AD-A112 149 ALABAMA UNIV IN HUNTSVILLE SCHOOL OF SCIENCE AND ENG=-=ETC F/6 14/2
ELECTRONIC TARGET SIGNAL GENERATOR (ETSG) SOFTWARE DEVELOPMENT. (U}
OCT 81 P F PRITCHETT» N A KHEIR DAAHD1-81=D=-A006

UNCLASSIFIED UAH-296 DRSMI=RD=CR=-82=4]

I

I i

2 - umf
Iz

Im L

hzs flle we

’ ’
RESOLUTION TEST Chedde”

Ap-€ 95¢ c

TECHNICAL REPORT RD-CR-824

ELECTRONIC TARGET SIGNAL GENERATOR (ETSG)
SOFTWARE DEVELOPMENT :

ADA112149

Paul F. Pritchett and N. A. Kheir

The University of Alabama in Huntsville 4

Huntsville, Alabama 1
9

October 1981

Approved for public release; distribution unlimited.

U.S. ARMY MISSILE COMMAND

Redetone Arsenal, Alabama 35, - ?8

Prepared for:
Systems Simulation and Development Directorate
f US Army Missile Laboratory
' 00’ Contract DAAH01-81-D-A006 T r~
1 a 5 } ’&\../
‘ : E1VECTE
| » b 10 1982 .

it FORM 1021, 1 JUL 79 PREVIOUS EDITION 18 OBSOLETE

N
b ;

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Duts Entered)
READ INSTRUCTIONS

T. REPORT NUMBER 2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
RD-CR-82-4 ¥ Aff‘tl— Y%
4. TITLE (and Subritle)

ELECTRONIC TARGET SIGNAL GENERATOR (ETSG) Technical Report

SOFTWARE DEVELOPMENT 6. PERFORMING ORG. REPORT NUMBER
UAH Report No. 296

S. TYPE OF REPORY & PERIOD COVERED

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
DAAHO1-81-D-A006
Paul F. Pritchett and Delivery Order 0009

N. A. Kheir (Principal Investigator)

10. :ROGRAM ELEMENT, PROJECT, TASK

9. PERFORMING GANIZATION NAME AND ADORESS
ORGAN 0 REA & WORK UNIT NUMBERS

School of Science and Engineering

The University of Alabama in Huntsville
Huntsville, AL 35899

11. CONTROLLING OF FICE NAME AND ADDRESS 12. REPORT DATE
Commander, US Army Missile Command October 1981
ATTN: DRSMI-RPT

Redstone Arsenal, AL 35898

| RLY MONITORING AGENCY NAME & ADDRESS(/! different from Controlling Ottice)
Commander, US Army Missile Command Unclassified

ATTN: DRSMI-RD
Redstone Arsenal, AL 35898

13, NUMBER OF PAGES
131

18. SECURITY CLASS. (of this report)

L‘?l. OECL ASS(FICATION/DOWNGRADING
SCHEDULE

—
16. OISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract antered in Block 20, 1t different from Report)

18. SUPPLEMENTARY NOTES

ry

13. KEY WORDS (Continue on reverse eide If y and | ity by block)
Electronic Target Signal Generator Initialization
Software Engineering
Simulat ion
Parameters

26 ABSTRACY (Costious am reverse aide ¥ and Ideatily by biock number)

This report documents the study of Electronic Target Signal Generator
(ETSG) Software. It is intended to provide a reference for ETSG operation and

development.
Chapter one introduces the concept and function of the ETSG. Chapter

two outlines the initialization software and chapter three describes the
real-time or target CPU firmware. Chapter four contains conclusions and

UNCLASSIFIED

rons
DD , a0 UI3 eomon oF t nov 6313 ORsOLETE
SECURITY CLASRIFICATION OF THIE PAGE (When Date Entered)

B . W

FIED
SECURITY CLASSIFICATION OF THIS PAGE(When Dala Entored)

Appendices one through eight contain information about program
variables, parameters, subroutines, and algorithms. Appendix nine is a
listing of a BASIC program which was developed to aid in doing ETSG-related
calculations. Appendices ten through twelve are operating instructions.
Appendix thirteen is a listing of ETSG diskette files.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

PPNV T S

e i e e

PREFACE

This technical report is prepared by Paul F, Pritchett, Research
Associate, under the supervision of Dr. N, A. Kheir, Principal Inves-
tigator and Associate Professor of Electrical Engineering, The Univer-
sity of Alabama in Huntsville. The purpose of this report is to
provide documentation of Electronic Target Signal Generator (ETSG) soft-
ware and firmware (software programmed on PROMs).

This documentation effort is in accordance with requirements
specified in Delivery Order #0009 of MICOM Contract Number DAAH-01~81-D-
AQ06.

The authors acknowledge with appreciation the assistance and
technical support of Don Dublin, contract technical monitor at
MICOM, Robert Burt, Research Associate, UAH, Donn Hall, and Don Sprinkle
of UAH, and G. R. Loefer, James Randolph, M. J. Sinclair, T. N. Long,
and C. E. Barnett of the Georgia Institute of Technology, Engineering
Experiment Station, Atlanta, Georgia.

The views and conclusions expressed in this document are those
of the authors and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of the U. S. Army

Missile Command.

‘ Accession For

CNTIS CART
¥ LTIC T
S | vaanna i

\, { Jastids

i
!
i
A

e’

TABLE OF CONTENTS
PREFACE 1

CHAPTER ONE: ETSG Concept and Function « & + ¢« .« . .+ 1

1.0 Introduction .« ¢ « ¢ « o o o ¢« o o o « o o o s o s &« o o 1
1.1 Overview of the ETSG « + « « « ¢ o o o + o s s s s o s 2 o« 2

CHAPTER TWO: The Initialization Processes and Codes . . + + 5

2.0 Introduction =« + « =+ & « « o+ o s = o s s s s s s s e s s s 5
2.1 Simulation Initialization Parameters .+ . . « + « « + « . .

22,1 MDOS ¢+ + + 4 o 4 e s 4 0 b e e e e e s s s e s e s O
2.2.2 ETSG + ¢ + o o ¢ o o o o vt o n o b n e e e e e e 11
2.2.3 SEEK ¢ ¢ ¢ ¢ ¢ o ¢ o o s « o e o o o o s o o o o o s o 17
2.2.4 ETARG v « ¢ o ¢ « o o s s o o s s ¢ o o s s s s o o o s+ 30
2.2.5 PULSET . & . & v 4 o s ¢ 4 o s o o s o o s o s o o o v« 39
2,2.6 FLAREt 4 4 v v v o s o o v o o s s o o s o o oo 45
2.2,7 RUNETSG . . & & v 4 o o s o o s o s o s o s s s o s o o+ 48

P SPURY RN

it o D

CHAPTER THREE: Real-Time Computer Model (Target CPU Software) . . . 52

3,0 Introduction ., . ¢ . . 4 v 4 s 4 b e s s e e e e v 52

3.1 Target CPU COde . « + « « v « « s « o o o o o o « s o o« « + 54

CHAPTER FOUR: Conclusions and Recommendations « « « . » . . @0

REFERENCES: . . « . . ¢ ¢ v v v v v o v vt v v v v o v v v o v v v 61

APPENDICES

Appendix I Target Coordinate Variables
Appendix II Initialization Interface variables
Appendix III System Flags

Appendix IV Target Parameters

Appendix V Intensity Data

Appendix VI Seeker Data

Appendix VII Field of View Data

Appendix VIIT Initialization Subroutine

i1

-
.
, .. " . N

TABLE OF CONTENTS (Cont‘'d)

APPENDICES (Cont'd)

Appendix IX ETSG.BAS

Appendix X ETSG Operating Instructions
Appendix XI MDOS

Appendix XITI M6800 EDITOR “
Appendix XIII Diskette Files

111

CHAPTER ONE

ETSG CONCEPT AND FUNCTION

1.0 Introduction

The author's objective in this document is to present a comprehensive
survey of the ETSG software and firmware. This study is intended to pro-
vide a reference for ETSG operation and to aid in trouble-shooting and the
continued development of the ETSG.

Chapter One is a general description of the ETSG with respect to its
function, application, attributes, and limitatioms.

The initialization software is examined in Chapter Two. This chapter
contains a glossary of the input data which the system operator supplies
to the ETSG. This data consists of seeker parameters for the particular
seeker being simulated, target parameters for each target, and field of
view background information. Flow-charts and equations, are provided to
explain the process by which the Initialization Processor (IP) interface
variables are generated from the input data.

After the initialization phase is completed and the ETSG is in “run"
mode, the IP interface variables are manipulated by the target Central
Processing Unit (CPU). The operations performed by the target CPUs are
the topic of Chapter Three. The target CPUs receive dynamic data from
the CDC 6600 via the Direct Cell Buffer (DCB). Real-time calculations are
performed on the IP interface variables and the Direct Cell (DC) interface
variables. Real-time information flow is delineated in the flowcharts
at the end of Chapter Three.

Appendices I through VIII contain a glossary of variables, programs,
and subroutines. Appendix IX is a listing of the BASIC program used to
do number base conversions and to emulate some of the internal processes
of the ETSG. A programmed approach to operating the ETSG is found in
Appendix X. A summary of commonly used MDOS and 6800 EDITOR commands
comprises Appendices XI and XII respectively. Appendix XIII is a list of
all ETSG related program files and the discs on which these files reside.

1.1 Overview of the ETSG 1

The Electronic Target Signal Generator (ETSG) is a specialized
hybrid computer which, when given the proper initial and dynamic input i
data, will generate an analog voltage which simulates the detector f
output of a variety of electro-optical seekers. Redeye, Stinger, Stinger-
POST as well as postulated electro--optical threat seekers may be simu-
lated with the ETSG.

As many as twenty sources of specified shape, size, spatial orien-

tation, spatial position, intensity, and intensity gradient can be
created and controlled for the simulation of a particular target/
background/countermeasure scenario.

The sources may represent simple targets, complex targets made up
of more than one source, infrared flares, and pulsed jammers.

Complex targets such as aircraft can be constructed from five
sources, one each for the fuselage, canopy, and plume, and two sources
to represent the wings. These five sources are assigned a single control
point and a single set of target coordinates, aspect angle, and orien-
tation angle are calculated and transmitted to the ETSG independently
for all five sources. The ETSG then uses this data to fly the five
sources as one.

Two spectral bands are available for source designation. Band one
is unipolar and band two is bipolar.

The ETSG supplies independent outputs for each of the two spectral
bands. Output polarity may be reversed by a hardware switch on the
final digital to analog converter board which interfaces with the seeker
electronics.

Non-expendable pulsed-jammers may be designated as part of a
complex target.

Flare sources are controlled independently. Coordinates are cal-
culated by the CDC-6600 with flare initial conditions equal to those
of the dispensing aircraft and new positions are calculated from aero-
dynamic drag equations. Refer to Fig, 1 for a functional block diagram
of the simulation subsystems,

T A e ————

AY1dS10 CNY
TRIWNEIL
S Y0Lvy3d0

Y1va
1394Vl
TILINI

/

SJIINOYLI3N3
-E}ERN

104100
40123137
QILVINKIS

Y0LYYINID TYNVIS
1394v1 JINO¥13313

SIYNOIS 3DNYAIN9

N/

4

STYHIIS
0349

AN

SILYNIQY00I
NVIS

>

| S, T W5 oy

S31VYNICGY00S
1394Vl

Y3LNdWOI YOTYNY

yay

viva
1HOI4

Y31NdWOJ V1I9IQ
0099 203

Simulation Subsystems

Figure 1

Each flare is turned on by a command from the CDC-6600 and may be
recycled after the flare has dropped beyond the tracking field of view.
The operator's console and display are used to initialize the

simulation and to display the dynamic position of the seeker field of
view (FOV). The simulation must be initialized for seeker, target, flare,
and pulse-jammer parameters. After initialization dynamic target/source
data is transferred to the ETSG from the CDC-6600 via the Direct Cell
Interface. With this information the ETSG generates a memory map of

the seeker image plane. This image plane is then convolved with the
seeker scan pattern. For scan patterns other than reticles, scan

signals must be supplied from a source external to the ETSG.

The digital signal which results from the convolution of the seeker
image plane with the seeker scan pattern is converted to an analog
signal, ripple filtered, and output as the simulated detector signal.

This signal passes through the seeker (bread-board) preamplifiers
and is processed to generate the gyro procession command.

The AD-4 analog computer uses the processior command to produce
guidance commands., The CDC-6600 calculates new air frame coordinates
from the guidance commands.

The CDC-6600 communicates the updated target image plane coordinates
to the ETSG via the Direct Cell Interface.

For a more detailed description of ETSG hardware subsystem refer to

e (10)

"Electronic Target Signal (ETSG): Hardware Developmen written by

Robert Burt, Research Associate, The University of Alabama in Huntsville

(to appear).
Other documents containing information relative to the ETSG are

listed in the refierence portion of this document.

e BB i A 4 1A

CHAPTER TWO
THE INITIALIZATION PROCESSES AND CODES

2.0 Introduction

During initialization of the ETSG, parameters which define a given
seeker and particular targets are entered. The ETSG generates a reference
image which is stored in Random Access Memory (RAM) for each source.

The target lookup RAM is a 64 x 64 block of 8 bit memory for each
target. The values stored in RAM are normalized so as to provide the
highest resolution map that the target will require during a given scenerio.
This reference is scaled in size, intensity and orientation during the
run to simulate the target signature for various combinations of the dynamic
parameters.

The flowchart in Figure 1 shows the main programs which perform the
initialization process. Each of these programs is discussed individually
in the following portions of this chapter. The input parameters used by

the initialization processor are defined in Section 2.1.

31BYoMOTd UOTIRZFTETITUI 17 2an3t4

w1008,
N
auvia sas1nd Iy %
A S
owvia s
asaanny W e %
R EIG v € . t t
w100t §
0513
S0aR

2.1 Simulation Initialization Parameters

The input parameters for the initialization phase are described in

Table I. The variables which are internal to the initialization software

are listed in Appendices II1 through VII.

-

SNk i

Table 1
SIMULATION INITIALIZATION PARAMETERS

INITIAL INPUTS

SEEKER PARAMETERS

Type
FOV

Blur
NEFD

SNR for Track
Reticle Scan Rate
System Responsivity

SOURCE PARAMETERS

Shape

Size

Aspect Ratio

Intensity Gradients
Spectral Bands
Intensity Polarity
Programmable Intensity
Maximum Range

Minimum Range
PULSE JAMMER

Rep Rate
Sweep Time
Duty Cycle
Period

FLARES

Intensity vs, Time

Rosette, Conical or Center Spun

Scaled to IFOV
0.5 mrad. Minimum
Any Value

1 to 1010
100 rps + 20 rps
Any Value

Elliptical, Rectangular, or
Triangular

Any Size (Linear Dimensions)
1:1 to 32:1

Programmable

Any Two

Plus or Minus

Complex

Meters

Meters

20 kHz Maximum
Scan Rate + 20%
Maximum 502

1.6 Sec Maximum

20 Seconds Maximum

A PR S S W

USRI PR N

2.2.1 M6800 Diskette Operating System (MDOS)

The M6800 Diskette Operating System (MDOS) is an interactive
operating system that obtains commands from the system console. These
commands are used to move data on the diskette, to process data, or
to activate user-written processes from diskette,

In MDOS, a diskette file is a set of related information that is
recorded more or less contigously on the diskette. The information
can be actual machine instructions that comprise a command or a user
program. The information can also be textual data, object program data,
or any of the forms described in the following discussion of file
name conventions.

The standard format for specifving file names, suffixes, and

logical unit numbers is:
< file name > . < suffix > : < logical unit number >

where the period (.) and colon (:) serve to delimit the start of the
suffix and logical unit number fields, respectively.

Logical unit numbers identify the drive that contains the file.
Sirce each diskette carries with it its own directory, different files
with identical names and suffixes can reside on different diskettes,

The following is a list of suffixes and the file tvpe specified by

each.
Suffix Implied Meaning
AL Assembly listing file
CF Chain Procedural file
CM Command file]
ED EDOS - converted file 1
LO Loadable memory - image file ;
LX EXbug loadable file]
RO Relocatable object file !
SA ASCII source file
SY Internally ~ used svstem file

To initialize MDOS power must first be applied to the EXORciser
and to the diskette drive unit. No diskette should be in the drive
while power is being turned on or off on either the drive or the EXOR-

ciser. Once the power is on, the following steps must be followed:

1. EXbug must be initialized and configured for the proper speed
of the system console. If power has been turned on for the first time,
EXbug initialization is automatically performed by the power-up interrupt
service routine in EXbug. If power is already on and MDOS is to be re-
initialized, then either the ABORT or RESTART pushbuttons on the EXORcisers
front panel must be depressed to initialize EXbug. The prompt "EXBUG
V. R." will be displayed by EXbug indicating it is waiting for operator
input. "V" indicates the version and "R" the revision number of the

EXbug monitor in the system.

2. An MDOS diskette (one shipped from Motorola or one that has
been properly prepared by the user must be placed in drive zero. The
door on the drive unit must then be closed in order for the diskette
to begin rotating.

3. The EXbug I command "MAID" must be entered. An asterisk (%)
prompt will be displayed once MAID has been activated.

4., The MAID command "E800;G" must be entered. This command will
give control to the diskette controller at the specified address. The
controller will initialize the drive electronics and then proceed to
read the Bootblock into memory. Once the Bootblock has been loaded,
control is transferred to it. The Bootblock will then attempt to load

into memory the remainder of the resident operating system.

During ETSG initialization the ETSG Supervisory Program is executed
from MDOS by typing ETSG and a carriage return at the system console.

10

2.2.2 ETSG Supervisory Program

The ETSG Supervisory Program is the main driver for all the ETSG
software. It initializes all hardware and controls the flow of all
ETSG software execution. The ETSG main driver calls the subroutine,
CKINIT, to perform a hardware check and if necessary, hardware initiali-
2ation.

CKINIT checks the value stored in the Peripheral Interface Adapter
(PIA) at the extended memory address $CBF8 ($ indicates a hexadecimal
number, i.e. base 16). If the value is zero, then it is assumed that
a power up restart has been performed, a power failure has occurred,
or a hardware abort has occurred. The PIAs initialized by CKINIT and
the default values for these PIAs are shown in Table II.

After CKINIT the ETSG driver checks the system error flag. Based
on this information and the operator's response, a decision is made
in reference to these four options:

1. 1Initialize new systenm.

2. Perform error restart.

3. Restart with previous targets.

4. Continue initialization process with present system.

Then the initialization sequence continues either in the "auto
sequence” or "manual select” mode, depending on the operator's pref-
erence. Each phase of initialization is handled by a different program,
"Boot" transfers control from each program to the other. The flow chart
in Figure 2 gives a detailed description of the ETSG Supervisory
Program.

As one can see from the flow chart the next program in the initiali-

zation sequence is SEEK.

11

TABLE II PIAS TO INITIALIZE

PIA Initialization Default !
PIA Address Values Values .
TPIAS PIA $CBAO, $FF, $04, W

PIA $CBA2, $FF, $04, $00

PIA $CBA4, $FF, $04, $00 :

PIA $CBA6, $FF, $04, $00 j
PIA $CBAD, $00, $04, $00
PIA $CBAE, $00, $04, $00
PIA $CBBO, $FF, $04, $00
PIA $CBB2, $FF, $04, $00
PIA $CBB4, $FF, $04, $00
PIA $CBB6, $FF, $04, $00
PIA $CBBS, $FF, $04, $00
PIA $CBBA, $FF, $04, $00
PIA $CBBC, $FF, $06, $oo
PIA $CBBE, $FF, $04, $00
PIA $CBCO, $FF, $06, $00
PIA $CBC2, $FF, $04, $00
PIA $CBC4, $FF, $04, $00
PIA $CBC6, $FF, $04, $00
PIA $CBC8, $FF, $04, $00
PIA $CBCA, $FF, $04, $00
PIA $CBCC, $FF, $06, $00
PIA $CBCH#, $FF, $04, $00
PIA $CBDO, $FF, $06, $01
PIA $CBD2, $FF, $06, $8E
PIA $CBD4, $FF, $04, $01
PIA $CBD6, $FF, 504, $3E
PIA $CBDB, $00, $00, $00
PIA $CBDA, $00, $00, $00
PIA $CBDC, $00, $00, $00
PIA $CBDE, $00, $00, $00
PIA $CBFS8, $FF, $04, $00
PIA $CBFA, $FF, $04, $FF

12

PIA
PIA
PIA
PIA
PIA
PIA
PIA
PIA
PIA

TABLE II

PIA Address

$CBFC,
$CBFE,
$CEEC,
$CEEE,
$CFFO,
$CEF2

$CEF4,
$CEFB,
$0000,

(CONT'D)

PIA Initialization

$FF,
SFF,
$FF,
$FF,
$OF,
$0F,
$FF,
$FF,
$00,

Values

$04,
$04,
$04,
$04,
$04,
$04,
$04,
$04,
$00,

Default
Values

$00
$00
$00
$00
$00
$00
$00
$00
$00

e i S o A e

< START)

,
Initialize nilsttin-
packane and console
communication lines.

Is a power 3
up restart in order?

$CBF8(00)

Power up restg@
4

Continue

1ESY does not exist

(O

Does system file,
1ESY, exist?

TIESY exists

Road system file.
ISYF (1-40)

Check internal fla
ISYF(1)=1

O

Seeker/Target trror

Ask operator: 2;7 Hew System
New System or Lrror Restart;/,

Error Restart

Figure 2 : ETSG Supervisory Program (Main Driver).
14

=

System Error

ISYF(1) = 0

Mo Error
Ask operator:

New System or Use 01d Targets Use old targets]
@ New System 1
4 1
Power up restart. 4
Set system flags = 0 f
Initialize CPUs i

Delete system and seeker files

£ 1

Ask operator:

.

| Manual select

Manual Select or Auto Sequenee

Eﬂ Auto sequence

Increment auto sequence number.
ISYF(3) = ISYF(3) +1
. ITYPE = ISYF(3)

72

Tell operator auto sequence
number. Ask:

Abort or Continue Sequence? Abor

Continue

Ask operator:
Where do you want to "Boot"
to.
ITYPE = 7

Figure 2 (Continued)
15 ¢

AT e hca— -

-

“Boot" to the correct point in the initfalization sequence, (determined

o

llBootll

PULSE J

o
No flare A///’?ngj exist

ISYF(5) = 1

"Boot*

FLARE

Flare exists

L

Set auto

" |sequence num-

ber = 0
ISYF(3) = 0

Figure 2 (Continued)

16

by ITYPE)
ITYPE = ?
1 2 3 A 9 6 99
" Bootll
" " Delete syste
SEEK Boot and seeker
)L RUNETSG files
llBooTll
ET ARG STOP

e e

2.2.3 SEEK

SEEK is an interactive FORTRAN program which reads the input data
to define a particular seeker. Calculations are performed to determine
for the particular seeker if the minimum system signal, SMNSY, times
seeker responsivity, ARES, exceeds the minimum DAC output voltage, VO.

When this condition is satisfied, the quantities;

t

IPBGL - Background Level

IPNSL ~ Programmable Noise Source Level

IAC10 - Analog Scale Factor Adjust
IB1 - Exponent Scale Factor Adjust
MSIGN - Exponent Scale Factor Command

are calculated and stored in PIAs by the subroutine STAOC. The information
stored by STAOC is utilized as DAC controls for the analog boards.

The seeker data is then stored in a diskette file and control is re-
turned to the main driver, ETSG, via "Boot.,"

The flow chart in Figure 3 (pages 22--29) gives a more detailed account
of the processes performed by SEEK.

The "Notes on SEEK Calculations" at the end of this section is a step
by step listing with explanatory notes of the calculations performed by
SEEX.

The next program in the initialization sequence is ETARG.

Notes on SEEK Calculations:

*Indicates an input variable.

*FOVD = FOV1 Field of view side to side (degrees).
*BLRM = FOV2 Blur diameter (M radian)
BLRR = BLRM*(0.001 Blur diameter (rads.).
DPR = 57.2957795 (degree/rad.)
DPM = 0.057295775 (degree/m rad.)
BLRD = BLRM*DPM Blur diameter (degrees)
NPWN = 2

NFOV=IRND (NPWN*FOVD/BLRD) Number of discrete points in blur diameter.

Note: IRND is a function which rounds floating point numbers to integer
values. It always rounds so as to increase absolute magnitude.
FPPD=NFOV/FOVDC Points per degree in field of view.

17

R T o s -

*TDPC = FOV3 Number of degrees per aount for target coordinate.

*IRCSW Rosette or Conscan switch.

If IRCSW = 1 load rosette seeker.

If IRCSW = 2 load conscan seeker.

TCDPC = 4.0/128.0 Minimum number of degrees per count for target coordinate.
Note TDPC 2 TCDPC

if not, default to TDPC = TCDPC.

FOVTEM = TDPC*256 Temporary variable

Note: FOVTEM Z FOVD

TCPPC = FPPDXTCDPC points in field of view per count of target coordinate
SBLRM = NPWN/FPPD/DPM Scaled blur diameter.

ICPC8 = FOVTEM/FOV1*256 Number of target coordinate counts across field of view.

Rosette minimum/maximum limits.

NPWN = 1 2 3
MINX 0 0 1
MINY 0 4] 1
MAXX 63 62 62
MAXY 63 62 62
*MXSCR Maximum scan rate (Hertz)

MSCRD = 115 Minimum scan rate (Hertz)
*RNEFD(ICH) = RESP (ICH,2) Noise equivalent flux demnsity (watts/cmz)
Note: ICH is the channel number 1 or 2.
*SNRT (ICH) = RESP (ICH,5) Minimum signal to noise ratio to track,
*BKRD (ICH) = RESP (ICH,3) Background intensity at aperture (watts/cmz)
*ATTN (ICH) = RESP (ICH,4) Atmospheric attenuation coefficient (1/Km)
ANOIZ (ICH) = RNEFD (ICH) * ARES (ICH) Programmable noise level
SIGMN (ICH) = RNEFD (ICH) * SNRT (ICH) Minimum signal at aperture
*1f NFSC (ICH) = 1 scale to NEFD.
If NFSC (ICH) # 1 then input:

*SIGMN (ICH) = RESP (ICH,7) Minimum system signal at aperture (watts/cmz)
SMNSY = SIGMN (ICH) Minimum system signal at aperture
SMXSY = DYNRNG*SMNSY Maximum system signal at aperture (watts/cmz)
VMIN = SMNSY * ARES (ICH) Minimum detector voltage.
C2 = VMIN/VO Seeker volts to DAC volts scale factor.
Note: VO = 6,1 E ~ 4 Minimum DAC voltage

CO = 64 Seeker irradiance to FNS.

CM2PM2 = 1.0E - 4 Cm/m°

18

A

i, Sl an et Eicd aatbiier e aa

C5(ICH) = CO*CM2PM2/SMNSY/NPWN/NPWN
Note: C2 = VMIN/VO > 1

RLOG2 = ALOG (2.0)
RL218 = 0.8480

Note: log(X) _
Tog(2) - 1ogz(x)

MSIGN = 1
Note: In STAOC MSIGN is tested to determine if add to exponent occurs.
If VMIN/VO = 1 then;

IB1 = 0O
IAC10 = 1023
AT2 = 1.0

If VMIN/VO > 1 then;

T1 = ALOG(C2)/RLOG2

Note: Tl = logz(VMIN/VO)
IT1 = T1

Note: Change real to integer
FT1 = T1 - IT1

If FT1 < 0.8480 then;

IB1 = IT1 + M51GN
IAC10 = 1023

AT2 = POWER (2.0, FT1)
Note: POWER (a,x) = a¥

If FT1 > 0.8480 then

ITL = IT1 + MSIGN
IBl = IT1

FI2 = FT1 - 1

AT2 = 2FT2

DZ = AT2*1024
IAC10 = IRND (DZ)

If IAC10 = 1024 then;
IAC10 = 1023
1Bl = IT1 + MSIGN
IAC10 = 1023
a2 = 2FT1
VBGMX = 10.0
VBGAB = BKRD (ICH) VBGMX*16383
IPBGL = IRND (VBGAB)
19

it

e

If IPBGL > 16383 then IPBGL = 16383
VNZAB = VMIN/VNZMX*255
IPNSL = IRND (VNZAB)

I1f IPNSL > 255 then IPNSL = 255
ISKRCK = TFLAGS (22)
ISKRCK = 10 * (BLRM + FOVD)/(ARES(1)*SIGMN(2) + ARES(2) * SIGMN(1))

Analog Scale Factor Adjust IACl0
T1 = logz(SNRT*RNEFD*ARES/G.18-4)
ITl = T1
Note: Real to integer
FT1 = T1 - IT1
Note: Truncate whole number.
FI2 = FT1 - 1
1AC10 = 2F7% % 1024
If 1QC1l0 [~ 1024

then IAC10 = 1023

Stored at:
CBCA
CBC8 for J channel
CBBA for K channel
CBB8

If Ftl =< RL 218 = 0.8480
then IAC10 = 1023
Background Level IPBGL
IPBGL = IRND (BKRD/.0.0*16383)
If IPBGL - 16383 then
1PBGL = 16383

AND High byte with $3F
EOR High byte with $3F
EOR Low byte with $FF

Store at:

CBCE for K channel
CBCC
CBBE for J channel
CBBC

20

Note: Subroutine CBV in STAOS reorders the bits to compensate for a

hardware design problem.

Exponent Scale Factor Adjust IB1
1Bl = 16 * [1n (RNEFD*SNRT*ARES/6.1E - 4)+ 1

1n2
AND wich $FO ;
Store at:
CBBO for J channel
CBB4
CBC4 for K channel 1

Exponent Scale Factor Command MSIGN

MSIGN = 1
CBB2/20 for J channel
CBB6/20
CBC6/20 for K channel

Programmable Noise Source Level IPNSL
IPNSL = IRND(SNRT*RNEFD*ARES/5%255)
If IPNSL > 255
then IPNSL = 255

CBC2 for K channel
CBCO for J channel
21

New or Default Seeker AWa__—;@
or previously created seeker?

/

Previously created seeker

Filename for input?

Does

Seeker file Open Seeker

exist? file.
Y
File not found
Directory?
N
Call DIR

W

Figure 3 : SEEK

22

foa

SR DUREIY

e e

o)

IRCSW = 1 or 2 1// 7' Conscan
])

Rosette or Conscan?

1 —

1

Rosette

Open defaulc
Seeker file, IROS.

«] Read, then close

-

seeker file.

Input FOVD -
Fileld of View degrees
side to side.

Input BLRM

Blur diameter in
m rad.

Calculate
NFOV~Number
of points in
FOV.

Figure 3 (Continued)
23

»»»» Lo

NFOVS63

FOV too large
with current
blur diameter.

@‘__?703:"10: represent total FOV with current data. !A—'—‘

Figure 3 (Continued)

24

L—-I-————_—W ’ N e,

4

Input TDCP-Number of
degrees per count for
target coordinate.

TDPC > 4/128

//FrRun with TDPC = 4/128

O,

; or start over?

TDPC = 4/128

TDPC*256 Z FOVD

Scaled blur diameter
5BLRM

Figure 3 (Continued)
25

atia

R s

Send FOV information
to display CPU

Set Rosette Min/Max
limits for run time error
flags.

NL

Input Max, scan
rate, MXSCR.

Max,
allowable scan
rate?

MXSCRSMSCRD

Scan rate too large

Figure 3 (Continued)

26

" e me

PPN

PP

~

¥

Input seeker static
parameters.

seeker compatible
with ETSG

Calculate
controls for
analog boards.

4

Call STAOC to
load DAC controls

to PIAs.

Calculate seeker
checksum, TSKRCK.

!

Open, write, and
close seeker file, ISKR.

Figure 3 (Continued)
27

Save this seeker?

Y

R\

Filename?.

File
name already

in use?

Open, write seeker

data, and close file.

_l ——

File not found.

Figure 3 (Continued)

28

'rinhm

N e Ay o~y -

R

A A g Em 1 A

Does
system file
exist?

Read sys:eﬁ
flags from IESY

ISYF(1) = 0

ISFY(40)=IRCSW=1 for Rosette |

Write flags to
IESY

Figure 3 (Continued)
29

K\

"Boot" back to ETSG

END

2.2.4 ETARG

The interactive FORTRAN routine ETARG, controls the generation of all
simple and complex targets. ETARG specifics which targets are flares or
pulsed jammers and also assigns target channels and polarities.

The general information flow in ETARG is depicted in the flowchart
in Figure 4 (see pages 32-38). A detailed account of the values calculated
in ETARG is presented in the “Notes on ETARG Calculations" at the end of this

section.

Notes on ETARG Calculations:

* Indicates an input variable
* TSZX = TRG(1) Target size X (meters).
* TAR = TRG (3) Target aspect ratio.

If TAR = 0 then TSZY = TSZX/TAR.

If TAR = O then

* TSZY = TRG2 Target size Y (meters).
and
TAR = TSZX/TSZY
TAR > 1
* ISC = IFLAGS (3) Channel number
* TPOLTY = 1

If ISC = 2 then
* TPOLTY =+ 1 or - 1 for UV targets.
* RJT = TRG (4) Target radiance (watts/steradian)
TATTN = ATTN (ISC)/1000 Atmospheric attenuation coefficient from SEEK.
RJTP = RJT - BKRD(ISC)*10000*EXP (TATTN)

RITP = RITP*IPOLTY Contrast Radiance (watts/steradian)
RJTP 2 O
RT = RJT/SIGMN (ISC)/10000
RT = SQRT (RT) Clear air track range (meters)
* RMAX = TRG(7) Maximum target range (meters)

DYNRNG = 3.57E9
TATTN = -ATTN (ISC)/1000*RMAX
SMNT = RITP*EXP (TATTN) Minimum target signal
SMNT = SMNT/RMAX/RMAX/10000

L

e

SMXSY = DYNRNG*SIGMN(ISC) Maximum system signal.
AGS = SMNT/ST’ N(ISC)

AGS > 1
Tl = TSZX
IMAX = 64
PPM = (IMAX-1)/T1 Points/meter in TLR

*If the target is not a plane, ITSW 2 5,
then:
T1 = TSZY*TSZY/4 +TSZX*TSZX
and PPM = (IMAX - 1)/SQRT(T1)
otherwise:
RCO = TSZX/BLRM*1000
RC1 = TSZX/BLRM*1000*NPWN/(NPWN + 1)
RC2 = TSZY/BLRM*1GOO*NPWN/(NPWN + 1)

RMNR = BLRM/NPWN/PPM*1000 Range of 1 to 1 resolution. (meters)
*RMIN = TRG(8) Minimum target range (meters).

TATTN = -ATTN(ISC)/1000* (RMAX-RMIN)
SMXV = SMNT*EXP(TATTN)

SMXV = SMXVARMAX/RMIN*RMAX/RMIN

ZA = SMXSY/SMXV

If ZAZ 1 System will overflow

ZAZ2 128 Probable overflow

ZA 2 1608.5 Possible overflow

ZA Z1608.5 No overflow
RKMX = 599.0/PPM Maximum value for key points (meters).
*RKXM = TRG(5) X key point (meters).
*RKYM = TRG(6) Y key point (meters).
*ITCLR = IFLAGS(10) Target color
*TSRVT = IFLAGS(11) True target flag
*IPJ = IFLAGS(5) Pulse jammer flag
*IFL = IFLAGS(6) Flare flag

If IPJ = 1 then ISYF(4) = 1

*IPRI from STTP Target priority

ID6 = IPRI + 6
ISYF (ID6) = O

31

[o

If IFL = 1 then

ISYF(5) = 1
and ISYF(6) = ISYF(6) + 1
and ISYF (ID6) = 1

Clear intensity accumulators:

ZSuM(4) = O
ZCNT(4) = O
PMX(4) = O

PMN(4) = 5.0E10

Set point target view
CST =9.0

Note: INVERT j§s a function which converts floating point numbers to the
ETSG internal Floating Point Number System (FNS).

ITMP = INVERT(CST)

This number goes to the point target lookup RAM.

RLOGZ = ALOG(2.0)
RFAVG = ZSUM(4)/ZCNT(4)
PAVG = RFAVG/9.0*PMN(4)

PMX(4), PMN(4), and PAVG are output at the console during initialization.

Equations for initialization interface variables 1listed below may be found in

Appendix II.
RRAN
ISFR
ISFP
AL2E
FOVS
ACSF
PTSS
TGT1

32

il s csiosd e ind

v._“‘““

Initialize console
and communication
lines.

System file,
IESY, exist?

Bt a4 an

Run ETSG first.

"Boot" y
ETSG

Seeker file

IFN2, exist? Run seeker scaling

program first.

!

Yes

"Boot"
ETSG

5 2O,

Read seeker/system
data: ISYF, IFLGS,
FOV, RESP

Figure & ETARG
33

Call STTP; set
target type, priority
and flags.

New target?
IFL3 = O

Yes

Yes

Input target
parameters.

Determine j robability
of accumulation
overflow.

Output probability
of overflow

Figure 4 (Continued)
34

N

New value for RMIN?

Max, gradient/average value ;7, Yes

Input:
Keypoints

|

Target color:
IFLGS(10)

1

True target?
IFLAGS (11)

™ N D~

1l

Pulse jammer?
IFLAGS (5)

™

Flare?

IFLAGS (6)

AN N NN

|

Figure 4 (Continued)

35

Pulse jammer?

ISYF (4) = 1

ISYF (5) = 1

ISYF (6) = ISYF(6)
+1

ISYF (IPRI + 6)=1

ISYF(IPRI +6) = O

[

Wrdte data to
system file.
ISYF (1-40)

l

Clear intensity

accumulators.

I

Set point target view.

|

Generate 3 views for
complex target.

Figure 4 (Continued)
36

Save targets.

Process intensity

information

Output:
PMN, PMX, PAVG

Load aspect RAMs,
target CPUs, and
display CPU.

Load target CPU:
IP interface
variables.

Load display CPU
TGT1.

Figure 4 (Continued)
37

e e At

.

New
target?

IFL3=0 Yes

Close target
file

1)7 Yes

More targets? }/r*

No

Write ISYF (1) = O
to system file.

"Boot“
ETSG

=D

Figure 4 (Continued)

38

O,

T . et

2.2.5 PULSEJ

PULSEJ is a FORTRAN program which generates the time history for a
given pulsed jammer. The pulsed jammer is defined by the following input

parameters:

NPULSE - number of pulses
PDUTY - duty cycle (%)
¥ SFREQ - start spin frequency

T ——

EFREQ - end spin frequency

STIME - sweep time

AF The pulsed jammer time history is generated by an iterative process
which increments time by a factor which is the reciprocal of the current
spin frequency. For each cycle the number of strobe "on" and strobe "off"
points 1is calculated and stored in memory. The strobe time history is
recorded in 32K bits of memory. Since the strobe "on/off" flag, JSIG,

is a FORTRAN integer, 64K bytes of storage is required.

Notes on PULSEJ Calculations
* denotes input variable.
* NPULSE Number of pulses
* PDUTY Duty cycle (per cent)
* SFREQ Start Spin Frequency(Hertz)
* EFREQ End frequency (Hertz)
* STIME Sweep time (Seconds)
SFREQ > 64
EFREQ > 64
If: (2*SFREQ*NPULSE-SFREQ®(2*PDUTY/100) > 1000 then frequency/NPULSE is
too high or PDUTY is too low.
DT = 1.0/32767 (cycle/bits)
DT is a scale factor which is used to divide sweep time into 32K bits.
DUTY = PDUTY/100.0

Converts % to fractions of a cycle.

39

SRATE = (EFREQ-SFREQ)/STIME

Average change in frequency per unit time.

NPARTS = 2*NPULSE-1

Number of parts in strobe history.

TIME = 0 Initialize time to zero.

CFREQ = SFREQ + SRATE*TIME Current frequency at any given point in time.

CT = 1.0/CFREQ Current spin cycle time

NPTS = CT*DUTY/DT Strobe time per given cycle multiplied by total number

of points.

MPTS = (NPTS/NPARTS) + 0.5 The number of points that the strobe is “on"

per spin cycle.

When JSIG(IP) = O strobe is "off"

When JSIG(IP) = 1 strobe is "on"

NPTS = CT*(1-DUTY)/DT The number of points that the strobe is "off" per

spin cycle.

TIME + CT/2 - STIME SO Test to see if sweep time has been used up.
Refer to Fig. 5 for a functional diagram of the PULSEJ.

40

Lol ot Z s ol

oI

Initialize plotting package
Clear screen

Ring bell

Does

system file,
IESY, exist?

Read ISYF(1-40)
from TESY

If
pulse jammer
flag is high,
SFY(4)=1

b e Lo e

aa.

"Boot" back

to ETSG

.:LContinue

Pulse jammer strobe

generation routine,

v;lf
Input:

NPULSE - number of pulses

PDUTY - duty cycle (per cent)

SFREQ - start spin frequency (Hertz)
EFREQ - end frequency (Hertz)

Figure 5 : PULSEJ
41

L e —n amildnieia

SFREQ>64
and
EFREQ>64

Is
strobe data

consistent?

Frequency too low:JP

Frequency /NPULSE

too high.
DUTY too low.

Input:

STIME-sweep time(Sec)///(

1}

Graphical

representation? N

IG » O

QN

Wait processing
in progress.

\V4

Calculate
pulse jammer

parameters.
Set TIME = 0

-—

42

Figure 5 (Continued)-

PR ONEY

oy

L

/

Create pulse jammer history.

If 1G»0

flag.

Graphics mode T |

Number

of words in

history array S~ '

IP#0

Call LDPLSJ,
load pulse

jammer history

——— .

Increment time

TIME = TIME + CT

Is sweep

time up yet? ‘\\\\\ N
S —

S S —

TIME+CT/2-STIME< 0

Figure 5 (Continued)

@

P

;e e

da PP Py

ey

Terminate LDPLST

Does system file exist?

"Boot to
ETSG

Write:

ISYF(1) = 0 to IESY

"Boot" to

ETSG

-

Figure 5 (Continued)

44

Py

2.2.6 FLARE

FLARE initializes the flare time history. The time history is entered
as up to twenty pairs of intensity and time data. One time history is used
for all sources designated as flares, but each individual flare may be
activated independently. The specified pairs of time and intensity data

are processed by the target CPUs to update the flare absolute intensity
during each frame. Refer to Fig. 6 for a functional diagram of the FLARE.

45

Initialize console and

communication lines

.]

IHIST(1-105)=0

System file
1ESY, exist?

Read ISYF(5)

Flares
specified?
ISYF(5)=1

No

4

Error
O_ W No flares
2
Read, N, number J,
of points
"BOOC“
ETSG

Figure 6 : FLARE

46

No

N&20

Yes

Input:
T(I), number of cycles
P(I), % intensity

T -

Generate flare

time history.

o IESY exist? No
"Boot"
ETSG
es

Load target
CPU with flare

l hiétory. 41

Figure 6 (Continued)

47

Output:
Target number.
Flare flag ISYF

ISYF(1) = 0O

Write flare history
to IESY

"Boot"
ETSG

END

Figure 6 (Continued)

48

2,2.7 RUNETSG

RUNETSG transfers control from the initialization processor to the

ETSG Hardware. It is the last program in the initialization sequence.

Refer to Fig. 7 for a functional diagram,

49

Initialize console
and communication
lines.

Is system initialized?

No

"Boot"

ETSG

Any last minute

corrections

"Boot"
ETSG

Delete system file.

i

Set/Clear all

necessary hardware.

Figure 7 : RUNETSG

50

i Ciniaaiin o

wetecnsidiiiithio

POV

*

el Skt

T

Display targets with trails?

|

ETSG ready.

RUN

i

Call PMD
"Post Mortem Dump"

I

Rerun?

I Yes

Reload system
file and old targets.

3

"Boot"
ETSG

Figure 7 {(Continued)

51

No

STop

e

— i

CHAPTER THREE
REAL-TIME COMPUTER MODEL (TARGET CPU SOFTWARE)

3.0 Introduction

Target CPU Driver, TCD is the main driver for the ETSG target CPU. Its
rrimary purpose is to generate the coordinate values and step sizes for the
target loaders. For the derivations and memory locations of target coordinate
values and initialization interface variables calculated by the target CPU
code refer to Appendices One and Two respectively.

TCD has three modes of operation, RUN, DEBUG with PRESET, and DEBUG.

RUN Mode
While operating in RUN mode, the target CPU is fulfilling its primary
purpose. It is generally in this mode while the ETSG is running. While
in this mode, it will use the dynamic variables supplied by the DCB, the
static variables supplied by the IP, and some internal variables kept by
TCD and generate the target loader/intensity factor output values.
The steps involved are:
1. Wait till data is supplied by the DCB.
2. Generate intensity scale factor.
3. Generate target loader values.
4. If target still valid (inside FOV, no iarensity factor overflow,
and target valid from DCB), load calculated values into latches.
If target invalid, set target to point target outside FOV.
5. Go to step 1.

DEBUG with PRESET
If the debug target flag is set to 1, the target CPU will enter this
mode of operation. While in this mode, the CPU will set the static vari-
ables usually set by the IP, preset all necessary local variables, and
set up a block of memory for use of the debug target. The target CPU then

enters the debug target mode.

DEBUG Target Mode
While in debug target mode, the actions of the target are directed
by a block of memory. This block consists of 9 different variables:
1, 2) A rotation angle increment and period. These two numbers allow

the target to rotate CW or CCW at any desired speed.

52

B it o ‘Mﬂ

3,.4) A range decrement and period. These two numbers allow the
target to *zoom* in and out (i.e., appear to grow and shrink)
at a selected speed.

5) A range overshoot limit. As the range decrement value is usually
positive, and the algorithm involved does not check for negative
ranges, it will appear that the target has flown through the
viewer. This value places a negative limit on the range.

6, 7) An aspect increment and period. These two allow the targets

aspect value to change with any desired rate and direction.

8) A delay factor. This value is a delay to be placed at the end
of any cycle. (Normally 0)

9) The control byte. This is the value that the DCB would usually
place in the control byte at address 7. 1t contains the go flag,

the flare flag, and an invalid target flag.

The steps involved are:

1) Delay for delay factor time.

2) 1If time period exhausted for rotation, change rotation angle by
indicated amount.

3) 1If time period exhausted for range, change range by indicated
amount.

4) If range is negative enough, reset range to positive value.

5) Ditto for aspect angle. If aspect angle went through edge value,
change rotation by 180 degrees.

6) Set control byte to specified value.
7) Pretend to be RUN mode target.

3.1 Target CPU Code

The following is a listing of the subroutines which constitute the
target CPU software. A brief description of each subroutine's function is
presented, Those variables operated on by each subroutine are designated
as "Entry" and those calculated are labeled "Exit." At the end of this
section is a flow chart which shows the interaction between these sub-
routines,

TCD - Target CPU Drive ~ TCD provides the main line processing and start

for the ETSG Target CPUs.

PRS - Preset - PRS clears all necessary internal variables to allow for
correct initialization processor interaction. It will also remove the target
from the field of view.

Exit (VALD, = 0, Not Valid

(DBUG) = 0, Not Debug
(CONT) = 0, Just in Case
(ERRF) = 0, No Errors Encountered Yet

(CYCL) = 0, No Cycles Finished Yet
Target outside of field of view
INT - Initialize, Preset, and Wait for Go - INT sets all variables to correct
assumed values and waits for a go signal from the DCB.
Entry (VALD) = Valid Target From IP
(DBUG) = Debug Target From IP
(FS) = Flare Status
FS = 0, Flare Turned Off
= 1, Flare Turned On
= FF, Flare Turned Off by Program
Exit Go Signal Cleared. Flare Pointer Set If Flare Turned On
Calls IFH
RCK - Check Point Target - RCK determines whether or not the target is a
point target. It also calls on L2R to calculate the range.
Entry (RRAN, RRAN + 1) = Resolution range (2 Bytes)
(RRAN , RRAN + 1) = Current Range (2 Bytes)
Exit (PT) = 00, If not a point target

01, If point target
(LR) = Log Base 2 (Range)

PSP

2 ke il et A

Uses A, B
Calls L2R

1FH - Initialize Flare History - IFH Sets the pointers for the flare history

array.
Exit - (RC) = Repeat count for first value
(ST) = Step for first point
(IX) = Pointer for first point
(LS) = Current log output value
(TS) = (LS)
Uses A, X

L2R - Log Base 2 of the Range ~ L2R computes the log (Base 2) of the target
range. The algorithm is as follows.

1. Find the largest bit set--this is the power of two for the number

2. Extract the next 6 bits, these are used as a fractional log. This

entails a 64 byte lookup table
Entry (RANG, RANG + 1) = Range
Exit (LR + 0) Interger {(Log 2 (Range))
(LR + 1) = Fractional (Log 2 (Range))

Uses A, B, X, TO, T1

ISF - Calculate Intensity/Range Scale Factor - ISF calculates the basic

intensity/range scaling factor. The ISF is determined by the following
equations:
1. For resolved targets: ISF = EXP (-ALPHA*RANGE)
2. For half-resolved targets: (Unimplemented) ISF = EXP(-ALPHA*RANGE)/
RANGE
3. For unresolved targets: ISF = EXP(~ALPHA*RANGE)/RANGE**2

In addition to the range scale factor,flares have a time loss factor.
All calculations are based on the log (base 2) of the range. Conversion
from logs to the ETSG Floating Point Number System (FNS) is trivial because
the log 1s the FNS number to the first three bits, which is all that 1s necessary.
Entry - (ALZE) = Log2(E)*ALPHA
(ISFR) = Implied bias if resolved
(ISFP) = Implied bias if point target

55

SR

Exit (ISFO) = ISF, FNS
Uses A, B, X, TO- T1, T2, T3
Calls TSF
TSF - Time Scaling Factor - TSF calculates the time scaling factor. This

is the value by which the TSF is to be decremented due to time (for flares)
Entry (RC) = Repeat Count for current LS value (ABPO)
(ST) = Current Sine Term (for corrections) (APBO)
(LS) = Log Scale Value (ABP8)
(TS) = Log Scale Value (Corrected) (ABP10)
(1X) = Current Flare Index (into table)
Exit - All above values updated
(A, B) = TSF Value. (ABPS)
Uses A, B, X, T4, T5)
CAV - Calculate Aspect Values - CAV sets the X key point depending upon ¥

the current value of the aspect angle and determines the correct aspect
ratio RAM to use., It will perform a table look up in TKPT to find the
correct value of the keypoint. 4
Entry - (ASPC)
(PLUM)
(PT) = Point Target Flag
Exit -~ (XK) = X key point
(YK)
Uses TO, T1, T2, T3
CXY - Calculate X and Y Coordinates - CXY calculates the X and Y coordinates

Aspect Angle

Complex Target Flag

Y key point

of the keypoint for the TLR. This coordinate is just the Azimuth and
elevation scaled upward by a predetermined scale factor
Entry (AZIM) = Target Azimuth
(ELEV) = Target Elevation
(ACSF) = Elevation/Azimuth Scale Factor
Exit (XC, XC + 1) = X Coordinate ABPS
(YC, YC + 1) = Y Coordinate ABP5
Uses A, X

56

CSS -~ Calculate Step Size - CSS calculates the X and Y step sizes used by
the target loader to index into the target lookup RAM (TLR). These values
are independent of the aspect angle,
Entry (RANGE, RANGE + 1) = Range of target (2 Bytes)
(FOVS) = Field of View Scaling Factor
Exit (XM, XM + 1) = TLR Step Size X with respect to X
(XN, XN + 1) = TLR Step Size X with respect to Y
(YM, YM + 1) = TLR Step Size Y with respect to X
(YN, YN + 1) = TLR Step Size Y with respect to Y
Uses TO
Calls TSC
CZC - Calculate Target Map Zero Coordinate - CZC calculates the value of
the target map zero coordinate within the TLR coordinate system. The

equations used for the coordinate transdformation are:

X’
2. Y'
Where XC
YC - Y coordinate of target (scaled elevation)
Entry (XM) = DELTA XM
(XN) DELTA XN
(™ DELTA YM
(YN) = DELTA YN
(XK) = Key Point X
(YK) = Key Point Y
Exit (X0) = Target Map Zero X Coordinate
(Y0) - Target Map Zero Y Coordinate
Uses A, B, X, TO-T?7
Calls TSC

TSC - Sine/Cosine Calculation Routine - TSC calculates sin/cos values for

-(XC*XM + YC*XN ~ XK)
-(XC*YM + YC*YN - YK)
X coordinate of target (scaled azimuth)

an angle. The angle is assumed to be an 8-bit positive number 0~255, which

corresponds to an angle of 0-360 degrees.

57

S ") - sk -

Entry (A) = Angle
Exit (SN, SN + 1) = Sin(A) ABP14
(CS, CS + 1) = Cos(A) ABP14
Uses A, B, X, T3, T4, T5
TVT - Test Valid Target - TVT checks and insures that the target is in
fact valid. 1If not, TVT sets the target out of the field of view and
sets all step sizes to 0. This effectively removes the target from considera-
tion.
Entry (VT) = Valid Target Flag
0 = Not Valid
1 = 1If Valid
LTL ~ Load Target Loader ~ LTL transfers to the target loader the following
values:
1. The target map zero coordinate WRT to the TLR.
2. All four incremental values
3. Set aspect select values (13th latch)
4. Set complete bit (13th latch)
Uses A, B, X

ERR - Check Internal Errors - ERR performs a short self check to determine
if any detectable errors have occurred. It check the following:

1. The Multiplier

2. RAMs TO-T7

If an error is detected, the CPU is hung

Exit (CYCL) = (CYCL) + 1

(ERRF) = (ERRF) + Applicable error flags.

Refer to Fig, 8 for a functional diagram,

58

TR WP P .-

I
i

Figure 8 : Target CPU Code

{To Calculate Rahge
RCK Return L2R
Flare
L Return TSF
CAV
2
CXY
A Set Orientation
Return TSC
Set Targe
Map Oor entation
CZC Return
TVT
N
LTL
ERR

ialbntiniodent kot Bt L

CHAPTER FOUR
CONCLUSIONS AND RECOMMENDATIONS

4.0 Conclusions and Recommendations

The ETSG Target CPU firmware is complete and totally functional.
The authors do not anticipate the need for firmware changes unless further
development necessitates alterations in the coordinate transformation on
target mapping algorithms. All changes made in Target CPU firmware as
well as changes in Initialization software subsequent to May 5, 1981 are
documented in the ETSG program listings and in the author's daily log.

The Initialization software has been revised from Motorola FORTRAN
revision number 2.20 to FORTRAN 3.10, Some 'debugging' is required for
this most recent revision of the ETSG software.

It is our recommendation that the development of this software be

continued and that the diagnostic software presentlv in development be

completed.

60

e

N

REFERENCES

{1] Barnett, C. E, and Long, T. N., Integration of a Hybrid Simulation
for a Small Air Defense Missile, Georgia Institute of Technology,
Atlanta, Georgia, April 1980,

{2] Barnett, C. E,, Long, T. N, and Wallace, C. T., Stinger-POST
Hybrid Simulation Integration (U), Georgia Institute of Technology,
Atlanta, Georgia, February 1981.

[3] Barnett, C. E., Simulation System Target Parameters and Logic
Definition, Georgia Institute of Technology, Atlanta, Georgia,
June 1980.

(4] Cantrell, Gerald and Kheir, N. A., A Digital Target Model for Use
With a Stinger~POST Guidance Simulation, Final Technical Report

e

The University of Alabama in Huntsville, Report No. 272, prepared
for System Simulation and Development Directorate, US Army Missile
Command, Redstone Arsenal, Alabama, Contract No. DAAK-40-79-D-0031,
Delivery Order #0004, January 1981.

{5] Hudson, Richard D., Jr., Infrared System Engineering, Wiley, F
New York, 1969,

[6] Sinclair, M. J., Electronic Target Signal Generator (ETSG) Hardware
Design and Fabrication, Georgia Institute of Technology, Atlanta,
Georgia, April 1980.

[7] Sinclair, M. J., Electronic Target Signal Generator (ETSG) Integra-
tion and Test, Georgia Institute of Technologv, Atlanta, Georgia,
March 1981. ﬂ

[8] Sinclair, M. J. and Riley, G. E., Electronic Target Signal Generator F
(ETSG), Design and Analysis, Georgia Institute of Technology, Atlanta
Georgia, May 1980.

[9) Wolfe, W. L. and Zissis, G. J., The Infrared Handbook, Environmental
Research Institute of Michigan, Michigan, 1978,

61

REFERENCES (Cont'd)

{10} Burt, R., and Kheir, N. A,, Electronic Target Signal Generator (ETSG):
Hardware Development, Final Technical Report, The University of
Alabama in Huntsville, Under preparation for System Simulation and
Development Directorate, US Army Missile Command, Redstone Arsenal,
Alabama, Contract No. DAAH-01-81-D-A006, Delivery Order #0004.

62

Appendix I

Target Coordinate Variables

Variable Name

X0

YO

XK

YK

XC

YC

™M

YN

Description

Target Map Origin (TLR)
Target Map Origin (TLR)
X keypoint (TLR)

Y keypoint (TLR)
Current X Coordinate
Current Y Coordinate
TLR Step Size X wrt. X
TLR Step Size X wrt. Y
TLR Step Size Y wrt. X

TLR Step Size Y wrt. Y

AL.2

s e

Origin Location
czc D051
D052
CZC D053
D054
CAV D055
D056
CAV D057
D058
CXy D059
DO5A
cxXy DO5B
DO5C
Css DOS5SD
DOSE
CSS DOSF
D060
CSS D061
D062
CSS D063
D064

e

SN FYLP- WP)

P Y

Notes On Target Coordinate Calculations

These notes and equations may be used to verify that correct numbers
are being calculated and stored in the target CPU RAM for target coordinate
calculations. Substitution of the appropriate IP input variables and
direct cell interface variables into the equations will generate correct
values for each coordinate variable. Scale factors for the hardware
multiply are absorbed into the equations. Care should be taken in applying
these equations in order that number base conventions are observed. All
numbers in the equations are decimal or base ten numbers. All results

must be converted to hexadecimal.

e L S TV

AL.3

CcXYy

The subroutine LSHL operates on FNUMB and ISHFT and yields the results

IRSLT and ILEFT.

FNUMB = IRND(NPWN*FOV/(BLRM*180%107>/ T))/FovD/32

All unknowns are IP input variables.

ISHFT = 15
IRSLT = ACSF
ILEFT = SRAC - 7

CNTX = 8448*27'SRAC

CNTY = 8192*27'3RAC

XC (ACSF*AZIM)/Z15 + CNTX

YC (A.CSF*ELEV)/Z15 + CNTY

AZIM and ELEV are direct cell interface variables.

AL.4

D094
D095

D098
D099

DO9%A
DO9B

D059
DO5A

DO5B
DO5C

L SRR

.

3

CAV

XXK=0 For a point target PT = O D055
D056
YK = 0 D057
D058

The values for XK are calculated by ASPGEN and stored in a table
location $0200 + !ASPC 1/4.

PPM = 63/TSZX Points/meter for simple target.

PPM = 63/ JQ&SZY/Z)Z + Tszxi_ Points/meter for a complex target.
TSZX and TSZY are IP input variables.
XK = PPMXRKXM*16%SIN(ACOS ((lASPC (/4 - 1)/16))
YK = KEYY = KYP = PPM*RKYM*16
RKXM and RKYM are initialization input variables via ETARG.
ASPC is a direct cell interface variable.

Al.5

LI SR ORPRE N

To compute COS(ORNT);

1. Convert ORNT to decimal
*

2. ORNTIO 1.41

3. Cos (1.41*0RNT10)

ss = Fovs*raNG#2SRFV

S§S = RANG*25*64/NPWN/(TSZX/BLRM*IOOO)

ORNT and RANG are direct cell interface variables.
IP input variables.

XM = ss*cos(onm')*z'15
-15

YM = -SS*SIN(ORNT)*2
_ -15

XN = SS*SIN(ORNT)*2
-15

YN. = SS*COS (ORNT)*2

AL.6

All other unknowms are

DOSD
DOSE

D061
D062

DOSF
D060

D063
D064

A mme e st e e s kT

10 e

v
CZc
X0 = -((xcrM + yerxn)#2SRAC-13 _ D051 i1
D052 !
Y0 = - ((XCHYM + yeryn)#2SRACIS |y D053 :
D054 i
g
4
- 4
AT.7

e it

AV < -

Appendix II
Initlalization Interface Variables

AIL.1

ek i ol e et F

i

R P

b

Initialization Interface Variables

DBUG Debug target flag (1,FF=DEBUG)
VALD Valid target flag (1 = Valid)
FLAR Target flare flag (1 = Flare)
PLUM Complex target flag (1 = Complex)
CYCL Cycle count
ERRF Error flag
RRAN Resolution Range
RCO = TSZX/BLRM*1000
RRAN = RCO*NPWN/(NPWN + 1)
LRAN Linear Resolution Range
(not used)
KEYY Y Key Point
IMAX = 64
Simple target Complex target
Tl = TSZX Tl = TS2Y*TSZY/4 + TSZX*TSZX
PPM = (IMAX~1)/T1 PPM = (IMAX - 1)/SQRT(T1)
KEYY = PPM*RKYM*16
ISFR Intensity Scale Factor Pias for

Resolved Target
CO = 64
CM2PM2 = 1.0E - 4
SMSY = RNEFD*SNRT
AIL.2

D080 1
D081 4
D082 E
D083 h
DOSE 1
DO9F §

D084 {
D085

D086
D087 ._1

D088
D089

DO8A
DO8B

ST

T ae e e e

2
|

RCO = TSZX/BLRM*1000
REAVG = PAVG/PMN(4)*9
RIJP = IPOLTY* (RIT-BKRD*100000*EXP (ATTN/1000))
€5 = CO*CM2PM2/SMNSY/NPWN/NPWN
ISFR = IRND(((ALOG(C5*RJIJP/RCO/RCO/RFAVG) /ALOG/2))*2%*8

ISFP

Intensity Scale DO8C
Factor Bias for a Point Target DO8D

CST = 9.0
CO = 64
CM2PM2 = 1.0 E-4
SMNSY = RNEFD*SNRT
€5 = CO*CM2PM2/SMNSY/NPWN/NPWN
RJJP = (RJIT -~ BKRD*10000*EXP (ATTN/1000)*IPOLTY

ISFP = IRND((ALOG(C5*RJJP/CST)/ALOG(2))*2**8

AL2E

FOVS

SRFV

ALPHA*LOG2 (E) DOBE
DOSF

1/1n(2) = logz(e) = 1.442695041
222 = 4194304
AL2E = 1.442695041%ATTN/1000%4194304

Field of View Scaling Factor D090
D091
20 Shift Applied to FOVS D092
D093

RCO =~ TSZX/BLRM*1000
FRMP = 64.0/NPWN/RCO
LSHL/FTMP, 20)

FTMP ~ Fovs*2SRFV-20

AII.3

ACSF

SRAC

CNTX

PTSS

Angle to Coordinate Scale Factor

DPM = 0.0572957795
BLRD = BLRMADPM
NFOV = IRND(NPWN*FOVD/BLRD)
FPPD = NFOV/FOVD
TCDPC = 4/128
TCPPC = FPPD*TCDPC
LSHL(TCPPC, 15)
TCPPC = ACsF*220-TTMP
22 shift Applied to ACSF
SRAC = JTMP + 7
Shifted X Center Coordinate

CNTX = 528%16/2**JTMP
Shifted Y Center Coordinate

Point Target Step Size

PTSS = 64/NPUN*2**4

AIL.4

D094
D095

D096
D097

D098
D099

DO9A
DO9B

D09C
DO9D

dmib

. Appendix III1
System Flags

AITI.1

- 1TSH -

SYSTEM FLAGS ’

tFLGS{1)

TARGET TYPE '
SIDE VIEW.

1S\VEN IFLGSC2) TARGET GEOMETRY FOR COWMPLEY TRARGET

1S3 = JFLGS{3> TRARGET TYFE 1= LONG MWAVEX-CHL 2= SHORT HAVEs J-Chi

IFOLTY = [FLGZ<4) POLARITY

IFJ = TFLGS(SY PLUSE JAWIMER FLAG

IFL = [FLGS{&» FLARE FLAG

IFR] = JFLGS(TY PRIORITY

IFLH = JFLGEC3Y PLUME FLAG

ITH = 1FLGS(3) VIEW HUMEER FOR COMPLEYR THRuET

ITCLR = IFLGS(18) TRARGET COLOR

ISFUT = TFLGS{11>» TRUE TRRGET FLAG

IGLISHOLY = TFLGS(L2)

IGLISWCZY = IFLGSO13) TRARGET IHTEHMSITY GRADIENT FLAG

IELISHiS) = IFLGZ(14) .

ISERS = IFLGS(15 SEEVER CHECK VYRLUE FROM STTP

lFt’u = (FLGSC1E> 1=ROSETTE 2=COMS3CAN

{F = TFLGSCITY HUMBER OF FOINIS IH OME DIMEHSION OF BLUR DIRMETE
= 1FLGSLS)

MRATHUM SCAN RATE FOR COMSCAH

= JFLGS{19) SCHLE TO MHEFD CHAMMEL 1t i
b 2 = IFLGSCZEY SCALE Td HEFD CHAMMEL 2
I EHT = JFLGSC21) COHSCAM SEEKER ROTATION
R S = 1FLG3(22» SEEEER CHECKESLM “ALUE
i
| . SYSTEM FLAGS
: IZYFY 102 = SYSTEM ERROR FLAG
ISYFO 22 = MANUAL SELECT FLAG
ISYFL 22 = AUTO SEQUEMCE HUMEER .
IZ¥FC 4) = STROBE EXISTS :
; ISYFe S = FLARES EXIST
i I .Fu &3 = NUMEER OF FLARES
YFe 7?2 = TREGET 1 IS A FLAFE
.:Ff g2 = THREGET 2 IS A FLHFE
IZ%FC 9 = TARGET 3 1S A FLARE
TZWFo1ay = TRAREGET 4 I3 H FLARE
IZYFC1LY = TARGET S I3 A FLRRE '
ISVYFC12Y = TRARGET & IS A FLRFE . 1
[2%Fa12y = TREGET 7 13 A FLSFE
ISVF<142 = TREGET 2 IS A FLARE
IZYFO1Sy = TARGET 9 IS A FLARE
IovFdiey = TREGET 19 IS N FLARE
IZ0oFaty: = TAFEGET 11 IS A FLRAFE
I botzs = TREGET 12 IS A FLARE
e iy o= THFhET 13 IS A FLASE
Ty =ar T9R45 i% 13 A FLAFE
ISYFi21y = THFh&T 15 1S A FLARE
18%Fc22s = TRSGET 16 15 A FLHRE
IZ2VFC23y = TRRGET 17 IS B FLA%E
I2FY 24y = TRRGET 13 15 A FLARE
I12°FCESy = TRREGLT 12 IS A FLHRE)
I a5, = Tkl 20 1S A FLAME
1900 a3 = SErrbl TYFE |
]
AIIl1.2

Semarpe e o T e e

’ Appendix 1V

Target Parameters

AIV.1

. TARGET PARAHETERS ?
| i

TSZX = TEG(1Y TARGET SIZE X C(METERS) |

TS2ZY = TRGuZ» TRARGET SIZE ¥ (METERS) |

TAR = TG(3: TARGET ASPECT FATI |

RIT = TRGC4: TRRGET FADIANCE (WATTS. STERRDIANS?

RKXM = TFG'S> R KEY FOINT (METERS)

RKYM = TEGCEX ¥ KEY POINT (METERS:

RMAY = TRGCT) MAKXIMUM RANGE «METERS:

RMIM = TRGCS MIMIMUM RANGE «METERSD

PEM = TRGu3) POINTS PER METER IH T.L.R.

EC1 = TRGo18> RESOLUTION RERMHLE (METERZ)

PHNR = TRGu113 FAMGE DF 121 RESOLUTION (METERS:

RJTF = TRG{1Z) COMTRAST RADIANCE - WATTS-STERADIANS. :
1
<
1
4
]
{

AIV.2

Appendix V
Intensity Data

Av.1

Bt

INTEHSITY DHT

¥ 1 = IPLNTH ‘
i
CH 11 = PERE CALL] i
CNu2s I3 = ELGE [EXCTYsECRSE?]]
CH(=2 12 = EDGE (T OHLY»])
CHC4s 1Y = EBRERE FT [HBCT2BREECE s YBCR) ¥

h CHOS 12 = ERE NALLE [ERCT»sE'RsE?]
_ CHuEs 13 = ERERKE PT BT Gkl] !
3 CH(T» I3 = BRE YARLUE CEYCT COHLY >]]
i
;
4

ACCUMULATED THTENSITY VALUES »

ZEM = ZSdls I [I=4, TOTRAL FOR ALL YIEMWS 1]

ECHT = Z5¢2413 (I=4» TOTAL FOF ALL VYIEWS 1 k
PHE = 2203412 € I=4y MAX FOR ALL YIEWS] 3
FIMH = ZSdds 1 { I=4s MIN FOR nilL “IEMWS] '

Y

Appendix VI

Seeker Parameters

P TR, Ve

VI.1

ARES(ID

BKRDC 1S

ATTHCLD

SHRTCI?

ANQIZ DD
SIGHMHCT 2
S

SEEKER PRRAMETERS
RNEFD(IY = RESFIs1d

RESP(Is 22
RESP(1:30
RESF{ILsd>
RESP{LsS)
RESPCIsE)
FESP(L7)
RESPC1,8)

MOISE EQUIVMHLENT FLUY DEHSITY (WATTS/CMtzh
SYSTEN BESPOHSINITY (NMOLTS-WATTS/CMT2:2
BACKGROUHD IRZADIAHCE CHATTS CHMTZ
RTHOSFHERIC ATTEHURTION COEFFICIENT (- KM
SIGHAL TO HQISE FRTIQ TO TRARCK

SYSTEM HDISE LEVEL .

MINIMUM 2IGHAL AT RFPERTURE

SEEKER IRRRDIEHMCE TD FHMS SCRLE FACTOR

AV1.2

caca bl maan

a1

Appendix VII
Field of View Data

e AT N

AVII.1

|
a

Favdln
Fov(2d
Fay(as
FOV {42
FOVCS)
Fv (g
FOV (7
FOV(S)

ORI T | S (I T |

4
{
1
FIELD OF YIEW DATA
FOUD [RIRFOVD LC] :
BLRNM (RsC7 BLUR DIFMETER “MILLIFRADIAHSD
TLPC [RsC) TARGET LEGFREES FPEFR CIOUNT
——+EHTR [C1
-—sEFOYD (2] 3
TCFPL [RsC) TARGET COORDIHARTE FOINTS PER COUNT
'1

AV1I.2

P N—" e v

TN O S

Appendix VIII

Initialization Processor Subroutines

Compiled by Donn Hall

AVIII.1

__JlH-uhl.-n-ﬂIﬁlﬂ-‘ﬂh-n-lﬂﬂllﬂlﬂliﬂiliiiﬁ;“" it o o

Inittalization Processor Subroutines

ACOS - Arccosine Function
Input (x)
ADFLT - Real Array Default Function
Input (A, I, J, M)
ALP - Argument List Processor - ALP is an assembly routine which is designed
to process the argument list of an abortran subroutine.
Input - (A) = Number of Arguments.
ANMD - Set Alpha-Numeric Mode
APKT - Intensity Target Display
Input - (IA, IR, MX, NLVLS)
Call - (INIT, PAGE, GREY)
ASIN - Arcsine Function
Input (x)
ASPGEN - Plume Aspect Generator
Inputs - (AR, KEYX) Input files - (IFLGS, SA:B, TRG.SA:0)
Call - (LDASF, LDTCPO)
AXES - Flare History Display
Inputs (X, Y, N)
Call - (INIT, PAGE, PLOT, CRSR)
BELL - Sound 150 MS BELL
BLNK - Set/Clear Blink Mode
Tnput (OP) OP = 1, Bunk mode on : OP = 0 Clear Blink Mode
CKINIT -~ Check initialization -~ CKINIT is a FORTRAN callable assembly routine
which is designed to check if a total system initialization is in
order. A system initialization may be necessary for any of the
following reasons:
1. A power up restart has been done on the ETSG
2. A power failure which cause reset of the PIAS
3. A hardware abort (restart)
If any of these three reasons are present, CKINIT will initialize
all PIAS and return a initialize required FLAS.
Input - (IVAL) = 0, if initialization was necessary
1, if initialization was not necessary
Call - (ALP, TPIAS)
CLRTMP ~ Clear Target Map - CLRTMP is a FORTRAN callable assembly routine
designed to reset the target maps to a clear state. It will write
zeros to both halfs of both channels of the target map.

AVIII.2

M il e e e e i wsM

PP BN

CNVERT - Convert ETSG Floating Point to MOTORODA Floating Point
Input - (INUMB)
COLR - Set Background/Foreground Colorx
Input - (BACK, FORE)
CPS - Check Plot Status - This subroutine checks to see if the terminal is
currently in plot mode or in a plot submode, but leaves "PLTF" set CPS
always leaves the interface plot mode set (PLTF)
CRSR - Set Cursur Position
Input (COLM, LINE)
DIR -~ Directory of SEEKERS and TARGETS -~ DIR produces a listing of all

- TARGETS and SEEKERS previously recorded in memory.

DLY - Delay For Specified Time. - DLY will wait for a specified time. This
delay is in increments of 10 incroseconds with a minimum of 40 microseconds
delay.
Input - (B) B = Number of 10 microsecond delays
DPLX - Set Half/Full Duplex
Input - (MODE) MODE = O, Half Duplex: MODE = 1, Full Duplex
DRC - Draw Boresight Circles - DRC Draws two circles on the monitor/display.
The routine is entirely table driven. All values for the X/Y coordinate
values for the circle points have been precalculated
Call - (TCRD/OUT)
DRX - Draw Boresight Crosshairs - DRX places A "+" in the center of the
monitor display.
ETARG - ETSG Target Generator Program - ETARG, in cooperation with the
user, sets all the static parameters for a given target.
Input Files -~ (IFLGS. SA:0, CN.SA:0, TRG.SA:0, FOV,SA:0, RESP.SA:0,
25.8A:0, ETSG.CM:0, ESYS.SA:0, DSKR.SA:0 SCROIJ7Z.QR:0)
Call - (FILTST, MLOAD, STTP, BELL, INVERT, LDPTIG, PAGE, GENTRG, DELF,
ASPGEN, STTGCH, STTSGN, STSTBB, LDTCPV, LSHL, LDDSPC)
ETSG - Driver For ETSG Initialization - ETSG initializas, in cooperation
with the operator (user), all seeker and target static parameters by
call ins other subroutines.
Input Files - (ESYS:SA:0, DSKR.SA:0, Various user defined variables,
Seek.CM:0, ETARG.CM:0, PULSE.CM:0, FLARE.CM:0, RUNETSG.
CM:0)
Call -~ (INIT, PAGE, BELL, CKINCT, FILTST, INITCP, MLOAD, DELF, SEEK,
ETARG, PULSE, FLARE, RUNETSG.

AVIII.3

> L.

kil

ETSGGO - Set Ready/Run Modes
Call - (READY, RUN)
FLAG - Set/Clear Flag (Enable/Disable Erase)
Input - (IFLAG) IFLAG = O Clear; IFLAG = 1 Set
FLARE ~ FLARE Generation Program ~ FLARE sets all parameters for flare type
targets.
Input Files - (ESYS.SA:0, ETSG.CM:0)
Call - (KEYIN, INIT, PAGE, BELL, FILTST, MLOAD, AXES, LDTCPU)

GENTRG - General Target Generator - GENTRG is called by "ETARG" to produce
the targe-~ image based upon the parameters set in "ETARG".
Inpur Files (IFLGS.SA:0, CN.SA:0, TRG.SA:0, 2S.SA:0
Input - (ITYPE, SIZEX, SIZEY, IFLZ)
Call - (MX, IRND, INVERT, OUTFLT, SAVTRG)
GRAPH -
Input ~ (JSIG,N)
Call - (PAGE, PLOT, CRSR)
GREY ~ Provide GREY Scale Character.
Input (IX, IY, IV)
IX = Character Column (See CRSR)
IY = Character Line (See CRSR)
IV = GREY Scale Valve (1 to 55)
GRSC - GREY Scale Value (Table)

JADET - Integer Array Default Function
Input - (1,A,1,J,M)
INIT - Initialize Plotting Package
INITCP ~ Initialize CPU
Call - (LDDSPC, LDTCPU)
INVERT ~ Convert Motorola Floating Point:Numbers to ETSG Floating Point
Numbers and return the result as an Integer.
Input - (RNUMB)

Call - (SAA)
IRND - Real to Integer Rounding Function
Input - (X)

LDASP - Load Target Aspect Ram - LDASP is a FORTRAN callable routine designed
to transfer data from the initialization processor to a select targer CPU

aspect Ram
Input - (ITRGT, IVIEW, IARRY)
Call -~ (ALP, SEA, MDV, CEA)

AVIII.4

Sk

et

A,

LDDSPC - Load Display Processor - LDDSPC is a FORTRAN callable routine
designed to transfer data from the initialization processor to the display
processor of the ETSG system. It also presets other values for the
display CPU.

Input ~ (ITARG, ICOLR, MINAR, MAXAR)

Input - (0, ISCLF, O, 0)

Call - (ALP, SEA, MDV, CEA)
LDNTRR _ Load Null Track Radios Ram - LDNTRR is a FORTRAN callable routine
designed to transfer data from the initfalization processor to the null
track (reticle rotation) rams of the ETSG system.

Input - (ICHNL, ICONT, IDATA)

Call - (ALP, SEA, MDV, CEA)
LDPLSJ ~ Load Pulse Jammer - LDPLSJ is a FORTRAN vallable routine designed
to enable the initialization processor to load the bit pattern used to
describe the pulse jammer for the ETSG system.

Input ~ (TARRAY, NWORDS)

Call - (ALP, SEA, CEA)
LDPTTG ~ Load Target Lookup Ram with a Point Target - LDPTTG is a FORTRAN
callable routine designed for transfer data from the initialization processor
to a selected target CPUs lookup ram point target

Input - (ITARG, IDATA)

Call - (ALP, SEA, MDV, CEA)
LDRET - Load Reticle Maps - LDRET is a FORTRAN callable routine designed
to transfer data from the initialization processor to the reticle maps of
the ETSG system.

Input - (ICHNL, IDATA)

Call - (ALP, SEA, MDV, CEA)
LSHL - Left Shift with Limit - LSHL will shift a given floating point number
left up to a supplied number of bits while retaining integer value limits
on the result.

Input - (FNUM, ISHFT) - Output - (IRSLT, ILEFT)

Call - (ALP)
LDTCPU - Load Target CPU - LDTCPU is a FORTRAN callable routine designed
to transfer data from the initialization processor to a selected target
processor of the ETSG system.

Input - (ITARG, IARRY, NWORD, IOFFS, ISIZE)

Call ~ (ALP, SFA, 'MDV, CEA)

AVILI.5

1
3
i
i

LDTLR - (Load Target Lookup Ram) - LDTLR is a FORTRAN callable routine
designed to transfer data from the initialization processor to a selected
target CPUS lookup ram

Input - (ITRGT, IARRY, IVIEW, IROWN)

Call - (ALP, SEA, MDV, CEA)
NRT - Null Track Radius - Generates coordinates for null track radius hard-
ware

Input ~ (NFOVR, ENTR, ISROT)

Call - (LDNTRR)
OUT - Output Character to Monitor - Out ships one character to the monitor
with a delay of 53 MS. If this is insufficient time for the control character
in question, a further delay must be implemented.

Input - (A) A = Character to send

Calls - (DLY)
OUTC - Ship Character to Intecolor (Terminal)

Input - (A) A = Character to ship)
OUTP - Output Character with Programmable Delay
OUTPLT - Output Subroutine for Display

Input - (IPTG, JJ, IPKP, NLVLS)

Call - (LDTLR, APKT, PKT)
OUTS - Output Character with Standard Delay

Input (A)
PAGE - Clear Screen
PCT - Reticle Point Counter - Counts the number of points in the reticle
to insure that it does not exceed the field of view

Input - (IA,IR) IA = Total field of view

IR = Radius of reticle (if the scan is a square scan
IR = Half the width of scan)

TART ,ETARG sub module)
PICT - Target Display

Input - (IA, IR, MX, NLVLS)

Call - (INIT, PAGE, COLR, PLOT, DRSR, TEXT, GREY, ANMD)
PLOT - ETSG Plotting Package (Driver Routine)

Input - (ARGl, ARG2, ARG3)

Call ~ (ANMD, BELL, BLNK, COLR, CRSR, DPLX, FLAG, GREY, INIT, PAGE, PLOT,

ROLL, TEXT, ALP, BSCT)

PLOT - Move * Pen * To (X, Y) coordinates

AVII1.6

Input - (X,Y,P)
X = X coordinate value (0 to 159)
Y = Y coordinate value (0 to 191)
P = Z Move * Pen * Down P = 3 Move * Pen * Up.

PMD - Parameter Mapping and Overflow check ~ PMD initializes CRT, loads post

processing data, prints headings, displays data, checks rosette limits,
checks intensity overflow flags

Input -~ ()

Call - (INIT, PAGE, RDDSPC, RDTCPU, LDTCPU, BI)

PMS - Plot Mode Start ~ PMS is called to initiate interface plot mode

Call - (QUTC)

PMT - Plot Mode Terminate - PMT is called to terminate the interface plot
mode

Call - (OUTC)

PRS - Process Preset ~ PRS initializes the ACIA for terminal I/0 and programs
the PIA

Call - (OUT)

PULSEJ - Pulse Jammer (Strobe) History Generator - PULSEJ generates all
necessary parameters for pulse jammer (Strobe) targets

Input Files - (ESYS.SA:0, ETSG.CM:0)

Call ~ (KEYIN, INIT, BELL, PAGE, FILTST, MLOAD, GRAPH, LDPLSJ, CRSR)
RDDSPC - Read Display CPU - RDDSPC is a FORTRAN callable routine designed
to transfer data from the display processor to the initialization processor
after an ETSG run

Input - (IFLAG, IMNAR, IMINR, IMAXR, IMXAR)

Call - (ALP, SEA, MDV, CEA)

RDTCPU ~ Read Target CPU ~ RDTCPU is a FORTRAN callable routine designed
to transfer data from a selected target CPU to the initialization processor
after an ETSG runm.

Input - (ITRGT, IARRY, NWORD, IDFFS, ISIZE)

Call - (ALP, SEA, MDV, CEA)

RDTMP - Read Target Map - RDTMP is a FORTRAN callable routine designed to
read the target maps one line at a time.

Input - (ICHNL, ITMAP, ILINE, IARRY)

Call -~ (ALP)

AVIII.?

AD=A112 149

UNCLASSIFIED

ALABAMA UNIV IN HUNTSVILLE SCHOOL OF SCIENCE AND ENG==ETC F/6 14/2
ELECTRONIC TARGET SIGNAL GENERATOR (ETSG) SOFTWARE DEVELOPMENT.(U)
OCT 81 P F PRITCHETT» N A KHEIR DAAHO1-81=D=A006
UAH~-296 DRSMI=RD=CR-82=-4

le2 .-

|| Iz
""E s

IL2s s e

READY - Enable ETSG to Run - READY is a routine which will set the ETSG
in run mode and set the READY line (To the CDC 6600) high.
RETGEN ~ Multi-Size Reticle Generator - RETGEN creates a reticle of the
size asked for by the user.

Input ~ (NPTS) NPTS = Number of points for width

Call -~ (PCT, CRSR, PAGE, FILTST)
ROLL - Set Terminal in Roll Mode
RPS -~ Restore Plot Status -~ RPS sets the terminal in the plot submode
specified by "PLTF' Used in conjunction with "CPS" it allows a non-plot
function to be issued from within a plot mode. If plot sub-mode is
specified, the interface plot is left set.

Input - (PLTF) PLTF = Plot submode desired
RUN - Final terminal preparation - RUN 1s the last routine called by the
ETSG initialization software. It prepares the terminal for the run and]
turns control over to the display processor. Control is returned to the
calling routine when the terminal is once again handed over to the
initialization software. Final terminal preparation consist of the
following:

1. Clear the screen

2. Draw two concentric circles (FOV Representations)

3. Draw crosshairs between the circle

Call - (DRC, DRX)
RUNETSG - Initialize system to run - After completion of target and seeker
loading "RUNETSG” initializes the system to run. When initialization is
complete a command is sent to the monitor allowing the user to start the
run

Input Files - (ESYS.SA:0, ETSG.CM:0)

Call - (KEYIN, INIT, PAGE, BELL, FILTST, BOOT, OPENF, DELF, LDTCPU,

CLRTMP, STSEEK, READY, READA, RUN, CRSR, PMD, CLOSEF)

SAA ~ Set Argument Addresses - SAA is a routine that sets aside an address
for the result of an arithmetic process and enables that result to be read
back into the calling routine

Input - (RSLT)

AVIII.8

T ¥

SEEK - Set Seeker Parameters - SEEK, in cooperation with the user, sets all
static parameters for the seeker {
Input File - (IFLGS.SA:0, RESP.SA:0, FOV.SA:0, DSKR.SA:0, DROS.SA:0,

ICON.SA:0, ESYS.SA:0, ETSG.CM:0)
Call - (KEYIN, INIT, PAGE, BELL, FILTST, DIR.LDDSPC, STARNS, NTR, RETGEN,
STOAC, MLOAD)
SAVIRG - Save Target Parameters and/or Image

P e e
A

e

SRM - Set Run Mode - SRM is called to terminate the initialization process.

It turns the display over to the display processor, and starts the run.
Call - (OUT, DLY, INIT)

STAROS - Set Rosette Scan X/Y Amplitudes - STAROS is a FORTRAN callable

routine which will allow the initialization processor to set the amplitude %
(MIN/MAX, X and Y values) for the rosette scan

Input - (IXMIN, IXMAX, IYMIN, IYMAX)]

Call - (ALP) ‘
STOAC -~ Set Analog Output Controls - STOAC programs the PIAs, DACs etc., }
which controls the analog output of the ETSG. The values set by STOAC b
include:

1. The background level 1

2. The noise source level o
3. The analog scale factor adjust
Input - (ICHNL, IPBGL, IPNSL, IASFA, T7SFA, IESFC)
Call - (ALP)
STSEEK - Set Seeker Type - STSEEK is the ETSG interface with the PIA that
controls the simulated seeker type the ETSG is currently rising
Input - (ITYPE)
Call - (ALP)
STSTRB ~ Set Strobe Flag for Target
Input - (ITRGT, ISTRB)
STTGCH - Set Target Channel
Input -~ (ITRGT, ICHNL)
STTGPM - Set Strobe Flag, Target Channel and TARG Polarity, (DRIVER, ROUTINE)
Call - (STTGCH, STTSGN, STSTRB)
STTP - Set Target Type and Priority - STTP sets the target type, priority,

Sraie s e

~ocwm

and generation flags.
Input Files - (IFLGS.SA:0, DTRI.SA:0, DELL.SA:0, DRECT.SA:0, DPLUM.SA:0)
Call - (FILTST, DIR)

AVIII.9 : 7

STTSGN - Set Target Sign
Input - (ITRGT, ISIGN) f
TEXT - Send Text to Terminal ~ This subroutine ships characters to the

terminal bypassing the FORTRAN I/0 package--This allows cursur addressing
of text on the screen (Via CRSR)

Input - (INFO, NUMB) |
TPIAS - Table of PIAS to Initialize E
TRCD -~ Table of Coordinates for Boresight Circles ‘

P

AVIII.1O0

Appendix X .
ETSG.BAS '
A Basic Program Which Emulates Some Internal ETSG Functions

xa.

Developed by
Paul F. Pritchett ;
and "]
Donn Hall ‘

AIX.1

100IMXCI00) , K LLIDU),A(10U),a8(4),.B(8)Y,D(4),HS(4),w(4),n8(4),C(4,1)
20 DIM £S(2),SUAY,¢8(4),u8(4)

J0PH NI ™IHE FULLa G (8 L LIST OF SUBRRIITINES FAULALTING fiiF Y
40P INT"eTSG SurtrAxkk, TYPr In Tab wodepbkR CHLRFSPUNDING TU The "2
SOPRINY"SUDLRIULYI SR £ wang Fij Ruh,*

60PHINYT L, Tww MULFIPLIER ™

7008 "2, AEAALLCT LG 1G DECIMAL CONMVFRITEE "

gupingi®*y,
QOPRINT"4,
109pRint"S,
1190w 11"y,

erClndy

iaky OV
LN NIV S
deCaay

T B RAGECT MAy,

COMVERTE R ™

e CImaL CuolveFER Y
T tlmaRY COhvEpyFe "
T opdS ClIVeERTER_Y

12 gu3™i, #4485 11 owCeival, CubVERTrRH " 4
13venfaia, oYt L or L:SHUL"

: 140pPRInry Suoriur) ek tRSULY 4
1 15 rnla "1, SUe~alii')wer Chv," !
i 160UPP 1EY 0. SUBRUBTLE (SS," 1
170V R 20 Ouie e BTN CRY " ;
! lgorPst 1“1 3. SUkeigry ae CAC"
19 b g RE)rr) |
20 b L) 8 G 2a0 AU, TI0,009),4210,13839,16480, 1%10,192v d

21 . \‘,_,',-.‘!'r-,)7'1.}14U,27~[

b
i 27 e aMCu g e (o wodie WIRE WYY ke THE SANE PRUGRAS PLEASE ":
i 23 ity e (), Letn m g tase Too w6 adUTHER PREOGHAm "
1 245 ol Trteadt v gRe a (20, ritess (Cw) Froepa, ¥

V4 N RV X 2 1Y
! 2705 p
| 280, " wheg, b ik b e®

Z2Y s)=

300k g 2T iy D e
K 2 ICTRAEY ERRE

32 .=

33w e i P
34"!-)"'.‘.‘ M

3500
361
371
34,
3404
4\" i
41 -
a2
43~
Qapir gt RO e e
4% .1, ¢, 7Y

QO ore S deesly e

47“. | SR

o
X A Sl I S S
P

PR Al B

I TOO R M |

[TK S 2l B AR R
t

I Al]

Porao iz 72% 15
PR

[I LN TR T L

Qv Y M AT N TS T
QY . = ., 1=, 2

S i "ot MEIE I 177 BT R
5) LI S § >

92 i- <3 L

53 ... =8

54 a oy !
b3 JEAEIL K PO -
- Y (VT TP PR

Shone. alie,o 0" " 0 s,
5?‘«"',-(.|,nj="l"l" sl rat
89 i eSS M o Lat e
LU o T, =N, NEREY
Y P B P Lo s

Y RN W I SR I T L bSh
63 111 L, ¥ T e)3

AIX,2

- AQIFRAS(U,W)3 I TREN(I)ST
SOLENSLJ,JIS"BY ¥ D(J)33
oG terrS(J, IS 9" Y ¥y (u)3Y
I0ERS (D)=t e NGB
~BuirHS{u,y " rreanfyr=ll
QULlen3(J,J)2CMint sul =17
TQUTERS(Jeu B0 U vudly)=13
PO RS (Je =M EY e C 134
2ULFHS (0,)S e " ver (TN
P3u by T

YL RN

ISULS e (JI* 2% (e € 4=0))
touvire Xra

770kl -in

78sivte’s 2b .

Tk miC To rb s CUNVERTRR®

WP o P LN sl e Cutal IR I N AT R

$1a1=4 y
A2unzy r{aste®ti=i))

B33 siH=i3s i
NG ;e =-dta(i=1 |
By 1=, |

dh‘ e =i ¢ 'ra=

g1 o

T AR R

HYoomo S i

Y A N P A AL Ve)a

9y atr Lo)=l AL N

Yot 4R .0 PRt

Qlogb oL I= 30 f o, NI

Y iret 4T hree a0, Y

99 L =S - [} R BTN

Yoo leale gZatery ~f o yste®

97 r1v¥ et Y= T i AT L

Yro e bt 435007 R L

Qu: (>)8 N ;'.‘1:0 W

| TS R - S S ,odetan

[TR A RN Y, amen

10, 1y b i) 200 R L

| VI I T PSR SO I B R My, 1z

1““}_["-~(;J=IQ[|" ve sy l,~)="r"

tuS tpe (o3t o, s "

lnf » b

R L

1 IR

Ter | S v 2 NS SRS P R oo™
) 30 TR T B § R T AL

11 [

Ty, %

oy - 2 . v

| - v/, T L

Lo = 2,000 s

) 1 R PR S B P

IR .l

i} s

11 v

¢ '

147 R oo Vo ' A
1¢- L T I L I RN B I 2 NI N
14 ' R : . T

| WA
\ WA PR
12 o

t270uRYen(J)&2%y
WL INENL Y]
12vvifpJ<ylmint st
130606GUTOY28

1310PRINTR(7)2hin) 2 (93480328 (2) MY (0)

13¢0RETHKW
1339kk-

13 . o850

(I SRR B AL TN T ST A B

130 vl iign
13/t <=t Hirnland
13-~11=

L3Vvans /¢

<

1490 0e

KENHAPED a2

lari=letsGiiie) 3
136 0]
Ltag-itu)slwic /e 3=3))

144 1=

AR N A WY

ft4buus ey

J4ac ik J€s2iabalyy
14750 ca4430
L4guery 1 zapsy®

L LENE S X N A

150 ..)=

157 v
15cirz ey cang s e
15305 =

154 . 4=

) . SRR IS I IO B G AV
150, 3 =c (134 0

15'/ LT 1wy

195+ AF o T

SR R T IR TR S

th o= 4 L) F et

) L. AT SR B B

loe o anl

lh Y e, Lo

16+ ..~ -

loo =7

16 v L Mt e pebe
1o/ - =3

Tha v e,

1h= oov 0 p D

17
‘7‘ [

B

17 2 st e,"
17) []

| =

100 a4 g

O R S B RS R et Y SRS]

177

(o2 lau90b)+ in)sTeuDba s L (310NN +213)4 100y

"“Ne.Cl"AL TO wusS CNHAVERTER®

SUMpe RY

Yrarean(o)

SHGEE Aua e

1 L
Vo= e
17 vt L U SRR [
1y
in: "
| . I T ' "
1os . . Mso0 a0 ey
. FEE -5 B
oy v weda N "

|br - +
1n/ . Vit
1k
| 3, PR Y P I

1
]

TRAS der R,

LY SETEY PRI S A N
MR
v 0 &

AIX.4

Cur s m e g™

o

-

e "

191 UKE 'dni
19curbN

1934=u
19400 "] «PL)
195uinpPutz

1900k €< TRE 1YY

197uislnvitateny)
19k Uittt
199043 T T (Lo gn)

20t) g il oe

LOUUPKIN "I LEKTSY , A

(R Pl

e
200 etk Y

20 cunt

2080 ¢r . CautubAly ol
2090 A0 (=h
205ubHT t P < st
200urr b g Moy 0, "
20/t s iaPdL YavaAY
20H RO W Py et
204 ke Vo1 "le Wk e
2L Gl 4
2¥leern i e e e G
P AR AR LN N T RV R T A
213 m=u =y

2190%H 1 1M ie ey 1N
2150 . navp gy i

luv wwei MNP i W

2/ oeb
PRI IR

LU SO A

219182 25807 /-

2200 2580 i)
221 st =
2?/’n.ﬁ.w"'-"w
22 v UL
22420t)25
24 L

247 . F=Lrab. L)
221 L 1"

P AR ST
27 - .=

23 e300
23! RN
23, Senanioa(rl
245 vz

2y e

23, : ~tava -
238n vatiyE. a0
23, v

23~ = oot
23 v Ve,

P I R SRR

2ay v 2t
24, P S N
24 . L

24 - " e
P IR I S
24 - U T
209 . e

25 . v

251 LT SN
25 ' Pty

V2338 X R S

“SUBRIUYINE JRND®

[A
IR N Y 4
vt
sttty
HE R RN R
P kA PRY3BD o

sivpulrsGUIte Ll
itk AMD

1. e PRESY &

s T e G) e

\‘; o l?‘--”h{_‘

T RN]

(RPN SN ST
taala, v
LAl L sV e

".’(a‘)n'o)‘ll

T Be wUUR LT RCLDY

SNPLEY R

(i) "elvpire

e ot}

T ———e — o,

25440 PRYIVT “[AKZ®
2550 (¥ Ry THrey

—ﬁI-'-.!.-..-.'-.'.‘...!-.-.-"ﬂ!--.-.-_-u---‘¥.‘

slnU) R
¢€6 20

2560 S(Z2)1=S5C11/7R;:GUtg Z6dDd
259110 BRinL YiSuy?Mitoakat S(2?)
254 {F S(2)=h tnew emjt
2600 KeS(13/5021:60T0 dv2e

2619 PRINL “IsgY
261N LU 10 2H40
2620 ERIT Myagan
2630 InpPuld TOL)
26490 Un L) e

ALl TAK CAMKOTY vOTs B EWQUAL [y ZERUYLY

LCRY N PULNTY TARGEY (LY P

196

2650 FRAIMT B peen 1Ck) G COmELERACTIT"

2600 iWeuY T(2)

267\- [N i(l’ 1""91‘.
26n0 FEn3/s/HLL) 0
2h ey Blae U
2i0 bt) ek Ae s

PEL A

Fu e ban
2V)% 2+5L0)% 7
wetapihil k)

241 Vel Mgy e e e KA2)

214 R R B L S S L

27 vz (L)iresni Alas5*ei((An3iwY/48e)1¥/10))
27! - R N AR N D N R X teP

2141 Ty

i .UM v i LARNIRY A

27 ¢ oy v My oot e e)Y,

271+ moloon

27 ¢« WGy e T ok OV Y
280 1ot Moes 22Nl ek ’

2n3 e 1 L TN L T [T

LA}

260 ey M

2y - WYLl s . g iy
20 - ¢ RECL U I

2y EE

2w N T L P SR - ST AN RTINS B B
deot Lo N PRI

2n . o &,

2 CR Y B N TR A B IENTE I IR I
2o . Y " R

L ANV

VA Zthy

2% RIS R

2945 (1)mhqait®, Na

29 (/S VSr Y% -

29 SR SRR XTI AP Tl B X

N {1l $n)/ i% e

291 e aEd 4

A S B i

2% . Sav e ET

31 ~ L

30, L ' A)

34, A A

3 R P B e

3(3'1 * ‘ " .‘.‘"n v

36> '

3”“ § LU N v I
Ju /s Lot B & : v

JUu. o et S e (-

3(. N LU ' - ".| "3 i]

EYY \ \ I et

40, 3 " DN S 1y

'YW e ety [

4 ([R WS PO T i

44 "o Tty]

[SYR ESTECRTE. S I R MR N]

AIX.6

400" y=u*i
4070 X=t/e¥Ll00G
Q0Hy YSNRy
409 C=t1¥lb=a/rs 373
SOuv (BUSUZA/R/ L1/ 12149
501 4sLa(4L3/4 L2
020 230%2%¢
S03v J4F F<v the . oo
504 &2l (Z790eh)
5090 o) 1d Ly
S00u 43l 15 a5
9507 Rt "lokks", 0
SOnu ke Trignm
QG ¢l

a—— . .

. FEPRINEERVF S, N

AIX,.7

k. P

Appendix X
ETSG Operating Instructions

T e e s <

AX.1

L et

-
.

W 00 ~N O N

-
o

O s et

Operating Instructions

Turn display console "ON."

Open doors to disk drive and remove any diskettes therein.

Turn disk drive "ON."

Insert diskette DPO in drive 0.

Insert diskette with appropriate seeker and target files in drive 1.
Close disk drive doors.

Depress EXORciser RESET button.

Type E800;G

Type ETSG at the console after the MDOS prompt = appears.

The ETSG initialization software is interactive and will now prompt
the operator.

This instruction set assumes that the EXORciser is "on." 1If this

is not true refer to the "power up" instructions in Appendix XI. For more

explicit instructions refer to the "ETSG Operator Manual" which is generally

kept near the ETSG.

bt vam i

Worgame . .

Appendix X1
Frequently Used MDOS Commands

Compiled by
D. E. Bockstahler
and
G. R. Loefer

AXI.1

[N D R D

PR

B e TV DUV NPT WP S P 1. SN VO

POWER UP:

I. Turn on CRT (switch on back, right rear)
1. Turn on EXORCISOR (key switch)
1. Turn on Disk Unit (red button on fsbnt)

BRINGING UP_MDOS:

I. Slide System Disk into Drive 0 (left side)*
1. Slide User Disk into Drive 1 (right side)*
111. Close both doors on Disk Unit

v. Type: ‘MAID'** (no carriage return)

V. Type: ‘EB00;G'** (no carriage return)

‘=' Equals Sign should come up when the system is ready.
If not, start over at Step IV,

*To load a disk: Hold disk carefully, (do not bend) with the label side
up and the opening on one edge toward the disk drive. Slide the disk
slowly and smoothly into the unit until it stops just past the door.

**NOTE: Command strings are enclosed in single ' ' quotes.
Lower tase letters inside quotes are user selectable names.
Upper case letters inside quotes MUST be entered as shown,

POWER DOWN:

1. OPEN 80OTH DISK DRIVE DOORS FIRST
1. Remove User Disk and return to box
1. Remove System Disk and return to box
Iv. Turn OFF Disk Unit
v. Turn OFF EXORCISOR
vi. Turn OFF CRT

AXI.2

o e e ad e e

BAUD RATE:
‘.

11.

Set desired BAUD Rate Switch on CRT and turn OFF the

previously set rate.
Set matching BAUD Rate on the EXORCISOR. (switch is

on the right rear)

AXI.3

FORTRAN QUICKIE:

1. Turn on CRT
11, Turn on EXQORCISOR
111. Turn on Disk Unit
Iv. Type: 'MAID'
V. Type: ‘E800;G'
VI. Create Program File with Editor (store on Disk Unit 1)
VI, Type: 'CHAIN—F4;FN%filename%’
VIlI. To Execute Type: ‘'filename:1’

FREQUENTLY USED MJOS COMMANDS:

Note: <« means a space must be put here.
FORMAT:
PURPOSE: To prepare a new disk or wipe out an old one
I. Load Disk into Drive 1
II. Type: 'FORMAT', RESPONSE: ‘FORMAT DRIVE 1°'
III. Type: 'Y’ for YES. °~ RESPONSE: 'LOCK OUT ADDITIONAL SECTORS '
1v. Type: ‘W'
DOSGEN:
PURPOSE: To initialize a new disk
1. Load formatted disk into Drive 1 (if not already there)

It. Type: 'DOSGEN+»TU' for a user disk or
Type: 'DOSGEN+xT' for a system disk

AXI.4

DIR:

—

PURPOSE: List directory of files on a disk

I. Type: 'DIR' for directory of Drive Q0 or
Type: °‘DIR «+:1' for directory of Drive 1

r-
—
1%
-t

PURPOSE: To list any ASCII file stored on a disk

I. Type: 'LISTe—filename’ for a file on Drive O or
Type: ‘LIST«+filename:1' for a file on Orive 1

filename: MName of file, including the suffix if not ',.SA'

PURPOSE: To delete a file from a disk

i. Type: 'DEL«+filename' for a file on Drive 0 or
Type: 'DEL filename:1' for a file on Drive 1

filename: Name of file, including suffix
copy:
PURPQOSE: To copy files (same disk or between disks)
1. Type: ‘'COPY«sfilenamel, filename2'

filenamel: Name of source file, including suffix and
drive number

AX1,5

filename2: MName of new file, including suffix and
.- drive number

NAME :
PURPOSE: Tc change a disk file name
I. Type: ‘NAME«filenamel, filename2'

filenamel: Hame of old vile, including suffix and drive number
filename2: Name of new file, including suffix and drive number

BACKUP:

PURPOSE: To make a complete copy of a disk and
To reorganize files thereon

I. Copy files to system disk in Drive O

II. Place a formatted blank disk in Drive 1
I, Type; °“BACKUP~—;UR'. RESPONSE: ‘BACKUP FROM DRIVE 0 TO 1'
Iv. Type: 'Y' for Yes

EDIT:
PURPOSE: To edit ASCII files
I. Type: ‘EDIT«sfilename’
filename: MName of file, including suffi< and Drive No.
1. Type: 'AAAAAAAAAAAAAA , . .$3' * (this loads the file)
(use repeat key)
111, See section on EDITOR for list of commands and a hints

and kirks list

*Note: $ means ESCape Key

AXI.6

Appendix XII
The 6800 Text Editor

Compiled by
D. E. Bockstahler
and
G. R. Loefer

AXII.1

EDITOR:

JEXT
l'
.
1L,

1.

2.

Command Surmary: Table 2
EDITOR Messages: Table 3
Hints and Kinks

This is a CHARACTER editor and NOT A LINE editor like TED on the
CYBER.

A1l characters, INCLUDING CARRIAGE RETURN, are legal characters to
be edited.

A '$¢$' (hit ESCape key twice) marks the end of a command line.
Commands may be concatenated on one line (if you can keep track of
them) without any extra delimiter characters.

MISTYPE? Use SHIFT-RUB (most consistant) or CNTRL-H (only in
EDITOR) for BACKSPACE.

Use 'B' to position pointer at head of file.

Use 'Z' to position pointer at end of file,

Une n'T' to display n lines. Does not move pointer.

Use n'L’ to skip n lines, ‘L' positions the pointer JUST AFTER THE

LAST CARRIAGE RETURH. 'L' counts carriage returns. n may be

10.

11,

12,

13.

negative to backup lines.

To input a new program (or a new block of statements), use the 'I'
cormand. Type one ‘I', then enter the entire block of code as if
using a typewriter and then type $$(ESC ESC). The entire block
is entered all at once.

To input new lines between old ones, use n'L’ to position thre
pointer AFTER THE LAST LINE TO PRECEED THE NEW LINES., It works
1ike an 'INSERT BEFORE' cormand.

Use n'K' to delete n lines. Position pointer just after the last
1ine to be kept.

Use 'C' to change a string within a 1ine, Position pointer just
ahead of line to be edited, (so that a 'T* will display the line).
Use 'Ccurrentstring$newstring$-LLT' to change a string of
characters and display the corrected lire.

AXII,2

id apttim St L

TABLE 2. EDITOR COIMAND SUMMARY

COMMAND DESCRIPTION
* A Append. Appends input text from rhe System Reader Device
to tue edit buffer. .
* B Begiuning. Moves the edit buffer pointer to the beginning
of the edit buffer.
* Cstringl$ Change. Replaces the first occurrence of "string 1" with
string? “string 2". .
nD Delete. Deletes n characters from the edit buffer. j
E (tape) End. Terminates an edit operation by writing the contents

of the edit buffer to the output tape and copying the
remainder of the input tape to the output tape. Returns
control to the editor.

* E (disc) End. Terminates an edit operation by writing the contents
of the edit buffer to the output file and copying the
remainder of the input file to the output file. Returns
control to the disc operating system.

F (tape) Tape Leader/Trailer. Writes 50 NULL characters into the
system punch device.
F (disc) The F command is ignored.
* Istring Insert. Inserts characters or lines of text into the edit
buffer.
* nK Kill lines. Deletes n lines from the edit buffer.
* ol Line. Moves the edit buffer point n lines.
nM Hove character pointer. Moves the edit buffer pointer n
characters.
Nstring (tape) Search File. Searches file for first occurrence of "string”.
Nstring (disc) Search File., Searches f{le for first occurrence of "string".
If "string" is not found, returns control to the disc operating
system,
oP Puncih. Punches n lines from the edit buffer to the System

Punch Device.

* sstring Search. Scarclhios the edit buffer tfor the first occurrence
of "string"

aesT OFFRS USED COMMANDS
§+ FSC Key

AXII.3

TABLE 2. EDITOR COMMAND SUIMMARY

(cont fnued)
COIDMAND DESCRIPTION
x T Tvpe. Types n lincs from the edit buffer to the
Svstem Console Device. '

X (tape) EXbug. Returns control to EXbug.

X (disc) The X command is an 11iegal comnand in the disc version of
the editor. .

iad z End of edit buffer. Moves the edit buffer pointer to the
end of the edit buffer.

Control H Backspace. Causes the last character entered in the command
mode to be typed on the System Console Device and deleted
from the command.

Control X Cancel. Causes all commands following the last prompt to be
deleted and another prompt to be typed.

g TABLE 3. EDITOR MESSAGES

MESSAGE DESCRIPTION

M6800 RESIDENT EDITOR n.n Printed upon initiation of editor., Revision

is specified by n.n.

' e Prompt. Editor is waiting for a command.
717? Illegal command.
CAN'T FIND "string" Editor cannot find the string specified
by Search or Change command.
BELL

The editor rings the bell in the System Con-
sole Device when the user attempts to enter

further commands into a full command buffer.
The user must delete (backspace) two charac-
ters in order to terminate the command with

two ESC characters.

AXII.4

14, Use ‘'$string$’ to searck for a character string within the file.
It starts searching from the current pointer position to the end of
the file. The pointer will end up at the end of the string it
found, ({not at the beginning of the lin:). Use '-LL' to position
at beginning of line.

15. Use °'BE' to end the editor program. Do not use just an 'E', you
might lose some of your file.

Note: '$§' means ESCape key.
FORTRAN:
NOTE: Be very careful to follow the manual when composing a FORTRAN
program for the EXORCISOR. It falls short of ANSI Standard
FORTRAN in a number of places (see Table 4).
I. Prepare FORTRAN programs using the EDITOR.
11, Programs must be complete within one file to be compiled and

run. However, subroutines, etc. may be stored seperately and
merged prior to compilation, or just before the Linking Loader
command as shown below.

111, For a one file program in file 'prog.SA:1' DO:

'CHAIN—F4;FN%iprogh'
DO _NOT store programs on Drive 0.
When finished, simply type: ‘prog:i

to run the program,

1v. For MULTI-FILE programs, progl.SA:1, subl.SA:1, etc.

After making sure all old '.RO' files are deleted, DO:
‘FORT+>progl .SA:1'

'FORT+>subl.SA:1'

'FORT—>etc.' (as many as there are)

‘MERGE+—~progl ,RO:1,subl.RO:1,. . ,,dest RO:1’

dest: destination file name

'CHAIMNRL ;FH%dest %'

Then Type: ‘dest:1' to run the proiram

AXII.5

o o ok M TR 5 e

8.
9.
10.
11.
12.

13.
14.
15.
16.
17.
18.
19.

20.

TABLE 4. CONVERSION OF FORTRAN FROM CDC6600 TQ EXORCISER

No program statement. For READ and WRITE to units other than CRT
use OPENF and ©LOSEF,
No blank lines in source file.
must be wused for continuation in Column 1 (see special compile
features of FORT 2.2).
INT and FLOAT functions do not exist. Simply assign to opposite
type variable to switch types.
Variables and arrays are not initialized to zero.
Only one dimension statement per program block {use continuation).
Mo variable array dimensioning or accessing outside the dimension
in subprograms.
No labeled common.
Can't use same variable in both data and common statements.
Some forms of data statement illegal.
No one line functions,
Parameters of functions, subroutines, and array indices must be
constants or simple variables (no expressions).
Change Unit 5 (INPUT) to Unit 100 (from CRT keyboard).
Change Unit & (OUTPUT) to Unmit 101 (to CRT screen).
NO FREE FORMAT WRITE.
FREE FORMAT INPUT and write a blank line use: 998 FORMAT().
No 'H' (HOLLERITH) format.
Use ' instead of " for format and data statement.
No spaces between format and open bracket:
OK: FORMAT(HOT OK: FORMAT (
applies to other statements with brackets also.
Keep computations simple, such as:
Don't call a function twice on same line,
Don't use lots of brackets ().,
etc.

AXII.6

21.

22,
23.
24,
25,

Keep specia: attention to IF statements'that include computations,
they don't always work.

Start all line numbers in columr 1,

Code does not have to start in column 7.

72 columns usable for FORTRAN,

Use X and Y in column 1 (spec3a1 compile feature) to help de-bug
programs with extra write statements.

AXII,?7

N

Aprendix XIII
Diskette Files

AX1I1,1

B B

T o ey s wanes

;E; .
DRIVE ¢ @ DISK 1.D. ¢ MDOS
BINEX CH

LIST O
MDOSOYE . SY
DIk .CM

MERGE .CH
RLORD Ch
MDOSON4 Loy
MDos .SY
RERSIC . CH
MDOsoVe L3
RRASH .CH

FREE .CH
ROLLUGJT .CH
EQU . SA

Dunp .CM
EXBIN «CH
NAME «CH
MposoYi sy
FRTCH .Ch

ASH LN
BLOKEDIT.CH
ECHUO CH
EDIT .M
LORD «CH

MDOSOY3 . Y
MDOSER .Y
DEL CH
CHRIN +CH
BRCKUFP .CHM
REFRIF .CH
MDOSOYS L3
DOSGEN .CH
EMCOFY .CHM

Cop M

FORMAT .CH

MDOSOYE L&Y . i

TOTAL DIRECTORY EMTRIES SHOWM ¢ 43c/$24
i1

DRIVE 1 DISK I.D, : ETSGDPH
ETRRG «CH
ETZG «CH
PULSED .CH
DCOM «ZA
DELL «SH
DRECT . SR
DSKR . 3R
F «5A
MJISTRRG «3H
RUMETSG . CH

DROS «SA
LI «SH
DTRI « SR
pPLUN «SH N

5 FLAFE .M
§ SEEK LM
| RUNETSG . SA
TOTAL DIRECTORY ENTRIES SHOMN : 017811

AXIII.2

B g

1
IFIVE 3 1 DIsk I.D. 3 JTRI
CKINIT .Ru
RUTCFU .RO

ALP RO
PICT RO
LDTLR RO
GRAPH KD
STSEEK .RO
PMD RO
LDDSPC .FRO
DIR R0
ETLE)
ASPGEN .RO
IRND kO
ARCTRIG RO
DFLTY RO

RUHETSG . CM
FTNLBX .RO
LDRET .RO
STTGPM RO
RUNETSG . RO
LRUN .CF
LDPTTG .RO
GREY .RD
LDPLS) .RD
STARDS .RD

LSHL RO
RDTHMP RO
STRROS .3SH
CLRTMP .RO
VERT _ RO
ESYS . SH
RPICT i
ETSGGO .RO
LDTCPLU RO
RDISPC .RO
AXES RO
STROLC RD
LDNTRR .RD
LDRSP RO
RERDWRIT. RO
BOOT g =1y

TOTAL DIRECTOEY ENTRIES SHOWN : 841.-8$29

i1
DRIVE ¢ 1 DI3K I.D. ¢ SEEK
RETCL «SH
LSK .CF
NTR PO

JSKR «5R
FETGEN .SH

SEEK RO
NTE . 3R :
SEEK .M
SEEK . .SH

RETGEM .FO
TOTAL DIRECTORY ENTRIES SHOWN : 010.-$8R

AXIII.)

P

B | ‘
DRIVE ¢ 1 DISK I.D. ¢ JTEL
CKINIT .RO

RDCPU RO

“ALF .RO
FOv .SA
25 .SA
PILCT RO
LDYLER RO
GRHFH RO
ST<EEK .RO
DIF RO
FML RO
ETLE R0
LDDSPC RO
TRG . 5A
ASPGEH RO
IRND RO
RARCTRIG RO
DFLT RO
LDRET RO

STTGPM .RO
RUNETSG .RD

LRUN .CF
CcH . 5A
LDPTTG .RO
GREY RO

LDPLSJ RO
STAROS .RO

LSHL RO
RDTHF RO
IFLGS =1
CLRTMP .RO
VERT RO
APICT - .RO
LDTCPU RO
RDDSPC RO
AXES «RO
ETSGLD .RO
STROC RO
LODNTRE .RO
LDASP RO
RESP «SH

TOTAL DIFECTORY ENTRIES SHOMH : @41-$29

i1
DRIVE : 1 DISK I.D. ¢ SCRARTCH
PUMNL L ' :

DSD LA
- EMT CH
PUNT L0
FLOT « SR
DSD .LO
psh « SR *
PLODT Y

oLDL=D JLD
INTFAC . 2A
INTFACHD. A
TOTAL DIRECTORY ENTRIES SHOWM 3 011/%08B

AXIII.4

o i atiad ek 6N

B T S~ Sy L v

i .
DRIVE ¢+ 1 DISK 1.D. ¢ JTR2

CKINIT RO .
RDTCPL . SR
VERT «SH
CLRTHMFP .SH
RAXES «SH
LDTLE « SR
GRAPH «SA
RDDSFC . SAH
STROC «SH
LDHNTRE . SH
CKINIT .ZR
PRCK « 3H
DIR «SH
FMD .S
LDDSPC .SAH
STSEEK .SA

LEFTTG .SA
LDPLS) .SH

IRND .S

LDRET SR

LSHL « SR

ARCTRIG .5R

DFLT « 2R

STHREOS . 5H

STTGPM .SH

"LDTCPU .SH

ETSGGO. .5H

LDASP = .SAH

RUNETSG .5A

RDTHP « SR

ALP « SR

TOTAL DIFECTORY ENTRIES SHOWN & 031/§1F

HB | ’

DRIVE t 1 DIs3K I.D. ¢ FSTTST
S « SR

T «SH

PLUM «SA

Te2sel . ¢

L2 =155 B
Ta3381 .3AR
TRET « SR
PT . R
IELFS .SH
RB « SR
sa1 . SH
ITRI . 5H
GTHL DINCCTORY ENTRIES SHOWM @ 2i2-30C
i1
DEIVE ¢ 1 DISk 1.D. t ETARG
LTS .CF ,
PICT «SH
RSPGEN .FRD .
ETS <M

ETARG RO
ETHRG «3A
ASPGEN .3A
APICT «SA
TOTAL DIFECTORY ENTRIES SHOWN : 008-/$02

AXIII,5

il
DRIVE : 1 0IsK [.b. ¢ SEEK
RETCL .ZH

LSK .CF
NTR RO,
RETGEN .SH
SEEK RO
NTR « SH
SEEK .CH
SEEK .SH

RETGEHN .EOQ
TOTAHL DIRECTORY EHTETES SHOWM : 903 %u>

LD S)
DRIYE ¢ 1t . DISK I.D. ¢ GRL
LTE .CF :
FLRARE +SH -
VARLIST .=A
ETSG CH
PULSEJ .CM
PULSEJ .RO
ETSG "o RO
LPJ «CF
ETSG . SR

FLRRE .CH
PULSEJ .ZA
FLARE RO

LFLE «F)

TOTAL DIRECTORY ENTRIES SHOWHN @ a13.-3ul
¢l

DERIVE : 1 DISK I.D. ¢ HNONAME

F2 «SH

Fd «SH

FS . S

AREASIC .CH
DpCeSIM .SA
DCBSIM .LO
FTHLEBX .RO
DCBEIM (L
pcesim .CH

Fi L
Fi L0
Fi ".SA
Fz .SA

TOTAL DIRECTORY ENTRTES SHOWN ¢ @13. 200
HS ’

DRIVE : 1 pIisk 1.D. ¢ ETZ

FLARE . SH

LTE .F

VARLIST .SH

PULSEJ .CH

ETSG . CH

PULSEJ .RO
ETSG iy {1}
LPJ CF
ETSG .SA
PULSEJ .2A .
FLAEE 0
FLAFRE YT
LFLE .CF

TOTAL DIRECTORY EMTRIES SHOWN 1 913/%0D

AXIII.6

ilhll!!!fff,<&udnm,

i :

DRIVE : 1 DIsSK 1.D. : ETSGLPO
ETSG N |

PULSEJ .CH

DCON SA
DELL . SH
ETHRL LM
DRECT . SH
F .SH
DSKR . SR
MJISTARG . 3R
RUNETSG .CH
DROS « SR
LI . SH
DTRI «SA
DPLUM «5H
FLARE «CM
SSS58 . SR

SEEK M
RUHETSG .=H
TOTAL DIRECTORY ENTRIES SHOWN : 018/8$12

i1 .

DRIVE : 1 DISK I.D. 3 SDBRSIC
SDASH .CN

SDBCOM . CH

THMTEST .E
TEST .ER
TEST oL

RUNROS .ER

SLEDIT .CH

SDRUN . CH :

TOTHL DIRECTORY EMTRIES SHOWN : 003-%08

:1 :
DRIYE ¢ 1 DIk I.D. ¢ SYSTEM
KATE LU
P1 - 5A
SEEKER .M
DUBLIN .SA
Pz «SH
PROMPROG.CH
P3 . SA
T$1 . SR

TOTAL DIRECTORY EMTRIES SHOWN : Q03-$@8

B

DRIVE ¢ 1 DISK 1.D. ¢ TARGET
< L

T o 2h

ABRSIC .CH

PLUM « SA

TOTAL DIRECTORY ENTRIES SHOWN : 0904.%04
AXIIL.7

|
DRIVE : 1 DISK T.b. ¢ ET2
PICT . SA *
LTG .CF
ETARG .CH
ASPGEN RO

o At e i St il ik

ETARG A1

ETARG <H

RSPGEH =H

RFICT . =R |

TOTHL DIFECTORY ENTPIES SHOWN ¢ 005-$98 j
HS |

DRIVE : 1 DISK I.D. : NONRME

F3 . 5A

F4 W SA

FS . SAH

ABARSIC .CHM

FTHLE:® RO

F1 le

Fi L0

Fl .Sﬂ A

F2 «SH)

TOTAL DIRECTORY EMTRIES SHOWN : 6@9-$09

[/
!
!
i

[i

AXI11.8

TIT Research Institute
ATTN: GACIAC

10 West 35th Street
Chicago, IL 60616

DRSMI-LP, Mr. Voigt
-RD, Dr. Hallum
-RPR
-RPT, Record Copy
Reference Copy

DISTRIBUTION

No. of
Copies

=
oo

