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FOREWORD

Methodology and Characterization studies during fiscal years
1977 and 1978 included gravity surveys in ten valleys in Arizona
(five), Nevada (two), New Mexico (two), and California (one).
The gravity data were obtained for the purpose of estimating the
gross structure and shape of the basins and the thickness of the
valley fill. There was also the possibility of detecting
shallow rock in areas between boring locations. Generalized
interpretations from these surveys were included in Fugro
National's Characterization Reports (FN-TR--26a through e).

During the FY 77 surveys, measurements were made to form an
approximate one-mile grid over the study areas and contour maps
showing interpreted depth to bedrock were made. In FY 79, the
decision was made to concentrate on verifying and refining
suitable area boundaries. This decision resulted in a reduction
in the gravity program. Instead of obtaining gravity data on a
grid, the reduced program consisted of obtaining gravity
measurements along profiles across the valleys where Verifica-
tion Studies were also performed.

The Defense Mapping Agency (DMA), St. Louis was requested
to provide gravity data from their library to supplement the
gravity profiles. For Big Smoky, Reveille and Railroad valleys,
a sufficient density of library data is available to permit
construction of interpreted contour maps instead of just two-
dimensional cross sections.

In late summer of FY 79, supplementary funds became available to
begin data reduction. At that time inner zone terrain correc-
tions were begun on the library data and the profiles from Big
Smoky Valley, Nevada, and Butler and La Posa valleys, Arizona.
The profile data from Whirlwind, Hamlin, Snake East, White
River, Garden and Coal valleys, Nevada became available from the
field in early October, 1979.

A continuation of gravity interpretations has been incorporated
into the FY 80 program and the results are being summarized in
a series of valley reports. In reports covering Nevada-Utah
gravity studies will be numbered, "FN-TR-33-", followed by the
abbreviation for the subject valley. In addition, more detailed
reports of the results of FY 77 surveys in Dry Lake and Ralston
valleys, Nevada are being prepared. Verification studies are
continuing in FY 80 and gravity studies are included in the
program. DMA will continue to obtain the field measurements and
it is planned to return to the grid pattern. The interpretation
of the grid data will allow the production of contour maps which
will be valuable in the deep basin structural analysis needed
for computer modeling in the water resources program. The

i
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gravity interpretations will also be useful in Nuclear Hardness
and Survivability (NH&S) evaluations.

I The basic decisions governing the gravity program are made by
BMO following consultation with TRW Inc., Fugro National and the
DMA. Conduct of the gravity studies is a joint effort between
DMA and Fugro National. The field work, including planning,
logistics, surveying, and meter operation is done by the Defense
Mapping Agency Hydrographic/Topographic Center (DMAHTC) , head-
quartered in Cheyenne, Wyoming. DMAHTC reduces the data to
Simple Bouguer Anomaly (see Section A1.4, Appendix Al.0). The
Defense Mapping Agency Aerospace Center (DMAAC), St. Louis,
calculates outer zone terrain corrections.

Fugro National provides DMA with schedules showing the valleys
with the highest priorities. Fugro National also recommended
locations for the profiles in the FY 79 studies within the
constraints that they should follow existing roads or trails.
Any required inner zone terrain corrections are calculated by
Fugro National prior to making geologic interpretations.
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1.0 INTRODUCTION

1.1 OBJECTIVE

IGravity measurements were made in Garden Valley for the purpose

of estimating the overall shape of the structural basin, the

thickness of alluvial fill, and the location of concealed

faults. The estimates will be useful in modeling the dynamic

response of ground motion in the basin and in evaluating ground-

water resources.

1.2 LOCATION

Garden Valley is located in central Nevada and covers part of

Nye and Lincoln counties. The valley is accessible only by

improved and unimproved dirt roads. Caliente, Nevada is located

approximately 60 miles (97 km) east of the site on U.S. Highway

I 93 (Figure 1).

i Garden Valley is bounded on the northwest and west by Quinn

Canyon Range, to the southwest by the Worthington Mountains and

to the east by the Golden Gate Range (Figure 2).

1.3 SCOPE OF STUDY

The Defense Mapping Agency Hydrographic-Topographic Center/

Geodetic Survey Squadron (DMAHTC/GSS) made the 60 gravity

measurements for the three profiles used in this study (Appendix

A2.0). Data from the DMA gravity library was also used to

establish the regional gravity.

Profile positions are shown in Figure 2 and the locations of the

individual stations are shown on Drawing 1. The profile lengths

•-rm. NAMu aL., 1u0.
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range between 6 miles (10 kin) and 8 miles (14 kin), crossing from

bedrock to bedrock over the valley fill. The gravity sampling

Interval Is approximately 1 mile (1.6 kin) over the central

Ivalley and .25 mile (0.4 kin) near the valley boundaries. The

denser sampling was used near the valley flanks to define any

steep gravity gradients associated with boundary faults, and to

resolve anomalies with high spatial frequency that could be

associated with shallow bedrock.

The tolerance for establishing station elevations was 5 feet

(1.5 mn), The tolerance for elevation control limits the gravity

precision to 0.3 milligals.

k
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5

2.0 GRAVITY DATA REDUCTION

DMAHTC/GSS obtained the basic observations and reduced them to

Simple Bouguer Anomalies (SBA) for each station as described in

Appendix A1.0. Up to three levels of terrain corrections were

applied to convert the SBA to the Complete Bouguer Anomaly

(CBA). First, the Defense Mapping Agency Aerospace Center

(DMAAC), St. Louis, used its library of digitized terrain data

and a computer program to calculate corrections out to 104 miles

(167 kin) from each station. When the program could not calcu-

late the terrain effects near a station, a ring template was

used to estimate the effect of terrain within approximately

3000 feet (914 m) of the station. The third level of terrain

corrections was applied to those stations where 10 feet (3 m) or

more of relief was observed within 130 feet (40 m). In these

cases, the elevation differences were measured in the field at a

distance of 130 feet (40 m) along six directions from the

I stations. These data were used to calculate the effect of the

very near relief. The CBA data for the Garden Valley stations

are listed in Appendix A2.0.

I

[0
=-

SI



FN-TR-33-GN

3.0 GEOLOGY SUMMARY

The Grant Range consists primarily of east-southeast dipping

lower Paleozoic limestone, dolomite, and quartzite which are cut

by north-south trending thrust faults and normal faults (Howard,

1978). Except for the lower Paleozoic rocks which extend south

from the Grant Range, the Quinn Canyon Range is almost entirely

Tertiary volcanic rocks. The structure of the Quinn Canyon

Range is fairly simple except where the Paleozoic rocks are

exposed beneath the volcanics (Tschanz and Pampeyan, 1970). The

Worthington Mountains consist of Ordovician to Mississippian-

aged limestones, dolomites, and quartzites. Structurally, these

mountains consist of westward dipping strata which have been

thrust eastward over east dipping formations of the same or

younger age (Tschanz and Pampeyan, 1970). The Golden Gate Range

is a westward dipping fault block broken by northeast trending

faults. The range consists of limestone and dolomite overlain

in the north by Tertiary ash flow tuffs and Quaternary basalt

rI (Howard, 1978).

The western margin of Garden Valley has numerous, short, late

Quaternary and possibly Holocene faults (Fugro National, 1980).

These faults form discontinuous, north-south trending breaks

very near the foot of the Worthington, Quinn Canyon, and Grant

SRanges. No range bounding faults have been noted along the

eastern margin of the valley.

Valley-fill sediments in Garden Valley consist of alluvial fan

deposits of silt, sand, and gravel with some Pleistocene lake

1"IMu NATIONAL, IgIS.
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7

deposits at the extrer.: northern end (Fugro National FY 78 and

79 geology and drilling data). At the surface, fan units

comprise approximately 90 percent of the valley and lake sedi-

$ments make up about ten percent. Eakin (1963) states that

sediment thickness in Garden Valley is at least several hundred

feet thick and may be more than one thousand feet thick.

I
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4. 0 INTERPRETATION

A valley filled with alluvium which has a low-density relative

j to the surrounding bedrock creates a negative gravity anom-

aly. Gravity profiles across such valleys are often U-shaped,

low in the middle of the valley where the fill is thickest and

high on the ends where the fill thins and bedrock emerges.

Interpretation requires removal of regional trends leaving

the gravity reflection of the valley fill. The gravity data

and interpreted geologic models for the three profiles across

Garden Valley are shown in Figures 3 through 5.

4.1 REGIONAL-RESIDUAL SEPARATION

A fundamental step in gravity interpretation is isolation of

the part of the CBA which represents the geologic feature of

interest, in this case the relatively low density valley fill.

The portion of the CBA which corresponds to this alluvial

J material is called the "residual anomaly".

The CBA contains long-wavelength components from deep and broad

geologic structures extending far beyond the valley. These

long-wavelength components, called the regional gravity, have

been approximated by linear interpolation between CBA values at

bedrock stations on opposite ends of the profiles. Where only

one end of a profile was on bedrock, the regional value on the

other end was assigned a quantity consistent with the regional

trend of the valley. The regional gravity was subtracted from

the CBA and the resulting residual anomaly profiles were used

to model the valley. This regional separation technique is
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only approximate. Some regional effects may still remain after

the subtraction but the error is probably small compared to the

large residual anomaly values of these profiles.

The CBA values and the straight line regional field for each

profile is shown in the top portion of Figures 3 through 5. The

residual gravity anomaly (interpolated at evenly spaced points)

is shown by the crosses (x) in the center portion of Figures 3

through 5.

4.2 DENSITY SELECTION

The construction of a geologic model from the residual anomaly,

requires selection of density values representative of the

alluvial fill and of the underlying rock. Since only very

generalized density information is available, the geologic

interpretation of the gravity data can only be a coarse approxi-

mation. Average in situ density of the fill material was

measured between depths of 100 to 160 feet (30 to 49 m) in

six shallow borings. The observed density range for the

soil was 1.7 to 2.3 g/cm3 . The largest measured density value

was used in the modeling process, instead of the average,

because the overall alluvium density is expected to increase due

to compaction with depth (compaction with depth and age is

discussed by Woollard, 1962 and Grant and West, 1965).

The basement material underlying the Garden basin is thought to

be the Paleozoic carbonate rocks which are found in the sur-

rounding mountain ranges. Published values for carbonate rocks

Ptm*?UUL, IN.
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typically range between 2.6 and 2.8 g/cm3 . The Paleozoic

carbonate rocks in Nevada are generally reported to be relative-

ly high in density, on the order of 2.8 g/cm3. This value was
selected to represent the density of the basement rock.

Relative to a given basement density, the calculated basin depth

is inversely proportional to the density value assigned to the

valley fill materials. A one percent change in the average

alluvial fill density will result in a five percent change in

the calculated fill thickness.

4.3 MODELING

An iterative computer program that calculates the gravitational

field for two-dimensional models was used to approximate the

thickness of alluvium beneath each profile. The cross-sectional

models appear as a set of 0.5-km-wide blocks whose tops are at

surface elevation and whose bottoms represent the alluvium-

bedrock boundary. The elevations at the bottoms of the blocks

were adjusted by iterative computation until the computed

gravity anomaly for the valley fill differed by less than

one milligal from the observed residual anomaly.

The computed gravity anomaly from the final model is shown as a

continuous line in the second block of Figures 3 through 5.

The calculated basin models are shown in the third block of

Figures 3 through 5 with a suggested geologic interpretation

shown in the lowest block. The cross sections have a five times

vertical exaggeration so that gentle slopes appear steep.

V uWAllOAL. ON.
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The gravity survey of Garden Valley indicates a complex struc-

tural basin which was formed as a graben bounded by normal fault

system (Figure 6). The shape of the basin appears to be marked-

ly different between the Quinn Canyon and the Golden Gate Ranges

(Profiles GC-l and GC-2) than the shape between the Worthington

Mountains and the Golden Gate Range (Profile GC-3).

Both profiles GC-l and GC-2 (Figures 3 and 4) indicate a nearly

symmetrical basin bounded on both sides by at least two normal

fault systems. The maximum depth beneath profile GC-l is calcu-

lated to be about 4700 feet. At profile GC-2, the basin is 3 or

4 miles (5 or 6 km) wider and about 700 feet (213 m) shallower.

On profile GC-2, there is a small, relatively positive gravity

anomaly which may be an indication of a small horst in the

center of the basin. An alternative interpretation will be

discussed below.

* The basin cross-section beneath profile GC-3 appears to be

strongly assymetrical and much narrower than at profiles GC-l

and GC-2. The depth beneath GC-3 is comparable to the depth at

GC-I. This assymetry may be due to young tectonic uplift of the

Worthington Range block which is bounded on both flanks by

young, probably Quaternary faults (Fugro National, Inc., 1980).

4.4 DISCUSSION OF RESULTS

The differences in Basin shape indicated by the gravity inter-

pretation as well as the topographic expression of the valley

(see Figure 6) and surrounding mountains suggest that there mayI
have been significant forces operating at large angles to those

T NATINNAL. NUO.
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which are normally seen to have dominated formation of the basin

and range structures. The axis of the valley trends NE-SW

between profiles GC-l and GC-2, but it is essentially N-S at

GC-3. Similar distortions occur in the adjacent mountains,

being particularly noticeable between the Worthington mountains

and the Quinn Canyon ranges and in the Golden Gate Range near

the east end of profile GC-l. An E-W trending fault has been

mapped in the Golden Gate Range at this latter location. If

this fault were projected into the valley, it would cross

profile GC-2 where the previously mentioned, small, relatively

positive gravity anomaly occurs. Cross-valley faulting in this

vicinity could account for the surficial distortions, this small

gravity anomaly and the changes in basin shape. It could be the

reason that the maximum valley width occurs near profile GC-2.

N
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5.0 CONCLUSION

There is a large, well defined, negative gravity anomaly asso-

ciated with Garden Valley. An average density contrast of

0.50 g/cm3 between the alluvium and bedrock was used to calcu-

late the thickness of the valley fill material.

The gravity interpretation indicates there are major range

bounding normal faults on both sides of the valley. The basin

is approximately 4800 feet (1463 m) deep on the north and south

end. The central part of the basin shallows to a depth of 4000

feet (1219 in). The calculated bedrock depths are only approxi-

mations because litle Is known about the actual density distri-

bution in and around the valley. Future studies that acquire

better density data or measure actual depths to bedrock in deep

parts of the valley can be used to refine the gravity interpre-

I tation.

.1INLOO
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Al.0 GENERAL PRINCIPLES OF THE GRAVITY
EXPLORATION METHOD

A1.1 GENERAL

A gravity survey involves measurement of differences in the

i gravitational field between various points on the earth's

surface. The gravitational field values being measured are the

3 same as those influencing all objects on the surface of the

earth. They are generally associated with the force which

causes a 1 gm mass to be accelerated at 980 cm/sec 2 . This

I force is normally referred to as a 1 g force.

Even though in many applications the gravitational field at the

earth's surface is assumed to be constant, small but distin-

3 guishable differences in gravity occur from point to point.

In a gravity survey, the variations are measured in terms

I of milligals. A milligal is equal to 0.001 cm/second 2 or

0.00000102 g. The differences in gravity are caused by geo-

metrical effects, such as differences in elevation and latitude,

and by lateral variations in density within the earth. The

lateral density variations are a result of changes in geologic

conditions. For measurements at the surface of the earth, the

largest factor influencing the pull of gravity is the density of

all materials between the center of the earth and the point of

3 imeasurement.

To detect changes produced by differing geological conditions,

it is necessary to detect differences in the gravitational field

i as small as a few milligals. To recognize changes due to

i U ,NM, ON&
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geological conditions, the measurements are "corrected" to ac-

count for changes due to differences in elevation and latitude.

Given this background, the basic concept of the gravitational

exploration method, the anomaly, can be introduced. If, instead

of being an oblate spheroid characterized by complex density

variations, the earth were made up of concentric, homogeneous

shells, the gravitational field would be the same at all points

on the surface of the earth. The complexities in the earth's

shape and material distribution are the reason that the pull of

gravity is not the same from place to place. A difference in

gravity between two points which is not caused by the effects of

known geometrical differences, such as in elevation, latitude,

and surrounding terrain, is referred to as an "anomaly."

An anomaly reflects lateral differences in material densities.

The gravitational attraction is smaller at a place underlain by

relatively low density material than it is at a place underlain

by a relatively high density material. The term "negative

gravity anomaly" describes a situation in which the pull of

gravity within a prescribed area is small compared to the area

surrounding it. Low-density alluvial deposits in basins such as

those in the Nevada-Utah region produce negative gravity anoma-

lies in relation to the gravity values in the surrounding

mountains which are formed by more dense rocks.

F The objective of gravity exploration is to deduce the variations

in geologic conditions that produce the gravity anomalies

9'~ [identified during a gravity survey.



FN-TR-33-GN
Al-3

A1.2 INSTRUMENTS

The sensing element of a LaCoste and Romberg gravimeter is a

gmass suspended by a zero-length spring. Deflections of the

mass from a null position are proportional to changes in gravi-

tational attraction. These instruments are sealed and compen-

sated for atmospheric pressure changes. They are maintained at

a constant temperature by an internal heater element and thermo-

stat. The absolute value of gravity is not measured directly by

a gravimeter. It measures relative values of gravity between

one point and the next. Gravitational differences as small as

0.01 milligal can be measured.

A1.3 FIELD PROCEDURES

The gravimeter readings were calibrated in terms of absolute

gravity by taking readings twice daily at nearby USGS gravity

base stations. Gravimeter readings fluctuate because of small

time-related deviations due to the effect of earth tides and

instrument drift. Field readings were corrected to account for

these deviations. The magnitude of the tidal correction was

calculated using an equation suggested by Goguel (1954):

C = P + Ncos 0 (cos 0 + sin i ) + Scos 1 (cos - sin 1)

where C is the tidal correction factor, P, N, and S are time-

related variables, and 1 is the latitude of the observation

point. Tables giving the values of P, N, and S are published

annually by the European Association of Exploration Geophysi-

cists.

.- [
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!
The meter drift correction was based on readings taken at a

I designated base station at the start and end of each day. Any

difference between these two readings after they were corrected

for tidal effects was considered to have been the result of

instrumental drift. It was assumed that this drift occurred at

a uniform rate between the two readings. Corrections for drift

I were typically only a few hundredths of a milligal. Readings

g corrected for tidal effects and instrumental drift represented

the observed gravity at each station. The observed gravity

values represent the total gravitational pull of the entire

earth at the measurement stations.

AI.4 DATA REDUCTION

Several corrections or reductions are made to the observed

gravity to isolate the portion of the gravitational pull which

I is due to the crustal and near-surface materials. The gravity

remaining after these reductions is called the "Bouguer

Anomaly." Bouguer Anomaly values are the basis for geologic

interpretation. %o obtain the Bouguer Anomaly, the observed

gravity is -djusted to the value it would have had if it had

SI been measured at the geoid, a theoretically defined surface

which approximates the surface of mean sea level. The dif-

ference between the "adjusted" observed gravity and the gravity

3 at the geold calculated for a theoretically homogeneous earth is

the Bouguer Anomaly.

! nA MSL 1N.
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Four separate reductions, to account for four geometrical

effects, are made to the observed gravity at each station to

arrive at its Bouguer Anomaly value.

a. Free-Air Effect: Gravitational attraction varies inversely

as the square of the distance from the center of the earth.

Thus corrections must be applied for elevation. Observed

gravity levels are corrected for elevation using the normal

vertical gradient of:

FA = -0.09406 mg/ft (-0.3086 milligals/meter)

where FA is the free-air effect (the rate of change of gravity

with distance from the center of the earth). The free-air

correction is positive in sign since the correction is opposite

the effect.

b. Bouguer Effect: Like the free-air effect, the Bouguer

effect is a function of the elevation of the station, but it

considers the influence of a slab of earth materials between

the observation point on the surface of the earth and the

corresponding point on the geoid (sea level). Normal practice,

which is to assume that the density of the slab is 2.67 grams

per cubic centimeter was followed in these studies. The Bouguer

correction (8c), which is opposite in sign to the free-air

correction, was defined according to the following formula.

Bc = 0.01276 (2.67) hf (milligals per foot)

Bc = 0.04185 (2.67) hm (milligals per meter)

where hf is the height above sea level in feet and hm is the

iheight in meters.

Ir IIVA& mama.u
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c. Latitude Effect: Points at different latitudes will have

different "gravities" for two reasons. The earth (and the

geoid) is spheroidal, or flattened at the poles. Since points

at higher latitudes are closer to the center of the earth than

points near the equator, the gravity at the higher latitudes is

larger. As the earth spins, the centrifugal acceleration

I causes a slight decrease in gravity. At the higher latitudes

where the earth's radii are smaller, the centrifugal accel-

eration diminishes. The gravity formula for the Geodetic

Reference System, 1967, gives the theoretical value of gravity

at the geoid as a function of latitude. It is:

i g = 978.0381 (1 + 0.0053204 sin 2 1 - 0.0000058 sin 220) gals

where g is the theoretical acceleration of gravity and 0 is

the latitude in degrees. The positive term accounts for the

I spheroidal shape of the earth. The negative term adjusts for

the centrifugal acceleration.I
The previous two corrections (free air and Bouguer) have ad-

3 justed the observed gravity to the value it would have had at

the geoid (sea level). The theoretical value at the geoid for

I the latitude of the station is then subtracted from the adjusted

observed gravity. The remainder is called the Simple Bouguer

Anomaly (SBA). Most of this gravity represents the effect of

i material beneath the station, but part of it may be due to

irregularities in terrain (upper part of the Bouguer slab) away

I from the station.

j
II- 1 humavmuhinnas.m n mmu.lur Hmd HH
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d. Terrain Effect: Topographic relief around the station has

a negative effect on the gravitational force at the station. A

nearby hill has upward gravitational pull and a nearby valley

contributes less downward attraction than a nearby material

would have. Therefore, the corrections are always positive.

Corrections are made to the SBA when the terrain effects were

0.1 milligal or larger. Terrain corrected Bouguer values are

called the Complete Bouguer Anomaly (CBA). When the CBA is

obtained, the reduction of gravity at individual measurement

points (stations) is complete.

Al.5 INTERPRETATION

The first step in interpretation is to separate the portion of

the CBA that might be caused by the lightweight, basin-fill

material overlying the heavier bedrock material which forms the

surrounding mountains and presumably the basin floor. Since the

valley-fill sediments are absent at the stations read in the

mountains, the CBA values at these bedrock stations are used as

the basis for constructing a regional field over the valley. A

regional field is an estimation of the values *he CBA would have

had if the light weight sediments (the anomaly) had not been

there.

The difference between the CBA and the regional field is

called the "residual" field or residual anomaly. The residual

field is the interpreter's estimation of the gravitational

effect of the geologic anomaly. The zero value of the residual

II
) anomaly is not exactly at the rock outcrop line but at some

sr ATION a. N 6.
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distance on the "rock" side of the contact. The reason for this

is found in the explanation of the terrain effect. There is a

component of gravitational attraction from material which is

not directly beneath a point.

If the "regional" is well chosen, the magnitude of the residual

g anomaly is a function of the thickness of the anomalous (fill)

material and the density contrast. The density contrast is the

difference in density between the alluvial and bedrock material.

If this contrast were known, an accurate calculation of the

I thickness could be made. In most cases, the densities are not

well known and they also vary within the study area. In these

cases, it is necessary to use typical densities for materials

3 similar to those in the study area.

1 If the selected average density contrast is smaller than the

actual density contrast, the computed depth to bedrock will be

greater than the actual depth and vice-versa. The computed

depth is inversely proportional to the density contrast. A ten

percent error in density contrast produces a ten percent error

3 in computed depth. An iterative computer program is used to

calculate a subsurface model which will yield a gravitational

I field to match (approximately) the residual gravity anomaly.

N L
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