computational

speed.

6. MODIFICATIONS

As already indicated, the amount of memory required by machine realizations of the
approximation (32) increases indefinitely as the error bound £ decreases toward 0.

To be more specific, in our example, it has been shown that if c = 1/8 nmi, then a
partition consisting of four intervals is sufficient to maintain the approximation
error incurred through use of the estimate

Z = R (S,x) - £/2 (36)

to within c/2 nmi. However, if c is reduced to 1/16 nmi, then the reader can
verify that a partition of similar structure must have at least 8 intervals in
order to guarantee that the absolute difference between (36) and the corrected
slant range (13) will not exceed C/2 nmi. On the other hand, for a given E, we can
always use (36) as an initial estimate of the corrected slant range. This, in
turn, can be used to find a better estimate by means of some iterative technique.

For instance, let us use a to denote the corrected slant range R(S,x). This is
just the positive solution to the equations obtained by setting w of

w = z 2 - 0 2  (37)

equal to 0. According to the Newton-Raphson iteration, if zk is the kth (K>0)
estimate of the solution, then the (k+i)th estimate is just the intersection of
the z-axis with the tangent to the graph of (37) at zizk, i.e.,

zk+l m (zk + a2 /zk) /2 (38)

In appendix B it is shown that if the minimum range Sm of the radar is at least
2 nmi and J is sin 70, as is the case in NAS, then, after p(p>l) applications of
(38) starting with the initial estimate z. the error satisfies the relation

Izp-*J< (c/2 )2
p  (39)

provided that the error bound C does not exceed 0.368 nmi. In our numerical
example, c is 1/8 rni, and so the estimate z. obtained by way of the algorithm

L11
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(7) - (9) must be Within 1/16 nmi of a. Thus, after one application of the
Newton-Raphson iteration, we are assured that the absolute value of the difference
between z, and the corrected slant range will be no more than 1/256 nmi.

Our development of the algorithm (7) - (9) is based upon the idea that one can use
a tangent line to approximate a function to within a prescribed error bound c over
a small subinterval of the total range of the independent variable. The square of
the ratio

Y = IHHRI/S (40)

appears in (9) due to the fact that we have selected the function to be (l-x)lI2
where, of course, x is equivalent to y2 . We point out that if one chooses the
function to be (1-y 2 ) 1 / 2 and proceeds with a development similar to that of the
preceding paragraphs, then the result will be an algorithm along the lines of (7) -

(9) with the exception that IH-HRI/S replaces its square in (9) and Yn =J in (7).
However, elimination of the squaring operation exacts a price in termns of memory.
In particular, the curvature of the graph of the function (1-y 2 )11 2 is greater
than that of (, _x)1/2 on the interval from 0 to 1. Consequently, for a given
error bound c, one can expect that a greater number of straight line segments Will
be required to approximate the former function. For instance, if is 1/8 nmi,
then, as shown in fi gure 2, the algorithm (7) - (9) requires a partition of the
interval from 0 to JI1 consisting of four subintervals. On the other hand, if the
squaring operation is eliminated, then it can be shown that this error bound can be
satisfied by a similar subdivision of the interval from 0 to J provided that the
number of subintervals is at least 16.

7. CONCLUDING REMARKS

We have introduced a systematic approach to the design of algorithms for estimating
corrected slant range, subject to prescribed limitations on the estimation error.
In terms of accuracy, utilization of memory, and computational speed, the approach
is capable of providing an algorithm that is superior to the method for determining
corrected slant range that is currently employed in NAS. it also provides a
vehicle for meeting more stringent error requirements in the future that are con-
sistent with the needs of advanced air traffic control functions such as Conflict
Alert.
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APPENDIX A

PROPERTIES OF THE FUNCTION E(u,$)

Suppose u is a member of the continuum from 0 to J2, and let us consider E(u,o)

as a function of B alone. From (18) - (21) and (24), it is clear that the function

vanishes at 8= u. Other characteristics of the function can be determined by

examining the partial derivative with respect to 0. First, it can be shown that

the function monotonically decreases as B increases from 0 to u, and thereafter it

monotonically increases as B moves from u toward j2 . Moreover, if u1 <u 2 , then

E(uj,) is less than E(u 2 , ) when B<ul, and the reverse is true when B>u2. As a

result, the functions E(ulB) and E (u2 , B) intersect at one and only one point in

the continuum from 0 to j2 and this is a number B that is greater than ul and less

than u2 . The situation is illustrated in figure A-I.

We now point out that when the function E(u,B) is viewed as a function of the

vector (u,B) on the set of values for which

O<u<J 2 and 0< B <j 2  (A-1)

it is continuous. Moreover, because the set is closed, it is uniformly continuous

(see reference 3);i.e., to each >0 there corresponds some c>O such that

IE(vi,wi) - E (v2 ,w2 )I<__  (A-2)

whenever the Euclidean distance between (v 1 ,w) and (v 2 ,w 2 ) is less than a.

Thus, recognizing that ... ,. E(u,0) vanishes at B=u, it follows directly from

figure A-I that to any error-bound C)0 there corresponds a positive integer m. such

that

E(ul,B*) = E(u 2 ,B*) (A-3)

whenever m > m and

0 <u2 - ul<2-m (A-4)

Suppose now that u lies between ul and u2 of figure A-1. Then, from the preceding

paragraph, we know that

! E(ul,*) if u < *

E(u, B*)< (A-5)

E(u 2 , B*) if u > 0*

Consequently, E(u, *) cannot exceed c whenever m>m and ul and u2 satisfy(A-4).

The statements made in connection with (29) and (30T follow directly.

A-

• A-I
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APPENDIX B

ERROR BOUND AFTER p NEWTON-RAPHSON ITERATION

Using (38), it can be shown by direct calculation that

Zk+l w a = (zk -.a)2 /2Zk (B-1)

Moreover, since the first and second derivatives of the function (37) with respect

to z are positive for all z>O, it follows that the tangent to the graph of the
function at any point zk>O must intersect the horizontal or z-axis at a point zk+l
greater than or equal to a. In other words, starting with an initial estimate
z )O of corrected slant range, the estimates zl,z 2 ,... provided by the Newton-
Raphson iteration will all be at least as large as a. Consequently, if a is known
to be greater than 1/2 nmi, 2 z is greater than I ni, and I z - a I does not
exceed €/2 nmi, then (39) follows directly from (B-i) for all integers p l. As
will be shown next, all three of these conditions can be met under typical NAS
operations.

Relations (13) and (15) - (17) imply

& - R(S,x) >Sm (I-j2)l/2 (B-2)

Also, since E (x) does not exceed e for the estimate (32) provided by the algorithm
(7) - (9), it" follows from (34) and (36) that the absolute value of the difference
between z. and a cannot be greater than c/2. As a result, z. will never be less
than a- c/2. Thus, from (B-2), we conclude that I

2z >__ 2a- > 2S m (l-j2) 1/ 2 (B-3)

But the right side of (B-3) is greater than or equal to I if

t <2 Sm (1-j2)1/2-1 (B-4)

Hence, when Sm is 2 mii and J is sin 70, (B-2) implies a is greater than 1/2, and,
from (B-4), it follows that 2z, must exceed I if the error bound c is less than 4
cos 70" -1 (0.368).

I
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