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SUMMARY

In this paper we examine various theories of belief alternate to

subjective probability. We examine the motivation for each such

theory, and place each theory within the context of decision aiding.

Initially, we examine the role of normative theories of decision making

and belief, distinguishing carefully between the terms normative and

prescriptive. We conclude that the decision analysis paradigm is

compelling normatively, but not prescriptively. We then discuss

inconsistency with the decision analysis axioms, and define incoherence

as the potential for forming inconsistent judgments. We propose that

decision analysis is a means for reducing incoherence. we further

argue that sensitivity analysis is used as a means for countering

incoherence, and that many extended theories of belief may be viewed

as formal justifications for sensitivity analysis.

We then examine theories of upper and lower probabilities from this

perspective, together with second-order and fuzzy probabilities. We

point out in each case the similarities with the other theories, and

look at the problem of eliciting the relevant information from a deci-

sion maker.



We exami~ne in detail the theory of Belief Functions of Shafer (1976),

one form of upper and lower probability. We discuss this in a theory

of evidence, rather than of belief, and show how such a theory might

provide advantages over traditional Bayesian methods. We conclude,

however, that the assessment problem has not been solved.

We then look at various measures of belief which have only ordinal

properties; including inductive probabilities (Cohen, 1977) and possi-

bility theory arising from fuzzy sets. We show that these too are

theories of evidence, but with greater potential for application due

to reduced assessment difficulties.

Finally, we look again at the implication of our work for practical

decision analysis and sensitivity analysis. We conclude that the

"divide and conquer" strategy is unsatisfactory when a sensitivity

analysis is considered, since some of the relevant information from

a decision maker is lost. We stress that to use the maximal infor-

mation, the entire belief structure should be modeled, and we make

tentative suggestions towards developing a new methodology based on

these observations.

Our overall conclusion is that the present-day practice of decision

analysis is adequate, but that it might be refined, and sensitivity

analysis improved, if note were taken of these alternate theories of

belief.
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1.0 INTRODUCTION

The work reported in this paper has arisen out of previous work on

Reconciling incoherent Judgment (RIJ). That work addressed the pro-

blem faced by an analyst when a decision maker (DM) provides subjective

assessments which fail to satisfy the axioms of probability and/or

utility theory. The DM is then being inconsistent , or exhibiting

incoherence. In our previous work on RIJ (Brown and Lindley, 1981;

Lindley, Tversky, and Brown, 1979; Freeling, 1980b, 1981a, b) we have

examined the possibility of producing mathematical techniques to pro-

vide a single set of consistent, reconciled values from the incon-

sistent set provided by the DM. While we have had some success in

producing such techniques, it has become apparent that there is no

unique reconciliation of a set of inconsistent values. We have also

found that it is necessary to ask further questions of the DM in

order to discover more about his/her belief structure. Such furthier

questions may concern the precision of the originally assessed values,

or the DM's confidence in those values, or the amount of information

captured by each assessment. In each case, these higher-order assess-

ments appear to be necessary because the ordinary decision-analytic

procedure of assessing probabilities and utilities in a decision

tree has failed to model adequately the whole of the DM's belief

structure.



The starting point for the current work has been that since "classical"

subjective probability theory has failed to model the situation adequately,

we should look at certain other mathematical theories of belief that

have been developed. If such a theory were sufficiently rich, it

may be that the inconsistency discovered relative to the probability

calculus would be acceptable under the alternative calculus. Failing

that, the perspective offered by such a theory might provide insights

into improved ways of performing a reconciliation.

We therefore, looked in detail at work that has been performed on

theories of belief alternative to subjective probability. In parti-

cular we looked at axiom systems producing upper and lower probabilities

(Koopman, 1940a, b; Good, 1962; Smith, 1961; Dempster, 1967; Suppes, 1974;

Nau, 1981); at the theory of belief functions (Shafer, 1976); at the

use of hierarchical probability structures (Good, 1952; Lindley,

Tversky, and Brown, 1979); at various uses of fuzzy set theory (Zadeh,

1965, 1978; Watson, Weiss, and Donnell, 1979; Yager, 1979; Freeling,

1979, 1980a, c, d); and at some related work of L.J. Cohen (1973, 1977,

1979, 1980) and of Shackle (1969).

Each of these theories has been well-developed in an abstract form.

Each theory weakens, in some way, the strength of the axioms that lead

to belief being measured by probabilities on what is, essentially, a

ratio scale. This is done by allowing vagueness in assessments, to

produce ranges of values on the ratio scale, producing upper and lower

probabilities; or by producing a scale which has only ordinal properties.

We also found that certain of the theories based the modeling of belief
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on the concept of chance (viz, subjective probability, upper and lower

probabilities, hierarchical probabilities), whereas some are best

interpreted in terms of weights of evidence (viz, belief functions,

fuzzy set theory, Cohen's inductive probabilities).

As our study of the mathematics and underlying philosophy of each of

these theories proceeded, we were forced to re-examine our motivation

for the study, and to rethink our views on incoherence, reconciliation,

and the aim of decision analysis. This led us to the conclusion that

the sensitivity analysis is a vital part of any decision analysis, to

a greater extent than is usually acknowledged. We present our reasoning

behind this conclusion in Section 2.0. in the three sections after that

we discuss the various alternate theories of belief in detail. We have

concentrated on their possible practical use in decision aiding or

inference, by concentrating on the behavioral assumptions implicit

in their foundations. We discuss the strengths and weaknesses of each

one, and look at the links and differences among them. In particular,

we look at how these theories may provide axiomatic justification for

sensitivity analysis; and what guidance can be given for the performance

of the analysis.

In Section 6.0 we summarize our results and present our conclusions.

The current research has been of a divergent nature--we have looked at

a wide range of literature and attempted to place it within a common

context; we have examined foundations of our practice and attempted to

generate a coherent philosophical basis; but we have not developed in

detail any specific procedures. Such research will, we hope, be
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embarked upon soon. The present paper will have achieved its aim if

it causes practicing decision analysts to re-examine the philosophy

behind their work, to be aware of the parallel but distinct theories

we discuss here, and stimulates further work on performance of sensi-

tivity analyses.
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2.0 BACKGROUND

The standard decision-analytic paradigm assumes that decision makers

(DMs) are capable of quantifying their uncertainties and values in

the form of probabilities and utilities, respectively (Raiffa, 1968;

Edwards, 1954). It is further assumed that these quantities may be

assessed to an arbitrary degree of precision. in practice, such an

assumption has been found to be false. Much psychological and practical

work has shown that decision makers may consistently violate the axioms

that lead to numerical scales for probabilities and utilities. Simi-

larly, the RIJ studies have been developed out of the observation that

DMs will often produce values that are inconsistent with the laws of

probability. They will also often protest that they have very little

confidence in a certain assessment; that they do not wish to be com-

mitted to any particular value. Such findings should not be viewed

with surprise--they may each be interpreted in terms of the limited

ability of human beings to handle and process information (Slovic, 1972).

In terms of the practical application of decision analysis as a decision

aid, these problems have usually been dealt with by carrying out

sensitivity analyses at the end of an analysis, in order to see whether

shifting the assessed values produces a shift in preferred alternatives.

* By studying the results of such sensitivity analyses far greater in-

sight into the nature of the problem can be obtained than from the

basic results.
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However, the standard axiom systems do rnot allow for the possibility

that a sensitivity analysis might be necessary. The argument (see,

e.g., Savage, 1954) is that, since a subjective probability is given

by the DM, that is the subjective probability for that DM, and there

is no meaning to producing arguments of the form "what if the pro-

bability were in fact slightly different." There has thus been a good

deal of work performed that is aimed at producing systems of belief

that differ from standard probability theory by allowing ranges of

probability, rather than the point values given in the standard para-

digmn. These ranges could then be understood as the range over which

the sensitivity analysis should be performed.

2.1 Upper and Lower Probabilities

The different theories that have been produced and which we shall dis-

cuss are presented in a variety of different ways. We shall see, how-

ever, that they may in fact be viewed as falling into one of just two

categories. The first category is that of producing upper and lower

probabilities. The second category consists of what we shall term

ordinal measures.

The basic concept of upper and lower probabilities is very simple,

and is directly related to our discussion of ranges of probability

rather than point estimates. For a particular event A, say, the

lower probability is simply the lower bound on the possible range of

probabilities, and the upper probability is the upper bound. Thus,

if the lower probability is equal to the upper one, this value is
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the only possible value in the range, which is, therefore, an ordinary

(point) probability. So we see that a theory of belief which is based

on upper and lower probabilities contains ordinary probability theory

as a subset. We shall term the entities which are expressed in terms

of lower and upper probabilities imprecise probabilities.

Although the concept of lower and upper probabilities appears quite

simple, there are several different variations on the theme. These

have been derived from differing axiom systems, and have been developed

with different aims in mind. We wish to examine them with regard to

their potential value as part of a decision aid. As we shall discuss

in the remainder of this section, the value is primarily related to

the implications for the performance of sensitivity analysis.

The term "ordinal measures" we use to refer to those theories of belief

with degrees of belief upon which only the mathematical operations of

maximum and minimum are permissible. Such scales, therefore, require

only ordinal properties. Since the concept of chance, which is the

basis of probability, has stronger properties, it appears that chance

is not the basis of ordinal measures. Rather, these are theories of

belief based on the concept of weights of evidence. As we discuss

later, this may be of value in theories of inference, but appears to

be of limited value for a theory of choice.

indeed, although our original aim was to develop an axiomatic theory

0 of choice based upon one of these extended theories of belief, with the

aim of improving upon standard DA, we came to the conclusion that this
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was a vain hope. To help understand our reasons for this, we now give

a personal view of the philosophy underlying the whole concept of

decision analysis.

2.2 Normative versus Prescriptive

It is often stated that decision analysis is a normative theory rather

than a descriptive theory of decision making (Edwards and Tversky, 1967).

It has also been claimed that decision analysis is prescriptive (Raiffa,

1968). A distinction can be made between the two concepts of normative

and prescriptive. A normative theory is one which outlines how a DM of

unlimited intellectual ability would act if he/she held certain beliefs

and values. A prescriptive theory is one which prescribes how a DM

should be advised to act, once certain required information has been

elicited from him/her. The distinction is that between an idealized

human on the one hand, and a real, fallible one on the other. Keeney

and Raiffa (1976) make this distinction in their preface.

We believe that decision analysis is correctly termed a normative theory,

in that axioms leading to subjective probability (such as Savage's) and

to von Neumann-Morgenstern utility deal exclusively with a perfectly

rational being. Those of us who are in the business of aiding decision-

making are, however, in need of a prescriptive theory. It would cer-

tainly not be considered very helpful by a DM if a decision analyst

were to say that if the DM were only more rational, the indicated de-

cision would be X, but unfortunately, due to the DM's irrationality,

the analyst has no idea what should be done.

2-4
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Keeney and Raiffa (1976) claim that decision analysis is prescriptive, in

that an analyst is trying to aid a real DM~. However, we are trying to make

the distinction here between the underlying foundations of decision analysis,

which we believe to be normative, and the practical application of decision

analysis, which must perforce be prescriptive. Any practical analyst will

have to add some heuristics to the basic theory in order to apply the

techniques. We should emphasize that we do not wish normative to be seen

as synonymous with objective. Two rational beings could have totally dif-

f erent belief s, and provide very dif ferent probabilities and utilities,

while each conforming precisely to the normative axioms.

it is in recognition of the normative nature of decision analysis and

of the requirement for prescription that one embarks upon sensitivity

analyses. One is, in effect, developing a pragmatic theory, saying:

a) The axioms show us how a perfect being would act - Normative
Assumption

b) The DM is not perfect, so let us assume he/she deviates only
slightly from the axioms, and hope that the sensitivity analysis
includes somewhere his/her actual behavior - Pragmatic Assumption.

Taking this perspective it appears that the search for a set of axioms

leading to a prescriptive theory must perforce be doomed to failure.

A set of axioms (together with the laws of logic) define rationality in

a given context, and on the pragmatic assumption that real DM's will not

be totally rational (in this sense), the theories will be inadequate for

prescription. One is in fact seeking some combination of descriptive

theory and normative theory. A decision analyst may be correctly viewed

as being on the borderline between philosophy and psychology. Put simp-

listically, a philosopher may say what one ought to do (normative) and

a psychologistwhat one does do (descriptive).
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We thus wish to argue that it would be an enterprise almost certainly

doomed to failure, were one to seek a fixed set of axioms to serve as

the basis for a prescriptive theory of decision aiding. A DM could

always violate such axioms. We do not wish, therefore, to use the

theories of belief we present in following sections as the foundation

for a new form of decision analysis. Rather, we view them as theories

which explore the consequences of deviating from "classical" subjective

probability, and which may, therefore, shed light upon the ways in

which we might deviate from the standard DA paradigm in order to im-

prove our decision aiding. Rather than an entirely new theory, we

are attempting to justify and explore methods for conducting sensitivity

analyses from the DA method.

2.3 Incoherence versus Inconsistency

The work reported in this paper has arisen out of our previous work

on the reconciliation of inconsistent judgments (RIJ). As discussed

in Section 1.0, our initial hope was to develop a theory of belief

which was able to explain within its extended scope those assessments

which appeared to be inconsistent in the context of the traditional

theory. As intimated in Section 2.2, we now feel such an aim to have

been misguided. To further understand our reasons for this we now

look more deeply at the two concepts of inconsistency and incoherence.

The two words have, in the previous work on RIJ, tended to be used

interchangeably. That has been, however, a mistake, and one which we

feel may have led to an obfuscation of some of the important issues.

2-6
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Inconsistency we shall use to refer to a set of judgments, or of assessed

values, which exhibit a disagreement with the axiom system being used.

(In general, in the context of the present paper, this will be the theory

of subjective probability.) For example, if Pr(A) is given as 0.4, Pr(B/A)

as 0.5, then if Pr(AvB) is not 0.2, we have an inconsistency. The

important point to note is that inconsistency is empirically defined--

we simply check to see whether a set of judgments violates the relevant

calculus. It is also apparent that inconsistency is only defined relative

to the calculus under consideration. Incoherence, on the other hand,

is less easily defined. There is an implication that an incoherent DM

must, in some fundamental way, be acting irrationally. There are, how-

ever, obvious problems in attempting to produce an "absolute" defi-

nition of rationality or coherence. We shall be forced to retain a

non-concrete definition of incoherence (although we feel that it is

important for philosophers and practitioners to think carefully about

the implications for definitions of rationality and coherence of the

current work and other work in this area). We shall define:

A DM is incoherent if he/she has failed correctly to integrate
all the information he/she obtained with his/her belief structure.

This rather begs the question by failing to define "correctly." How-

ever, in the present context of decision analysis, we shall use the

classical paradigm of DA as our reference standard. So, in this

context,

A DM is being incoherent if the potential exists in his/her

belief structure for inconsistent judgments.
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When using this definition, we feel that pejorative connotations of

the %ord incoherent should be downplayed. one could easily argue

that all D~s are to some extent incoherent in that various psycholo-

gical work (Kahneman and Tversky, 1974, 1979) has shown one can

usually "fool" subjects into inconsistent estimates.

We hypothesize that this is because coherence does not exist. At

least, we can never be sure that we have explored the entire belief

structure of the DM, so the potential for inconsistency will always

remain. However, as the DM integrates more information into his/her

belief structure, we may state that the degree of incoherence is

reduced. We may now restate in the present vocabulary our view of

practical DA:

Decision Analysis aims to reduce the incoherence of a decision
maker.

In other words, by eliciting probabilities and values from a decision

maker, and by pointing out inconsistencies in these assessments, a

decision analyst may help a DM explore his/her (incoherent) belief

structure, and to change that structure in such a way as to elimi-

nate those inconsistencies, and to reduce the potential for further

such inconsistencies.

A similar argument is put forward by French (1979a, b). He argues

that the role of a decision analysis is to set up a model decision

maker (m.d.m.) who is like the DM, but idealized to conform to the DA

2-8
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paradigm. By observing the implications of the DM4's assessed values

for the preferences of the m.d.m., the DM can educate him/herself

and change his/her inconsistent preference-belief structure. In

other words, we do not tell a DM what he/she thinks, but rather we

are helping him/her to think.

We believe that this observation regarding the aim of a decision

analysis has been insufficiently understood previously. This view

of incoherence has been ignored in much previous work on incoherence,

and also by other researc& on DA, both methodological and psychological.

2.4 Summary and C_,iclusduns

Our position may be stated succinctly as follows:

1. An axiomatic theory of decision making can at best be
normative, rather than prescriptive.

2. Any definition of optimal decision makin~g, derived
together with a methodological basis, will have an
axiomatic theory as its foundation, and all work on
inconsistency is only relative to that theory.

3. An extended theory of belief might still be violated by
DMs to produce inconsistency.

4. Inconsistency cannot be dealt with within the axiomatic
system that has been violated.

5. Sensitivity analysis is the activity that permits a
normative theory of decision making to become a pre-
scriptive decision aid.
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With this perspective, inconsistency is not necessarily pejorative

to the DM--the theory is as likely to be "at fault" as the DM. One

important aspect of the axiomatic theories of belief to be discussed,

is that each emphasizes that the entire belief structure must have

been considered in order to assign (imprecise) probabilities to a

given event. The concept from RIJ of "over-specification" is thus

not over-specifying the important events (which is the entire universe

for all events are relevant), but an attempt to explore further the

belief structure to obtain assessments more in line with axiomatic

foundations. Therefore, a reconciliation of such "over-specification"

should not be an end in itself, but rather an aid to exploring the

entire belief structure.

We accept the decision-analytic paradigm as correct normatively. We

do not wish to attempt to displace it from its position (although at

the beginning of the work reported here that had been our aim). We

believe, however, coherence to be an ideal unattainable by real DMs,

due to their having only finite information handling capability. The

study of the extended theories of belief discussed in this paper, the

study of RIJ, and the practice of sensitivity analysis all should be

aimed at helping the decision analyst cope with the practical problem

of incoherence of DMs. The importance of the theoretical work lies

in the insights we can gain into how deviations from the norm of DA

affect the conclusions.
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It should thus become clear that when practicing DA, this perception

of the fundamental incoherence of the DM should be borne in mind from

the start of the analysis, rather than just brought in at the end in

the form of a (often incomplete) sensitivity analysis. Throughout an

analysis we attempt to help the DM explore his/her entire belief struc-

ture to improve his/her own coherence, and thus to approach a fuller

understanding of his/her preferences between options.

2-11
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3.0 UPPER AND LOWER PROBABILITIES

The basic definition of lower and upper probabilities provided in the

previous section left an important question open--with what calculus

are these quantities to be combined? A major strength of the theories

of subjective probability is that each such theory permits the calculus

of probability theory to be used. This means that the basic strategy

of decision analysis, "divide-and-conquer," may be used. With this

strategy probabilities which would be difficult to assess directly are

split into several constituent probabilities. These may then be assessed

more simply. The resulting values are then combined in a logically

rigorous way to produce a value for the composite probability. The

important point is that, together with an interpretation of the meanings

of assessed probabilities, there are also appropriate rules for com-

bining these probabilities.

For an extended theory of belief to be of practical "alue, it is neces-

sary that a comparable calculus be available. It is in an attempt to

provide such a calculus that the differing axiom systems have been

developed. The structure that is imposed on the theory of belief by

the axioms dictates the appropriate rules of combination. Each of the

axiom systems may be viewed as a behavioral explanation for the incon-

sistency that is apparent in normal probability assessments, and

which leads to the necessity for a range of probabilities. The
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difficulty with developing rules for combination lies in the question

of "second-order interaction." By this we refer to the phenomenon that

two imprecise probabilities may have imprecisions which are closely

related, e.g., we may be very unsure of the probability of events A and

B, yet know that if the probability of A were high, that of B would be

low (an extreme example of this would occur if B were -A). This would

then put a constraint on the imprecise probability of AvB, arising

from second-order considerations. As we shall see, the way in which this

interaction is modeled (or not modeled) provides a means to distinguish

between the different systems producing imprecise probabilities.

In this section we examine in detail the differing forms of vague

probabilities that have been proposed in the literature. In Section

6.0 we shall examine the extent to which these theories can help solve

our problem. Some previous work on looking at the formal similarities

and overlap between various theories of belief has been performed by

Prade (1978). Although he discusses some of these similarities and

differences in terms of semantic implications of the different names

for their theories, his work is primarily abstract in nature. We shall

attempt to conduct our examination on a more applied level.

3.1 Ranges of Probability

The most natural and simple way to extend the basic theory of pro-

bability is to relax the assumption which forms part of each axiomatic

system, that humans are able to rank-order any events of different

likelihood. This assumption also implies that a decision maker will
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feel equally sure about each possible comparison or probability judgment.

By a suitable relaxation of the system we should be able to produce

vague probabilities, which we define to be ranges for each probability

such that the upper and lower probabilities each conform to the classical

probability calculus.

Indeed, such vague probabilities have already been implicity assumed by

decision analysts when conducting sensitivity analyses. For typically in

that stage of a DA the behavior of the model is observed under the suppo-

sition that probabilities were either higher or lower than actually assessed.

By observing the behavior of the solution between the ranges of possible

probabilities, the analyst obtains insight into the problem solution. Note

that the low and high values are each operated with as if they were pro-

babilities. To illustrate this, suppose that the probability of A were

described by the range [0.2, 0.41; and the probability of B by (0.3, 0.6].

Then supposing A and B to be independent, the probability of AAB could be

deduced by looking at the upper and lower probabilities separately. So

the lower probability would be 0.2 x 0.3 =0.06, and the upper probability

would be 0.6 x 0.4 =0.24. Similarly, AVE would have lo~wer probability

(0.2 + 0.3 - 0.06) =0.44 and upper probability (0.6 + 0.4 - 0.24) = 0.76.

This is the simplest extension of classical probability theory.

Axiomatizing such a system of vague probabilities would thus provide a

justification for the usual form of sensitivity analysis.

3.2 Previous Work

systems of this form have been proposed by several different authors. The
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idea apparently originated with Boole (1854). One of the earliest set of

axioms was developed by Koopman (1940a, b). Good (1962) has provided a set

of axioms which he believes to be a simplification of those of Koopman. Smith

(1961, 1965) has derived upper and lower probabilities from a consideration

of betting odds. Essentially, he uses the betting paradigm of subjective

probability, but releases the restriction that one must bet on an event

at the same odds at which one wishes to bet against that event. He argues

that the restriction provides a "more definite expression of opinion" than

he would wish.

The work by Smith has been extended and presented in less opaque form

very recently by Nau (1981). Nau discusses the classical theory of

subjective probability as proposed by De Finetti (1974). He examines

the betting paradigm from the perspective of linear proqramming (LP).

The essence of this approach is to show that the existence of a sub-

jective probability distribution is equivalent to the existence of a

set of "fair" betting prices, and to discover these prices vi , iiinear

program. Vague probabilities are produced as with Smith's theory if one

assumes that a bettor is uncertain of the odds at which he/she is pre-

pared to bet; or if one wishes different odds when betting for an event

than when betting against it.

Suppes (1974) also developed an axiomatic system producing a form of vague

probability. His work includes a combination of De Finetti's ideas and

a finite version of Savage's structural axiom on infinite partitions.

Domotor and Stelzer (1971) have performed some purely abstract work which

gives results that may be interpreted similarly. The standard theories
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of subjective probability assume DM's to be capable of comparing the

desirability of any two decision alternatives and from this deduce the

existence of an underlying subjective probability distribution. Rather

than assume the existence of a total order among alternatives, one might

assume only a semi-order. A semi-order may be derived from the concept

of a "just noticeable difference," (jnd). A jnd has a technical defini-

tion, but for our purposes we may understand it by use of natural lan-

guage. We assume that any two alternatives differing by at least a jnd

can be distinguished as to desirability, whereas two alternatives not

differing by a jnd will be judged to be of equal value. Assuming that

such a quantity as the jnd exists, the alternatives are semi-ordered.

It is shown that, in that case, the precise probabilities of Savage

are replaced by vague probabilities. Note that as the jnd becomes

arbitrarily small, then this system becomes equivalent to Savage's.

Each of the authors discussed above has thus developed axioms which will

produce vague probabilities. Further, several of them have shown that,

within the set of ranges provided by the vague probabilities, there

exist numbers which satisfy the classical probability calculus. Smith

(1961) refers to these as "medial odds;" Good (1962) refers to vague

probabilities as meaning simply that there exist unknowable precise

(classical) probabilities within the ranges indicated; and such values

are easily deducible from the work of Domotor and Stelzer (1971) and of

Suppes (1974). Further, as noted by Good in the discussion to Smith's

(1961) paper, in order to provide a complete theory of rational behavior,

medial utilities need also to be assumed. These values could again be

viewed as lying between lower and upper utilities. Smith (1961) does

indeed propose such a theory.
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3.3 Vague Probabilities and Sensitivity Analysis

We would appear to have an axiomatic justification for the standard form

of sensitivity analysis--the assessed "probabilities" and "utilities" fill

the role of medial values, and the ranges are provided by the vague pro-

babilities and utilities. However, these systems do not have the simple

property discussed in Section 3.1, that lower and upper probabilities should

each satisfy the probability calculus. In fact, equalities are replaced by

inequalities. For example, introducing the notation P* for lower proba-

bilities, and P* for upper probabilities, each axiomatic theory shows that

for mutually exclusive events, A and B,

P,(AvB) > P_(A) + P,(B), (3.3.1)

and that

P*(AvB) < P*(A) + P*(B). (3.3.2)

In other words, it is not irrational in these systems for a DM to have

narrower ranges for compound probabilities than might be deduced from the

constituent vague probabilities. For example, setting B = -A,

P*(AV -A) = P(X) = 1 = ,

so here the range is reduced to zero.

The difficulty here lies in the concept of the second-order interactions

mentioned at the beginning of this section. If these are not modeled in

some way, it is impossible to deduce the vague probability for AvB from

the component probabilities. In order to discover P*(AvB) and P.(AvB),

the analyst must therefore ask the DM either to indicate how the impre-

cisions in the probabilities for A and B are linked, or else assess pro-

3-6



babilities for AvB directly.

If such further information is not elicited, our best deduction for derived

probabilities will be obtained by replacing the inequalities of 3.3.1 and

3.3.2 by equalities. By failing to make a greater effort in modeling the

DM's belief structure, we have failed to capture it completely. Such a

failure may not necessarily be bad, for time constraints in assessment

may make this limited modeling effort desirable. Further, it may be un-

necessary to achieve greater precision in the compound probabilities if it

becomes apparent that this will not affect the reconmmended decision. How-

ever, using as a general strategy the technique of building a decision tree

and then placing vague probabilities on the chance-nodes is inadequate.

Yet this is precisely what is achieved by performing a standard sensitivity

analysis upon a decision tree.

Once one has accepted that the point probabilities of the basic DA paradigm

are insufficient for a full analysis, the basis for the "divide-and-conquer"

strategy is removed. one can no longer concentrate on the component pro-

babilities and assume the compound ones will take care of themselves.

Rather, since one has acknowledged that a sensitivity analysis will be

required, one should build it into the fabric of the analysis. Thus,

since it is the compound probabilities which are of primary interest,

the analyst's efforts should be directed towards these. The component

vague probabilities should be assessed; the links in their imprecisions

considered; and from this the composite vague probabilities deduced.

These should also have been assessed directly and by comparing direct
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and derived values the DM may be able to improve the assessments in an

iterative process, and thus improve his/her coherence and, we hope, the

decision. The point that is stressed is that the entire belief structure

must be probed and modeled, and not just the "minimally-sufficient" com-

ponent probabilities. When using vague probabilities in this way, we

have a firm axiomatic foundation, based on any of the theories discussed

in 3.2, for performing a rigorous sensitivity analysis.

If the above procedure is followed, the output of the DA will be ranges

for the expected utility of each alternative. If no alternative domi-

nates all the others, selection of the preferred alternative is not

straight forward. We might use the medial values, as assessed in a

standard DA, and use the ranges to indicate sensitivity. We might con-

sider it appropriate to continue the assessment procedure in an attempt

to narrow the ranges until there was no overlap. Alternatively, we have

shown elsewhere (Freeling, 1980a) that a reasonable criterion for selection

is to take that alternative X such that (with an obvious notation)

U*(X) =Max U*(X.)

j j.

U,(Xi= Max U.(Xj)

If no such alternative exists, then further elicitation is necessary.

This procedure is a special case of the techniques using fuzzy pro-

babilities, which are discussed in Section 3.5.
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3.4 Criticisms of Vague Probabilities

Although the vague probabilities discussed above appear to answer several

of the questions that we wished to address, we can see that there are

still inadequacies. First, there is no formal calculus for incorporating

the links in the imprecision. It would be desirable to be able to use

the divide-and-conquer strategy, or at least to be able to guide an

analyst in comparing assessments for holistic and decomposed probabilities.

The procedure described in the previous section rests on intuition to

make these comparisons.

Second, it may be argued that there is further information concerning

the DM's belief structure that could be, yet is not, incorporated. This

concerns the possible values of a probability within the indicated range.

often a DM will feel that some values are more reasonable (in some sense)

than others; yet using vague probabilities this feeling cannot be con-

sidered.

A third consequence of the properties of vague probabilities concerns

the representation of ignorance concerning an event. in classical

probability the "Principle of Insufficient Reason" is usually invoked.

The event space is partitioned into subsets which are assumed each to

be equi-probable. The trouble with this is that the partition is

usually arbitrary, and thus the probability induced for the event of

interest may be a very poor representation of the state of belief (or

ignorance). An appealing use of a vague probability is to say that

ignorance concerning an event may be modeled by placing the lower
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probability at zero, and the upper probability at one. This appears to

capture the concept of ignorance by saying nothing about the likelihood

of the event. However, as proven by Smith (1961), upper and lower pro-

babilities as derived from vague probabilities satisfy Bayes' Theorem

exactly. That is, although there are inequalities in Eqns. 3.3.1 and

3.3.2, in the corresponding equations generalizing Bayes' Theorem,

equalities remain. Although this may appear a desirable consequence,

it causes difficulties. For, when updating a prior vague probability

[0, 1] on the receipt of new evidence using Bayes' Theorem, the re-

sulting posterior upper and lower probabilities will remain unity and zero,

respectively. This is a result of the well known fact that when using

Bayes' Theorem, prior certainty cannot be shifted. The reason for this

difficulty is apparent. Our initial assessment admits to the possibility

that the event might be impossible or certain. Whatever subsequent

evidence we obtain (apart from observation of the event itself) the

theory forces us to harbor continuing suspicions about the certainty of

the event or of its negation. We might attempt to circumscribe this

problem by setting the probability for ignorance at [C, 1-e] for small,

positive c. This would allow updating, but the choice of e is critical,

yet it appears to be arbitrary. Thus we are forced to conclude that

vague probabilities provide little improvement in the modeling of ignor-

ance.

A theory of belief based on upper and lower probabilities that addresses

the first and third of these points is examined in Section 4.0. The second

point is addressed in Section 3.5.
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3.5 Second-Order and Fuzzy Probabilities

One of the weaknesses of vague probabilities, discussed in Section 3.4, is

that there is no indication of whether different parts of the range of pro-

babilities are (in some sense) considered more reasonable than others.

Two theories of belief have been developed that attempt to cope with this

problem. one (second-order probabilities) uses standard probability

theory; the other (fuzzy probabilities) makes use of the new Theory of

Fuzzy Sets (Zadeh, 1965).

The basic concept of second-order probabilities is simple. As proposed

in Lindley, Tversky, and Brown (1979) and Tani (1978) one treats the im-

precision in a probability assessment as a form of uncertainty and argues

that this in turn should be modeled by the probability calculus. Thus,

one builds a probability distribution over the probability. The method

of Lindley, Tversky, and Brown postulates the existence of a "true" proba-

bility Tr which a DM attempts to access from his/her psyche but which, due

to foxms of measurement error, he/she can assess only as a value q, which

is wT together with some random error. In particular, in all calculations

where Tf would normally be used, we use the continuous distribution Pr(rrq).

The expectation of this distribution may be used as the single value for TT

if such is deemed necessary.

This concept of second-order probabilities is not new. Savage (1954) was

aware of the difficulty of assessing all probabilities with total precision,

but he discarded the idea of hierarchical probabilities as being impractica-

ble. I. J. Good has done a lot of work on this concept of "hierarchical"

probabilities. He has recently written a review article of his own work
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(Good, 1980) and we refer the reader to that for further discussion of

this topic. One obvious difficulty is that the second-order assessments

can also not be assessed precisely--indeed they may exhibit second-order

incoherence. One might then make third-order assessments, but there is

clearly an infinite regression possible here, and no indication that it

will converge (although Good, 1980, argues that it must converge, else

people would never come to any agreement concerning beliefs). Good (1962)

uses this imprecision in second-order probabilities to explain the vagueness

that must exist in the upper and lower probabilities of the previous section.

In any case, the higher-order assessments become progressively less meaning-

ful to a DM, and any simplicity that might be provided by a DA will be lost.

A second difficulty pointed out by Savage (1954) is that the expectation

of the distribution may fill the role that the first-order probability was

considered unable to fill; i.e., it becomes a point estimate of the uncer-

tainty. The effect of our acknowledgement of the imprecision in probability

assessments is thus lost. Finally, an axiomatic foundation for these second-

order probabilities would probably be unconvincing because the comiparisons

between events that form the basis of most axiomatizations of subjective

probability would be far less intuitive when dealing with second-order

events of the form "the probability of event A is x."

The general problem with these second-order probabilities, of which

the above properties are merely symptoms, appears to be that we are

now attempting to put too much structure upon the DM's imprecision
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for an individual probability. As soon as assessed values are con-

strained to satisfy the probability calculus, a great deal is assumed

about the ability to make judgments concerning these values. (The

problems that we have observed with assumptions of this form are, of

course, the motivation for all the work described in this paper.)

It seems to the author that forcing the probability calculus upon these,

necessarily vague, Judgments of imprecision requires more complex effort

of precisely the type we wish to replace! We are seeking a theory or

technique that permits us to perform sensible types of sensitivity

analysis upon basic probability assessments, and in order to do this,

we wish to "separate out" our beliefs concerning likelihood of events

from our imprecision and vagueness in those beliefs. We believe that

this separation can be achieved by looking at the problem from the per-

spective of fuzzy set theory. We shall also attempt to show in this

section that the fuzzy set theoretical concept is not as antithetical

to the probabilistic view as is often suggested.

To provide for an easier exposition of these ideas, we shall look once

again at second-order probabilities, and set up some notation.

Suppose we are interested in two events A and B, and their probabilities

p and q, respectively. Suppose further that A and B are mutually ex-

clusive, so that Pr(AVB) - p + q. Then the second-order approach

discussed above would be to assess probability distributions over p

and q, and then (assuming non-interaction between these distributions,

to be discussed later) to treat p and q as independent random variables
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and to use the probability calculus to derive the probability distri-

bution over their sum, r. As is well known, ti;is sum has the density

function calculated as the convolution of the densities of p and q.

Specifically, if p has density

f p(x) (xc[O,l]); and q has density

f q(y) (yC[0,l]); then r has density

f = f * f , where * is defined byr p q

f (z) = f f (x)f (z-x)dx (3.5.1)
[0,1] P q

This may be rewritten as

f (z) = f f (x)f (y)dx (3.5.2)

x+y=z

which equation we shall term the "Probabilistic Extension Principle,"

as this is the extension to probability distributions of the simple

equation p + q = r.

Just as the density function, f, may be taken as the underlying aspect

of the second-order probability, so the membership function, V, is the

basic concept of fuzzy probabilities. A fuzzy probability is represented

.by a function

p (x) (xp[O,l]), 1p(X)E[0,1].

We shall assume here that P is continuous and well-defined. This

p 1
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membership function may have any of several different interpretations.

It has been interpreted variously as the possibility that x is the pro-

bability (Zadeh, 1978); the degree of truth of the statement "Pr(A) is

x," (Watson, Weiss, and Donnell, 1979); the compatibility of the value

x with the probability of A (Zadeh, 1977). A slightly different inter-

pretation has been suggested by Freeling (1980a, c). His interpretation

is related to the concept of vague probabilities discussed in the pre-

vious section. He uses the idea of a level set, which is defined as

Pa = {x: Pp(X) > a), aE(0,1],

P0 = {X: 1i p(X) > 0).

Clearly there is a one to one relationship between the set of all level

sets, and the membership function. Then P is interpreted as the seta

of values for Pr(A) such that the degree of compatibility of each value

with the probability is at least a. Note that P form a nested set ofa

intervals;

i.e., a< b - Pa c P b

The level set at level a is then the vague probability at a given level

of confidence. So P0 is the vague probability such that we are certain

the range could be no broader, and P1 is the vague probability which is

the most restricted--we could not distinguish between the possibility

of any such points. A fuzzy probability captures the idea that some

values are seen as more possible than others. Our earlier papers

(Freeling, 1980a, b) have discussed the mathematics of fuzzy proba-

bilities. The reader is referred to those for further details, par-

ticularly with regard to assessing membership functions.
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For our present purposes the important aspect of a fuzzy probability is

that the imprecision in a probability assessment as modeled by a member-

ship function is fuzzy, rather than probabilistic. This we understand

as a conceptual, rather than an arithmetical, distinction. When dealing

with an uncertain quantity, modeled by probability theory, we may use

the expectation of a distribution as our best guess of that quantity.

When dealing with an imprecise quantity, we assume that the quantity

is inherently imprecise, or fuzzy. The fuzzy distribution is our "best

guess"--no reduction of that can make sense.

This indeed was Zadeh's major motivation for the invention of Fuzzy

Set Theory. He asserted that certain types of imprecision in human

thinking cannot be appropriately modeled by probability theory. While

this assertion remains untested and controversial, we believe that in

our current context it provides the correct perspective. By modeling

the imprecision as fuzzy, we avoid the trap discussed earlier of taking

expected values to give point values for probabilities. Rather, we

may continue in the spirit of our work on vague probabilities, and in

the context of sensitivity analysis, to continue dealing with a range

of probabilities.

An important question regarding the membership function is to ask to

what calculus it should conform. There have been two suggestions for

.this which have achieved most attention. These are using either

Max-min connectives, or product connectives. Again the reader is re-

ferred to the previous literature (Freeling, 1980a, c) for a discussion

of the meaning of these terms. For this discussion, we may characterize
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them in terms of the two corresponding "Fuzzy Extension Principles."

Analogously to equation (3.5.2), if p and q are fuzzy probabilities, with

membership functions pp(X) and Vq(Y), then r = p + q may be defined as

the fuzzy probability with membership function

Pr(Z) = Max (Min(p(x) , lq(Y))), (3.5.3)

x+y=z

if we use the Max-min connectives, and

Pr(Z) = f lp(X)Iq(y)dx 
(3.5.4)

x+y=z

if we use the product connectives.

As will be easily seen, we obtain two totally different theories,

depending on whether we use equation (3.5.3) or equation (3.5.4).

The Max-min connectives are the ones usually associated with fuzzy

set theory. When interpreted in terms of level sets and degrees of

confidence we believe equation (3.5.3) to be a good model. As discus-

sed in an earlier paper (Freeling, 1980c), using the Max-min connec-

tives means that each degree of confidence can be treated quite inde-

pendently of each other. That is, if we are interested in the level

set of Pr(AAB) at level a, then we need only known the level sets of

Pr(A) and Pr(B) at level a. In other words, at any given level of

confidence, fuzzy probabilities with Max-min connectives are simply

vague probabilities (as defined in the previous section). Thus this

theory answers the problem of vague probabilities that there is no

indication of where in the range the probability is felt more certain

to lie.
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A theory of choice based upon the concept of fuzzy probabilities is

developed in Watson, Weiss, and Donnell (1979), Freeling (1979, 1980a),

and Adamo (1980). Each of these papers defines fuzzy utilities anal-

ogously to fuzzy probabilities, and Freeling looks in detail at various

possible criteria for comparing fuzzy expected utilities. Dubois and

Prade (1979) also address this issue of comparison. Although this

theory may be viewed as a multi-level sensitivity analysis, similar

arguments to those used in Section 3.3 show that it is an inadequate

modeling of the situation to look at the fuzziness only in constituent

elements of a decision tree, for such fuzziness may be linked. For

example, if Pr(AAB) is required, and we have only the fuzzy probabilities

for Pr(AIB) and Pr(B), then we have insufficient information. Instead,

we should assess the imprecision in Pr(AAB) directly. Thus under this

normative theory, we see once again that performing a sensitivity

analysis subsequent to the main analysis is inadequate if the interac-

tion between imprecision was previously unmodeled.

An axiomatic foundation for the Max-min fuzzy probabilities appears to

be fairly easily derivable from the axioms for vague probabilities

discussed in the previous section. A discussion of how this might

be done has also been presented in our earlier papers. A small point

that can be noted is that, when using the Max-mmn operations, one needI

not measure degrees of confidence on a continuous zero-one scale.

Because the level sets are effectively disconnected, one may label

them by qualitative factors; e.g., very confident, certain, etc. In

this way we still perform a multi-level sensitivity analysis, but

without demanding an excessive degree of extra information from the
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decision maker. This idea has been explored by Whalen (1980). There

remains, however, the problem of interaction. This problem can only

be fully resolved by assessing all the fuzzy probabilities and utilities

of interest.

If we were to use fuzzy probabilities with the product connectives,

we would, of course, be using a different form of fuzzy sets. The

reader will have noted that equation (3.5.4) is identical in format to

equation (3.5.2). That is, the fuzzy probabilities are operated on in

exactly the same way as second-order probabilities. The difference

between (3.5.4) and (3.5.2) is purely a conceptual one: by treating

the imprecision as fuzzy, and differentiated from probabilistic, we

make explicit note of the differences between the two types of belief.

As noted earlier, there is no concept of expectation in the fuzzy case;

the probabilities, or expected utilities, should be left as fuzzy vari-

ables, rather than projected onto a single point estimate. Any attempt

to quote single values would be without foundation. An axiomatic basis

for such fuzzy sets may be hard to find, although the work of Hamacher

(1976) may be of relevance. The general idea of these operators is to

provide sc-ne compensation between high and low levels of confidence,

thus narrowing the level sets. One could, therefore, view these operators

as a surrogate way of accounting for the links in imprecision, since

the effect of narrowing ranges is the same.

in conclusion then, we have shown that fuzzy probabilities, when inter-

preted in terms of level sets, are a natural extension of the concept

of vague probabilities. They need not be viewed as an attempt to deny
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the value of the concept of chance in decision making, as has been felt

by some Bayesians, but rather as an attempt to extend the basic theory of

probability so as to increase the applied usefulness of the theory. The

point of our discussion of the formal equivalence of fuzzy probabilities

and second-order probabilities, is to argue that when a distribution has

been arrived at (such as Pr(rrlq) in Lindley et al., 1979) we should

leave it at that, and not try to achieve further accuracy by looking at

the expectation. This conclusion parallels that of Lindley (private

commnunication) regarding the Lindley et al. work on RIJ.

3s.6 Value of Coherence

A concept developed recently by the author (Freeling, 1980c, d) exploits

the idea of fuzzy probabilities to derive a measure of the value of

performing further analysis of a DM's belief structure. The concept is

based on the raionale for considering extended theories of belief that

we presented in Section 2.0. We take the view that with (hypothetical)

perfect coherence a DM would be able to produce point probabilities, but

due to imperfections the DM can produce only fuzzy probabilities.

Performing a DA will reduce this potential incoherence: in the limit,

to zero. The technique is similar to that used in Value of Information

analyses. Prior to an analysis, we cannot know what the result of that

analysis will be, but our initial assessments give us some information

concerning the possible results. Specifically, the fuzzy membership

functions indicate the possibility of various final results, and by a

technique similar to that of "flipping the decision tree," the "value

of perfect coherence" may be calculated.
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Using the above observations as a basis, we may calculate the "value

of perfect coherence." We note that such coherence will be of value

only if we discover that the alternative we would have selected prior

to the analysis was in fact suboptimal. If so, for a given set of

coherent values, we may calculate the increased value of the improved

decision over the prior one. Then the possibility of these being

the coherent values is equal to the possibility of that being the

value of coherence. In this way a possibility distribution over the

value of coherence may be calculated. This may then be used to guide

decisions concerning whether to pursue further analysis. The mathe-

matics of this concept are discussed in Freeling (1980c, d).

This concept provides a powerful new tool for deciding the value of a

DA. It fits in well with our perception of the role of decision

analysis: namely reducing incoherence. It is not our intention to

discuss the concept in detail here, but the following points should

be noted.

(a) The value of increased but imperfect coherence may be similarly
calculated.

(b) The concept is not confined to fuzzy probabilities. It may
be similarly defined for second-order probabilities, in which
case it is simply the value of information concerning our
uncertainty in the probability. A vague probability may be
viewed as simply a fuzzy probability with membership function
unity over the range of the vague probability, and zero else-
where. Then the value of coherence becomes an interval.
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3.7 Conclusions

In this section we have discussed the various proposals that have been

made to relax the standard assumptions of probability theory. we have

shown each to be axiomatically justifiable, and of potential usefulness.

We shall discuss our conclusions concerning the implications of these

theories and of those discussed in the next two sections, in Section

6.0. For now we shall note that if faced with the choice of whether

to use vague probabilities, or the richer fuzzy probabilities, we feel

that this choice will depend on the context. Fuzzy probabilities re-

quire more effort in assessment, and experience has shown that the use

of vague probabilities (in the form of sensitivity analysis) is often

sufficient. Thus for a first pass at a problem, it is probably reason-

able to use vague probabilities.
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4.0 BELIEF FUNCTIONS

The extended theories of belief discussed so far in this section all

have a common philosophical basis. They each take the DM's belief

structure as fundamental. They do not take explicit account of the

external stimuli that may have led to the DM adopting that belief struc-

ture. In this, the theories follow the theory of subjective probability,

arguing that it is only the precision demanded by that theory which is

unreasonable. Shafer (1976) with his theory of belief functions takes

a different perspective. He views evidence as the fundamental concept.

For this reason, his book is called, "A mathematical Theory of Evidence,"

and he refers to his theory as an evidential theory of belief. This is

not intended to mean that evidence should, in an objective manner, cause

a DM to hold certain beliefs, but rather that the (subjective) beliefs

held by the DM are the result of the DM's interpretation of the evidence

presented to him/her.

The work presented by Shafer is an extension of previous work by Dempster

(1967, 1968) on lower and upper probabilities as induced by multivalued

mappings- Dempster placed his work directly in the context of lower

and upper probabilities. Although Dempster's theory is contained in

Shafer's, the latter downplays the role of lower and upper probabilities

to concentrate on evidence. While that aspect of the theory is indeed

the most original, several insights provided by Dempster's perspective,
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which are of relevance to our present work, are omitted by Shafer. Al-

though we shall present this section in Shafer's terminology, we shall

point out where Dempster's perspective may be of use.

The theory differs from the previous ones in that it is developed from

three fundamental axioms regarding the calculus of belief functions.

It is not developed from any behavioral-type axioms, and does not

attempt to describe the process of judgment by which the DM arrives

at his belief function. This, as we shall see, greatly limits the

possibility of applying these ideas directly to decision-aiding,

for there is no indication of where the numbers should come from.

The theory becomes very complicated mathematically, and there is no

possibility of a complete exposition in this brief overview. We shall,

therefore, present the basics of the theory, and discuss it in the

terminology of the previous sections. we shall attempt to show what

behavioral assumptions and what sort of underlying philosophy would

need to be accepted in order for this to be taken as the basis for a

practical theory of belief. For an extremely lucid and complete

exposition of Shafer's philosophy and mathematics, his book is unlikely

to be bettered. Our interpretation of his work, as follows, is a per-

sonal one which should not be viewed as a precis of his ideas.

The inability of DMs to provide precise probabilities is not viewed as

an imprecision arising from imperfect human information processing.

Rather, except in rare circumstances, the amount of evidence available

is considered insufficient to justify such precision. There is not,
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as there is with the other extended theories, a difficulty in explaining

why the numbers are imprecise--the DM's belief structure is in fact

assumed to be precisely modeled by a belief function. In this way,

the problem identified for the other theories of how to combine pro-

babilities is not encountered. Because the belief structure is assumed

to be precisely modeled, the calculus that is developed shows us exactly

how the combination is to be effected.

The mathematical basis of Shafer's theory is similar to that of pro-

bability theory. The classical theory assumes that there is a pro-

bability "mass" of one which is distributed over the event space. In

other words, the belief of the DM is viewed as a quantity which is

apportioned over the possible events. Shafer similarly assumes belief

to be quantifiable in terms of probability mass equal to unity. However,

he argues that since one piece of evidence might support only a set of

events, rather than a single event, the belief induced by that evidence

should be apportioned to that set of events, and not to any particular

event. For example, consider the annual Oxford v. Cambridge boat race

(as have Smith, 1961; Brown and Lindley, 1981; Freeling, 1981a). An

event of relevance to the outcome is a coin toss, for the winner of

that can take an important inside bend on the River Thames. Our event

space (in Shafer's terms, the "frame of discernment") is X = {WC, LC,

WO, LO} where C means Cambridge wins the race, and W that they win the

toss, and 0 and L are the negations of these events. So WO stands for

the event that Cambridge wins the toss, but Oxford wins the race (at

the time of writing a depressingly common eventl). Then as we receive

information that Cambridge has won the toss, but for some reason we
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do not completely trust our source, we might assign probability mass

0.6 to the subset of X {WC, WO) which we shall call Y. The remaining

mass of 0.4 is left unassigned to any particular subset but assigned

to the full event space.

Formally, we look at the power set of X, 2 , which is defined as the

set of all subsets of X. Then we define a function

m: 2X - [0,1], the basic probability assignment,

such that m(b) 0 and m(A) =1,
AcX

In other words, m is a probability distribution over the power set of X.

A belief function is defined as a function from 2 ) [0,1] such that

Bel(A) m m(B), (4.1)
BC A

for all ACX. Thus m(B) is the belief ascribed precisely to the subset

B, and Bel(A) is the belief ascribed to A and to all subsets of A.

The logic of this arises from the evidential nature of the theory. Any

evidence that supports a subset B, must equally well support all

subsets including B; for if B were to occur, ADB would also occur.

To relate this to standard probability theory, recall that a probability

distribution over X is a function

P: X - [0,1]

such that Z P(x) - 1, and P(A) = P(x) for all subsets AcX.
xeX XEA
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Now suppose that the basic probability assignment of a belief function were

such that m(B) = 0 for all subsets of X with more than one event.

Then Bel(A) Z m(B) Z re(x) (4.2)
Bc A xEA

By comparison, we see that with such a basic probability assignment,

the belief function is a probability function. The link with lower and

upper probabilities becomes clearer if we define the function

P*: 2 X [0,1] by P*(A) = l-Bel(-A) for all AcX.

Then P*(A) = m(B) - Z r(B)

BCX Bc-A

= ~ m(B)- m r(B)
BCX Bf) A=

= L. r(B) > L m(B) Bel(A)
BnA#0 BCA

Interpreting this, Bel(A) is the total probability mass that we are cer-

tain lies within A, and is thus a lower bound on our possible belief in

A; whereas P*(A) is the total probability mass on subsets that have some

intersection with A. Such mass might therefore, support A, and indeed

we see that P*(A) is an upper bound on our possible belief in A. For

this reason, P*(A) is termed an upper probability, and Bel(A) may be

viewed as a lower probability. Using the previous example, where

m(Y) = 0.6 and m(X) = 0.4, we find that

Bel(Y) = m r(B) = m(Y) = 0.6
BCY

P*(Y)= L m(B) - m(Y) + m(X) = 1
Bnyo-
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Thus the belief in Y must be at least 0.6, but it could be total. That

is an indication of the fact that there is no evidence contradicting Y.

Now the subset of X that is of interest to us is Z = {WC, WL}; i.e.,

Cambridge winning:

Bel(Z) = Z m(B) = 0, since neither X nor Y are contained
BcZ in Z.

P*(Z) = Z m(B) = m(X) + m,(Y) = 1, since Y nZ = {WC 0 0.
B nz#

This is equivalent to total ignorance regarding the subset Z. This is

reasonable since, without any further assumptions, the evidence on Y

has told us nothing concerning Z. Note that this is in contrast with

classical Bayesian theory, whereby we would be forced to appeal to some

form of the "Principle of Insufficient Reason" to apportion out our

probability mass over the singletons of X. Shafer argues that since

we should be concerned solely with the evidence provided, such further

assumptions are unjustified. Indeed, we may represent total ignorance

(or lack of evidence) concerning X by taking the basic probability

assignment re(B) = 0 for all B # X, and m(X) = 1. This is a mathematical

expression of our not having any idea where our belief should be placed.

Then it is easy to see that for all B 0 X, Bel(B) = 0 and P*(B) = 1,

which, as discussed earlier, is our preferred expression of ignorance.

Further, it is not the case with this theory that lower probabilities

of 0 cannot be updated in the light of further evidence. In other

words, belief functions do not necessarily satisfy Bayes' Theorem.

4
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In order to understand heuristically why this is so, one needs to keep

in mind the fundamental difference between vague probabilities and belief

functions. As emphasized earlier, a vague probability is vague because

of imprecision which no attempt is made to model. This imprecision

is therefore carried through the analysis. Belief functions, however,

produce lower and upper probabilities because the evidence, which is

modeled precisely via the basic probability assignment, does not

justify further precision. On receipt of further evidence, the

belief structure may be altered so as to increase specificity and

to narrow the range between lower and upper probabilities.

we have not so far defined the calculus which belief functions satisfy.

It should be clearly understood that we do not refer here to calculating,

for example, the degree of belief in (A and B) given the belief in A and

B singly. Whereas with probabilities, and independence, we have

Pr(AAB) = Pr(A)Pr(B), and similar expressions for vague or fuzzy pro-

babilities; within the present theory such a question has no meaning.

After the receipt of a given piece of evidence we model the entire

belief structure, by assessing the basic probability assignment

over every subset of X. Thus we assess m(A), m(B), and m(AAB), and

then the upper and lower probabilities are already determined. The cal-

culus we need to define concerns the rules for combining the belief

induced by separate items of evidence. Shafer effects this via

"Dempster's rule of combination." In order to explain this, it is

best to take yet another perspective on the theory of belief functions.
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The reader will have realized by now that the basis of the theory is

the probability assignment, m, which is simply a probability distri-

bution over the subsets of X. In fact, m defines a random subset of X.

This is analogous to a random number. A random number is defined by a

probability distribution over the real line, and may be interpreted

as the result of a random experiment the result of which is a real

number. A random set is also defined by a probability distribution,

but over a set of subsets, and the realization is one of these subsets.

So, for example, if X = {A, B},then 2X {0, {A}, {B}, {A,B}}, and the

result of the experiment might be any of the four elements of 2X . The

same terminology applies to random subsets as to random numbers. In

particular, we may talk of stochastic independence between random sub-

sets--S1 and S2 are independent random subsets, over X, if and only if

Pr{(Sl S2 ) (Y, Z)} = Pr(S1 = Y) Pr(S 2 = Z)

for all Y, ZcX.

Then a belief function may easily be related to the underlying random

subset S, for

Bel(A) = m(B)= Pr(S=B) = Pr(SCA).
BcA BCA

Thus Bel(A) is the probability that the random subset is contained

in A. Goodman (1980a, b) terms this the superset coverage function

of S. Nguyen (1978) discusses the links between belief functions and

random subsets, with regard to their abstract mathematical structure.

He also shows that this work is interpretable in terms of the capacities

of Choquet (1953-1954). If we have two pieces of evidence, giving rise
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to belief functions Bel and Bel2 and to random subsets S1 and $2,

the resultant belief function Bel is defined from its basic pro-

bability assignment

Pr(S ln S2  A)
m(A) = Pr(S1n $2 A # 0 (4.3)

so that

BeI(A) = Pr(S l S2 c A)

-Pr(S 1 n S 2 0 0)

Shafer does not provide an a priori argument for this definition, but

relies on the reasonableness of the results developed from it. Dempster's

original work (1967) in defining his rule of combination, justified

it in a manner similar to the following heuristic argument. If we have

two separate items of evidence, generating two random subsets, and we

are interested in knowing the result of having both items simultan-

eously, let us consider the relevant experiments. We are seeking a

random subset which would have the same underlying probability distri-

bution as if we performed the two other experiments simultaneously.

Were we to perform those experiments we should only observe those

elements of X that were in the outcome of both experiments. 'ius we

would only observe Sln S2. Therefore, m(A) should be I S2 f A),

normalized by Pr(S1ln s2 0 0) to ensure that the toL-al probability mass

is unity. (Recall that m(p) = 0 by definition of m.) Shafer does rot

in fact talk in terms of random sets, but he looks only at "entirely

distinct bodies of evidence" which may thus be assumed to generate

stochastically independent random subsets. Dempster's rule is thus

stated in the form
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ml (Ai) m2 (Bj)

m(A) = AinBj=A

1- Z r(A i ) m2 (Bj )
AinBj=

which i- clearly equivalent to (4.3).

This ability to combine evidence is the cornerstone of Shafer's

theory. To gain a better understanding, consider the following

simple situation.

Suppose X to have just two subsets; A and -A.
X

Then 2 = {O, A, -A, X}.

Suppose we have two distinct items of evidence, one supporting A,

and the other -A. Suppose also that the strength of each piece of

evidence is such that

m1 (A) = 0.4 and m2 ( -A) = 0.7,

with an obvious notation, that the remainder of the belief is assigned

to X, so m1(X) = 0.6, m 2(X) = 0.3. Then combining these via Dempster's

rule we find that

E ml (Ai )m2 (Bj) ml (A) m2 (X)

m(A) = AinBj=A

1 - ml(Ai)m2 (Bj) 1 - ml (A)m 2 (-A)

AinBj=0

= .12/.72 = 1/6

Similarly,

m(-A) = m1 (X)m2(-A)/0.72

- .42/.72 = 7/12,
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and m(X) = .18/.72 = 1/4.

Thus Bel1 (A) = 0.4 and P *(A) = 1

Bel2 (A) = 0 and P 2*(A) = 0.3

and Bel(A) = 1/6, P*(A) = 5/12.

These results appear to accord fairly well with our intuition. The con-

flicting pieces of evidence have reduced the degree of belief caused by

each other, but the stronger evidence (the second) has had the greater

impact. Consider now a case where each piece of evidence is itself con-

flicting. Let m (A) = 0.4 as before, but take m (-A) = 0.6. Similarly,

let m 2 (-A) = 0.7, but m 2 (A) = 0.3. Then

m(A) = m1 (A) m2 (A)/(l - [m1 (A)m2 (-A) + m1 ( ~A ) m 2 ( A ) ] )

= 0.12/0.54 = 2/9

m(-A) = m1 (-A)m2 (-A)/0.46

- 0.42/0.54 = 7/9. (4.4)

Note that here m1 and m2 both produce normal probability functions, for

all the probability mass is on the singletons of X. So

BelI(A) = m1 (A) =0.4, and PI*(A) = 1 - 0.6 = 0.4.

Similarly

Bel2 (A) - 0.3 - P2*(A).

If we had written the effect of the first piece of evidence in the

form Pr1 (A) - 0.4, Pr1 (-A) - 0.6
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and of the second

Pr 2(A) = 0.3, Pr 2(-'A) - 0.7, it would appear that we had

a reconciliation problem. By pooling the two probability distri-

butions (belief functions), we seem to have effected the reconciliation.

Further, the pooled evidence as reflected in (4.4) is clearly also a pro-

bability distribution, so the theory appears sound.

The answer is Pr(A) =Bel(A) = P*(A) = 2/9 and Pr(-A) = 7/9. Yet this

result is very strange, for the reconciled value for Pr(A) is

much less than both the original values. Such a reconciliation appears

most unnatural. The reason for this difficulty lies at the root of the

problem in applying Shafer's theory to real situations. It lies in a

misinterpretation of the meaning of the numbers. Suppose the two pro-

bability distributions camne from two different experts. Then the first

expert might be saying that the likelihood of A occurring was the same

as that of drawing a random number with last digit between zero and three

inclusive. Similarly, the second expert would have chosen between zero

and two inclusive. If we considered the experts to be independent and

equally reliable, we would reasonably choose 0.35 as our best guess of

the likelihood of A. W~hen considering the two belief functions, how-

ever, a different perspective is relevant. Then the first expert is

viewed as implying that there is some evidence supporting A, but more

evidence refuting it. The second expert, independently, is providing

evidence supporting A but more evidence refuting it. It is then reason-

able to suppose that the two experts taken together provide even stronger

evidence refuting A, and thus that our belief in A should be further
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reduced, to below 0.3. The subtlety is that the numbers with belief

functions do not signify likelihood, but rather strength of support.

This distinction is crucial, for it means that even with Bayesian belief

functions (Shafer's term for belief functions with the properties of

probability distributions), there is no apparent way to assess the re-

quisite numbers. When we talk about more general belief functions,

it becomes even less clear what the numbers mean and how they should

be assessed. Although the basic probability assignment has the formal

properties of a probability distribution corresponding to a random sub-

set, there is no apparent real-world experiment to which it could cor-

respond. Therefore, it cannot be interpreted as a likelihood and it

appears to be impossible to assess. Prade (1979) recognizes this, and

states that m should not be termed a probability, but simply a "basic

assignment." Shafer attempts to cope with the problem by talking

about the "weight of evidence," and using this to define the cor-

responding degrees of belief, but he has to scale these weights

arbitrarily, and the numbers once again lose their intuitive meaning.

This difficulty of interpretation was already foreshadowed in the

discussion to Dempster's (1968) paper; the contributions by Smith,

Bartholomew and the response by Dempster each acknowledge his lower

and upper probabilities to be dif ferent than those produced by a

betting paradigm. This difference is further explored in the work

by Cohen (1970, 1973, 1977, 1979, 1980) discussed in Section 5.0.

That this state of affairs obtains is unfortunate, for the notion of

belief functions appears to answer many of the questions raised in

earlier subsections. The entire belief structure is modeled, unlike
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other theories that produce upper and lower probabilities, but we now

see that, as with second-order probabilities, this is only achieved

at the cost of requiring very difficult, if not impossible, assess-

ments. The ability to pool different and possibly conflicting pieces

of evidence would be an invaluable aid to decision making. Using

probability theory, such combination is effected using Bayes' Theorem,

which is only an efficient procedure when the evidence is presented

in terms of events which are known to have occurred. (For a discus-

sion of that, see Shafer, 1976.) To effect a "reconciliation" of

the form discussed above is very difficult in the Bayesian framework--

witness the literature produced on the subject, e.g., Morris (1974,

1977); Lindley, Tversky, and Brown (1979); Brown and Lindley (1981);

and Freeling (1981). The entire concept of using evidence as the

foundation for a theory of belief is very appealing, yet cannot be

incorporated simply into the Bayesian framework.

For all these appealing features the price we have to pay is too

great. Rather than relaxing the difficulty of the assessment task

for the DM, we have made it more difficult by requiring a probability

distribution over the power set of X rather than just X, and further

there is no intuitive meaning to this distribution. One possibility

to help alleviate this problem would be to use vague (or even fuzzy)

probabilities for the basic probability assignment m, thus permitting

a mix of modeled and unmodeled beliefs. We intend to look at this

concept of "vague belief functions" in further research. We also note

that Dempster's rule of combination applies only to independent pieces

of evidence and often the links between pieces of evidence are all
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too clear. The importance of this in the context of reconciliation

is discussed by Freeling (1981). Shafer does not address this pro-

blem, but using the interpretation based on random subsets a possible

extension becomes apparent. The links may be expressable in terms

of non-independence between the subsets, and the pooling effected

via equation (4.3). This concept, too, we shall be exploring in

our further research.

For the present, however, we must reject the use of belief functions,

while taking note of the perspective Shafer's theory gives us on

how we should model belief. Simply put, the important points are:

1) the evidence impacting on belief is important, and

2) when taking into account vagueness in belief, the entire

belief structure nleeds to be modeled, and not just a small

("minimally specified") part of it.

The way we can try and use these concepts in a standard decision

analysis is discussed in Section 6.0.
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5.0 ORDINAL MEASURES OF BELIEF

As discussed in Section 2.1, some researchers have looked at theories

of belief from a perspective which is different from that of a range

of probabilities. These workers appear to take issue not with the

idea that belief in an event be representable by a single number, but

rather they propose a different calculus to be appropriate when opera-

ting with these values. In fact, rather than use the product opera-

tors usually associate with probability theory, they advocate the

use of either maximum or minimum. The theory of this type that is

perhaps best known arises from Zadeh's theory of fuzzy sets (Zadeh,

1965) and in particular his theory of possibility (Zadeh, 1978). Two

theories of similar form have been developed quite separately by L.J.

Cohen (1970, 1973, 1977, 1979, 1980) who studies inductive (Baconian)

probabilities; and by Shackle (1969) who defines degrees of surprise.

In this section we shall examine these theories. In particular we

shall show that there is a very close link between possibility theory

and inductive probability theory, and that each in turn may be viewed

in the context of a restricted class of belief functions. In this

way, we show that posssibility theory may be viewed as an evidentiary

theory of belief; indeed possibilities may be considered as upper

inductive probabIlities.
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Zadeh's Possibility Theory is a natural extension of his theory of

fuzzy sets. Suppose we have a proposition "X is F", which is defined

in terms of a membership function F (x), for all xcX. Then F gives us

possibilistic information concerning the state of the world. Zadeh

defines the possibility of x, I1(x) = 1I F(x). Then the possibility of

ACX, is

11(A) = I( U x) = Max [1(x)] = Max II F(x).
xCA xzA xCA

The basic rule which can be used to define this measure is that

R (0) = 0, 11 (X) = 1, and for all A, BcX,

11(AvB) = Max(I1(A), 1(B)).

A great deal of literature has been devoted to the examination of the

use of this maximum operator. We have reviewed and examined this

literature at length in our previous work (Freeling, 1979, 1980a, c)

and rather than discuss it here, we refer the interested reader to

that work. Yager (1979) and Whalen (1980) have extended the ideas to

produce a theory of choice. Each of these authors proceeds in a

direction analogous to decision analysis by defining "fuzzy utilities"

which combine with possibilities using Max-min connectives rather than

addition and product. We have examined these theories in detail in

Freeling (1980c) so here we shall simply comment that we do not believe

the calculus to be sufficiently well-motivated to provide a convincing

decision aid.
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Cohen proposes his theory as a complete alternative basis for pro-

babilistic reasoning to classical (Pascalian in his terminology) pro-

bability. He looks at inductive probabilities, using the notation

that the probability of A is P (A). Then the major rule of his

theory is that

P I(AAB) =Min (P I(A), P I(B)). (5.1)

His theory is based on ideas of evidential support for a proposition,

and a generalization of inductive logic. It would thus appear to

have close links to the theory of belief functions. That this is

indeed so we shall see shortly.

Shackle (1969) describes an entire theory of choice based on the

degree of surprise. Such a degree of surprise is a function

S: 2 X4 [0, 1]. It satisfies S(AvB) = Min (5(A), S(B)), and also that

Min (S(A), S( -A) 0.

Shackle's arguments for the above rules are based on an intuitive

understanding of the way a degree of surprise should act. He develops

a theory of choice based on these ideas, using the principle that the

preferred alternative be the "1most interesting." This theory follows

in the spirit of mathematical economics by defining optimality in

terms of contiguous tangent curves. Shackle has little to say about

how the values in his theory are assessed.

Each of these measures of belief might seem highly antithetical to the

theories discussed earlier in this section. However, in fact all

three theories may be placed in the context of a restricted class of
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belief functions. This fact was noted by Shafer (1976) in the case

of Shackle's and Cohen's theories; and by Prade (1979) in the case

of Shackle's and Zadeh's theories.

The class of belief functions that is relevant is that termed by

Shafer consonant belief functions. These may be identified as

belief functions such that the basic probability assignment, m,

assigns non-zero mass only to elements in a nested chain; i.e.,

{A.cX: m(Ai ) > 0} is of the form ACA2C A3 ... cX. Shafer terms

such belief functions consonant because they betray no hint of

conflict in the evidence. Specifically, the belief functions can

never accord positive degrees of belief to both sides of a dichotomy.

In fact, Shafer proves that

Min(Bel(AIB), Bel(-AIB)) = 0 for all A, BcX such that Bel(~B) < 1 (5.2)

It can then be shown easily that in their formal properties, Cohen's

inductive probability PI (A) corresponds to Bel(A); Shackle's degree

of surprise S(A) corresponds to Bel(-A); Zadeh's possibility 11(A)

corresponds to P*(A).

For example, with this definition,

PI(AAB) = Bel(AAB) = m(A i )
A. CA^B

But A.CAAB only if A.cA and A.CB.

Choose k so that Ak is the largest A. that is contained in AAB. Then

k
A m(Ai) = Z m(Ai)"

Ai C B
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But if similarly A is the largest A.c A; and A the largest A c B,fl 1 m 1

we see that A.c AAB if and only if i < Min(n,m). Therefore,

k - Min(n, m),

so

Min(P (A), P I(B))

n

Min(Bel(A), Bel(B)) = Min( m(Ai), m(Ai)
1=

k

=Z m(Ai) PI(AAB), which is Equation 5.1 as required, Q.E.D.

i=l

(This is Shafer's Theorem 10.1 part (a).)

This perspective affords us interesting insights into the nature of

the three theories. However, since Shackle's theory does not fit

in with the main ideas of our work, and since we have not studied

it in sufficient depth, we shall discuss it no further.

5.1 Inductive Probabilities

Cohen's work, as mentioned previously, arises out of similar considera-

tions to Shafer's in that both are evidentiary theories of belief.

Cohen is concerned with a generalization of inductive logic. Spe-

cifically, he looks at the situation when there is insufficient

evidence to allow for certainty in an inference, but where never-

theles ; .me inference can be made from the evidence.
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The major difference between inductive probabilities and belief

functions, and one which worries Shafer (1976, p. 224) is that

inductive probabilities, by equation (5.1), appear to require

consonance of evidence. In fact, as Cohen (1980) points out,

such consonance is not strictly assumed. His theory does permit

dissonance, but the way in which this is treated can not be :r:pr.-

preted in terms of belief functions. With consonance, Shafer and

Cohen agree both in the formal properties of their theories, and

also in the motivation behind their work. As Shafer suggests,

such consonance may be appropriate for "inferential evidence,"

which can be interpreted as Cohen's "inductive reasoning," and also

for some forms of statistical evidence.

However, in many real-life situations, dissonance in evidence is

apparent. For example, judicial evidence will often provide support

both for the hypothesis under consideration, and for its negation.

It is with such evidence that Shafer and Cohen diverge. As pre-

viously discussed, Shafer continues to use belief functions to model

the effect of such evidence. However, property (5.1) is lost.

The effect of the contradictory evidence is to reduce the upper

probability of the hypothesis. For example, suppose X = {A,-A}.

Then if m(A) = a > 0, and m(X) 1 l-a, the belief function is con-

sonant. By (5.2), we see that since Bel(A) = a > 0, Bel(-A) must

equal zero, so P*(A) must be unity, as is easily checked. If

instead, m(~A) = b > 0, and a + b < 1, then there is contradictory

evidence, and the belief function is no longer consonant. Then

although Bel(A) = a > 0, P*(A) 1 - Bel(~A) = 1 - b < 1. Thus
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the effect of the contradictory evidence is to reduce the range of

belief in A.

Cohen, however, retains property (5.1) when dissonant evidence is encountered.

Thus if P I(AIE) = a and PI (-AILE) = b, where E denotes the evidence

received,

P I(AA-AIE) = Min(a, b) > 0; i.e., PI(01E) > 0.

This situation is therefore not modeled simply by a belief function,

since P I(- I E) assigns positive belief to the empty set. Cohen accounts

for this by taking PI(-E) = P (AA -AIE). In other words, since E

accords positive support to a contradiction, E must be either incom-

plete or mistaken. A consequence of this is that in Cohen's theory

we have a parallel to (5.2), viz

Min(PI(AIE), PI(-AIE)) = 0 if PI (E) = 0. (5.3)

As Cohen points outs, this equation embodies a generalization of proof

by contradiction. When using that method of proof (also known as

"reductio ad absurdum"), if we assume A and then arrive at a contra-

diction, we must conclude that A is false, provided we are satisfied

with our rules of inference. Similarly, if we accept our evidence E

in the present situation, and then arrive at positive degree of sup-

port for a contradiction (AA -A), we can then say that there is equal

support for the falsity of E. Underlying these ideas is the concept

that true evidence can point only to the truth, and cannot therefore

be contradictory. Where such contradiction is exposed, our hypothesis

should be altered in order to remove that contradiction. (One obvious
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way of altering the hypothesis is to include in it the possibility of

the evidence not being the truth, the whole truth, and nothing but

the truth.)

A major advantage of inductive probability over belief functions

arises out of the retention of property (5.2). Because the only

operation performed on such probabilities is taking the minimum,

we need only a finite number of "degrees of support." These may be

made context-dependent, and defined in terms of the strength of support

for the hypothesis under consideration. Then an hypothesis H may be

considered proven "beyond a reasonable doubt" if P I(HIE) is greater

than a given, pre-defined level of support. with conflicting evidence,

H may be considered proven over H' due to 'preponderance of evidence"

if P I(HIE) is a given number of levels greater than P I(H'JE).

It should be emphasized that Cohen's ideas are not directly con-

tradictory to those of standard subjective probability. He does

not deny that Pascalian (chance) probabilities have a place in pro-

babilistic reasoning, but rather that in certain inferential tasks

inductive probabilities are more appropriate a model. Indeed,

Cohen is stating explicity the difference discussed in the previous

section between probabilities related to likelihood (Pascalian)

and those related to evidential support (Baconian).

The confusion about the distinction between these two types of pro-

bability is apparent in the exchange between Cohen, and Kahneman and

Tversky regarding the experimental work of the latter (Cohen, 1979,
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1980; Kahneman and Tversky, 1979).

Cohen (1979) argues that many of the "fallacies" discovered by Kahne-

man and Tversky in human probabilistic reasoning (Kahneman and Tversky,

1973, 1974; Tversky and Kahneman, 1974) are in fact caused by their

assuming Pascalian reasoning to be the appropriate normative model

for analyzing their results, when in fact Baconian reasoning was.

Kahneman and Tversky (1979) reply that Baconian probability does not

correspond to our intuitive notion of chance, and is normatively

unsound. Cohen in his rejoinder (Cohen, 1980) points out that the

amount of inductively related evidence is the basis of his ideas;

it is not chance.

Our suspicion is that in fact humans have both intuitive concepts,

and that one of the difficulties is the semantic one that "probability"

is being used to describe each concept. In some problems of infer-

ence the evidential idea may be used, whereas in others, and in choice

problems, chance is used. If it is made unclear which concept we

wish to test, some combination of the two might be used. Some evidence

supporting this hypothesis is presented by Schum and Martin (1980),

whereby neither theory of probability adequately described the experi-

mental results. Rather, the experiments indicated probabilistic reason-

ing took a form intermediate between the two. It would be interesting

to perform further experiments to see if one might separate out the

two types of reasoning, by providing more explicit instructions to

subjects. It would also be intriguing to develop a formal model of

probabilistic reasoning which used both concepts simultaneously.
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Of course, using inductive probabilities rather than belief functions

to model evidence will mean that several capabilities are lost--in

particular combination of distinct bodies of evidence appears to be

a more subjective matter. It seems, though, that this may be reasonable,

and that the strength of assumptions with belief functions simply is

too much for practicability. Our current feeling, then, tends towards

the use of inductive probabilities to model the impact of evidence, but

further research is necessary to help us better understand the impli-

cations of each theory.

5.2 Possibility Theory

We may use the ideas discussed earlier in this section to provide a

new perspective of the role of possibility theory as a theory of

belief. We can see that possibility theory is complementary to

Cohen's ideas, for defining

R(AIE) = 1 - PI(~AIE), (5.4)

I(AvBJE) = 1 - PI(-(AvB) I E) = 1 - PI (-AA-BIE)

= 1 - Min(PI(-AIE), P (-BIE))

= Max(l - PI(-AIE), 1 - PI(-BjE))

= Max (fl(A(E), fl(BIE)) ,

as required for a possibility measure. These properties are of course

just a formal equivalence. It seems reasonable, however, to extend

the equivalence to the interpretation of the ideas, placing pos-

sibility theory in the status of an evidential theory of belief.
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Although this status has not been explicity recognized before, so

far as we are aware, such an interpretation of possibility theory

is not inconsistent with previous work. Gaines (1976a, b) discusses

how fuzzy set membership functions may be derived from a truth-

functional multi-valued logic. This derivation has obvious links

to Cohen's ideas of partial inductive proof. Proponents of fuzzy

set theory have repeatedly denied that chance is the underlying con-

cept of possibility (e.g., Zadeb, 1965, 1978). Further, the choice

of the word possibility suggests the interpretation implied by (5.4).

An event is possible to the extent that it is not disconfirmed by

the evidence; i.e., to the degree that its negation is not confirmed.

By analogy with Shafer's definition of upper probability, we see

that the possibility TI(AIE) may be considered to be the upper induc-

tive probability P* I(AjE). Thus the unification of these two theories

has been made possible. We anticipate that a more general theory

of inference from limited evidence may be possible by considering

both concepts, analogously to the way that upper and lower (chance)

probabilities are proposed in Section 3.0. For example, proof by

preponderance of evidence might be considered achieved if P I(HIE)

were sufficiently high, and II(H'JE) sufficiently low. Also, this

interpretation may help us in a reexamination of the theories of

choice by Yager (1979) and Whalen (1980), and indicate in what

contexts those theories may be reasonably applied.

Two further observations regarding the formal properties of possibility

are appropriate here. First, we may borrow from Cohen's ideas that,
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with conflicting evidence, f(XIE) need not be unity. Then

f1(Av~AjE) = Max [f (A j E) , =(-AIE) a < 1.

Then we may conclude

11(E) = a < 1.

This parallels Cohen's definition that PI (E) 1 1 - a.

Second, there is a possible confusion between two distinct concepts

arising from fuzzy set theory. As discussed in Section 3.0, a fuzzy

set A is usually described by a membership function, V (x), and the

intersection A AB , the union AvB , and the complement -A, defined by

1AAB (x) = Min(I A(X), PB (X)), (5.5)

RAvB (x) = Max(11A(X), B (x)), (5.6)

P~A(x) = 1 - . (5.7)

Possibility measures are defined via

f(AvB) = Max(JI(A), fl(B)). (5.8)

The similarity between equations (5.6) and (5.8) is striking, and

might tempt one into further extending the definition of a possibility

measure by

IT(AAB) = Min(I(A), 1(B)) and/or (5.9)

JI( -A) = 1 - 11(A). (5.10)

Each of these would, however, be a mistake. Note first that if we

assume (5.10) we may derive (5.9), for
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(AAB) = ((Av-B))

= 1 - ](-AV-B) by 5.10

= 1 - Max(f1(-A), I(-B)) by 5.8

- 1 - Max(l-11(A), 1 - 1(B)) by 5.10

= Min(f1(A), 1(B)).

But if both 5.8 and 5.9 are true, then

11(X) = 1(Av-A) = Max(I(A), ]1(-A)]

and

T1(0) = 1I(AA~A) = Min[11(A), T(-A)].

Thus for normal situations, one of R(A) and H(-A) must be unity, and

the other zero. This, however, holds true for all A, so the possibility

measure is no more than a binary, Boolean measure.

5.3 Summary and Conclusions

In this section we have shown that Zadeh's possibility theory and Cohen's

theory of inductive probability are closely related, and that each is

a theory of belief on evidence rather than chance. We note that both

the evidential concept and the chance concept may be intuitive to

humans. We also suggest that confusion of the term "probability"

may have led to inappropriate use of each concept, both in decision

making and in laboratory experiments and thus, to inconsistency. In-

sufficient work has been performed to permit any strong conclusions to

be drawn; nor have we yet developed any practicable decision-or-judgment-

aids from these ideas. However, we are convinced that further work
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on these measures is justified of both experimental and methodological

type. We are hopeful that this will soon lead to an improved range of

applied decision and inference aids.

I
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6.0 IMPLICATIONS FOR DECISION ANALYSIS

In the previous sections we have examined the various theories of

belief, and looked at their potential value in decision aiding. We

have not, in the scope of the work reported here, been able to take

the next step and incorporate these ideas into producing an improved

methodology. In this section, however, we present a tentative out-

line of the kind of changes that are indicated and the shape that such

a methodology might take, based upon the present work.

6.1 Divide and Conquer?

The concept of "divide-and-conquer" has been the foundation stone of

much practical decision analysis. The idea is that a DM will find it

easier to make judgments concerning complicated matters if the problem

is decomposed into its constituent parts. The DM is thus required to

make more, but we hope simpler, judgments. As a basic concept we

believe this to be sound, but that it is carried too far in many

decision analyses. As will be understood from the discussion of

the extended theories, the divide and conquer strategy takes no

account of the links between the imprecision in the various assess-

ments. We thus run into difficulties during the sensitivity analysis

if we examine only the sensitivities to the assessed values, for it

is at this level that the links in imprecision are of paramount im-

portance.
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However, this is typically the way in which a sensitivity analysis is

conducted. A major reason for this would appear to be the status

that the decision tree has enjoyed within practical DA. As von

Winterfeldt (1980) points out:

"trees so much dominate decision analytic structures

that structuring is often considered synonymous to

building a tree."

It is usually tacitly assumed that once the decision tree has been

built (which, to be sure, will be the result of an iterative process),

the structuring is complete. Then "all" that remains will be eliciting

the requisite probabilities and utilities and exploring the numerical

results. However, we consider it vital that the sensitivity analysis

be considered during the structuring process. The decision tree

structure is without doubt adequate for the basic analysis as a

vehicle for using the divide-and-conquer strategy. It is for

precisely that reason, however, that the decision tree is inadequate

as the basis for a sensitivity analysis: dividing will not

conquer. As stressed throughout the paper, the whole belief structure

needs to be explored. This can be achieved by recognizing the fact

throughout the analysis, and assessing imprecise probabilities and

utilities; probing for inconsistency and links in imprecision all

along. The decision tree may still be retained for its simplicity

and clarity to the DM, but more assessments than the minimally speci-

fied set indicated by the tree should be elicited.

Because we are dealing throughout with imprecise probabilities and
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utilities, there is always the possibility of increasing the pre-

cision. The value of doing this can be calculated using the concept

of the Value of Coherence (Section 3.6) at each stage of the assess-

ment procedure.

A second difficulty with using a decision tree with a few specified

probabilities is that the nature and role of the evidence leading to

probability assessments is completely obscured. While we do not go so

far as do Shafer and Cohen in claiming that the probability calculus

is inappropriate for modeling the effect of evidence on belief, we do

feel that the nature and amount of evidence should be shown explicitly.

Especially when DA is to be used for multiple DMs, or as part of a

public decision making process, it will often be important to attempt

to show why one assessor feels a certain value (or range of values)

should be assigned to a given probability. This would reduce disagree-

ment concerning such values, or at least help pinpoint from whence

such disagreement arises.

We hope in our continuing research to provide a means of quantifying

the weight of evidence, based on inductive probability or belief

functions. For now, however, we are constrained to using chance-

tested probabilities in a decision aid. The impinging evidence

should be described qualitatively, perhaps with the aid of an in-

fluence diagram (Howard and Matheson, 1980) or of a hierarchical

inference structure (Kelly and Barclay, 1973; Martin, 1980; Schum

and Martin, 1981).
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6.2 Suggested Methodology

The procedure that we advocate for performing a decision analysis is

thus required to satisfy the following four criteria:

a) It should deal throughout with some form of imprecise pro-

babilities and utilities;

b) The entire belief structure of the DM should be explored,

rather than just the target probabilities;

c) The role of evidence in finding the assessed values for

probabilities should be made explicit; and

d) The value of performing further exploration of the DM's

belief structure should be exhibited.

We tentatively put forward the following procedure for performing

such a decision analysis. We expect those details which are at pre-

sent left vague will become clearer after we have used these ideas

in some practical analyses.

Prior to a detailed formal analysis, a quick pre-modeling of the

problem should be performed, with the general types of available

options specified. Their values may then be assessed in the form

of (very) imprecise expected utilities, and a very rough value of

coherence analysis performed. Assuming that the value of coherence

appears to be sufficient to justify a full analysis, the following

steps should be performed.
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Stage 1. Model and structure the problem as with standard DA.

Build the decision tree, without placing values on any of the

unknown variables. As at present, the analyst must be prepared

to update the model throughout the analysis if this appears to

be necessary.

Stage 2. List the uncertain events which are of relevance to

the problem. This should be a full list; so, for example, if

Pr(AAB) is needed in the problem, the list should include

Pr(A), Pr(B), Pr(AAB), Pr(A/B), Pr(B/A).

Stage 3. Discover, together with the DI*, what items of evidence

impinge upon the uncertain events in question. Show these links,

possibly in diagrammatic form.

Stage 4. Start to quantify the uncertainties in the events.

This quantification may be in terms of any of the theories of

imprecise probabilities discussed earlier. We feel that in

most situations vague probabilities will suffice. The links

in imprecision should be taken into account by direct assess-

ment of all the probabilities listed in Stage 2. At this stage

inconsistencies should be pointed out and reconciliations performed

to help improve the assessments. "Best guess" medial probabilities,

taking the place of ordinary precise probabilities may also be

assessed if the DM feels comfortable with this.

Stage 5. Assess the imprecise utilities in a manner analogous
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to the quantification of uncertainty.

Stage 6. Using the appropriate calculus, compute the vague

or fuzzy expected utilities. Use the best guess values, if

available, as in a standard DA, and use the vagueness to look

at sensitivity to the results.

Stage 7. Point out to the DM any inconsistencies the foregoing

may have raised. Look at the value of coherence to help decide

whether further analysis and specification are necessary.

Iterate by returning to Stage 4 if necessary.

Stage 8. Present the results of the analysis to others with

an interest. Try and pinpoint where disagreements arise--in

the modeling; in the evidence considered relevant; in the impact

that evidence is considered to have. Use the analysis as a

basis for discussion to help reduce differences. Remember,

the DA should be seen as a guide, not an oracle.

There remain of course many gaps in the above algorithm. These will

best be filled in after the methods have been used in some case

studies, which is the necessary next stage of research. The steps

presented do not represent a radical departure from present-day

decision analysis. We do not feel that there is a need for such

a change, since the current procedures are usually effective. The

difference is primarily one of emphasis: by emphasizing the entire

belief structure; the importance of relevant evidence; and the
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fundamental importance of sensitivity analysis and the decision

maker's participation in it the analyst will be able to use the

tools of decision analysis more effectively.
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