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Regulation of Split Linear Systems Over Rings:
Coefficient-Assignment and Observers

E. EMRE aND P. P. KHARGONEKAR

Abstract — A theory of regulators is developed for finite-free split linear
systems over a commutative ring K. This is achieved by developing a theory
of coefficient-assignment and observers. 1t is shown that the problem of
coefficient-assignment can be solved for reachable systems by using dy-
namic state feedback. For strongly observable systems, it is shown that
observers with arbitrary dynamics can be constructed. Intemnal stability of
observer and state feedback configuration is considered explicitly. Some
examples are given (o illustrate these techniques.
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1. INTRODUCTION

Linear systems over commutative rings have been considered by several
authors (see [21]. {22). [S]. {14}, (23], and the references therein). For
applications and a survey of results on systems over rings. the reader is
referred to the survey papers by Kamen [15] and Sontag [23]. Among the
classes of systems that can be formulated in this framework are, for
example, delay differential systems, systems whose coefficients depend on
parameters, systems whose coefficients are integers, multidimensional
systems, and systems described by discretized partial differential equa-
tions.

By a finite-free linear system over a commutative ring K. is meant a
finitely generated free K-module X of rank », and K-linear maps

F. X—X,
G K" X,
H:X—-KP’.

Without loss of generality, one can assume that F, G, H are n X n,n X m,
and p X n matrices over K. We will denote such a system as £ =(F., G, H)
and will associate with it the abstract discrete-time system

x(t+1)= Fx(1) + Gu(r)
()= Hx(1).

This is only a conventional way of representing such systems. However,
the constructions obtained based on such representations, in each case of
interest, are valid for the actual interpretations of the system I through
certain transforms. The following examples illustrate how this is done.
Example 1.1 — A Delay-Differential System: Consider the system

(=55 (1 —2)+ x,(0) + uy (1)
fAND=x, () xy(r—7m)+u(t-2)
()= x (1)~ xy(t—w)
2= x21).
Defining the delay operators o). 6, by
6, (x)(1):=x(1-2)
o) (x)(t):=x(1—n),

we can represent the above system as
[x,(l)]___[So, I][x,(l)]+[l 0][u,(l)
xy(1) 1o ]ix() 0 o )[u()
) _ 1 —ellx(r)
n(r) 0 1 ()

Hence. a representation for this system is

5.2 Se, 1 1 0 1. -0
Ao oa+i|']0 o]0 1
which is a system over the polynomial ring K:= R[a,, 0,] (where R:=
real numbers). It carries all the information about the original system.
Example 1.2— A System with Parameters: Suppose that we have a
system £ =(F, G. H) with parameter uncertainty. One could represent
this uncertainty by assuming that the entries of F, G, H are functions of a
finite number of parameters, say a,,- - -, a,. These functions, for exam-
ple. could be polynomial functions in which case £ would be a system
over the polynomial ring R(a, .- - -, a,]. An example is

.
1

F=la ]
a; aja

oot 3]

[ 1 a.‘+a§]
(a1 +1 a |

In such cases one would want to design a regulator which would work
for every known value of a, and a, by adjustment of its parameters. This
can be done by designing a regulator over the ring Ria,. a;].

Further examples can be found in (23], (15].

A finite-free system £ =(F, G, H) of dimension n over a commutative
ring K is reachable iff

"=ImG+ImFG+ --- +ImF"'G,
i.e., the columns of the reachability matrix
Q=[G : FG: -+ : F""'G]

generate the module K" In such a case we also say that (F, G) is
reachable.
I is observable iff the columns of the observability matrix

H

HF
2,=] .
HF™ !

are K-linearly independent.

This is equivalent to the condition that x€ K", and 2,x =0 implies
x=0.

S is strongh observable (respectively, weakly reachahle) iff (F', H')
(transposes of F and H) (respectively. (G, F')) is a reachable (respec-
tively. observable) pair.

We should note that in general strong observability implies observabil-
ity but not vice versa. However, in the case K =a field these two notions
coincide.

In general, a strictly proper rational transfer matrix over a commutative
ring K is defined as a formal power series

Z:=Az " A

where 4,.i=1,2, ---,is a p X m matrix over X, and the matrices A, s
satisfy a recurrence relation

n-1l

An= D @A i=12, -
1=0

for some a, € K. and some integer n.
Such a transfer matrix always has a realization ( F, G, H) such that

Z=H(:1-F)'G.

For general results on realization theory the reader is referred to [21]-[23]).
[15] and the references therein. For results of major importance to our
paper the reader is referred to Section II.

The problem of finding an integer n,. and constructing feedback com-
pensators for a system (F, G. I) so that the closed-loop transfer matrix
has a finite-free realization of dimension n_, (F., G.. H,), where the
characteristic polynomial of F. can be arbitrarily assigned is called the
problem of coefficient-assignment. If we only require that the characteristic
polynomial of F_ has n_ roots z,,- - -,z, with z,€ K which can be chosen
arbitrarily, then this problem is called the problem of pole-placement. In
general coefficient-assignment implies pole-placement but not vice versa.
In the case K =a field the two imply each other, and are well known to be
equivalent to the reachability of ( F. G) and have well known constructive
solutions (see {25], [20]. [1]. {13}, (6], (7). and the references therein).

However, the case where K » a field is more difficult and only partial
results have been obtained previously. The main approach has been to
extend the results for the field case using constant state-feedback. Morse
(19] has shown that if K is a principal ideal domain and (F, G) is
reachable, then pole assignment is possible by nondynamic state-feedback.
Sontag [23] has proved that for semilocal rings coefficient-assignment by
nondynamic feedback is equivalent 1o the reachability of ( F, G).

Later Ching and Wyman {4] proved that Noetherian (ull quotient rings
are semilocal rings and thus the results of Sontag [23] are applicable to
this case. In general, Sontag (23] has proved that the reachability of ( F.
G) is necessary for both pole-placement and coefficient-assignment by
nondynamic feedbact for any ring X.

wmetman o a
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Let P, be a multiplicatively closed subset of monic polvnomials of the
polynomial ring K{z). called stable polynomals. Let (F.G) be a given
pair. We say that (F,G) is regulated (or regulation is achieved) iff there
exists a finite-free system =, =(F,. G, H;. J;) such that with dynamic
feedback using =, the characieristic polynomial of the augmented closed-
loop system is in P,. (This latter property is usually referred to as internal
stability as well.)

For principal ideal domains and semilocal rnings and Noetherian full
quoticnt rings, the results of {19], {23]. {4]. respectively. can be used to
solve the regulation problem. Also, Byrnes [3] has given a stabilization
result that can be used for regulation of systems over certain Frechet
algebras.

However, for more general rings, there do not exist any coefficient-
assignment and /or pole-placement results that can be used for regulation
problem for a reachable pair { F, G). In Section 11 of this paper we present
for the first time a coefficient-assignment result by dynamic feedback
which can be used 1o solve the regulation problem for finite-free reachable
pairs ( F.G) defined over an arbitrary commutative ring K. Our result is
based on an approach developed in (7], valid for an arbitrary commutative
ring K, which also connects the problem to the reachability of (F.G) in a
natural way.

The general regulation problem is 10 achieve regulation as defined above
when the plant is described as £ =( F, G, H). If a finite-free pair (H, F) is
stronglv observable. one can build an observer (in the form of a determin-
wtic Kalman filter) for the rings mentioned above where a result of
coefficient-assignment and /or pole-placement by nondynamic feedback is
available.

S =(F.G. H) is called split Hf it is reachable and strongly observable.
For the motivation and details of the notion of split systems (see [23].
[16]). For a finite-free split system Z define over K where K is a principal
ideal domain or a semilocal ring, one can solve the regulator problem by
combining the results on observers for pair ( H, F) and results on regula-
tors for pairs (F.G). or for K =a certain Frechet algebra, results of {3}
can be used to solve regulation problem. Recently. Hautus and Sontag
{11} have obtained more general results on observers, also generalizing
detectability ideas, for finitely generated algebras over fields. They have
also considcred the regulation problem for finite-free detactable and
reachable systems over such rings, however their results cannot be used
directly for regulation. In Section 111 of this paper. we give for the first
time, a method 10 obtain an obscrver for a finite-free strongly observable
system X = (F. G, /) over K =an arbitrary commutative ring, based on
the approach developed in [7]. This also connects this problem to the
observability of £ in a natural way. Further, our observers can be built in
such a way that the cocfficient of the characteristic polynomial can be
chosen arbitrarily. Also, our results allow the observers to be built by
solving linear equations over K, and are guaranteed to have a realization
over K.

Further. we show how one can combine our results on observers and
coefficient-assignment to solve the general regulation problem for a
finite-free split linear system 2 =( F, G, H) over an arbitrary commutative
ring K.

One can also use our coefficient-assignment result and the detectability
result of [11] to solve the regulator problem for the case of finite-free
detectable and reachable systems £=(F,G, H) over finitely generated
algebras over fields.

In Section IV, we give some cxamples to illustrate the applications of
our results. We show that even if £ =(F,G, ) is not reachable and/or
strongly observable, one can still approach and may be able to solve the
problem using our method.

As for Z =(F,G. H) being split, over a commutative ring, every trans-
fer matrix admits a free reachable or a free strongly observable realiza-
tion. In general, reachability is known to be necessary for coefficient-
assignment by state feedback [23]. For the existence of observers with
arbitrary characteristic polynomial for a weakly reachable system, strong
obscrvability (as it will be seen in Section I11) is also necessary. We show
in Scctions 1T and 11 that for frec systems these are also sufficient.
Furthermore, in the case of systems over R[x,. - -.x,). E=(F.G. H)
being reachable (strongly observable) is generic if and only if the number
of inputs (outputs) exceeds r (see [18]). Hence, in such cases, the assump-
tion of splitness is not very restrictive.

The choice of stable polvnomials P,. of course, depends upon the
application under conmderation. For most of the applications, stability
can be nferred from the characteristic polvnomial. For example. for
delay-differential systems, two-dimensional systems, systems with param-
eters, one can infer stability by examining the location of roots of the
characteristic polvnomial. Throughout this paper. we assume that P, is
given and derive results for the given P,. The only technical restriction on
P, is that it be a multiplicative set.

1I.  COEFFICIENT-ASSIGNMENT FOR LINEAR SYSTEMS OVER
COMMUTATIVE RINGS

In this section we will prove our main “coefficient-assignment™ theo-
rem, for a reachable system (F, G, 1) over a commutative ring K. which
also guarantees regulation. Similar results will be used in Section 111 to
construct observers for finite-frce strongly observable svstems over K.
Then these results together will be shown to provide a method for design
of compensators for the solution to the regulation problem for finite-free
split systems over K.

Throughout the paper K will denote a commutative ring with identity.
Let K{:] denote the ring of polynomials in the indeterminate - with
coefficients in K. Let K(z) denote the ring of formal power series in = !
with coefficients in K. If p and ¢ are in K[:] and ¢ is monic then p /g is
identified with the formal power series obtained by the formal division of
p by ¢. Define the K-linear map = as

€
= Yaz

1=

7 K(2)—= K(2)/K[:]: ,E, a,z

A formal power series a is said to be strictly proper if m(a) is a, and is said
to be proper if m(a)— a is an element of K. For a set § and positive
integers p and m, §”, and S” "™ denote the set of p-column vectors and
the set of p X m matrices with entries in S. The map 7 is extended to
K?(z) in the natural way.

Let Q be a p X p nonsinguiar polynomial matrix such that determinant
of Q. {Q1. is a monic polynomial. Define the K-module K, as

Ko:={xinK?[:]: Q 'xisstrictly proper}.
The K-lincar map =, is defined as
np: KP[2]= Ko xmQm(Q 'x).

Let @ be in K7™"[z] with @, as its ith column. Define n(®) to be the
p X r polynomial matrix whosc i th column is my(@, ). It is easy to sce that
for a given pXr polynomial matrix @, there exists a unique p ~ r
polynomial matrix @, such that

$ =00, ny(®).

For a K-lincar map /. let im f denote the image of f and let ker f denote
the kernel of /. For a matrix B whose columns are clements of a K-module
M. let Spy B denote the submodule of M gencrated by the columns of B.
For a polynomial matrix P, let 8,,( P) denote the degree of ¢th column of
P. A nonsingular polynomial matrix Q is said to be row (column) proper,
iff the highest row (column) degree coefficient matrix is invertible over the
ring K. Note that if Q is row proper with row degrees ny n,.- “on,., then
K is a free K-module with a basis given by the columns of the p > n
polynomial matrix

S:=diag(V,. ¥, -\ F,)
where

Vee(e L )
and

LIS TR PRIEEEE Y P

Let Z denote a p X m strictly proper transfer matrix over the ring K. If
we express 7 as
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x
Z = ZA,: '
¢ 1

then the sequence {A4,)°  is the sequence of impulse response matrices of
the 1 /o map associated with Z. Let P.Q.and Rbep xr.r xr.andr < m
polynomial matrices with determinant of Q a monic polynomial such that

z2-pPQ 'R

The following lemma presents a natural realization of 7 with K, as the
state-module. Since | Q] is assumed to be monic, it is not difficult to see
that K, is a finitely generated X-module. The realization given in the
following lemma is called the Q-realization of Z. This result was proved in
[10] for K a field. But since n, is well defined, it is easily scen that the
result holds for our case as well.

Lemma 2.1[10): Let 2y =(Fp.Gy. Hyy) be defined as follows:

Go: K™ = Ky: usmy( Ru)
Foi Ky~ Ky xmamy(ox),
and
Hy: Ko~ K" xs(PQ 'v)

where for a in KP(2). (@) | denotes the coefficients of = *. Then Sy with
K, us the stute-module 1s u reah:ation of Z.

For further details of the Q-realization, the reader is referred to [10), [R].
and the references given there.

Let T = (F, G, H) be a given finite-free split system over K. Let Z be its
transfer matrix, i.c..

Z:=H(:I-F) 'G.
We will assume, without loss of generality, that Z can be written as
Z=Q 'R

where @, R are polynomial matrices. @ is row proper. and @, R satisfy the
Bezout condition, i.c.. there exist polvnomial matrices X, Y such that

QX +RY =],

If K--a field such a representation is known to be possible for a
reachable and observable system . But this is generally not possible for
K + a field. However. if I is split using a full state obscrver (as described
in full detail in Section 111) one can obiain a system whose transfer matrix
1%
Z=(z1-F) ‘G

which clearly is of the above form. Further, if this is done, then regulation
of the composite system (original system T and the observer) is sufficient
for regulation of Z, as it will be shown in Remark (3.9).

Now consider a dvnamic feedback system I, =(F,.G,. H,.J)) over K,
whose transfer matrix Z, can be writien as

Z=PQ'!

where P,.Q, are polynomial matrices with O, column proper. (Later in
this section we will show how to obtain such P, and Q, for regulation.)
Then if we write the closed-loop state equations where the state is taken to
be the external direct sum of the states of I, the observer and Z,, it can
be shown that [see Remark 3.9] the closed-loop system has the character
polynomial a,_, where

107

® =(:/~ F)Q, + GP,
and

Q,-T(:l F)+R,HN

In this section, we will show how one can obtain polynomial matrices
®. P, Q, such thar |®| can be arbitrarily chosen, Q, is column proper
and P,Q, | is a proper rational matrix. In Scction M1, we will show how
one can obtain suitable polynomial matrices Q,. T. R».

We should note that dynamic sate feedback corresponds to adding a
number of integrators to the system (F.G. 1) and then applying state
feedback to the resulting system. (See, for example, [1).) Hence. the resuhs
that we present in this section can also be interpreted as a method to
determine a sufficicnt number of integrators, and the final state feedback
matrix for regulation.

Our results in this section are based on the following theorem proved in
[7. Theorem 3.1).

For each positive integer 1, define a K-submodule W, of K, as

+1m FG,.

In the following for a p % p polvnomial matrix @ and integers {a,}7 .

(Bl)l’ e

W= ImGg + Im FyG + - -

lim {diag(: ~)®diag(z #))
s oex
exists and ts equal 1o T. where T is a matrix over K, means that
7, =diag(:z “)®diag(z %)

is proper and its constant term is T

Lemma 2.2 |7, Theorem 3.1): Let ® be a given p X p pohnomial matrix.
Let Q be a p> p nonsingular matrix with I, as the highest row degree
coefficient matrix and with row degrees py > py = - - =y, Let R be given
P % m polynomual matrix such that Q 'R s strictly proper. Let P, be a given
m X p polynonual matrix. Then there exists a column proper nonsingular
polynomial matrix Q, such that P,Q, ' is proper, and

00, + RP,=® .3

if and only if there exist integers v,.v;.- - .Y, >0 such that

Ll 0 MRl 0
. ® . S 4
0 z 0 :

exists and A is invertible over the ring K. and

i} lim
Pad o

i) y28,(P)>r-t =12 --p.

where r, is the least integer j for which the ith cofumn of ny(®). ¢, 15 11
W, | and P, is a polynomial matrix whose ith column is an input which
drives T, from zero-state to ,. Further if i) and ) hold. then A 15 the
highest degree column coefficient matrix of Q.. and vy, is the th column
degree of Q.

The following theorem is an immediate consequence of Lemma 2.2.

Theorem 2.4: Let Q be a p > p nonsingular polynomal mainix with 1, as
the highest degree row coefficient mairix. Let R be a p > m polynomial
matrix such that the Q-realization L, of Q 'R 15 reachable. Let v be the
smallest integer such that

Ko=ImGo +1m Fyip + -+ +ImF} ‘G,

a, =90, Lety,@py> - >y, be the row degrees of Q. Letpy=p, > - > p, be
‘ * a given sel of posiive integers such that
Here N
TG -
Q0 '[76 : Ry} Let B he a given monic polynomial of degree
will be the transfer matrix of the ob.crver; nipitpyt oo bp,
o Nt il gon PIPRRES = -
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Then there exists a p X p polynomial matnx Q, with column degrees
P By Py B2 Py~ By and 1, as the highest degree column coefficient
matrix, and there exists an m> p polynomial Py such that P.Q, " is a
proper transfer matrix and 8 is the determinant of QQ, + RP|.

Proof: By hvpothesis, we have

=P ™ Py

Following the procedure given in [24, Section 7.3}, (12, Section 7.2] define
the polynomials 8. 8,.- - - 8, by

B=:"4 Bz #Byzn o by 4 B

where B, is a polynomial of degree less than p,. Now if the pxp
polvnomial matrix @ is defined as

g B o B,

-1 :P:

¢

0 Rl -

then @ s B Lety: p, p,.0 12, -.p. Then
M 0 =" 0
M LN M Y
lim . . ¢ B
I e : . : r
0 2t 0 >

Now the conditions of Lemma 2.2 arc satisfied, hence there exist poly-
nomial matrices Q) and P, with the required propertics and

QQ,+RP,=0.

This completes the proof of the theorem. a
We also have the following,
Theorem 2.5: Let Fin K" " and G in K"™™ be a reachable puir. Let v
be the smallest integer such that

K"=ImG+ImFG+ --- +ImF* 'G.

Let py.ps. - - .p, be a given set of integers such that each p, > v, and ler B
be a given mome polvnomual of degree
prEpytprt st

Then there exists a nonsingular polynomial matrix Q, with highest column
degree coefficient mutrix I, and with p, | as ith column degree, and an
m  n polynonual matrix Py such thor P.Q, ' 1s proper and

(1 - F)Q+ GPj=8.
Proof: If we choose
Q=(z1-F).

then the Q-realization of Q 'R is (/. F.G) with K" as the state module.
Now wc have

R=G

“|:“1:<..:“’_|'

The result follows immediately from Theorem 2.4. a

Remark 2.6: Let Q and R be as in Theorem 2.4 and let Zg be
reachable. It is well known (see, for example, [7)) thatif Z,= - P,0, ' is
chosen as a feedback compensator, then the closed-loop transfer matrix
7, can be written as

z =Q\[00, + RP] 'R
which is the same as
7 =09 'R

Note that @' is row proper. One can see by obtaining a ® realization of

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-27, NO. |, FEBRUARY 1982

7, as in Lemma 2.1, and choosing S as a basis matrix for K. that £g has
a matrix representation which is in companion form with the charactenis-
tic polynomial

{®{=8.

As this realization of Z; is free, one obtains a realization of Z, by matrix
transpositions. Hence, Theorem 2.5 not only provides us with a coeffi-
cient-assignment result, but it also gives a realization of Z, with a Fy in
companion form.

Remark 2.7: Theorem 2.5 is a coefficient-assignment result for reach-
able pairs ( F, G) by dynamic state-feedback which guarantecs the internal
stability {see Remark 3.8 for details of this aspect) of the closed-loop
svstem, thus providing a solution to the regulator problem. All of the
previous work except for Hautus and Sontag [11] has been concerned with
cocfficient-assignment or stabilization by constant state feedback. In [11}]
a special type of pole-placement result for reachable pairs (F.G) by
dynamic state-feedback is given but the internal stability of the closed-loop
system is not considered.

Theorem 2.5 ix the first cocfficient-assignment result for reachable pairs
(F,G) and further it also guarantees regulation. It will be scen in the
following section that one can build (at least) a full state obscrver for
finite-free strongly obscrvable svstems over arbitrary commutative rings.
These results together provide a solution to coefficient-assignment and
regulation problems (as shown in Remark 3.8 in detail) for finite-free split
lincar systems defined over arbitrary commutative rings.

Remark 2.8: Concerning the construction of compensators, note that
Q) is row proper. Therefore. K, is finite and free. Hence. using Lemma
2.1, we can obtain matrix representations of the Q-realization of ¢; 'P|.,
and then transpose them to obtain a realization of Z, = P,Q, .

LII. OBSERVERS FOR LINEAR SYSTEMS OVER COMMUTATIVE RINGS

In this section, we will show how one can build observers for finite-frec
strongly observable linear systems over a commutative ring X. Throughout
this section, without loss of generality, we will assume that all the systems
under consideration have dynamic interpretations as discrete-time systems
over K.

Recall that K{:] has a multiplicatively closed subset of monic poly-
nomials P, called the set of stable polvnomials. A rational function p. g
where p. g€ K| :] will be said to be s1able if g€ P,.

Let £=(F.G. H) be a linear svstem over K with the dvnamic interpre-
tation

x(r+1)= Fx(1)+ Gu(1).

y(1)= Hx(1).
We assume that F, G, H are n X n. n X m, p X n matrices over K and K"
is the state module. K™ and K7 are input and output value modules. We
define the transfer matrices Z and Z, as

Z=H(:I-F) 'G

2,=(:1-F) 'G.

Let L be an / % n matrix over K. Let £, =(F,. (G, : G,,]. H,. 10 :

J.) where F.. G, G,o. H.. J, are rXr.rxm, rxp I>r and [>p

matrices over K be a system with state module K’ input value module
K™*P, output value module K'. The dynamic interpretation of X, is

f(r+D=F () +Gu(1)+Gyv(1)
= H (D) + J,v(1).
We call , an L-ohserver for £ iff for every initial state v, of £ and

every initial state %, of I, and for every input v each of the transfer
matrices from u, x,., £, to
e:=§ - Lx

is stable.
We should note here that the degree of stability of the transfer matrices

s - <y C e
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in the above definition is also very important. Because this determines the
rate of convergence (for the rings where convergence is well defined), and
as it will be shown in Remark 3.8 the characteristic polvnomial of £,
affects the regulation of the closed-loop svatem. Therefore. it is more
desirable to be able to assign the coefficients of [=1 - F,| arbitrariby. It
will be seen that this can be achieved with our approach.

We should note here that x,,. ¥, do not have to be in K" and K. In
general, they may be in some other sets. But as we will sec, our results are
independent of the sets that x,,, £, may belong to. The reader is referred
1o Hautus and Sontag [11] for a discussion of this aspect of the problem.

To establish our main result, first we need the following two lemmas.

lemma 3.1: Let R\, Ry, T, Q, be I Xm 1> p I~n, and | X1 poly-
nomial matrices over K such that

(:1- FYT'+ H'Ry = LQ, (3.1a)
R,=TG. (3.1b)

Then
0.'(r, s m)[ '] =12, (2)

Conversely, if ( F.G) is weakly reachable und (3.2) is satisfied for some
polynomial matrices Q.. R,. R,, then there exists an | X n polvnomial
matrix T such thar (3.1a) and (3.1b) are satisfied.

Proof: (3.1a) and (3.1b) imply that

T(:1 - F)= QL - RyH
and
TG = R,
or
(QoL~ RyHY(:I~ F) 'G=~R,,

which vields (3.2).
Conversely, if (3.2) holds, we can rewrite 1t as

(RH-Q L)1~ F) 'G- -R,.

Let

4
V(:):=RH-Q,1.= 3 ¥z

;-0

Then. as R, is polynomial,

!
(v.: :V,]l;][c:m: e ]=0.
F9

As (F.G) is weakly reachable, we must have

1
v,: - Vq][ 5]=0.
Fe

But this shows that V(z) is right divisible by (2/ — F), i.c.. there exists
an / X n polynomial matrix T such that

(R;H-Q,L)=-T(:zl- F)
and
R,=TG. 0
Lemma 3.3: Let Ry, Ry, Q, be as in Lemma 3.\ wuh |Q,i€ P,, and
such that Q. '(R, : R,] has a realization £, =(F,.|G,, : G, H,.[0 :

4, 1) with the state modwle K’ ( for some integer r #0), and 2l - F,|=1Q,|
Then 2, is an L-observer for X.

Proof: Let u be a given input. Let x, be an initial state for £ and 1,
be an initial state for £, . Then one can write the formal :-transform é of ¢
as

AT A I Tt 2,

where

!
720, '[R R:][ ;]ﬁ.
Zy: QR H(:E FY i
Zo=H(: -F) ‘=i,
7= -1z - FY 'Ga.

Ze= Lzl F) '

But from Lemma 3.1 we have
7yt 7, :0
Hence,
67, Zy+ /o

Butas|z/- F,|='Q lisin P if Zy + Z, depends on v, and i, through
stable rational matrices. so does é. Now we will prove that this 1s the case.
Consider

2 N2+ Z)=Q, (R H—Q L)t F)

o

From (3.1a2) we have
2 (Zy,+Z)=-0,'Ty,.

As |@, is in P, é depends on x,, %, and u through stable rational
matrices. Hence, by definition of an [-observer, I, is an /.-observer for
s i
Now we state our main theorem regarding /.-observers.
Theorem 3.4: Let (F', H') be reachable. Let i be the first integer such
that

"=ImH+ - 4lmF*OH

(1.e., pis the reu hability index of (F'. H').) Let y,.- - -y, be integers such
that y,>p - |. Let a be a given monic polynomial of degree

1
Y= Y.
[ |

Then, there exist polvnomial matrices Q. R,. R, satisfying (3.1a) such thut
Q.. 1s row proper with tth row degree v, |1Q,| = a, and such that @, '| R, :
R ] has a finite realizanon
S=(F 0,06, : G0 u))

with |21 — F,|= a. Further if a is in P, then £, is an L-observer for =.

For the proof of this theorem, we will need a result which can be easily
inferred from a result of Emre (1979, Theorem (2.3) and Remarks (2.7)
and (2.8)] which is valid for K =an arbitrary commutative ring with
identity.

Lemma 3.5 |7, Theorem 2.3, and Remarks 2.7 and 2.8): Let Q be a
P X p nonsingular polynomial matrix such that Ky is well defined and
finite-free. Let R be a p x m polynomial matrix such that Q 'R is stnctly
proper. Let ® be a p X r polynomal matrix. Then there exist p % r and
m X r polynomial matrices Q, and P, such that

Q0 +RP. =@

if and only if Spyny(®) is in the reachable subspace of the Q-realization z,
of Q 'R. If this condition holds. P. can be chosen such that 8, (P, )<
reachability index of Zp.

Proof of the Theorem 3.4 1t is xnown (see the proof of Theotem 2.4)

i e v e i
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how we can construct a column proper polynomial matrix Q. with
column degrees v,, such that {¢)[= a.

Now with Q = :/ - F' and R = H’, Lemma 3.5 shows that we can find
T'. Ry with 8 ,(R5)< p — 1 such that

(z1-FYT'+ H'R,= L'Q,.
As Q, is column proper with 8.,(Q,)> 5_,( R3). R>Q., ' is proper.
T'=—(:1-F) '"HRy+(21-F) 'LQ,
or
TQ, '=—(d-F) "HRQ, "+ (- F) 'L
e, T°Q;, ! is strictly proper. Then
0, '[Ry: R]=0Q,'[TG : Ry]

is proper and Q,, 'R, is strictly proper. If we choose a 1o be stable, |Q,,|
will be stable. If we choose =, to be the Q,-realizationof Q,, '(R, : R,),
then (=] - F,{= a (see Remark 2.6 for this property of Q-realizations),
and by Lemma 3.3.if a is in P,, then £, is an [.-observer for Z. D

Remark 3.6 From a practical point of view. choosing v, = g ~ | would
give us reduced order observers of order /(z — 1). Note that we are free to
choose v, as we want, as long as y, > u — 1. Note here that as T, is the
Q,-realization of Q,, '[R, : R,]. and Q,, is row proper. the characteristic
polvnomial of F, will be a. [See Remarks 2.6 and 2.7.] Hence, we have an
L-observer whose characteristic polynomial can be arbitrarily assigned.
The constructive methods given in [7] in terms of linear equations over K
can be applied to obtain observers (also, regulators) provided that one can
solve the corresponding equations over K.

Remark 3.7: For the regulator problem, one obvious choice for L
would be I, in which case, we will have a full state observer. Then, as the
transfer matrix of the composite of £ and X, is Z,, one can apply
dvnamic state feedback as explained in Section 1l and construct a
regulator to stabilize (coefficient-assignment) the closed-loop system. For
a detailed explanation of the internal stability aspect of the regulators
obtained this way, see Remark 3.8.

The advantage of choosing L. other than /,. would be that. first of all,
we would need lower order observers. If there exists an I in K", /< n,
such that L(2/ — F)"'G can be expressed as 0 'R with row proper Q.
then we can construct a lower order compensator for coefficient-
assignment of the closed-loop system. Hence, we would reduce the orders
of both the observer and the compensator for coefficient-assignment.

In particular, if F’ is cyclic with a generator h'. we can obtain
h(zl - F) 'G using an observer of order u — 1. Then we can find a monic
polynomial ¢ and a polynomial row vector R such that

¢ R=n(z1-F) 'G.

Then using results of Section II. we can achieve coefficient-assignment

with a compensator of order v — | where ¢ is the reachability index of =.
We should note here that if the transfer matrix of £ =(F.G, H) can be

expressed as Q 'R with Q. R being polynomial matrices satisfving

QA+RB=1

for some polynomial matrices A. B which is implied by £ being split (see
[16]) and if in addition such a Q can be chosen to be row proper one can
directly use Theorem 2.4 bypassing the need for an observer. This latter
condition is equivalent to the fact that the observability indices of (M, F)
add up to the dimension of F.
Remark 3.8: We will now show that our technique of regulator synthe-
"sis leads to an internally stable closed-loop system. Let Z= (F.G.H)be a
finite-free split system. Let @, '{ R, : R,] be the transfer matrix of a full
state observer as in Theorem 3.4. Then there exists a polynomial matrix 7
such that

T(z1 - F)Y+ RyH =0,

Furthermore, as Q,, is chosen to be row proper. K is a free K-module.
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(See Section I1) Let T,=(F,. {G,.G, . H,. [0:J.]) be a matrix
representation of the @ -realization of Q, '|T : R.). Notce that since
Q.. 'T is strictly proper. there is no nonzero feedthrough term for @, 'T
As TG = R\, if we define

G,y -GG,

then (F,.G, . H,) is a matrix representation of the Q -realization of
Q. 'R, Thus. (F,.[G,,.G,:). H,. [0 : J,]) is a matrix representation of
the @ -realization of @, '[R, : R.). It can be checked casilv (sec Re-
mark 2.6) that the characteristic polynomial of F, is the same as |Q,, .

“

Finally, let Z, = P,Q, ' be the compensator which satisfies
(=i~ F)Q,+ P =0

where @ is chosen such that |®] is a stable polynomial. If we choose @ as
in the proof of Theorem 2.4, then by Theorem 2.4 Q, is column proper.
Then, as explained in Remark 2.6, we can obtain a free realization
(F\. G\ Hy. J)) of Z, such that the charactenistic polvnomial of F; is (0, 1.

Let x, x,. and x, be the state-variables of £, T, and I, respectively.
Then with a discrete-time interpretation we have the following cquations
for the closed-loop system, describing its internal hehavior:

x(r+1)= Fx(1)+ Gu(r).
»(1)= Hx(1).
(1) = Eox (1) + Gau(r) + G,av(1)
Yo )= Hox () + L(1)
(D= R () + Gy(r),
»{() = Hox (1) + Jpva(r).
and the feedback law
u(t)=re(r)— n(1)

where ¢(r) is the external input. When ¢ =0. the equations of the overall
closed-loop system can be written as

u+n] [F G\H, GH a0
x{t+ ) (= GuH, F,+GCJ\H, G, JJH+G H] x ()]
x(t+1) | Lo, eiH, F+ Gl J.h (1)

The closed-loop svstem is said to be internally stable iff

:I-F, -GH, -GJH
x:=| =~ G Hy A~ F, -G hH, —GaJJH -G H
- GH, -Gl H, - F-GlLIH

is a stable polynomial. Multiplying the third row by G, and adding to the
second row we get

:-F -GH, -GJH
X= 0 :-F, —-G,H-G(:1-F)|
~GH, ~-GhH, :-F-GLJ.H

Let us define
Vi= -G, H-G(=] - F).

Multiplying the second row by (z/ — F,) ', and further multiplving the
second row by G, H, and adding to the first row, we get

H-F 0 “GLH-GH(I-F) "t
XTXk{ 0 I ~(A-£) v
-GH, -GhH, (-F)=GhIH

where x ;= {2l - F,|.
Multiply the first row by (=7 — F,) '. and further multiplying the first
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row by GH,, and multiplying the second row by GJH,, and adding both
to the third row, we get

x-=xexr|lG:1 FY- @M G- ) GULH
CGH( - F)Y G- EY 'V GLHA: - F) 'r]|.
Noting that
PO, H(:-F) ‘G +J
and combining terms, we have
x = x| [0 FY - GPQ, YH - GRQ M- EY Y]

=xexrl[:1 - FY- 6PQ M- R v aa]]|.

Now
H(: =) 6,0 6]+ [0 4,120, (T« Ry
and
Q.'T(:l ~FY+Q,'R.H =1
therefore

H(:I-F) "veu =1
Thus, we have
X< Xe Xl F) - GPO, Y
XeXH1PHO, h.
As Q' = xg,. we have

X - Xri®|
=XEXE-

Since x . ={Q,]. and | @} are chosen to be stable polynomials, x is a stable
polynom.ial. Thus shows that our technique of regulator synthesis leads to
an internally stable system, and hence provides a solution to the regulator
problem for finite free split systems over an arbitrary commutative ring,
Note that with a nonzero external input v, the transfer matrix from ¢ 1o x
is 0\® 'G (sec Remark 2.6). and Q, is cancelled. Thus. with our
synthesis, regulation and cocfficient-assignment arc achicved simulta-
neously.

Remark 3.9: We will now show that strong observability of the pair
(F.H) is also a necessary condition for the existence of full state
observers with arbitrary characteristic polvnomial. Let max(K) denote
the set of all maximal ideals of K. For any m in max(K), let ( F,,. H,,))
derote the system over the ficld K m obtained by reducing ( F, /)
modulo m. Then, if the pair { F, H) admits a full state observer with
arbitrary characteristic polynomial, it follows that the pair ( F,,. H,,) also
admits a full state observer with arbitrary characteristic polynomial for
cach m in max(K). But as (F,,. H,,) is a system over a field, it is well
known that ( F,,. H,,) admits a full state observer with arbitrary character-
istic polynomial if and only if (F,,. M,,) is observable. Thus, (F,,. H,,) is
observable for each m. Now, by dualizing Lemma 3.12 of [23] it follows
that ( F, M) is strongly observable.

Remark 3.10: 1t should be noted that observers can be constructed
under the weaker hypothesis of detectability [11]. Hence. for detectable
and reachable systems, observer and dynamic state-feedback construction
can be completed. Further, that such a construction results in an intern-
ally stable system is clear from Remark 3.8. Thus. the constructions of
[11] can be combined with the techniques developed in Sectior {1 to solve
the problem of regulation for detectable and reachable sv  -ms The
reader is referred to [9) for further gencralizations of thes wea o
detectable and stabilizable systems. For the connegtions betwe + -“.ese
concepts and matrix fraction description over stable rational functions
and stable transfer functions, see [17].

IV. EXAMPLES

In this section we will connider two example to allustrate our results on
cocflicient-assignment, observers, and regulators {or lincar systems over
commutative nings. ln the first example. we consider a system (F. G for
which cocfficient-assignment can not be achieved by constant state-
feedback. We show how by using dvnamic state-feedback. coefficient-
assignment can be achieved. In the second example, we consider a system
( H. F.G) that is not strongly observable: We show how an obsenver and a
regulator can be obtained for this svstem by using our approach

Exumple 4.1: Consider the pair

; [0 o]_ y [ oo ]
¢ 0 0 6 1
over the ring of polynomials R[a] 1s the indeterminate o over the field of
real numbers. This svstem is given as an example in (2] of a reachable
svstem that is not coefficient-assignable. In the notation of Cotollany 2 5,
wehave v -2 Letuschoose p, py oandlet B =4+ 27+ 1 Wewill
obtain a feedback compensator Z,- P,Q, ' such that the closed-loop
svstem will have g as its characteristic polynomial. It is casily seen that

® [5:” ']‘ (32)
-1 :.‘
Also,
_ I
e () [,, (,]- (43)
If we now solve for P; and Q) in the polynomial equation
(21 - F)Q,+GP, - @, (44)
we get
e } -8 O «
P"[—l 0]‘ o [ 0 ] +3)
Therefore, the transfer matrix 2, of the feedback compensator is given by
o:x(z-0) ' !
Z=PQ, = Y ] (46)
—{:- o) Q0

With Z, as the feedback compensator and
Zi=(:d F) G 4.7

it can be casily checked the overall closed-loop transfer matnix Z_ is given
by
Z.=(1+22) '7=090 '

:[:Ba 01[? .-3|][0| o-‘ol]‘ @

The Q; realization of Q; 'Py is given by (Fi. G}, H,. J}) where
_lo .1t o
ki [o o]‘ G [0 1]‘

H,,v[o*l (|)] fn--[{; 8] (49)

Thus, (F.G\. H\.J,) is a frec realization of 7, The @-realization
(F..G,. H) of the overall closed-loop svstem transfer matrix Z, can be
casily obtained as explained in Remark 2.6

A matrix representation of this realization is

fo1o0o 00
-1 0 1 0 N 0 ‘_['—lo() 0
Ex g o0 al %L o o |" " 00 0
vl 0 0 0 0 o' 1

4.10)

s

It can be casily scen that the characteristic polynomial of F is (z4 + 27 +

.

14
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Example 4.11: We will now illustrate our technique of observer and
regulator synthesis for a delay-differential system. This example has been
worked out in detail in (3] and {11, Example 5.6]. It will be seen that our
observer turns out to be the same as that obtained in [11 Example $.6].
We then complete the regulator synthesis by obtaining a feedback com-
pensator 1o stabilze the system.

In this example, the system is not strongly observable. This example
shows that observer synthesis can be approached with our results even if
the system is not strongly observable. The reader is referred to [11) for a
generalization of the concept of detectability for algebras over fields.

The delay-differential svstem is given by

Xy = 1) +ulr).
Xy = (e 1)+ ()4 u(r),
W= a0, (4.12)
Let o denote the shift operator o(x(1)):= x(1—1). Then the delay-

differential system (4.12) can be modeled as a linear system over R{o]).
(For details, see [14).) The matrices ( F, G, H) are given by

L2 o) oLt} e

It is shown in {11] that this system is not strongly observable and is
unstable. It is also shown that the polynomial : + pe is stable for
O0<pu< /2 We will construct a full state observer whose characteristic
polynomial is = + po. With the notation of Section [1, we need to solve
for T" and R’ in the equation

(1= FYT'+ H'Ry= Q). (4.14)
Let us choose
, 2+ a
Qn=[ 0“" l], (4.15)

Now a solution to (4.14) is given by
_[pnzte—p I 1o
Rz—[ | ] T—[_“ 0]. (4.16)
Furthermore,
I—po — p]
R =TG= .
=ra=['H

Therefore, the observer transfer matrix is given by

Q.'[R, : R,]

— (\—po—p)(z+pa)"" (o—uouzo)(:+p,o)7'+,;
0 1
(@17

The following observer equations can be immediately obtained from
(4.17) as explained in Section III:

£()=—p&(1 -1+ (1 - w)u(r) -~ pu(t-1)
+(1 =) (= 1)~ py(t).
F(1) = () + ().
F(1)=y(1). (4.18)

If p is chosen such that 0< u < #/2, then the system (4.18) is a full state
observer for the system (4.12). It is thus seen that observer synthesis is
possible even if the original system is not strongly observable. The key
point is (o choose @, such that |Q,| is stable, and such that solutions to
(4.14) exist.

We will now construct a feedback compensator to stablize the overall
system. Using the notations of Section II, we have » =2. Let us choose
p1=9=2 Let }

Bzt +2:243:2 02 1= (24 1) (419)

It can be casily checked that 8 is a stable polvnomial for continuous time
systems. The polvnomial matrix @ turns out to be

2 s
0:[: *2:43 l-f']_ (4.20)
-1 e

We need to solve for P, and @, in the polynomial equation

(z1- F)Q,+GP,= 0. (4.21)
1t is easy to check that
T I GO A ]
7. e P) [3077‘ 6142041

A solution for P, and Q) is given by
P,z[(30‘ 0l —4)z+(o' 207 +40+3):

(6° 6):+()+6-0a° *0’)].

Q=

|z4(0-3a+0%) 2-0-0° ]
. (4.22)

0d-2g+4 2+(l-0-0%)
Now the transfer matrix of the feedback compensator is given by P,Q, .
with P,. Q) as in (4.22). The Q;-realization for the compensator can he
obtained as explained in Remark 2.6.

The overall transfer matrix with the observer and feedback compensa-
tor is given by
Z =HQ® 'G. (423)

The @-realization for (4.23} is given by the following equations:

£(1)= %,(1).

-‘;’:(’): )+ u()

£(0)=5(1)

()= = £ (1) - 235,(1) = 3&4(1) = 28(1) + u(r).

y(O)=5(O)~ 51 - D)= 5 (1 =2+ T (1) +45(0)
—28 (1 — 1)+ £(e-2).
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