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1Introduction

Recent years have seen a quantum jump in the continuing
efforts to improve and expand our knowledge of the earth's
gravity field. It is marked by the transition from
terrestrial measurements, limited essentially to land areas,
to measurements in outer space which are used to ascertain
the global grava-ty field. The foremost instrument advancing
this effort has been the satellite borne altimeter, enabling
a direct measurement of an equipotential surface, the geoid,
over much of the oceanic surface of the earth. Further
strides will undoubtediy be made by the planned GBAVSAT
mission (see the report by the National Research Council,
1979) utilizing the measurements of sa tell ite- to-sa tel lite
tracking and achieving coverage over the entire globe.
Looking ahead into the not so distant future, satellite
borne gradiometers will provide even greater detail and
accuracy. While the obvious advantage of measuring the
earth's gravity field at satellite altitudes is global
accessibility within a relatively short period of time, the
fundamental difficulty is the translation or "downward
continuation" ot the data to the earth's surface where they
are most needed. In principle, several procedures to
achieve this translation exist; all rely to some extent on a
simplifying assumption such as a perfectly spherical. or a
flat, earth. On account of the enormous amount of data that
satellite missions provide, the number of methods to
simultaneously process the entire data set is reduced
considerably. The method of harmonic analysis of the
gravitational potential vill come under close examination in
this paper. its feasibility from the computational
standpoint cannot be easily challenged, even for extremely
dense data coverage. However, far from being a panacea, it
is also associated with several problems. Aside from an
instability in the propagation of noise, the most nagging
question is cme of correct theory. It is the latter which
will be studied here, not by delving into areas of pure
theory, but rather on a numerical basis, which, it is felt,
will provide some value to the scientist who must eventually
make use of the data.
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1.1 The Problem and Backgrond

From classical potential theory, we know that the
(Newtonian) potential due to attracting masses is an
harmonic function in free space. That is, its second
derivatives are continuous and it satisfies Laplaceas
equation; moreover, it is regular at infinity (GUnter, 1967,
p.25). Kellogq (1953, p.220) shows that an harmonic
function is also analytic in its region of harmonicity (cf.
Cauchy Riemann equations in the theory of complex
variables). rhe solution to the exterior Dirichlet boundary
value problem states that given values of the potential
everywhere on a known surface enclosing the masses it is
determined uniquely in the space exterior to that surface.
Applied to earth orbiting satellites, the inown surface is
the sphere that contains the satellite orbits. Because the
potential is also analytic in the region between the earth's
surface and the orbital sphere (we remove the atmosphere,
see below), by the uniqueness of analytic continuation, the
potential function outside the orbital sphere represents the
potential in the entire region above the earth's surface,
i.e. in the largest region wherein the actual potential is
analytic.

For an irregular density distribution such as the
earth's, a closed form of the potential in space cannot be
tound. Instead, it is often represented as a series, in one
form or another; however, any series is associated with a
particular region of convergence and cannot converge to the
true potential in the total space. Since we are dealing
with exterior potentials, the region of convergence is an
elterior region that contAins the point of infinity, and it
is separated from the region of divergence (the interior
region) by the so-called surface of convergence. In
general, the reqion of convergence may, or may not, contain
the maximum region of analyticity of the potential, nor is
the surface of convergence necessarily a sphere. These
facts were convincingly demonstrated by Krarup (1969) and
Moritz (197b); zee below. In many cases, it is possible to
derive a series which converges to the potential in the
region where the outer series diverges; we call this the
inner series.

Owing to the near spherical shape of the terrestrial
body, the most familiar series is the spherical harmonic
series. Kellogg (1953, p.143) s-howed that the spherical
harmonic series converges uniformly to the potential outside
any sphere containing all the attracting masses and centered
at the origin o the coordinate system. Strictly, this
theorem tinds no application in our physical world since it
guarantees convergence only outside the sphere enclosing the

• U ~ mnI mmmm m m sm|| gmmmm
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entire universe. within our limited scope ot terrestrial
and near-earth applications, however, the masses outside our
solar system have negligible gravitational effect.
Moreover, we may simply redefine the exterior gravitational
field of the earth with appropriate corrections so as to
exclude the effects of an atmosphere and, say, of the sun
and the Aoon. The latter and possibly other
extra-terrestrial bodies are mathematically moved to
infinity (where they have no gravitational influence) by
subtracting the corresponding tidal potential. The
atmosphere is must conveniently embedded (conceptually)
inside the earth such that the center of mass remains
undisturbed (Soitz, 1974) ; of course, the resulting change
in the earth's exterior gravity field must be accounted for
when comparing terrestrial data with data downward continued
from satellite altitudes. Positioning the origin of our
coordinate system approximately at the earth's center of
mass, we therefore have guaranteed convergence of the
spherical harmonic series of the potential outside the
sphere whose radius equals the farthest distance of the
earth's surface from the earth's center; this is the top of
the Zhiaborazo eountain, in central Ecuador (latitude -1:4),
with a rLadial distance of about 6384403 a (Sjoberg, 1977).

A more general result was riqorously proved by Krarup
(1969, chapter 3), namely that the spherical harmonic
expansion converges everywhere on and outside the smallest
sphere (called the limit sphere) that contains all
singularities of the potential and its analytic
continuation. Thus, the proof that the potential series
converges everywhere at the earth's surface would be
complete if the potential could be analytically continued
down to the so-called Bjerhammar sphere (the sphere that is
entirely enclosed within the earth). Kellogg (1953, p.197)
comments that the potential function representing the
potential of an analytic density distribution bounded by an
analytic surface can be continued analytically across the
surface. Of course, in view of Poisson's equation, the
actual potential is not represented by this function at
points of nonzero density; indeed, its discontinuous second
derivatives preclude its being analytic on the surface. The
possibility of analytically continuing the geopotential
inside the irregular masses of the earth seems very
doubtful, for as Krarup points out, if it were possible for
some given mass distribution, the sere addition of a mass
point ("grain ot sand") above the limit sphere introduces a
singularity in the potential function at this point and
thereby destroys the analyticity of the continuation.
Therefore, given that the series for the potential converges
with certainty only outside the bounding sphere, the
question arises whether there exists any justification for

JRN~ -N n~ nni mgi ~ i i iil
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usinu the seLies at or near the surface ot the earth.

Claims of both proof and disproof of series convergence
at the earth's surface appear in the geodetic literature;
none is logically sound. The proof by Arnold (1978) of
convergence everywhere on the surface is patently flawed, as
is ?orrison's (1970) conjecture of divergence everywhere
(see Appendix A). The "grain of sand" example was used by
Moritz (1980, p.64) to argue on the instability of the
property of convergence, implying that, in the strictest
sense, the size and shape of the surface of convergence, if
it is not the bounding sphere, is not well defined. Any
turther theoretical advances on the behavior of spherical
harmonic series near the surface of an attracting body will
come by studyinq density distributions bounded by surfaces,
both of which are mathematically regular by some measure. A
study which approaches this type of analysis is the one by
Kholshevnikuv (1977), who finds upper bounds for the decay
rate of spherical aarmonics, on the bounding sphere, with
respect to the degree n for variously structured bodies.
These upper bounds are generally proportional to (fixed)
negative powers of n, depending on the measure of regularity
of the density and bounding surface. Such decay rates are
insufficiently strung to yield convergence below the
bounding sphere: yet as they are only upper bounds,
convergence canuot hereby be excluded.

While the precise convergence surface for series
corresponding to arbitrary density distributions bounded by
arbitrary surfaces has eluded theorists, several
fundamental, as well as interesting, results have been
established. Krarup (1969) examined the potential resulting
from d Kelvin transformation of the potential of a uniform
mass distribution on a straight line. Using this example,
he disproved the intuitive notion that the surface which
separates regions of convergence and divergence is always a
sphere. A general theory regarding the shape of the surface
of convergence for special spherical harmonic series was
developed by Ecker (1972). He proved that a sphere is the
surface of convergence for rotationally symmetric potentials
(i.e. series of zonal harmonics only), while a torus defines
the surface of convergence for a series of only tesseral
harmonics (Krarup's example). Other surfaces of convergence
lying betueen these two extremes result for series of only
those sectorials whose degree n and order m satisfy the
relation m=1n, I being predefined and 0A-A £1l. The case
A -0 represents the series of zonals, and Ecker proved the
following result:
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n=O r

converges everywhere outside the sphere of radius

, where ! nf = n-M sup n Van I

and diverges almost everyvhere inside this sphere.

Here, r,e are the polar coordinates, radius and colatitude,
and P, denotes the Legendre polynomial of n-th degree. The
qualification "almost everywhere" for diverqence is included
to allow convergence on sets of measurt. zero (regions having
no volume) inside the convergence sphere (e.g. any series of
odd zonals converges for every r >0 at the equator, since
P.,,(O)=O). The radius of convergence for the by now
classic example of a homogeneous oblate ellipsoid of
revolution (Junq, 1956, p.54 3 ; Moritz, 1980, p.52) is found,

using the above theorem, to be f =E, the focal distance of
the ellipsoid, shoving also that the surface of convergence
may uot bound the generating masses (i.e., in this case the
potential function can be anaytically continued to the
sphere of radius E but, of course, does not represent the
potential inside the ellipsoid).

The question of convergence or divergence of the
potential at the earth's surface may be circumvented by the
Runge-Krarup theorem (Krarup, 1969; Moritz, 1980, p.67).
riefly, this theorem, already known to Walsh (1929, p.535)

for the inuer potential, states that a function harmonic
outside the earth's surface may be approximated arbitrarily
well in its region of harmonicity by a function which is
harmonic outside a given sphere totally inside the earth.
Obviously, the spherical harmonic series of an harmonic
function converges everywhere outside any sphere contained
entirely in its region of harmonicity, in particular on the

earth's surface if this sphere is embedded entirely within
the earth. It should be noted that the Runge-grarup theorem
is an existence theorem; it guarantees only the existence of

an approximating function and does not provide the method to
find it. Furthermore, nothing is said about the closeness
of corresponding individual terms of the two series for the
actual and approximating potentials. The approximation is
arbitrarily accurate only in the limit, i.e. for the total
sum (however, one can expect that, because of the near
sphericity of the earth's surface, the corresponding lower

degree terms of the two series do not differ substantially).
lWe may also note that the theorem holds for any exterior

potential no matter how badly its series diverges below the

buunting sphere, so that the application of thu theorem is

not contingent on the instability of the convergence surface

of the actual potential series.

• ,--- -- - , -. -- . -
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The fact that the Runge-Krarup theorem says nothing
about the accuracy of individual terms of the potential
series is very restrictive on the possible use of the
theorem to the practicing geodesist. hence, for example,
Sj~berg's (1979) statement that "the coefficients of the
approximating potential ... can be selected arbitrarily
close to the coefficients of the external potential ... to
any desired degree" is somewhat misleadinq if not
inaccurate. For the closer the coefficients of the
approximating potential are chosen to those of the actual
potential, the further is the postponement of the arbitrary
closeness of the approximatiDg series to the true potential.
However, for the example of a point mass situated on the
equator of an oblate spheroid (so that the ensuing potential
series diverges in the polar regions), Sjaoerg shows that in
this case, the postponement is not unduly exacerbated if the
first 300 or 400 terms ot the actual divergent series are
used for the corresponding terms of the approximating
potential. 4oritz's statement (21oritz, 1980, p.66) based on
the Runge-.rarup theorem that the earth's potential, for
practical purposes, can always be considered as a
"convergent potential" is similarly misleading. This
statement should not be interpreted as claiming convergence,
for all practical purposes, of the actual series of the
potential on and outside the earth's surface. Instead it is
a statement on the practical equivalence of the potential
and an approximating series that converges on and above the
surtace. Term 1or term, especially at high degrees, the
approximating series and the actual series must be quite
different since the former converges while the latter
possibly diverges near the earth's surface. Therefore, the
Runge-Krarup theorem can not be invoked to justify the use
of & portion of the series of the actual potential at the
earthIs surface.

Until now the discussion has centered on the convergence
of a spherical harmonic series, where the use of spherical
coordinates is motivated by the near spherical shape of the
earth's surface. But to a second approximation, the surface
of the earth is an ellipsoid, or more precisely an oblate
spheroid, an ellipsoid whose equatorial axes are equal (i.e.
it is a surface of revolution) and whose poles are
flattened. The question arises whether the use of different
coordinates such as ellipsoidal coordinates has a
significant bearing on the problem of convergence at the
earth's surface. The ellipsoidal coordinates for which the
general triaxial ellipsoid is a coordinate surface (a
surface defined by the fixed value of one coordinate, in
this case one or the semi-axes) are rather more difficult to
work with than spherical coordinates, but expansions of the
potential and the gravity anomaly have been formulated in
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terms of the orthogonal Lame functions, see (Hobson, 1965,
pp 473-475; Walter, 197C; and Sarrow, 1974). Because the
deviations between best fitting triaxial and biaxial
ellipsoids are of the same order of magnitude as geoid
undulations, the triaxial ellipsoid has generally been
abandoned as an approximation to the earth's surface. Thus,
the coordinate system to be crsidered is the spheroidal
system (Hobson, 1965, p.421, see also chapter 3) in which
the expansion ot the potential is in terms of familiar
Legendre functions. Though not widely used in practice,
these coordinates have received considerable attention in
geodesy, in particular, by Jung (1956) anJ tiotine (1969)
The term "spheroidN in the geodetic volcabulary
conventionally denotes an equipotential surface of some
normal (reference) potential. On the other hand, the term
"ellipsoid" usually implies oblate spheroid; hence it will
also be used here to mean exclusively an ellipsoid of
revolution flattened at the poles.

Imposing rotational symmetry with respect to one of the
ellipsoidal coordinates, namely the longitude, in this case
yields ellipsoidal harmonic functions whose structure
differs trom their spherical counterparts only in the
dependence on the distance from the origin. Due to the
corresponding similarity to spherical harmonic expansions we
have theorems, such as,

1. the ellipsoidal harmonic series of the potential
converges uniformly everywhere outside the ellipsoid that
bounds the generating masses; and

2. there exists an ellipsoidal harmonic series which
converges uniformly above the "Bjerhamar ellipsoid" and
approximates the potential outside the eartbhs surface
with arbitrary accuracy.

The proof of the first statement follows immediately from
the uniform convergence of the ellipsoidal series for the
reciprocal distance (equation (3.27); cf. Kellogg, 1953,
p.143, and see also Hobson, 1965, pp.o30-433). The second
statement is metely a corollary to the Hunqe-Krarup theorem
since the Bjerhamzar sphere enters only to relate the
theorem to spherical harmonic expansions and can easily be
replaced by the bjerhasmar ellipsoid. Other corresponding
theorems with respect to the Olimit ellipsoid" or to the
convergence surface of a series of ellipsoidal zonals
undoubtedly exist, but may require more exacting proofs.

Unfortunately, the transition to ellipsoidal coordinates
does not solve the problem of series convergence at the
earths surface since its distance from the bounding
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ellipsoid can still be 6 to 7 km (for the bounding sphere it
is as much as 25 k) . however, we recognize that the
convergence problem is a manifestation of the choice of
coordinate systm, for the ellipsoidal series will converge
to the potential in regions where convergence of the
spherical series is doubtful (e.g. the polar areas). Also,
Decause the equatorial radius of the bounding ellipsoid
could exceed the radius of the bounding sphere, the
spherical series will converge in regions where the
ellipsoidal series may not, see Fig. 1. The dependence of

-BCUNDING SPHERE

Ir-BOUNDING ELLIPSOID

Figure 1: Bounding sphere versus bounding ellipsoid.
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the region of convergence on the coordinate system is even
more directly illustrated by simply changing the coordinate
origin, at which the bounding sphere is (always) centered.
Therefore, the smallest bounding sphere is obtained if the
origin of the system ot spherical coordinates coincides with
the geoaetrical center of the earth. The feasibility of a
caoice of coordinates other than ellipsoidal coordinates
that guarantees convergence of the corresponding series
significantly closer to the earth's surface seems unlikely
since the next approximation to the surface is a
considerably more complex geometric figure. This is an
upward continuation of the telluroid, or some smoothed
version of it. The telluioid (Heiskanen and Moritz, 1967,
p.292) is the surface of points at which the normal
potential equals the gravity potential at the corresponding
points on the earthts surface, where correspondence is
established if the telluroid and surface points lie on the
same (normal) plumb line in the normal gravity field. The
telluroid imitates the earth's surface quite closely since
their difference, the height anomaly, varies as smoothly as
the geoid undulation with average values of 30 m. However,
the corresponding coordinate system (in which the bounding
telluroid is a coordinate surface) will be too abstruse to
work with.

The essence of this paper addresses the question ot
whether the probable divergent character, at the earth's
surface, of the spherical harmonic expansion of the
disturbing potential (and gravity anomaly) eliminates it
from the repertoire of viable methods of downward
continuation. In light of the foregoing summary of the
theoretical viewpoints on convergence ard divergence of the
earth's potential series, the analysis will be based on the
assumption that the series definitely diverges below the
bounding sphere. Although divergence has not been proved,
this premise is certainly reasonable, if only as the
worst-case situation.

1.2 Othe Problems apd se.q of Dow_ad Continuation

The question of divergence or convergence at the earth's
surface will never impede our computational abilities in
practical situations. That is, with a finite number of
measurements of the potential we can determine only a finite
number of coefficients of the harmonic series, and any
finite sum of spherical harmonics converges, indeed is
analytic, everywhere except at the origin of the coordinate
system. Yet, if the total infinite series of the potential
does diverge at the earth's surface, then the more
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coefricients we determine the greater will be the effect of
this diLvergent character on the partial suMs. The question
of convergence, however, is then better posed as a question
of representation.

Since the partial sum, whether in the space above or
below the bounding sphere, is thus only an estimate of the
true potential, the question of representation belongs to a
much larger class of problems, namely the problem of
approximation. &s with most areas in physical geodesy, our
limited accessibility to the gravity field, i.e. limited to
discrete and noisy measurements, automatically renders our
proble. "ill-posed." An ill-posed problem, according to
Thikonow and Arsenin (1977), is a problem that either has no
solution, has More than one solution, or its solution is
unstable with respect to the given data. Our inability to
measure the gravity field in space beyond a certain degree
of detail means that there exists an infinite number of
solutions, all differing in the detail which we were not
able to discern, but all satisfying out measurements.
Therefore, the solution is not unique. But as easily as
this problem is recognized, it is as quickly eliminated by
requiring a solutizn for a gravity field concordant in
detail with the measurements. That a solution always exists
is guaranteed by the fact that any finite sum of spherical
harmonics, which in fact satisfy Laplace's equation and are
regular at infinity, represents a potential.

The instability of the solution arises because the
harmonic coefficients obtained from the measurements at
satellite altitude are not errorless. This is expertly
shown by Rummel et al. (1979) for the case that the
measurement noise is white noise. White noise affects all
harmonics of the measured signal equally so that the
infinite sun of the effects is unbounded. Since the
Jiscreteness of the measurements places a limit on the
number of harmonic coefficients that can be determined, the
downward continuation of the error, while not causing
unbounded error in the solution, nevertheless produces an
amplification of the error. The error in the n-th degree
harmonic coefficient is amplified by the approximate ratio
(r/2)" in the process of downward continuation (see section
1.3), where H is the radius of the earth and r is the radius
of the satellite orbit. For minimal satellite altitudes of
150 kin, this ratio increases to over 1000 at n=300, which
means that the 300-Lb degree coefficient of the gravity
an'maly at altitude must be known to jgal (10-' a/s')
accuracy in order to recover mgal (10" a/s 1 ) accuracy at
the earth's surface. This demonstrates that the problem of
downward continuation belongs to the class of ill-posed
problems.

" = .p]==mn i m il i n •i|•m
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Tae foremost method to solve the ill-posed problem is to
impose constraints on the desired solution, as for example,
searching for a smoothed version of the true solution.
Another example is the method of collocation which generates
a solution whose norm in the space of solutions is minimum.
While solving the nonuniqueness problem, collocation can
still be an unstable process, sometimes even requiring the
presence of noise in the data to stabilize, or regularize,
the solution. Equivalently, one can simply introduce a
regularizing factor which has the same effect as noise in
that it filters the higher frequencies of the solution
(Hummel et al. 1979). A serious difficulty with the usual
collocation is the sheer volume of the computations,
increasing with the cube of the number of the data.
However, with specially gridded data which are then amenable
to very efficient computational algorithms, Colombo (1979)
demonstrates the applicability for highly detailed global
solutions of the gravity field.

Aside from collocation, other frequently discussed, more
deterministic, methods of downward continuation rely in one
way or another on the inverse of the solution to a
boundary-value problem, either Poisson's integral (first
boundary-value problem) or the Pizzetti-Stokes formula
(third boundary-value problem); both formulated on the
supposition of a spherical earth. When regarded as formulas
relating the sought after sources that produce the observed
uata, i.e. as formulas for the inverse problem, they become
Predholm integral equations of the first kind. Their
solution is usuilly found by successive approximations, but
because it is unstable, the iterations may not converge.
Assuming a sphexical earth, the Stokes *integral equation"
is readily solved, yielding the inverse Stokes equation
(3olodenskii et al., 1962, p.50). Most treatises on
applications of downward continuation were predicated on
airborne measurements of gravity and made use of the Poisson
integral, but only for local determinations; see for example
the works by Schwarz (1973) and Noritz (1966a).

Finally, we note a method of downward continuation that
is founded on the usual technique for analytic continuation.
Because the potential of the earth (without atmosphere) is
analytic everywhere above its surface, the downward
continuation from the bounding sphere is theoretically
achievable using a Taylor series expansion. That is, given
the potential on the bounding sphere (as a series), we know
also its derivatives. Hence, the Taylor expansion about a
point on the the bounding sphere can be evaluated anywhere
within the sphere that excludes all singularities of the
potential; i.e. the sphere that is centered at the expansion
point and just touches the earthOs surface. This method was
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briefly developcd by Hotine (1969, pp.172-173), but its
applicability seems uncertain. Continuations of 3 to 25 km
using Taylor series require fairly accurate evaluations of
the (radial) derivatives of the potential. However, with
only a finite number of harmonic terms in the series, the
derivatives, particularly of higher (>1) order, will suffer
considerably from the truncation effect, as well as random
errors in the high degree coefficients.

1.3 Preliminaries and Definitions

There are certainly many additional aspects to the
problem of using satellite derived data for terrestrial
applications. in the first place, the potential will not be
observed lirectly. The measurements at the satellite
altitude will consist of either satellite to satellite
Doppler tracking data or gradiometry data. The former
provides velocity differences, hence potential differences,
between two sat.llites (see Hajela, 1978; Hummel, 1980;
Schwarz, 1972), while the latter yields linear combinations
of components of the gravitational gradient tensor (see
Reed, 1973; Rummel, 1979). Secondly, for global coverage,
the satellites must follow near polar orbits thereby
creating a nonuniform data set with heavy concentrations at
the poles. In order to perform a spherical harmonic
analysis, the data must exist on a sphere (see below), but
the satellite orbits cannot be exactly circular (the
satellite moves in a noncentral force field). Finally, the
earth's potential field is not stationary in inertial space.
It completes one full rotation every 24 hours on an axis
that wobbles due to precession and nutation, as well as
polar motion. Therefore, the raw data must undergo
considerable preprocessing in order to obtain uniform or
specially gridded coverage on a sphere that is fixed in the
earth's gravitational field. These preparations in the
determination of the final product are beyond the scope of
the following analysis, since they depend primarily on the
type of satellite mission. Furthermore, it is assumed that
the potential is available for downward continuation in the
form of a (finite) spherical harmonic series. We note that
the analysis of spherically distributed discrete data is
corrupted by aliasing, the influence of the higher frequency
content of the data on the desired harmonic coefficients.
This effect can be minimized by using optimal estimation
technicues (see Colombo, 1978).

The downward continuation error in the present context
refers to a deterministic error, as opposed to a random, or
probabalistic error. Given the potential, defined
everywhere in space, and its series representation in a
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region of convergence, one can define this error precisely
as the difference between the truncated series continued
beyond the region ot convergence and the true value of the
potential.. This definition has the disadvantage in that it
includes a type of truncation, or omission, error, i.e. the
neglect of higher degree information, which has nothing to
do with series divergence. The alternative definition, as
the difference between truncated inner and outer series,
however, seems even less agreeable, since the inner series,
in our case, is not the spectral representation of the
potential. consequently, corresponding terms of the two
series are not comparable.

At present we lack the resources (primarily a
sufficiently accurate series of the potential determined in
outer space to high degree) to conduct an analysis of the
downward continuation with actual data. The natural
alternative is to devise an earth model with a complexity
that adequately takes into account the anticipated advances
in determining series expansions in space- Ideally, the
potential of this model should be known exactly on the model
surface and be expandable in a series that diverges below
the bounding sphere. Instead of exact values on the
surface, an inner series may suffice if it can be expanded
to a high degree.

From the mathematical standpoint, the spherical polar
coordinates r,19, X~ lend themselves most conveniently to
formulations on a global scale. With respect to the
Cartesian system of coordinates x,y,z, r is the radial
distance from the origin, G is the polar angle measured
from the z-axis. and N is the angle (longitude) measured
counterclockwise in the zy-plane from the x-axis:

x = r sine cos X

y - r sine sin X (1.1)

z - r cose

In geodesy, the second coordinate is often the latitude, but
then is usually the coordinate in an ellipsoidal system of
coordinates. All derivations in section 2 are performed in
the above spherical cooidinate system.

The solutions to Laplaces equation (which is satisfied
by the potential in tree space) are the solid spherical
harmonic functions of degree ax and order a:

r~ Ynu(l ) y r nme,) n f > 0 9 -n :S m fSl (1.2)
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the first when the region of harmonicity contains the
oriqin, and the second when it contains infinity. The nm

are known as surface spherical harmonics and are defined by

Y 0,A) - P- cosX M >

nm = PnImi(Cs) sinIm X , m < 0 (1.3)

This departs from the more conventional definition adopted
by mathematicians (see Cushing, 1975, p.158) where the
inconvenience of separate definitions for negative and
nonnegative orders is avoided by using the exponential
function eM'A instead or the sinusoids; however, (1.3) is
more customary in physical geodesy. The P,. are the
associated Legendre functions, normalized such that the
integral of the square of surface harmonics over the unit
sphere is 47T. Furthermore, the functions Y,,. are
orthogonal, i.e.

ff (8,X) ,(eiX)dO = n=p and mfq (1.14)a , n~p or miq

where do, =sinO dO dA and a represents the unit sphere; and
they form a complete set of basis functions. This means
that any continuous function F(e,k ) defined on the unit
sphere, that is, for 0 i- 9 1 Ir and 0 !E XE 21T, can be
uniquely expressed as a uniformly convergent series of
spherical hamonics:

S n
F(e,x,) =f n- fn ?urn( e ,) (1.5)

n!O mfn nm 'meX

where (by multiplying both sides by I., integrating over
o, and noting (1.4))

fnm "  F(O,A) ? nm(,X)do (1.6)

The condition that F be continuous can be relaxed to F being
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Lebesque integrable, but then the series (1.5) does not
always converge to F. The operation (1.6), resulting in the
coefficients f , is known as the Legendre transform and the
coefficients constitute the (Legendre) spectrum of F. In
view of (1.2), the extension of an harmonic function into
(the exterior) space is

n
F(r,o, X) n ; R .n+1 n rm ° "  1

1 (- f n+1ill,) (1.7)
n=O m=-n r nm

where R defines the radius of the sphere on which F has the
spectrum {ff.- (see equation (1.6)). If the spectrum of P
is determined in space, then "downward continuation" simply
means d decrease in the variable r. Also, the spectra of F
on two different spheres, of radii R1 and R,, are related by

f() (R2l1 f(2) (1.8)
nm -- nm

provided that the series converges on each sphere. It is
obvious from (1.6) that the definition of Legendre spectrum
is not restricted to functions defined on a sphere. The
surface can assume any shape as long as to each coordinate
pair (19,X) there corresponds a unique point of the
surface, and vice versa. of course, if a function is
defined in three dimensions, then its spectra with respect
to a sphere and some other (nonspherical) surface are not
comparable.

This introduction to spherical harmonics concludes with
a statement of a very useful formula, the addition theorem
for Legendre polynomials:

Pn(Cos*) 1 Y n(e,x) n ,P) (1.9)
M=-ni

where * is the central angle between points (0, A) and
(e',a') on the unit sphere, and where the P, are the
familiar Legendre polynomials.

We follow Hobson (1965, pp.89-90) in the definition of
the associated Legendre functions. For any complex / got

on the real line segment [-1,11,
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P M(I) = ( 112- 1 )im d' P ()
Ii(1.10)

Q M()_ ,_1)im dmn Qn(U)n e n

where the 0Q"# (. are the Leqendre functions of the second
kind. The Legendre functions with real arguments ,A=cos& £
[-I, 1] are then defined by

pm(cose) = (+i) m Pm(cose o ±i)

(1.11)n±~i nj
F- (+i) m lira pM(cose_+ l)

The right side of (1.11) is the limit through the complex
plane onto tie line segment C-1,i] and is found to be

n(cose±oi) - (±i)m sinme d P (cos8) (1.12)
d(cos O)m  n

and siiilarly for Q, so that

PM(cos8) = (-i)m sinme dm P(Cose)
Sd(cos) (1.13)

Qn(cose) = (-1 )m snme dm Qn(cose)
d(cose)m  n

Letinitions (1.10) and (1.13) hold for any nm, but we
consider only those functions for which n,m are nonnegative
integers with O-am- n. Finally, we apply the required
normalization:

Pn() (-1 )m (2n+)(n-m)! EV for alI p

( 2n+l)(n-m)! n() , for all pE_ Z +m ) . "Q ( ) , for a l

. . . C , (A M) , I I



17
where

gm ~ m 0 (1.15)
m m#o



2. 1" Rg ontinuation 2f Spherical jgrjc Serie

Although the problem of convergence and divergence has
generally been recognized, more attention has been paid to
the theoretical concerns than to a numerical analysis of the
situation in pratice. A passing, conjectural, comment by
Cook (1967) suggests that the effect of divergence on the
n-tb L'gree ctficient is on the order of J3 for the
potential and J.4 for the gravity anomaly, where J, is the
n-tn degree z nal harmonic coefficient. The notable works
in this area are those of Levallois (1972) and S:berg
(1977). Their numerical results derive from the postulated
effect, on the series expansion, of the masses between the
bounding sphere and the sphere ot computation.. with several
approximations, Levallois estimated these effects over much
of the earth's surface for expansions of the geoid
undulation up to degree 200. He obtained errors of a few
tens of centimeters with the exceptional meter in equatorial
regions, even for low degree expansions; several meters in
the midlatitudes, generally for all degrees of truncation;
and up to 16 a iu polar regions for the high degree
expansion. 5joberyls analysis is restricted to expansions
up to de'4ee 16 and 24, but enlarged to include the errors
in gravity dnomdlies. His results show errors as large as
0.5 to 5 a depending on the complexity of the earth model,
as well as the point of computation. Downward continuation
errors in gravity anomalies were found to be extraordinarily
large, ix, sose instances on the order of the anomalies
themselves (up to 30 mgal).

These results for the gravity anomaly are unacceptable
as we have only to compare the GEM9 harmoLic coefficients
(derived solely from observations of satellite orbit
perturbations, Lerch et al., 1977) and coefficients derived
from terrestrial data. Rapp (1978) found an RIS (root mean
square) difference in the two expansions (up to degree 20)
of 7.0 ugal. He also computed an RRS difference of 9.1 m in
the expansions of the geoid undulation, rather high, but
more likely due to measurement errors than the divergence of
the series.

An appraisal of this method of estimating the downward
continuation erLor, given in section 2.2.4, suggests that it
is an unsuitable method on account of the simplistic density

18
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hypothesis of the intervening masses. Also an attempt is
made to explain the irreconcilable downward continuation
errors of the gravity anomaly, mentioned above. In section
2.3 we embark on a similar course to ascertain the effects
of series divergence, but nov with a firmer control on the
generation of the earth's disturbing potential. Results
from a subsequent numerical analysis agree generally with
expectations based on the discussions of the following
section.

2.1 gimple Mass Distributions

A study of potential series corresponding to simple mass
distributions will illuminate some of the broader aspects of
the harmonic series behavior of the earth's potential. in
order to draw definite conclusions on the partial sums of
the series, the mass distribution should be sufficiently
elementary so that 1) the surface separating regions of
convergence and divergence is well defined, 2) the series
for either region is calculable to arbitrarily high degree,
and 3) although it is not essential, a closed formula of the
potential is available to check the numerical computations.

The following "experimental mass distributions" are not
designed to simulate the earth's distribution of mass;
hence, uny of the specific quantitative results obviously do
not hold for the earth. Infinite series will be developed
for both the potential and the gravity anomaly since they
are associated with different rates of convergence.

In the usual spherical coordinate system (1.1), consider
an infinitesimally thin layer of uniform density distributed
in the form of a circular disk on the equatorial plane
G--90 0 and centered at the origin (see Fig. 2). The
constant density is X and the radius is denoted a. For any
point P, the potential due to the attracting mass is

a 2w rdAdr
Vp = V(rP , epAp) = KX f f (2.1)r=O X=0 (.1

where K is the constant of gravitation, and

- + irz- rr cos* cos,P - sine cos(X-Ap) (2.2)
2prp pse

Because of rotational symmetry, we may choose )p=O. The

. - '._ ., r
-



Figure 2: Equatorial disk density distribution.
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integration with respect to r is easily performed:

VP a-r r Cos V (2.

where

a =  a 2 + r2 - 2arp cos* (2.)

As reference, we choose the potential of the entire mass
concentrated at the coordinate origin:

U = Kn'a 2 X (2.5)

P rp

Hence the disturbing potential is

Tp -V U

(2.6)

21c X *V[ 0 +a-rn oi ]d K7ra 2 X
a a 2ic [ - rp + rp cosjInL Tar cos ' ]d d ra _

where because of symmetry, the integrals over the intervals
(0,7r) and (ir,21r) are identical.

The series expansions of V are obtained by substituting
into the integral (2.1) the uniformly convergent series for
the reciprocal distance:

00 n
n-Or > r (2.7)£-1 , r77_--n1' Pn ( Cos* ) (27

n 0 r p

for the outer series, and

n= rn O) rp < r (2.8)
nO0
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for the inner series. Ve find for rp> a

n K (cosdX (2.9)

Now the addition theorem (1.9) provides the integrals of p.

w 
2

n(cOs*)d T 1 I I ?nm(Op,O) 2Ia0  flnm(*wA )dX

= 1 -n0 (cOsep) jn (0) (2.10)

since

27
fo Ynm(iwT')dX = 0 m # 0 (2.11)

Now

0 
n is oddP(n () (- 1 n 1 3 5 . . . (n- 2.12)2 ! , iseven

and the series expansion for V becomes

42n+1vpm2-r X a I (L.) u €on-1 r n P2 (Cosep) (2.13)

where

l n I P (02n )  ; In+1 n j n Z 0  ; in (2.14)

The disturbinq potential is simply
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T 1(-rfl1 n P 2 (C°Sp) ' a (2.15)
pn=1 P

For points inside the bounding sphere, we decompose the
integral (2.1) into the two parts for which the series (2.7)
and (2.8) respectively converge:

21 rp
Vp= KX [ O r(co s* )dr +

P f f n=O rP n

a
+ f I (.22f P (coslP)drldX

r n (2.16)
2w 1 1

=Jc n D=O f. (-j-+ =-~((DJ1) a ~o d n

n#l

+ K X rp f. + In -] cosg d),rp

The last term vanishes; and with (2.10) and (2.12) we obtain

Vp 2W KXr 4n+l 2n+2 (r,2n-1 (Cose )(2-17)
Sn=O 2n-1 2-n-l a n 2n p

The disturbing potential, with respect to the reference
potential (2.5) , is

T 4n+= 2n+2 r2n-1Tp M 2w'K X r p I I[n- = a--Y-)2n-11tn Pn(COS~p e

2(2.18)

rp , rp < a
r p P

That this series converges for rp . a is obvious once we
recognize that /A, -0 (n" 1 ) since P,. (cos ) -O (n"' ) .

For the present purposes, we may adopt the following
definition of the gravity anomaly (Heiskanen and soritz,
1967, p.89):

...- u- n-- -i
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A= T 2 T (2.19)

Applying (2.19) to (2.6) and omitting the tedious
derivations, the closed form tor the anomaly is found to be

Aa = 67riKX + -Kf7 a+a-rp Cos* +
= 0 rp-rp cosAgpp

3+' +2i -5rpacos r r rcos2 -(a+ka)coeiP (2.20)+ rp~ Y.+ a+XipCS ) "-

aa

Because surface layers generate potentials whose derivatives
are discontinuous as they cross the surface, expression

(2.20) is valid anyvhere except on the disk.

The definition (2.19) applied to the series for the

disturbing potential, (2.15) and (2.18), yields the outer

and inner series for the gravity anomaly:

Agp = 2TrKX I (2n-1) v (,nn+2 P (cosO r > a (2.21)
n=l rp 2n p p

Ag = 27 K)( I (2n+29 (r)2n-1 34n+1l (COSOp) +

n-0 2n-.1 - r- u n P2 n (
(2.22)

+ rX( , r < a

rp

The term by term differentiation of the series (2.15) and

(2.16) is permitted since the series of radial derivatives

is uniformly convergent with respect to rp.

Another simple mass distribution, vhich approaches that

of the earta, is a homogeneous ellipsoid. In order to
evaluate the coefficients of the series expansions exactly
and, more importantly, so that the bounding sphere is the

surtace of convergence, the ellipsoidal surface is broken
into latitudinal bands of constant curvature, each 5 wide,
giving it a iverrated appearance (see Fig. 3). The potential
at a point P due to the smooth ellipsoid is given by



Figure 3: Serrated homogeneous ellipsoid density
d istribut ion.
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Vs KXf f . r 2 dr do (2.23)

wbere 0 denotes the unit sphere, do =sine dO dA , and where
r. -Iz (e) is the radial distance to the ellipsoid surface.
With the introduction of the serrations,

2N-1 27 6 i+l r-i r 2dr
VP = KX r f sine6d 0d X (2.24)

i=O i-

where Oi=i6G , i=0, ... ,2N-1, N=90/,e , and rsj =rs (9j) . Only
the inner integral can be evaluated in closed form, thus
precluding the computation of exact values of the potential
and gravity anomaly. The derivations of the series are
completely analogous to those of the equatorial disk and are
relegated to Appendix B. The final results are given by
equations (3.7) ,(B.8) for the potential and (8.9), (B.10) for
the gravity anomaly.

For the numerical tests, the equatorial disk was given a
radius of a=6378140 a and a uniform density of X =3xiO0
q/cu:'. Similarly, a=6378140 m was chosen as the equatorial
radius of the homogeneous ellipsoid. The centers of the
latitu4indl bands, each 69 =5* wide, lie on an ellipsoid
with a flattening of f=1/298.257; and therefore, the
corresponding radii of these bands are computed according to

arsi 1 l+e 2 cos 2 ei+j (2.25)

where i=I,...,17, and el 1/(1-f)*-1. The homogeneous
density of the ellipsoid was equated with the average
density of the earth, ) =5.5 g/cm3; and K =66.7x10-
cm/(g.sL) was adopted as the constant of gravitation.

The differences between the resulting partial sums of
the series (2.15), (2.21), (B.71, and (B.9), as functions of
the trunmtion degree, and the corresponding true values are
shown in Fig. 4 for r,=6377200 m, %p =77t5 (near the
equator) and in Fig. 5 for r,=6357200 a, ep.=7i5 (near the
pole). Both points of evaluation (r., .) were selected
below the sphere of convergence, so that each of the series
must diverge in the limit. (Using Eckeres theorem (see
section 1.1), it is possible to prove that the bounding
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sphere Of the equatorial disk is also the surface of thconvergence. A simple proof of the divergence insidete
bounding sphere of the serrated ellipsoid was not found, but
it is verified by Figures 4 and 5.) The partial sums, being
in any case discrete functions, were evaluated in steps of
20 (Fig. 4) and 300 (Fig. 5) degrees and connected by
straight lint--- tor clarity, but thereby also smoothing their
strong oscillatory behavior. The true values (not shown) of
the potential and gravity anomaly were provided by formulas
(2.6) and (2.20) for the equatorial disk and by the inner
series (B.8) and (B$.10) for the homogeneous ellipsoid
(truncated at n=B30000) . in the figures, the value
immediately above each zero, related only to it, indicates
roughly the range of the oscillations over the given domain
of truncation degrees.

A study of these graphs reveals several interesting
aspects of harmonic series divergence. The most obvious
conclusion is that the more distant the point of evaluation
is from tne sphere of convergence, the more severe is the
divergence of the series. The series near the pole shows
definite signs of divergence around B=1200 to 1800, while
the series near the equator had to be summed to fi > 15000,
and higher for the potential, in order to detect a
significant divergence pattern. Also, for low Ri, the
deviations from the true values actually decrease with
increasing truncation degree before they start their
eventual, unbounded, increase. This is particularly the
case for the potential, even in the vorse situation at the
pole. The distinction between truncation error and downward
continuation error (due to divergence, see section 1.3)
thereby becomes exceedingly nebulous for the lover degree
sums. Whether a comparison of these partial suns with those
of the inner series gives a better indication of the
downward continuation error is questionable for lover degree
expansions, since this type of comparison is associated with
other interpretive problems, as discussed in section 2.2.2.
The difference between inner and outer partial sums, shown
in Figures 6 and 7 for the same two points as above, does
indicate that some of the truncation effect is common to
both. This is particularly the case for the equatorial
disk, less so for the ill behaved series of the ellipsoid.
Connected with the overall delay in divergence is the
difference in behavior between the potential and anomaly
series. Since most of the power of the potential is
concentrated in the lower degree harmonics, the divergent
character of the series is apparent somewhat later than for
the anomaly, its power being spread more to the higher
degree terms (i.e. it is essentially the derivative of the
potential). These conclusions hold equally for both densiLy
distributions, but are clearly more vividly depicted for the
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equatorial disk. The spikes in the graphs corresponding to
the homogeneous ellipsoid are undoubtedly due to the
salience of the bounding surface.

The conspicuous oscillatory character of the partial
sums is evidently attributable to the symmetry and
homogeneity of the density distributions. However, some
type of irregular oscillation of a full spherical harmonic
series should not be excluded. Figure 8 shows the partial
sums ot a gravity anomaly series derived from the (180,180)
harmonic coefficient solution of the earth's gravity field
(Rapp, 1978) and random higher-degree coefficients that were
scaled to decay according to the Tscherning/Rapp degree
variance model (for more details, see section 2.3.2). The
sums were evaluated (using an equation such as (2.50)) up to
degree 1500 at a colatitude of 100 (near the pole) for
various radial distances. Unfortunately, because of
inevitable constraints in computer storage, and also time,
such computatios are feasible only for polar latitudes
where the (normalized) Legendre functions of high order are
virtually zero and can be safely neglected. On the other
hand, since the true value of the anomaly below the
convergence sphere cannot be known, this graph is almost
useless for quantitative assessments of the downward
continuation error. The intent of Fig. 8 is to illustrate
the tendency for oscillation of a divergent series, as well
as the very moderate effect of divergence tor degrees of
truncation less than 300.

2.2 US Volumetric Density Model

2.2.1 The e.ivation o the AEgo Sr!VI

The masses of the earth generate a potential whose
gradient is the attractive force field postulated by Newton.
It can be shown that this Newtonian potential at a point P
is the sum of all attracting masses, each divided by its
distance from the attracted point P. Formulated for a
nondiscrete mass distribution, the potential VP is

V nJ (2.26)

K is Sewtunts gravitational constant, LI is the (three-
dimensional) volume containing the vass distribution; A is
the density function; dCI is an elemeut of volume, so that



1.0

0.oI DISK T C.mg/a'

0.0

C-galmal

6000 12000 .08000 2000 30000 36000

iv

?iq~e 6 Diferecesbeteenl 
partial sums of nner and

Fig~re6:outferen sphi et ... ro1iC series of A g, T for

eqfatonial disk and serate e .637720 de @,-77t

dittibutjolS evaluated at - 672 0 *D9-15

0.0 
NJ0 4i



moos

0.0

a g

0.5 DIS I

0. 0

142.1

4.90 
ELLIPSOID T

0.0

LT 30 60 go0 100 500 1.800n

yjque ouer s her c ee hat3O 'jC sereS of q, T fot

D if re c s k b e~ a vd 2 s e i 0' S id dens it y

d istributoBs 
evaluatea 

v6520*



0 33

04 m

0 4o.I 's .

14 a 0 hM

IfIt

LI -41.04 cW
it 'U 0 4.

0D w
0 ~*40. a i

go AO
0) U

co .04 0)

00 %ai

0 4j
0.4 '
to 0 .4 .

-0-

044

6O0

U-~ C.l4 cc-



34

the elemental mass is ddfl; and A is the distance between
the attracted point P dad the attracting mass ^ d. The
only restriction on the density p.A, formulated in the
context of modern potential theory, is that it be Lebesque
integrable (Iermer, 19/4); hence discontinuity of 4A on a
set of measure zero is permitted, but the total mass must be
finite. Without significant loss of generality we will
adhere to the classic requirement of piecewise continuity
anu boundedness. The integral expression above for V is
valid anywhere in space (i.e. it can be shown that it
converges to the potential everywhere, even where the
integrand is singular (I =0), see (Kellogg, 1953, p.151)).
Our interest lies only on and outside the surface that
bounds all generating &asses, viz. the earth's surface.

The expansion of V into a series of spherical harmonic
functions can be founded directly on its being a solution of
Laplace's equation. Alternatively, to give a physical
meaning to the ensuing coefficients of the series, the
potential I/1 (generated by a point of mass 1/vJ is first
expanded as a spherical harmonic series (equation (2.7)).
Upon the suustiLtution ol (2.7) into (2.26), the integration
may be performed term by term to yield

= K I 1ff r(reX) (_L)n Pn (cos,)d (2.27)
rp n=O Q p

The validity of this expression is guaranteed only for
points outside the bounding sphere Sb (see Fig. 9). In
(2.i7) r is the radius to the volume element
dl=r'LsinG ,19 dX dr, and cos*, is now

cosIP = cosO cosep + sine sinep cos(X-X ) (2.28)

The potential at a surface point P below the bounding sphere
can also be represented as a convergent series by
considering separately those regions for which the series
(2.7) and (2.8) are respectively convergent:

. D r 2 )n r, 2sr_
Vp I f [fh iuL) r dr + f_ p(P)n'l r2 dr].

P nO r r (2.29)

n(CO s)do
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Figure 9: Sphere of computation versus bounding sphere.
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where T denotes the unit sphere, do -sine dO d)k , r, is the
radial distance to the earth's surface, and f=min(r5,r,).
Note that r. is a function of (9,A ), as is f which denotes
the radius either to the sphere of computation or to the
earth's surface, whichever is less.

Using the addition theorem for the Legendre polynomials
(1.9), the potential Vv, for points above the bounding
sphere, can be expanded as follows:

nn
VP~~ r I 7 Y (0 ,X) dQ Ifn (a , X )p r nO 0 ~~ (P rp n+1 rn--n m r

( R (_n+1 nm ,p (2.30)
n=O m=-n Fp Vnm P

where

V - rrr ld(rL)nnm R(2n+1) ( Ynrnm(,') dA (2.31)

and where 9 is the radius of the boundin sphere Su.
Similarly, the expansion of the potential at P inside S. is

Go n

V - 1 0n (rp) ?n(B ,X ) (2.32)
'P n=O z--n am p nm p. p

where

( )-r n + 2  r. rn+ 1

nm(rp r(2n') j [fo U r dr + 1_ ) dr]nmP rP2+)a r n  rn-
p (2.33)

nn(8,X) do

The coefficientsw ;i,, are functions of r,; note that for
rP > p

( r )n+1
Vnm(rp) r l Vnm (2.34)

. . ...... . . . - -pmm m la i ri
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Hence, the expression (2.32) is valid in all of the exterior
space. Ue note also that the series (2.32) tor r,< is not
a series of solid spherical harmonics, nor is it an analytic
representation of V everywhere above the sphere of radius r.
because the potential has discontinuous second derivatives
on and inside the earth's surface.

In current practice the expression (2.30) for V,
(truncated at n=i) is used anywhere above the earth's
surface (even inside Sh). The difference between the
computea potential (equation (2.30) with c replaced by 1)
and tne true potential (2.32) is the total error of
computation:

C(V ) V P - V P
p -V

S [(R )n+ 1  
(rp)]

n!O ml in'(p

n (rp ) rnm(e,) (2.35)
n=fl+l m-n

£ (Vi,) here is called the downward continuation error. Most
authors identify only the first term as the downward
continuation error, in which case the second term,
representing the neglect of more detailed information, can
be called the truncation error. However, for reasons to be
elucidated below, the first definition is to be preferred
and will be adhered to in all subsequent discussions. Now,
the coefficients of the error series (2.35) for 0 n i-n are
given explicitly by

R n+1 ~a (r)=-) v - (r)nm p r nm- nm p
rn+2r n+2

r n jrs r  dr- 1] dr (2.36)

r (2n+3 CY nij- drfo (.6rp rp

r r

The first and second terms differ by an integral of the

-- -- ,,,d - -. - - H i' - i -
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density in the shaded portion of Figure 9; therefore

SL(r ) f rs [((r) n+2 dr
p aiJ F r) (2.37)

Y nm O ,X). dio

A similar derivation can be found in (Sjoberg, 1977; Cook,
1967).

In the strictest sense, the computation of the
coefficients a0(r), S, requires a knowledge of the
density of the masses between the computation sphere S. and
the earth's surface; to assess the truncation error, we need
estimates of the coefficient functions v.( {rp) (or the
density function of the whole earth).

Because the earth is nearly ellipsoidal in shape and its
internal density, on a large scale, exhibits approximately
ellipsoidal symsetry, the earth's gravity potential, as a
matter of convenience, is described with respect to the
potential of a rotating equipotential reference ellipsoid,
which accounts for the coarse features of the gravity field.
How this reference potential, designated U, is chosen is
irrelewant for the problem at hand provided it can be
calculated precisely either in closed form or as a
convergent series anywhere on and above the earth's surface.
To simplify subsequent. definitions, ye also stipulate that
the potential on the ellipsoid equals the geoidal potential.
U includes the centrifugal potential arising from the
earth's rotation, which taerefore does not contribute to the
disturbing potential. An expression for U is found in
(Heiskanen and doritz, 1967, p.67) . If i denotes the
gjravitatonal potential of the rotating ellipsoid (i.e.
without the explicit centrifugal part), then the disturbing
potential is given by

Tp p - Dp (2.38)

since the centrifugal potential has been omitted in V. By
expanding the normal potential in a series, we have from
(2.30)

co n

Tp ( t nm(9pp) (2.39)
n"O mI-n p

p.



39

where t,. is the difference between v,, and the
corresponding coefficients of 5. Since -3. is supposed to be
known everywhere, the error in downward continuing a
truncated spherical harmonic series of T is

C(CTp) = (V p) (2.40)

where C(Vp) is given by (2.35).

The most ubiquitous quantity in physical geodesy is the
gravity anomaly, simply because the force of gravity is most
readily observed. It is defined (when there is no mass
external to the geoid) by

Ag = gIgeoid - Ylellipsoid (2.41)

where g is the magnitude ot the earth's gravity vector on
the geoid and I is the magnitude of the gradient of L on
the reference ellipsoid (see ibid. p. 83). This definition
is easily generalized to gravity anomalies in the external
space of the earth, where geoid and ellipsoid are replaced
by geopotential and spheropotential surface, the potential
of both surfaces, in their respective fields, being
identical. Approximating I by the gravity of a homogeneous
ball and the normal gradients by radial derivatives then
yields

Ag~ 3T 2 TI=r.-- r p (2.42)

For a guantitative analysis of these approximations, see
section 4.

The corresponding spherical harmonic series of ag may
be found as follows, Substituting the radial derivative of
the reciprocal distance I (see (2.2)),

- -rn+rcos,7r- s (2.43)

p

into (2.26) yields

3 1
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S I (2.44)

ti

Thus, combining (2.26). (2.38). and (2.42), the gravity
anomaly for any point P becomes

f rp-rcos 2-
Agp =Ki

c~ If 3o - J + la- LU (2.45)
rp, r1p rp P

Differentiating (2.7) with respect to r. results in

Ca

r2(rc o)s- r -n (n+l) (r)n+2 Pn(COSj) , rp > r (2.46)

Similarly tor r P< r, differentiation ot (2.8) with respect
to rp gives

rl (r,2 r coso) = - [ n(-P-)n + 1 Pn(cos,) r < r (2.47)

s ni r

Substituting the above series, as veil as (2.7) and (2.8)
into (2.45):

AgP I~ [1ff i(n-1) -- 2 Pn(cos*)d2 +E n 0 rip

1 (2.48)
- 1Sf iz(n*2) IP.-p(cos d ] -G

Q1 r n+ 1

where

- p > r} , /r {(rPA)/ < r] (2.49)

and where Ga-f/J r -20/r,. Ve note that for points P
above the bounding sphere, the set 1L is empty and £, 1j;

P
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then with the addition formula (1.9) we obtain the familiar
series expansion

~(.R n)+2 ga(n (2.50)

=~ ~ nin nm( )p)
n=0 m=-n p P

by absorbing the expansion or Gp, so that

n-1
gnm= 0- tnm (2.51)

The error in using a truncated version of this series
for points on the earth's surface (i.e. below the bounding
sphere) is therefore the difference between equation (2.50)
(oo replaced by S) and the true expansion (2.48):

A R r s ), r )n+2dCOYgp ffi  I f! [(n-i) 1S r -

+ _n=O r p

r n

r

Then with the addition theorem,

n
C(Ag d nm(rp) 1=(p'X 8,)

P n=O mu--

+nI I dnm(r P nm (0 Ap (2.53)
n-fi+l mw-n

0 I I I I I I
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where

(rK rs r )n+I 2r )n-i Udrn~p) 2n+ +II ._ [(-)(J (n+2)t~ id

a r (2.54)
Ynm(8,B) da

and

d'_(r (R_)n+2 n-1 + dn(rp)

r nm(2.55)

(2.55) can also be verfied by adding and subtracting the
density integral over the region CL*. We note that for
r,> H, 1..(rl,)=O and the remaining error is simply one of
t. uncation.

Similarly, the geoid undulation (or more generally, the
heiqht anomaly, i.e. the separation between geopotential and
spheropotential surfaces at the same potential) is given by
Bruns' formula (Heiskanen and floritz, 1967, p.8 5):

C P y Y(2.56)

where q is the normal gravity at the point Q, being the
normal pzojection of P onto the spheropotential surface.
vd is conventionally approximated by its average value on
the reference ellipsoid. Here, we use a common alternative,
namely the gravity, at P, associated vith an homogeneous
ball: 2a o K /r' (d = the total mass of the earth); see
section 4. We then have

r2T
P 1 (2.57)

and for points P above the bounding sphere

SCOR ) n-I n? p ( p0 (2.58)
n!0 m-n FP nm
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where

R2

Zfj~ ,ctn (2.59)Znm K M %nm (°9

Using only the terms up to degree n to represent the height
anomaly at the earth 's surface results in an error given by

^ R2

w T ) (2.60)

where t(Tp) is given by (2.40).

2.2.2 The Interpretation of the Ero Series

The proper understanding of any numerical computations
of errors such as (2.35) or (2.53) comes only with the
correct interpretation of the true series expansion, such as
(2.32) or (2.48). Consider, for example, the potential
series (2.32); the same arguments obviously hold for the
gravity anomaly. Recalling that R is the radius of the
bounding sphere S., the potential in the space exterior to
S1, is given by the uniformly convergent series (2.30). The
coefficients v,. h~ve either of the following
interpretations. First, they are density integrals, as
given by (2.31). Secondly, they constitute the spectrum of
V on the bounding sphere S, (cf. (1.6)):

Vn= = 1 ff V(R,E,X) Ynm(6,)da (2.61)
a

The expansion of the potential in spherical harmonics at
points below the bounding sphere is achieved by considering
separately the two domains Ln which the inner and outer
series of solid harmonics converge. The resulting
wcoefficients" i, (r,) are more correctly functions of r,
and in the first place are density integrals (equation
(2.33)). The i., do not describe the spectrum of the
potential on the earthts surface. That is, the potential
spectrum of constant coefficients obtained from surface
values, as suggested by (1.6), and the functions i.. (rp) are
clearly not identical. Instead, because the series (2.32)
converges everywhere to the potential V, even inside the
earth's body (Kellogg, 1953, p.151), the functions )
for constant r.- represent the spectrum of the potential
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on the sphere of radius a,,, whether inside or outside the
eaith's body; that is.

V (R) ffV(Rp,e,X) in (8, X)da (2.62)
n Pra P nm

The term by term evaluation of the downward continuation
error, as given by equation (2.37), therefore does not
produce negative corrections to the lpectrum of the
potential on the surface. we are forced to identify the
downward continuation error with the entire sum of error
components and on a point by point basis.

Obviously, evaluations of the infinite sum are beyond
our computational ability. oreover, the finiteness of the
number of harmonic coefficients of the potential determined
in space necessarily limits our efforts to estimating mean
values or the potential or gravity anomaly, and not point
values. This requires a modification in the formulation of
the downward continuation error. Consider first functions
defined on a sphere and define an (isotropic) averaging
operator by

, ff B( ) F(e,X)da (2.63)

where F denotes the average of a function F over the
circular cap ar = J( 9,X )/0 S-Y SY.] and weighted by the
kernel B(W). y is the angle between the center of the cap
( 9, 1 ) and the point of the integration ( e, A ) . Heissl
(1971, p.26) shows that if the kernel's (one dimensional)
spectrum is IV2- ,//41il and the spectrum of F is [f.'j,
then

nm = an f nm (2.64)

are the spectral components of the average of F, that is, F.
In the terminology of spectral theory, the coefficients (.
are also known as the frequency response of the averagiag
operator (2.63).

Applying this result in the present context, let V
denote a truncated version of the general series (2.32),
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valid anyehere on or outside the earth's surface:

n n
Vp = I I nm(rp) inm(e ,pX) (2.65)

n=O m=-n

For constant rp=Bp, this may be interpreted as a weighted
average of V over the sphere of radius R., where the
frequency tesponse is unity for 0 in &-i and zero for higher
degrees. It is impossible to devise such a perfect response
for the usual average that is limited to values within a
cap. We consider instead the average

Go nVp = I 1 n V (r) (e,) (2.66

n=O m=-n n nm p nm p p

where the weights have been chosen so that the frequency

response is

1n a 0 , n > (2.67)

a value to which it tapers smoothly from a value of I at
n=0o. As an average on the sphere of radius r,, it is clear
that values of V coincide with values of the potential
averaged over an area of the earthis surface only if that
area coincides with the spherical cap. This is never the
case exactly, but it is a reasonable approximation if the
cap is small. The size of the cap for the average (2.66) is
essentially determined by the desired "cut-off frequency" B.
Therefore, if the potential as determined outside the
boundinq sphere is first averaged over a spherical cap, or
equivalently, its spectrum is multiplied by a particular
frequency response function, and the truncated series is
evaluated at the earth's surface:

An

P IO (_p)n+l n  V n6 ,X (2.68)
n=0 rn--n r P nn nm p p (.8

then the downward continuation error of the average

potential 1 is (cf. (2.35) and (2.36))

w
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^ n n

e(Vp) 1 n n anm(rp) pnm( pxp (2.69)
P n=0 m=-n(ex

k similar result holds for mean gravity anomalies, as well
as mean height anomalies:

R n

E(kgp) I 1 8n d nm(r p) nm( ,p) (2.70)
n=O m=-n

e(p)= a * n a(r) n(p p) (2.71)
n=O m=-n n nm p nm p p

where d,m(r,) is given by (2.54) and in each case the
frequency response /3. is assumed to vanish for n> i
(equation (2.67)).

An operator which filters higher degree harmonics nearly
perfectly is the Gaussian filter, its name deriving from the
shape of the weightIng function v.(W ), defined by

B G( ) WG= (2.72)
IfwG( )do

where

WG(i) = e-a l-cos P) (2.73)

a e - a 2  , for small

If we define w,(w)=O for w , i, , then the frequency
response is given by (see Jekeli., 1981)

1-yoe-a(1-y ° ) 1
1Go =1, 1 e-a(-yo a
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a nd

2n+1 + + ea(1 yO)BGn+ 1  a BGn 
+ Gn 1  1-e- a(1-yo (2.74)

4 [P n-(y0) - Pn~lCy0 )] , n > 0

where y,=cos . The parameter "a" specifies the amount of
smoothing. If we desire (3;=fo (e.g. f.=0.05 implies that
only 5% of the f-th degree harmonic coefficient contributes
to the average), then an approximate formula for "a m is

a 21n(1/f 0 ) (2.75)

2.2.3 The escription of the Model

To evaluate the density integrals of the downward
continuation error requires a simplification of the earth's
surface, as well as the volumetric density. In the
simplifying scheme adopted here, the volume between the
sphere of computation and the earth's surface is partitioned
into (three-dimensional) blocks that are delimited on the
sides by econstant, A=constant and on the top and bottom
faces by r,=constant, r,=constant. Within each block the
density is assumed to vary only as a step function in the
radial direction and be otherwise colk.tant. The required
lithospheric (crustal and upper mantle) densities, as well
as the corresponding depths are taken from (Bomford, 1971,
p.457) and illustrated in Pig. 10. With these assumptions,
the coefficients d.,.(r,) of the downward continuation error
of the gravity anomaly (2.54) reduce to

dn (rp Kl(nl I Gn(rp,ej,y l ff Y(e,))da (2.76)

n m Pr p 2 ( n ~ l - n i

where

f r s i [(n-1)(-L) n + (n+2)(r-R)n+l]ur2dr
Srpr

Gn(rp,81 ~Xi) - rs > rp

0 , r s _5 rp (2.77)
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LAND

OCCE A N 0 km

-A, ,a =1.03

1* 1 =2 .67 •A/

V//M/ / -11 km

AA -20 km

3 ~

Figure 10: The volumetric density model (density values are
in units of g/cm2 ).

I



49

Defining for rO r.

rr[(n-1) + (n+2)(E,)n+l]r2dr n k 0
Fn (ra ,rb) (1)- +r

ra rp

(2.78)
n- r (rb)n+3_ (a)n+3 _ n+2 r[(O n2_-(a)n-2
n+3 -- r p rb ra

r3~~~~~ ~ ~ [_ (L-) - (F) +42Inl
prp r rP r4r.

the functions G,, are given by the following linear
combinations (see Fig. 10)

H >0, r <r: Gn=m.F n(r ,r) + 3F n(rai4) + uiFn(r,rsi

H >0, rlsr<r2: Gn 13Fn(rp,r )+IlFn rsi)

Hi > 0 , r2<r <rs: G vjFn( ,rs,)

ps nn

(2.79)

Hi < 0, rors : Gn= UFn(r prs) +IFFn (r3, r,) + 12F% (r%,rsi)

H < 0, r r<r4: Gn - n(r. r,) +U2F (r ,rsi)

HB < 0, r.1 r< r.r n 12F n (r rsi)

If p denotes the geocentric distance to the surface of a
reference ellipsoid, then the radii are computed as follows

r Pi + N i + Hi 0 H I > 0

f .I +  N i 0 H i 0 .

, H >0
__ _ .= . ... .... == =•= = i ! I I I IIO
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S= si - H - 40 km H (2.80)
H. H 0

r2 = r 1  + 20 km

r 3  = r si - 11 km H

r4 r + H.
SHi i

vheie Ni is the geoid undulation and

a
/ 1 +e '2 coS 28 i  (2.81)

a is the semimajor axis of the ellipsoid and e' is the
second eccentricity, related to the flattening f by
e' =1/(1-f)L-1. The surface of the earth was divided into
latitudinal bands each 50 wide, and each band was further
subdivided into blocks having approximately the area of a
5*x5* block at the equator (Hajela, 1975). The elevation
data that Sjbberg (1977) used provided values of H, (on land
or sea, see Fig. 10) at the center points (Gi, Xi ) of these
blocks. Finally, the undulation Hi was computed from the
GES1OB harmonic coefficients (complete to degree and order
36, Lerch et al., 1978):

36 n
N. = I Inm Ynmoi'xd (2.82)n=2 m=-n

where R is the mean radius of the earth (R=6371 km).

The modeling of the density as above does not conform to
any established theory of isostasy. Since gravimetric
evidence indicates that the mass excesses and deficiencies
near the earth's surface are to some extent isostatically
compensated deeper within, a model which incorporates this
idea may be more authentic. Adopting the Airy-Heiskanen
theory of isostasy (Heiskanen and Moritz, 1967, pp.135-6)
with an assumed crustal thickness of D=30 ka changes the
density model only in the way the radii r, ,...,r, are
computed (changing also su, to 3.27 g/cm3):

r =  = rsi - D - 5.45 Hi  Hi > 0
r3 rsi - D - 2.73 Hi (2.83)

73i HH<O

r = rsi+ Hi

. ..... . . . ..p- - . -
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2.2.4 The Numerical Analysis

Ve consider only evaluations of the downward
continuation error in gravity anomalies because they support
most vividly thd subsequent conclusions. The dependence of
the error (2.53) on the radial distance r. necessitates a
point by point evaluation. A dense grid of computed values
over the entire earth is prohibited by the excessive
computer time that would be required. Therefore, in order
to estimate the downward continuation error, we must
restrict ourselves to a judicious selection of points, which
should be governed by our objective to detect the influence,
not only of the earth's ellipticity, but also its
topography. For example, consider a single profile in
longitude across southern Af rica (eF =102*5, -2:5 iA,!79:5)
Figure 11 shows the earth's shape in this profile as defined
by the 50 mean elevations and the GER10B geoid. For each of
six points along the profile the first term in (2.53) was
calculated with 3=16, 36, and 180. Fig. 11 shows that, as a
supposed downward continuation error, its values for low
truncation degrees are inordinately, in fact unbelievably,
large (see the introduction to chapter 2). As B increases,
this "error" generally decreases but not monotonically as
shown in the Fig. 12 of partial sums. The summation to
degree 160 is not strictly legitimate for an earth that is
sampled on a 5* equal area grid of a total of 1654 values.
That is, 1654 bits of information on the gravity field
determine a maximum number of 1654m; (3 9 +1 )1 coefficients in
its spectral harmonic representation (see also Shebalin,
1980). Therefore, the computed terms for degrees greater
than 39 in no way reflect the earth's true gravity field,
but the error terms to degree 180 are included to illustrate
their general trend. Of course, in the evaluation of the
error according to equation (2.53), we have totally
neglected the higher degree contribution from 541 to
infinity because it is unknown for this mode]..

From the few numerical results presented in Figures 11
and 12 and on the basis of the experiments described in
section 2.1, as well as the discussion in section 2.2.2, the
following inescapable conclusion is asserted. The errors
depicted here, instead of showing the divergent character of
the series, may rather be a reflection of the implicit
choice of model for the earth's gravity field at the earth's
surface. In the first place, Figures 4 and 5 of section 2.1
strongly suggest that the divergence is not manifest for low
values of the truncation degree, especially near the
equator. If we accept this, then the first part of equation
(2.53), i.e. that being evaluated here, must be the
difference between two entirely incompatible partial sums.
in fact, the downward continued sum represents what could be
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Figure 11: Topographical profile of southern Africa
(eo 102.5, -12:5 t Apt900.) and values of partial
sims of downward continuation error in gravity
anomaly (volumetric density model): B=16,36,180.
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called a "free air" spectrum of the gravity anomaly, while
the strue" partial sum represents the spectrum of a field on
a sphere that is partially embedded inside the earth. These
arguments and the supporting numerical analysis reinforce
the statement made in section 2.2.2 that the individual
terms of equation (2.53), or in the strictest sense, any
finte aggregate of terms, do not yield corrections to
corresponding downward continued terms. This is
reemphasized here because just such a procedure is
occasionally implied in the literature (Cook, 1967;
Morrison, 1970).

It may be noted that the kernel of the e'rror integral
(2.54) can be expanded as a series in &=1-r/r,.o Thep the
infinite series of the constant and linear terms in h of the
downward continuation error sum to zero (see section 2.3.3).
Without these terms the numerical values of Figure 11 would
decrease by 1, 2, or more orders of magnitude. However,
this does not alter the essential conclusion drawn above.

If fi-,oo, then the "true" partial sum converges to the
actual surface value of the gravity anomaly, approaching the
downward continued series before it diverges. Some
indication of this is given by Fig. 12 which shows an
overall decrease in magnitude of the error with increasing
S. Thus, the next step in the analysis would be a
densification of the grid on which the elevations and
densities are assigned, thereby allowing expansions of the
error to higher degrees. However, the modeling of the
disturbing potential to a high degree by volumetric density
distributions, or (what is almost equivalent) point masses,
on a global scale is generally associated with a
consideranle computational effort (Needham, 1970), as a
distribution of masses is sought which fits, in a least
squares sense, our knowledge of the exterior gravity field
(see also Balmino, 1971). In our case, no information on
the earthes gravity field, except postulated mean densities,
was used to define the distribution. One should therefore
not expect this type of model to produce a close resemblance
of the earth 's potential. Even the use of the isostatic
model of kiry and fleiskanen (equation (2.82)), instead of
the model depicted in Figure 10, does not produce
significant changes in the numerical results. This model is
therefore not further used in the analysis of the downward
continuation error. In the following section the earth
model is also determined by a density distribution, which
although not optimal, is entirely adequate to produce a
realistic potential.
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2.3 The Densitv Laver model

2.3.1 The Derivation of Ue rro Series

Other than volumetric masses, Newtonian potentials are
generated as vell by simple layer and double layer density
distrioutions. The formulation of the potential of a simple
layer is completely analogous to (2.26), except that the
integration is over a surface instead of a volume, and, of
course, the mass is distributed as an infinitesimally thin
layer on a surface. This leads directly to the Molodens.kii
boundary-value problem where the density of the layer, as an
unknown quantity, is related to the boundary values of the
resulting gravity field through an integral equation. This
integral equation can be solved readily if the surface is a
sphere and by successive approximations for more complicated
surfaces such as the earth's surface. For the present
purposes, the choice of formulation of the disturbing
potential is dictated by our objective not only to find a
reasonable solution to the density, but also to expand the
potential in spherical harmonic series above and below the
bounding sphere. The solution for the density will be
determined approximately by ou- knowledge of the gravity
field, that is, the bounding values; hence the disturbing
potential generated by this density layer should more
faithfully represent the actual exterior potential of the
earth. Note that in the following, no attempt is made to
find the optimal density that fits our knowledge of the
gravity field.

This method of formulating the downward continuation
error originates with Petrovskaya (1979). It is here
derived in more detail and from a slightly different angle
of approach.

Let us then consider the following formulation of the
disturbing potential (with respect to a suitable reference
potential), according to Brovar (1964),

R 2Tp f v(,,) E d a (2.8)

where, as before, R is the radius of the bounding sphere; V
is a generalized density which contains also the inclination
term that transforms the integration over the earthts
surface to an integration over the unit sphere; and the
kernel E is a function of e, A, vp, p, kp, and is defined

, h
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by

E = r s r n rP+ 9-r s Co s * (2.85)r2 rpZ 2rp

where x=r, (0,A) describes the radial distance to the
earth's surface. In general, the definiton of the kernel is
contingnt only on the requirement that the function T be a
potential, i.e. harmonic in free space and regular at
infinity, otherwise it is arbitrary. In order for T to be
harmonic, E as a function of the point P must satisfy
Laplace's equation and be regular at infinity. This was
shown by Browar (19b4) to be the case for the above
definition; in fact, the difference between E and the
generalized Stokes function S is easily recognized to be
(Heiskanen and floritz, 1967, p.93)

3E S 5rs cos 1 2
3E- - rco' = + - 2 (2.86)

Stokes' function and the terms on the right side of (2.86)
all are harmonic functions. Unlike the usual density
integral in which 1/A is the kernel, the expression (2.84)
has continuous derivatives when crossing the surface and is
therefore characteristic ot the potential of a volumetric
density distribution (see Brovar, 1964, and Noritz, 1966b,
p.55).

The radial derivative of T is

aT R2  aE"ff v(,X) 3--da
r_ v(2.87)p a p

where

S- 1 s in r +  -rs cosq (2.88)

arpr; P p 2r P

This combined vith 2k/rp results in the simple expression
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8E 2 1 rs cos.0
r- - p- E - .p (I(2.89)

For points P on the earth's surface, we have the boundary
condition (with the spherical approximation as described for
(2.42))

DT 2

Agp = _ 2 Tp (2.90)

so that, because the derivatives of the right side of (2.84)
are continuous at the surface,

Ag R = ' Jfv(e , )(_1 - rscosr ) do (2.91)Ag r -p 0 9 r2

and the reason for the choice of E is now apparent. The
expression (2.91) is a Fredholm integral equation of the
first kind and if the earth's surface is approximated by a
sphere with radius K (r, =const-R, rfR) on which aq is a
known function, the solution for the density is found by
expanding 1/1 and Ag in series of spherical harmonics
(Petrovskaya, 1979; see also equation (2.7)):

S nI gas Ynm (SpIA) = Agp

n=0 mm-n

R n 1(2.92)
" G 0  n ff v(8, ) Tnr (OX)do ;tm(8p X )

47rr n -- n 2 aln n
n#1

This holds for arbitrary points P on the sphere, hence

- 1 R2  v(8,,) nm(8,X)do (2.93)

l aproxiatio is 2n+1) 4i : R

Therefore, the spectrum of the density in spherical
approximation is(2.),:
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Rn

v(ex) = B n-O me-n (2n+l) knm (nm( 0 ' X)  (2.94)

Because the grdvity anomaly has no first degree term in its
series representation (equation (2.51)), this term for the
density, hence for the potential T, must be obtained from
other data.

The series expansion of ag follows directly from (2.91)
if the boundary condition (2.90) is used as the definition
of the gravity anomaly in all of space. Using (2.7) and
(2.8), ye obtain for r,> a

cc n Rn+2R1n+2-nn(%A ) (2.95)UP = n= o mIn(rp g nm Yn(6p II (.5

where

0 P n-1

grim (2.96)

1 0
2n., -{ff v(O8A)(r )n ?(8,A)da ,n 1

and for r,< R

Agp= =! I 'nmr p ) Ynm(6, ) (2.97)

where
1 R2 2

"" V(e,) [r s ) - r--- (e,)da

Cnm(r p ) P n W1

2n1 F 2 ff V(6,A)(jE)n ~n(e,X)da + (2.98)

+ ff v(8,X)(E9)n +1 ?n(6,)do] , n # 1
a 2 nm

1"
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where or, = {( ,)/r (, A )iLr,} and
Cr = {( , > )/rs ( e,A )> r) . The dovnward continuation
error is the ditference between the truncated series (2.95)
evaluated at the earth's surface and the true series
expansion (2.97):

R n
e(Ag) i I I d nmr) r ( nm(, p ) +

n=O m=-n
W n

+ 1 + dn(r p ) y (,9 )9)
n=ff+=+ n p nm p p(

where

R I)n+2 cn(rp)dnm(r)= (-) gnm-c r
DID P rp Pi 11W P

R 2  1 r (2.100)Ii--n+ ff v(.,oo
p7r -2n a rs

P y2 AS

Ynm (eA)da , n . 0

and

, ( R )n+2
dnrm(r -C (r = (rp) () gn (2.101)

The expansion into series of the disturbing potential is
more involved and requires the expansion of the kernel Z
into series which are valid below, as vell as above, the
bounding sphere. Anticipating the result, let us consider
the integral (Gradshteyn and Ryzshik, 1980, p.83)

- drp - +rcoso* n2(rp+1-rrcoSo) + a(ra) (2.102)

vhere a(r$) is the constant of integration. Substituting
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the uniforaly convergent series (2.7) into the integral

yields

drp I f (-8)drpPn(COS)
n=O P

1) 
r (2.103)

rn1
.I - P (cosO) + rs cos In rP- + b(r)

14=0 n- n-1 nr s
n~l rp

where rp > r.. Hence

n=-' s - -- r cosi* Ln 2rs Cos*)
n=0 rpnI r p

n#l P(2o10)
+ b(r s ) - a(r S )

This holds for any r,> r., in particular as r-pme, so that

lim(i- rp) +0 = -r cos Pn4 +b(r)-a(r) (2.105)

kewriting I -r. as

L- rp = 1 (2.106)

r P

l mlfopitalls rule gives

lir (I - rp) = -r s cost (2.107)

Therefore the total constant of integration is given by
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b(r s )-a(r) = r s cos(tn4- 1) (2.108)

Putting (2.108) into (2.104) finally yields

nGo 1 r .

n=0n r p n

n#l (2.109)

trcosp r,+ rscos* - r cos

S p

Similarly, the uniformly convergent series (2.8)
substituted into the integral of equation (2.102) results in

f~ drp= f (_fl)n+ drp Pn(cos)n=O s n

D I rn+2
D n(Cos + C(rs (2.110)

where c(r.) is the integration constant, and rp4 rs. Vith

(2.102) this becomes

n+2
1 =P (cos + r cosn2r +r t-r cos*)

n-0n+ rn+ Dp sn-=0 s P(~ +s°0n(p -s (2.111)

+ a(r s )-c(r s )

This also holds for rpars if V 0 0, since then
P,(coso,)/(n+2) = 0(n " "&) and the series converges. Hence

r. P - (cosii J6+r os n + Is -r. cosJ)

+ a(r)- c(rs) (2.112)

- *~ -ME
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vhdre =r :r 5 12-2cos,. y but the first two terms on the right
side of (2.112) can be expressed as a series according to
(2.109) with rP-r, (i?+0). Thus

1
a(r s )-c(r s) = r. n P n(COSp)

n=O

+ 0 (2.113)
+-- r (cos0 + rsCoso- rsrcos*In4r ss n;-1-0Ss

n#1

Putting this into (2.111) and combining the series, we
obtain

[ s n + 1n  1 r + 2

[r (, -] Pn(Cos*)=
n0 r
n;l

3
rD+ 9-rscoss _ 4 1 rirsCOS in- r ( 7 - r , - -7 - 4_ )r cos (2.114)}

+ rs cos in r D
r s

Recallinq the definition (2.85) of the kernel E and using
(2.109) and (2.114), we finally arrive at the desired series
re presentat ion:

nO1

n=O rn ~ r
n ~l P

E = Go_ rn
n=O I  1 P + (2.115)

rscos* 4 1 (-) +n
+ r rs rsp

0 0
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The kernel E, as a function of the point P, is harmonic
everywhere except on the line segment rp :- r, Y =0 where it
is not defined and where in any case ye will have no need to
evaluate it.

Substituting the series (2.115) into the formula for the
disturbing potential (2.84),

Tp I = =n (__)n+Irp tn Xn(pp rp > R (2. 116)

wh er e

R ~n1 f v P.X ran ~n(e,)da, n 0 1(217t mT 7 2 - -T C -9 - - ' ".n m ( 2 . 1 1 7 )

R 1 fv(eX) r~eY? (me,X)da n = 1
7- 7' W i

and for points below the boundinq sphere:

60 n
T n I nI b nm(r p ) nm(0,) ) r < R (2.118)

n=O rn=-n n r

where

0 2  i f rn

nmrp)  [- r nm ,

I f V[r4 (jji 1 1 rrD

a2 rp r rp

n 1
(2. 119)

R2 1

b (r = ± iff J'r2M~ dM1 
P

+ ff vr 4 1 r- + In (eA)da,
rs I

02 p

n-i1

. . . . . .. . .- imiml-.i~i,. ~ m l I II I e I I
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With the spherical approximations as defined for (2.56) the
expansions of the height anomaly follow immediately from
(2.116) and (2.118): for r. B,

;= (R.)n-1 nrnp p)1

n=mu9 ( )n-1 z tur (2.120)n0m--n r'P m nm p p nm  K - nm (220

and for r < R,

= r2
n=O m=-n Ym P)P Yum(r b2  (r )(2.121)

The abote series and the corresponding series (2.97) for the
gravity anomaly, although formulated specifically for points
below the bounded sphere, may be regarded as convergent
series for the height, or gravity, anomaly anywhere in the
exterior space, since they revert to (2.120) and (2.95) for
rP> R; that is,

YnmRp = n-I _n2

un r Znr ; nm ;nmrp) rp n m (2.122)
rp > p

Finally, the downward continuation error of the height
anomaly is obtained by subtracting (2.121) from the series
(2.120) truncated at 1:

E( p) = e nm(r p) nm ( p ) +

n=O m -n

o n (2.123)
+ n=+1 enm(rp) rnP P

where

2
R )n-i R2  r b

enm(rp)(p - n n" bnr(rp)= (2.124)

"-'A-
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=2  r5 sn 
r +

R2 1 Cr 2~f (P~ll~~ nm(e,X)d , n 1

and fro [ 3--;M)2-r L s + Er s Ln rs ] j/i(6,X')dc(f r5 - r s
and a P P P j(Ad

n=1

M mp (2.125)
eln(r) = r2 b (r =e (r )-- t

2.3.2 The Descr of the Model

As with the volumetric density model certain
simplifications of the earth's surface are reguired in order
to evaluate the integrations; however, this model places
almost no limits on the complexity of the density function
V (e,A), given by (2.94). The necessity of a highly
complex model, when aiming for expansions of the potential
and gravity anomaly to degree and order, say 300, is
prescribed essentially by the Nyquist law. Although this
law holds only for expansions of functions in Cartesian
space, for the present purposes it serves as a sufficient
guide. The Nyquist law (applied to a great circle) states
that the Fourier spectral components of a function whose
values are known at a uniform interval of 180*/B can be
resolved to a degree no higher than ii (Bath, 1974, p. 1 4 6).
Hence, for Z=300, we should specify values of the model on a
0:6 qrid. Instead of equal area blocks, as for the
volumetric density model, equianqular blocks delimited by
coordinate lines will be used here so as to take advantage
of the Fast Fourier Transform of data along bands of
constdnt latitude (see below) and thereby to make the
computations manageable. However, the convergence of the
meridians toward the poles is accompanied by an increase in
the concentration of the data. This nonuniformity of the
data implies a somewhat larger frequency content.

Unfortunately, data sets at a resolution of 0.6- 67 km
do not exist, especially for the gravity field. With the
(180,180) solution of harmonic coefficients (derived by Rapp
from lIug1 mean gravity anomalies obtained in (Rapp,1978))
as a base, the coefficients from degree 181 to 300 could be
generated from random numbers which decay according to a
specified degree variance model for the gravity anomaly.
Such a model was obtained by Tscherning and Rapp (1974) and,
in fact, it has not been significantly vitiated in light of
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the more recent (180,180) solution (Rapp, 1979). However,
it was decided to use the more complex *two-component" model
(ibid.), since its parameters were determined, in essence,
by this high degree solution. On the other hand, to obtain
a smooth transition from the actual degree variances to the
model, the (180,180) solution was used only up to degree
100:

I
rn(coefficients of the (180, 180) solution),

in m = I Un = 2 1 0 0 .(..,2 6 )

nm ,n= 01, . . , 300

where A, is the (approximate) frequency response for the
operator which averages a function over V1xl' blocks
(Pellinen, 1966; '= 0°.56 , in equation (2.63)), the u., are
uniformly distributed random values in the interval
[-0.5,0.5], b, is their degree variance,

n
nnm (2. 127)

m=-n

and the gravity anomaly degree variance c, is modeled in
mgal' " according to (see Rapp, 1979)

3.405(n-1) (0.998006) n+2 + 140.03(n-1) (0
n .n+1 (n-2)Cn+2)-

n > 3 (2.128)

The division of the (180,180) coefficients, being spectral
components of the I* mean anomaly, by (3, transforms them to
spectral components of the point anomaly (see equation
(2.64)).

Ue note that the coefficients (2.126) define only the
density distribution, as given by (2.94), and not the
gravity field of the model. The expansion (2.94) for the
density, being the solution to the integral equation (2.91)
if the earth is a sphere, obviously does not correspond to
reality. But since the earth is, in fact, nearly spherical
and a lack of knowledge necessitates a certain amount of
simulation of the data, a density model based on (2.94),
though not optimal, is with these arguments also not
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indetensible. (Petrovskaya (1979) gives a formula by which
the integral equation could be solved iteratively, given the
shape of the earthts surface; however, it is not necessary
to implement this procedure for the present purposes.) The
zero and first degree terms in the expansion of the density
have been omitted on the usual assumption associated with
the spherical approximation that the average and first
moments of the density with respect to the origin of the
coordinate system are zero. However, when the density is
weighted by the surface radius as in (2.117), the first
moments do not vanish and the potential of the earth model
does contain a first degree term. (Also, a zero degree tern
is present because the discrete grid values of the density
do not average exactly to zero.)

The earth's surface can be modeled in the first place on
the basis of 1ixl ° mean elevations, available as a global
data set (provided by DPAAC, 1979) and describing the
surface with respect to sea level with a resolution of
approximately 110 ka (higher towards the poles). The
additional fineL detail from degree 181 to 300 again must be
fabricated by a random number generator. This is
facilitated and improves the verity of the model if, instead
of ascertainin4 an independent degree variance model for
elevations, we invoke the probable correlation between high
degree potential coefficients and short wavelength
topography (Lambeck, 1979, p.590). This correlation can be
derived by assuming that the high degree components of the
disturbing potential are generated by the masses of the
topographic features, including isostatic compensations,
condensed onto a mean earth sphere. In order to account for
the lower density, aw=1.03 g/cmO, of the oceans relative to
the crust, "equivalent rock topography" has been introduced
(Balmino et al., 1973) whereby the oceans have been
replaced, on the ocean floor, by an equivalent rock layer of
crustal density At and thickness ,44d/,, , where d is the
depth of the ocean (dj 0). The equivalent rock topography,
H,, is measured with respect to the geoid and is therefore
negative in ocean areas:

rIH(,X) , for land areasHr(9, X) = (2. 129)
-(1-Ic )d, for ocean areas

Lambeck (ibid., p.592) gives the following relationship
between the (disturbing) potential harmonic coefficients t..
and the corresponding coefficients of the equivalent rock
topography h,m:
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tnm= 47rRK In [n] (2.130)

where uc is assumed constant (2.67 g/cm3). is the mean
earth radius (8371 ki), and D is the depth of compensation
in the Airy-Reiskanen isostasy model (a value of D=50 km was
found to give better agreement between the (180,180)
solutioL and the 1"x1" elevations than D=30 km (Rapp,
private communication)) .

The coefficients h,. were determined to degree 180 from
the 1VxI mean elevation data set (which includes negative
depths -d in ocean areas) and the definition of H. (2.129)
and hence constitute its spectrum for 0 - n i 180. The
spectrum from degree 181 to 300, assumed to be related to
the potential spectrum according to (2.130), is directly
obtained from the random coefficients (2.126):

1 i H 1 1 r,') i(8,X)da , 0 :S n :s 180

hnm = (2.131)
2n+1 Unm -,n 181 < n < 300

4rK c[1C i - 9f J

Having thus obtained its spectrum to degree 300, the
equivalent rock topography is evaluated on a 0*.6 by 0.6
global grid using the expansion

300 n
Hr(O,X) = I I hnm Ynm(BX) (2.132)

n-0 m-n

and the actual topographic surface of the model (with
respect to the geoid) is then

= Hr(O,X) , if Hr(O,X) 0 (2.133)
0 , if Hr(6,A) < 0

The degree variances of h., are shown in Pig. 13. Although
the coefficients h,,., 0k n* 180 refer to mean topography, no
unsaoothing ot this portion of the spectrum was performed,
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as with the potential spectrum (see (2.126)), since it would
have destroyed the essentially continuous transition to the
modeled high degree part of the spectrum. These types of
manipulations, while perhaps not strictly acceptable from
the theoretical viewpoint, are designed to produce a moiel
which renders as faithfully a representation of the earth as
possible including the requirement that the spectra of
gravity and topography decay with no major jump
discontinuities.

The coefficients 4,, (equation (2.126)) find further
utility in tue definition of the geoid height s (9 , X )

st 3 3 0 n -
= --V I n gnm (6x) (2.134)

Kn=2 m=-n T- n

This, of course, is not the true undulation of the earth
model, since the set of coefficients 4. is not the gravity
anomaly spectrum of the model; but (2.134) serves well '
enough for the present purposes. Finally, the geocentric
distance to the model surface is given by

rs(8,X) = p(O) + N(O,X) + H(e,X) (2.135)

where p is the geocentric distance to the reference
ellipsoid (equation (2.81)).

A typical profile of the resulting model surface is
depicted in Fig. 14, and contrasted with the 5* and I* mean
values of r$. The farthest distance of the modeled surface
from the origin of coordinates is rs (max) =6381989.115 m, at
a latitude of -9t3. The radius of the bounding sphere was
rounded to R=6382000 a. The RSS deviations of the surface
from this bounding sphere range from 3760 m at the equator
to 25100 a near the north pole.

2.3.3 The Euatio or e Numerical Analsi

The integration of the density integrals is tractable
only if r. and v are assumed constant within each 0!6x0.6
equiangular compartment. The resulting salient surface does
not satisfy Liapunow s condition of continuous curvature
(Gfinter, 1961) and the convergence of the potential and its
first derivatives to their respective values on the surface
is not guaranteed. However, the need for evaluations
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r1 -6370000 [m2

o'6

5800 1.0

5200

5P00-

5200SI -n__

* 15 300 45 60 750 90"

Fiqure 14: Comparison of Topographical profiles 92=22.5,
0°s ,) .90 ° , based on 50, 16 and 0.!6 mean
elevations and geoid undulations (0.6 mean
elevations/undulations include random harmonics
for 1O1 n6300).
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exactly on the surface will generally not arise in these
numerical studies. we then have, for example, from equation
(2.117)

tunN-i 2N-1 rs(0 +i Xrj lnm 47 2+ I L (i+ j + R

io j=o

- j+1 (COSm X
fe i Tpn im (cose) sined6 f X s in Is I X)d. (2.136)

where ??,=1/(u-1), n >0, n '1, and -, =1; and where

ei = iA6 , i 0, 1, . , N - 1 180
, N = A (2. 137)

X j = J A X , j = , 1 , . .
& N 1

where & = N=300. Note that rs and v are
evaluated at (i , A ), i.e. at the center of each
compartment.

The computation of all (N+1)L coefficients t... is
vixtually impossible for large N, such as N=300, without the
aid of the Fast Fourier Transform (FFT). This is an
extremely efficient routine for computing the Fourier
spectrum of a tunction. In our case, the FFT is applied N
times, once tor each of the latitudinal bands E£ =constant
in which rs and v are functions of longitude only. Host of
the following derivations are found also in a more
generalized form in (Colombo, 1981), but are included here
for the sake of completeness. Denote by 'Xi.the integrals
of the Leqendre functions:

ei+1
' mi 1  1nm(Cos 8) sin6 d e (2.138)

i

These can be computed using the recursive algorithm of Paul
(1978) and by noting that

n,m,N-i-1 = (-i)n-m 6mi O, 1, . N-1 (2.139)

It has ;eeL found that Paul's recursives are sufficiently



73

accurate (for the tests conducted here) up to degree 300 for
all latitude intervals (Colombo, personnal communication).
Nov let

Fn V ei+, , Aj + f) frs(i+j . Xj+) In (2.140)

then we hve

t Rn.N-1 2N-1 F j+l cos X (
nm 4 1( iO 2 1 jffiO Fnijfx sinim a

And if we let

xj+l

amj = cosmXj , a mj = j cosm dX

b = sinmX j +  sinmXdX (2.142)bmj =sn j,8mj x i

then using (2.137) and the angle sum formula for sinusoids,
we find

Mmj = Bm amj - Am bmJ

Omj 0 Am amj + Bm bmj (2.143)

where

am,) m > ml m>m > 0
A I 00 B m X(2.144)

lov let



74

f Pnm{ 2N-1 {cos m XJ } (2.145)
qnmi jj0 Fnij sin mAj

then with (2.142) and (2.143), (2.141) becomes

t = Rr n  N-1B-Am% im20

(2. 1*6)
tnm =____ n  N-itn,-=4i(2n+1) I Xnmi [Am Pnm + Bm qnmi ]  m > 0i=O

The Fourier spectra (2.145) are computed simultaneously by
the 77T; but only relatively minor savings in time are
achieved with respect to the standard midpoint numerical
integrations, because, as equations (2.145) stand, the FFT
must be applied once for each i and n, i.e. a total of ML
times. A substantial reduction in the computational time
results by introducing the binomial expansion of the
functions F Letting

= 1 - R (2.147)

we have the usual binomial series

(_gn^n=n n )k ^k

Rn (1-h)n = k ) (-l1 h (2.148)Rk=O

Since 04 h4<1, it is not necessary to take more than a few
terms, say K+I, in order to achieve sufficient accuracy.
The Fourier transforms p.,,, q,.i then become

Pnmi} K k )2)k n 2 A
- I  (2.149)

S I k FkiJ snmej1qnmi k 0 J 0

where

. .. . ._ . . __ . = = , , , , , I I I I I I
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F = V(Oi+ X J+i) [h(ei+j xj+j)k (2.150)

requiriny a total of (K+t)i applications of the FFT.

The density integrals corresponding to the downward
continuation error in the gravity anomaly and height anomaly
are treated similarly. The factor depending on the powers
of the surface radius in the case of gravity anomalies
(equation (2.100)) is expanded as follows, where

E(er) = 1 r ,(2.151)

Then

(r-s) n -(rf) nl+l = (1 -fi)-n_( - l )n+l =
rp rs

r P rs(2.152)

.n(n+l) (Si + E4)+ n(n+l) (l+n+18) (2S(2n+1) [B+ ++ 120 +"'

For the height nomaly, we have (see equation (2.124)) for

I r n+1 rs 1 n r1 [(~)f-+-S] 1 [()f-

rn rp

(2.153)
2n+ n(n+1) +n(n+1)(n2+n+18) Er+.= irp 60 360

Since

An = i+ S i 2 + ifi3 +
rp (2.154)

we note that the series (2.153) represents also the first
degree term in (2.124).

If we substitute the series in S (2.152) into the error
coefficients d ,(r.) (equation (2.100)), then



76

d (r) f. YnX(O,d nm(rp) (2.155)

P 02

where N..(r ) represents the part of the error coefficient
containing to the third and higher powers:

R 2 = fv(,X) n(n+l) (F,3 + E4)+ ... ]

P 02 (2.156)

* nm(,X)da

The total downward continuation error (2.99) becomes

40

P(Ag) = r f fn fv(') E nm( ,)da nm( p ,Xp

+ I anm (r) nm(6p,Xp ) +
n=0 m=-n (2.157)

S I anM(rp) V(OA)
n=5+1 mf-n p nm P p

where d (r,)fd..(r.)-/ q.. The value of the first
term above is zero if the point P lies on or above the
earth's surface. To show this, let rp be fixed (thus fixing
the set a ) and consider the function

V(e,x),) , (e C, €

D(e,A,) = ,(2.158)0 , (8,X.) c

(recall that hil-r/r. ( 9s, )). The function D is
continuous and is therefore expandable as a series of
spherical harmonics. With a change of notation, we can
write

n1

D(Opip) = 0 m 1-ff v(B.X) S ?nm(eX)a,.
n0 rn--n 0 2

.ynm (ePA) (2.159)

V
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where (O.,Ap) is any point on the sphere of radius rp , and
where the coefficients of this series are determined by
substituting (2.158) into (1.6). But since the error series
is to be evaluated only for points in w , the series
(2.159), hence the first term in (2.157); vanishes. When
formulating the downward continuation error for the mean
anomaly, the same arguments apply. In this case, we
consider the average of the function D over a spherical cap
on the sphere of radius rp (the set O. thereby decreases in
measure).

A similar reasoning clearly leads to a downward
continuation error in the height anomaly, where the
quadratic term E' is absent:

- n
ef e(r) (e ,x

p) =  m=-n m p n p p

c n
+ I I inm(rp) nm(ep A p (2.160)

n=Fi+I mf-n

where

enm(rp) r R f (8,X) + [4,1( 5  +...J.
02 p (2.161)

Y Vnm(',X)do

and

r n(Yr -Rp 2 ( R -) n-i t (2.162)en p ) = nmr) K- F-- nmn

Equations (2.156) and (2.161) are essentially equivalent to
those of Petrovskaya (1979) - if we asume rxr,, then

nm(rp)[ ffi n(n+l) ;nm(rp )nm rP)equation. (161) (n+*); • (2o63)
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Since the function D, defined by (2.158), has
discontinuous derivatives at the curve separating the
surfaces a; and r, the series (2.159) converges very slowly
to zero for points near the earth's surface (a case of the
well known Gibbs' phenomenon). This seems to be the reason
for the increase by one, two, or more orders of magnitude in
the sum of the first fi error coefficients (2.100) (or
(2.124)) when the linear (or quadratic) term in the h-series
is retained.

With the assumed constancy of r. and v over the 0:6 by
0:6 compartments, equations (2.156) turn into

a (r = R 2 N-1 X B - i M mnm P) I nmi in ni-i m nmi

(2.164)
R2 N-1

a (r R = 2  N-1 [A~ +B (214

n,-mrP) iO xnmi mnm qnmi , M > 0

where the Fourier transforms are given by

Pni Kx 2N-1 Coshi rXjI 215
qn kI 3 Xnk *1 Ai kij Isinm (2.165)

nmi k=33

and where

F kij =  (ei+j ' xi+j) ]hi(Si+j # x j+J)]k

(2.166)

= n(n+l) x n(n+l)(n 2 +n+18)
n3 ' 'n4 6 ' n5 120

and finally, where

j =I , if rp < rs (ei+, (2.167)
F0 , if rp > r s (el+j, Xj+j)
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The factor Ai2 in (2.165) ensures that only points on the
surface above the sphere of computation (radius rp)
contribute to the error, and only those latitudinal bands in
which at least une such point exists are included in the
sums (2.164)- The coefficients of the downward continuation
error in height anomalies, equation (2.161), then also
become

R 2r N-1n,m = 8KM I nmi n Pnmi -A nmil m > 0i=0

e n,-m =  r I ×nmi NAm P nmi+ + nmi ] , m > 0 (2.168)

i=Onu mnunn

where

K 2N-1 o

{nmi = Ink A. F Co s 1  (2.169)
qnmi k=4 j=O kij inmXj

and where

Fkij F rs(Oi+j' A J 1 ) Fkij

(2. 170)

n(n+l) n(n+l) n(n+l)(n2 +n+18)
Yn4 =  'Yn5 15' Yn6 360

2.3.4 he Mgmer l Results of the E

ks in the case of the volumetric density model, the
radial dependence of the error "coefficients" (2.100) and
(2.124) precludes the mapping of the error on a global
scale. on the other hand, because the earth's surface is
more or less rotationally symmetric, a reasonably thorough
analysis lies within feasibility if we limit the latitudinal
extent of our investigation to a few representative degrees.
Table I lists the regions to be considered, as well as
several representative radii for each range of latitudes,

" I
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Table 1: The Region of the surface model in which the
dounward continuation errors are computed.

Region, Rwpresen- Longitudinal No. of points on all
defined by tative ranges of A. spheres of radius R.
latitudinal radii, HP such that 0 4 rp -r. t
range of f [a] , 3

300 a
t =100 a

50 a
010 a)

North Lat. South Lat.
11938 11781

6374550 (0.3,359.7] 4112 4326
6374850 2275 2505

1 6375150 966. 7
6375450 683 7114
6375750 (69.9, 89.7 234 273
6i76050 87 161

12-: 3II 24 3 6376350 17 0
6376650 714 461
637695U p90* 1,309:9] 273 176
6377250 144 92

1 21

North Lat. South Lat.
6800 6783

6363350 [G.3,359.7] 2111 1827
6363750 1003 811

11 6364150 196 189
6 364550 361 411
6364950 [60.3, 80.11 116 123
6365350 62 70

47.! f,)57. 3 6565750 _ _10 29
6366150 483 486
6366550 [260:1.285:3] 147 114

78 71
22 29

North Lat. South Lat.

8914 6329
6357250 [o.3,359.7J 2924 2092

111 6357550 1609 959
6357850 720 168
635810 2415 2090

75:3 I I.84.3 6358450 [170:.1,260.1] 861 572
537 171

_ 258 19

pmm••mm mm
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see also Fig. 15. We note that for each constant r,=R,, the
coefficients (2.100), or (2.124), correspond to the error at
any point which lies on the sphere of radius R. and above
the earthis surrace. Therefore, instead of evaluating the
erior series at a few isolated points on the surface, a more
characteristic, although less realistic, assessment is
obtained if the series is evaluated on the given spheres at
all those points which are removed from the surface by no
more than, say, 100 m (see Fig. 17). Table I also shows the
number of points on a 0:bx0.6 grid that lie on the spheres
having radii R,, and within a tolerance of 300 a, 100 m, 50
a, or 10 a abo.e the modeled surface.

The amount of calculations can be further reduced by
requiring no more than two- or three-digit accuracy in the
error estimates; any attempt at greater computational
accuracy is unavailing and therefore unjustified. Hence, we
may_accordingly restrict the number of terms of the series
in h, (2.152) and (2.153). Table 2 correlates the accuracy
of the series with the number of included terms for the
worst cases in each of the regions of Table 1. The worst
case occurs when n=300 and h=max(hL). Similarly, the series
in h (2.148) may be limited to several terms (see Table 2).
Numerical tests confirmed that the relative accuracy
guaranteed tor the truncated series in h was not degraded in
the process of determining the error coefficients.

Equation (2.146). with the approximate transforms
(2.149) substituted, was used to determine the spectrum of
the gravity field model on the bounding sphere (radius
R=6382000 m). The series in h was developed to K=10 thus
ensuring six-diyit accuracy. The corresponding degree
variances are shown in Fig. 16. The series (2.95) and
(2.120) for the gravity and height anomalies above the
bounding sphere then provide, in conjunction with the error
series, the coresponding inner series, which converge below
the bounding sphere, namely (2.97) and (2.121). All series
were truncated at degree ?00.

Once again, it must be remembered that individual terms
of the error series do not indicate errors in the harmonic
constituents of the potential (or gravity anomaly), since
the inner -'eries is not a spectral representation of the
field on the surface. In the strictest sense, the
ditference between truncated inner and outer series is just
as meaningless, since it implies a comparison of Obands- of
frequencies. The comparison is valid only if the inner
series has converged with sufficient accuracy to the true
value being estimated. Otherwise, when limitin the
evaluation of the downward continuation error series to
terms of degree no greater than 1, we must be aware of the

pd mmmmm H
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Table 2: Accuracy of series (2.152) (without the linear
term), series (2.153) (without the quadratic
term), and series (2.148) versus the number
of included terns.

(meters) Series (2.152) Series (2.153)

3egion U=max(hi) K, No. of No. of
if the highest accurate accurate

power of h digits digits

3 1 -
ro =63745W50 4 2 2
r. =R 5 4-5 2-3

6 5 4

3 1
1 r =63633 5 0 4 1 1

r. =R 5 2-3 1
6 3 3
7 4 4-5

3 1
Eli rp=635725O 4 1 1

r S=R 5 2 1-2
6 2 3
7 3 3

Series (2.148)

h-uax(h.) K, No. of
if the highest accurate

power of h digits

2 0
r.=R 4 1
rs =63560oo b 2

____ ______________I L ______

10 6 .

I-

I'
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effect of truncation, which is, of course, not known. With
the present density model, it appears likely that the usual
degree variance models of the earth's gravity field will
provide estimates of the neglect of higher degree terms,
although this is not evident from equation (2.101) or
(2.125). If R=300, then the EflS (root mean square) values
of the truncation error, based on the model (2.128) and a
spherical earth, are about 36 cm for the height anomaly and
a considerably more significant 30 mgal for the gravity
anomaly. The root mean squares of the evaluations of the
error series truncated at Ri=300 over each of the regions of
Table 1 are shown in Table 3 for the gravity anomaly and in
Table d4 for the height anomaly. Also shown for comparison
are the RM'S values ofl the truncated series of the respective
anomalies themselves. Some maximum absolute values of the
error are also shown parenthetically. Note that the units
in the error columns are ,ugal=10' in/sL (Table 3) and

.Ax=1-'m (Table 4).-

A perusal of these tables indicates that the errors are
generally insensitive to the distance t of the evaluation
point from the model surface, if it is 300 an or less. The
RAS values of the anomalies, on the other hand, show a
(disconcertingly strong and unexplained) decrease as the
point of evaluation approaches the surface. There is, of
course, the expected increase in error with increasing
latitude; and within each latitudinal range, the RAS errors
show a significant increase (not shown) with each decrease
in radial distance Rp. Some correlation between the error
and large-scale topographic features can be detected. For
example, the error over central South America is generally
twice as large as in the topographically lower Caribbean
Sea. Here, in turn, the errors are almost double those over
both the Indian Ocean and subcontinent (just south of the
Himilayan massif), showing that the correlation is somewhat
inscrutable. No definite correlations with topography are
discernible (by visual inspection) from the values listed
for the subregions in the midlatitudes and polar areas.

Table 5 shows how the errors accumulate in steps of 30
degrees. The accumulation is generally monotonic for
i~i270, but a noticeable downward trend occurs at B-300. In
view of Figures 6 and 7 this is not an unexpected feature.

To eliminate the difficulty of interpreting these
results, we could consider a smoothed gravity tield, where
the resolution, by definition, is limited to the first 300
harmonic constituents. In order to make the meaning of
limited resolution for the inner and ontp-r series
comparable, we identify Lhe cutting off, or filtering, of
higher frequencies with a weighted averaging process as
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Table 3: RIS downward continuation error of spherical
harmonic series of gravity anomaly and R$S gravity
anomaly evaluated (first 300 terms) at the points
of Table 1 and at the indicated subregions.
Maximum absolute values for each region and sub-
region are given parenthetically.

Region RMS £(A9) 300 : RMS ag (300 a)
(max GL(q)) t 10m t -oom
0 5n 'E300 50 a0 ! n !300 50.
__. __a_1]_10., [mga 10 a

' 0!3- 69:9- 290:1- 0:3- 6919- 290:1-359t.7 89.7 309.9 359:7 89-7 309:9

.28 .26 .41 26.80 31.23 43.38
N 1 .3 ( (2.0) .26 (1.0) .50 (1.8) 26.90 29.85 44.38

.35 .29 .43 25.84 27.99 32.14

.33 (2-0) .33 (.73) .30 (.30) 24.25 26.11 102.98

.46 .27 1.1 25.23 23.30 27.27
S .48 (6.1) .33 (1.1) 1.1 (4.4) 24.89 22.35 28.59

.51 .31 1.2 25.00 22.27 26.73

.47 (4.1) - 1.1 (4.1) 24.36 - 28.18

iI 0:3- 60:3- 260*.1- 0:3- 60:3- 260:1-
, 359.7 80.1 285.3 359t7 80:11 285:3

22. 21. 18. 28.4 20.4 33.4
22. (74.) 22. (57.) 16. (41.) 28.6 18.3 31.6
21. 22. 16. 29.2 18.9 35.6
20. (b2.) 29. (57.) 16. (33.) 27.8 9.7 37.2

23. 18. 19. 23.4 131.3 19.4
S 22. (97.) 17. (48.) 21. (46.) 23.3 33.9 19.7

21. 16. 21. 23.5 34.6 21.5
22. (97.) 16. (34.) 23. (46.) 26.2 37.0 19.4

Il , 0.3 - 359t7 170:1 - 260:1 0:3-359:7 170.1-260:1

86. 85. 22.08 25.17
V 82. (290) 81. (240) 22.24 24.36

al. 77. 22.16 25.67
82. (290) 82. (240) 20.78 23.60

8u. 88. 25.03 28.39
5 86. (260) 86. (260) 24.10 28.86

84. 87. 22.48 27.81
85. (210) 88. (190) 21.05 16.85
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Table 4: RaS downward continuation error of spherical
harmonic series of height anomaly and RAIS height
anomaly evaluated (first 300 terms) at the points
of Table I and at the indicated subregions.
Maximun absolute values for each region and sub-
region are given parenthetically.

Region RaS E() ) 300 Ua Rs (300 e]
(max C(ef)) t = 100 t 1
06 n 6300 50 m 0 6 n S 300 50 m\
&A,0] 10 81 [an] 10 )

' 03- 69:9- 290:1- 0:3- 69.9- 29011-
3597 89.7 309.9 359t7 69:7 309.9

.26 .23 .43 33.52 68.12 44.36
1 .32 (2.1) .24 (.93) .53 (1.8) 33.64 67.44 45.01

.33 .28 .45 31.73 65.73 42.35

.30 (1.5) .36 (.88) .28 (.28) 25.19 62.39 57.12

.51 .24 1.1 28.98 44.89 18.23
S .53 (7.7) .30 (1.3) 1.2 (5.0) 27.38 40.77 18.25

.58 .27 1.3 26.57 40.12 16.18

.52 (5.0) - 1.41 (4.6) 20.96 - 11.63

60:3-  260:1- 0:3- 60.3- 260:1-

0 359'.7 8U.1 285.3 359.7 80:1 285:3

70. 67. 57. 30.27 27.27 37.81
N 69. (250) 69. (180) 49. (140) 32.17 26.34 36.81

66. 68. 49. 30.27 27.23 37.65
64. (.190) 89. (170) 52. (120) 26.94 25.83 39.13

73. 57. 62. 23.41 34.87 5.12
S 68. (360) 52. (150) 64. (140) 24.43 35.94 4.41

63. 4'7. 62. 24.27 35.79 4.12
71. (360)146. (95.) ,,6. (140) 29.32 36.86 3.,12

1..3 - 3597 170.1 - 260:1 0:3-359.7 170.1-260.

410 410 14.82 5.75
400 (1400) 390 (1300) 14.06 4.38
390 370 10.64 4.20
390 (1400) 400 (1300) 8.17 3.65

420 420 30.43 41.85
S 410 (1300) 410 (1300) 29.92 43.08

400 420 25.39 37.62
400 (1000) 430 (1000) 25.17 39.30 i

. -
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Table 5: RMS douvard continuation error of gravity anomaly
and height anomaly spherical harmonic series in
steps of 30 degrees: S-30,60,...,300, based on
those points of Table 1 for hich t-100 a.

Region I RS £(Ag) pgal RNS (r) ,Am

): 0.3 - 359.7 A: 0:3 - 359.7

SS N S

30 .0028 .0079 .0036 .011
60 .015 .034 .018 .046
90 .041 .092 .046 .12
120 .061 .14 .068 .17
150 .091 .15 .090 .18
180 .14 .19 .14 .22
210 .22 .28 .21 .32
240 .28 .40 .26 .43
270 .40 .50 .39 .55
300 .33 .48 .32 .53

30 .077 .066 .26 .20
60 .57 .56 1.8 1.9
90 2.1 1.6 6.6 5.5
120 3.4 3.0 11. 9.5
150 5.6 6.0 18. 19.

I1 180 9.2 8.5 29. 26.
;d10 is. 13. 47?. 41.

;40 Id. 18. 57. 55.
270 23. 24. 714. 75.
300 22. 22. 69. 68.

30 .22 .?'. 1.0 1.1
60 1.9 1.' 8.9 8.2
90 6.3 4. 30. 24.
120 12. 12. 57. 57.
150 21. 20. 100 93.

II1 180 31. 32. 140 150
210 46. 46. 220 220
240 59. 69. 280 320
270 81. 91. 390 420
1300 82. 86. 400 410

I4P

.V ,m m m m l
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mathematically detailed in section 2.2.2. However, the
filter then cannot perfectly eliminate the effect of
truncation. Because the Gaussian filter is relatively
efficient in this respect, it is chosen here, with
parameters a=15021, V.=1:4. The average is thus taken over
a spherical cap of radius v., with values at the edge of the
cap weighted by 0.01. The frequency response (2.714) admits
only 5% of the 1barsonic coefficients of degree 300 and
thereafter decreases rapidly to zero. The difference
between the smoothed downward continued series and the
smoothed inner series is then the downward continuation
error with relatively little truncation effect. The 33S
truncation error, based on model (2.128) and a spherical
earth, is .3 mgal for the smoothed gravity anomaly and .7 cm
for the smoothed height anomaly. The downward continuation
errors are shown in Tables 6 and 7 and follow the same basic
pattern as in Tables 3 and 4, but are about one order of
magnitude smaller (an obvious consequence of smoothing,
since the higher degree harmonics, which are most affected
by the series divergence, are decreased in magnitude). klso
included are the RAS values of the smoothed anomalies.

Finally, we note that the rela&iyj downward continuation
error of the gravity anomaly is approximately three orders
of magnitude greater than the relative error of the height
anomaly.
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Table 6: RMS downvard continuation error of spherical
harmonic series of mean gravity anomaly and RBS
mean gravity anomaly evaluated (first 300 terms)
at the points of Table 1 and at the indicated
subregions. Bazinum absolute values for each
region and subregion are given parenthetically.

Region RhS r_(j-) [300 H EIS Ag 300 )
(max &(9)) t -,100 t = 00 a
0 in 300 50 3 O n!300 50 a
,,, gal_ ~ 10 2 Cagal]  . 10.,

" 0.3- 69.9- 290.1- 0:3- 69:9- 290:1-
359.7 89.7 309. 359:7 89:7 309:9

.014 .012 .019 20.17 25.11 37.98
N .617 (.35) .012(.048) .024(.084) 20.36 24.01 39.04

.018 .014 .021 18.92 22.24 27.51

.018 (.17) .016(.034) .014(.014) 17.28 17.17 95.83

.039 .013 .061 18.16 15.61 20.98
S .042 (1.3) .016(.052) .070 (.43) 17.81 14.23 22.93

.039 .015 .030 17.28 14.11 20.26

.026 (.34) - .051 (.17) 16.75 - 20.62

A 0:3-: 603- 260:1- 0:3- 60t3- 260:1-
359.7 80:1 285. 359:7 80:.1 285:3

1.1 1.0 .88 21.41 12.54 27.66
a 1.0 (3.5) 1.0 (2.8) .75 (1.9) 21.58 11.90 25.42

1.0 1.0 .74 22.00 12.77 28.56
.97 (3.0) 1.4 (2.7) .78 (1.7) 20.25 8.11 28.82

1.1 .8 .92 15.142 25.93 9.41
S 1.0 (4.6) .82 (2.3) 1.0 (2.2) 15.79 28.29 9.33

1.0 .76 .98 15.99 28.17 10.34
1.0 (4.b) .79 (1.6) 1.1 (2.2) 19.01 27.65 7.68

III 0:3 - 359.7 170:1 - 260:1 0:3-359.7 170 .1-260 . 1

4.1 4.1 12.25 14.8,4
3.9 (14.) 3.8 (11.) 12.15 13.31
3.9 3.7 11.71 1,.58
3.9 (14.) 3.9 (12.) 10.27 12.44

1.2 4.2 17.56 22.09
S 4.1 (12.) 4.1 (12.) 17.02 22.19

4.0 4.2 15.40 20.90
4.1 (1O.) 4.2 (9.4) 14.17 17.6

I • I I I • iI Ji l I momi
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Table 7: RAS downward continuation error of spherical
harmonic series of mean height anomaly and RS
mean height anomaly evaluated (first 300 terms)
at the points of Table 1 and at the indicated
subregions. Maximum absolute values for each
region and subregion are given parenthetically.

Region RHS £() '300 a RS 300 m)
(max c( )) t - 100 a t = 100 m
0-. n5 300 50 a 0!5n 300 0 so•________ L 10 •i (in) __ 0{ l•

S0.3- 69.9- 290:1- 0:3- 6909- 290: 1
359*.7 89.7 309: 359:7 89:7 309:9

.013 .011 .020 33.49 68.10 44.28
N .016 (.24) .011(.047) .025(.065) 33.60 67.47 44.90

.016 .014 .022 31.72 65.83 42.45

.015 (.12) .018(.047) .012(.012) 25.20 62.51 56.2

.039 .012 .057 28.96 44.87 18.26
S .044 (1.4) .015(.059) .064 t.29) 27.37 40.12 16.22

.040 .013 .057 26.56 40.12 16.22

.028 (.30) - .063 (.20) 20.93 - 11.53

)' 03- 60:3- 260:1- 0.3- 60:3- 260:1
3359. 80:1 285.3 359:7 80:1 285t3

3.3 3.2 2.7 30.23 27.28 37.74
N 3.3 (12.) 3.3 (8.5) 2.3 (6.5) 32.13 26.38 36.78

3.1 3.3 2.3 30.20 27.24 37.53
3.0 (9.2) 4.2 (8.1) 2.5 (5.7) 26.82 25.84 38.99

3.5 2.7 3.0 23.39 34.81 5.09
S 3.2 (17.) 2.5 (7.0) 3.1 (6.8) 24.40 35.90 4.42

3.0 2.2 2.9 24.24 35.75 4.12
3.4 (17.) 2.2 (4.5) 3.1 (6.8) 29.33 36.87 3.50

0:3 - 359:'7 170:.1 - 260:1 *.3-359:.7 170:1-260.1

20. 20. 14.81 5.64
W 19. (66.) 19. (60.) 14.05 4.28

18. 10.64 4.07
19. (6b.) 19. (60.) 8.19 3.61

20. 20. 30.38 41.81
S 19. (66.) 20. (62.) 29.88 43.04

19. 20. 25.36 37.58
20. (50.) 21. (48.) 25.16 39.42

, . .. . .. _ " . . .111- -..... ..



3. The Ellisoidal _ c Series

There exist two systems of so-called ellipsoidal
coordinates in geodesy; they differ in the definition of the
latitude. The system with the geodetic latitude (defining
the direction of the normal to the reference ellipsoid) is
most commonly used. However, its three dimensional
generalization, obtained by including the height above the
ellipsoid as coordinate, while forming a triply orthogonal
system (solodenskii et al., 1962, p.9), does not yield a
form of Laplace's equation that is solvable by separation of
variables. In order to have any hope of solving Laplacets
equation with this standard method, the coordinate system
must be orthogonal - choices of the third coordinate, such
as the seniminor axis, render the system nonorthogonal.

The spheroidal coordinates u, 4,N form a triply
orthogonal system (Robson, 1965, p.421) in which the second
coordinate, in geodetic terminology, is the complement of
the reduced latitude; we may call it the reduced colatitude
(in tact, S . 9 ). Although, strictly stated, u, & , ) are
oblate spheroidal coordinates, we may use the. less precise
nomenclature *ellipsoidal coordinates* as no other system
will come under consideration. Their definition in terms of
Cartesian coordinates is (see Figure 18)

x - /uz+ E2 sin6 cosA

y = /ujj+Tj sin6 sinA (3.1)

z = ucos6

where E is a paLaaeter of the system. From the consequent
relationship

X2+ 2 Z I

U (3.2)

it noted that the coordinate surface uconstant is an
ellipsoid of revolution with linear eccentricity E (the
distance from the origin to either of the focal points), and
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Representative Radii

A rp- r, _t

Latitudinal -

Range

Figure 17: Schematic illustration of the points contributing
to the computed RSS downward continuation error.

IL

Fiqure 18: Ellipsoidal coordinates (up 4,A) versus
spherical coordinates (r, 0 A ) of the point P.
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semiminor axis u. Hence the set of coordinate surfaces
u=constant is a set of confocal ellipsoids. The squares of
the first and second eccentricities are given by

2 E 2  E 2

eu (3.3)

shoving that as u-*oo the ellipsoid approaches a sphere.
Substituting (3.3) into (2.81) and noting that a'=u'+g (see
Fig. 18), we find

r = u +E 2  (3.4)
VIUZS Etos~e

or conversely,

U2 = i(r 2-E 2) +j[ r4+E - 2r2E2(l-2cos'20)] (3.5)

Since the ratio Vrxit/z is the tangent of the
spherical colatitude f, equations (3.1) yield

tan6 U tane (3.6)

Vu + E

Equations (3.5) and (3.6) provide the transformation from
spherical to ellipsoidal coordinates. The reverse
transformation is, from (3.1) and (3.6),

r = /u2+E 2 sin

tane- /U2 +E tan6 (3.7)

The choice of the linear eccentricity was based on its
relation to the seminaJor axis am and flattening f of any
of the confocal ellipsoids:
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E = a/2f- fZ (3.8)

For example, we say choose

a = 6378140 m

f = 1/298.257 (3.9)

giving E=521854.4492 a.

A detailed solution of Laplace's equation in ellipsoidal
coordinates may be found in (Heiskanen and Moritz, 1967,
pp4 l- 4 3). The solutionsfor regions containing the origin
are P. .j (iu/E)i..( 6, A ) , and for regions containing
infinity, they are , (iu/E)1,.( 9 , I ) . Being interested
prinarily in the latter region, we find the general solution
to Laplace's equation in the form

C n
F(u,A,)) = I I f Q (i! L-)y n (6A) (3.10)

n=0 m=-n nm WEnm

where the constant ellipsoidal harmonic coefficients 4p..
are necessarily complex numbers if P is to be a real
function. They are determined uniquely if the boundary
values of F are known on an ellipsoid, say u-b. Rultiplying
both sides of (3.10) by Y ( I, ) and integrating over the
domain = f( S ,A}/ 0 4 A 27r, 0 76&7r, we obtain by the
orthogonality of Y,_

h =  "" F I F(b,6,,) ?n(6,A) do (3.11)

where dcr -sin dC d • In this way, we can defin the
ellipsoidal spectrum of F with respect to the Legendre
transform. However, the integral in (3.11) is = a surface
integral over the ellipsoid u=b, instead it is an integral
over the unit sphere onto which the points of the ellipsoid
with coordinates ( 5,) ) are napped according to the one-to-
one correspondence

M
I!

__ __ __ _ __ __ __ _ i __ _ ___i_
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=e6 (3.12)

3.1 Transformation from Spherical to Ellipsoidal
Haloi Coefficients

A brief account of the transformation between
ellipsoidal and spherical harmonic coefficients has been
given by Hotine (1969, ppI94- 5 ). However, the formulas are
not directly amenable to practical computations beause of a
lack of stabilizing normalizations in the formulas and the
inconvenience (from the geodetic point of view) of working
with complex coefficients. A complete derivation of the
transformation will be presented below, which by introducing
a different 'noralization- of 0, becomes feasible, as well
as accurate, for high degree expansions.

The relationship between spherical and ellipsoidal solid
harmonic functions is established by using a more general
form of the addition theorem for Legendre polynomials
(Bobson, 1965, p.364)
Pn(VV, - /7 v cosw)

n (3.13)
1. (-) m Pn(v) (V') cos mW

2n+1 m-0 nm nm

where v,v'e C - -1,1]. If one or both of the variables v,vl
belongs to the ieal interval [-1,1], then it must be
approached in the limit through the complex plane, as in
(1.11). The formulas (1.13) for Legendre functions with
real arguments are then applicable. With v=iu/E,
v*--cos6 +iO, equation (3.13) becomes with (1.11)

P UCOS + V+ ! sin6 =
n I nU P (C s)iO M

-n+ 0 Pnm(i-T) nm(COS6) cosmw

Substituting w = X-t, this becomes with (3.1)

p,
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Pn(f(iZ + xcost + ysint)) = (3.15)

1 nI i m TP ( i U ) n (cos6) cosM (A-t)

2n+1 m=0 nmn 7 nm

If we multiply both sides by cosm't or sin. t and integrate
with respect to t over the interval C-7r,7r], then, since

Cos M1, tCos m:

tCosams mt) dt = 2t , (sin) (3.16)

we obtain with q=(iz.xcost~ysint)/E
1 cosmt t __ u-

21 f-vn ( q ) (Csin[1t) dt = m (i ) rnm(Cos6)*
27 f P( sinmt 2n+1 nm E nm

CosM (3.17)
sin m P

Next, consider the relationship (Hobson, 1965, p.98)

f f: (icose+ sine cost)n cos mt dt =
(3.18)n! i n - m  P_ 5nm(Cos3)

[(2n+l)(n+•) !(n-m)!:]

We note that the integrand above is an even function and
periodic with period 27r. Hence

1 w4k-1 f_X (icosO + sinO cost)n cosmt dt -

n m  (3.19)
n! i Pmcae

[ 2n+1) (n+m) !(n-m) !] ] 
n=CS

for arbitrary . vo

- - ~==~~ ~ '*



7-X n98
- +f (icose +sine cost) cosmt(cosmX)dt (sinml ) d  ff (3.20)

= - X (icose+ sine cost) n (Cosm (X-t))dr
f+ sin m (-t)

1-+ (icose+ sine cost)n sinmt dt (sin mX)
+ M j -7r+XCos M

The second inteqral on the right side is again periodic, but
an odd function; the integral is therefore zero. Consider
the same point (x,y,z) as above, but now in spherical
coordinates:

x = r sine cos X

y = rsine sin X (3.21)

z = rcose

Then icosG +sin& cos(k-t)=Eg/r. Now multiply (3.19) by
cosal or sinmX and substitute (3.20), thus arriving at

1 71 n (Cos Mt )d r)n in -m yr- n'!

T 7-r s mf ~ t ( 2 n + 1 ) ( n -m ) ! ( n + m ) !(]2
(3.22)

(Cse)(Cos InmPrm c s e  -sin mX

Note that by the orthogonality of the sinusoidal functions,
the integral in (3.22) is zero for a> n. P, (q) is simply a
polynomial in q:

p(q) = 1 (_1 )k (2n - 2k)! qn-2k, (3.23)
n k=O k!(n-k)l(n-2k)!

while g" can likewise be expressed as a finite sum of
Legendre polynomials (Hobson, 1965, p.44):

n. n! V 2 n-2k (n-k)!(2n-4k+1) P
qn . k!(2n - 2k + 1)! n-k '(q)

where [x] denotes the largest integer less than or equal to
1.
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Substituting (3.23) into (3.17) and using (3.22), we
find the transformation from spherical harmonics to
ellipsoidal harmonics:

f U (-)mln s(2n-2k)!
i Pnjmj (iT)Ynm( 'I )  2n k k'(n-k),

r ) )n-2k Yn2k .Trie, X )325

[(2n-4k+l)(n-2k-m) ! (n-2k+m) ! ](325

-n S m n ,S

And substituting (3.24) into (3.22), making use of (3.17),
we obtain the reverse transformation, from ellipsoidal to
spherical harmonics:

r~ ~ i ) n (X)=(l (2n+1) em(n+m) !(n-m) ! ]

s 2n_2k(nk)! -

I (2n-2k+l)! kI Pn-2kImI(ir-)Yn-2k,m(6'A)
k=O (3.26)

-n < m < n , 2 [ ]

It is important to realize that equations (3.25) and (3.26)
represent transformations between (inner) solid harmonic
functions, i.e. they hold for points in three-dimensional
space. Therefore it would be fallacious to deduce the
relationship between spherical and ellipsoidal harmonic
coefficients simply by inserting (3.25) or (3.26) into the
respective harmonic series. We recall that, according to
one interpretation, the harmonic coefficients constitute the
spectrum of a function restricted to a coordinate surface,
either a sphere or an ellipsoid. But since neither r nor u
is constant, respectively, on the ellipsoid or sphere,
(3.25), (3.26) do not provide the relationship between
surface harmonic functions on corresponding coordinate
surf aces.

V



100

To derive the transformation between the harmonic
coefficients of the two series, we resort to their
alternative interpretation, namely as density integrals.
The realization of ellipsoidal harmonic coefficients as
density integrals is immediate once a series expansion is
found for the reciprocal distance. We have for u,> u

1= n (-1) . ( - (i u)
Z E=-n2n+1 nI m E f Il (3.27)

' Yrm (6 p) f nm(SpX)

For u,-c u, the roles of u, and u are obviously interchanged.
EquatiOn (3.27) was derived by Neumann (1848) and a much
more thorough derivation, though unfortunately replete with
typographical errors, can be found in (Hobson, 1965,
pp424-430). The series (3.27) converges uniformly for u,> u
and can therefore be integrated term by term when inserted
into the integral for the potential:

Vp = V(Up, 6p, Xp) - K J -- d =

1 -0 njmj(i-) Unm Ynm(6P,"P) (3.28)
n=0 m=-n

where

U iK(-1) m unm- E(2n+l) Qf '(u PnlmI~iT)?nm(6. ) df (3.29)

Changinq to spherical coordinates under the integral sign
and using (3.25) yields

in + 1 A (2n-2k) IR )n-2kU nm ' 25E -k 1k (n-k)! (T"

"[(2n-4k+l)(n-2k-m)!(n-2k+m)!]- iK fjj r )n-2k. (3.30)

"n 2k,m ( ,p ) d
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Recalling the density integral interpretation for the
spherical hatmonic coefficients (2.31), this results in

innl -(2n-2k)! _2n-4k+lnm 2n  k!(n-) (n-2k-m)! (n-2k+m)!k=O 0 (3.31)

R ) n-2k+l1T Vn-2k,m

Both the Legendre functions 0,, and the coefficients of
the above sum are difficult to calculate for large n with
computers using finite digit arithmetic. With the goal of
more tractable computations in mind, consider the definition

a n+l 2n +l (2n+1)! _(2n+1)_(n-_)_m

nm( P 2ui -V (2"1 -") !(n+m)!"
(3.32)

4Qn (iO )

where .f =u,/E, a.fi/E. Then the ellipsoidal series
expansion of V (equation (3.28)) changes to

-4 n

VP- n0 =-njmj(P) -nm(mp rp) (3.33)

where now, by combining (3.31) and (3.32), we have

S rnUnto kI nmk Vn-2k,m 'S'[ ](.
k-0

with

(2n-2k)!n! (2n-4k+l)(n-m)!(n+m)! .j 1nmk " 2n)!k!(n-k)! [(2n+l)(n-2k-m)!(n-2k+m)!-

n 0 , -n I m n , 0 k s (3.35)

U
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The calculation of '.h using the above expression is yet
unmanageable on account of the factorials, but now a stable
recursive formula is available:
x nmk ' [ (2n-4k+l)(n-2k-m+l)(n-2k-m+2)( n-2k+ml)(n-2k+m+2 )0

2k(2n-2k+l) [2n-4k+5]t (3.36)

S 'bnm ,k-1
I<kIs, -n <mSn , n >0

with

Anmo =1, for all n m (3.37)

The above recursion is easily obtained from (3.35) by
expanding the factorials.

Formulas (3.34), (3.35), and (3.37) show that the
ellipsoidal harmonic coefficient V, equals the spherical
coefficient of the saae degree and order plus a linear
combination of spherical coefficients of lower degree (and
same order). The ratio R/S for the earth is approximately
o=12, hence from eguation (3.35), the coefficients X.,, ,

k 0 in this combination are generally much less than I for
low values of n. However, increasing values of n compensate
the rapid decrease of I/a."' thus also slowing the rate of
decrease of 6,-k with k; and in fact, they are generally
not monotonic, since for n ) 4.62. ),> 1. Therefore, the
larger degree ellipsoidal harmonics may have considerably
more, or less, power than their spherical counterparts,
depending on how the spherical coefficients combine to form
the ellipsoidal coetticients. Equation (3.34) also shows
that a finite number of spherical coefficients generates an
infinity of ellipsoidal coefficients; thus, if the function
is band limited in spherical coordinates, its ellipsoidal
spectrum is infinite. Bowever, in this case all ellipsoidal
harmonics of degree higher than the highest spherical degree
are linearly dependent on the lower degree harmonics.
Because the equatorial and rotational symmetries are
retained when transforming to ellipsoidal coordinates, a
spherical series of even and/or odd zonal harmonics
transforms into an ellipsoidal series of even and/or odd
zonals, respectively; this is also obvious from equation

p,,
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(3.341).

The transformation from ellipsoidal to spherical
harmonic coefficients is derived similarly. Substituting
(3.26) into tk~e density integral (2.31);

K E n (-)
Vnm R(T2-n-+1)(- in [(2n+1) c £ nm'nm!

S 2n-2k(nk)! 
-iU)

1(2n-2k+l) f f5 1j(u,8,) TP -2,M
k=O n-k1ni

-Y n-2km(6,A) CM2 (3.38)

which, vith (3.29) , becomes

V ~(n+m)!(n-m)! (E )n-i- S (-1 ) k (-)(n4~)nm 2n) T Ink!2n4+
k=O k! (n-2k)! (2l-2k+l)!

2n-4k+i 1 -

Tn-2k-m)! (f-2k+m)! I k "n-2km

k!0 L nmk 
1Un 2k,m S 

(339)m

where

Lnmk k!(n-2k)!(2n-2k+1)! 12n+l)(n-2k-m)!Kn-2k+m)

1 (3.410)

or, recursively,

L nio m. for all n,ua

4



104

(2n-2k+3)
nmk= 2k(2n-4k+3)(2n-4k+5) (3.141)

(2n-4k+1)(n-2k-m+1)(n-2k-m+2)(n-2k+m+1)(n-2k+m+2 )2n-4k+5F

1
'T nm,k-1

1 :S k<: s ,-n s< m <_ n ,n 2_ 0

Comparing this with the transformation from spherical to
ellipsoidal coefficients, the general comments made for the
latter obviously apply here as well. It is equally obvious
that each transformation is the inverse of the other since
the set of harmonic coefficients is unique for a given
function.

With the renornalization of U,,. as in (3.32), these
functions become computational tractable. From (Hobson,
1965, p.108) and with the usual normalization (1.14),

(2n+l)(n-m) ] 2 nnt( m+m)t 3.m )Qnm( ) = Em(n+m)l (2~) I"(P -1) m 1
7 -n+m+l ' (3.42)

n+m+2 n+m+1 3 1

where , is any complex number with sj, > 1; and F denotes
the hypergeoetric series. Using the explicit expansion of
F (Abromowitz and Stegun, 1970, p.556) , ,L4 =io,, and equation
(3.32), we find for the functionS

Sn(Op) ( + I )m (_2k)n+l [ - (m+n+1)(m+n+2)
np op 2 1!(2n+3)

1 + (m+n+1)(m+n+2)(m+n+3)(m+n+4) 1 (343)2 t 2!(2n+3)(2n+5) P

Ve note that as 9-*0 (ellipsoidal coordinate system

degenerates into the spherical coordinate system), a - r,

o ,-.m F'1, %/cr *=B/uF -+ R/r, and hence
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(c -- (RrAlso 0 for k > O, so that

-.% v.. and the ellipsoidal series (3.33) reverts to the

spherical series (2.30), as it must for E=O.

For later use, the functions F. are similarly
renormalized. Let

An (a) - (-I)m I V(2n+l)(n-m)!(n+m)! n n((i)(34)
Co in (2n+1)! n

then the reciprocal distance, in terms of ',. and B,., is

T n -2 1I Sn m(ap) Rnl (a) rnm(Spp,
nffOm (6,X) (3.45)

•rnm(6,,

With (Hobson, 1965, p.95), we find

S(a) 1 )im a () n[ 1 + (n-m)(n-m1)n() I )m (3)n [+(346
nm a. 2(gn-1) 02

which is a finite sum, the last term being 0 Using
the recursion formula for the Legendre functions:

nm (io) - ic an-l, m rpn-l,m(io)-Bn_2, m P n2,m(ia),

n a 2 , 0 _ m S n - 2

-n,nl(/2) . iT Pnl 1 ,n-I (i) , 1( 7)

n(ic) -iv1+-- - kn~l.n~l4iO) , n > 2

where
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X 12n-1) I(2n+17 (.(n'' nm-)(--1 3.48)
an-l,m '0 V n-m)(n+m) Bu-2,m V(2n-3)"(n+m)(n-m)

we obtain a stable and accurate recursion for the 1,,,:
= -i,m(0) + (n+m-l)(n-_m-) 1 -

nm(  0. Rn-Im (2n-)(2n-3) - n-2,m
n _> 2 ,0 m I n - 2

Ci -()Rn,n 1() - n-l,n-l() n n > 1 (3.49)

Rnn() 10 (nn ) n a 1

0 ,o 0o( CY) = 1

3.2 The Ei psoidal Series 2f the Gravity and Height
Anomalies

The above formulas establish the transformation from
spherical to ellipsoidal harmonic series (and vice versa)
for an arbitrary (Nevtonian) potential in the regions where
the series converge uniformly. Utilizing the powerful
theorem that harmonic functions and Newtonian potentials are
equivalent (Kellogg, 1953, p.218), the transformation of
series coefficients of the gravity anomaly and height
anomaly tollov immediately if we retain their definitions
based on the spherical approximation (equations j2.42) and
(2.57)). Because

= 1 11

r ~A p=rpa pT CW p (3.50)

are both harmonic functions in the exterior space,
application of equations (3.33) and (3.34) to equations
(2.50) and (2.58) yields

Rn

Ag(u p,6p A p) R n0 n njmj (Up) Tnm Ynm( 6$p) (3.51)rp n-O rn--nP'
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with

Ynm k= 1  fnmk gn-2k,m S = [ (3.52)

and

R 2 n=0 m-n njmr p nm nm p' (353)

where

S nr
urn _ ~Znkrn S (3.54)

and where (r a,) and )-k are given by (3.43) and (3.35).

The coefficients a , or d.. do not represent the
ellipsoidal spectrum (as defined by (3.11)) of the gravity
anomaly or height anomaly since the above sums are
premultiplied by r. , which is a function of up,, , and hence
not constant on any ellipsoid. Finally we note that Y,. =0
for m=-1,0,1, since gj,.=O: also if g.. =0 and z =0., then the
corresponding zero degree ellipsoidal coefficients vanish as
well.

3.3 The Derivat"& of j Error Seie

Using the formulation of the disturbing potential as an
integral of a generalized density layer, the downward
continuation error of the ellipsoidal harmonic series is
similarly derived for the gravity anomaly. Attempting a
corresponding development for the potential requires the
expansion of the kernel E, above and below the bounding
ellipsoid, into ellipsoidal harmonics. A starting point for
such a derivation night be the spherical series (2.115), but
this may prove to be a formidable task. It is not pursued
here because the series divergence has the greater relative
effect on the series for the gravity anomaly.

*
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Thus consider the equation

R2
T - ff (6 , K dw (3.55)

where dco=sini dS d) (ellipsoidal coordinates) and K (the
notation is modified to avoid the conflict with the linear
eccentricity) is the same kernel as before (equation
(2.85)), but in ellipsoidal coordinates; that is. only v
has changed to include the Jacobian of the spherical to
ellipsoidal coordinate transformation. Using the g
definition of the gravity anomaly (equation (2.42)), ye get,
as before (see (2.91)),

2Rr coa
&9 2 f V(6, ) ( 1 )dw (3.56)

Pr)p

By the addition theorem (1.9)

rscos y) r 1 3

r 2  - p I YIM(ex) Ylm(epP) (3.57)
p p m--i m p

Since Y,,, cep. p)/r satisfies Laplace's equation and is
regular at infinity, it is a potential; therefore, the
transformation equations (3.33),(3.34) from spherical to
ellipsoidal harmonic series apply:

1-m(0 ) -=
p IM ni0= t=-n nitj(p P nt Ynt(6 Xp) (35

where

;nt k O Xntk qn-2k,t (3.59)

and the q., are the corresponding spherical harmonic

*
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coefficients:

0 if n 0l
qnt = if n =1 and 1 = -1, 0, 1 (3.60)

Inserting (3.60) and (3.59) into (3.58), we find

1 * ?iSn ps)p- =nmC~, p)
FToM nm6 a) Y (6 'X ) (3.61)

n odd

Finally, by substituting (3.61) into (3.57) and considering
the transformation between inner harmonic functions,
equation (3.26), we obtain the formula

rsCos* 1 n

p n-0 min~l (3.62)

•rnm (6 p, p

where tne explicit expression for u,, is not difficult to
find, but of no consequence in the present derivation; it is
noted, however, that u,, 1, for all m. Combining (3.62)
with the ellipsoidal series expansion for the reciprocal
distance, equation (3.46), and inserting this into (3.56)
results in

V - (ap) ffv(6,X) anm,(u,6,A)dw,
P n-0 m n p (3.63)

•/nm (6 pIN p

where the point P is located above the bounding ellipsoid
(u,) b) and
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nm '[ 1 T n 'nm .) nm( ,) nm ,1mI( (3.64)
" 7Zm(6,X)]B

(Note that a,, =0.) If the earth's surface is an ellipsoid
(with semiminor axis b, e.g. b--6356755.288 a for the mean
earth ellipsoid) on which the gravity anomaly is a known
function,

Ag p Y- 0 ()3.65)p n nmi (T nnm nmP'pc
nol

then in this case the integral equation (3.63) can be
solved, since a comparison with (3.65) shows that

nm rff v(6,X) anm(u,6,a)d

R f v(6,).) [2f-1 fnimj ) vinm(6 , X) -0 a (xR)

lm( ) )]d (3.66)

R D R ()Dffn- l mf5 )  n Iml (  nm - "-.Unm 1, 1l DlM

where -b/I and

V(B,,6,n) = r 1n-m- (D D nm Ynm(6A) (3.67)n=O m=-n

Since uIP=l and i,.=, D,,, cannot be determined from
equation (3.66); ye may assume D,, =D,, =0. Then

2n+1 1 (3.68)Dnm "n " lml (a) Rnj ml (U) Ynm (.

For points below the bounding ellipsoid, consider the
regions
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2 )/p > b} P W2 U , p < b} (3.69)

IL (,~, )ew,# the reciprocal distance is expanded as

~, 2m-+ SnImJ(O)rlnmj(up) Ynm(SX) •

p m-(, ) (3.70)

Substituting this and the series for rscosw/r" (3.62) into
(3.56) yields
A9 R2 CD n

rp I I X Sn~m(a p ) ff V(6,X) anmdw Ynm( 6 ,A) +
p n=O m-n P W1

R co n 1
+ T F -F ff v(6,X) R2+ Rnlmj(Op SnhrI(a)' 3.1pn=O m=-n w2 (3.71)

*I nm(6,X) +

- U nimj(ap) ) ?im(6,X))]dw 1nm(6pp

Note that r =u/E is a function of (, X ) , since u is the
coordinate of a point on the eartb s surface.

The downward continuation error of the ellipsoidal
harmonic series for a g is then the difference between
(3.63), truncated at n=h, and the true series (3.71). After
several simplifications, in which (3.64) is duly considered,
this error can be expressed as

C(AAg1) I I d (a) ( ,~+
n=O mmndnm p nm p p

W n (3.72)

n-n+1 m--ndm p nm (pp

where
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d (r Rdnm(r) - 2 SrpS njmj v(6,X)[nI[(ap) rnlml(a) (3.73)

- Rn;Imp ) 4ml (0)] Ynm(6AX)dw

and

dn(rp) - dnm(rp) r p Snlm[(ap)nm (3.74)

_ being the ellipsoidal coefficients of the outer series
of r. A g,. In view of (3.43) and (3.46) the kernel of
(3.73) can be expanded as a series in

w=I-2D (3.75)

By using the series expressions for S a) and ,.. ( r),
namely equations (3.43) and (3.46), and collecting like
powers of j and r;', it is found (through a lengA.hg and
tedious derivation) that

nm(a) P .nm( ) - nm() n (a p) ,a

=(2n-fJ)- [i ( 1+ ILI- + T12----0(L

p p p1 1 O .1 )

2( 21-L + T22= +0(-L +
up up (3.76)

+ 0+ +T- 1 Z + O( ))+

+ 0(fs )]
where

T&I - -1, Til -l , T21 1 22, 2 -2

" T1 -n(n+l) T,,- m(2n+l)(n+l)
e "36 - n ) - 6

T3 -: 2 + J(n2+ n+ m2) ,T42 - C-32
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As with the total downward continuation error in spherical
harmonic series, the linear, as well as quadratic, terms
terms in i sun to zero for points on or above the earth's
suiface. The expression (3.76) provides two- to three-digit
accuracy for n=300, m=0, 150,300 and Tp =12. 160886,
Cr =12.193239 which represent the worst situations; that is,
when. the point of compjutation, P, and the point of
integration are farthest apart in terms of the coordinate a
(then the ratio Gj/r is least and i is largest).

3.4 The Results of the Nuerical Analysis

Since the infinite ellipsoidal harmonic series of the
gravity (or potential) converges with certainty only outside
the bounding ellipsoid, the evaluation of the truncated
series at the earth's surface is associated vith a downward
continuation error. However, we should expect the error to
be smaller than for the spherical series since the
penetration into the region of (probable) divergence is
generally not as deep, especially in the polar areas.
Although this is almost obvious, it can be verified by
examining the divergence of the zonal series corresponding
to the simple density distributions of section 2.1. For
exaaple, Figure 19 shows the differences between the partial
sues of the ellipsoidal series and the true value of the
gravity anomaly evaluated at the point (r,=6357200 a,
91,=7!5). The eccentricity of the coordinate system was
taken as 2-450000 a so that the evaluation point lies below
the bounding ellipsoid: -5300 m for the equatorial disk and
-3500 a for the serrated ellipsoid. The ellipsoidal
harmonic coefficients were determined by applying the
transformation (3.52). Clearly, in contrast to Fig. 5, the
effect of divergence is more subdued, becoming noticeable
only when i > 1800.

The above expectations are not realized when comparing
the truncated ellipsoidal series of the gravity field
generated by the density layer of section 2.3 against the
corresponding truncated inner speia series. The
differences betbeen the partial sums for S=300 can be orders
of magnitude larger than the values listed in Tables 3 and
4. The only admissible conclusion, that this is a
comparison of incompatible spectra and is therefore
meaningless, reemphasizes the inherent danger in the
comparison of partial sums of different series representing
the same function.
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Figure 19: Partial suns ot ellipsoidal harmonic series of
A tor equatorial disk and serrated ellipsoid
density distributions (Figures 2 and 3) minus
corresponding true values evaluated at
r. =6357 200 &, ,=7 5.
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For the numerical study of the downward continuation
error, we can specify the density model by (3.68) in
conjunction with the coefficients (2.126). The quantities

W-Ji )?._,/R were set equal to ,.,, recognizing that a
different gravity model ensues and that the correlation to
the topography is no longer given by (2.131). This choice
of j. is equivalent to the assumption that the function
rA 9, (approximately on an ellipsoid) was analyzed in the
elliesoidal coordinate system ( , )6 ) to yield RB... (The
deqree variances of D% (3.68) and of (2n+1)-g..., equation
(2.94), differed only in the third digit.) Moreover, to
avoid unnecessary complications, the same surface model was
adopted, but the grid coordinates were identified as
ellipsoidal coordinates: Si=i&6 , where &8=0:6. Hence

= r 2 . - E2 si 2 4 (3.78)

The semisinor axis of the bounding ellipsoid (with
E=-521854.4492 a, see (3.9)) was found to be u,=6363096.071
a. The surface deviates from this ellipsoid by an RNS value
of 6114 a; the aeviation is around 6000 a whether at the
pole or equator. Other choices of the linear eccentricity E
may produce a closer overall fit to the surface; for
example, with E=523836.8873 a (a=6378140 m, f=1/296), the
bounding ellipsoid is closer to the surface at the poles,
but more distant at the equator, with a total RMS deviation
of 6085 m.

The evaluation of the coefficients d,,, of the downward
continuation error of ellipsoidal series is almost
identically performed as for the spherical series. The
expansion (3.76) minus the linear and quadratic terms in i
is substituted into (3.73), which, in turn, is discretized
according to the assumption that the surface model consists
of ellipsoidal compartments delineated by the coordinate
lines 6 =constant, X=constant, and that v is a step
function constant within each compartment.

In contrast to the determination of the error in the
spherical harmonic series, one value of up (u,=6356800 a)
sufficed to yield an ellipsoid with an adequate supply of
points within 100 m above the surface model, in all regions.
The RBS values of the downward continuation error series,
truncated at 3=300, at these points are shown in Table 8 for
the regions of Table 1 (where the latitudinal ranges now
refer to the reduced latitude). Also shown are the numbers
of total points on which the RBS values are based, as well
as the maximum absolute value in each group.
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Table 8: RhS downward continuation error of ellipsoidal
haiLonic series of gravity anomaly in regions of
Table 1 (latitude ranqes refer to reduced latitude)
at points on the ellipsoid u,=6356800 a
tL=52185o4.4492 a) and above the surface model no
more than 100 a. Maximum absolute values for each
region are given parenthetically.

Region ahs £(4g) (max C(4)) , *gal, 0 -n -300

0:3 - 359:7

No. of No. of S

points points

I 7410 1.9x10"" (3.sxlO ) 8355 2.7x1O"" (4.11 "  )

11 5003 1.7x10"' (1.1x10 " } 9328 .94xlO" (.45xl O -3 )

Ill 7282 1.1x1O*" (.96x10 " ) 2071 1.3x10 " (.63x10I )



117

The Lumerical results are limited to the demonstration
that the effect of divergence (n=300) of ellipsoidal
harmonic series near the earth's surface is considerably
less pronounced than in the case of series of spherical
harmonics. note also the essential uniformity of the errors
over all the latitudinal ranges.

a



4. Corrections o IM Spherica AProxinations

The ellipsoidal correction expounded by Lelgemann (1970)
and Moritz (1980) amend the spherical approximation by
accountinq for the general ellipticity of the earth's shape.
The spherical approximation of the relevant geodetic
quantities, g, ; , defined by (2.42) and (2.57), however,
do not conform precisely to MoritzOs definitions. To
achieve the spatial spherical harmonic expansion of the
height anomaly (equation (2.56)). as well as the
corresponding ellipsoidal expansion, the normal gravity was
equated with the gravity produced by a homogeneous ball of
mass it, instead of the conventional average value of y over
the spheropotential surface (the latter being assumed by
Moritz). Furthermore, the spherical approximation of the
gravity anomaly, according to Moritz (ibid., p.4 25 ), is
defined by

Tp f f Ago S(V) da (4.1)
a

which represents the solution to the (third) boundary value
problem if the bounding surface is a sphere; S(e-) is
Stokes' function. In equation (4.1) T is the actual
disturbing potential with no spherical approximation, and
both T and Ag0 are functions on the ellipsoid that
approximates the earth's surface, with sesiminor axis, say
b. Usinq coordinates for vhich the ellipsoid is a
coordinate surface, for example. ellipsoidal coordinates
(u, 6 )A) (Boritz uses geodetic coordinates), the angle y
loses its usual geometric meaning since it is defined by

cos, -cos6 cos6p + sin6 sin6 cos(- X p) (4.2)

where ( , ) ) and ( X.)p) are points on the ellisoi. y
may be interpreted as the central angle between the
projections of ellipsoidal points onto the unit sphere
according to the correspondence (3.12). Expressing T and S
in terms of harmonic functions,

118
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ca n

T(b,6pp) = I Aam Ynm(6 , X) (4.3)
np 0 m-n P

S( pp ) 9 J A) Y (6 p ) (4.4)
n=2 m=-n

directly yields

AgO(b,V,) =n m - An m  (61X) (4.5)
n=2 m ur ur

Equation (4.5) obviously differs from (3.51) because of the
lattergs dependence on r. Hence the ellipsoidal corrections
of noritz (1980, pp.318,327) to ; and &g are not
applicable here.

When abandoning the spherical approximations (2.42) and
(2.57), the sisple spectral relationship between the
potential and gravity, or height, anomaly is lost.
Nevertheless, to the approximation developed below and
knowing their relationship in the space domain, the latter
are still representable as series involving the spherical
harmonic functions.

In the following, we will build on the premise that the
disturbing potential is known to any desired accuracy, for
example, as a series of spherical or ellipsoidal harmonics.
The corrections to the spherical approximation of the height
anomaly and gravity anomaly will be derived to an accuracy
determined by the neglect of terms involving the fourth
power of the first eccentricity. Furthermore, derivatives
along spheropotential surface normals and along ellipsoidal
normals are not distinguished (they are identical on the
reference ellipsoid, if it is an eguipotential surface in
the nornal gravity tield). Thus the height anomaly is

UP [T  + C 2 32u (4.6)

where ')/'h is the directional derivative along the

mm. eP. -w -- --- .. . .. . . . . . ... . . . . . .. , , .
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ellipsoid normal. The vertical gradient of the normal
gravity, '/bh= U/'h, is on the order of
2 V/r=3x0-6s-t, so that, with ;g c 100 m, its omission
causes at most an error of 3 an. In order to achieve 0.5 cm
accuracy in the height anomaly, the normal gravity must be
accurate to about 50 ugal, so that in view of the above
gradient of about 0.3 agal/, yp may be substituted for ya
in (4.6). Similarly, the gravity anomaly in its most
rigorous form is

gp _ +. +v p + aY 2 + . (4.7)
P~~~~ -5-P a ~,t 3

where W is the earth s gravity potential, 9 is the normal
potential, and i/3H is the derivative along the plumb line,
i.e. the gradient. Terms of second and higher order can be
neglected, causing an error of at most 1.5x10 "  gal, since

/a i' = 6 KR/ 15X10" n" S" . Furthermore, as this
also gives the change in the vertical gradient of V with
height, the value of Ag changes by no more than 105x10 "2

mgal if I/ h is evaluated at P instead of Q.

Fig. 20 shows the direction of the plumb line with
respect to the orthogonal directions of dh, Zdp , cosi dA
at a point P; Z is the meridional radius of curvature of the
ellipsoid, N is the radius of curvature in the prime
vertical, and p is the geodetic latitude. If G is the
total deflection of the vertical (angle between dh and dH)
with components r and I , then, since these are small
angles, the direction cosines of dff with respect to the
normal directions are cos, , and H ° lence

a . cose a + + (4.8)Ncos aX

Considering Fig. 21, the directional derivative along
the ellipsoid normal is

3E COS* T--sin a (4.9)
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NcosT dX

Figure 20: The deflection of the vertical.

Figure 21: The noreal directional derivative.
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where 'Y is the angle between dh and dr. The ellipsoid
normal intersects the equator at a distance s from the
center; we have

ae2/1 - e sine as_____; ______ (4.10)

/1-e 2 sin2 e /l-e 2sin 20

Usina the law ot sines on the triangle OBQ, we obtain

r c =COtI cose + sine (411)

Hence with (4.10)

e 2 sinecose (412)tan ip = (__o__2)_

1 - e 2sin2 0

Pythagoras' theorem then easily furnishes the expressions

sin* = e 2 sine cos - je 4 (e 2 - 2) sin3 8 cos + O(e 6 ) (4.13)

cosip = - e~sin 2e +T- e sin 0 + O(e') (4.14)

Hence, neglecting terms of O(e4),

a=- - e 2 sine cosO (4.15)
7E ~ rae

Note that e" depends on the coordinate surface u-b under
consideration, but to the accuracies involved here, it can
be treated as a constant for points near the earth's
surface.

The normal potential, U, is given as a series of
spherical harmonics by Heiskanen and Moritz (1967,p.7 3 ):
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_ 1 a .2nU r -[ J2n(7: P2 (COs8)] + fr 2 side (4.16)r n=l 2.r 2

where JL.-O(e z " ) and w is the rotational speed of the
earth: wl- 5xl0"s' . The normal gravity, being the
gradient of U, is therefore

3U 3U 2-h -L -r- + e sine cos -B

KM 3 KM J 2 P 2 (cose) W 2 rsin(1 ecoe
(4.17)

+ O(e )

We note that wI re0.03)/s.'=0.003¥ = O(eL), so that the
terms vith c.?re can also be neglected. From (4.17), the
normal derivative of s is found to be

- = a - e 2 sneOS0 r

-V e~sine'cos8 r 9

r -- 3 "M J2 2 (c O s O ) + -wr sin] + 0 (e .1

Be nce

-- 2- -+ j2 (_L)2 P2 -K3 i 6 + O(e 4)) r

r
s

(1- 3J (r---)rP2 - w 2 r sinO+ O(e)) -1
(4.19)

2 3w 2r3M - 3J( )2P2 (cOS e) + T-K-V sin 2e] + 0(e)
r .

substituting (4.17) into (4.6), the height anomaly becomes



124

-- [l+3J 2 (-)2P2 (cos)+ s i n  + 0(e ) (4.20)

The correction above reaches a maximum value (0.33%) at the
poles, 9,=0 ° ,1800.

Taking note of (4.15) and (4.8), the gravity anomaly
(4.7), upon substituting (4.19), becomes

AgPaTVre2sincose paI + -l a T +C +O(e )
arp$ p ep P 1 P p

= rT -r T -e 2 sinepCos$ % Tp + (4.21)ar p rp P r pae p

+ (6J2 a? P 2(cOS )- ) Tp + p+ 0(e4 )
PY 's KM pi p pC

where Tp =WP-P is the distuzbing potential and

CP (1- cose DW awn__ naw=~~~ Zap "p
(4.22)

(1-cOSO ) - t pT_ - Tp NpCOSap aUp
P PZpao p

in which we used the fact that the normal potential does not
vary in lonqitude. The derivatives of T in (4.22) are the
components of the deflection of the vertical multiplied by
the normal gravity, and the derivative of U is

U --- J2 + W2r) sine cos e (4.23)
-Rae R

Finally,

g (4.24)
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so that an approximate upper bound for the magnitude of tP
is

IEpI I0' gpl + I2 y I + In2 y +

3K M + W rt)(4.25)
+ I pt--- J2 + )sine cosOl

Using g= y 9.b m/sL and 5 =1z 10", we find IEI <.0.34
agal; the dominant term is the last one, hence this bound
varies linearly with the magnitude of 3,.. In view of its
relation to the deflection of the vertical, the horizontal
derivative of T has typical values of S g =50 mgal, with an
upper bound ( T< 10) of 300 mgal. Therefore the third term
in (4.21) has a value of about 0.2 rgal (at most I mgal),
while the last two terms in (4.21) rarely amount to more
than 0.1 rgal. The formulas (4.20) and (4.21) are valid
anywhere on the earth's surface or above with an accuracy of
about e < 5 am and e ag < Ix10-1 rgal, respectively.
Equation (4.21) generalizes the correction derived by
Holodenskii et al. (1962, p.212) for anomalies on the
reference ellipsoid and is quite unlike the correction of
Moritz because of the different definition of spherical
approximation.

The equations (4.20) and (4.21) were developed in order
to provide the means for the precise evaluation of the
gravity and height anomalies using the spherical (or
ellipsoidal) harmonic series, whose formulation depends on
the adopted spherical approximation, namely (2.42) and
(2.57).



5. Summ_!z, onclusion, Recoendation

The expansion of the earth's gravitational potential
into a series of spherical harmonic functions has long been
used to describe it on a global basis. The question of the
validity of such an expansion at the earth's surface, though
propounded from the outset, has been addressed firmly only
recently and then primarily from a purely theoretical
standpoint (e.g. the Runge-Krarup theorem). While these
represent important advances, a definitive answer has yet to
be, or may never be, found. In the practical situation, the
infinite series is necessarily truncated at some degree i.
What effect the (possible, or even probable) divergence of
the infinite series at the earth's surface has on its
partial sums has received only a "first-generation"
analysis. kith the present study, we have taken a second
look at this effect, but the subsequent conclusions must be
carefully phrased and are necessarily lacking in numerical
specificity.

The downward continuation error, being defined here in
connec-tion with the effect of series divergence, is a
deterministic, or systematic, error; it has no stochastic
properties (one could argue this point if the convergence
surface is itself a stochastic process). Therefore, its
assessment is forthcoming if the true value of the field
which the series represents is known, such as in the case of
the simple density distributions of section 2.1. These
distributions were not designed to simulate the earth's
density, but their dimensions and the numerical
investigations were selected with the terrestrial situation
in mind. It was found that the partial sums of the
spherical harmonic series for the potential (and gravity
anomaly), evaluated below the surface of convergence, do not
show signs of divergence until the truncation degree is
relatively large. Also, Figure 8 suggests that the
divergence problem may affect the geopotential series only
if the truncation degree is 300 or greater. For the earth,
the requirement of knowing the true value of the potential
field at the surface is difficult to meet, even if, for the
purpose of an ad hoc analysis, models are introduced to
represent the earth's surface and gravity field.

126
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karly works vere based on modeling the earth's
lithospaere by a volumetric density distribution of
essentially constant value. In this and the present use of
a surface layer density distribution, the true values of the
modeled field can only be estimated, again, by a truncated
(inner) series expansion. It was found that low degree
comparisons of inner and outer series of the volumetric
density model give unrealistically large values of the
error. This result is attributable principally to the
inadequacy of the choice of the model. Furthermore, since
this model itself depends only marginally (through a crustal
density of 2.67 g/cmO, etc.) on the actual characteristics
of the earth's potential field, it was abandoned for a
surface density layer model which could be defined (although
uot optimally) so as to yield a reasonable representation of
the true potential field. This model does not represent
exactly the earth's field at resolutions greater than 200
ks, since random harmonic coefficients were generated to
fill in the detail to a resolution of 67 km. However, the
coefficients were forced to decay, with degree n, according
to a degree variance model characteristic of the true
gravity field. The main disadvantage of this density model
is the inability to compute the true values of the potential
on the surface to any desired accuracy. A model for which
this is no problem consists of a sufficiently large number
of point masses distributed globally just below the earth's
surface (to ensure the divergence of the series), as well as
deeper within (to generate long wavelength power). The
difficulty with this model would be the numerical
determination of the masses for a representative potential
field.

The downward continuation errors depicted in Tables 3
through 7 are completely insignificant with respect to
anticipated measurement accuracies of 1 mgal and 10 cm in
the gravity anomaly and geoid undulation, respectively. For
the anomaly the sum of the harmonics of the error up to
3egree 300 was found to be 0.3 - 0.5 A4gal (1 ̂ gal =
10-" ugal) near the equator, about 20 Agal in the
idlatitudes, and 80. - 90. mgal in the polar regions.

Similar minute values were obtained for the first 300
degrees of the error in the height anomalies: 0.3 - 0.5 44a
(1 um = 10- 6 a) in the low latitudes, about 70 1A m in the
midlatitudes, and approximately 400 * m near the poles. Of
course, these numbers do not give the entire error since
they exclude the contribution form degrees 301 to oo,
representing a truncation effect, i.e., the neglect of terms
of degree greater than I of the i series. We can expect
the usual degree variance models to provide a fair estimate
of this effect. This expectation is rather intuitive, based
on the near sphericity of the earth's surface, the results
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of section 2.1, and on the smallness of the values of Tables
3 and 4, but not founded on deductive reasoning; the same
expectation may prove to be erroneous for the volumetric
density model. Using the model (2.128), the RES truncation
error (E=300) has values (for point estimates) of about 30
mgal and 36 c, respectively. For the Gaussian smoothed
fields (95% of the 300-th degree harmonic is filtered), the
first 300 degrees of the gravity anomaly error approximately
sum to 0.02 s.gal (equatorial region), 1.0 Agal
(aidlatitudes) , and 4.0 Agal (near the poles), with
respective values of 0.02,um, 3.01Am, and 20/m for the
height anomaly. The 15S truncation effect is approximately
0.3 mgal and 0.7 cm, respectively. Therefore, the
estimation of point or mean gravity anomalies and geoid
undulations (height anomalies) using the outer series
expansion to degree 300 anywhere on the earth's surface is
practically unaffected by the divergence of the total
series.

Throughout this exposition emphasis has been on the
dissimilarity of pattial sums of inner and outer series.
For a constant radius r,=R, greater than the bounding sphere
radius R, the coefficients of the partial sum of the outer
spherical harmonic series for the potential represent a
portion of its spectrum on the sphere of radius HP. Since
the spheres of radius r9 < H pass through the earth's
interior, the cofficients of the inner series (constant rp)
cannot represent the spectrum of the exterior potential.
Indeed, for the density layer model it is difficult to give
an interpretation to these coefficients, which in any case
vary as the point P moves on the earth's surface. By
accepting the conclusion that the truncated outer sseries
(F 6 300) can be used without concern for divergence anywhere
on the earth's surface, we also cannot identify the outer
harmonic components as spectral constituents of the
potential (or gravity anomaly) on the surface. (Note that
the harmonics should be evaluated on the actual surface of
the earth, and not on some mean earth sphere.) Therefore,
any evaluation of the outer series must be accompanied by an
unambiguous statement regarding the quantity being
estimated. For example, by introducing the Gaussian
average, we attempt to eliminate, or filter, the high-degree
information, so that the inner and outer series truncated at
300 are nore nearly comparable.

A major part of this report was devoted to the
development of ellipsoidal harmonic series, in particular,
the transformation between ellipsoidal and spherical
harmonic coetficients. Although the downward continuation
error in ellipsoidal series is g.nerally less than in
spherical series, especially in the polar regions, there
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seems to be no need in practice ( S 300) to make the
conversion for simple evaluations. On the other hand,
because the spectral comp~onents of the potential on the
earth's surface bear a closer resemblance to ellipsoidal
harmonics than to spherical harmonics, the analysis of
terrestrial data (including altimetry) is more correctly
compared to (or combined with) the ellipsoidal spectrum.
For example, the analysis of a global set of geoid
undulations (in the ellipsoidal coordinate system (6*))
yields harmonic coefficients which should be transformed
according to (3.34),,(3.35) before comparing them to
potential coefficients derived from satellite data.

The expansions of the simulated surface and gravity
field were restricted to terms of degree no greater than 300
because of limited computer storage capabilities, rather
than a concern about excessive computer time. Obviously,
for higher expansions of the potential, the error analysis
must be redone since extrapolations on the basis Of Table 5
are risky. In any new study of the downward continuation
error one should endeavor to devise a density distribution
(such as point masses) for which the potential function can
be evaluated to any accuracy, thus allowing a more
definitive asesment of the series divergence. Should the
error ever prove to be relatively significant, it is
recommended that corrections not be applied to spherical
harmonic coefficients if the conversion to ellipsoidal
harmonics eliminates the significance of the error.

The investigations in sections 2 and 3 have relied on
approximate formulas for the gravity anomaly and geoid
undulation (or height anomaly) in order to simplify their
functional relatinship to the disturbing potential. In
section 4, corrections to these approximations were
developed with the premise that the disturbing potential is
a known quantity (e.g. in series form) and with a relative
accuracy on the order of the square of the earth's
flattening. These corrections should be applied to Ag,r
whether they are evaluated using the spherical series
(2.50) ,(2.58) or the ellipsoidal series (3.51) ,(3.53)
(taking due account of the coordinate systems involved).
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V*PINDIXES

A. Convergenoe ga &ig jct Colli.&

The "proof of convergence' by Arnold (1978) can be
outlined as follows. It is well known that any reasonably
well behaved function (not necessarily continuous) on a
surface is expandable as a series of surface spherical
harmonic functions. Instead, however, one may ask whether
the set of solid spherical harmonics

Znm rn~l DM

considered as surface functions of two variables e,) (i.e.
r-r ( 9 k )) is also a complete set for functions defined on
the surface. In this case, the series for the surface
potential

a n
V(8,A) I # (1.2)

n=O m=-n OX )nm

would be a uniformly convergent series everywhere on the
surface. Consider now the monotonically decreasing sequence
r" '/rs+'. rl> r, which is, moreover, bounded. Hence
abel's convergence criterion can be applied to claim the
convergence of

V(r',O,) I O r in+1 nm(eA) (1.3)n-0 mm-n  rnl

for every r'>r. Since the function r'O,G.X) thus
defined is harmonic and stisfies the boundary values, by
the uniqueness of the boundary-value problem, V must be
earth's potential. Furthermore, by the uniqueness of the
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spherical harmonic expansion of the potential, the above
series coincides with the series that would be determined on
the bounding sphere. Thus, to prove convergence of the
spherical harmonic series everywhere on and above the
earthis surface, indeed everywhere above the Bjerhamuar
sphere, it is enough to prove the completeness of the
functions (A.1). Arnold failed here as his "proofsw of
completeness rely on the assumed truth of the conjecture.
In a more recent paper (Arnold, 1980), the completeness of
the functions (A.1) is supposed to be proved by shoving that
there exists no function P such that

Jf p2 do > 0 (A,4)

and such that

fJ P ZnM do = 0 , all n,m
0

But this is a necessary and sufficient condition for
completeness of orthogonal functions; the Z,,. are clearly
not orthogonal and the proof fails again.

A eproof of divergencew of the potential series at the
earth's surface was presented by Borrison (1970) under the
assumption that the zonal coefficients do not decay, in
magnitude, faster than some fixed negative power of the
degree n. However, the Oproofe also relies on the erroneous
statement that the spherical harmonic series diverges if its
subseries of zonals diverges (the latter was shown for the
assumed coefficient decay). The fallacy of this argument is
easily demonstrated by the example of the alternating serips

S(-) + (A.6)

n-1 n

abicb converges (to the value 1n2), but the nubseries of
even terms only, or odd terms only, by itself diverges.
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.ri Expansions Ior j Serrated Ellipsoid
For points P below the bounding sphere, the serrated,

homogeneous ellipsoid is decomposed into regions for which
re > rs i and r, c rj . Substituting the series (2.7) and
(2.8) into (2.24), the potential is then expressible as a
convergent series:

V = 2N- f2 w fOi+1 ri r n+2 dr +
p0 =FOp

(B. 1)
ri+ fSi ED)n-1dr] P (cos Oda

ji r nl

where i =min (r,,r.) ; if r.> rsj , then the second integral
with respect to r vanishes. Equation (B.1) readily converts
to

Vp- 2fXr f f[ OSo f ( ) ArP (cosrr)da
PPn--O i0= J i r0tp) :a n(s)d

n even
N-1 2 7r 8+ 1  n+2 rs r (B.2)

)n+2 o e ~ P dr +fj (Ep)n-1dr) -. 2
0; P rp

• n ( cos *) d a]

where the equatorial symmetry has been invoked (only even
zonals appear in the series) and rsjr.: rst.. ; if r, ) r:S
for all i, then j-N-1. Performing the integrations with
respect to r and using

2 r 1e+ I_ n 2 7 (e ldl _

0 nd m ( l W Y (. 3)

a P+1-27r P n(Cosap) feI Pn (Cosa) sine dO
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we obtain

2 n+3 (rIs)n+3 ]Pn(C°Sp
VP= KXrP n 0 [4 r M1 i=O rp +

n even

+ 4' n=O 22nCO1  N-1 2n1 2-) -n i=j+l rsin02 (B-4)

n even Pn ( cO s O)) +

N-i 1
+4wfKxr~, 2 r L I G +I P'.(rose

where (using equation (2.59) of (Robson, 1965, p.33))

(2n+1)f +1 P(cos)sinode
i n

P n+1 (cose) - Pn 1 (cos) - Pn+l(Cosi+l) + (B.5)

4 Pn (cosQ+l) , n > 1

tP2(cos ei) - pI(cos e+, )  , n = 0

As reference potential, we may use the zero and second
degree terms:

Up n,2 4KXr 1 (N- (rIg)n+3 G-)Pn (cos6 ) (B.6)

Then the disturbing potential becomes for points P outside
the bounding sphere:

Tp V p - UP
~N-1

2  1 1),34 pKxr n+7. n+ )p n(Cos) (B.7)

n even

o'4
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and for points P belov the bounding sphere:

TP = 4wcr(1 1 , r. )+3 )

n!4 n+ n~l iO rp ni Pn(cos%)+
ni even

+ 2O 1 N-i 2n4-1 1 1
+ I =+ 11 ( - (.-,-

n =0- i-j+1 n3(-1 n--
n*2
n even *P n(Cose P) + (B. 8)

N-i(1si Nil ri ris
- =j+l 0 ij!J+1 LT r P T r)]

*iP2 (COSO))

Using the definition of the gravity anomaly (2.42), the
corresponding series are read4ily found to be

UP - 4wKxrp Tn-l X~j (j)n+ eP*Ip n+3)(2u1+l) rn
n-4 i-a P (B.9)
n even

.pn(cos8 ) r, > R

and for rp -C

Ag ~ - wcr o n11 Wn3 ] Cs
- 4Vcr~( (n+3)(2n+i:r) I 1 0 .) n+3

+ I N-i n+2 (EI)n-2 -4(2n+i)
+ D 0 2n i r

n02 (3.10)
n even .pn(cose P) +

1 N 4  N -i

* mj~' Pa(o8)

'2?2-C S0 )
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