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1. Introduction

Recent years have seen a guantunm jump in the continuing
ef forts to improve and expand our knowledge of the earth's
gravity field. It is marked by the transition from
terrestrial mcasurements, limited essentially to land areas,
to measurements ib outer space vhich are used to ascertain
the global gravity field. The foremost instrument advancing
this effort bas been the satellite borne altimeter, enabling
2 direct measurcment of an equipotential surface, the geoid,
over auch of the oceanic surface of the earth. Purther
strides will undoubtediy be made by the planned GRAVSAT
mission (see the report by the National Research Council,
1979) utilizing the meacurements of satellite-to-satellite
tracking and achieving coverage over the entire globe.
Looking ahead into the not so distant future, satellite
borne gradiometers vwill provide even greater detail and
accuracy. While the obvious advantage of measuring the
earthfs gravity field at satellite altitudes is global
accessibility within a relatively short period of time, the
fundamental difficulty is the translation or "downwvard
continuation®™ oi the data to the earth®s surface where they
are most peeded. 1In principle, several procedures to
achieve this translation exist; all rely to some extent on a
simplifying assumption such as a perfectly spherical, or a
flat, earth. On account of the enormous amcunt of data that
satellite missions provide, the number of methods to
simultaneously process the entire data set is reduced
considerably. The aethod of harmoric analysis of the
gravitational potential will come under close examinationm in
this paper. 1lts feasibility from the computational
standpoint cannot be easily challenged, even for extreamely
dense data coverage. However, far from being a panacea, it
is also associated with several probleas. Aside from an
instability in the propagation of noise, the most nagging
guestion is one of correct theory. It is the latter which
will be studied here, not by delving into areas of pure
theory, but rather on a numerical basis, which, it is telt,
will provide some value to the scientist who must eventually
make use of the Jdata.
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1.1 The Problem and Backyround

Prom classical potential theory, we know that the
(Newtonian) potential due to attracting masses is an
harmonic function in free space. That is, its second
derivatives are continuous and it satisfies lLaplace's
eguation; moreover, it is regular at infinity (Ginter, 1967,
be25). Kellogg (1953, p.<20) shows that an harmonic
function is also analytic in its region of harmonicity (cf.
Cauchy Riemann eguations in the theory of complex
variubles). Phe solution to the exterior Dirichlet boundary
value problem states that given values of the potential
everyskere on a known surface enclosing the masses it is
determined uniqguely in the space exterior to that surface.
Applied to earti orbitiny satellites, the xnown surface is
the sphere that contains the satellite orbits. Because the
potential is also analytic in the region between the earth's
sarface and the orbital sphere (we remove the atmosphere,
see below), by the uniyueness of anmalytic continuation, the
potential function outside the orbital sphere represents the
potential in the entire region above the earth's surface,
i.e. in the largest region wherein the actual potential is
analytic.

for ap irregular density distribuotion such as the
earth®s, a closed fors of the potential in space cannot be
tound. 1Instead, it is often represented as a series, in one
fora or another; however, any series is associated with a
particular region of convergence and cannot converge to the
true potential in the total space. Since we are dealing
with exterior potentials, the region of convergence is an
exterior region that contains the point of infinity, and it
is separated froa the region of divergence (the interior
region) by the so-called surface of convergence. 1In
general, the region of convergence may, or may not, contain
the maximum region of anulyticity of the potential, nor is
the surface of convexrgence necessarily a sphere. These
facts vere convincingly demonstrated by Krarup (1969) and
Moritz (1978); see below. 1In many cases, it is possible to
derive a series which converges to the potential in the
region where the outer series diverges; we call this the
inner series.

Owing to the near spherical shape of the terrestrial
body, the most tamiliar series is the spherical harmonic
series. Kelloyg (1953, p.13) showed that the spherical
harmonic series converyes uniformly to the potential outside
any sphere containinog all the attracting masses and centered
at the origin ot the coordinate system. Strictly, this
theoren tinds no application in onr physical world since it
guarantees convergence only outside the sphere enclosing the
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entire universe. Within our limited scope of terrestrial
and near-earth aepplications, however, the masses outside our
solar system have negligible gravitational effect.

Moreover, we may simply redetine the exterior gravitational
field of the earth with appropriate corrections so as to
exclude the eftects of an atmosphere and, say, of the sun
and the aoon. The latter and possibly other
extra-terrestrial bodies are mathematically aoved to
infipity (where they have no gravitatiosal influence) by
subtracting the corresponding tidal poteantial. The
atmosphere is moust conveniently embedded (conceptually)
inside the earth such that the center of mass remains
undisturbed (Moritz, 1474) ; of course, the resulting change
in the earth®s exterior gravity field must be accounted for
vhen coaparing terrestrial data with data Jdownward continued
from satellite altitudes. Positioning the origin of our
coordinate system approximately at the earth®s center of
mass, we therefore have guaranteed convergence of the
spherical hamonic series of the potential outside the
sphere vhose radius equals the farthest distance of the
earth®s surface from the earth®s center; tiis is the top of
the Chimborazo rountain, in central Ecuador (latitude -124),
vith a radial distance of about 6384403 m (Sjoberg, 1977).

A more general result was rigorously proved by Krarup
(1969, chapter 3), namely that the spherical harmonic
expansion converges everyvhere on and outside the smallest
sphere (called the limit sphere) that contains all
sinqularities ot the potential and its analytic
continnation. Thus, the proof that the potential series
converges everywhere at the earth®s surface would be
complete if the potential could be asalytically continued
down to the so-called Bjerhammar sphere (the sphere that is
entirely enclosed within the earth). Kellogg (1953, p.197)
comapents that the potential function representing the
potential of ap analytic density distribution bounded by an
analytic surface can be continued analytically across the
sucrface. Of course, in view of Poisson's egquation, the
actnal potential is not 1epresented by this function at
points oif nonzero density: indeed, its discontinunous second
derivatives preclude its being analytic on the surface. The
possibility of analytically continuing the geopotential
ingide the irregular masses of the earth seeas very
doubtful, for as Krarup points out, if it were possible for
soee given mass distribution, the mere aidition of a mass
point ("grain ot sand") above the limit sphere introduces a
singularity in the potential function at this point and
thereby destroys the analyticity of the continuation.
Therefore, given that the series for the potential converges
vith certainty only outside the bounding sphere, the
guestion arises whether there exists any justification for
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usinug the series at or near the surface of the earth.

Claias of both proof and disproof of series convergence
at the earth's surface appear in the geodetic literature;
aone is logically sound. The proof by Arnold (1978) of
convergence everywhere on the suvrface is patently flaved, as
is Morrison®s (1970) conjecture of divergence everyvhere
(see Appendix A). The *"grain of sand" exauple was used by
Boritz (1980, p.b6d) to argue on the instability of the
property of convergence, implying that, in the strictest
sense, the size and shape of the surface of convergence, if
it is not the bounding sphere, is not well defined. ADny
turther theoretical advances on the behavior of spherical
harmonic series near the surface of an attracting body will
cone by studying density distributions bounded by surfaces,
both of waich are mathematically reqular by some measure. A
study vhich approaches this type of analysis 1s the one by
Kholshevnikuv (1977) , who finds upper bounds for the decay
rate of spherical narmonics, on the bounding sphere, with
respect to the degyree n for variously structured bodies.
These upper bounds are generally proportional to (fixed)
negative povwers of n, depending on the measure of regularity
of the density and bounding surface. Such decay rates are
insuftficiently strong to yield convergence below the
bounding sphere: yet as they are only upper bounds,
convergence canuot hereby be excluded.

While the precise convergence surface for series
corresponding to arbitrary density distributions bounded by
arbitrary surfaces has e¢luded theorists, several
fundamental, as vell as interesting, results have been
establisned. Rrarup (1969) examined the potential resulting
fros a Kelvin transformation of the potential of a unifora
mass distribution on a straight line. Using this example,
he disproved the intuitive notion that the surface which
separates regions of convergence and divergence is always a
sphere. A general theory regarding the shape of the surface
of convergence for special spherical harmonic series was
developed by Ecker (197z). He proved that a sphere is the
surface of canvergence tor rotationally symmetric potentials
{i.e. series ol zonal barmonics only), while a torus defines
the surface of convergence for a series of only tesseral
hareonics (Krarup’s example). Other surfaces of convergence
lying between these tvo extremes result for series of only
those sectorials whose degree n and order a satisfy the
relation a={n, { being predefined and 044 41. The case

L =( represents the series of zonals, and Ecker proved the
following result:
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o0
Theolrew: A series of sphelical narmounics 2

n=0
copverges everyvhere outside the sphere of radius
F s Where 1im n A
P = e SUP /gan}

and diverges almost everyvhere inside this sphere.

Here, r,® are the polar coordinates, radius and colatitude,
and P, denotes the Legendre polynomial of n-th degree. The
qualification "“almost everyvhere® for divergence is included
to allow converyence on sets of measure zero (regions having
po volume) inside the convergence sphere (e.g. any series of
odd zonals converges for every r >0 at the equator, since
P3.,,(0)=0) . The radius of convergence for the by nov
classic example of a homogeneous oblate ellipsoid of
revolution (Juny, 1956, p.543; Moritz, 1980, p.52) is found,
using the above theorem, to be p =E, the focal distance of
the ellipsoid, showing also that the surface of convergence
pay not bound the gemerating masses (i.e., in this case the
potential function can be anaytically continued to the
sphere of radius E but, of course, does not represent the
potential inside the ellipsoid).

The question of convergence or divergence of the
potential at the earth's surface may be circumvented by the
Runge-Krarup theores (Krarup, 1969; Moritz, 1980, p.67).
Briefly, this theoream, already known to walsh (1929, p.535)
for the inner potential, states that a function barmonic
outside the earth's surface may be approximated arbitrarily
vell in its region of barmonicity by a function which is
harmonic outside a given sphere totally inside the earth.
Obviously, the spherical harmonic series of an harmonic
function converges everyvhere outside any sphere contained
entirely in its region of harmonicity, in particalar on the
earth's surface if this sphere is embedded entirely within
the earth. It should be noted that the Runge-Krarup theorea
is an existence theorem; it guarantees only the existence of
an approximating function and does not provide the method to
find it. Purthermore, nothing is said about the closeness
of corresponding individual terss of the two series for the
actual and@ approximating potentials. The approxisation is
arbitrarily accurate only in the limit, i.e. for the total
sum (however, one can expect that, because of the near
sphericity of the earth®s surface, the corresponding lower
Jegree terms of the two series do not differ substantially).
We may also note that the theorem holds for any exterior
potential no matter hov badly its series diverges below the
boundinyg sphere, so that the application of the theorem is
not contingent oa the instability ot the converyence surface
of the actual potential series.

l.n
(=) a P (cose)




The fact that the Rurge-Krarup theores says nothing
about the accuracy of individual terms of the potential
series is very restrictive on the possible use of the
theores to the practicing geodesist. MHence, for exaaple,
Sjoberg®s (1979) statement that "the coefficients of the
approximating potential ... can be selected arbitrarily
close to the coefficients of the external poteantial ... to
any desired degree®™ is somevhat misleading if not
inaccurate. Por the closer the coefficients of the
approxisating potential are chosen to those of the actual
potential, the further is the postponement of the arbitrary
closeness of the approximating series to the true potential.
However, for the example of a point mass situated om the
equator of an oblate spheroid (so that the ensuing potential
series diverges in the polar regions), Sjoberg shows that in
this case, the postponement is not undely exacerbated if the
first 300 or 400 teras ot the actual divergent series are
used for the corresponding terms of the approximating
potential. doritz®s statement (Moritz, 1980, p.66) based on
the BRunge-xrarup theoream that the earth's potential, for
practical purposes, can always be considered as a
“copvergent potential® is similarly misleading. This
statement should not be interpreted as claiming convergence,
for all practical purposes, of the actual series of the
potential on and outside the earth®s surface. Instead it is
a statement on the practical equivalence of the potential
and an approximating series that converges om and above the
surtace. Term ior term, especially at high degrees, the
approximating series and the actual series must be quite
different since the former converges while the latter
possibly diverges near the earth's surface. Therefore, the
Runge~Krarup theorem can not be invoked to justify the use
of a portion of the series of the actual potential at the
earth's surface.

Until nov the discussion has centered on the converqence
of a spherical harmonic series, where the use of spherical
coordinates is wmotivated by the near spherical shape of the
earth's surface. But to a second approximation, the surface
of the earth is an ellipsoid, or more precisely an oblate
spheroid, an ellipsoid whose equatorial axes are equal (i.e.
it is a surface of revolution) and vhose poles are
flattened. The question arises whether the use of different
coordinates such as ellipsoidal coordinates has a
significant bearing on the problem of convergence at the
earth's surface. The ellipsoidal coordinates for which the
general triaxial ellipsoid is a ocoordinate surface (a
surface defined by the fixed value of one coordinate, in
this Case one of tbe semi-axes) are rather more difficult to
vork with than spherical coordinates, but expansions of the
potential and the gravity anomaly have been formulated in
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terms of the orthogonal lLané functions, see (Hobson, 1965,
PP 473-475; wWalter, 197C; and Savrov, 1974). Because the
deviations between best fitting triaxial and biaxial
ellipsoids are of the same order of magnitude as geoid
undulations, the triaxial ellipsoid has generally been
abandoned as an approximation to the earth®s surface. Thus,
the coordinate system to be coisidered is the spheroidal
systea (Robson, 1965, p.421, see also chapter 3) in which
the expansior ot the potential is in terms of familiar
Legendre functions. Though not widely used in practice,
these coordinates have received considerable attention in
geodesy, in particular, by Jung (1956) and Hotine (1969).
The term "spheroid® in the geodetic volcabulary
conventionally denotes an equipotential surface of soame
normal (reference) potential. On the other hand, the term
L ®ellipsoid® usually implies oblate spheroid; hence it will
also be used here to mean exclusively an ellipsoid of
revolution flattened at the poles.

Imposing rotational symmetry vith respect to one of the
ellipsoidal ooordinates, namely the longitude, in this case
yields ellipsoidal harmonic functions whose structure
differs trom their spherical counterparts only in the
dependence on the distance from the origin. Due to the
corresponding similarity to spherical harmonic expansions we
have theoreas, such as,

1. the ellipsoidal harmonic series of the potential
converyes uniformly everyvhere outside the ellipsoid that
bounds the generating sasses; and

2. there exists an ellipsoidal haraonic series which
converges uniformly above the "Bjerhaamar ellipsoid® and
approximates the potential outside the earth®s surface
vith arbitrary accuracy.

The proof of the first statement follows inmediately from
the uniform convergeunce of the ellipsoidal series for the
reciprocal distance (equation (3.27); cf. Kelloyyg, 1953,
p.143, and see also Hobson, 1965, pp.WN~433). The second
statement is merely a corollary to the Runge-Krarup theoren
since the Bjerhammar sphere enters only to relate the
theorems to spherical harmonic expansions and can easily be
replaced by the Bjerhammar ellipsoid. Other corresponding
theoress with respect to the "limit ellipsoid®” or to the
converdence surface of a series of ellipsoidal zonals
undoubtedly exist, but may require more exacting proofs.

Unfortunately, the transition to ellipsoidal coordinates
does not solve the probleam of series convergence at the :
earth's surface since its distance from the bournding “
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ellipsoid can still be 6 to 7 Xa (for the bounding sphere it
is as much as 25 km) . However, we recognize that the
convergence problem is a manifestation of the choice of
coordinate system, for the ellipsoidal series will converge
to the potential in regions where convergence of the
spherical series is doubtful (e.g. the polar areas). Also,
pecause the eguatorial radius of the bounding ellipsoid
could exceed the radius of the bounding sphere, the
spherical series will converge in regions where the
ellipsoidal series may not, see Pig. 1. The dependence of

~—BCUNDING SPHERE

SN

| *~ BOUNDING ELLIPSOID

"""

Pigure 1: Bounding sphere versus bounding ellipsoid. -




the region of convergence on the coordinate system is even
more directly illustrated by simply changing the coordinate
origin, at which the bounding sphere is (always) centered.
Therefore, the seallest bounding sphere is obtained if the
origin of the systea ot spherical coordinates coincides with
the geometrical center of the earth. The feasibility of a
caoice of coordinates other than ellipsoidal coordinates
that guarantees convergence of the corresponding series
significantly closexr to the earth's surface seemas unlikely
since the next approximation to the surface is a
considerably more coaplex geometric fiqure. This is an
upward continuation of the telluroid, or some smoothed
version of it. The telluroid (Heiskanen and Moritz, 1967,
P-.292) is the surface of points at vhich the normal
potential equals the gravity potential at the corresponding
points on the earth's surface, where correspondence is
established if the telluroid and surface points lie on the
came (normal) plumb lime in the normal gravity field. The
telluroid imitates tbe earth®s surface quite closely since
their difference, the height anomaly, varies as smoothly as
the geoid undulation with average values of 30 a. However,
the corresponding coordinate system (in which the bounding
telluroid is a ocoordinate surface) will be too abstruse to
work with.

The essence of this paper addresses the question ot
vhether the probable divergent character, at the earth's
surface, of the spherical harmonic expansion of the
disturbipq potential (and gravity anomaly) eliminates it
from the repertoire of viable methods of dowvnward
continuation. I1n light of the foregoing susmary of the
theoretical viewpoints on convergence and divergence of the
earth's potential series, the amalysis will be based on the
assumption that the series definitely diverges below the
bounding sphere. Although divergence has not been proved,
this preaise is certainly reasonable, if only as the
vorst-case situation.

1.2 Other Problems apd Bethods of Lownward Continuatiop

The questior of divergence or convergence at the earth's
surface will pever impede our computational abilities in
practical situvations. That is, with a finite nuamber of
measurements of the potential ve can detersine only a finite
number of coefficients of the harmonic series, and any
fipite sumn of spherical harmonics converges, indeed is
analytic, everyvhere except at the origin of the coordinate
system. Yet, if the total infinite series of the potential
does diverge at the earth's surface, then the aore
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coefricients we deteraine the greater will be the effect of
this divergent character on the partial sums. The gquestion
of convergence, however, is then better posed as a question
of representation.

Since the partial sum, whether in the space above or
belov the bounding sphere, is thus only an estimate of the
true potential, the guestion of representation belongs to a
auch larger class of probleks, namely the problea of
approximation. As with most areas in physical geodesy, our
limited accessibility to the gravity field, i.e. limited to
discrete and noisy measureaments, auvtomatically renders our
vroblea ®*ill-posed.® An ill-posed problea, according to
Thikonov and Arsenin (1977}, is a problem that either has no
solution, has more than one solution, or its solution is
unstable with respect to the given data. Our inability to
measure the gravity field in space beyond a certain degree
of detail means that there exists an infinite number of
solutions, all Jdiffering in the detail which we were not
able to discerr, but all satisfying our measurements.
Therefore, the solution is not unique. But as easily as
this problea is recognized, it is as quickly eliminated by
requiring a soluti-n for a gravity field concordant in
detail withk the measurements. That a solution always exists
is guaranteed by the fact that any finite suz of spherical
harmonics, which in fact satisfy Laplace's equation and are
reqgular at infinity, represents a potential.

The instability of the solution arises because the
harsonic coeftficients obtained from the measurements at
satellite altitude are not errorless. This is expertly
shown by Rummel et aul. (1979) for the case that the
measuresent noise is white noise. White noise affects all
harmonics of the measured signal egqgually so that the
infinite sum of the effects is umbounded. Since the
discreteness of the measurements places a limit on the
nusber of harmomnic coefficients that can be determined, the
downward continvation of the error, vhile not causing
anbounded erroxr in the solution, nevertheless produces an
aaplification of the error. The error in the n-th degree
harmonic coefficient is amplified by the approximate ratio
(t/R)™ in the process of downward continuation (see section
1.3), vhere R is the radivs of the earth and r is the radius
of the satellite orbit. Por minimal satellite altitudes of
150 km, this ratio increases to over 1000 at n=300, which
means that the 300-th degree coefficient of the yravity
annomaly at altitude must be known to mgal (10! a/s‘)
accuracy in order to recover mgal (10°F a/s*) accuracy at
the carth's surtace. This demonstrates that the problem of
downward continuation belungs to the class of ill-posed
probleas.
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Tae toremost method to solve the ill-posed problem is to
impose constraints on the desired solution, as for exasple,
searching for a smoothed version of the true solution.
Another example is the method of collocation which generates
a solution whose norm in the space of solutions is miniaum.
While solving the nonuniqueness problem, collocation can
still be an unstable process, sometimes even requiring the
presence of noise in the data to stabilize, or regularize,
the solution. Lquivalently, one can simply introduce a
regularizing factor which has the same effect as noise in
that it filters the higher fregquencies of the solution
(Rummel et al. 1979). A serious difficulty with the usual
collocation is the sheer volume ot the computations,
increasing with the cube of the number of the data.

However, vith specially gridded data which are then amerable
to very efficient computational algorithas, Coloabo (1979)
demonstrates the applicability for highly detailed global
solutions of the gravity field.

Aside from collocation, other frequently discussed, more
deterministic, methods of downward continuation rely in one
way or another on the inverse of the solution to a
boundary~value jproblem, either Poisson'®s integral (first
boundary-value problem) or the Pizzetti-Stokes forasula
(third boundary-value problem); both formulated on the
supposition of a spherical eartb. When regarded as formulas
relating the sought after sources that produce the observed
data, i.e. as formulas for the inverse problem, they become
Predholm inteqgral egquations of the first kind. Their
solution is usually found by successive approximations, but
because it is urnstable, the iterations may not converge.
Assuming a spheirical earth, the Stokes ®“integral equation®™
is readily solved, yieldiny the inverse Stokes equation
(tolodenskii et al., 1962, p.50). Most treatises on
applications of downward continuation vere predicated on
airborne aecasurements of gravity and made use of the Poisson
integral, but only for local determinations; see for exaaple
the wvorks by Schwarz (1973) and Boritz (1966a).

Finally, ve note a method of dowvnward continuation that
is founded on the usual technique for amalytic continuation.
Because the potential of the earth (without atmosphere) is
analytic everywvhere above its surface, the downward
continuation from the bounding sphere is theoretically
achievable using a Taylor series expansion. That is, given
the potential on the bounding sphere (as a series), we know
also its derivatives. Hence, the Taylor expansion about a
point on the the bounding sphere can be evaluated anywhere
within the sphere that excludesgs all singularities of the
potential; i.e. the sphere that is centered at the expansion
point and just touches the earth®s surface. This method wvas

by 2
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briefly developed by Hotine (1969, pp.172-173), but its
applicability seemas uncertain. Contingations of 3 to 25 ka
using Taylor series require fairly accurate evaluations of
the (radial) derivatives of tke potential. However, with
only a finite number of harmonic teras in the series, the
derivatives, particularly of higher (> 1) order, will suffer
considerably froa the truncation effect, as well as randoa
errors in the high degree coefficients.

1.3 pPreliminagries and Definitions

There are certainly many additiopnal aspects to the
problem of using satellite derived data for terrestrial
applications. 1n the first place, the potential will not be
observed lirectiy. The measurements at the satellite
altituode will consist of either satellite to satellite
Doppler tracking data or gradiometry data. The foraer
provides velocity differences, hence potential differences,
between tvo satcllites (see Hajela, 1978; Ruamel, 1980;
Schwarz, 1972), while the latter yields linear combinations
of components of the gravitational gradient tensor (see
Reed, 1973; Rummel, 1979). Secondly, for global coverage,
the satellites must follow near polar orbits thereby
creating a nonurifora data set with heavy concentrations at
the poles. In order to perform a spherical harmonic
analysis, the data must exist on a sphere (see below), but
the satellite orbits cannot be exactly circular (the
satellite moves in a noncentral force field). Pinally, the
«arth®s potential field is not stationary in imertial space.
It completes one full rotation every 24 hours on an axis
that wobbles due to precession and nutation, as well as
polar sotion. Therefore, the raw data must underyo
considerable preprocessing in order to obtain uriform or
specially gridded coverage on a sphere that is fixed in the
earth®s gravitational field. These preparations in the
determination of the final product are beyond the scope of
the following analysis, since they depend primarily on the
type of satellite mission. Purthermore, it is assumed that
the potential is available for downvard continuation in the
foram of a (finite) spherical harmonic series. We note that
the analysis of spherically distributed discrete data is -
corrupted by aliasing, the influence of the higher freguency
content of the data on the desired harmonic coefficients.
This effect can be minisized by using optimal estimation
techricues (see Coloabo, 1978).

The downward continuation error in the present context
refers to a deterministic error, as opposed to a randoa, or
probabalistic exror. Given the potential, defined
everyvhere in space, and its series representation in a ‘
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region of convergence, one can define this error precisely
as the differemce between the truncated series continued
beyond the region of convergence and the true value of the
potential. This definition has the disadvantage in that it
includes a type of truncation, or omission, error, i.e. the
neglect of higher degree information, which has nothing to
do with series divergence. The alternative defimition, as
the difference between trurcated imner and outer series,
however, seems even less agreeable, since the inner series,
in our case, is not the spectral representation of the
potential. Consequently, corresponding terms of the two
series are not comparable.

At present we lack the resources (primarily a
sufficiently accurate series of the potential determined in
outer space to high degree) to conduct an analysis of the
downwarda contintation with actual data. The natural
alternative is lo devise an earth model with a complexity
that adequately takes into account the anticipated advances
in deteraining series expansions in space. 1I1deally, the
potential of this model should be xnown exactly on the model
surface and be expandable in a series that diverges below
the bounding sphere. Instead of exact values on the
surface, an inner series may suffice if it can be expanded
to a high degree.

Fros the mathematical standpoint, the spherical polar
coordinates r, 6, A lend themselves most conveniently to
formulations on a global scale. With respect to the
Cartesian system of coordinates x,y,2, r is the radial
distance from the origin, © is the polar angle measured
fros the z-axis, and X is the angle (loncitude) measured
counterclockvise in the xy-plane from the x-axis:

X = rsinb cos A
¥y = rsind sin A (1.1)
Z = r cosf

In geodesy, the second coordinate is often the latitude, but
then is usually the coordinate in an ellipsoidal system of
coordinates. All derivations in section 2 are performed in
the above spherical coordinate systea.

The solutions to Laplace®s equation (which is satisfied
by the potential in tree space) are the solid spherical
haraonic functions of degree n and order =m:

Py e, ) g e ,n20, cnemen (1.2
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the tirst when the region of bharmonicity contains the _
origin, and the second vhep it contains infinity. The Y,
are known as surface spherical harmonics and are defined by

< 5 A
Ynm(e,}\) = pnlml (cosh) {cosm

m >
sin[m{A , m <

0
0 (1.3)

This departs from the more conventional definition adopted
by mathematicians (see Cushing, 1975, p.158) vhere the
inconvenience of separate definitions for negative and
nonnegative orders is avoided by using the expomnential
tunction e'™" instead or the sinusoids;: however, (1.3) is
nore customary ir physical geodesy. The P_ . are the
associated Legendre functions, normalized such that the
integral of the square of surface harmopnics_over the unit
Sphere is 41 . Furthermore, the functions Y, . are
orthugonal, i.e.

1 o _ 11 n=p and m=gq
T oj ¥ a0, ¥ (0 0)do = {o ' n#p or m#q (1.4)

vhere do =sinf 46 dA and o represents the unit sphere; and
they foram a complete set of basis functions. This means
that any continuous function F(O6,) ) defined on the unit
sphere, that is, for 0 € © ¢ and 0 £ A £ 217, can be
uniquely expressed as a uniformly convergent series of
spherical hamotrics:

© n

F(8,1) = nZO m=2_n fom Ynm(8s2) (1.5)

vhere (by multiplying both sides by ¥, , integrating over -
o, and noting (1.4))

1
fom = In_fof F(o,2) ¥ .(8,))do (1.6)

The condition that P be continuous can be relaxed to P being
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Lebesgue integrable, but then the series (1.5) does not
always converge to P. The operation (1.6), resulting in the
coefticients f£,,, is known as the lLegendre transfora and the
coefficients constitute the (Legendre) spectrum of P. 1In
view of (1.2), the extension of an harmonic function into
(the exterior) space is

n
R .n+1 S
L) oo Yom

F(r,0,\) = =
O m=-n

n

fie~18

(8,1) (1.7)

vhere R defines the radius of the sphere on wvhich F has the
spectrua {f.-} (see equation (1.6)). If the spectrua of P
is determined in space, then "downward continuation” simply
means a decrease in the variable r. Also, the spectra of P
on two different spheres, of radii R, and R,, are related by

(1) _ (Rpp+l .(2)
tm = BV fhn (1.8)

provided that the series converges on each sphere. 1t is
obvious from (1.6) that the definition of Legendre spectrum
is not restricted to functions defined on a sphere., The
surface can assume any shape as long as to each coordinate
pair (9, 2) there corresponds a unique point of the
surface, and vice versa. Of course, if a functionm is
defined in three dimensions, then its spectra vwith Trespect
to a sphere and some other (nonspherical) surface are not
coaparable.

This introduction to spherical harmonics concludes with
a statement of a very useful formsula, the addition theorenm
for Legendre polynomials:

1 3 ¥ 7 t '
P (cos) = - 1 ¥ (0,3 ¥ (8',2) (1.9)

m=-n

vhere ¥ is the central angle between points (98 ,)A) and
(6',A') on the unit sphere, and vhere the P, are the
familiar Legendre polypoaials.

We follow Hobson (1965, pp.89-90) ip the definition of
the associated legendre functions. For any complex M bot
on the real line segment [-1,1], ‘

R I 2 b I P
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m 2 3m d%
Pn(U) = (u°-1) -:;-f“— pn(U)

(1.10)
m 2 im dm
Q,(u) = (u°-1) oF Q, ()

vhere the Q7, (, are the Legendre functions of the second
kind. The Legendre functions with real arguments /u.=cose €
[-1.1] are then defined by

P:(cose) = (+i)T P:(cose +01i)

(1.11)
m

(+1)™ 1im P®(cosgtvi)
v+o PO

The right side of (1.11) is the limit through the cosplex
plane onto the line segment [—1,1] and is found to be

m
Pl(coso+01) = (£1)™ sinma--9_--pn(cose) (1.12)
d(cos G)m

and siwsilarly for Q], so that

m
P:(cos 8 = (-1)m sinme —9a_ P_(cos6)

d(cos®)® P 113
m m m a® (.13
Qn(cose) = (-1)" sin'o —_— Q._(cos8)

d(cos 9) n .

Letinitions (V.W) and (1.13) hold for any n,a, but ve
consider only those functions for wvhich n,m are aonnegative

integers with 04w <£n. PFinally, ve apply the reguired
normalization:

m (2n+l1)(n-m)!
pnm(u) = (-1)

m
€ (N+m) ! P (1) , for all u

(1.14)

Qo) = (-1)%/ L2220 By | for a1l
mETT

-—
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(1.15)




2. The Dowpward Contingatjop of Spherical Harmonic Serjes

Although the problem of convergence and divergence has
generally been recogqnized, more attention has been paid to
the theoretical concerns than to a numerical analysis of the
sitvation 1n pratice. 1A passing, conjectural, comment by
Cook (1967) suggests that the effect of divergence on the
p-th ceygree coetficient is on the order of J2 for thae
potential and J. for the gravity anomaly, vhere J. is the
n—-tn degree zunal harsonic coefficient. The notable works
in this area are those of Levallois (1972) and Sjdoberg
(1977) . Their nuserical results derive from the postulated
effect, on the series expansion, of the masses betveen the
bounding sphere and the sphere of computation. With several
approximations, Levallois estimated these effects over much
of the earth's surface for expansions of the geoid
undulation ovp to degree 200. He obtained errors of a few
tens ot centimeters with the exceptional meter in equatorial
regions, cven tor low degree expansions:; sc¢veral meters in
the midlatitudes, gebnerally for all degrees of truncation;
and up to 16 a iu polar regions for the high degree
expansion. Sjobery's analysis is restricted to expansions
up to degyree 16 and 24, but enlarged to include the errors
in gravity ganomdlies. His results shov errors as large as
0.5 to 5 » depending on the complexity of the earth model,
as well as the point of computation. Dowvnward continuation
errors in gravity anomalies were found to be extraordinarily
larye, iu sowe instances on the order of the anomalies
themselves (up to 30 mgal).

These results for the gravity anomaly are unacceptable
as ve have only to compare the GEN9 harmornic coefficients
(derived solely from observations of satellite orbit
perturbations, Lerch et al., 1977) and coefficients derived
fros terrestrial data. Rapp (1978) found an RAS (root msean
square) difference in the tvo expansions (up to degree 29)
of 7.0 mgal. He also computed an BAS difference of 9.1 =m in
the expansions of the geoid undulation, rather high, but
more likely due to measurement errors than the divergence of
the series.

An appraisal of this method of estimating the downward
contingation erior, given in section 2.2.4, suggests that it
is an unsuitable method on account of the sisplistic density

18
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hypothesis of the intervening masses. Also an attempt is
made to explain the irreconcilable downward continumation
errors of the gravity anomaly, mentioned above. 1In section
2.3 we embark on a similar course to ascertain the effects
of series divergence, but now with a firmer control on the
generation of the earth®s disturbing potential. Results
trom a subsequent numerical analysis agree generally with
expectations based on the discussions of the following
section.

2.1 Simple Mass Distributions

A study of potential series corresponding to simple mass
distributions will illuminate some of the broader aspects of
the harmonic series behavior of the earth®s potential. 1I1n
order to draw definite conclusions on the partial suas of
the series, the mass distribution should be sufficiently
elementary so that 1) the surface separating regions of
convergepce and divergence is well defined, 2) the series
for eather regioun 1s calculable to arbitrarily high degree,
and 3) although it is not essential, a closed formula of the
pctential is available to check the nuserical computations.

The following "experimental mass distributions™ are not
designed to simulate the earth®s distribution of mass;
hernce, uny of the specific quantitative results obviously do
not hold for the earth. Infinite series will be developed
for both the potential and the ygravity anomaly since they
are associated with different rates of convergence.

In the usual spherical coordinate systea (1.1, consider
an infinitesimally thin layer of uniform demsity distributed
in the form of a circular disk on the equatorial plane
© =90° and centered at the origin (see FPig. 2). The
constant density is X and the radius is denoted a. For any
point P, the potential due to the attracting mass is

fa 2n rdidr

V. = V(r_,0 (2. 1)
P p’ r=0 X=0 L |

p’kp) =KX

vhere K is the constant of gravitation, and

L = /rp +r 2rrp cosy ; cosV sinep cos( Ap) (2.2)

Because of rotational symsmetry, we may choose A, =0. The

iy



Pigure 2: Equatorial disk density distribution,
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integration with respect to r is easily performed:
n La+a-rp cosy
V. =« L - + =—_p
p an [a p rpcoswln rp-rp00?w 1dr (2.3)
vhere
L. = Ya2+ ri -
a a rp 2arp cos ¥ (2.4)
As reference, ve choose the potential of the entire mass
concentrated at the coordinate origin:
2
Kna
Up = Tp (2.5)
Hence the disturbing potential is
T V. -1
p_ p P
(2.6)

v
- - La+a-rp cosy kna?
2k X fo (2, Tt T cosyin ¥ %, cos 1dA - _;__X
p

vhere because of syametry, the integrals over the intervals
(0,7r) and (m,27r) are identical.

The series expansions of V are obtained by substituting
into the integral (2.1) the uniformly convergent series for
the reciprocal distance:

@ n
L7l = nZ:-O -r—:;—lpn(cosw) » Ty > r (2.7
P

for the outer series, and

w o0 ¢
SR ';n%'l Ppcosy) , rp < T (-9

o —————EERSE
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for the inner series. we £find for I, > a

o«
V = K X 2
p n=0

Now the addition theorenm (1.9) provides the integrals of B3

[2" P_(cosy)da =.7§l—" § ¥
o n n+1m=_n n

27 o

T a p+2 .on
e (Tp)“ fo P, (cosy)dx

= Inti Pno (cosep) Pno(O)

since

2w

Row

A N N N (n-1)

and the series expansion for YV becoaes

2n+1

P n=Q P

vhere

“n = ZneT Pon(0) ; un+1="rm.' Hn

The disturbing potential is siaply

[

/ Y o (37,0)dA =0, m#o0

n is odd

n is even

l,l(cosep)

» M2 0;5yu,=%
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(2.9)

-

27 -
mCep,O) [o Ynm(ivr,l)dl

(2.10)

(2.11)

(€<.12)

(2.13)

(2.14)

—— ]
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T =2 n+1 .
P TKY @ n£1 p)2 My Pzn(cosep) »Tp > 2 (2.13)

Por points inside the bounding sphere, ve decompose the
integral (2.1 into the two parts for wvhich the series (2.7)
and (2.8) respectively converge:

2 Tp 3 r a+l
Vo= xx [ L] ngo (—r;-)“ P_(cosy)dr +

a
+ [ Z (—2)“ P_(cos¥)dr]dA

r_ n=0
p . (2.16)
© 27 1 _
=exrp 1 [ (gez- 2= (2P L)) p_(cosvrar +
n#l

2 L a
+teXx T, Io i+ in F—p] cosV¥ dA

The last terms vanishes; and with (2.10) and (2.72) ve obtain

Vp = 2mexT) } (4n+l _ 2n+2 Ip.2n-1 17
P P neo [2n- 2n-1 (a) hln p2n(c°sep)(2 b

The disturbing potential, with respect to the reference
potential (2.5), is

oo
4an+ 2n+ 2n-
Tp = BwexTp I (5 - oy (S My P (cose)) -

(2.18)
xra?
_—er y Tp < a

That this series converyes for ro < a is obvious once ve
recognize that ,u.,,=0(n ) since P,,(cos8)=0(n"").

For the present purposes, ve may adopt the followiny
definition of the gravity anomaly (Heiskanen and Boritz,
1967, pP.89):

" o= Sl b VN ey gl e BN - B - - - -

» %
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9T 2
= - - - 2.19
g 3F "7 T (2-19)

Applying {2.19) to (2.6) arnd omitting the tedious
derivations, the closed form tor the anomaly is found to be

Ag = 6y + XX a®_ 2K fﬂ[S cos Y2&n atla-rp cosy
€p r§ X 4 rp-Tp cOS ¥

, 3rp+28 -srpacosy rp Ip cosy -(a+2a)cos2w]dl (2.20)
a

rpQ: atl,~r,cosv

Because surface layers generate potentials vhose derivatives
are discontinmious as they cross the surface, expression
(2.20) is valid anyvhere¢ except on the disk.

The definition (2.19) applied to the series for the
disturbing potential, (2.15) and (2.18), yields the outer
and inner series for the gravity anomaly:

T a2n+2
Agp 2mKX n£1 (2n-1) u (r—p)2 Pzn(cosep) » Tp > a (2.2%)

(2n+2¥ rp,2n-1_ .4n+l
o1 (R - 35551 vy Pzn(cosep) +

(2.22)

bg_ = 2mxx } [
p n=0

+ wxx(r-ﬁp-)’ y Ty <8

The term by term differentiation of the series (2.15) and
(2.18) is permitted since the series of radial derivatives
as uniformly converyent with respect to r,.

Another simple mass distribution, which approaches that
of the earta, is a homogeneous ellipsoid. In order to
evaluate the coefficients of the series expansions exactly
and, more importantly, so that the bounding sphere is the
surtace of convergence, the ellipsoidal surface is broken
into latitudinal bands of constant curvature, each 5° vide,
qivirg it a serrated appearance (see Pig. 3). The potential
at a point P due to the smooth ellipsoid is given by
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V. =xx/[{ jrs 1 r? ar do (2.23)
p g o T

where ¢ denotes the unit sphere, do =sin® a6 dA , and where
I; 5T (@) is the radial distance to the ellipsoid surface.
With the introduction of the serrations,

2N-1 27 61+1 T 2
voskx 3 ) [ P IRL sinededx  (2.24)
i=0 ° 8; °

where 0;=i48, i=0,...,28-1, §=90/46 , and rs, =r, (9;). Only
the inner integral can be evaluated in closed form, thus
precluding the computation of exact values of the potential
and gravity anomaly. The derivations of the series are
completely analogous to those of the eguatorial disk and are
relegated to Appendix B. The final results are yiven by
equations (3.7) ,(B.8) for the potential and (B.9), (B.10) for
the gravity anomaly.

For the numerical tests, the equatorial disk was given a
radius of a=637810 m and a uniform density of x =3x10°
g/cmt. Similarly, a=6378140 @ vas chosen as the equatorial
radius of the homogeneous ellipsoid. The centers of the
latitudinal bands, each A8 =5° wide, lie on an ellipsoid
vith a flattening of £=1/298.257; and therefore, the
corresponding radii of these bands are computed according to

a
r . =

si 2 2 2.25
1/ 1+e'? cos ei+% ( )

where i=1,...,17, and e'* =1/(1-£f)* ~1. The homogeneous
density of the ellipsoid wvas equated with the average
density of the earth, X =5.5 g/ca’; and X =66.7x10""
ca/(g.s*) was adopted as the constant of gravitation.

The differences between the resulting partial sums of
the series (2.15), (2.21), (B.7}, and (B.9), as functions of
the truncation deqgree, and the corresponding true values are
shown in Pig. 4 for r,=6377200 m, 6, =7705 (near the
equator) and in Pig. 5 for r,=6357200 m, &, =725 (near the
pole) . Both points of evaluation (r,,8,) were selected
belov the sphere of convergence, so that each of the series
sust diverge in the limit. (Using Ecker®s theorea (see
section 1.1, it is possible to prove that the bounding
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sphere of the ecuatorial disk is also the surface of
convergence. A simple proof of the divergence inside the
bounding sphere of the serrated ellipsoid was not found, but
it is verified by Pigures 4 and 5.) The partial sums, being
in any case discrete functions, vere evaluated in steps of
20 (Fig. 4) and 300 (Pig. 5) degrees and connected by
straight liness tor clarity, but thereby also smoothing their
strong oscillatory behavior. The true values (not shown) of
the potential and gravity anomaly were provided by formulas
{(2.6) and (2.20) for the equatorial disk and by the inner
series (B.8) and (B.10) for the homogeneous ellipsoid
(truncated at n=3=30000) . In the figures, the value
ianmediately above each zero, related only to it, indicates
roughly the range of the oscillations over the given domain
of truncation degrees.

A study of these graphs reveals several interesting
aspects of harmonic series divergence. The amaost obvious
conclusior is that the more distant the point of evaluation
is from tne sphere of convergence, the more severe is the
divergence of the series. The series near the pole shows
definite signs of divergence around n=1200 to 1800, while
the series near the equator had to be summed to n > 15000,
and higher for the potential, in order to detect a
significant divergence pattern. Also, for low 0, the
deviations from the true values actually decrease with
increasing truncation degree before they start their
eventual, unbounded, increase. This is particularly the
case for the potential, even in the vorse situation at the
pole. The distinction between truncation error and downvard
continuation erior (due to divergence, see section 1.3)
thereby becomes exceedingly nebulous for the lower degree
sums. Whether a comparison of these partial sums vith those
of the inner series gives a better indication of the
dowvnward continuation error is guestionable for lower degree
expansions, since tbhis type of comparison is associated with
other irterpretive problems, as discussed in section 2.2.2.
The difference betveen inner and outer partial suas, shown
in Figures 6 and 7 for the same tvo points as above, does
indicate that some of the truncation effect is coamon to
both. This is particularly the case for the egunatorial
disk, less so for the ill behaved series of the ellipsoid.
Connected with the overall delay in divergence is the
difference in behavior between the potential and anomaly
series. Since most of the pover of the potential is
concentrated in the lover degree harsonics, the divergent
character of the series is apparent somevhat later than for
the anomaly, its pover being spread more to the higher
degree terms (i.e. it is essentially the derivative of the
potential). These conclusions hold equally for both denmsiiy
distributions, but are clearly more vividly depicted for the

PN
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equatorial disk. The spikes in the graphs corresponding to
the homogerneous ellipsoid are undoubtedly due to the
salience of the bounding surface.

The conspicuous oscillatory character of the partial
suns is evidently attributable to the syametry and
homsogeneity of the demnsity distributions. However, sose
type of irregular oscillation of a full spherical harmonic
series should not be eixcluded. Pigure 8 shows the partial
suas of a gravity anomaly series derived froama the (180,180)
hacsonic coetficient solution of the earth®s gravity field
(Rapp, 1978) and random higher-degree coefficients that vere
scaled to decay according to the Tscherning/Rapp degree
variance model (for more details, see section 2.3.2). The
sums were evaluated (using an eqguation such as (2.50)) up to
degree 1500 at a colatitude of 10° (near the pole) for
various radial distances. Unfortunately, because of
inevitable constraints in computer storage, and also time,
such computatious are feasible only for polar latitudes
vhere the (normalized) legendre functions of higk order are
virtually zero and can be safely neglected. On the other
hand, since the true value of the anomaly belowv the
convergence sphere cannot be known, this graph is almost
useless for quantitative assessments of the downward
contingation error. The intent of Pig. 8 is to illustrate
the tendency for oscillation of a divergent series, as well
as the very moderate effect of divergence tor dearees of
truncation less tham 300.

2.2 The Volupetric Density Model

2.2.1 The Derivation ot the Error Series

The masses of the earth gemerate a potential whose
gradient is the attractive force field postulated by Newton.
It can be shown that this Newtonian potential at a point P
is the sum of all attracting masses, each divided by its
distance froa the attracted point P. Porsulated for a
nondiscrete mass distribution, the potential Ve is

n
Vp = ¥ I‘sz T & (2.26)

K is dewtun®s gravitational constant, 0 is the (three-
dimsensional) volume containing the mass distribution; u is
the density tunction; d{] is an e¢lement of volume, so that
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the eleaental mass is wdfl; and 4 is the distance between
the attracted point P and the attracting mass w d{l. The
only restriction on the density x, formulated in the
context uf madern potential theory, is that it be Lebesque
integrable (Wermer, 1974); hence discontinuity of « on a
set of measure zero is peraitted, but the total mass must be
finite. Without significant loss of generality wve will
adhere to the classic requirement of piecewise continuity
anu boundedness. The integral expression above for V is
valid anyvhere 1n space (i.e. it can be shown that it
converges to the potential everyvhere, even wvhere the
integrand is singular (f =0), see (Kellogy, 1953, p.151)).
our interest lies only on and outside the surface that
bounds ail generating masses, viz. the earth®s surface.

The expansion of V into a series of spherical harmoanic
functions can be founded directly on its being a solution of
Laplace's eguation. Alternatively, to give a physical
seaning to the ensuing coefficients of the series, the
poteatial 1/4 (generated by a2 point of mass 1/ ) is first
expanded as a spherical narmonic series (equation (2.7)).
Upon the substitution ot (2.7) into (2.26), the integration
may be perforaed term by term to yield

v=-5-°i

= [{] wex,8,0) (9" P (cospan (2.27)
P Tp n=0'0

Tp

The validity of this expression is guaranteed only for
points outside the bounding sphere S, (see Pig. 9). 1In
(2.27) r is the radius to the volume element

dQ =r*sin® a6 dA dr, and cosy is now

cosy = cosb cosep + sinb sinep cos(A-Ap) (2.28)

The gotential at a surface point P below the bounding sphere
can also be represented as a convergent series by
considering separately those regions for which the series
(2.7) and (2.8) are respectively convergent:

© r r
Vom T Sf U R e ar ¢ [T w3 et arg
P

P rp n=0 o r r (2.29)

. Pn(cos y)ydo
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vhere o denotes the unit sphere, d¢ =sin® d® dA , ry is the
radial distance to the earth's surface, and T=ain(r;,r,) .
Note that rg is a function of (©&,A ), as is T vhich denotes
the radius either to the sphere of computation or to the
earth's surface, wvhichever is less.

Using the addition theorem for the Legendre polynomials
(1.9), the potential V,, for points above the bounding
sphere, can be expanded as follows:

) n
= X Iy 1 ¢ (8,)) d@ ¥_ (8. _,1)
Vp rp nZo Iéj u(rp) 2n+1 mjén nm L
T Rl og (e, (2.30
) nzo m=-n ;;” nm “nmUp’Up -
vhere
Vam = RezarTy /[ wOE" Ypp(en) a0 (2.3

and where R is the radius of the bounding sphere S,.
Similarly, the expansion of the potential at P inside S, is

© n

v =Y 1 v (r)¥ (8_,\)) (2.32)

P p=0 m=p PP P 0@ PP
rhere

r n+2 r n+1
=~ - K r s T
nn(Tp) = Fmmny S U v ar 4 [ T u By an
P T (2.33)

?nm(e,x) do

The ®coefficients® ¥ _ are functions of r, ; note that for
r,> R
R .n+l

vnm(rp) = (;;0 nm (2.34)

-
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Hence, the expression (2.32) is valid in all of the exterior
space. We note also that the series (2.32) tor r,< R is not
a series of solid spherical harmonics, nor is it an analytic
representation of V everyvhere above the sphere of radius r,
because the potential has discontinuous second derivatives
on and inside the earth®s surface.

In current practice the expression (2.30) for Ve
(truncated at n=n) is used anyvhere above the earth®s
suxrface (even inside S,). The difference between the
computed potential (equation (2.30) with oo replaced by 1)
and tne true potential («.32) is the total error of
coaputation:

E(Vp) =V -V

n=0 m=-n ’p nm - nm om’ "p’’p
E T - 3 (2.35)
- v 6 _,A -
n=f+1 m=2..n nm( rp) nm( P ’ p )

£ (V) here is called the downward continuation error. BHost
authors identify only the first term as the downward
continuation erxror, in vhich case the second tera,
representing the neglect of more detailed information, can
be called the truncation error. However, for reasons to be
elucidated below, the first defipition is to be preferred
and will be adhered to in all subsequent discussions. Now,
the coefticients of the error series (2.35) for 04£n<h are
given explicitly by

anm(rp) = (1L9n+1v -v._ (r.)

T, nm ‘nm' p
n+2 r _n+2
- K rs . r r
rp(2n+15{; [& K N dr-& u 2D dr (2.36)
P P

rg rn+1
- J_ wRgdr) ¥ ,.(8,)) do
r r

The first and second terms differ by an integral of the
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density in the shaded portion of Pigure 9; therefore

+2 ,Tp.n-1
aarp) = B[] 7 WG G e

(2.37)
?nm(e,l)da

A similar derivation can be found in (Sjoberg, 1977; Cook,
1967) .

In the stirictest sense, the conpntation of the
coefficients a, (r,), 0¢ n‘ I, requires a knowledge of the
density of the -asses between the computation sphere Sp and
the earth®s surface; to assess the truncatlon error, ve need
estimates of the coefficient functions v (r ) (or the
density function of the whole earth).

Because the earth is nearly ellipsoidal in shape and its
internal density, on & large scale, exhibits approximately
ellipsoidal sysaetry, the earth®s gravity potential, as a
ratter of convenience, is described with respect to the
potential of a rotating equipotential reference ellipsoid,
which accounts for the coarse features of the gravity field.
How this reference potential, designated U, is chosen is
irrelevant tor the problem at hand provided it can be
calculated precisely either in closed form or as a
convergent series anyvhere on and above the earth®s surface.
To siaplify subsequent definitions, we also stipulate that
the potential on the ellipsoid equals the geoidal potential.
U includes the centrifugal potential arising from the
earth's rotation, which taerefore does not contribute to the
disturbing potential. An expression for_U is found in
(Heiskanen and Moritz, 1967, p.67). If 0O denotes the
gravitational potential of the rotating ellipsoid (i.e.
wvithout the explicit centrifugal part), then the disturbing
potential is given by

T =V -
p = V% -0 (2.38)

since the centrifugal potential has beenm oaitted in V. By
expanding the normal potential in a series, wve have fros
(2.30)

«© n

R \n+1 T
T = T (=)""¢t ¥ (8 _,A) (2.39)
P nzo m=-n TP nm “am"p’”p

el e ——— e - pE——— e e
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vhere t.., is the difference betveen v, and the
corxresponding coefficients of U. Since J, is supposed to be
known everyvhere, the error in dovnward continuing a
truncated sgherical harmonic series of T is

e(Tp) = e(Vp) (2.40)

vhere 6(9,) is given by (2.35).

The most ubiguitous quantity in physical geodesy is the
gravity anomaly, simsply because the force of gravity is most
readily observed. 1t is defined (vhen there is no mass
external to the geoid) by

Ae = glgecid - Ylenipsoid (2.41)

vhere g is the magnitude ot the earth’s gravity vector on
the geoid and y is the magnitude of the gradient of U on
the reference ellipsoid (see ibid. p. 83). This definition
is easily generalized to gravity anomalies in the external
space of the earth, vhere geoid and ellipsoid are replaced
by geopotential and spheropotential surface, the potential
of both surfaces, in their respective fields, being
identical. Approximating y by the gravity of a homogeneous
ball and the normal gradients by radial derivatives then
yields

__dp_ 2
bg, = - ﬁ-‘ﬁ‘ rpr (2.42)

Por a guantitative analysis of these approxisations, see
section 4.

The corresponding spherical harmonic series of Ag may
be found as follows. Substituting the radial derivative of
the reciprocal distance LA™ (see (2.2)),

) g . —Iptrcosy
srp 2'5 (2.".3)

into (2.26) yields

vy ) 1
WP_-KI u,a.r(._) N =
P él p *

B N

-
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= - ff{ u..’:n;;‘".s_c_gﬂm (2.44)

Thus, combining (2.26), (2.38), and (2.42), the gravity
anosaly for any point P becoaes

Ag, =« f‘{f [J':f“w Tl -——I;L+ =0, @5

Differentiating (2.7) with respect to r_ results in

p

rircosp-rp) . 2 (0+1) (Z"*2 P _(cosy) , r > r (2.86)
L’ n=0 P P

Similarly for £,< I, differentiation ot (2.8) with respect
to Ty gives

rn(rn;;rCQ§Q = o 2 n(_20n+1 P (cos¢) s rp <r (2.47)
2 n=1

Substituting the above series, as well as (2.7) and (2.8)
into (2.45):

sg, = an [ffj p(n-1) —— n+2 P, (cosy)aq +
P

(2.48)

yi-1
- ;9;2; u(n+2);-§'-+-1— P (cosyp da ) - G,

vhere
fly = {(r,O,A) /rp > 1‘} y 2 = {(r,e,l)/rp < r] (2.49)

and wvhere G,=-30/9r,-20/r,. We note that for points P
above the bounding sphere, the set (), is empty and 2, =Q; !

-—
- -
-~
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then with the addition formula (1.9) we obtain the familiar
series expansion

«© n
Ag = n-1 ,R.n+2 _
p = L 1 % G Vo (90350 - G
s a R .n+2 g (2.50)
= — e .
EO mjin (rp) €am nm( p’ p)

by absorbing the expansiom ot G,, so that

n-1

= o=t

&hm R ‘nm (2.51)

The error in using a truncated version of this series
for points on the earth®s surface (i.e. below the bounding
sphere) is therefore the difference between equation (2.50)
(oo replaced by ©) and the true expansion (2.48):

n
c(agy) = « I Jf [(n-—l)] u(—)n+2
n=0g¢ p

Ts -
+ (n+2) [_° u()" ar] p_(cosy) do
r

T
-k 3 Sty [ouE™2 ar
n=fi+1 ¢ p (2.52)

r
- (n+2) f_s u(%?)n-l dr] P (cosy) do
r

Then with the addition theorenm,

A n ‘
(Ag.) = T 4 (r) Y (8,2
e(ag, nE L, damTp) Yo' Cp
11 (r) ¥,.(0_,A) 2.53 |
+ d' (r (2.53)
n-%+1 me-n " P nm p P
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vhere

8on(mp) = g 1] 10 L1 (EO™2 4 (ns2) (2271
nm " p n+ s 'F (n- F; (n+2) () Yudar
{(2.54)

and

' _ R \n+2 n-1
dnm(rp) = —(r—p) T Vom * dnm(rp) (2.55)

(2.55) can also be verfied by adding and subtracting the
density inteyral over the region (1, . We note that for
Ly > B, dona(r,) =0 and the remaining erxror is simply one of
truncation.

Similarly, the geoid undulatiom (or more generally, the
beight anomaly, i.e. the separation betwveen geopotential and
spheropotential surfaces at the same potential) is given by
Eruns® tormula (Hdeiskanen and Moritz, 1967, p.85):

T
tp = ;;L (2.56)

wvhere Yo is the normal gravity at the point Q, being the
normal projection of P onto the spheropotential surface.

¥q is conventionally approximated by its average value on
the reference ellipsoid. Here, we use a common alternative,
pamely the gravity, at P, associated vith an homogeneous
ball: yq =wxi/ry (84 = the total mass of the earth); see
section 4. We then have

r2T

tp ¥ A (2.57)

and for points P above the bounding sphere

o n

= 3 ¥ (I—El—)n'1 z Y _((8_,20) (2.58)

tp n=0 m=-n ’p nm nm p’’p
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where

Zam = W tnm (2.59)

Osing only the terms up to degree n to represent the height
anomaly at the earth's surface results in an error given by

~ _ R2 ~
elep) = = &(Ty) (2.60)

vhere 5(§P) is given by (2.40).

2.2.2 The Interpretation of the Error Series

The proper understanding of any numerical computations
of errors such as (2.35) or (2.53) comes only with the
correct interpretation of the true series expansion, such as
{(2.32) or (2.48). Consider, for example, the potential
series (2.32); the same arquments obviously hold for the
gravity anomaly. Recalling that R is the radius of the
bounding sphere S,, the potential in the space exterior to
S, is given by the uniforaly convergent series (2.30). The
coefficients v, h~ve either of the following
interpretations. Pirst, they are density inteqrals, as
given by (2.31). Secondly, they constitute the spectruam of
vV on the bounding sphere S, (cf. (1.6)):

I Ili [ V(R,8,)0) ¥ _(8,\)do (2.61)
o}

The expansion of the potential in spherical haraonics at
points below the bounding sphere is achieved by considering
separately the two domains in vhich the inner and outer
series of solid harmonics converge. The resualting
®coefficients® v,_(r,) are more correctly functions of r,
and in the first place are density integrals (equation
(2.33)). The ¥, do not describe the spectrua of the
potential on the earth's surface. That is, the poteantial
spectrum of constant coefficients obtained froam surface
values, as suggested by (1.6), and the functions V.. (r,) are
clearly not identical. Instead, because the series (2 32)
converges everyvhere to the potential V, even inside the
earth®'s body (Kellogg, 1953, p.151), the functions v.,(x,)
for comstant r,=R, represent the spectrum of the potential

S - st e U RN N WA
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on the sphere of radius R,, vhether inside or outside the
earth’s body; tkat is,
v..(R) =~ [[V(R_,8,)) ¥ (0,\)d
nm'p 4 5 p’’ nm Y? a (2.62)

The tera by term evaluation of the downward continuation
error, as given by eguation (2.37), therefore does not
produce negative corrections to the spectrum of the
potential on the surtace. Ve are forced to identify the
downward continuation error with the entire sum of error
components and on a point by point basis.

Obviously, evaluations of the infinite sum are beyond
our computational ability. Horeover, the finiteness of the
number of harmonic coefficients of the potential deterasined
in space necessarily lisits our efforts to estimating mean
values ot the potential or gravity anomaly, and mot point
values. This requires a modification in the formulation of
the downward continuation error. Coansider first functions
defined on a sphere and define an (isotropic) averaging
operator by

F(8,X) = [[ B(y) F(8,\)do (2.63)
%

vhere P denotes the average of a function P over the
circular cap o, = {(O,2)/0 ¢¥ ¢VY,] and weighted by the
kernel B(v). VY is the angle between the center of the cap
(6,2) and the point of the integration (8,A ). Meissl
(1971, p.26) shows that if the kernel’s (one dimensional)
spectrua is {/2n+1 3747} and the spectrua of P is {f..},
then

Inm = Bn fnm (2.64)

are the spectral components of the average of P, that is, F.
In the tersinology of spectral theory, the coefficients f3,
are also known as tke frequency response of the averagiagy
operator (2.63).

Applying this result in the present context, let v
denote a truncated version of the general series (2.32),
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valid anysxere on or outside the earth®s surface:

n
mg;n Tom(Tp) Yum(8ps2p) (2.65)

Por constant r, =Ry, this may be interpreted as a veighted
average ot V over the sphere of radius _Bp+ where the
frequency response is unity for 0 <£¢n<h and zero for higher
degrees. It is impossible to devise such a perfect response
for the usunal average that is limited to values wvithin a
cap. We consider instead the average

© n
vV =
P ngo m=§n ®n Vom{p) Yom¢ e p*'p’ (2.66)

vhere the weights have been chosen so that the freguency
response is

8 =0, n»>n (2.67)

a value to which it tapers smoothly from a value of 1 at
n=0. As an average on the sphere of radius r,, it is clear
that values of ¥V coincide with values of the potential
averaged over an area ot the earth®s surface only if that
area coincides with the spherical cap. This is never the
case exactly, but it is a reasonmable approximation if the
cap is small. The size of the cap for the average (2.66) is
essentially determined by the desired "cut-off frequency" i.
Therefore, if the potential as determined outside the
bounding sphere is first averaged over a spherical cap, or
equivalently, its spectrum is multiplied by a partxcular
frequency response function, and the truncated series is
evaluated at the earth®s surface:

n
- Shat

0 m=-n rp

A n
v =3

p =, Bn Vom ¥ Ap) (2.68)

nm *nm‘ p*Ap

then the dovnvard continuation error of the average
potential ¥ is (cf. (2.35) and (2.36))
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n S
eV ) = ) B 2nm(Tp) Ypm(oprap) (2.69)

A siailar result holds for mean gravity anomalies, as well
as meab height anomalies:

A n n _
£og,) = n£0 méz-n Bp dnmTp) TnmBpsry) (2.70)
: r2 ﬁ n -
e(z,) = —&-ngo m=):—n Bp 3nm{Tp) Ypp(0pe2a,)  (2.70)

vhere 4,,.(r,) is given by (2.54) and in each case the
frequency response f3,, is assumed to vanish for n>in

(equation (2.67)).

An operator which filters higher degree harmonics nearly
perfectly is the Gaussian filter, its name deriving from the
shape of the weighting function v, (y), defined by

_ waly)
Bg(v) = j-jﬁ):l: (2.72)
clv
(o)
where
we(p) = e~a(l-cosy) (2.73)

- 2
s e fay » for small y

1f ve defire wo(w)=0 for v > v, , then the freguency
response is given by (see Jekeli, 1981)

B -1 8 - l_yoe-a<1-y0) _ l
Go ’ Gy l_e-a(l-y(T a




-

P Gt W Avas, eeme o e amseisis el adsn

&7

and
2n+1 e~2(1-3,) .
BC‘n+1 - a BGn * BGn—l + 1_;:ZTT:§:7 ‘ (2.74)

'[pn_l(YO) - pn+1(YQ)] » D> O

where y,=cos¥,. The parameter “a®™ specifies the amount of
smoothing. 1f we desire f3;=f, (e.g. £,=0.05 implies that
only 5% of the fi-th degree harmonic coefficient contributes
to the averaqge), then an approximate formula for "a®™ is
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& % 3In(i/f) (2.75)

2.2.3 The Description of the Earth Model

To evaluate the density integrals of the downward
continuation erxor requires a simplification of the earth's
surface, as wvell as the volumetric density. 1In the
sinplifying scheme adopted here, the volume between the
sphere of computation and the earth’s surface is partitionead
into (three-~dimensional) blocks that are delimited on the
sides by ©=constant, A =constant and on the top and bottoa
faces by r;=constant, r, =constant. Within each block the
density is assumed to vary only as a step function in the
radial direction and be othervise con:tant. The required
lithospheric (ciustal and upper mantle) densities, as well
as the corresponding depths are taken from (Boaford, 1971,
p.457) and illustrated in Pig. 10. With these assumptioas,
the coefficients d...(r,) of the dovnvard continuation error
of the gravity amomaly (2.54) reduce to

dnm(rp) = w ; Gn(rp.ei,xi) lj“{ Ynm(e,x)do (2.76)
i
vhere
Tgj
I %t + e urtar
r .
p
Gn(rp,ei,ki) = Toy > rp
2.77
0 , rg ST ( )
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- A,=1.03 o
/ - w00
Mo

Pigure 10: The volumetric density model (density values are
in units of g/ca?).
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Defining for r > r,
F o) = 2 [(-10(E) + 2y ™ pr2ar , n 2 0
n\ra’ b r rp r
a
(2.78)
n-1 3. Tpn+3 _  Ta.n+3, n+2 4 Ipyn-2_  Tp.n-2
mrp[(rp) (rp) V-5=2 rp[(rb) - (ra) 1y
= n>0,n#2
1 _3,.Tb r 3 ' =
= I‘p[(r—p)"’ -(;:)5]+4rp &n T, ’ n =2
the functions G, are given by the following linear
comabinations (see Pig. 10)
Hi 20, rp<r1: Gn= u.,Fn(rp,rl) + u,Fn(n y) + u;Fn(Q,rsi)
By 20, risrgre: Gi= u;Fn(rp,I‘z)“‘ naF (r,r ;)
Hi 20, rosrr . Go= nF (g,rg)
(2.79)
H <0, rSTs Gn=u~Fn(1‘p-!‘:) +uaFn(r,3,r..) +uan (r...rsi)
Hi<0, r;grp<r~:Gn- u,Fn(rp,r..)+uan (r,.,rsi)
Hi <0, r, ¢ rp<rsi: Gn= uan (rp,rsi)

If p denotes the geocentric distance to the surface of a
reference ellipsoid, then the radii are coaputed as follows

p; + N, + H H, >0
r -dd i i i
si

pi+Ni , H, <0

i

e e RRE NG T AT W WLl - T

- . - _ .
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2.80
r, = rg; - Hi ~ 40 km ¢ )
‘ Bi 20
r, = n + 20 km
rs = r . - 11 km
st ( H, <0
= i
T = rsi + Hi
vheie N; is the geoid undulation and
p; = 2
Y /1+veTcoss, (2.81%)

a is the semisa jor axis of the ellipsoid and e' is the
second eccentricity, related to the flattening f by
e*'*=1/(1-£)* -1. The surface of the earth was divided into
latitudinal bands each 5° wvide, and each band wvas further
subdivided into blocks having approximately the area of a
5°x5° block at the equator (Hajela, 1975). The elevation
data that Sjaberg (1977) used provided values of H; (on land
or sea, see Pig. 10) at the center points (6;, A;) of these
blocks. Finally, the undulation ¥; vas coaputed fros the
GEN10B harmonic coefficients (complete to degree and order
36, lLerch et al., 1978):

_ 36 n _
N; =R n£2 mgén Zom Yam(9424) (2.82)

vhere R is the mean radius of the earth (E=6371 ka).

The modeling of the density as above does not confora to
any established theory of isostasy. Since gravimetric
evidence indicates that the mass excesses and deficiencies
near the earth's surface are to some extent isostatically
compensated deeper within, a model which incorporates this
idea pay be more authentic. Adopting the Airy-Heiskanen
theory of isostasy (Heiskanen and Moritz, 1967, pp.135-6)
vith an assumed crustal thickness of D=30 kxa changes the
depsity model only in the way the radiir,,...,r, are
coaputed (changing also u, to 3.27 g/cm’):

= - - .83
r; rey - D - 2.73 Hy (2.83)

Hi <0
Ty = rei ¥ Hy
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2.2.4 The Numerical Analysis

We consider only evaluations of the downward
continuation error in gravity anomalies because they support
aost vividly the subsequent conclusions. The dependence of
the error (2.53) on the radial distance r, necessitates a
point by point evaluation. A dense grid of computed values
over the entire earth is prohibited by the excessive
conputer time that would be required. Therefore, inr order
to estimate the downward continuation error, we must
restrict ourselves to a judicious selection of points, which
should be goverred by oer objective to detect the influence,
not only of the earth®s ellipticity, but also its
topograpky. For example, consider a sxngle profxle in
longitnde across southern Africa (6 =10225, -2- 5<A,s79 5) .
Figure 11 shows the earth®s shape in this profile as defined
by the 5° mean elevations and the GEM10B geoid. Por each of
six points along the profile the first terz in (2.53) was
calculated vith =16, 36, and 180. Pig. 11 shows that, as a
supposed dovnvard continuvation error, its values for low
truncation degrees are inordinately, in fact unbelievably,
large (see the introduction to chapter 2). As T increases,
this %error” generally decreases but not aonotonically as
shown in the Pig. 12 of partial sums. The summation to
degree 180 is not strictly legitimate for an earth that is
sampled on a 5° equal area grid of a total of 1654 values.
That is, 1654 bits of information on the gravity field
determine a maximum nuaber of 1654 =~ (39+1)* coefficients in
its spectral harmonic representation (see also Shebalin,
1980) . Therefore, the computed terms for degrees greater
than 39 in no vay reflect the earth's true gravity field,
but the error teras to degree 180 are included to illustrate
their general trend. Of couvrse, in the evalvation of the
error according to equation (2.53), we have totally
neglected the higher degree contribution froam fi+1 to
infinity because it is unknowvn for this model.

Prom the few numerical results presented in Pigures 11
and 12 and on the basis of the experiments described in
section 2.1, as well as the discussion in section 2.2.2, the
folloving inescapable conclusion is asserted. The errors
depicted here, instead of showing the divergent character of
the series, may rather be a reflection of the iaplicit
choice of model for the earth®s gravity field at the earth'’s
surface. In the first place, Pigures 4 and 5 of section 2.1
strongly suggest that the divergence is not manifest for low
valunes of the truncation degree, especially near the
equator. If we accept this, then the first part of egquation
(2.53), i.e. that being evaluated here, must be the
difference between two entirely incompatible partial sums.
In fact, the downward continued sum represents what could be

o

R 1
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Pigure 11: Topogra?hical profile of southern Africa
(6,=10255, -1225< 2,£90%0) and values of partial
sues of downward continvation error in gravity
anomaly (volumetric demsity model): ©=16,36,180.
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called a "free air" spectrum of the gravity anomaly, vwhile
the ®true® partial sum represents the spectrua of a field on
a sphere that is partially embedded inside the earth. These
arquments and the supporting numerical analysis reinforce
the statement made in section 2.2.2 that the individual
teras of equation (2.53), or in the strictest sense, any
finte aggregate of terams, do not yield corrections to
corresponding downvward continued terms. This is
reeaphasized here because just such a procedure is
occasionally implied in the literature (Cook, 1967;
Morrison, 1970) .

It 2ay be noted that the kernel of the error integral
(2.54) can be expanded as a series in h=1-r/r,. Then the
infinite series of the constant and linear terms in h of the
dovnward continuation error sum to zero (see section 2.3.3).
Without these teras the numerical values of Pigure 11 woulad
decrease by 1, 2, or more orders of magnitude. However,
this does not alter the essential conclusion drawn above.

If T+ 0o, then the "true®™ partial sum converges to the
actual surface valce of the gravity anomaly, approaching the
dovnward continued series before it diverges. Some
indication of this is given by Pig. 12 vhich shows an
overall decrease in magnitude of the error with increasing
fi. Thus, the pext step in the analysis would be a
densification of the grid on which the elevations and
densities are assigned, thereby alloving expansions of the
error to higher degrees. However, the modeling of the
disturbing potential to a high degree by volumetric density
distributions, or {(vhat is almost equivalent) point masses,
on a global scale is generally associated with a
consideranle computational effort (Needham, 1970), as a
distribution of masses is sought vhich fits, in a least
squares sense, our knowledge of the exterior gravity field
(see also Balmino, 1974). 1In our case, no informatior on
the earth®s gravity field, except postulated smean demnsities,
vas used to define the distribution. One should therefore
not expect this type of model to produce a close reseablance
of the earth®s potential. Even the use of the isostatic
model of Airy and Heiskanen (equation (2.82)), instead of
the nodel depicted in Pigure 10, does not produce
sigrnificant changes in the numerical results. This model is
therefore not further used in thke analysis of the downward
continuation error. In the following section the earth
model is also determined by a density distribution, which
although not optimal, is entirely adequate to produce a
realistic potential.
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2.3 The Density Layer Model

2.3.%1 The Derivation of the Error Series

Other than volumetric masses, Newtonian potentials are
generated as well by simple layer and double layer density
distrioutions. The formulation of the potential of a simple
layer is coampletely analogous to (2.26), except that the
integration is over a surface instead of a volume, and, of
course, the mass is distributed as an infinitesimally thin
layer on a surface. This leads directly to the Molodenskii
boundary-value problem where the density of the layer, as an
unknown gquantity, is related to the boundary values of the
resulting gravity field through an integral equatior. This
integral eguation can be solved readily if the surface is a
sphere and by successive approximations for more complicated
surfaces such as the earth®s surface. Por the present
purposes, the ckoice of forsulation of the disturbing
potential is dictated by our objective not only to find a
reasonable solution to the density, but also to expand the
potential in spherical harmonic series above and below the
bounding sphere. The solution for the density will be
deteramined approximately by ou. knowledge of the gravity
field, that is, the bounding values; hence the disturbing
potential generated by this density layer should more
faithfully represent the actual exterior potential of the
earth. Note that in the follovwing, no attempt is made to
find the optimal density that fits our knowledge of the
gravity field.

This method of formulating the downward continuation
error oraginates vith Petrovskaya (1979). It is here
derived in more detail and from a slightly different angle
of approach.

lLet us then consider the following formulation of the
disturbing potential (vith respect to a suitable reference
potential), according to Brovar (1964),

- 2
T, = 4“?101 v(e,A\) Edo (2.84)

where, as before, R is the radius of the bounding sphere; v
is a generalized demsity wvhich contains also the inclination
term that transforms the integration over the earth®s
surface to an integration over the unit sphere; and the
Xxernel E is a function of 8, A, v,, 6,, 1, and is defined

- B RPN N V1

“ _
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by
E_____z___l_'%cosxp en rn+8-rgcosy (2.85)
r} rp 2ry

vhere 1,=r, ( ®,A) describes the radial distance to the
earth's surface. 1In general, the definiton of the kermel is
contingent only on the requirement that the function T be a
potential, i.e. harmonic in free space and regular at
infipity, othervise it is arbitrary. In order for T to be
harmonic, E as a function of the point P must satisfy
Laplace®s equationr and be regular at irpfinity. This wvas
shown by Brovar (1964) to be the case for the above
definition; in fact, the difference between E and the
generalized Stokes function S is easily recognized to be
(Heiskanen and Boritz, 1967, p.93)

5rs'cos ] 1 2
S = -=- 7T 2.86

p

Stokes' function and the teras op the right side of (2.86)
all are harmonic functions. Unlike the usunal density
integyral in which 1/% is the kermel, the expression (2.84)
has continuous derivatives when crossing the surface and is
therefore characteristic ot the potential of a volumetric
density distribution (see Brovar, 1964, and Koritz, 1966b,
p-55).

The radial derivative of T is

aT 2 3
- %foj v(8,1) 5‘1%“ (2.87)

vhere

L . 2i-rgcosy B, 2raQosy 4, Tp¥L-YscoSh (2.88)

p Tp rp rp 2rp

This combined with 2E/r, results in the simple expression

-
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JE 2 _ 1 /1 I's cOS
-a;;-ﬁE-%(r——?pJ) (2.89)

Por points P on the earth's surface, we have the boundary
condition (with the spherical approximation as described for
(2.02))

_ 9T

rp p p (2.90)

so that, because the derivatives of the right side of (2.84)
are continuous at the surface,

R2 r
Agp = Tty fof vie s\ )(-—12-'- - Jr_ggﬂ) do (2.91)

and the reason for the choice of E is now apparent. The
expression (2.91) is a Fredhols mtegral equation of the
first kind and if the earth®s surface_is approximated by a
sphere with radius [ (r, =const=R, r,—R) on wvhich ag is a
xnown function, the solution for the density is found by
expanding 1/f and ag in series of spherical bharmonics
(Petrovskaya, 1979; see also equation (2.7)):

(- -] n

n-.}-;o m|=2..n gnm ?nm( p p) = Agp
n 1 (2.92)
n-);o m=2n T3 jcf v(8,)) ¥ (0,))do Ynm(ep,xp)
n#1

This holds for arbitrary points P on the sphere, hence

2 -
& ™ ﬁ%‘f'zﬁtfof v(8,)) ¥ (8,))do (2.93)

Therefore, the spectrus of the density in spherical
approximation is (2n+1)q,m
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( Ry ¥ 7 g 3
v(B,\) = (—ﬁ nzo m=):—n (2n+1) g ¥ (6,}) (2.94)

Because the ygravity anomaly has no first degree term in its
series representation (equation (2.51)), this term for the
density, hence for the potential T, sust be obtained from
other data.

The series expansion of ag follows directly from (2.91)
if the boundary condition (2.90) is used as the defimition
of the gravity anomaly in all of space. Using (2.7) and
(2.8), we obtain for r, > R

3 R n+2
Agp £0 mj-n( p gnm Ynm(epyxp) (2.95)
vhere
0 y D=1
g, = , ) (2.96)
el T ) v, R (6,0)d0 , n#1
and for L, < R
L) n
A = ¢ .
®p nzo m=):-n an7p) Ton(®p22p) e
vhere
(1 _R? T s 3%
T 7} £jz' v(8,}) [(,—,—2)’- ,—.;] Yyn(8,2)de ,

§“+1 4“"'! [!I v(8, A)(_ﬁ) Ynm(e,k)dq + (2.98.)

\ + [f v(e, x)(-D)“*l ¥ (8,0)do) , n #1
C2

. e o - JUEST—
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vhere 6, = {(O,A)/x, (O,7A) ¢r,} and

o, = {(6,2)/r5(8,2)>r,}) . The dowvnward continuation
error is the diiference betveen the truncated series (2.95)
evaluated at the earth®s surface and the true series
expansion (2.97):

n
e(Ag) = _2_ ) dnm(rp) ?nm(ep,xp) +

(

0
+ 3 ] dr(r) ¥ ) (2.99)
n

nm'"p nm ep’J\p

where

_ R n+2
dnm(rp) - (%) €nm ~ °nm(rp)

2
T%z;ﬁ%” v(8,1) [(;-E-)“—brr—%)“*l]- (2.100)
02

-?nm(e,X)do , nx20

and

R = R \n+2
dnm(rp) = -cnm(rp) dnm(rp) - (g) 8nm (2.101)

The expansion into series of the disturbing potential is
more involved and requires the expansion of the kernel E
into series which are valid below, as well as above, the
bounding sphere. Anticipating the result, let us consider
the integral (Gradshteyn and Ryzshik, 1980, p.83)

] IF drp = &+ ry cosy &n 2(rp+£ T cosV) + a(ry) (2.102)

vhere a(ry) is the constant of integration. Substituting
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the uniforaly convergent series (2.7) into the integral
yields

r hs r
)] 'ijdrp = nZo i (—r-f-)‘)drppn(coslb)

© n (2.103)
r
= - 2 n—lI n 1P (cos¢)+r cos ‘“'n—g--i-b(r )

# P

where tp >rg. Hence

—_— S = - 2 - L {‘D -°'s
zo =3 =5~ P _(cosV %- r_cos¥ in -
n#1 P (2.104)

+ b(ry) - a(ry)

This holds for any r,> rg, in particular as r,»w, SO0 that

lim( % - r )+ 0 = -r_cosV fn4 +b(r )-a(r ) (2.105)
5-»«: S

kewriting I-t' as

- = - 6
2 r, T (2.106)
Tp
l1'Hopital®’s rule gives
lim (2 - Ty ) = -r cosy (2.107)

p"”

Therefore the total constant of integration is given by
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b(rs) - a(rs) = rg cosyn 4- 1) (2.108)

Putting (2.108) into (2.104) finally yields

T 1 r:
! 5T —a=3 Palcos¥) =
n= r
P
n#1 (2.109)

I+ g - rgcosy
- % -r_cosy n -2—5;;—5———— - rgcosy

Similarly, the uniformly convergent series (2.8)
substituted into the integral of equation (2.102) results in

Tp -3 Tp,n+l
f 1 drp = Z ,f(r ) drp Pn(cosw)
n=0 S
n+2
= 1 a5 Sar-Pylcos® + clry) (2.110)
n=0 r
s
wvhere c(r,) is the integration constant, and L < Lye With
(2.102) this becomes
- rn+2
1 - + 0 -
I &7 %Tpn(cos D) 1?.+rscosq)lt.n2(rp % - rgcosy)
n=0 s (2.111)
+ a(rs) -c(rg)
This also holds for r,=r, if v ¢+ 0, since then
Hence

P,(cosy)/(n+2) = O(n~**) and the series converges.

Pn(cos W= & +r cosy 2.n2(rs ti -1 cosy)

1
"slm

+ a(rs) - c(rs) (2.112)

A - - . R aem e a2 el —
A___—_“)
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where fg=r,V/2-2cosyv . But the first two teras on the right
side of (2.112) can be expressed as a series according to
{2.109) with L, =T, (v+0). Thus

a(rg) -c(ry) = rg nz P (cosy)
- (2.113)
2 _l'i' P (cosy) +r cosy-rg coswln4r
n#l

Putting this into (2.111) and combining the series, ve
obtain

© 1 1 1 n+2
nZO [rsGaFz *5-1) ~ a2 T ] P (cosy) =
s
n#l
3
A o r
= -2 -r,cosy in rL+2r scosy (-g-rs - % -l-,g-) cos P (2.114)

P

+
rgcosy n

e }U“l
(/]

Becalliny the definition (2.85) of the kernel E and using
(2.109) and (2.1M), ve finally arrive at the desired series
representation:

([ *® n
i r rgcosy
. Is __

nO n-1 " n+l1 P,(cosy) + T » Ty > T

n#l P
E =ﬁ 0

v s 1, 1 %p (2.115)

n+l s

+ rsCOSb (;5)3 + zn ;:%] , r <r ,

4 1
T (3-7

-
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The kernel E, as a function of the point P, is harmonic
everyvhere except on the line segment r < r;, ¥ =0 where it
is not defined and where in any case we will have no need to
evaluate it.

Substituting the series (2.115) into the formula for the
disturbing potential (2.84),

s g R .n+1
T = — t._ ¥ (8 _,) > 2.11
o n-§-0 m=2_n (rp) om Tom(®pdp) T, 2 R (2:116)
where
R 1 vO,A)
7w Zn+l Ic; n—i (‘.'Ri)“ Y m(®,2)do, n #1
tnm = ) (2.117)

R 1 s
- 7 jd!v(e,x) I-E-Ylm(e,k)do , n=1

and for points below the bounding sphere:

= < -1
T, 1L -Z~nb m(Tp) Ton(8pery) o 1, <R (2.118)

| t~2 8

R?
R H —51— Ynm(e A)do

IRlE & ar * n—:f’ ET_n'?-T'] Yan(@s2)dol,
2

n#1
(2.119)
R? 1 I8¢ (8,0)d
blm(rp) = 4'1'_'3'[!! Vrf, im'\Y? g
i.,r r
+ ]j veE [-3 T (;g-)’ + 2n x—_g-] ¥, ,(8,2)do,

n = 1 4
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With the spherical approximations as defined for (2.56) the
expansions of the height anomaly follov immediately from
(2-116) and (2.118): for r,> R,

[--]
R \n-1
T = a— 8 ,A =
P nZO jin (rp) Zom ?nm( p’ p) v 2o Eﬁ'tn (2.120)

and for r,( R,
®

n
T = T (8 =Ty
P n-z-o m=2_nynm(rp) Tam(®pe2p) » Ynp(ry) = o byp(r 22121

The above series and the corresponding series (2.97) for the
gravity anomaly, although formulated specifically for points
below the bounded sphere, may be regarded as convergent
series for the height, or gravity, anomaly anyvhere in the
exterior space, since they revert to (2.120) and (2.95) for

+
P (2-122)
R
™p

R \n-1 . =
ynm(rp) = (;;J Zom cnm(rp) (

finally, the downward continuation error of the height
anomdaly is obtained by subtracting (2.121) from the series
(2.120) truncated at mn:

n
€¢ ) = 1 gem(rp)'? (0,3 ) +

nm® p’ p

n
+ n=2+1 mjénenm(rp) Ynm(ep,xp)

(2.123)

wvhere

R ,n-1 R? r
enm(rp) = (;;) o thm - bnm(rp) = (2.124)
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1 Tp,n+l,
[] viges G2° —-1-<-§ “-——$g7—§+-——)]

2

_ TpR 1 2
T @M Zn+1 ?nm(e,k)do , n #1
1 Tpy2_1 ¥s ,Is s 1 ¥,
and jgf "[—S(rs) T, *rp 2n = 1 ¥3pm(0,2)do ,
' n =1
r? ~ R’ R ,n-1 (2.125)
e’nm(rp) = —K—ﬁ- bnm(rp)-enm(rp)——m(;;) tnm

2.3.2 The Description of the Nodel

As wvith the volumetric density model certain
sinplifications of the earth®s surface are required in order
10 evaluate the integrations: however, this model places
almost no limits on the complexity of the density function
v (6,A), given by (2.94). The necessity of a highly
comnplex model, when aiming for expamsions of the potential
and gravity anoaaly to degree and order, say 300, is
prescribed essentially by the Nyquist law. Although this
lav holds only for expansions of functions in Cartesian
space, for the present purposes it serves as a sufficient
guide. The dyguist lav (applied to a great circle) states
that the Fourier spectral cosponents of a fnnctlon vhose
values are known at a unifora 1nterval of 180°/% can be
resolved tu a degree no higher than f (Bath, 1974, p.146).
Hence, for =300, ve should specify values of the model on a
026 grid. Instead of equal area blocks, as for the
volumetric density model, equianqular blocks delimited by
coordinate limes will be used here so as to take advantage
of the Past Pourier Transform of data along bands of
constant latitude (see below) and thereby to make the
computations sanageable. Rowever, the convergence of the
meridians toward the poles is accompanied by an increase in
the concentration of the data. This nonuniforsity of the
data implies a somevbat larger frequency content.

Unfortunately, data sets at a resolution of 00667 kn
do not exist, especially for the gravity field. With the
(180,180) solution of harmonic coefficients (derived by Rapp
from 1°x1° mean gravity anomalies obtained in (Rapp,1978))
as a base, the coefficients from degree 181 to 300 could be
generated from trandom nusbers which decay according to a
specified degree variance model for the gravity anomaly.
Such a model was obtained by Tscheraing and Rapp (1974) and,
in fact, it has not been significantly vitiated in light of
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the more recent (180,160) solution (Rapp, 1979). Hovever,
it wvas decided to use the more complex “tvo-component® model
(ibid.), since its parameters were determined, in essence,
by this kigh degree solution. On the other hand, to obtain
a smooth tramnsition from the actual degree variances to the
model, the (180,180) solution was used only up to degree
100:

B]-‘-(coefficients of the (180, 180) solution),
n
g = =2, ..., 100

nm
unmr%,‘}- ,m =101, .. ., 300

(2.126)

vhere ﬂn is the (approximate) frequency response for the
operator which avexages a function over 1°x1° blocks
(Pellinen, 1966; V¥, =02564 in eguation (2.63)), the u,, are
uniformly distributed random values in the interval
[-0.5,0.5], b, is their degree variance,

n
b = u? 2.127
n= 1 U ( )

and the gravity anomaly degree variance c, is modeled in
mgal* according to (see Rapp, 1979)

- 3.405(n-1) n+2 140.03(n-1) n+2
ch i (0.998006) * Tac Y (0.914232) ’
n>3 (2.128)

The division of the (180,180) coefficients, being spectral
components of the 1° sean anomaly, by (3, transforms them to
spectral coaponents of the point anomaly (see equation
{2.64}).

We note that the coefficients (2.126) define only the
density distribution, as given by (2.94), and not the
gravity field of the model. The expansion (2.94) for the
density, being the solution to the integral eguation (2.91)
if the earth is a sphere, obviously does not correspond to
reality. But since the ecarth is, in fact, nearly spherical
and a lack of knowledge necessitates a certain amount of
sisulation of the data, a density model based on (2.94),
though not optimal, is with these arguaents also not
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indetensible. (Petrovskaya (1979Y) gives a formula by which
the integral egquation could be solved iteratively, given the
shape of the earth®s surface; hovever, it is not necessary
to implement this procedure tor the present purposes.) The
zero and first degree terms in the expansion of the density
have been omitted on the usval assumption associated with
the spherical approximation that the average and first
noments of the demsity with respect to the origin of the
coordinate system are zero. However, vhen the density is
weighted by the surface radius as in (2.117), the first
aosents do not vanish and the potential of the earth model
does contain a first degree term. (Also, a zero degree tera
is present because the discrete grid values of the density
do not average exactly to zero.)

The earth's surface can be modeled in the first place on
the basis of 1°x1° mean elevations, available as a global
data set (provided by DMAAC, 1979) and describing the
surface with respect to sea level with a resolution of
approximately 110 ke (higher towards the poles). The
additional finer detail from degree 181 to 300 again must be
fabricated by a randoa number generator. This is
tacilitated and improves the verity of the model if, instead
of ascertaining an independent degree variance model for
elevations, we invoke the probable correlation between high
degree potential coefficients and short wavelength
topography (lLambeck, 1979, p.590). This correlation can be
derived by assuning that the high degree components of the
disturbing potential are generated by the masses of the
topographic features, including isostatic coapensations,
condensed onto a mean earth sphere. In order to accouant for
the lover demsity, i, =1.03 g/cm?, of the oceans relative to
the crust, “eguivalent rock topography®™ has been introduced
(Balmino et al., 1973) vhereby the oceans have been
replaced, on the ocean floor, by an equivalent rock layer of
crustal density . and thickness M, d/m., vhere d is the
depth of the ocean (d>0). The equivalent rock topography,
H,, is measured with respect to the geoid and is therefore
negative in ocean areas:

H(®,2) , for land areas
H (8,)) = (2.129)
-(1-—%W)d , for ocean areas
c

Lambeck (ibid., p.592) gives the following relationship
between the (disturbing) potential harmsonic coefficients t,,
and the corresponding coefticients of the eguivalent rock
topography h, 3

-
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= R-D.n, b
tom = 47RK “cll““§'° ] §§g1 (2.130)

vhere u. is assumed constant (2.67 g/cm’), B is the mean
earth radius (0371 ka), and D is the depth of compensation
in the Airy-Reiskanen isostasy model (a value of D=50 km was
found to give better agreement between the (180, 180)
solution and the 1°x1° elevations than D=30 ka (Rapp,
private coamunication)).

The coefficients h, vere determined to degree 180 froa
the 1°x1° mean elevation data set (vhich includes negative
depths -d in ocean areas) and the definition of H, (2.129)
and hence constitute its spectrum for 0 < n < 180. The
spectrua from degree 181 to 300, assumed to be related to
the potential spectrum according to (2.130), is directly
obtained from the random coefficients (2.126):

1 -
-2—1;!0 Hr(e,l) Ynm(e,l)do s 0 £ n g 180

bm = (2.131)

2n+1 Ynm JTh | 181 < n < 300
n-1 R-D.n Bn - =
dnc u, [1- G )

Having thus obtained its spectrua to degree 300, the
equivalent rock topography is evaluated on a 056 by 0%6
global grid using the expansion

300 n _
nr(e,x) = nzo mgin hnm Ynm(e,k) (2.132)

and the actuval topouyraphic surface of the model ({with
respect to the geoid) is then

Bp(8,)\) , if Hp(8,\) 2 O

H(B,)) = (2.133)
0 , if Hp(8,)) < 0

The degree variances ot h,, are shown in Pig. 13. Although
the coefticients h,. ., 0¢ n ¢ 180 refer to mean topography, no
unsaoothing of this portion of the spectrum vas performed,
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as with the potential spectrum (see (2.126)), since it would
have destroyed the essentially continuous transition to the
modeled high degree part of the spectrua. These types of
manipulations, wvhile perhaps not strictly acceptable froa
the theoretical viewpoint, are designed to produce a mo.el
which renders as faithfully a representation of the earth as
possible including the requirement that the spectra of
gravity and topography decay with no major jump
discontinuities.

The coefficients §... (equation (2.126)) find further
utility in the definition of the geoid height N(6, 1))

B3 3%0 n énm _
N(8,2\) = =5 R mgin T Yom(e.M (2.134)

This, of course, is not the true undulation of the earth
model, since the set of coefficients §... is not the gravity
anomaly spectrum of the model; but (2.134) serves well °*
enouah for the present purposes. Pinally, the geocentric
aistance to the model suriace is given by

r (6,)) = p(8) + N(8,)) + H(8,A) (2.135)

wvhere p is the geocentric distance to the reference
ellipsoid (egquation (2.81)).

A typical profile of the resulting model surface is
depicted in Pig. 14, and contrasted with the 5° and 1° mean
values of s - ‘The farthest distance of the modeled surface
from the origin of coordinates is rg (max)=63&1989,.115 a, at
a latituode of -923. The radius of the bounding sphere was
rounded to R=6382000 m. The RMS deviations of the surface
from this bounding sphere range from 3760 ® at the equator
to 25100 » near the north pole.

2.3.3 The Egquations for the Numerical Analysis

The integration of the density integrals is tractable
only if r; and v are assumed constant vithin each 076x0%6
equiangular compartaent. The resulting salient surface does
not satisfy Liapunov®s condition of continuous curvature
(Ginter, 1967 and the convergence of the potential and its
first derivatives to their respective values on the surface
is not gnaranteed. However, the need for evaluations

B L T R . . I

c .
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[ 0.6
5800
Ll
Lﬁﬂ” |
5200 4 “ L
170
5800 .
5200
5R00 l 5%
I —
5200 . —_‘_L
o* 15° 30° L;5° 60°* 75° 9o}’ A

Pigure 14: Comparison of Topographical profiles ¢ =22°5,

0°< A\ € 90°, based on 5°, 1°, and 0% mean
elevations and geoid undulations (0%6 mean
elevations/undulations include random harmonics
for 1W01<n £300).
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exactly on the surface will generally not arise in these
pumerical studies., We then have, for example, froam equation
(2.117)

N-1 2N-1 Yeo( 64 A
= R n v s(08i+32 , Ai+dH.n
tam = I3 I+l ) L v(ei+i ' Aj+i)[ R :
i=0 j=0
®iv1 = H* osm A A
[ Ppim|tcos® s1n6def)\j (oin|m|2)d (2.136)
i

where 7,=1/(n-1), n20, n# 1, and v, =1; and where

61 = iA® N i= 0, 1, e ¢+ + o N-1 180°
» N = =55 (2.137)
Xj =jax, j=60,1, ..., 2N-1

where A0 =026=4A , N=300. Note that r; and v are
evaluated at (Gi,{ 'A£0t ), i.e. at the center of each
compartmsent.

The computation of all (N+1)“ coefficients t,. is
virtually impossible for large N, such as N=300, without the
aid of the Past Pourier Transform (FPT). This is an
extremely efficient routine for cosputing the Pourier
spectrum of z tunction. 1In our case, the PPT is applied N
times, once tor each of the latitudinal bands O; =comnstant
in which rs and v are functions of longitude only. BMost of
the following derivations are found also in a more
generalized foras in (Colomabo, 1961), but are included here
for the sake of coapleteness. Depote by X,.;the integrals
of the Legendre fuactions:

841

%mi = {g P p(cos?d) siné de (2.138)
i

These can be cosputed using the recursive algorithm of Paunl
{(1978) and by noting that

n-
f,m,Nogor = DTN g, 1=0,1, .. L, #N-1 (2.139)

It has Oeern found that Paol'®s recursives are sufficiently
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accurate (for the tests conducted here) up to degree 300 for

all latitude intervals (Coloabo, personnal coamamunication).
Now let

r A s
F .. = vfei+é, Aj+£) [<s@i;$ , 1+é)]n

nij (2.140)
then ve have
t = I’Bﬂn'j N1 28-1 Aj+1 cosmX
nm w{2n+1 izoxnlmiijzc Fnijfkj (sinlmlk)‘“ (2. W 1)
And if we let
Xj+1
By = COSmAj , Gpy = IAJ cosm AdA
A
. TR LS
bmJ = s1nmx:j , Bmg IAJ sinm AdX (2.142)

then using (2.137) and the angle sum formula for sinusoids,
wve find

%pj = Bp ®mj " A B
Bog = Ap 2y * By by (2.13)
vhere
A - %f(l"aml) , m>0 . %%bml , m>0 (2.180)
0 , m=0 A , m=20
Now let
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(Pam3y 21;-1 . [cosm 4} (2.145)
mi 420 nij sinm AJ
then vith (2.142) and (2.143), (2.141) becoaes
Rn N-1
tam T W Zn+D) 120 Xnmi (Bm Pomi = Am 9ppil M 20
(2.146)

tn.-m = Iz(2n D) iZo Xami [Am Phmi + Bm qnmi]’ m >0

The PFourier spectra (2.745) are computed simultaneously by
the FFT; but only relatively minor savings in time are
achieved with respect to the standard midpoint numerical
integrations, because, as equations (2.145) stand, the PPT
must be applied once for each i and n, i.e. a total of s*
times. A substantial reduction in the computational tise
results by introducing the binomial expansion of the
fanctions F, ;.. Letting

A(e,n) = 1 - 28(8ad) (2.W7)

ve have the usual binomial series
r n ~ n n A
("= a-b =} (D (-1)* ¥ (2.148)

~
Since 0<h << 1, it is not necessary to take more than a few
terss, say K+1, in order to achieve sufficient accuracy.
The Pourier transforms p, ., q,..; then become

pnmi K k .n 2N-1 . cosm A
{qnmi} kgo -1 (k)dzo Fkij {sinmxg} (2.19)

vhere
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~ - X
Friy = Vg » Agag) (B 50 Ay (2.150)

requiring a total of (K+1)N applications of the FPT.

The density integrals corresponding to the downward
continuation error in the gravity anomaly and height anomaly
are treated similarly. The factor depending on the povers
of the surface radius in the case of gravity anomalies
(equation (2.100)) is expanded as followvs, where

r

h(g,x) =1 - Ei;ﬁ%i? (2.151)

Then
(;§on__(;g)n+1 = (1-m)" - (1__E)n+1 -
P
(2.152)
= (2n+1) [E+‘_‘_<6‘l"’_1..2 (h? + hY +“(“+1)1(§:)+“+18) B+ ...}

For the height anomaly, ve have (see equation (2.124)) for
n+1

(2.153)

2n+1 ;s{ﬁz + n(n+1)(55“+455)+n(n+1§g§+n+18) B+ L..]

2n;§=5+§52+-§ﬁ3+ e o (2.154)

wve note that the series (2.153) represents also the first
degree term in (2.124).

If ve substitute the series in h (2.152) into the error
coefficients 4, (r,) (eguation (2.100)), then
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dnm(rp) = Z";‘££ v(8,1) h Ynm(e \do + d e, p) (2.155)

vhere E.,(rﬁ) represents the part of the error coefficient

containing to the third and higher powvers:
= = R2 n(n+1) w3 N
Aom = aypz JJ V(6,0 [Fg—=(h® + B*)+...T.
P o2 (2.156)
¥ (8,0)do
The total dounward continuation error (2.99) becomes
=53 1 Ly
e(dg) = — v(e,A) h (8 A)dos ¥__(8_,2_)
TP n=0 m=-n o2 nm’"p’"p
P oa
+ (r ) ¥ WA D) 4+
= = nm P p
n=0 m=-n (2.157)

+ ; ;_ aém(rp) ynm<ep,xp)

vhere d m(t,)-d,m(rp) (8/r,)"*? g,... The value of the first
tern above is zero if the poxnt P lies on or above the
earth's surface. To show this, let r, be fixed (thus fixing
the set 0,) and consider the function

v(,A)h , (8,)) € o2
D(8,)r) = (2.158)
0 » (e:k) € 0,

(recall that h=1-r,/r, (9,2 )). The function D is
continuous and is therefore exparndable as a series of

spherical harmonics., With a change of notation, ve can
write

D(epsxp) = 2 2 Wg{ \)(e,X) E ?nm(eox)dv-

n=0 m=-n

(2.159)
Ynmcep.xp)

-
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vhere (9,,A,) is any point on the sphere of radiaus and
vhere the coefficients of this series are determined by
substituting (2.158) into (1.6). But since the error series
is to be evaluated only for points in ¢, , the series
(2.159), hence the first term in (2.157), vanishes. When
foraunlating the downward continuation error for the mean
anomaly, the same arguments apply. In this case, we
consider the average of the function D over a spherical cap
on the sphere of radius r, (the set o, thereby decreases in
peasure) .

A similar reasonzng clearly leads to a downward
continuation eryor in the height anomaly, where the
guadratic term h' is absent:

n n

e(cp) = nZO mlln enm(rp) Ynm(ep p)
F f g e 2.160
R RO Ynm(ep.xp) (2.160)

vhere
) = BB [ u(o,0) I8 (BB (SEY 4 459+ ]
" ’ (2.161)
¥, n(9,2)do
. and
Can(Tp) = Spp(rp) - %;‘r%)n'l t o (2.162)

Equations (2.156) and (2.161) are essentially egquivalent to
those of Petrovskaya (1979) - if ve asume r,=r, =73, then

o D(n+l1) =

e (r )
8P| gquation@.161)  (n+4¥ o "p Ipetrovskaya (2.163)

A oy e A T - o A r————

-
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Since the function D, defined by (2.158), has
discontinuous derivatives at the curve separating the
surfaces ¢; and o,, the series (2.159) converges very slowly
to zero for points near the carth’s surface (a case of the
well known Gibbs® phenomenon). This seeas to be the reason
for the increase by one, two, or more orders of magnitude in
the sum of the first & error coefficients (2.100) (or
(2.124)) when the limear (or guadratic) term in the h-series
is retained.

o With the assumed constancy of r; and v over the 026 by
0.6 compartments, equations (2.156) turn into

N-1
- _  R? L - -
dnm(rp) - Zﬂrf’ i£0 Xnmi (BpPpmi = Ap 9pmil » ™20
2.164)
R2 N-1 (

an,—m(rp) - 4wr§ iZO Xnm3 [AmPami * By gl » @ > O

where the Pourier transforms are given by

2N-1 cosm Aj}

X, L Bygq Frssd AL 2.165
3 nk j=0 ij "kij 'sinm j ( )

=~ R

gnmi} -

A% mi Kk
and where
- - K
Fieag = V€043 Aiag) TR 5 A1
(2.166)

o B(n+1)(n?+n+18)
n5 120 »osee

= n(n+l)
Xn3 Xn4 » X

and finally, wvhere

A 1, if rp < rg (ei+i, Aj+§)

13 7] (2.167)

-
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The factor A;; in (2.165) ensures that only points on the
surface above the sphere of computation (radius r,)
contribute to the error, and only those latitudinal bands in
which at least ume such point exists are included in the
suas (2.164) . The coefficients of the downward contianuvation
error in height anomalies, equation (2.161), then also
becone

- R2Tr N-1 ~ ~
®n,m = EweM iZO Xnmi [Bp Pomi = A Ypmy) » m 2 0

- p2rp Nol - -
®n,-m = &mx i£0 Xnmi [4n Pami * By dppil> ® > 0 (2.168)
vhere
Do s K 2N-1
Pami, _ cosm\j
anmi} = kz4 Yok jzo 855 Frij {sinmrj (2.169)
and where
F =L roco Ai,) F
kij Tp "8 Ui+d’ TJ+37 Tkij
(2.170)
_ n(n+l) < D(n+1) _ n(n+1)(n%+n+18)
Yna = 712 ' Yu5 T — 15 * Vne 360 vt
2.3.4 The Nymerical Resglts of the Error Analysis

As in the case of the volumetric density model, the
radial dependence of the error "coefficients®™ (2.100) arnd
(2.124) precludes the mapping of the error on a global
scale. On the other hand, because the earth®s surface is
more or less rotationally symmetric, a reasonably thorough
analysis lies vithin feasibility if we linit the latitudinal
extent of our investigation to a few representative degrees.
Table 1 lists the regions to be considered, as well as
several representative radii tor each range of latitudes,

PR A ¥
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Table 1: The Reyion of the surface model in which the
downward continuation errors are computed.
'Region, Represen-|Lonyitudinal | No. of points on all
defined by tative ranges of A. | spheres of radius R,
latitudinal |radii, R, * | such that 0sr,-r <t
range of ¢; [a]
300 =
t =/{100n
50 =
10 »
Rorth Lat.|South lat.
. . 11938 11781
6374550 (023,359.7] 4112 4326
6374850 2275 2505
1 6375150 394 667
6375450 683 714
6 375750 (6929, 8917 234 273
. . 16376050 87 161
1205 £lp1424.3|6376350 17 0
6376650 R 74 461
6376950 | [29021,309%9] 273 176
6377250 e 92
1 21
North Lat.|South lat.
. . 6800 5783
6 363350 [023,359%7) 21m 1827
€363750 1003 811
11 6364 150 196 189
6 364 550 . R 361 4t
6364550 | [6023, 80%1) 116 123
. . |6365350 62 70
47.1¢ |ql€57.3/6365750 10 29
6366 150 R . 483 486
6366550 | [26021,28523] 7 114
78 71
22 29
Rorth Lat.{South Lat.
. . CERDT 6329
6357250 [0%3,35027)] 2024 2092
111 6357550 1609 959
6357850 720 168
. , 16358150 S R 2415 2090
7503 ¢ 1gi¢8423|6358450 | [17021,26021) 861 572
537 171
258 19
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see also Pig. 15. We note that for each constant r,=R,, the
coefficients (2.900), or (2.1z4), correspond to the error at
any point e¢hich lies on the sphere of radius R, and above
the carth's surtace. Therefore, instead of evaluating the
erior series at a few isalated points on the surface, a more
characteristic, although less realistic, assessament is
obptained if the series is evaluated on the given spheres at
all those points which are removed froam the surface by no
more than, say, 100 s (see Pig. 17). Table 1 also shows the
nuaper of points on a 026x026 grid that lie on the spheres
having radii R, and within a tolerance of 300 m, 100 m, 50
m, or 10 m above the modeled surface.

The amount of calculations can be further reduced by
requiring npo more than two- or three-digit accuracy in the
error estimates; any atteampt at greater computational
accuracy is unavailing and therefore unjustified. Hence, we
may_accordingly restrict the number of teras of the series
in h, (2.152) and (2.153). Table 2 correlates the accuracy
of the series with the nuaber of included teras for the
vorst cases in each of the regions of Table 1. The worst
case occurs when n=300 and h=max (h{). Siailarly, the series
in h (2.148) may be limited to several terms (see Table 2).
Numerical tests confirmed that the relative accuracy
guaranteed for the truncated series in h was not degraded in
the process of determining the error coefficients.

Equation (2.146), with the approxisate transforas
(2.149) substitoted, was used to determine the spectrua of
the gravity field model onm thﬁ bounding sphere (radius
R=6382000 m). The series in wvas developed to K=10 thus
ensuring six-digit accuracy. The corresponding degree
variances are shovn in Pig. 16. The series (2.95) and
(2.120) for the gravity and height anomalies above the
bounding sphere them provide, in conjunction with the error
series, the corresponding inner series, which converge below
the bounding sphere, namely (2.97) and (2.121). All series
vere truncated at deyree 200.

Once again, it must be remembered that individual teras
of the error series do not indicate errors inm the harmonic
constituents of the potential (or gravity anoaaly), since
the inner series is not a spectral representation of the
field on the suxface. 1In the strictest serse, the
ditference between truncated inner and outer series is just
as meaningless, since it implies a comparison of ®bands™ of
frequencies. The comparison is valid only if the inner
series has converged with sufficient accuracy to the true
value being estimated. Otkervise, when limitin¢ the
evaluation of the downward continnation error series to
terss of degree no ygreater than 1, we must be avare of the

-




Table 2: Accuracy of series (2.152)

63

(vithout the linear

term), series (2.153) (vithout the gquadratic
term) , and series (2.148) versus the number
of included terms.

{(neters) Series (2.152)|Series (2.153)

Zegion|h=max (h;) | K, No. of No. of
if the highest | accurate accurate

power of h digits digits

3 1 -

. I r,=63745%0 ) 2 2
r, =R 5 4-5 2-3

6 5 4

3 1 -

11 r,=6363350 L] 1 3

r, =R 5 2-3 1

6 3 3
7 4 8-5

3 1 -

I11 r, =6357250 4 1 1
r, =R 5 2 1-2

6 2 3

7 3 3

Series (2.148)

Tx=nax (fxi)

K,
the highest
powver of h

No. of
accurate
digits

r, =63560 00

2
4
6
8
10

ONEN=O




84

*axagds
burpunoq uo Ajewoue X3TAae1b JOo seouUetima 831h3q 391 2anbrg

({49 08¢ one 00e 091 oct 08 o4 [

1’0

L 001

-




85

effect of truncation, which is, of course, not known. With
the present density model, it appears likely that the usual
degree variance models of the earth's gravity field will
provide estimates of the neglect of higher degree teras,
although this is not evident from equation (2.101) or
(2.125). 1If 1=300, then the RMS (root mean square) values
of the truncation error, based on the model (2.128) and a
spherical earth, are about 36 ce for the height anomaly and
a considerably more significant 30 mgal for the gravity
anomaly. The root mean squares of the evaluations of the
error series truncated at 1=300 over each of the regions of
Table 1 are shown ir Table 3 for the gravity anomaly and in
Table 4 for the height anomaly. Also shown for comparison
are the RMS valaes of the truncated series of the respective
anomalies theaselves. Some maximum absolute values of the
error are also shown parenthetically. Note that the units
in the error columns are Mgal=10"*m/s® (Table 3) and
»n=10"%a (Table 4).

A perusal ot these tables indicates that the errors are
generally insensitive to the distance t of the evaluation
point from the model surface, if it is 300 m or less. The
RMS values of the anomalies, on the other hand, showvw a
(lisconcertingly strong and unexplained) decrease as the
point of evaluation approaches the surface. There is, of
course, the expected irncrease in error with increasing
latitude; and within each latitudinal range, the RMS errors
show a siynificant increase {not shown) with each decrease
in radial distance BRp. Some correlation between the error
and large-scale topographic features can be detected. PFor
example, the error over central South America is generally
tvice as large as in the topographically lower Caribbean
Sea. Here, in turn, the errors are almost double those over
both the Indiar Ocean and subcontinent (just south of the
BRimilayan massif), showing that the correlation is somewhat
inscrutable. No definite correlations with topography are
discernible (by visual inspection) from the values listed
for the subregions in the midlatitudes and polar areas.

Table 5 shows how the errors accumulate in steps of 30
degrees. The accumulation is generally monotonic for
n£270, but a noticeable downward trend occurs at 1=300. 1In
view of Pigures 6 and 7 this is not an unexpected feature.

To eliminate the difficulty of interpreting these
results, ve could consider a smoothed gravity tield, where
the resolution, by definition, is limited to the first 300
barsonic constituents, In order to make the meaning of
lisited resolution for the inper and outer series
comparable, we identify the cutting off, or filtering, of
higher frequencies with a weighted averaging process as

-
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Table 3: RMS downvard continuation error of spherical
harmonic series of gravity anomaly and RMS gravity
anomaly evaluated (first 300 teras) at the points
of Table 1 and at the indicated subregions.
Baximum absolute values for each region and sub-
region are given parenthetically.

Region [RES e(ag) 300 m) |RMS ag 300 m
(max ¢£(aqg)) t = 100 a t =100
0<n <300 50 m|]0<p £300 50 m
“Mgaﬂ 10 a)|[mgal] 10 »
A jo23- 6929~ {29001~ [023- |69.9-]29021-
I 359%7 89.7 309%9 3597 69:7| 30929
.28 .26 .41 26.80 [31.23| 43.38
) <33 (2.0)1.26 (1.0) .50 (1.8) {26.90 |z29.85| u4.38
.35 .29 .43 25.84 |27.99| 32.14
©33 (2.0)1.33 (.73)|-30 (.30) [24.25 {26.11]/102.98
f .46 .27 1.1 25.23 [23.30] 27.27
s c48 (6.1) 1233 (1.1 |1.1 (a.4) (24.89 |22.35| 28.59
.51 .31 1.2 25.00 |22.27| 26.73
A 03— , le0i3- _ lz60%1-,  [023- |6023-/26021-
IX 359.7 80 .1 285.3 1359%7 | 8021| 285°3
22. 21. 18. 28.4 |20.4 | 33.4
P 22, (4.} {22. (57.) |16. (#1.) |28.6 [18.3 | 31.6
Z1. 22. 16. 29.2 [18.9 | 35.6
20. (62.){29. (57.)|16. (33.) [27.8 9.7 | 37.2
23. 18. 19. 23.4 [31.3 | 19.4
s 22. (97.) 117, (u8.) [21. (v6.) [23.3 {33.9 | 19.7
Z1. 16. z1. 23.5 {34.6 | 21.5
22. (97.){16. (34.)|23. (46.) |26.2 |[37.0 | 19.4
il j0°3 - 35927 17651 - 26021 023-359%7[170%1-260% 1
86. 85. 22.08 25.17
N 82. (290) 81. (240) 22.24 24,36
81. 77. 22.16 25.67
82. (290) 82. (240) 20.78 23.60
88. 88. 25.03 28.39
S 86. (260) 86. (260) 26.10 28.86
84. 87. 22.48 27.81
85. (210) 88. (190) 21.05 16 .85
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Table 4: RMS downwvard continuation error of spherical
harmonic series of height anomaly and R4S height
anomaly evaluated (first 300 terams) at the points
of Table 1 and at the indicated subregions.
Maximum absolute values for each region and sub-

region are given parenthetically.
f(Reqgion [RES (%) 300 = }[RES 3 300 =
max £(3)) t= /100 n t =)100 a
0<n< 300 50 m||0 < n s 300 5% =
A[,ul] 10 )| (m] 0 a
A lo%3- |69ls~  [29021- |023- [69.9-[29001-
I 359.7 69.7 309.9 359.7| 8927 309°.9
y .26 .23 .43 33.52 [68.12 | 44.36
N 232 (2.1)(.20 (.93) |.53 (1.8) [33.64 [67.44 | 45.01
.33 .28 .45 31.73 |65.73 | 42.35
| 230 (1.5)]+36 (.88) (.28 (.28) [25.19 [62.39| 57.12
i .51 .24 1.1 28.98 |44.89 | 18.23
s «53 (7.7)|.30 (1.3) {1.2 (5.0) |27.38 (40.77 | 18.25
.58 .27 1.3 26.57 |40.12 ]| 16.18
2 lot3- _ |eols- 26021- ,  (023- |6003- (26011~
11 359.7 8uz1 285.3 |359:.7 | 8021} 285°3
70. 67. 57. 30.27 |27.27| 37.81
N 69. (250)(69. (180) |49. (180) [32.17 [26.34 | 36.81
66. 68. 49, 30.27 [27.23| 37.65
64. (190)(89. (170) |52. (120) [26.9¢ |25.83] 39.13
73. 57. 62. 23.4% [34.87] S5.12
s 68. (360)[52. (150) [64. (40) |26.43 }35.94 | u.41
63. 47. 62. 28,27 [35.79] 4.12
71. (360)(46. (95.) [o6. (WO) [29.32 |36.86 | 3.u42
I Jo%s - 35957 170°1 - 260%1 023-359.7170.1-260"
410 410 14.82 5.75
] 800 (1400) 390 (1300) 14 .06 4.38
390 370 10.64 4.20
390 (1400) 800 (1300) 8.17 3.65 .
420 820 30.43 41.85
s 410 (1300) 410 (1300) 29.92 43.08
400 420 25.39 37.62
400 (1000) 430 (1000) 25.17 39.30

SR IR
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Table 5: BES downvard continuation error of gravity anomaly
and height anomaly spherical harmonic series in
steps of 30 degrees: 1=30,60,...,300, based on
those points of Table 1 for which t=100 =.
Region| © RMS €£(ag) mgal RES €(X) m»
A 003 - 35917 A 023 - 359%7
N S R S
30 -0028 -0079 .0036 .011
60 .015 034 .018 - 046
90 041 -092 0846 .12
. 120 .061 R .068 .17
150 .091% .15 .090 .18
1 180 - -19 .14 e 22
210 «22 =28 21 «32
240 48 -80 26 -43
P 270 40 .50 .39 .55
? 300 .33 .48 .32 .53
30 «077 «066 «26 - 20
60 «57 «56 1.8 1.9
90 2.1 1.6 6.6 5.5
120 3.4 3.0 1. 9.5
150 5.6 6.0 18. 19.
11 180 9.2 8.5 29. 26.
210 5. 13. 47. 41.
Z40 18. 16. 57. 55.
270 43. 24, 74. 15.
300 2. 22. 69. 68.
30 .22 23 1.0 1.1
60 1.9 1.7 8.9 8.2
90 6.3 8. 30. 24,
120 12. 12. 57. 57.
150 21, 20, 100 93.
I1I 180 31. 32. 140 150
210 46. 46. 220 220
280 59. 69. 280 320
270 81. 91. 390 820
300 82. 66. 400 410
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mathematically detailed in section 2.2.2. Hovever, the
filter then cannot perfectly eliminate the effect of
truncation. Because the Gaussian filter is relatively
efficient in this respect, it is chosen here, with
parameters a=15021, ¥, =1J4. The average is thus taken over
a spherical cap of radius y, with values at the edge of the
cap veighted by 0.01. The fregquency response (2.74) admits
only 5% of the barmonic coefficients of degree 300 and
therecafter decreases rapidly to zero. The difference
betveen the smoothed downward continued series and the
smoothed inner series is then the downward continuation
error with relatively little truncation effect. The RES
truncation error, based on model (2.128) and a spherical
earth, is .3 mgal for the smoothed gravity anomaly and .7 ca
for the smoothed height anomaly. The downward continvation
errors are shown in Tables 6 and 7 and follow the same basic
pattern as in Tables 3 and 4, but are about one order of
magnitude saaller (an obvious comnsequence of smoothing,
since the higher degree harmonics, which are most affected
by the series divergence, are decreased in magnitude). Also
includled are the RMS values of the smoothed anomalies.

Pinally, ve note that the relative downward continuation
error of the gravity anomaly is approximately three orders
of magnitude greater than the relative error of the height
anomaly.




Table 6:

RMS downward continuation error of spherical

90

harmonic series of mean gravity anomaly and RAS

mean gravity anomaly evaluated
at the points of Table 1 and at the indicated

subregions. Maximum absolute values for each

(first 300 teras)

region and subregion are given parenthetically.

Region |[RES £(59) 300 ) S ig 300 =
(max ¢(4G)) t ={(100 a t = )100 a
0<n <300 50 2| 04n <300 S0 a
gal) 10 a ] |(mgal] [
Aol3- le9le- _ l29001- _ | 0I3- |e9%9-{290%1-
1 3597 89.7 309.9 359.7] 8927 30929
.014 012 .019 20.17 |25.11] 37.98
N <017 (.35)] .012(.048) | .026(.084)] 20.36 |20.01| 39.04
.018 .04 .021 18.92 [22.24 | 27.51
018 (.17)] .016(.034) | .014(.018)] 17.28 |17.17| 95.83
.039 .013 .061 18.16 |15.61| 20.98
s <082 (1.3)| .016(.052)|.070 (.43)| 17.81 |w.23| 22.93
.03% 015 .030 17.28 | W.11] 20.26
Ajo3- | 16023~ _ [26021- | 073~ [60%3-|26001-
11 35927 8021 285231 359°7| 8021| 28523
1.1 1.0 .88 21.81 [12.54] 27.66
M 1.0 (3.5) { 1.0 (2.8) |.75 (1.9) | 21.58 |11.90| 25.42
1.0 1.0 <74 22.00 (12.77| 28.56
<97 (3.0) | 1.8 (2.7) |{.78 (1.7} | 20.25 | 8.11| 28.82
1.1 .85 .92 15.42 [25.93]| 9.41
s 1.0 (4.6) | .82 (2.3) |1.0 (2.2) | 15.79 [28.29| 9.33
1.0 .76 .98 15.99 |28.17] 10.34
1.0 (8.6) | .79 (1.6) |1.1 (2.2) | 19.01 [27.65| 7.68
i (023 - 359%7 17021 - 26001 023-359.7[170%1-26021
4.1 5.1 12.25 .84
u 3.9 (14.) 3.8 (11.) 12.15 13.31
3.9 3.7 11.71 14.58
3.9 (14.) 3.9 (12.) 10.27 12.44
4.2 4.2 17.56 22.09
s 4.1 (12.) 8.1 (12.) 17.02 22.19
4.0 4.2 15.40 20.90
4.1 (10.) 4.2 (9.4) 14,17 17,61
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Table 7: RAS downward continuation error of spherical
harmonic series of mean bheight anomaly and RMS
mean height anomaly evaluated (first 300 terms)
at the points of Pable 1 and at the indicated
subregions. #aximus absolute values for each
region and subregion are given parenthetically.
Region [BBS £(¥) 300 n) R8s ¢ 300 m)
(max (%)) t =100 nm t =100
0<£ns300 50 m| 0O<€n £300 S0 »
(un] 10 n) {(m] 10 =
Alol3- 69°9- , [290%1- | 0%3- 169%9-129021-
I 35927 89.7 309:9 359°7] 89:7| 309.9
-013 011 .020 33.49 [68.10 | 4u4.28
N «016 (28)| 0¥V (.0UT) |.025(.065) 33.60 |67.47| Lu.90
-.016 0 022 31.72 [65.83] 42.45
«015 (-12)| .018(.007) |.012(-.012)] 25.20 |[62.51| 56.27
-039 .012 057 28.96 [44.87; 18.26
S 0l (1.4)! 015(.059) | 064 (.29) 27.37 |40.12| 16.22
-0u0 013 057 26.56 |40.12| 16.22
Alo%3- , |60%3- _ [26023- | 073-  |60°3-260%1
11 359.7 8021 285.3 359.7| 8021| 285%3
3.3 3.2 2.7 30.23 | 27.28 37.71
N 3.3 (12.) | 3.3 (8.5) (2.3 (6.5 32.13 [26.38] 36.78
3.1 3.3 2.3 30.20 [27.24) 37.5
3.0 (9.2) 4.2 (8.1) (2.5 (5.7 26.82 | 25.84 | 38.99
3.5 2.7 3.0 23.39 |34.81 5.04
s 3.2 (17.) [ 2.5 (7.0) [3.1 (6.8) 24,40 |35.90 4.42
3.0 2.2 2.9 28,24 |35.75| 4.12
3.4 (17.) [2.2 (4.5) |3.1 (6.8) 29.33 (36.87] 3.50
i [0%3 - 35927 17021 - 2601  [0°3-359%.7[170.1-260.
20. 20. 14.81 5.64
N 19. (66.) 19. (60.) 14.05 4.28
‘8. 18. ‘006“ “.07
19. (66.) 19. (60.) 8.19 3.61
20. 20. 30.38 41.81
] 19. (66.) 20. (62.) 29.88 43.04
9. 20, 25.36 37.58
20. (S0.) 21, (48.) 25.16 39.82

P L




3. The Ellipsojdal Harmonic Series

There exist two systeas of so-called ellipsoidal
coordinates in geodesy; they differ in the definition of the
latitude. The system with the geodetic latitude (defining
the airection of the normal to the reference ellipsoid) is
oSt coamonly used. However, its three dimensional
generalization, obtained by including the height above the
ellipsoid as coordinate, while forming a triply orthogonal
system (8olodenskii et al., 1962, p.9), does not yield a
fora of lLaplace®s egquation that is solvable by separation of
variables. In order to have any hope of solving Laplace's
equation wvitn this standard method, the coordinate system
sust be orthogonal - choices of the third coordinate, such
as the semikinor axis, render the systea nonorthogonal.

The spheroidal coordinates u, § ,A\ form a triply
orthogonal system (Hobson, 1965, p.421) in which the second
coordinate, in geodetic terminology, is the complement of
the reduced latitude; we may call it the reduced colatitude
(in fact, § ¢ 6 ). Although, strictly stated, u, §,X are
oblate spheroidal coordinates, we may use the. less precise
nomenclature “ellipsoidal coordinates®™ as no other systea
¥ill come under consideration. Their definition in teras of
Cartesian coordinates is (see Pigure 18)

x = YuZ+ EZ2 siné cos)
y = /u?+ E? siné sin) (3.1

z = ucos$

vhere £ is a paiameter of the system. Proa the consequent
relationship

x% z?
Sttt (3.2)

it noted that the coordinate surface u=constant is an
ellipsoid of revolution wvith linear eccentricity E (the
distance from the origin to either of the focal points), and

92
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Piqure 17: Schematic illustration of the points contributing
to the coaputed RAMS downward continuation error.

a=futs E

Pigure 18: Ellipsoidal coordinates (u, § , A) versus
spherical coordinates (r, 6, A ) of the point P,

PR R L B

o5
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semimninor axis u. Hence the set of coordinate surfaces
u=constant is a set of confocal ellipsoids. The squares of
the first and second eccentricities are given by

2 _ _E? 2 o E?
C TR T (3.3)

shoving that as u-»os the ellipsoid approaches a sphere.
Substituting (3.3) into (2.81) and noting that a®*=u'+E' (see
Pig. 18), we £find

MZa W 2
r =Y Jui+ E (3.4)

Yu?* EZo0s?9
or conversely,

u? = $(r?-E? + 3[r*+E* 2r?E?(1- 2 cos?8)]? (3.5)

Since the ratio Vx*+y*/z is the tangent of the
spherical colatitude O, equations (3.1) yield

u

tanéd =
Jul+ E*

tané (3.6)

Bquations (3.5) and (3.6) provide the transformation froas
spherical to ellipsoidal coordinates. The reverse
transformation is, from (3.1) and (3.6),

r = Yul+ E2gin®
2 T2
tang = ﬂ\—f‘i tans (3.7)

The choice of the linear eccentricity was based on its
relation to the semimajor axis "a® and flattening f of any
of the copnfocal ellipsoids:
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E = a/2f - 2 (3.8)

Por exaaple, ve may choose

»
"

6378140 m

-9
1/298.257 (-9

]
[}

giving E=521858.4492 m.

A detailed solution of Laplace®s eguation in ellipsoidal
coordinates may be found in (Heiskanen and Moritz, 1967,
pp4i1-43) . The solutions for regions containing the origin
are P, (iu/E)Y..(§,2), and_for regions containing
infinity, they are Q. (iu/E)Y,. . (§,)). Being interested
primarily in the latter region, we find the gemneral solution
to Laplace®s equation in the fora

8 = Q u A
F(u,$,1) n£0 m=2_n Onm (L ) Tom(652)  (3-10)

vhere the constant ellipsoidal bharmonic coefficients ¢@...
are necessarily cosplex numbers if P is to be a real
function. They are determined uniquely if the boundary
values of P are known on_an ellipsoid, say u=b. Hultiplying
both sides of (3.10) by Y _ (§,3) and integrating over the

domain o ={(&§,2)/ 0<A 527, 0 <§ <7}, ve obtain by the
orthogonality of Y.

*om L 1}1‘; /I F,8,2) Yon(6s2) do  (3.11)

Q1 ) o

vhere do =siné d§ dA) . In this wvay, ve can Jefine the
ellipsoidal spectrua of F with respect to the Legendre
transform. However, the integral in (3.11) is pot a surface
integral over the ellipsoid u=b, instead it is an integral
over the unit sphere onto vhich the points of the ellipsoid
vith coordinates ( § ,)\ ) are mapped according to the one-to-
one correspondence

LRV T

PR

y
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(3.12)

3.1 The Transformation from Spherical to Ellipsoidal
Harmonic Coefficients

A brief account of the transformation between
ellipsoidal and spherical bharmonic coefficients has been
given by Botine (1969, ppi94~-5). However, the formulas are
not directly amenable to practical coaputations beause of a
lack of stabilizing normalizatiomns in the formulas and the
inconvenience (from the geodetic point of view) of wvorking
with complex coefficients. A complete derivation of the
transformation will be presented below, which by introducing
a different "™normalization® of Gnm becomes feasible, as well
as accurate, ftor high degree expansioas.

The relationship between spherical and ellipsoidal solid
harmonic functions is established by using a amore general
fors of the addition theorem for Legendre polynoaials
{(iobson, 1965, p.364)

Pn(vv' - /vi-1 /121 cosw) =

n (3.13)
Ta'ni-l-'i Zo(-l)m P (V)P (v') cosmu
m=

where v,v'¢ € ~ [-1,1’] « If one or both of the variables v,v?
belonas to the 1ecal interval [-1,1], then it must be
approached in the limit through the complex plane, as in
(1.11) . The formulas (1.13) for Legendre functions with
real arguments are then applicable. With v=iu/E,

v*=cos § +i0, eguation (3.13) becomes with (1.11)

., U < N =
Pn(1rcosé + /1 + %7 siné cos w)

-1
1 (3.14)

n
T 20 i® an(i -E-)an(cos 8§) cosmuw
me

Substituting w =A-t, this becomes with (3.1)
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Pn(%(iz + Xcost + ysint)) = (3.15)
1Y mp (18 (cos §) A
mm=0 nm'* TP (cos 6) cosm (A-t)

If wve multiply both sides by cosm®t or sinm't and integrate
vith respect to t over the interval [-7,T], then, since

n

cosm't _ cosm'A
J_geosma-t) ({0 At = 2m e, (J0 0D (3.16)

we obtain with g=(iz+xcost+ysint)/E

1 w cosmt _ ie = . u .
5z J_, Pylad ( ) dt = >0 an(lf)ﬁnm(cos )

sinmt 2n+1
(3.17)
.(cosml)
sinm
Next, consider the relationship (Hobson, 1965, p.98)
1 n . . n _
= J (icos®+ sing cost) cosmt dt =
o (3.18)

n! i0-m /ey
[(2n+1)(n+m)! (n-m)1]?

an(cos 8)

We note that the integrand above is an even function and
periodic with period 27T . Hence

1 A : n
- I—wﬂ (icos6 + sind cost) cosmt dt =

.n-m _ (3.19)
n!i /eEm B (cos8)

[(2n+1)(n+m)!(n-m)1]¥ B

for arbitrary A . HNow

»



————
: v

98
A
cos mx) dt =

sin mA (3.20)

'21,; fﬂﬂ (icos® +siné cos t)” cosm t(

1 71 . n cosm(i-t)
= 37 |54 (Lcose+ sing cost) (sinm (x-t) 9t
LEDY sin m)

- 1 . s n_.
*'ﬁf_-n...)‘ (icosf+ sinb cost) sinmt dt (cosmr’

The second inteqral on the right side is again periodic, but
an odd function; the integral is therefore zero. cConsider
the same point (x,y,2) as above, but now in spherical
coordinates:

X = rsing cosA

«
"

r sing sin A (3.21)

Z = rcoseé

Then icos6 +sin® cos (A -t)=Eg/r. Nowv multiply (3.19) by
cosa) or siommA and substitute (3.20), thus arriving at

1 (" n,cosmt
27 I.-n q (sinmt

in-m VEm n!

ydt = ()"
' ((2n+1)(n-m) ! (n+m)1]3

(3.22)

= cosm
an(cose ) <sin m ;\)

Note that by the orthogyomality of the sinusoidal functions,
the integral in (3.22) is zero for m>n. P, (q) is simply a
polynomial in q:

k -
P (q) = 1 f (-1)¥ (2n - 2Kk)1  n-2k

= n
2" k=0 Kk!'(n-k)!(n-2k)! » V=I5l (3.23)

while g™ can likewise be expressed as a ftinite sum of
legendre polynomials (Hobson, 1965, p.uai):

O =nt ) 272K _k)1(2n-ak+1)

n
ka0 Ki(2n = 2k # 1) Fn-2k(?) » V=I5l (3.24)

where [x] denotes the largest integer less than or equal to
X,

g
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Substituting (3.23) into (3.17) and using (3.22), we
find the transformation from spherical harmonics to
ellipsoidal harmonics:
e s LU, g 1™ § (2n-2K)!
2n+1 pnlml(l_]'z_)ymn(s’x) = on RZO kT(n=k)?
(L yn-2k ¥n-2k,;m6,1) : (3.25)
[(2n-4k+1)(n-2k-m) ! (n-2k+m)!]
-n<m<n, s=[H; ml]
And substituting (3.24) into (3.22), making use of (3.17),
wve obtain the reverse transformation, from ellipsoidal to
spherical harmonics:
r.n g -n" 3
(15) Ynm(e,l) = In [(2n+1) em(n+m)!(n-m)!]
s
2n-2k(n-k)!1 = Y R
P i Y 5,
gio (2T Kt Fn-2k,|m] ) Yo-2i,®N oo

-n <m<n, S=[n—-§|£,']

It is important to realize that eguations (3.25) and (3.26)
represent transformations betweer (inner) solid harmonic
functions, i.e. they hold for points in three-dimensional
space. Therefore it would be fallacious to deduce the
relationship between spherical and ellipsoidal haraonic
coefficients simply by inserting (3.25) or (3.26) into the
respective harmonic series. We recall that, according to
one interpretation, the harmonic coefficients constitute the
spectrus of a function restricted to a coordinate surface,
either a sphere or an ellipsoid. But since neither r nor u
is constant, respectively, on the ellipsoid or sphere,
(3.25), (3.26) do not provide the relationship between
surtace harmonic fuanctions on corresponding coordinate
surfaces.

RsY

PRET S
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To derive the transformation between the harmonic
coefficients of the tvwo series, we resort to their
alternative interpretation, namely as density integrals.
The realization of ellipsoidal harmonic coefficients as
density integrals is immediate once a series expansion is
found for the reciprocal distance. We have for u, >

1 _4i v 0% (-7
T F Z ) m_m-én]ml(ll)p lml(l-E-)
n=0 m=-n
(3.27)
Ynm( p,l ) Y (G,X)

For u,< u, the roles of u, and u are obviously interchanged.
Equation (3,27) vwas derived by Neumann (1848) and a much
more thorough derivation, though unfortunately replete with
typographical erxrrors, can be found in (Hobson, 1965,
ppli24-43C) . The series (3.27) converges uniforsly for u,> u
and can therefore be integrated term by term vhen inserted
into the integral for the potential:

Vp = V(up, &5, Ap) = xj‘jzj T de =

o« n .
nZO mz-n inml(i%) Yam Ynm(ap,lp) (3.28)

vhere

ik(-1)" 5
v = —E%:'z'n"iTe)'m' f‘fzf H(u, 8,1 By ) ¥,0(6,0) da (3.29)

Changing to spherical coordinates under the integral sign
and using (3.25) yields

o = AP f (2n-2101

nm = TgRE kKT(n=kK)T 1?

* [(2n-4k+1)(n-2k-m) ! (n-2k+m) 1] % ¢ 1" wCE" 2K, 3030

.Yn-Zk,m(e’A) dn
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Recalling the density integral interpretation for the
spherical harmonic coefficients (2.31), this results in

21— 8 (2n-2k)! 2n-ak+1
v =2 ———lR = - —— : — e
nm oh k=0 kT(n-k)! (n-2k-m)!(n-2k+m)! (3.31)
R .n-2k+1
(g Vh-2k,m

Both the Legendre functions Q.. and the coefficients of
the above sus are difficult to calculate for large n with
coaputers using finite digit arithmetic. With the goal of
more tractable computations in mind, consider the definition

S (o) = 981 1% can+1y c
nm'°p ofnT Cn+1)(n-m)T(n+m) ! *

_ (3.32)
-Qnm(icp)
vhere 0, =u,/E, ©6,=<R/E. Then the ellipsoidal series
expansion of ¥ (equation (3.28)) changes to
®© n
vp = nzo mgln Enlm](op) Vom Yam(Spr2p) (3.33)
vhere nov, by combining (3.31) and (3.32), we have
s
- n-|m
Yam © kEO ‘nmk Yn-2k,m * 57 [_iL‘l] (3.34)
with
A = (2n~2k)!n! [(2n-4k+1)(n-m)!(n+m)! ]i 1
nmk (Zn) Tk (n=-Kk)1! n+ n-2k-m)!(n-2k+m)! c?E
(3.35)

n>20, -ngmg<n, 0<kgs

R SRR S nree e - -—
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The calculation of A,,., using the above expression is yet
unsanageable on account of the factorials, but now a stable
recursive formula is available:

A = [Lgn-4k+1)(n-2k-m+1)(n-2k~m+2)(n-2k+m+1)(n-2k+m+2)f
n 2k(2n-2k+1) [2n-4k+5] % )

1
"o am k-1

l1<k<s, -ngm<n, n>o0

(3.36)

with

A =1, forall n , m

nmo (3.3M

The above recursion is easily obtained froa (3.35) by
expanding the factorials.

Pormulas (3.34), (3.35), and (3.37) show that the
ellipsoidal barmonic coefficient %,, equals the spherical
coefficient of the same degree and order plus a linear
combination of spherical coefficients of lower degree {and
same order). The ratio R/E for the earth is approximately
9,=12, hence from equation (3.35), the coefficients ..« .
k>0 in this cosbination are generally much less than 1 for
lov values of n. However, increasing values of n compensate
the rapid decrease of 1/c0s" thus also slowing the rate of
decrease of A...x with k; and in fact, they are gemerally
not monotonic, since for n ) 40,42, A.o, > 1. Therefore, the
larger deyree ellipsoidal harsonics may have considerably
more, or less, pover than their spherical counterparts,
depending on how the spherical coefficients coabine to fora
the ellipsoidal) coetfficients. Egquation (3.34) also shows
that a finite number of spherical coefficients generates an
infinity of ellipsoidal coefficients; thus, if the function
is band limited in spherical coordinates, its ellipsoidal
spectrua is infinite. However, in this case all ellipsoidal
barmonics of degree higher than the highest spherical degree
are linearly dependent on the lower degree harmonics.
Because the equatorial and rotational symsetries are
retained when transforming to ellipsoidal coordinates, a
spherical series of even and/or odd zonal harmonics
transforss into an ellipsoidal series of even and/or odd
zonals, respectively; this is also obvious froa equation
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‘3.3“,.

The transformation from ellipsoidal to spherical
barmonic coefficients is derived similarly. Substituting
(3.26) into the density integral (2.31):

v = K (E)n S.-_lil [(2n+1) € (n+m)|(n_m)’]i.
nm R(2n+1) 'R in m ’ :
s
20-2Kk(n-k)! LUy,
' o (TETRFD IR f!zf w8, B oy 1p )
’?n_zk’m(é ,A) d$2 (3‘38)
vhich, with (3.29), becomes
. @m(em)) (Eyn+l § (-D%(-k) ! (2n-dkrd)r
Vom 2n+1 L3 kio K!(n-2K)!(2n-2k+1)!
2n-4k+1 1 -
" {o-2k-m) [ (n-2k+m)T 52k VYn-2k,m
0
- _ o= ozlnl | (3.39)
- kzo nmk  Vn-2k,m °*
vhere
- DX(n-K)1(20-4k+1)! (2n-dk+1)(n-m)!(ntm)! &
L nmk kT (n-2K) 1 (2n-2Kk+1)1 [g__ﬂ—znu n-2k-m) T (n-2k+m)!
l—ggk
or, recursively,
= 11
Lomo 1, fora n,m
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_ (2n-2k+3)
Lomk = ZK(Z0-4K+3)(2n-3K+ (3.41)
‘1 (2n-4k+1)(n-2k-m+1) (n-2k-m+2) (n-2k+m+1)(n-2k+m+2),i. i
on-4k+5 3 ‘
1
"o an,k—l |
|
i<k<s, -nsm<n, n20 ‘

Comparing this with the transformation froa spherical to
ellipsoidal coefficients, the gemneral coaments made for the
latter obviously apply here as well. It is equally obvious
that each transformation is the inverse of the other since
the set of harmonic coefficients is unique for a given
function.

With the renrormalization of Q.. as in (3.32), these
functions become computational tractable. PFrom (Hobson,
| 1965, p-108) and with the usual normalization (1.18),

- 2 o
(N) = [(2n+1)(n m)! ]4 2 n!(n+m)!

Q en(n+m)! (2n41)!

nm po+m+l’ (3.642)

+m+
R B g 2

vhere u is any complex nuamber with ] > 1; and F denotes

. the hypergyeometric series. Using thke explicit expansion of
P (Abromowitz asd Stegun, 1970, p.556), x =ig,, and equation
(3.32), we find for the function §

N

- _ 1 3m o  n+1 (m+n+1)(m+n+2)
6‘}' . (m+n::1)(m+n+2)(m"‘n+3)(m"'n"'4) iR N ENE)
P 2" 2!1(2n+3)(2n+5) P

We note that as E~0 (ellipsoidal coordinate systes
degenerates into the spherical coordinate systeam), u,-r,,
0y~ o0, F»1, o/c,=R/u, - R/Tr, and hence
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5. (c3) = (R/L, ). Also A, — 0 for k>0, so that

VY = V... and the ellipsoidal series (3.33) reverts to the

spherical series (2.30), as it must for E=0.

Por later use, the functions P, are similarly
renoraalized. Let

Ryp(0) = (-7 Ve CCn+1y{n-m) T(n+m)! ——2'nt _ p

Oo i (2n+1)! nm(io)(3.¢M)

then the reciprocal distance, in terms of 5, and R,., is

1 _1 % ‘z‘ = 3
= S ()R (o) Y__ (8 _,A )
T Fnzo mep 2R+l nim| °p _nlm| nm' e p" o us)
-Ynm(é,k)

With (Hobson, 1965, p.95), ve find

i)n [1+ (n-m)(n-m-1)

- 1 .4m
ﬁnm(O) (1+‘6‘E) (o‘° 2(5&_1)

1
o3 + ...]  (3.46)

which is a finite suam, the last tera being 0(c"""™). Using
the recursion foraula for the Legendre functioas:

Pamtio) = 1o ay g p Py n(30) =8y 5 o Pooz,m(39),

nx22, 0<ms<n -2

P ,n-l(io) = ig/2n+1 pn-l,n-l(io" ,n 21

n (3.37)
—7.[2n+
Pon(io) = -1/1+0* VS50 By ) 4(10) , n 22
vhere

l, RV
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VIEn—15{2n+Ij =</2n+1)(n+m-1) (n-m-1)
-1, " Veac® (mem) ) Po-2,m n-3) (n+¥m)(n-m) 3.48)

ve obtain a stable and accurate recursion for the K, :

= (n+m-1)(n-m-1) 1 3
(o) = 5— Rn-l,m(O) + —Zn-D(2n-3) EE Rn-2,m(°)

n>2, 0<sgmgn -2

- g -
Roion-1(9) =55 Bpg pq(0)», n21 (3.49)
= 1+o0
Ry,nt9) = a2 n-1,n-1¢9) » 221
[}
Ry, (0) =

3.2 The Ellipsoidal Series of the Gravity and Heigqht
Anomalies

The avove formunlas establish the transformation froam
spherical to ellipsoidal harmonic series (and vice versa)
for an arbitrary (Mewtonian) potential in the regions where
the series converge uniformly. Utilizing the powerful
theorem that harmonic functions and Newtonian potentials are
equivalent (Kellogg, 1953, p.218), the transformation of
series coefficients of the gravity anomaly and height
anomaly tollov immediately if ve retain their definitions
based or the spherical approximation (equations (2.42) and
(2.57)) . Because

T 1 1
= -r 3D _ =
Tp 48p = Tp 37p ~ 2'p B - ®u Tp (3.50)

are both harmonic functions in the exterior space,
application of equations (3.33) and (3.34) to egquations
(2.50) and (2.58) yields

n
Ag(u ,6 .J\ ) = ’?ngo m..z.nsnlml (6.) Ynm mn( p,xp) (3.51)
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with

Y 3 n-m

Ynm = k-z—o Anmk gn_zk,m ’ s = [T] (3.52)
and

_{nz ] n
tp = R? ngo m=2.nsnlml (05 Epp Ton(802p) (3.53)

vhere

s ooy _ D-m

“om kgo ‘nmk Zn-2k,m S = [T5) (3.54)

and where S, (o,) and A, are givem by (3.43) and (3.35).

The coefficients Fa. , or §... , d0 not represent the
ellipsoidal spectruas (as defined by (3.11)) of the gravity
anomaly or height anomaly since the above sums are
premultiplied by r,, which is a function of u,,$, and hence
pot constant on any ellipsoid. Pinally we note that ¥.m =0
for ®»=-1,0,1, since 4,,=0; also if g,, =0 and z., =0, then the
corresponding zero degree ellipsoidal coefficients vanish as
wvell.

3.3 The Derivation of the Error Series

Using the formulation of the disturbing potential as an
integral of a gemeralized density layer, the downward
continuation error of the ellipsoidal barmonic series is
similarly derived for the gravity anomaly. Attempting a
corresponding developasent for the potential requires the
expansion of the kernel E, above and beloyw the bounding
ellipsoid, into ellipsoidal harmonics. A starting point for
such a derivation might be the spherical series (2.115), but
this may prove to be a foramidable task. It is not pursued
here because the series divergence has the greater relative
effect on the series for the gravity anosaly.

R ok T U VRIS - e e e e

WA e -
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Thus consider the equation
Rz
T, = Tw JI v ) k dw (3.55)
w

vhere dw=siné§ d§ d) (ellipsocidal coordinates) and K (the
notation is modified to avoid the conflict with the linear
eccentricity) is the same kernel as before (equation
{2.85)), but in ellipsoidal coordinates; that is, only v
has changed to include the Jacobian of the spherical to
ellipsoidal coordinate transforamation. Using the
definition of the gravity anomaly (equation (2.42)), ve get,

as before (see (2.91)),

2
ag, = & fjv(c.x)( is?","—s*-)dw (3.56)
P

P 4ﬂr

By the addition theoream (1.9)

r
-sTg?—sﬂ = —;; m=2 Tym(®o2) Fp08,51 ) (3.57)

since Y,,, (8,, )\p)/r} satisfies laplace®s equation and is
regular at infinity, it is a potential; therefore, the
transformation equations (3.33), (3.34) from spherical to
ellipsoidal harsonic series apply:

L n

1 N
T 2 (6 1) = g -
r; PP n£0 tgln n|t|(°p) "nt Ynt(ﬁp}p) (3.58)
vhere
Pt = 1
n =
"t " xio *atk %-2k,t (3.59)

and the q,, are the corresponding spherical haraonic
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coefficients:

if n#1

Ant < (3.60)

0
Ll 4f n=1 and t=-1,0,1

R

Inserting (3.60) and (3.59) into (3.58), we find

1 -4 =
?571m(ep,xp) = ngl snlml(o) "nm nm(dp,xp) (3.61)
(o]

n odd

Pinally, by substituting (3.61) into (3.57) and comsidering
the transformation betveen inner harmonic functions,
equation (3.26), ve obtain the foramula

Tscosy _ 1 b a = = .
P n=0 m=-n (3.62)

where tae explicit expression for u,, is not difficult to
find, but of no consequence in the present derivation; it is
noted, howvever, that u,. =1, for all m. Combining (3.62)
with the ellipsovidal series expansion for the reciprocal
distance, equation (3.46), and inserting this into (3.56)
results in

RZ_ 7 %
Ag. = 5 (o) [[v(8,2) a (u,8,))du.
gp Zﬂrp n.I,o msz_n nlml P !! ! 9 ) (3.63)
A
Tom®p2tp

vhere the point P is located above the bounding ellipsoid
(s,> b) and




110

1 1 1
%am = Wzne1 Rnlml(O) Ynm(é,k)-jyunm §1,|m|(°)’ (3.64)

(Note that «,, =0.) If the earth's surface is an ellipsoid
(vith semiminor axis b, e.g. b=6356755.288 a for the mean
earth ellipsoid) on which the gravity anomaly is a kxnown
function,

1 5 ¥ s B. . o
A = -
®p T T n);o mai_n Snjm| E) Yom Yam8pe2p) (3.65)
n#l

then in this case the integral equation (3.63) can be
solved, since a comparison with (3.65) shows that

-~

RZ
Ynm = H-{‘;[ v{(§ ,X) anm(u.vé,k)dw

R 1 5 1. & -
= 4?{! MR - RNTNECRIR ACITORS Lo SRR
¥ip(82))dw (3.66)

R o =\ & - R. = -
= Zn+1 Rnlmfc) Snlml (@) Dnm-'.S'unm R1,[ml (6) Dy,
where & =b/E ana

v(b,8§,)) = ngo mj_n Snlml (o) Dnm ?nmm.x) (3.67)

since u,,.=1 and ¥,..=0, D,. canbot be determined from
equation (3.66); ve may assume D,, =D, =0. Then

2n+1 1 ~
D = Y (3.68)
nm R Rnlml ¢:-9) S| m| @ "nm

Por points below the bounding ellipsoid, consider the
regions

P
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wy = {(6,A) / u, > b} , w2 = {(§,)) / u, < b}  (3.69)

1t (S,,l,)e;gl, the reciprocal distance is expanded as
© n 1 _ g
o -3 Z zn'EE:T Sn|m) (9)%nmjoy) Ym0~

n=0 m=-
. T (3.70)
Ynm(sp’xp)

Substituting this and the series for t,COSVf/r: (3.62) into
(3.56) yields

R2 % 9 g
Agp = 41]'_1'— 2 Z Sn|m|(0'p) J‘I V<6’k) anmdw Ynm(apl) +

P n=0 m=-n w3

w n
R 1 = -
togmr 1oL v Igpgg By (o) By (o

p n=0 m=-n w, _ 3.71)
'Ynm(d,k) +

u
- —gm- §nlm|(°p) Rl’lm'(a) Ylm(5,l))]dw Ynm(dp,kp)

Note that 0 =u/E is a function of (§, ) ), since u is the
coordinate of a point on the earth's surface.

The downward continuation error of the ellipsoidal
harmonic series for A g is then the difference between
(3.63), truncated at n=f, and the true series (3.71). After
several siaplifications, in which (3.64) is duly considered,
this error can be expressed as

n

0 mjlndnm(op) Yom(8p0Ap) +

[Laxi=1]

e(Agp) = .

(3.72)

n
i n=£+1 mjlndém(ap) ?nm(ép’xp)

vhere
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R 1 3
Gam(Tp) T 2o+l {,{ V) I8y ) €Op) By () 5 33,

- ﬁnlmiop) snlml(O)] ?nm(ﬁ,k)dw

and

. - 1 5 .
dnm(rp) dnm(rp) - 1—,; snlml (Up) Yom (3.74)

Inw beiny the ellipsoidal coefficients of the outer series
of r,49,. In viev of (3.43) and (3.46) the kernel of
(3.73) can be expanded as a series in

w=1-°% (3-75)

By using the series expressions for S,..(c) and B..(o),
namely equations (3.43) and (3.46), and collecting like
povers of ¥ and o,', it is found (through a leagthy and
tedious derivation) that

Snm(cp) ﬁnm(O) —Snm(O) ﬁnm(op) =

= (2041 L ( 1+ T2, n,,;l.; + 00+

P P P %p
+ wi( 'rz.z—-l-z- +Tzz—1.,— + 0(l‘)) +
% op 9p (3-76)
+ Witsot Tna—l, +Tsz-1,,- + 0(-}-,))'?
P “ °p
=4 1 1
+ W tyot +Taz—p + 0(= )+
) °p

+ o(w’ )]
vhere

T * -1, T12=1, T2 =1, <t22 = <2

n(n+1)

Too = Tus = —g—2, Tn=- m%(2n+1)(n+1)

6

(3.77)
Ts2 = 2 + $(n?+n+m?» , 142 = 1-1,2
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As with the total downward continuation error in spherical
harmsonic series, the linear, as well as quadratic, teras
teras in v sm to zero for points ob or above the earth's
suiface. The expression (3.76) provides two- to three-digit
accuracy for n=300, =»=0, 150,300 and o,=12.160886,

O =12.193239 which represent the worst situations; that is,
wvhen the point of couwputation, P, and the point of
integration are farthest apart in terms of the coordinate u
(then the ratio ¢, /o 1is least and ¥ is largest).

3.4 The Results of the Numerical Analysis

Since the infinite ellipsoidal harmonic series of the
gravity (or potential) converges with certainty only outside
the bounding ellipsoid, the evaluation of the truncated
series at the earth®s surface is associated with a downward
continuation error. However, we should expect the error to
be smaller than for the spherical series since the
penetration into the region of (probable) divergence is
generally not as deep, especially in the polar areas.
Although this is alaost obvious, it can be verified by
examining the divergence of the zobal series corresponding
to the simple density distribotions of section 2.1. Por
exaaple, Pigure 19 shows the differences between the partial
sums of the ellipsoidal series and the true value of the
gravity anomaly evaluated at the point (r,=6357200 a,
8,=725). The eccentricity of the coordinate systea wvas
taken as E=450000 B so that the evaluation point lies below
the bourding ellipsoid: -5300 m for the equatorial disk and
-3500 n for the serrated ellipsoid. The ellipsoidal
harmonic coefficients vere determined by applying the
transformation (3.52). Clearly, in contrast to Pig. 5, the
effect of divergence is more subdued, becoming noticeable
only wvhen 1 > 1800.

The above expectations are not realized when comparing
the truncated ellipsoidal series of the gravity fielad
generated by the density layer of section 2.3 against the
corresponding truncated inner spherical series. The
differences between the partial suas for ©=30C can be orders
of magnitude larger than the values listed in Tables 3 and
4. The only admissible conclusion, that this is a
coasparison of incompatible spectra and is therefore
meaningless, reemphasizes the inherent danger in the
comparison of partial suss of different series representing
the same function.

-
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Figure 1Y: Partial sums of ellipsoidal harmonic series of

4 g tor equatorial disk and serrated ellipsoid
density distributions (Fiqgqures 2 and 3) minus

corresponding true values evaluated at
r, 6357200 m, 6,:7‘.‘5.
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Por the numerical study of the downwvard continoation
error, ve can specify the density model by (3.68) in
conjunction with tke coefficients (2.126). The gquantities
S..,,_,(a- ) y,.,.. /R were set equal to q.., recognizing that a
different qtavxty model ensues and that the correlation to
the topogtaphy is no longer given by (2.131). This choice
of ¥a~ iS equivalent to the assuaption that the function
Ip A9, (approximately on an ellipsoid) was analyzed in the
91113501dal coordinate system (§,)) to yleld Rg._. (The
degree variances of Dnw (3.68) and of (2n+1)3,.., equation
(2.94) , differed only in the third digit.) Moreover, to
avoid unnecessary coaplications, the same surface model was
adopted, but the grid coordinates wvere identified as
ellipsoidal coordinates: §;=iaé , wvhere a§=026. Hence

=\/rszi - E? sizf‘ai+§ (3.78)

The semiminor axis of the bounding ellipsoid (with
E=521854 .4492 n, see (3.9)) was found to be u, =6363096.071
8. The surface deviates from this ellipsoid by an RNS value
of 6114 a; the aeviation is around 6000 m whether at the
pole or equator. Other choices of the linear eccentricity E
aay produce a closer overall fit to the surface; for
exaaple, with E=523836.4873 » (a=6378140 m, £=1/296), the
bounding ellipsoid is closer to the surface at the poles,
but more distant at the equator, with a total RMS deviation
of 6085 a.

The evaluation of the coefficients d,,, of the dowanwvard
continuation error of ellipsoidal series is almost
identically performed as for the spherical series. The
expansion (3.76) minus the linear and quadratic terams in ¥
is substituted into (3.73), wvhich, in tarn, is discretized
according to the assumption that the surface model consists
of ellipsoidal compartaents delineated by the coordinate
lines § =constant, A=constant, and that Vv is a step
function constant within each compartment.

In contrast to the deteramination of the error in the
spherical harmonic series, one value of u, (u,=6356800 =)
sufficed to yield an ellipsoid with an adeqnate supply of
points within 100 » above the surface model, in all regions.
The BMS values of the downward continuation error series,
truncated at n=300, at these points are shown in Table 8 for
the regions of Table 1 (where the latitudinal ranges now
refer to the reduced latitude). Also shown are the numbers
of total points on wvhich the RMS values are based, as well
as the maxiaum absolute value in each group.

BEA e e el W e ——




116

Table 8: RNS downward continuation error of ellipsoidal

harmonic series ot gravity anomaly in regions of
Table 1 (latitude ranges refer to reduced latitude)
at points on the ellipsoid u,=6356800 a

(E=521854 .4492 m) and above the surface model 1no
more than 100 a, Maxisum absolute values for each
region are given parenthetically.

Region |nBS £(a9) (max £(49)) , mgal, 0 <n & 300
A: 023 - 359%7
N No. of N No. of S
points polints
I 7610 {1.9x10"" (3.2x10"%) | 8355 [2.7x10™" (4.1x10°}%)
11 5003 [1.7x10°* (1.1210°%) | 9328 |.94x10™" (.45x107%)
| 111 7282 [1.1x30°" (.96x10°%) | 2071 [1.3x10°° (.63x10°*)

J
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The numerical results are limited to the demonstration
that the effect of divergence (D=300) of ellipsoidal
haraonic series near the earth®s surface is considerably
less pronounced than in the case of series of spherical
harsonics. Note also the essential uniformity of the errors
over all the latitudinal ranges.




)

4. Corxections to the Spherical Approximations

The ellipsoidal correction expounded by Lelgemann (1970)
and Moritz (1980) amend the spherical approximation by
accounting for the gemeral ellipticity of the earth®s shape.
The spherical approximation of the relevant geodetic
quantities, ag, ¥ , defined by (2.42) and (2.57), however,
do not conform precisely to Moritz®s definitions. To
achieve the spatial spherical harmonic expansion of the
height anomaly (equation (2.56)), as well as the
corresponding ellipsoidal expansion, the normal gravity wvas
equated with the gravity produced by a homogeneous ball of
mass M, instead of the conventional average value of Yy over
the spheropotential surface (the latter being assumed by
Moritz). Purthermore, the spherical approximation of the
gravity anoamaly, according to Moritz (ibid., p.425), is
detined by

4%- | 28° s(y) do (4.1
(o]

vhich represents the solutiop to the (third) boundary value
problem if the bounding surface is a sphere; S(vy} is
Stokes' function. In equation (4.1 T is the actual
disturbing potential with no spherical approximation, and
both T and Ag°® are functions om the ellipsoid that
approxiaates the earth's surface, vith seamiminor axis, say
b. Using coordinates for which the ellipsoid is a
coordinate surface, for example, ellipsoidal coordinates
(u, €, 2) (Boritz uses geodetic coordinates), the angle y
loses its usual geometric meaning since it is defined by

cosy = cos$§ cos6p + 'sin§ sin Gp cos(A- kp) (4.2)

where (§,)\) and (¢, ,),) are points on the gllivsoid. v
may be interpreted as the central angle betveen the
projections of ellipsoidal points onto the unit sphere
according to the correspondence (3.12) . Expressing T and S
in teras of harsonic functions,
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© n
T(b,§ ,A = Y 4.3
(by8 52 0) ngo m=2-n Apm TS pery) (4.3)
[ ] n 1
2 ¢ a.4
S(8,A 58500 p0) = ng__z m=2_n a1 Tap(8s2) T8 2 0) (&.4)
directly yields
s 2 n-1
Ag°(b,8,)) = Y — A ¥ (§,)) (4.5)
it n£2 m~—n R nm nm' " ?

Bquation (4.5) obviously differs from (3.51) because of the
latter®s dependence on r. Hence the ellipsoidal corrections
of Moritz (1980, pp.318,327) to ¥ and Ag are not
applicable here.

Wwhen abandoning the spherical approximations (2.42) and
{(2.57), the simple spectral relationship between the
potential and gravity, or height, anomaly is lost.
Nevertheless, to the approxisation developed below and
knowing their relationship in the space domain, the latter
are still representable as series involving the spherical
barmonic functions.

In the following, we will build on the premise that the
distourbing potential is Xnown to any desired accuracy, for
example, as a series of spherical or ellipsoidal harmonics.
The corrections to the spherical approximation of the height
anomaly and gravity anomaly will be derived to an accuracy
deterained by the neglect of terms involving the fourth
pover of the first eccentricity. Purthermore, derivatives
along spheropotential surface normals and aloang ellipsoidal
normals are not distinguished (they are identical on the
reference ellipsoid, if it is an equipotential surface in
the normal gravity field). Thus the height anomaly is

1 2 3%y
B g -+ —— + . e . .
‘p Yq[TP ‘p Tn? lQ ] (4-6)

vhere ?9/%h is the directional derivative along the
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ellipsoid norsal. The vertical gradient of the normal
gravity, dy/?h= 30/ h*, is on the order of
2y/r=3x10-¢s8-*, so that, with ¥, < 100 s, its omission
causes at most an error of 3 am. 1In order to achieve 0.5 ca
accuracy in the height anomaly, the normal gravity must be
accurate to about 50 mgal, so that in view of the above
gradient of about 0.3 mgal/m, Y, may be substituted for y,
in (4.6) . Similarly, the gravity anomaly in its most
rigorous fors is

& e a 32Y 2

vhere ¥ is the earth®s gravity potential, U is the normal
pot.ential, and 7/3H is the derivative along the plumb line,
i.e. the g:adxent. Terns of second and higher order cam be
neglected, causing an error of at most 1.5x10°% mgal, since
M!y/ A0 = 6 xl/R*> 1.5x10"" 87’ s* . Furthermore, as this
also gives the change in the vertical gradient of Yy vxth
height, the value of Ag changes by no more than 1. Sx10-?
ngal if Vy/3h is evaluated at P instead of Q.

Pig. 20 shovs the direction of the plumb line with
respect to the orthogonal directions of dh, Zd¢ , BRcosp dA
at a point P; 2 is the meridional radius of curvature of the
ellipsoid, N is the radius of curvature in the pnle
vertical, and ¢ is the geodetic latitude. If ©O is the
total deflection of the vertical (angle between dh and dR)
with coaponents J and v , them, since these are small
angles, the direction cosines of dH with respect to the
normal directions are cos®, § , ard 1 . Hence

3 . 3 3 3
W 0% Rt Exge * "Weos gan (-8

Considering Fig. 21, the directional derivative along
the ellipsoid normal is

] 3
35 = cosy 3F siny _x-aaa (8.9)

-
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Zdy

Ncosp dA

Pigqure 20: The deflection of the vertical.

Pigure 21: The normal directional derivative.
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where V¥ is the angle between dh and dr. The ellipsoid
normal intersectis the equator at a distance s froa the
center; we have

. ae¥1-e? sind . _a’/i-éf
s = i e —m (4.10)
- —
Y1 -e* sin‘se Y1 -e‘sin‘0

Using the lav of sines on the triangle 0OBQ, we obtain

r _ :
E.--cow cos® + siné (4.11)

‘Hence with (4.10)

2
tan ¢ = e ‘sinfcosb (4.12)

1 - e%sin?6

Pythagoras® theorem then easily furnishes the expressions

siny = e?sind cos 6- 4e"(e?- 2) sin®0 cosd + 0(e®) (4.13)
- Wi 2 29 _. 4 3
cosp = 1-4e°sin’p + = e’ sin' + 0(e”) (4. 18)

Hence, neglecting terms of O (e"),

3
3b

lw

- e?sind cosh

]
T E 3 {(4.15)

@

Note that e* depends on the coordinate surface u=b under
consideration, but to the accuracies involved here, it can
be treated as a constant for points near the earth's
surface.

The normal potential, U, is given as a series of
spherical harmonics by Heiskanen and Moritz (1967,p.73):
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v =Ko 2 3, (2% b, (coso)] + BPrisife  (4.16)

where J,.=0(e?") and «w is the rotational speed of the

earth: w* =~ Sx10°'s"* , The normal gravity, being the
gradient of U, is therefore

U _ U U
ah——5——+ e?sin8 cos erae

KM

—3 - 357 9,(5)7 P,(cose) - w?r sin'e(l - €cos’e
- (4.17)
+0(e®)

We note that w'r=~0.03m/s"*~0.003y = O(e*), so that the

terms with w*re* can also be neglected. PFroam (8.17), the
normal derivative of y is found to be

oY - 3Y _ o2 ar
ﬁ"ar e“singd cos 0 —==

T a6
{4.18)
= - -%-[y - 3-5-;“- Jz(—:—)zpz(cose) + -g-mzr sin26] +0(e")

19y ._ 2 GKM _ -
_'7'5% '?"'( J,(=)?P, - 3uiksirte + O(e"))—ﬁ-

(1 - 3J2(3)?P; - w?r sin®%+ OCe »nt
(48.19)

3wird .
- - %[1-3Jz(—:-)2Pz(cose)+-2-“’—Kﬂ- sin%g] + 0(e")

Substituting (4.17) into (4.6), the height anomaly becomes

-l
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= —EEErZT 1+ 3J,(2)2p,(coss )+m2r3 sin®_]+ 0(e") (4.20)
CP b K [ 2 rp 2 P I p L4

The correction above reaches a maximua value (0.33%) at the
poles, 6,=0°,180°.

Taking note of (4.15) and (4.8), the gravity anomaly
(4.7), upon substituting (4.19), becomes

T 1 3
=.2.p_ 'r +¢g_+0(e"
Ag e sm(}> cosep I‘p aep 5 -515 e, + 0Ce")

p~ a7
aT 2 2 3 BT “02‘
-ﬁ-g—l-,—pr-e sing cosepgggg+ ( )

+ (6J21+a§—- Pz(cosep) - '3'51'9 sinzep) 'rp e ¥ o(e*)
p

vhere T, =¥ -U, is the disturbing potential and

LI AW,

1- o
( cos0,) p P zpa¢> p Tlp cos<1>p p

d
P p° 3

[4]
]

(4.22)

aw
- S —_LT
(1 - cosbp) dhp F’P Z 3¢p "p N_cos

in vhich we used the fact that the normal potential does not
vary in longitude. The derivatives of T in (4.22) are the
components of the deflection of the vertical multiplied by
the normal gravity, and the derivative of U is

3 U U 3KM e
8- 2 = (2 J2 +0?R) sind cos 4.23
Z3¢ R3e6 R? ( ’
Pinally,
oW
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so that an approximate upper bound for the magnitude of £p
is

+ In2 vy | +

2 + 2
< lefpepl *+ 160 ¥ p p

PI - PI

3k M ' _ (4.25)
+ |€p(—§—r J2 + w?R) sing coso|

Using gz y =~ 9.8 m/s5> and § = v = 10", ve find l&,1 < 0.34
mgal; the dominant term is the last one, hence this bound
varies linearly with the magnitude of ¥,. 1In view of its
relation to the deflection of the vertical, the horizontal
derivative of T has typical values of y$% =50 mgal, with an
upper bound (% < 1°) of 300 mgal. Therefore the third term
in (4.21) has a value of about 0.2 mgal (at most 1 mgal),
vhile the last two terms in (4.21) rarely amount to more
than 0.1 mgal. The formulas (4.20) and (4.21) are valid
anyvwhere on the earth®s surface or above vith an accuracy oif
about e*C <5 mm and e*ag <1x10°* mgal, respectively.
Equation (4.21) generalizes the correction derived by
Molodenskii et al. (1962, p.212) for anomalies on the
reference ellipsoid and is quite unlike the correction of
Boritz because of the different definition of spherical
approximsation.

The equations (4.20) ard (4.21) were developed in order
to provide the means for the precise evaluation of the
gravity and height anomalies using the spherical (or
ellipsoidal) harmonic series, vhose formulation depends on
the adopted spherical approximation, namely (2.42) and
(2.57) .




5. Summary, Conclusjon, Recoamsendatiop

The expansion of the earth's gravitational potential
into a series ot spherical harmonic functions has long been
used to describe it on a global basis. The gquestion of the
validity of such an expansion at the earth®s surface, though
propounded from the outset, has been addressed firmly only
recently and then primarily from a purely theoretical
standpoint (e.g. the Runge~Krarup theorem). while these
represert important advances, a definitive answver has yet to
be, or aay never be, found. In the practical situation, the
infipite series is necessarily truncated at some degree 1.
¥hat effect the (possible, or even probable) divergence of
the infinite series at the earth's surface has on its
partial sums has received only a ®"first-generation®™
analysis. Wwith the present study, we have taken a second
look at this effect, but the subsequent conclusions must be
carefully phrased and are necessarily lacking in numerical
specificity.

The downward continuation error, being defined here in
connection with the effect of series divergence, is a
deterministic, or systematic, error; it has no stochastic
properties (one could arque this point if the convergence
surface is itself a stochastic process). Therefore, its
assessaent is forthcoming if the true value of the field
which the series represents is known, such as in the case of
the simple density distributions of section 2.1. These
distributions vere not designed to simulate the earth's
density, but their disensions and the nuaerical
investigations were selected with the terrestrial situation
in mind. It was found that the partial sums of the
spherical harmonic series for the potential (and gravity
anomaly) , evaluated below the surface of convergence, do not
show signs of divergence until the truncation degree is
relatively large. Also, Pigure 8 suggests that the
divergence probiea may affect the geopotential series only
if the truncation degree is 300 or greater. Por the earth,
the requirement of knowing the true value of the potential
field at the surface is difficult to meet, even if, for the
purpose of an ad hoc analysis, models are introdaced to
represent the earth®s surface and gravity field.
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Early vorks vere based op modeling the earth's
lithospnere by a volumetric density distribution of
essentially constant value. In this and the present uvse of
a surface layer density distribution, the true values of the
modeled field can only be estimated, avain, by a truncated
(inner) series expansion. It was found that lov degree
comparisons of ipner and outer series of the volumetric
density model give unrealistically large values of the
error. This result is attributable principally to the
inadeguacy of the choice of the model. Purthermore, since
this model itself depends only marginally (through a crustal
density of 2.67 g/ca?, etc.) on the actual characteristics
of the earth®s potential field, it was abandoned for a
surface density layer model which could be defined (although
not optimally) so as to yield a reasonable representation of
the true potential field. This model does not represent
exactly the earth®s field at resolutions greater than 200
ka, since randos harmonic coefficients were generated to
£ill in the detail to a resolution of 67 km. However, the
coefficients were forced to decay, vith degree n, according
to a degree variance model characteristic of the true
gravity field. The main disadvantage of this density model
is the inability to compute the true values of the potential
on the surface to any desired accuracy. A model for vhich
this is no problea consists of a sufficiently large nusber
of point masses distributed globally just below the earth's
surface (to ensure the divergence of the series), as vell as
deeper within (to generate long wavelength power). The
difficulty with this model would be the numerical
determination of the masses for a representative potential
fiela.

The downward continvation errors depicted in Tables 3
through 7 are completely insignificant vith respect to
anticipated measurement accuracies of 1 mgal and 10 ca in
the gravity anosaly and geoid undulation, respectively. For
the anomaly the sua of the harmonics of the error up to
degree 300 vas found to be 0.3 - 0.5 mgal (1 smgal =
10°® mgal) near the eguator, about 20 agal in the
midlatitudes, and 80, - 90. mgal in the polar regions.
Similar ainvcte values vere obtained for the first 300
degrees of the error in the height anomalies: 0.3 - 0.5 un
(tua = 10°* a) in the lov latitodes, about 70 «m in the
midlatitudes, and approximately 400 . m near the poles. Of
course, these numbers do not give the entire error since
thtey exclude the contribution form degrees 301 to oo,
representing a truncation effect, i.e., the neglect of teras
of degree greater than 1 of the jnper series. We can expect
the usual degree variance models to provide a fair estimate
of this effect. This expectation is rather intuitive, based
on the near sphericity of the earth's surface, the results

*
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of section 2.1, and on the smallness of the values of Tables
3 and 4, but not founded on deductive reasoning; the saame
expectation may prove to be erromeous for the volumetric
density model. Using the model (2.128), the RMS truncation
error (i=300) has values (for point estimates) of about 30
ngal and 36 cm, respectively. PFor the Gaussian smoothed
fields (95% of the 300-th degqgree harmonic is filtered), the
first 300 deqgrees of the gravity anomaly error approximately
sua to 0.02 mugal (equatorial region), 1.0 ugal
(aidlatitudes), and 4.0 ugal (near the poles), vwith
respective values of 0.02 ua, 3.0 um, and 20 xm for the
height anomaly. The BHS truncation effect is approximately
0.3 mgal and 0.7 ca, respectively. Therefore, the
estimation ot point or mean gravity anomalies and geoid
endolations (height anomalies) using the outer series
expansion to degree 300 anyvhere on the earth®s surface is
practically unaffected by the divergence of the total
series.

Throughout this exposition esphasis has been on the
dissimilarity of partial sums of inner and outer series.
Por a constant radius r, =R, greater than the bounding sphere
radius R, the coefficients of the partial sum of the outer
spherical harmonic series for the potential represent a
portion of its spectrum on the sphere of radius Rp. Since
the spheres of radius rpo < R pass through the earth's
interior, the coefficients of the inmer series (constant Lp)
cannot represent the spectrus of the exterior potential.
Indeed, for the density layer model it is difficult to give
an interpretation to these coefficients, which in any case
vary as the point P moves on the earth's surface. By
accepting the conclusion that the truncated outer sseries
(t £ 300) can be used without concern for divergence anyvhere
on the earth's surface, we also cannot identify the outer
harmonic cosponents as spectral constituents of the
potential (or gravity anomaly) on the surface. (Note that
the haraonics should be evaluated on the actual surface of
the earth, and not on some mean earth sphere.) Therefore,
any evaluation of the outer series must be accompanied by an
unambiguous statesent regarding the guantity being
estimated. Por exasple, by introducing the Gaussian
average, ve atteampt to eliminate, or filter, the high-degree
information, so that the inner and outer series truncated at
300 are nore nearly comparable.

A major part of this report vas devoted to the
development of ellipsoidal harmonic series, in particular,
the transtormation between ellipsoidal and spherical
harmonic covetficieats. Although the downward continuvation
error in ellipsoidal series is generally less than in
spherical series, especially in the polar regions, there
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seeas to be no reed in practice (n< 300) to make the
conversion for simple evaluations. On the other hand,
because the spectral cosponents of the potential on the
earth®s surface bear a closer resesmblance to ellipsoidal
harmonics than to spherical barmonics, the analysis of
terrestrial data (including altimetry) is more correctly
compared to (or combined with) the ellipsoidal spectrum.
Por example, the analysis of a global set of geoid
unpdulations (in the ellipsoidal coordinate system (&§,)))
yields harmonic coefficients which should be transfors-d
according to (3.34), (3.35) betore comparing thea to
potential coefficients derived from satellite data.

The expansions of the sisulated surface and gravity
field were restricted to terss of degree no greater than 300
because of linited computer storage capabilities, rather
than a concern about excessive computer time. Obviously,
for higher expamnsions of the potential, the error analysis
must be redone since extrapolations on the basis of Table S
are risky. 1In any nev study of the downward continuation
error one should enieavor to devise a density distribuation
(such as point masses) for vhich the potential function can
be evaluated to any accuracy, thus allowing a more
definitive assessment of the series divergence. Should tke
error ever prove to be relatively significant, it is
recomaended that corrections pot be applied to spherical
harmonic coefficients if the conversion to ellipsoidal
harmonics eliminates the significance of the error.

The investigations in sections 2 and 3 have relied on
approximate formulas for the gravity anosaly and geoid
undulation (or height anomaly) in order to simplify their
functional relatinship to the disturbing potential. 1In
section 4, corrections to these approximations wvere
developed with the premise that the disturbing potential is
a known guantity (e.g. in series form) and with a relative
accuracy on the order of the square of the earth's
flattening. These corrections should be applied to agqg, ¥
vhether they are evaluated using the spherical series
(2.590), (2.58) or the ellipsoidal series (3.51), (3.53)
(taking due account of the coordinate systess involved).
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1L.*PENDIXES

A. Convergemce and Divergence Comjectyres

The "proof of convergence®™ by Arnold (1978) can bde
outlined as follows. It is well known that any reasonably
well behaved function (not necessarily continuous) on a
surface is expandable as a series of surface spherical
harmonic functions. Ianstead, however, one may ask vhether
the set of solid spherical harmonics

1 - .
an = TS Ynm(e,k) (2.1)

considered as surface functions of two variables € ,X (i.e.
r=r{P,A)) is also a complete set for fanctions defined on
the surface. 1In this case, the series for the surface
potential

n
A4
V(8,)) = nZO m==2-n T Tam(®s) (A.2)

vould be a uniformly convergent series everyvhere on the
surface. Consider nowv the monotonically decreasing sequence
i yront!', 85 ¢, whick is, moreover, bounded. Hence
Abel*s convergence criterion can be applied to claim the
convergence of

n
- vVnm
V(r',8,)) n-z-o m_i_.n —o+T Tnm(®HM) (a.3)

for every r*>r. Since the function Vv (r*,0,A) thus
defined is harmonic and satisfies the boundary values, by
the uniqueness of the boundary-value problem, ¥ must be
earth’s potential. Purthermore, by the uniqueness of the
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spherical harmonic expansion of the potential, the above
series coincides with the series that would be deterained on
the bounding sphere. Thus, to prove convergence of the
spherical hamonic series everyvhere on and above the
earth's surface, indeed everyvhere above the Bjerhammar
sphere, it is enough to prove the completeness of the
functions (A.1) . Arnold failed here as his "proofs®™ of
completeness rely on the assumed truth of the conjecture.

In a more recent paper (Arnold, 1980), the completeness of
the functions (A.1) is supposed to be proved by showing that
there exists no function P such that

{! p2 do > 0 (A.8)
and such that
[{ o Zom do =0, all n,m (A.5)

g

But this is a necessary and sufficient condition for
cospleteness of orthogonal functions; the Z,,. are clearly
not orthogonal and the proof fails again.

A "proof of divergence® of the potential series at the
earth’s surface was presented by Morrison (1970) under the
assumption that the zonal coefficients do not decay, in
magnitude, faster than some fixed negative power of the
degree n. Hovever, the "proof® also relies on the erroneous
statesent that the spherical bharmonic series diverges if its
subseries of 20nals diverges (the latter vas shown for the
assused coefficient decay). The fallacy of this argument is
easily demonstrated by the example of the alternating series

(_1)n+1

A.6
ne1 n (A.6)

which converges (to the wvalue 1la2), but the sudbseries of
even terms only, or odd terss only, by itself diverges.

oz e - e . N .. - - =

——
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B. Series Expansjons for the Serrated Ellipsojd

Por points P below the bounding sphere, the serrated,
homogeneous ellipsoid is decosposed into regions for which
p> Ly; and r, < ry; . Substituting the series (2.7) and
(2.8) into (2.24), the potential is then expressible as a
convergent series:

® 2M-1 2% Oy.9 Ty . a2
[, Jo U, (&

V = xyr —) dr +
P X p n=0 i=0 0 I’p
{B.1)
r
+ [ Si(‘.'ip)“"1 dr] P (cos ¥do
r.
i

vhere T; =ain (ry, rg; )5 if r,> I;; , then the second integral
vith respect to r vanishes., Egquation (B.1) readily converts
to

«© 27 8 T
i+y1 si, r \n+2
Vo=2xxr, ¥ [ % I [ 2 (=)""°dr P_(cosy)do
P Ppso i00 °° © TP "
n even

N-1 27 ei+1 rp Ias
2 $1 r..n-1
+ U, "2 ar+ [ TN En g,
ek oy UTE J ey

(B.2)

. Pn(cosw)do]

vbere the eguatorial symmetry has been invoked {only even
zonals appear in the series) and L33 €T, < Ty, 3 if 1, > 1y,
for all i, then j=N-1. Performing the integrations with
respect to r and using

2n 83 1 B % Oy
J, I°1 P (cosy)do = o m_z_n f '{91 ¥ m¢8,A)da e
'? 8 'A
A (B.3)

8541

°1 Pn(cose) sine do

= 24 Pn(cosep) f

-
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we obtain

(- -
» 1 1 r i n+3
V = 4"KX r2 z —3-—-[ g (—ﬁ-) @‘ ]p (COSe ) +
p p n=o n+ 2n+1 i=0 rp nt n p
n even
3 N-1 ’
1 2n+1 1 n-2
+ 4 2 _  Fny .
TRXTp nZO §n+1[i=§+1((n+3)(n—2) n-2 Tsi PAVAY
n#2 , (B.4)
n even Pn(cos ep) +

N-1
1 1 r
+damexri &= J &+ ¢n Z8) @, P.(cos8 )

PS5y=3s1® Tpo M P

where (using equation (2.59) of (Hobson, 1965, p.33))

®.= (2n+1)[ei+1p (cos)sindde
i 91 nlcos )sindd

Pn+1(cosei) - P,_4(cos ei) - P, 4q(cos 9i+1) + (B.5)
P;(cos ei)-P;(cos eiﬂ) », 2 =0

As reference potential, we may use the zero and second
degree teras:

N-1
= 2 1 1 r n+3
% T ok, p TP T T (Lo GO G

o n(c‘osep) (B.6)

Then the disturbing potential becomes for points P outside
the bounding sphere:

T =V - U

) Y P P
g N-1
- o2 1 1 r n+3
4ﬂkxl‘p "Z‘ w51 Un+ T (‘ZQ (#) @,‘{ )Pn(cos%) (B.7)
n even
VAP aRa—— e e . R
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and for points P below the bounding sphere:

= 2 1 1 r n+3
Tp 4"erp(n.§.4 T3 on+i (igo (-—E?; @ )P (COS%) +

n even
nzo ?— (n+:§)(n 2) T n=2 rs1
n#2
n even -Pn(cosep) + (B.8)
N-1 . N-1
- (isiyp 4+ 1 [ +zn£s—1-- (z81)5].
1201 o7 Pou LRIV RELE ~ahl 2C-obip

‘®; P, (cosep))

Using the definition of the gravity anosaly (2.42), the
corresponding series are readily found to be

N-1

n-1 Isiyn+3 .
Agp = 41n<xrp n£4 D (ZEFD) [i2=0 ( rp) Pni]
n even

. >
Pn(cosep) ’ rp R

(B.9)

and for L, < R

Agp = 41‘7er ( E mﬁ) [ig (-—:—i n+3 P ]p (Cose ) +

n e en =0
b 5 ok (5 (B*2 rpyn-2_ 4(2mdl) o .
n:O Zn+1 i §+1 B=Z "rgj (2+3)(n-2} ni
n#¥2
(B.10)
n even -Pn(cosep) +
+1 N (a2 N2 _sj. e
+ 42 - - (-84)8
T i §+1 Tp T T 3 r
: Q.;Pz(cosep))
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