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SUMMARY

The problem of testing whether one regression function
is larger than another on a specified compact set R is consi-
dered. The regression functions must be linear functions of
the parameteré but need not be linear functions of the inde-
pendent variables. The proposed test statistic is compared to
a standard t percentile. The test has an exactly specified size in
typical situations. Properties of the power function of the
test are investigated. The related question of comparing a

regression function to a specified function is also considered.
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1. Introduction

In this paper we consider testing whether the regression
function from one population is everywhere above the regression
function from another population. A medical researcher, for
example, might be interested in testing whether the mean of
a response variable in a diseased population is larger than the
mean of a response variable in a healthy population for all pos-
sible values of an independent variable. Examples such as these
have been discussed by Tsutakawa and Hewett (1978), Hewett and
Lababidi (1980) and Spurrier, Hewett and Lababidi (1980) who have
considered this testing problenm,

The model considered herein generalizes the models of
Tsutakawa and Hewett (1978) and Hewett and Lababidi (1980) in
two ways. First the regression functions may be functions other
than linear functions of the independent variables. For example,
the regression functions may be quadratic or higher degree poly-
nomials. Second, the two regression functions need not be of
the same functional form. For example, one may be assumed to
be a linear function and the other a quadratic fun. The
test proposed herein reduces to the tests of Tsutakawa and
Hewett (1978) and Hewett and Lababidi (1980) for the special

models they consider. The proposed test requires no new tables

for its implementation. Only a standard t table is needed.
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The model and test are presented in Section 2.1. A
numerical example using the organ weight data of normal and
diabetic mice is presented in Section 2.2. Properties of the

test, including its power, are discussed in Section 3. The

e A cheniics

related problem of testing whether a single regression func-
tion everywherec exceeds a specified function is discussed in
Section 4.

2. Model, Test and Application R

2.1, Model and Test
Let {(le, Ylj)’ j=1, ..., nI} and {(xzj, Yzj); j=1, ..., n2}
denote two independent sets of observations where )

)(ij = (xijl’ o

., X..,.). The X.. may be observed random vectors
ijk ij

or design variables fixed by the experimenter. The entire analysis ]
is conditioned on the observed values of xij' Let R denote a 1
closed and bcunded subset of k-dimensional Euclidean space. R

is the set of possible values of the independent variables xij' 1
We assume that given the xij the Yij are independent normal ran-

dom variables with {

E(Y..lx.. ) =

AR E

X510 00 Mgk T Xijk

Z Bzm 1m le' T xijk) * fi(xij)ai

and

va'(yijlxijl = X5y cee xijk = xijk) s g

. 2
Bi'(eil' ceey eipi) , =1, 2, and 0~ are unknown parameters.
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The fi(x) = (fil(x)’ ooy fipi(x)), i =1, 2, are known vectors
of functions which define the functional form of the regression
functions. For example the fij might be polynomials such as
2 .

1, X s Xgs OF X Xq. By allowing P, = P, and flm 2 f2m(x),
this model allows the two regression functions to have different
functional forms. The first might be a linear function and the
second a quadratic function. But usually p, = p, and f,(x)= f,(x)
will be chosen so the regression functions have the same func-
tional form.

We wish to compare the regression functions fl(x)B1 and
fz(x)sz. In particular we are interested in whether fl(xle1
is always greater than fz(x)sz. The test we will propose is
a size a test of

Ho: fl(x)e1 < fz(x)s2 for at least one x ¢ R
vs.
HA: fl(x)s1 > fz(x)Bz for every x ¢ R.

Let bl and bz denote the least squares estimates of 81 and

82 and let
2 N
2 2
s* = r:: - £.(x..)b.)%/v
izl jzl ij iviji’ta
. 2

denote the pooled estimate of ¢ where v = n =Py N, - P,
The estimate bi has a multivariate normal distribution with mean
8 and covariance matrix 020;1 where the (m, n) element of Di is

n§

-1,. -1,.
j-zrl fim(xij)fin(xij). Let e(x) = £ (x)D "£1(x) + £,(x)D, £5(x).
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Then the variance of fl(x)b1 - fz(x)b2 is oze(x).

The test we will propose may be motivated in this way.
Consider comparing the two regression functions only at a sin-
gle point x € R, Let 'l'x = (fl(x)b1 - fz(x)bz)/SJe(x). The
test which rejects HOx: fl(x)B1 s fz(x)B2 in favor of

HAx: fl(x)B1 > fz(x)e2 when Tx > (v) is a size a test

tl-a
where tl_a(v) is the (1 - a)th percentile of a t distribution
with v degrees of freedom. The alternative of interest HA is
the intersection of all the HAx for all x ¢ R. It seems rea-
sonable to decide in favor of HA only if the test based on
Tx decides in favor of HAx for every x ¢ R. This leads us to
propose the following test.
Define the test statistic T by

(2.1) T= minT,.

b 4
xeR

Reject H  in favor of HA if and only if T > tl;a(v). This test

0
is always a level a test in that the probability of a type one

error is always less than or equal to a. This test has size

exactly equal to o if the fij are continuous functions of x

and there are values of Bl and 82 such that fl(x)Bl = fz(x)B2
for one value of x ¢ R and fl(x)sl > fz(x)s2 for all other
x € R. These facts arec proven in the Appendix. Secction 3 con-

tails examples of when the condition is satisfied and the size

is exactly a,
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The test statistic T will usually have to be evaluated
by numerical methods. This is discussed in Section 3. In
some cases it can be evaluated explicitly. In particular it
is shown in the Appendix that this test is equivalent to the
tests proposed by Tsutakawa and Hewett (1978) and Hewett and
Lababidi (1980) for the special models they consider if a < .5,
2.2. A Numerical Application

We consider the data relating body and kidney weight for
diabetic and healthy mice which was presented by Bishop (1973).
These data were analyzed by Tsutakawa and Hewett (1978). The
data are plotted in Figure 1. The independent variable x is
the body weight and the dependent variable y is the kidney
weight. We consider modelling the mean of the kidney weight as
a quadratic function of the body weight. We consider testing
Ho: 311 * By,x ¢t 813x2 < 821 + 822x + 823x2 for some x ¢ R
versus HA: Bll + Blzx + Blsx2 > 821 + ezzx + 823x2 for all x ¢ R
where the first population is the diabetic population and
R= {x: 26 < x <52}, The least squares line for the 9 dia-
betic mice is given by 1821.14 - 49.92x + .77x2. The least
squares line for the 25 healthy mice is given by
-434.68 + 62.70x - .85x°. s’ = (66052 + 196505)/(9 - 3 + 25 - 3)

= 9377.0. The matrices D;l and D;I are

;.4.-."‘_.4




408.0894 -19.1506 .2214

Dil = |-19.1506 .9031  -.0105
.2214 -.0105 .0001
and
81.1483 -4.6954 .0666
951 - -4.6954 .2735  -.0039
.0666 -.0039 .0001

Thus T, = a(x)/s’e(x) where a(x) = 2255.82 - 112.62x + 1.62x°
and e(x) = 489.2377 - 47.6920x + 1.7526x° - .0288x> + .0002x".
Numerical minimization of Tx for x between 26 and 52 yields the
test statistic T = .4797 which corresponds to x = 40.10. This
T is at approximately the 68th percentile of a t distribution

with 28 degrees of freedom.

3. Properties of the Test

3.1 Power Function Properties

The test we propose has size exactly a if the fij are con-
tinuous functions and there are values of 8, and B, such that
t'l(x)s1 = fz(x)e2 for one value of x ¢ R and fl(x)e1 > t‘z(x)e2
for all other x ¢ R. This condition is satisfied if the fij(x)
include the constant 1, the linear functicns xi, i=1, ..., k,

and the quadratic functions xixj. i=l, ..., k,j=1, ..., 1.

)
{
1
1

i
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Then B8, and 82 can be chosen so that

1
fl(x)el - fz(x)B2 = (x ~ xo)(x - X,)°, the square of the dis-
tance from x to Xgs where Xy is a fixed element of R. For this

choice, fl(x)sl - fz(x)sz is zero for x = X0 and is positive for

all other x. Another situation in which the condition is satis-

1} )
X: <x, $x.* j=1, ..., k}, the model considered
I J J

by Tsutakawa and Hewett (1978) and Hewett and Lababidi (1980).

k
m- s Blk = 1 and Bl(k+1) = -_zlxj.
k 3=
yields f (x)8, - £,(x)8, = jél(xj - xj*) which is zero for
X = (xl., N xk*) and positive for all other x € R. A numeri-

k
fied is if fi(x)Bi = Bi(k+1) + jgle..x. and

R = {x:

The choice of 82 =0, 8

cal corroboration of the fact that the size is exactly a is
found in the following sipulation study.

A simulation study was conducted to investigate the power
function of the test. In this study the regression functions
were fi(x)si = Byy * BNt 353x2, i =1, 2. The variance 02
was set equal to one. The sample sizes n, and n, were both 10

1 and x = -1 and 4 observa-

with 3 observations at each of x
tions at x = 0. R = {x: -1 < x <1}. The size of the test

was fixed at a= ,05 by using t.95(14) = 1,761. The International
Mathematics and Statistics Library programs GGNSM and GGCHS

were used to generate the random vector b1 - b2 and the random
variable Sz. A total of 3000 repetitions were used to obtain




each of the estimates in Tables 1 and 2.

The maximum probability of a Type I error takes place
when fl(x)s1 = fz(x)B2 for one x and fltx)B1 - f2(x)82 becomes
large for all other x. This can be observed in Table 1 where
the probability of a Type I error is given for various values
of B1 and Bz in the null hypothesis. As one proceeds down
Columns II, III, IV or V of Table 1, fl(x)B1 = fz(x)B2 for one

value of x(x = -1 for Columns III, IV and V and x = 0 for

Columns II) and fl(x)e1 - fz(x)a2 is becoming large for all
other values of x. The probability of a Type I error increases
to a = .05 as one proceeds down any column. The estimates
slightly exceced .05 in a few cases due to sampling error.

The power function of the proposed test exhibits the
following monotonicity property. If (81' 82) and (B;, 8;) are

two parameter vectors which satisfy
* * -
(3.1) fl(x)Bl fZ(x)Bz 2 fl(x)B1 fz(x)B2

for every x with strict inequality for some x, then the power
at (e;, a;) is greater than the power at (8,, ez). This pro-
perty is apparent as one proceeds down any column in Tables

1 or 2, across the first three columns in any row of Table 2,
or across the last three columns in any row of Table 1. It is
also apparent if one compares any two corresponding entries in
Table 2a and 2b since the regression functions are farther a-

part in 2b than in 2a.
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The power of the test is near one only if fl(x)s1 - fz(x)sz

is large for all x. This is the case for the lower entries in

Table 2. In Table 2, the minimum distance between the regression

functions is ¢. The power nears one only as the minimum dis-
tance ¢ becomes large.

The test we propose is biased in that the probability of
rejecting H0 is less than a for some (Bl’ 82) in HA' The fea-
ture was noted by Tsutakawa and Hewett (1978) for the special
model they considered and it continues to exist for the more
general models we consider. This biasedness can be observed
in the entries for ¢ = .5 which are less than .25 in Table 2.
But as noted by Tsutakawa and Hewett (1978) for their special
case, the test we propose is consistent in that, for any fixed
) in H

point (8 the power can be made arbitrarily near

1* B2 A’
one by choosing the sample sizes sufficiently large. Although
we do not fcel this bias is serious, it should be noted that
the power of thc test we propose may be small if fl(x)e1 ex-
ceeds fz(x)s2 by only a small amount over most of R.

The power function properties we have described in this
section are true in general, not just for the case of quadratic
regression we considered in the simulation experiment. The

proofs of thcse facts can be accomplished using the methods em-

ployed in proofs in the Appendix.
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3.2. Computational Shortcuts

In (2.1) the test statistic T was defined as the minimum

of Tx over the sct R. Typically the computation of the test
statistic will be accomplished by a numerical minimization of
Tx' But to perform the test the actual value of T need not

v)

be computed. One only needs to know whether T > Yo
or T < tl—a(v)‘ In this section we describe two shortcuts
which allow the determination of whether T > tl-u(v) or
T < tl—o(“) without the actual computation of T.
3.2.1. Shortcut for determining if H0 is accepted.
Let X* denote an arbitrary finite subset of R. For example,
if R = {x: X, SX S x;, i=1, ..., k}, X* might be the set
*

k .
of 2" e .o w! ., ¥ X, Oor x, = X. .
xtreme points (xl, » xk) here x1 i T i i

Let T" = min T_. Since T <T%, if T < t, (v) accept H..

xeX* 1-a 0
Furthermore if T = t“ the significance probability associated
with T is at least P(T0 > t°) where T0 has a central t distri-
bution with v degrees of freedom.

For the body kidney weight data of Section 2.2,

R= {x: 26 < x s 52}. Tx for x = 26 is .9962 and Tx for x = 52
is .6347. Either one of these points is less than T 95(28) = 1.7011
so the tcst accepts H, at level .05. Furthermore the significance

0
probability associated with T is at least P('l‘0 2 .6347) = ,27.

The exact significancc prabability computed in Section 2.2

was .32.
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In Tables 1, and 2 the second (middle) number for each
entry is the proportion of the acceptances which were deter-
mined by the shortcut method. These values indicate that the
usefulness of this shortcut depends on the actual regression
functions. But, in many cases, a large proportion of the
acceptances were determined by this shortcut. In 18 out of
the 62 cases in which there were some acceptances, all of
the acceptances were determined by the shortcut.

3.2.2. Shortcut for determining if HO is rejected.

For this shortcut to be valid,o must be no more than .5.
Since a usually satisfies a < .1, this restriction is not prac-
tically important. Let m denote the number of distinct non-
constant functions in {fij(x): i=1,2;§=1, ..., pi}
Let Z* denote the set of 2" points
(z;. z;) = ((zll' ceey zlpl), (2505 -« zzpz)) formed by

replacing f. . (x) by either max £, . (x) or min £, .(x) in
1 xeR ! xeR )

(fl(x), fz(x)). Note that if flr(x) = fzS(x) then 21 ° Zyg:
i.e., the maximum or minimum is used on both z; and z;. Let

T* = min T_, where
z*eZ*

RPN an-1_»- w1 a- *
T,» = (zlb1 zzbz)/s /;101 gt zZD2 2. IfT > tl_a(V)

then T > tl-a(”) and H_ can be rejected. Furthermore, if

0
T* = t*, the significance probability associated with T is less
than or equal to P(’l‘0 > t*) where To has a central T distribu-

tion with v degrees of freedom. If T* = T« where z* = (£, (x), £,(x))

s
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for some x ¢ R then, in fact, the significance probability
equals P(To > tV).

For example, suppose fl(x) = (1, x, xz), and fz(x) = (1, x),
and R = {x: -1 ¢ x < 2}. There are two distinct nonconstant

functions, x and x2

, and the 22 = 4 values of (z;, z;) in Z* are
G, -1, 9, 1, -1)), 1, -1, 4, 1, -1)), (1, 2, 0), 2, 2))
and ((1, 2, 4), (1, 2)). Points like ((1, -1, 0), (1, 2))

where x has been replaced by its minimum in z; and its maximum

in z; are not in Z*,
The validity of this shortcut is based on two facts, the
fact about functions which are the ratios of linear functions
and square roots of positive quadratic functions mentioned in
the proof of Theorem 3 and the fact that A = {(f (x), £,(x)): x e R}

is a subset of

B=({(z,, 2,): min £, . (x) s z.. smax £..(x) and z, = z_ if
1”2 x€R 1) yer i) ir 2s

flr(x) = fZS (x)}

so a minimum over A is not less than a minimum over B.

This shortcut was used in the simulation study of Section
3.1. In this case R = {x: -1 € x s 1}. fl(x) = fz(x) = (1, x, xz)
so there are m = 2 distinct nonconstant functions. The 2" = 4
points in Z* are ((12, -1, 0), (1, -1, 0)), (Q, -1, 1), (1, -1, 1)),
(1, 1, 0), (1, 1, 0)) and ((1, 1, 1), (1, &, 1}).

In Tables 1 and 2, the third (bottom) number for each entry

is the proportion of the rejections which were detected by this
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shortcut. The usefulness of this shortcut is seen to depend

on the actual value of the regression function but in many cases
the proportion is fairly high. In 17 of 71 cases all of the re-
jections were detected by this method, avoiding numerical mini-
mization of Tx'

3.2.3. Numerical minimization of Tx'

If neither of the shortcuts presented in Sections 3.2.1 or
3.2.2 determine whether Ho is to be accepted or rejected or if
the exact value of T is desired to compute an exact significance
probability, then the function Tx must be minimized by numerical
methods to determine the value of the test statistic T. The pro-
blemof minimizing a function such as Tx which is the ratio of two
functions of x has been studied extensively in the mathematical
programming literature by Charnes and Cooper (1962), Swarup (1965)
Sharma (1967) and Craven and Mond (1973, 1975a, and 1975b). These
authors have found that this non-linear programming problem is
equivalent to other nonlinear programming problems which do not

involve fractions. These results could simplify the numerical

minimization of Tx’

4. Comparison of a Regression Function with a Spegified Function.

The hypothesis that the regression function from a popula-
tion is everywhere above a specified function can be tested with

a test similar to the one described in Section 2. For this pro-

blem we only have the sample {(xlj. Ylj); i=1, ..., nl} from
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the first population. We wish to test

Ho: f(x)B1 s g(x) for at least one x € R

vSs

HA: f(x)61> g(x) for all x e R

where g(x) is a specified function. The functidn g(x) may be
a constant ¢ in which case we are testing whether the mean of
the response is greater than c for all possible values of the

independent variable x. Let
"
2 _ 2
s = j£1(y15 - £1(x 506/,

where v, =n, - p,. Let e (x) = fl(x)Dilfi(x) and

1° ™M

Tlx = (fl(x)bl - g(x))/sl Jel(x). Define the test statistic Tl

by

Tl(x) = min T

xeR 1x

A level g test of H0 verses HA is given by reject H0 if
T1 > tl-u(vl)'
This test enjoys all the same properties as the test based

on T described in Sections 2 and 3. For example, the test has

size exactly a if £ , £ and g are all continuous func-

p s e
11 lp1

tions and there is a value of B1 such that t'(x)sl = g(x) for one

value of x ¢ R and fl(x)B1 > g(x) for all other x ¢ R. The proofs

of these properties are analogous to those for T with the func-
tion fl(x)Bl - fz(x)e2 replaced by fl(x)a1 - g(x). These proofs

are not given herein.
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Table 1

Power of the Test and Percentage of Acceptances and Rejections
by Shortcuts! for Selected Points in Hg.

c 1 11 111 1V \
0 .0003 .0003 .0003 .0003 .0003
99 99 99 99 99
100 100 100 100 100
.0027 .0080 .0037 .0067 .0087
1 100 90 98 98 99
50 33 27 50 50
.0053 .0287 .0110 .0237 .0327 i
2 100 40 97 9% 99 7
75 22 30 39 63 |
.0060 .0483 .0267 .0493 .0523 :
5 100 0 97 100 100 1
100 16 16 32 78 i
{
.0060 .0510 .0460 .0523 .0523 K
25 100 9 99 100 100 i
100 15 9 30 100 ]
.0060 .0510 .0523 .0523 .0523
1000 100 0 100 100 100
100 15 5 30 100

1First (top) entry: estimated power ot the test

Second (middle) entry: percentage of acceptances detected by 1
shortcut in Section 3.2.1

Third (bottom) entry : percentage of rejections detected by
shortcut in Section 3.2.2

" PR

%Colum I : £ (08 - 508, = ol - x2)
Column 1II : fl(x)ﬁl - t'z(x)B2 cxX g
Colum III: £,(x)B, - £,(x)8, = c(x + 1)%/4 |
Column IV : fl(x)a1 - fz(x)a2 c(x ; 1)/2
Column V : fl(x)sl - fz(x)ez s ¢c(~x" ¢ 2x ¢+ 3)/4
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Table 2a
Power of the Test and Percentage of Acceptances and Rejections
by Shortcuts1 for Selected Points in Hi

c I I 111 1V v
,0053 .0290 .0547 .0180 .0560
.5 98 94 96 99 73
38 33 51 76 21
.0510 .1460 .2023 .0990 .2327
1 94 87 94 99 51
45 44 63 78 36
.5197 .6897 .7357 .6030 .7967
2 82 81 96 99 30
65 65 81 92 S9
.9323 .9647 .9667 .9387 .9907
3 91 93 99 100 29
90 90 97 100 88
1.000 1.000 1.000 1.000 1.000
5 -- -- - - --
100 100 100 100 100

1See Table 1 footnote

2 ] - -
Column 1 : fl(x)sl fz(x)e2 c

Column IT : £ (x)B, - £,(x)B, = (x ¢ %4 s ¢
Column IIT : £ (x)8, - £,(X)8, (-x2 s 2x+ 3)/4+ ¢
Column IV : fl(x)e1 - fz(x)ez -x2 +1+¢

. - 2
Column V : fl(x)a1 fz(x)s2 2 x“ ¢ ¢
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Table 2b

Power of the Test and Percentage of Acceptances and Rejections
by Shortcutsl for Selected Points in Hi.

C I Il 111 IV \'
.0053 .0870 .1453 .0250 .1510
.5 98 94 100 100 o
18 11 79 100 17
.0S810 .2543 .3167 L1107 . 3680
1 94 92 100 100 0
45 18 87 100 28
.5197 7557 .7700 .6077 . 8460
2 82 94 100 100 0
65 32 96 100 57
.9323 L9677 .9680 L9387 .9933
3 91 99 100 100 0
90 68 100 100 88
s 1.0000 1.0000 1.0000 1.0000 1.0000
100 100 100 100 100
lSec Table 1 footnote.
Xolumn 1 : £,(x)8, - £,(x)8, = ¢
Colum II : fl(X)B1 - fz(x)B2 s (x ¢ 1)2 +c

Column III: fl(x)B1 - fz(X)B2
Column 1V : fl(x)BI - fz(x)Bz
Colum V : fl(x)al - fz(x)a2

-xz +2x + 3+ ¢

"
2 -4x° + 4 + ¢

4x2 +c
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KIDNEY
1300+

R Fommmm e frmmm e $ommm e R +HOLY
21.0 35.0 49,0
28.0 42,0 56.0

Figure 1
Body and Kidney Weight for
Healthy (A) and Diabetic (B) Mice
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Appendix

Proofs regarding the size of the test and the equivalence
of the test to the test proposed by Tsutakawa and Hewett (1978)
and Hewett and Lababidi (1980) are given in this appendix.

The size of the test.

Theorem 1: Under the assumptions of our model the test has

level a, i.c.,

A.l sup

P (T>t¢ (v)) s a.
B8 l1-a

Proof: Fix (81, 82) € Ho. There is an xo € R such that

fl(xo)B1 < fz(xo)ﬁz. Then, with probability one, T < Txo < Q
where
q - 10y - Fylxgiby - (£ (xg8y - £,(xp)8))
SJe(xo)

Q has a t distribution with v degrees of freedom. So

Po s, (T 7 t1.a) S PQ> £ (0D = 0.

Since 8, and 8, were arbitrary, A.1 is true. ||
Theorem 2: Suppose that all the fij(x), i=1,2,5=1, ..., 9,
are continuous on R. If therc exist gjand B; such that

L ] * * L ]
fl(xo)s1 = fz(xo)e2 for one X € R and fl(x)sl > fz(x)32 for

all other x ¢ R then the test has size ecxactly a, i.ec.,

Sokad

ittt &




s
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(31';:§€Ho PBI'BZ T falh) = o
The proof of Theorem 2 will use Lemma 1 which can be proved
using standard analysis methods.
Lemma 1: Let gn(x), n=1, 2, ..., be continuous functions on
a compact set R. Suppose there exists an X, € R such that gn(xo)
is constant (say c¢) for all n. Suppose gn(x) increases to infinity

as n » » for all x = Xg° Then

(A.2) lim min g _(x) = c.
n+= xeR n

Proof of Theorem 2: By Theorem 1 it suffices to show there exists

a sequence (B?, B;). n=1, 2, ..., such that, (B?. 8?) € Ho

forn=1, 2, ..., and

(A.48) lim Pn n (T>¢t. (V)) 2a .
N+ 81.32 1-0

The estimates bi’ i =1, 2, can be written as bi = Zi . Bi

wherc zl, Z_ and S arc independent, and Zi has an pi~variate

2
normal distribution with mean 0 and variance-covariance matrix

020;1. In terms of these quantities, the statistics T and Tx

can be written as

Ta= T(zl’ zzg Sn Bl, 82) = nin Tx(Zl, Zz, S' Bl’ 82)
xeR
and
£ (x)Z, - £.(x)Z, + £ (x)B, - f
Tx(zl’ sz S, 81, 32) -1 1 2( ) 2 1( ) 1 Z(X)BZ._ .
Sve(x)
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Consider the sequence (B?. 82) defined by s? = ne; where the
B; are defined in the statement of Theorem 2. For a fixed

P
value of z, ¢ Rpl. 5, € R2and s > 0, define
g, (x) =T (z,, 25, 8, e’l‘. 8'2')- 1

The gn(x) satisfy the conditions of Lemma 1 since 1) fij are
: n _ n ]
continuous, 2) sve(x) > 0, 3) fl(xo)s1 = fz(xo)a2 and :

4) fl(x)e? - fz(x)ag increases to infinity as n + « for all

"

. n .n « ok
X # X By Lemma 2, %ﬁg T(zl, 255 S, 31, 32) = Tx (zl, 2, S, B> 32).

0
Since 215 2y and s were arbitrary, this implies that
n n * » s
T(Zl' 22, S, By ez) converges to Txo(zl’ Z,, S, 8] 82) with
probability one and hence in distribution. Thus _
n _n 1
lim P n(T >t (v)) = lim P(T(2,, 2,, S, B;, B)) >t (V)
onl 'Y 1-a e 1° %2 T 1 2 1-a ’

= * *
PCT, () Zp0 S 610 B) > £y () 4

Equivalence with tests proposed by Tsutakawa and Hewett (1978)

. snd Hewett and Latabidi (1980).

k
Theorem 3: Suppose f; (x)8, = Big o.z Bijfj and R has the

j=1
from R = {x: Xjw < xg s x;, j=1, ..., k}. Consider the test
which rejects Hy if ™ > tl-a(") where T* = min T, and X* is the

xeX*
set of 2k points for which xj is either xj* or x;. Suppose

a < .5. Then the tests based on T* and T are equivalent.
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Proof. For any k + 1 dimensional vectors b1 and b2 and s > 0,
Tx is a linear function of (xl, oo xk) divided by the square ;
root of a quadratic function of (xl, cees xk) which is posi- ;
tive for all (xy, .-, xk) € Rk. Such a function has the pro- |
perty that T = min T_ 2 O implies T* = min T_ = T. (This is
xex* * xeR X
easily proved for k = 1 and can be proven for general k by
induction.). For any bl’ bz and s > 0, T < T so if T rejects
Ho, so does T*. Suppose bl' b2 and s are such that T* rcjects
Ho. Then T* > tl-a(“) 20, sincea € .5, s0T=T*and T
also rejects H,. I
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