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SUMMARY

The problem of testing whether one regression function

is larger than another on a specified compact set R is consi-

dered. The regression functions must be linear functions of

the parameters but need not be linear functions of the inde-

pendent variables. The proposed test statistic is compared to

a standard t percentile. The test has an exactly specified size in

typical situations. Properties of the power function of the

test are investigated. The related question of comparing a

regression function to a specified function is also considered.
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1. Introduction

In this paper we consider testing whether the regression

function from one population is everywhere above the regression

function from another population. A medical researcher, for

example, might be interested in testing whether the mean of

a response variable in a diseased population is larger than the

mean of a response variable in a healthy population for all pos-

sible values of an independent variable. Examples such as these

have been discussed by Tsutakawa and Hewett (1978), Hewett and

Lababidi (1980) and Spurrier, Hewett and Lababidi (1980) who have

considered this testing problem.

The model considered herein generalizes the models of

Tsutakawa and Hewett (1978) and Hewett and Lababidi (1980) in

two ways. First the regression functions may be functions other

than linear functions of the independent variables. For example,

the regression functions may be quadratic or higher degree poly-

nomials. Seconds the two regression functions need not be of

the same functional form. For example, one may be assumed to

be a linear function and the other a quadratic fu.,. The

test proposed herein reduces to the tests of Tsutakawa and

Hewett (1978) and Hewett and Lababidi (1980) for the special

models they consider. The proposed test requires no new tables

for its implementation. Only a standard t table is needed.
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The model and test are presented in Section 2.1. A

numerical example using the organ weight data of normal and

diabetic mice is presented in Section 2.2. Properties of the

test, including its power, are discussed in Section 3. The

related problem of testing whether a single regression func-

tion everywhere exceeds a specified function is discussed in

Section 4.

2. Model, Test and Application

2.1. Model and Test

Let {(Xl., YIj), j = 1, ... , nI } and {(X2j' Y2j); j = I, ... , n 2}

denote two independent sets of observations where

Xij = (Xij I , ... , Xijk). The Xij may be observed random vectors

or design variables fixed by the experimenter. The entire analysis

is conditioned on the observed values of X... Let R denote a

closed and bcunded subset of k-dimensional Euclidean space. R

is the set of possible values of the independent variables Xij.

We assume that given the X.. the Y.. are independent normal ran-1J i

dom variables with

ii(Y ijXijl ' xij I , ., Xijk ' 'ijk)
Pi
I im f im (xijl , ... ,I xij k )  f i (x ij )0i

mli

and

var(YijlXij I = xij I , ., Xij k  xij k ) = 2

26i= il .. , i~i*,i 1 , 2, and a are unknown parameters.
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The fi(x) (il(x), ... , fiPi (x)), i = 1, 2, are known vectors

of functions which define the functional form of the regression

functions. For example the f.j might be polynomials such as
2

1, xi, x2, or x x5. By allowing p1 , P2 and flm *

this model allows the two regression functions to have different

functional forms. The first might be a linear function and the

second a quadratic function. But usually p1 = P2 and fl(x)= f2 (x)

will be chosen so the regression functions have the same func-

tional form.

We wish to compare the regression functions f1(x)o1 and

f2 (x)82. In particular we are interested in whether f I )o1

is always greater than f2(x)82. The test we will propose is

a size Q test of

H0: f1(x)81 : f 2 (x)8 2  for at least one x c R

VS.

H A: f1(x) I > f 2 (x) 2  for every x c R.

Let bI and b 2 denote the least squares estimates of 81 and2l
B2 and let

22 n

s2 " ij - i(xij)bi)2/v
i~l jul 1

denote the pooled estimate of 2 where v a n I - P1 * n2 - P2

The estimate b. has a multivariate normal distribution with mean1

8i and covariance matrix o where the (m, n) element of D is

ni
j l (im xij)fin(Xij)" Let e(x) a f1(x)DI fi(x) * f2(x)D2 f( x).

• -- .. .. ... ... .. ...ai
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Then the variance of fI(x)b 1 - f 2 (x)b 2 is o2e(x).

The test we will propose may be motivated in this way.

Consider comparing the two regression functions only at a sin-

gle point x c R. Let T. = (f (x)b 1 - f2 (x)b2 )/soe(x). The

test which rejects Ho, fl1XWO1 5 f2 (x)2 in favor of

HAx: f 1 (x)B 1 > f2 (x)o2 when Tx  tl_, (v) is a size a test

where t- 1 (v) is the (I - a)th percentile of a t distribution

with v degrees of freedom. The alternative of interest HA is

the intersection of all the HAx for all x e R. It seems rea-

sonable to decide in favor of HA only if the test baised on

T decides in favor of Hx for every x e R. This leads us to

propose the following test.

Define the test statistic T by

(2.1) T = min T .
xeR

Reject H0 in favor of HA if and only if T > t ,,(v). This test

is always a level a test in that the probability of a type one

error is always less than or equal to a. This test has size

exactly equal to a if the fij are continuous functions of x

and there are values of B1 and B2 such that fl(x) 1 = f 2(x)B 2

for one value of x c R and fI(x)Bl f 2 (x)B 2 for all other

x e R. These facts are proven in the Appendix. Section 3 con-

tails examples of when the condition is satisfied and the size

is exactly 0.
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The test statistic T will usually have to be evaluated

by numerical methods. This is discussed in Section 3. In

some cases it can be evaluated explicitly. In particular it

is shown in the Appendix that this test is equivalent to the

tests proposed by Tsutakawa and Hewett (1978) and Hewett and

Lababidi (1980) for the special models they consider if a S .5.

2.2. A Numerical Application

We consider the data relating body and kidney weight for

diabetic and healthy mice which was presented by Bishop (1973).

These data were analyzed by Tsutakawa and Hewett (1978). The

data are plotted in Figure 1. The independent variable x is

the body weight and the dependent variable y is the kidney

weight. We consider modelling the mean of the kidney weight as

a quadratic function of the body weight. We consider testing

H0: 0l1 + 812x + a1 3x
2  8 021 + 822X + 823

x
2 for some x a R

versus HA1: 01 + 81 2X + 81 3x
2 > 821 + B2 2x + 82 3x

2 for all x c R

where the first population is the diabetic population and

R = (x: 26 5 x ! 52. The least squares line for the 9 dia-

betic mice is given by 1821.14 - 49.92x * .77x 2. The least

squares line for the 25 healthy mice is given by

2 2
-434.68 + 62.70x - .85x . s = (66052 + 196505)/(9 - 3 + 25 - 3)

= 9377.0. The matrices DI and D1are1 2
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408.0894 -19.1506 .22141

D1 19.1506 .9031 -.01054

L .2214 -.0105 .OOOIJ

and

81.1483 -4.6954 .0666

D2 1  -4.69S4 .273S -.0039I
.0666 - .0039 .000

2 3 4and e(x) 489.2377 - 47.6920x + 1.7526x - 0288x *.0002x

Numerical minimization of T for x between 26 and 52 yields the
X

test statistic T = .4797 which corresponds to x - 40.10. This

T is at approximately the 68th percentile of a t distribution

with 28 degrees of freedom.

3. Properties of the Test

3.1 Power Function Properties

Tho test we propose has size exactly a if the f. are con-

tinuous functions and there are values of Bi1 and B 2 such that

f1(WOBa f2(WO8 for one value of x c R and f1(WO81 > f2(WO8

for all other x e R. This condition is satisfied if the f. . Cx)

include the constant 1, the linear functions x.., i -1, ,

and the quadratic functions x ix j, i = 1, ... , k, 1 . , 2.



-7-

Then B1 and B2 can be chosen so that

fI(x)B1 - f2 (x)B2 = (x - x)(X - xo)', the square of the dis-

tance from x to xO , where x0 is a fixed element of R. For this

choice, f (X)81  - f2 (x)B2 is zero for x = x0 and is positive for

all other x. Another situation in which the condition is satis-
k

fied is if fi(x)Bi = Bi(kl) j xx and

R = (x: xj ! xj s xj*, j = 1, ... k k), the model considered

by Tsutakawa and Hewett (1978) and Hewett and Lababidi (1980).

k
The choice of 82 = 0, Bi = lk 1 and 0k l x.

yields fl(x)8l - f2(x)02  = (x. - xj,) which is zero for
j=l

x = (Xl,, ..., Xk, ) and positive for all other x c R. A numeri-

cal corroboration of the fact that the size is exactly a is

found in the following simulation study.

A simulation study was conducted to investigate the power

function of the test. In this study the regression functions

2.2were fi(x)Bi - ail + Bi2x +i3 x 2 , i = 1, 2. The variance a

was set equal to one. The sample sizes n1 and n2 were both 10

with 3 observations at each of x = I and x = -1 and 4 observa-

tions at x = 0. R = (x: -1 S x 5 11. The size of the test

was fixed at o= .05 by using t 95 (14) = 1.761. The International

Mathematics and Statistics Library programs GGNSN! and GGCHS

were used to generate the random vector b - b2 and the random

2
variable S .A total of 3000 repetitions were used to obtain
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each of the estimates in Tables 1 and 2.

The maximum probability of a Type I error takes place

wh,.--n f 1 (x)B 1 a f2 (x)02 for one x and fI(x) 1l - f2 (x)B2 becomes

large for all other x. This can be observed in Table 1 where

the probability of a Type I error is given for various values

of 01 and 02 in the null hypothesis. As one proceeds down

Columns II, III, IV or V of Table 1, fI(X)B = f2(x)02 for one

value of x(x - -1 for Columns III, IV and V and x = 0 for

Columns II) and f1(X)O - f2(x) 2 is becoming large for all

other values of x. The probability of a Type I error increases

to a - .OS as one proceeds down any column. The estimates

slightly exceed .05 in a few cases due to sampling error.

The power function of the proposed test exhibits the

following monotonicity property. If (Bi, 82) and (W, 8) are

two parameter vectors which satisfy

(3.1) f (x)8O - f 2 (x)WO f1(x)8l - f,(x)82

for every x with strict inequality for some x, then the power

at (81, 0;) is greater than the power at (81' 82). This pro-

perty is apparent as one proceeds down any column in Tables

I or 2, across the first three columns in any row of Table 2,

or across the last three columns in any row of Table 1. It is

also apparent if one compares any two corresponding entries in

Table 2a and 2b since the regression functions are farther a-

part in 2b than in 2a.
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The power of the test is near one only if f (X) 1l - f2 (x)82

is large for all x. This is the case for the lower entries in

Table 2. In Table 2, the minimum distance between the regression

functions is c. The power nears one only as the minimum dis-

tance c becomes large.

The test we propose is biased in that the probability of

rejecting H0 is less than a for some (81, 82 ) in H . The fea-

ture was noted by Tsutakawa and Hewett (1978) for the special

model they considered and it continues to exist for the more

general models we consider. This biasedness can be observed

in the entries for c = .5 which are less than .05 in Table 2.

But as noted by Tsutakawa and Hewett (1978) for their special

case, the test we propose is consistent in that, for any fixed

point ($1, 82) in H At the power can be made arbitrarily near

one by choosing the sample sizes sufficiently large. Although

we do not feel this bias is serious, it should be noted that

the power of the test we propose may be small if f1 (x)$1 ex-

ceeds f2 (x)02 by only a small amount over most of R.

The power function properties we have described in this

section are true in general, not just for the case of quadratic

regression we considered in the simulation experiment. The

proofs of these facts can be accomplished using the methods em-

ployed in proofs in the Appendix.
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3.2. Computational Shortcuts

In (2.1) the test statistic T was defined as the minimum

of T over the set R. Typically the computation of the testx

statistic will be accomplished by a numerical minimization of

T . But to perform the test the actual value of T need not

be computed. One only needs to know whether T > tl a (v)

or T ! t (v). In this section we describe two shortcuts

which allow the determination of whether T > tl(v) or

T ! t 1-(v) without the actual computation of T.

3.2.1. Shortcut for determining if H0 is accepted.

Let X* denote an arbitrary finite subset of R. For example,

if R = (x: x. s x. 5 x!, i = 1, ..., k), X* might be the set

of 2k extreme points (x1, ... , x)) where xi = xi or x. = x*
1k 1* 1 1

Let T' = min Tx. Since T 5 T, if T' -< t 1 (v) accept HO.
XEX* X 1c

Furthermore if T' t the significance probability associated

with T is at least P(T0 > t') where TO has a central t distri-

bution with v degrees of freedom.

For the body kidney weight data of Section 2.2,

R = (x: 26 5 x 5 52). T for x = 26 is .9962 and T for x = 52x x

is .6347. Either one of these points is less than T (28) = 1.7011
.95

so the test accepts H0 at level .05. Furthermore the significance

probability associated with T is at least P(T0 2 .6347) = .27.

The exact signlficancc probability computed in Section 2.2

was .32.

.. . .... .,I. ..J ,, m m__
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In Tables 1, and 2 the second (middle) number for each

entry is the proportion of the acceptances which were deter-

mined by the shortcut method. These values indicate that the

usefulness of this shortcut depends on the actual regression

functions. But, in many cases, a large proportion of the

acceptances were determined by this shortcut. In 18 out of

the 62 cases in which there were some acceptances, all of

the acceptances were determined by the shortcut.

3.2.2. Shortcut for determining if H 0 is rejected.

For this shortcut to be valda must be no more than .5.

Since a usually satisfies a 5 .1, this restriction is not prac-

tically important. Let m denote the number of distinct non-

constant functions in (f i(x): i - 1, 2; j = 1, ..., pi)

Let Z* denote the set of 2m points

(z, z*) ((zll, . .. , ll), (z21, ... , 2)) formed by
1 2 11, p1  2

replacing fij (x) by either max f. .(x) or min f ij (x) in
xeR 13 xeR 1

(fl(X), f2(x)). Note that if fir(X) = f2s(x) then Zlr = 2s'

i.e., the maximum or minimum is used on both z and z. Let

T* min T * where

= .*b z *b Vs I * z*DlZ* If T* > t (v)
z 1 1 2 2 1 1 1 2 2 2 1-a

then T > t1 l(v) and H0 can be rejected. Furthermore, if

T* - t*, the significance probability associated with T is less

than or equal to P(T0 > t*) where T has a central T distribu-

tion with v degrees of freedom. If T* a T * where z* - (f (x), f2(x))

IZ
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for some x c R then, in fact, the significance probability

equals P(T0 > t*).

For example, suppose f(x) -(1. x, x 2), and f 2 (x) = (1, x),

and R = {x: -1 ! x s 2). There are two distinct nonconstant

functions, x and x2 , and the 22 = 4 values of (zr, z*) in Z* are

((1, -1. 0), (1, -1)), ((1, -1, 4), (1, -1)), ((1, 2, 0), (1, 2))

and ((1, 2, 4), (1, 2)). Points like ((l, -1, 0), (1, 2))

where x has been replaced by its minimum in zl and its maximum

in t* are not in Z*.
2

The validity of this shortcut is based on two facts, the

fact about functions which are the ratios of linear functions

and square roots of positive quadratic functions mentioned in

the proof of Theorem 3 and the fact that A = f(fl(x), f2 (x)): x c R)

is a subset of

B = ((z I , z2): min f i j (x) 5 zij S max f. .(x) and zlr = z2s if
xeR xeRlr 2
f r(x) = f 2s(X)

so a minimum over A is not less than a minimum over B.

This shortcut was used in the simulation study of Section

3.1. In this case R = (x: -1 s x s 1). f1(X) = f 2 (x) = (, X x 2 )

so there are m - 2 distinct nonconstant functions. The 2m = 4

points in Z* are ((1, -1, 0), (1, -1, 0)), ((1, -1, 1), (1, -1, 1)),

((1, 1, 0), (1, 1, 0)) and ((I, 1# 1), (1. 1. 1)).

In Tables 1 and 2, the third (bottom) number for each entry

is the proportion of the rejections which were detected by this
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shortcut. The usefulness of this shortcut is seen to depend

on the actual value of the regression function but in many cases

the proportion is fairly high. In 17 of 71 cases all of the re-

jections were detected by this method, avoiding numerical mini-

mization of T •x

3.2.3. Numerical minimization of T
x

If neither of the shortcuts presented in Sections 3.2.1 or

3.2.2 determine whether H0 is to be accepted or rejected or if

the exact value of T is desired to compute an exact significance

probability, then the function T must be minimized by numericalx

methods to determine the value of the test statistic T. The pro-
blem ofminimizing a function such as T which is the ratio of two

x

functions of x has been studied extensively in the mathematical

programming literature by Charnes and Cooper (1962), Swarup (1965)

Sharma (1967) and Craven and Mond (1973, 1975a, and 1975b). These

authors have found that this non-linear programming problem is

equivalent to other nonlinear programming problems which do not

involve fractions. These results could simplify the numerical

minimization of Tx.

4. Comparison of a Regression Function with a Specified Function.

The hypothesis that the regression function from a popula-

tion is everywhere above a specified function can be tested with

a test similar to the one described in Section 2. For this pro-

blem we only have the sample ((X1j, Y1 j); j = 1, ... , n1) from
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the first population. We wish to test

H0 : f(x)8 1 ! g(x) for at least one x c R

vs

HA: f(x)B> g(x) for all x c R

where g(x) is a specified function. The functidn g(x) may be

a constant c in which case we are testing whether the mean of

the response is greater than c for all possible values of the

independent variable x. Let

2 n1 2n=1Sl =j~ I (Ylj -lxjbl2

wherev =n - P Let e 2(x) - f (x)DlIf'(x) and

T1X f (f (x)b1 - g(x))/s1 ie1(. Define the test statistic TT1

by

T1 (x) = minTxR T lx "

A level a test of H0 verses HA is given by reject H0 if

T > t 10v ).

This test enjoys all the same properties as the test based

on T described in Sections 2 and 3. For example, the test has

size exactly a if flip ... f lp and g are all continuous func-

tions and there is a value of 8 such that f(x)O1 = g(x) for one

value of x c R and fI(x)Bl > g(x) for all other x c R. The proofs

of these properties are analogous to those for T with the func-

tion fl(X)l - f2(x)02 replaced by f1(X)$1 - g(x). These proofs

are not given herein.
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Table 1

Power of the Test and Percentage of Acceptances and Rejections

by Shortcuts
I for Selected Points in H O2

C I II III IV V

0 .0003 .0003 .0003 .0003 .0003
99 99 99 99 99
100 100 100 100 100

.0027 .0080 .0037 .0067 .0087
1 100 90 98 98 99

50 33 27 so SO

.0053 .0287 .0110 .0237 .0327
2 100 40 97 98 99

75 22 30 39 63

.0060 .0483 .0267 .0493 .0523
S 100 0 97 100 100

100 16 16 32 78

.0060 .0510 .0460 .0523 .0S23
25 100 0 99 100 100

100 15 9 30 100

.0060 .0510 .0523 .0523 .0523
1000 100 0 100 100 100

100 1s 8 30 100
IFirst (top) entry: estimated power ot the test
Second (middle) entry: percentage of acceptances detected by

shortcut in Section 3.2.1
Third (bottom) entry percentage of rejections detected by

shortcut in Section 3.2.2

2Colmn I : f1(x)81 - f2 (x)82  c( - x2)

Columm II : f1(x)B1 - f2(x) 2 = cx

Colum III: fl(x) 1 - f 2(x)8 2 ' c(x * 1)2/4

Column IV : El(x)8 1 - f 2 (x)0 2 = c(x * 1)/2

Column V : f(X)B -f 2(x)2 a C(-x 2 + 2x + 3)/4

1 1 2 2

I.
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Table 2a

Power of the Test and Percentage of Acceptances and Rejections

by Shortcuts
1 for Selected Points in H 

2

A

C I II III IV V

.0053 .0290 .0547 .0180 .0560
.5 98 94 96 99 73

38 33 51 76 21

.0510 .1460 .2023 .0990 .2327

1 94 87 94 99 51
45 44 63 78 36

.5197 .6897 .7357 .6030 .7967
2 82 81 96 99 30

65 65 81 92 59

.9323 .9647 .9667 .9387 .9907
3 91 93 99 100 29

90 90 97 100 88

1.000 1.000 1.000 1.000 1.000

100 100 100 100 100

1See Table I footnote

2Column I : f 1 (x) B1 - f2(x)82 2 c

Column I : fl(x)8 1 - f 2 (x)0 2 2 (x + 1)2/4 c

Column III : f Ix) 1 f2(x)02 m (-x 2  2x 3)/4. c

Column lV : flIW)I1 f2(x)02 a -x2 *

Column V : fI 61 - f 2 (x)0 2 a x + C

e, .
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Table 2b

Power of the Test and Percentage of Acceptances and Rejections

by Shortcuts Ifor Selected Points in H 2
A'

C III11 IV V

.0053 .0870 .14S3 .0250 .1510
.s 98 94 100 100 0

38 11 79 100 17

.0slo .2S43 .3167 .1107 .3680
1 94 92 100 100 0

4S 1s 87 100 28

35197 .75S7 .7700 .6077 .8460
2 82 94 100 100 0

6S 32 96 100 57

.9323 .9677 .9680 .9387 .9933
3 91 99 100 100 0

90 68 100 100 88

1.0000 1.0000 1.0000 1.0000 1.0000
5 -- - --

100 100 100 100 100

1 See Table I footnote.

'Column I : BI- f 2(X)02 a 2

Column 11 f 1(x)01 - f 2(x)02 a (x 2 1) e c

Column III: f ~)1- f 2(x)02 = -x I 2x + 3 *c

Column IV :f 1 (x)01 - f =x) -4x' 4 + c

Column V :f 1(x)01 - f 24x2 2 +
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Healthy (A) and Diabetic (B) Mice
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Appendix

Proofs regarding the size of the test and the equivalence

of the test to the test proposed by Tsutakawa and Hewett (1978)

and Hewett and Lababidi (1980) are given in this appendix.

The size of the test.

Theorem 1: Under the assumptions of our model the test has

level a, i.e.,

A.1 sup P (T > tl Q(v)) : 0.

(8 1 , 2 )cH0 81.82

Proof: Fix (81, 2) e H0 * There is an x0 e R such that

f1(Xo0)a 1 f 2 (Xo)a 2 * Then, with probability one, T 5 T _ Q
0

where

f l (Xo)bl - f 2 (xo)b2 - (fl(xo)' 1 - f2 (x0 )02)

0

Q has a t distribution with v degrees of freedom. So

P8oeo2 (T > t 1 a(v)) - P(Q > t1-Q(V)) - a.

Since 8 and 02 were arbitrary, A.I is true. II

Theorem 2: Suppose that all the f ij(x), i - 1, 2, j = 1, p'

are continuous on R. If there exist 80and 80 such that

f (X o * a f 2 (xo)0* for one xo e R and f,(x)o* > f2(x)8o for

all other x c R then the test has size exactly a, i.e.,

I.



-21-

Sup P CT > tl(u)) = .
(81 ~ Ps2) H 8ol 1-CA

The proof of Theorem 2 will use Lemma 1 which can be proved

using standard analysis methods.

Lemma 1: Let gn (x), n = 1, 2, ..., be continuous functions on

a compact set R. Suppose there exists an x0 e R such that gn (x 0)

is constant (say c) for all n. Suppose gn (x) increases to infinity

as n - for all x * xO. Then

(A.2) lim min g (x) = c.
n-b xeR

Proof of Theorem 2: By Theorem I it suffices to show there exists

n n n n
a sequence (0 1 )p n m 1, 2, ... , such that, (B I ) E H0

for n = 1, 2, ..., and

(A.4) lir P n 8n (T > t1 (v)) > a.

The estimates bi, i = 1, 2, can be written as bi = Z. + .

wherc ZI, Z2 and S are independent, and Z. has an p.-variate

normal distribution with mean 0 and variance-covariance matrix

a 2D' . In terms of these quantities, the statistics T and TT x

can be written as

T - T(Z I , Z2, S I,it 82) = rn Tx(Z , Z2 , 5, Bit 82)
XER I

and

f (X)Z I f IWOI f 2 (x) 2Tx(Z I Z2, S, 82) - -1 2 (x)Z 2  f1 Bxx ' ' 2s'e
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Consider the sequence (80, 82) defined by 8n = n where the
1 2 1

8 are defined in the statement of Theorem 2. For a fixed
1

value of zI e Rpl, 22 E C 2 and s > 0, define

n n

gn(x) = Tx(zI. z2 , s, a, ,8 2).

The g (x) satisfy the conditions of Lemma I since 1) f.. are
n n 1

continuous, 2) s'eCx) > 0, 3) fl(xo)81 = f 2 (xo)Bn and

4) f (x)On - f2 (x)82 increases to infinity as n . - for all

x * xO . By Lemma 2, lim T(z , z2 , s 1 , B) = To (z1  z s, a).

Since zI, z2, and s were arbitrary, this implies that

2 n ) converges to T ( Z2, 5, *,  ) withT(ZI, Z 2 8 S, 8

probability one and hence in distribution. Thus

lim Pon,on(T > tl_a (v)) nlim P(T(Z 1 , Z2 , S 01, 1 ,  ) > tl_,(v))

aP(T (Zi , Z ,  , 8* 8*) >t (v))

1O 2P 1 2 1-

Equivalence with tests proposed by Tsutakawa and Hewett (1978)

nd. Hewett and Lababidi (1980).

Theorem 3: Suppose fi(x)8i = 0 o Bijx. and R has the

from R a (x: xj* 5 X S X?, j 3 1 ... , I}. Consider the test

which rejects H0 if T* > t l-(v) where T* rin T and X* is the

kx* x
set of 2 points for which x. is either xj, or x!. Suppose

3 3
a S .5. Then the tests based on T* and T are equivalent.

I.
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Proof. For any k 1 dimensional vectors b 1 and b2 and s > 0,

Tx is a linear function of (xi, ..., xk) divided by the square

root of a quadratic function of (x1 , ... , xk) which is posi-

tive for all (xIs ... , xk) E R k. Such a function has the pro-

perty that T* a min T a 0 implies T* = min T a T. (This is
xeX* X xeR x

easily proved for k = 1 and can be proven for general k by

induction.). For any b1 , b2 and s > 0, T S T* so if T rejects

H0, so does T*. Suppose b,, b2 and s are such that T* rejects

H0 . Then T* > ti~ (v) a 0, since a 5 .5, so T = T* and T0 0

also rejects H0 .0I

I.i
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