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1. INTRODUCTION In such cases one would want to design a regulator which would work

Linear systems over commutative rings have been considered by several for every known value of a I and 02 by adjustment of its parameters. ThisLiner sstem ovr cmmuttiv rigs hve een onsderd bysevral can be done by designing a regulator over the ring JRio, a21.

authors (see (211. 1221, [51. 1141. (231, and the references therein). For curte exampdes a bego in [21 ( nRo.

applications and a survey of results on systems over rings, the reader is

referred to the survey papers by Kamen 1151 and Sontag [231. Among the A finite-free system =( F, G. H) of dimension n over a commutative

classes of systems that can be formulated in this framework are, for ring K is reachae iff

example, delay differential systems, systems whose coefficients depend on K*=ImG4ImFG+ •• +lImF" 'G.
parameters, systems whose coefficients are integers, multidimensional

systems, and systems described by discretized partial differential equa- i.e., the columns of the reachability matrix

tions.
By a finite-free linear srstem over a commutative ring K. is meant a Q I =[G : FG F'-'G]

finitely generated free K-module X of rank n. and K-linear maps
generate the module K". In such a case we also say that (F. G) is

F: X - X, reachable.

G: K"' - X. I is observable iff the columns of the observability matrix

H: X - K".r 1

Without loss of generality. one can assume that F. G, H are n X n. n x m. HF

and p X n matrices over K. We will denote such a system as I=( F, G, H) I i
and will associate with it the abstract discrete-time system _ HF" ]

( t- + ) Fg() + Gu(:) are K-linearly independent.

y(r) = Hx(t). This is equivalent to the condition that V E K". and Qx =0 implies
x =0.

This is only a conventional way of representing such systems. However, 2 is stronglv observable (respectively. weakly reachable) iff (F. H')
the constructions obtained based on such representations, in each case of (transposes of F and H) (respectively. (G', F')) is a reachable (respec-
interest. are valid for the actual interpretations of the system 1 through tively. observable) pair.
certain translorms. The following examples illustrate how this is done. We should note that in general strong observability implies observabil-

Example I.) - A Delay.Differential System: Consider the system ity but not vice versa. However, in the case K = a field these two notions

coincide.
t) = 51( t - 2) + - A t + U1 (1t) In general, a strictlv proper rational transfer matrix over a commutative

. (t) - x1 (t) + x( t - V)+ u2 (t -2) ring K is defined as a formal power series

v1(t) x,(t)- X2(t- 1) Z: = A,z - 1 + A2 : 2 +- .

Y20) =" )where A, i = 1, 2, ... is a p X m matrix over K, and the matrices .4,s

Defining the delay operators 0, a2 by satisfy a recurrence relation

0,(x)(t):.= x(t-2) A,+. " A,+,: i=-,2,

2(. )(,): = X(, -,,). J=0

we can represent the above system as for some a. E K. and some integer n.
Such a transfer matrix always has a realization (F. G, H) such that

(t) I o2 .2(,) ' 0 U2(t) Z= H(zl-F) t G.

r,(') 1 I 02 1[~t]For general results on realization theory the reader is referred to [211-[231.
0 1 x(,) (151 and the references therein. For results of major importance to our

paper the reader is referred to Section II.

Hence, a representation for this system is The problem of finding an integer n,. and constructing feedback com-pensators for a system (F. G. 1) so that the closed-loop transfer matrix

([o, I 1 [I 1 has a finite-free realization of dimension n~, (F,. G,. H,). where the
+ 0 , 0 1 21) characteristic polynomial of F can be arbitrarly assigned is called the

U 0 
° '1-1 1' 1 problem of coefficient-assignment. If we only require that the characteristic

polynomial of F, has n,. roots z,.. .. z., with z, e K which can be chosen
which is a system over the polynomial ring K:=R[o,,o] (where R:= arbitrarily, then this problem is called the problem of pole-placement. In
real numbers). It carries all the information about the original system. general coefficient-assignment implies pole-placement but not vice versa.

Example 1.2 -A System with Paranetrs: Suppose that we have a In the case K = a field the two imply each other, and are well known to be
system I =I F. G. H) with parameter uncertainty. One could represent equivalent to the reachability of (F. G) and have well known constructive
this uncertainty by assuming that the entries of F, G, H are functions of a solutions (see [251. 1201. 111.1131. 161, (71, and the references therein).

finite number of parameters. say a,, • .. a. These functions, for exam- However. the case where K 46 a field is more difficult and only partial
ple. could be polynomial functions in which case I would be a system results have been obtained previously. The main approach has been to
over the polynomial ring Ria,..., .1 An example is extend the results for the field case using constant state-feedback. Morse

[191 has shown that if K is a principal ideal domain and (F, G) is
F=[ reachable, then pole assignment is possible by nondynamic state-feedbadk.

Sontag 1231 has proved that for senilocal ings coefficient-assignment by
nondynamic feedback is equivalent to the reachability of (F. G).

G = ] Later Ching and Wyman 141 proved that Noetherian full quotient rings
L *J are aemilocal rinap and thus the results of Sontag 1231 are applicable to

2r,1 this case. In general. Sontag (231 has proved that the reachaibility of (F.
H=I I a + G) is necessary for both pole-placement and coefficient-aignment by

0a+l a nondynamic feedback for any ing K.
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Let P, be a multiplicatively closed subset of monic polynomials of the The choice of stable polynomials P,. of course, depends upon the
polynomial ring K :1, called stable polnomuals. Let (F, G) be a given application under consideration. For most of the applications. stabilit%
pair. We say that ( F. G) is regulated (or regulation is achieved) iff there can be inferred from the characteristic polynomial. For example, for
exists a finite-free system , (Fj.L;. /l/.Jd,) such that with dynamic delay-differential systems, two-dimensional systems, systems with param-
feedback using !, the characteristic polynomial of the augmented closed- ters. one can infer stability by examining the location of roots of the
loop system is in P,. (This latter property is usually referred to as internal characteristic polynomial. Throughout this paper, we assume that P, is
stability as well.) given and derive results for the given P,. The only technical restriction on

For principal ideal domains and semilocal rings and Noetherian full P is that it be a multiplicative set.
quotient rings, the results of 1191, (231. 141. respectively, can be used to
solve the regulation problem. Also. Bymes (31 has given a stabilization II. COEFFICIENT-ASSIGNMENT FOR LINEAR SYSTEMS OVER
result that can be used for regulation of systems over certain Frechet COMMUTATIVE RINGS
algebras.

However. for more general ring,. there do not exist any coefficient- In this section we will proe our main "coefficient-assignment" theo-
assignment and/or pole-placement results that can be used for regulation rem, for a reachable system ( F, G. I) over a commutative ring K. which
problem for a reachable pair { F. G). In Section 11 of this paper we present also guarantees regulation. Similar results will be used in Section III to
for the first time a coefficient-asignmem result by dynamic feedback construct observers for finite-free strongly observable systems over K.
which can be used to solve the regulation problem for finite-free reachable Then these results together will be shown to provide a method for design
pairs ( F. G) defined over an arbitrary commutative ring K. Our result is of compensators for the solution to the regulation problem for finite-free
based on an approach developed in 171. valid for an arbitrary commutative split systems over K.
nng K. which also connects the problem to the reachability of (F. G) in a Throughout the paper K will denote a commutative ring with identit%.
natural way. Let K1:1 denote the ring of polynomials in the indeterminate : with

The general regulation problem is to achieve regulation as defined above coefficients in K. Let K(:) denote the ring of formal power series in : '
when the plant is described as _= (F, G, H). If a finite-free pair (II. F) is with coefficients in K. If p and q are in KI: I and q is monic then p/q is
strongly observable, one can build an observer (in the form of a determin- identified with the formal power series obtained by the formal division of
istic Kalman filter) for the rings mentioned above where a result of p by q. Define the K-linear map ff as
coefficient-assignment and/or pole-placement by nondynamic feedback is
available. i: K() -K(:)/K[:1: a a,: '- a a,:.

E ( F. G. II) is called split iff it is reachable and strongly observable. ,

For the motivation and details of the notion of split systems (see [231.
1161). For a finite-frec split system I define over Kwhere K is a principal A formal power series a is said to be strwilr proper if wf(a) is a. and is said
ideal domain or a semilocal ring. one can solve the regulator problem by to be proper if iria)- a is an element of K. For a set S and positive
combining the results on observers for pair (11. F) and results on regula- integers p and m. S'. and SP " denote the set of p-column vectors and
tors for pairs ( F, G), or for K = a certain Frechet algebra, results of 131 the set of p X m matrices with entries in S. The map 7, is extended to
can be used to solve regulation problem. Recently. Hautus and Sontag KP(:) in the natural way.
I I I have obtained more general results on observers, also generalizing Let Q be a p X p nonsingular polynomial matrix such that determinant

detectability ideas, for finitely generated algebras over fields, The have of Q, IQ1, is a monic polynomial. Define the K-module K., as
also considered the regulation problem for finite-free detactable and
reachable systems over such rings, however their results cannot be used K : f { in KP[-]: Q t

x is strictly proper).
directly for regulation. In Section III of this paper, we give for the first
time, a method to obtain an observer for a finite-free strongly observable The K-linear map irQ is defined as
system 5" ( F. G. II over K = an arbitrary commutative ring, based on
the approach developed in 17). This also connects this problem to the ffQ: K : KQ2 v.Qv(Q 'x

observability of 1 in a natural way. Further, our observers can be built in Let 0 be in KP*' I: with 4, as its ith column. Define irQ(4 ) to e the
such a way that the coefficient of the characteristic polynomial can be p r polynomial matrix whos tth column is trQ(,). It is easy to see that
chosen arbitrarily. Also, our results allow the observers to be built by p x r polynomial matrix , thre exis as to p tha

solving linear equations over K. and are guaranteed to have a realization polynomial matrix Q1 such that

over K. polynomial matrix Q, such that

Further. we show how one can combine our results on observers and 0 = QQ, , itt( 4).
coefficient-assignment to solve the general regulation problem for a
finite-free split linear system I =( FG, 11) over an arbitrary commutative For a K-linear map!, let im f denote the image of f and let ker f denote
ring K. the kernel off. For a matrix B whose columns are elements of a K-module

One can also use our coefficient-assignment result and the detectability M. let SpA B denote the submodule of M generated by the columns of B.
result of I IlI to solve the regulator problem for the case of finite-free For a polynomial matrix P. let 8,,( P) denote the degree of i th column of
detectable and reachable systems X (F. G, H) over finitely generated P. A nonsingular polynomial matrix Q is said to be row (osomn) proper.
algebras over fields. iff the highest row (column) degree coefficient matrix is invertible over the

In Section IV. we give some examples to illustrate the applications of ring K. Note that if Q is row proper with row degrees n 1 n,. • .ni,. then
our results. We show that even if I (F, G. 11) is not reachable and/or KQ is a free K-module with a basis given by the columns of the p n
strongly observable, one can still approach and may be able to solve the polynomial matrix
problem using our method.

As for I =(F. G. H) being split, over a commutative ring, every trans- S: =diag( Vj. V2 ,. •.1.',)
fer matrix admits a free reachable or a free strongly observable realiza-
tion. In general, reachability is known to be necessary for coefficient- where
assignment by state feedback 1231. For the existence of observers with
arbitrary characteristic polynomial for a weakly reachable system, strong Q (:' .: / . ... I)
observability (as it will be seen in Section I1) is also necessary. We show
in Sections II and Ill that for free systems these are also sufficient, and
Furthermore. in the case of systems over RI x1,. " -x,).1 = ( F. G, I) n: "1 4 0 4 + n
being reachable (strongly observable) is generic if and only if the number P

of inputs (outputs) exceeds r (see I 81). Hence. in such cases, the asatump- Let 7 denote a p x m strictly proper transfer matrix over the ring X If
lion of splitnes is not very restrictive, we express Z as
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=(:I- F)Qj +GPI
7 = A,: '

I and

then the sequence ( A, ), is the sequence of impulse response matrices of Q, - T( :1 F) + R, II.
the i/o map associated with Z. Let P. Q, and R be p \ r. r r. and r ', m
polynomial matrices with determinant of Q a monic polynomial such that In this section, we will show how one .an obtain polynomial matrices

0. P1. Q, such that 1 can be arbitrarily chosen. Q, is column proper
Z = PQ 'R. and PQ, 1 is a proper rational matrix. In Section 11. we will show how

one can obtain suitable polynomial matrices Q.. T. R,.
The following lemma presents a natural realization of Z with K, as the We should note that dynamic state feedback corresponds to adding a
state-module. Since IQI is assumed to be monic, it is not difficult to see number of integrators to the system ( F. G 1) and then applying state
that KQ is a finitely generated K-module. The realization given in the feedback to the resulting system. (Ste. for example, II).) Hence. the results
following lemma is called the Q-realization of Z. This result was proved in that we present in this section can also be interpreted as a method to
[101 for K a field. But since frQ2 is well defined, it is easily seen that the determine a sufficient number of integrators. and the final state feedback

result holds for our case as well. matrix for regulation.
Lemma 2.11101: Let !Q ( FQ,0. 1lQ) he defined ia follows: Our results in this section are based on the following theorem proved in

[7. Theorem 3.1).
GQ: K" KQ: u. r7( Ru) For each positive integer i, define a K-submodule 4 of Ko as

FQ: KQ - KV: x 7rV( :x) ;J;: - hnG V 4 Im FV;(, + - + lm FX.

and In the following for a p x p polynomial matrix 0 and integers (a,I'
/IQ: KQ - K P: x, (PQ (OAP / } t

where for a in K"(: ). (a) I denotes the coefficients o: z . Then. .th lim (diag(: 40diag( )

K as the state-module is a reah:ation of Z.
For further details of the Q-realization, the reader is referred to [10). 18). e.xistsr and is equal to T. where t is a matrix over K, means that

and the references given there.
Let = (F. G. 11) be a given finite-free split system over K. Let Z be its 7,: diag(: ")Odiag(:,)

transfer matrix, i.e.. is proper and its constant term is T.

Lemma 2.2 [ 7, Theorem 3. 11: Let 0 he a given p X p polynomial matri .
Z: =( :1 - F) 1G. Let Q be a p)x p nonsingular matrix with 1, as the highest row degree

We will asume, without loss of generality, that Z can be written as coeffictett natrix and with row degrees pi ; - - Let R hegiven
p X m polynomial matrix such that Q 'R is strictlv proper. Let P, e a giien

Z-Q 'R in X p poynomial matrix. Then there exists a column proper nonsingular
polvstonual matrix QI such that PQ, iQ s proper, and

where Q. R are polynomial matrices. Q is row proper, and Q, R satisfy the
Bczout condition. i.e.. there exist polynomial matrices X, Y such that QQ 1 4 RPi 0 (2.3)

QX+ RY= I. if and onlY if there es.rt integers y, y', - "p > 0 such that

If K a field such a representation is known to be possible for a (~
reachable and observable system 1. But this is generally not possible for i)
K * a field. However. if I is split using a full state observer (as described " 1
in full detail in Section I1) one can obtain a system whose transfer matrix I0:0 10 0 0
is

exists and A is invertihle over the ring K. and

which clearly is of the above form. Further, if this is done, then regulation
of the composite system (original system I and the observer) is sufficient 'here r, is the least integer j for which the Ath column of ir( (0). w', is ini

for regulation of 2. as it will he shown in Remark (3.9). Ks i and P, is a poi-nomial matrix whose ah column is an input which

Now consider a dynamic feedback system 1, =( F,. G1. ,. J,) over K. drives YQ from :ero-state to w,. Further if i) and ii) hold, then .4 is the

whose transfer matrix Z, can be written as highest degree column coefficient matrix of Q1, and y, is the ith colunin

degree of Q1.

Z, Z PQi The following theorem is an immediate consequence of Lemma 2.2
Theorem 2,4: Let Q he a p x p nonsingular poli-nomal mat.x with I1 as

where Pj.Qi are polynomial matrices with Qi column proper. (Later in the highest degree row coefficient matina. Let R he a p ) m polynomial
this section we will show how to obtain such P, and Q, for regulation.) matrix such that the Q-reah:aton IQ of Q iR is reachable. Let i, he the
Then if we write the closed-loop state equations where the state is taken to smallest integer such that
be the external direct sum of the states of 1. the observer and ,. it can
he shown that [see Remark 3.91 the closed-loop system has the character KQ img0 + Im FV;, + + Im Fj iGQ

polynomial a,. where

a, :i~0LQo, let gi 1 " 2  -a p . he the rom degrees of Q. Let p," p, " .Phe
a given set of positive integers such that

Here p, '/,4i' I.

Q I : R, }Let 8 he a given mornic potriomtal of degree

will he the transfer matrix of the ob.,crver: n: .i + P2 + p
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Then there es sts a p x p polynomial matrix Q, with column degrees Z as in Lemma 2.1. and choosing S as a basis matrix for K# . thai F, has
P1 IAI. A2. " .Pp - A. and I as the highest degree column coefficient a matrix representation which is in companion form with the characteris-
matri . and there exists an m X p polinomial PI, such that P1Q, ' is a tic polynomial
proper transfer matriv and # is the determinant of QQI + RPj.

Proof: By hypothesis, we have

P ; P p. As this realization of Z: is free, one obtains a realization of Z, by matrix
transpositions. Hence, Theorem 2.5 not only provides us with a coeffi-

Following the procedure given in [24, Section 7.3[. (12, Section 7.21 define cient-assignment result, but it also gives a realization of 7, with a F0 in
the polynomials 1. 1 .2#p by companion form.

Remark 2.7: Theorem 2.5 is a coefficient-assignment result for reach-
" ' P," ' #2 :  + ' + ft , able pairs ( F.G) by dynamic state-feedback which guarantees the internal

stability (see Remark 3.8 for details of this aspect) of the closed-loop
where P, is a polynomial of degree less than p,. Now if the p X p system, thus providing a solution to the regulator problem. All of the
polvnomial matrix 41 is defined as previous work except for Hautus and Sontag [I 1 has been concerned with

coefficient-assignment or stabilization by constant state feedback- In I I I I
a special type of pole-placement result for reachable pairs (FG) bN

- 1 :dynamic state-feedback is given but the internal stability of the closed-loop
I) -• • system is not considered.

Theorem 2.5 i, the first coefficient-assignment result for reachable pairs
0 1 F, G) and further it also guarantees regulation. It will be seen in the

then 40 is P. Let y, p, I,. 1 1.2. p. Then following section that one can build (at least) a full state obtsc,evr for
finite-free strongly observable systems over arbitrary commutative rings.

01 0 Y- ... 0 These results together provide a solution to coefficient-assignment and
: ,,.: regulation problems (as shown in Remark 3.8 in detail) for finite-free split

lir I " t)0 [p. linear systems defined over arbitrary commutative rings.
•Remark 2.8: Concerning the construction of compensators. note that

0) .1, 0 Q; is row proper. Therefore. Koi is finite and free. Hence. using Lemma
2. 1, we can obtain matrix representations of the Q;-realization of Q1 'P.

Now the conditions of Lemma 2.2 are satisfied. hence there exist poly- and then transpose them to obtain a realization of Z, PQ, L
nomial matrices Q, and PI, with the required properties and

QQ + RP 111. OBSERVERS FOR LINEAR SYSTEMS OVER COMMUTATIVu RINs

This completes the proof of the theorem. L1 In this section, we will show how one can build observers for finite-free
We also have the following. strongly observable linear systems over a commutative ring K. Throughout
Therem 2.5: Let F in K" " and G in K"" be a reachable pair. Let P this section. without loss of generality, we will assume that all the systems

be the smallest integer such that under consideration have dynamic interpretations as discrcte-timc systems
K'=ImG+ImFG+ ... +lmF 'G. overK.

Recall that KI:] has a multiplicatively closed subset of monic poly-
Let p,, p., " . .p, he a gliven set of integers such that each p, ;; ,P, and let # nomials P, called the set of stable polvnomials. A rational function p lq
he a g'en manic polnopmal of degree where p. qG K [: I will be said to be stable if q P,.

Let I = (GF , 11) be a linear system over K with the dynamic interpre-
P:p--+ P2+  - +P." tation

Then there exist.s a nonsingular polvninaml matrix Q, with highest column x(t + I) = Fx(r) + Gu( t).
degree c wfficient matrix I, and with p, - I as ith column degree, and an i( t) = H.x(t).
t 'x n p,hnomial matn P, swh that PQ, i s proper and

We assume that F. G. H are n x n. n X m, p X n matrices over K and K"( :1 - F)QI + GP j=8. is the state module. K" and KP are input and output value modules We

Proof. If we choose define the transfer matrices Z and Z, as

Q-(:I-F), R=G Z H(:l-F) 'G

then the Q-rcalization of Q 'R is (I. F. G) with K" as the state module. 7, =(:1 - F) 'G.
Now %c. have Let . he an Ix n matrix over K. Let t (F, ,, : G,1, 1/,,. [0

#A I A . . p J.1) where F., G,,,. Go2,- t. J. are rXr. rXm. r~p. 1)(r. and I" p
matrices over K be a system with state module K'. input value module

The result follows immediately from Theorem 2.4. 0] K"". output value module K 1. The dynamic interpretation of I t is
Remark 2.6: Let Q and R he as in Theorem 2.4 and let IQ be

reachable. It is well known (se. for example. 171) that if Z, = - PtQj ' is .(t + 1) = Fi.(t) + G.u(t) + Goy(t)
chosen as a feedback compensator. then the closed-loop transfer matrix A-(t)= llt(t) + Jy( 1C,
7, can be written as

We call 1, an I..observer for I iff for every initial state %, of I and
7, =Q,[QQ, 4 RP,J tR every initial state i,, of 1t and for every input u each of the transfer

which is the same matrices from u.i, to

1eQ t 'R: 
f

= - L.

is stable.
Note that ' is row proper. One can se by obtaining a 0' realization of We should note here that the degree of stability of the transfer matrices
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in the above definition is also very important. Because this determines the Proof: Let u be a given input. Let x,, be an initial state for !E and i,,
rate of convergence (for the rings where convergence is well defined), and be an initial state for It. Then one can write the formal :-transform of e
as it will be shown in Remark 3.11 the characteristic polynomial of /-,, as
affects the regulation of the closed-loop system. Therefore, it is% more j ,ZI , ,4Zdesirable to be able to assign the coofficients of 1:1 -Fj arbitrarills It e=4 7 ~+7
will be seen that this can be achieved with our approach. where

We should note here that x,. i,, do not have to be in A'" and AV. Inw
general, they may be in some other sets. But as we will see, our results are
independent of the sets that A,. i~,, may belong to. The reader is referred Z, -Q,,[R R 2 ], j~
to Hautus and Sontag IlIl for a discussion of this aspect of the problem. 7

To establish our main result, first we need the following two lemmas. Z.- ,. 'R21l(:l F) :
Lemmia 3. 1: Let R 1. R 2. T, Q., he I~m l I , l. Xn. and I-pui -I po)

nnrual matrices over A'surh that Z, I I,,(:/

R, TG. (3.1h) Z5 I.(:l F) ':%_~

Theft But from Lemma 3.1I we have

Q,, 'IER, R I .(3.2) Hne i 4 0

Converveli. if ( F. G) is weak It- reachable and (3.2) is satisfied for somle - , + Z / Z
poly-nomial miatrices Q_. R). R.. then there exists an I X n poly-nomial
matrix T such that (I. Ia) and (3, 1b) are satisfied. But as 1:1 - F,I= Q,1I is in P, if 7 + Zj depends on v,, and i,, through

Proff: (3.l1a) and (3. 1b) imply that stable rational matrices, so does j. Now' we will prove that this is the case.

and ~T(:l -F) QLR,1II I,

T~ RFrom (3. 1a) we have

or
As IQ,,! is in P,. i depends on x_ i_.~, and u through stable rational

(Q,L -~ R,1l)(:I -- F) G - RI. matrices. Heiice. by definition of an L-observer, 1, is an 1.-observer for

whic yieds (.2).Now we state our main theorem regarding I.-observers.
Conversely, if 03.2) holds, we can rewrite it as Theoremn 3.4. Let (F', WI) he reachable. Ixt As be the first inteer such

R211- Qj (:1- F)'G - R,.that

Let K"1m= 1's /V +Im F'A '11'

At (i. e., Ac is the reu, habilit- index of( F. W).) Let -y,. --. yj he' Integers such

V(:):= R,H -Q 0 l= 7, ' that sa~ - 1. Let ai he a given monic polt-nomial of degree
j-0

Then, as RI is polynomial.I

1'1Then, there exist polynomial matrices Q_, R 1. R , satisfying (3. 1 a) such that
(BK -- J J'1:IG :FG .'-[ 0. Q, is rom- proper with ith row deg ree y. , a and such that Q,, 11R

1Fq R .1has a finitte realization

As J. F,) is weakly reachable, we must have !I.: IF, ,I, : G,.2 J. 10 : .,jj)

w'Ith 1:1 - , 1 a. Further, if a is in P, then Z I is an L-observer for Z.

1/j For the proof of this theorem, we will need a result which can be easily
inferred from a result of Emre f 1979, Theorem (2.31 and Remarks (2.71
and (2.81)) which is valid for K =an arbitrary commutative ring with

But this shows that V(:) is right divisible by (.1 - F), i.e.. there exists identity.
an IX t polynomial matrix T such that Lemma .3.5 17. Theorem 2.3. and Remarks 2.7 and 2.81: Let Q he a

p X p nonsingilar polynomial mati such that AQ ts well defined and
(R2H - QL)= - T(:l-- F) finite-free. Let R be a p Xmpolnomial matrix surch that Q 'R is strictl *

proper. Let OP be a p X r polinomual matrixr. Then there exist p X r and
and m X r polynomial matrices Q, and P, such that

Rtj= TG. 0QQ, +RP, = 4

L0010111 3.: Lt R, R z. Q. he a, in Lemma 3. 1 with IjQ.IE P~, and if aind on It if Spit.n 0*) Is i n the reachabWe suhspace of the Q- reah.-auon I
such tAt Q - '11 R : 1 has a rmahzattan 1, ( F.. IG, : G., J, H,.[O0 of Q 'R .If this condition holds, P, can be chlosen such that 8.,(P,)ss
J.J With thesIf ""W tute K' (far some Wnterr 2O). and 1:1 - . =I1Q.1. rechabillir index of IQ.
Then ILS a-i L-ah~me far 2 Proof of the Theiorem 31.4: It is known (see the proof of Theorem 2.4)
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how we can construct a column proper polynomial matrix Q, with (See Section !11) Let Z,, =(F,,. [G,,,G.,,]. i/,,. [0 : J,) he a matrix
column degrees y, such that IQI = a. representation of the Q,,-realization of Q, '1T : R. Notice that since

Now with Q = :1 - F' and R = 
H'. Lemma 3.5 shows that we can find Q,, 'T is strictly proper, there is no nonzero feedthrough term for Q,, 1T

T'. R'2 with 8,,( R ) p- I such that As TG - R ,. if we define

(:1 - F')T'+ H'R, = L'Q,. G,,: -- G,,G.

As Q, is column proper with 8,(Q) 8,(R). RQ:, ' is proper. then (F o G,,. H,,) is a matrix representation of the Q,.rcalization of
Q,, 'R, . Thus. (F,,./GI,.G,,:I. tt,,, [0 : J) is a matrix representation of

T'=- (:I F') IH'R, + (: F) 'L'Q,, the Q,,-realization of Q,, '[R: R [. It can he checked easily (see Re-
mark 2.6) that the characteristic polynomial of F, is the same as IQ,,

or Finally, let 71 = PQj be the compensator which satisfie.,

T'Q= -(l- F') 'H'RQ ' I+(zI- F') 'L' (:i- F)Qj,GPI z4

i.e.. T'Q, 1 is strictly proper. Then where 0 is chosen such that 0 1 is a stable polynomial. If we choose 4 a,
in the proof of Theorem 2.4. then b.y Theorem 2.4 Q, is column proper.

Q,, '[R, : R2]=Q,] I[TG : R Then, as explained in Remark 2.6. we can obtain a free realization
( F1, G1. li,. JI) of Z, such that the characteristic polynomial of F; is i Q, .

is proper and Q,, 'R1 is strictly proper. If we choose a to be stable. IQ.,I Let x. x. and .x-, be the state-variables of 2. !, and 1 , respectively.
will be stable. If we choose -- to be the Q,-realization of Q 'I R, : R,]. Then with a discrete-time interpretation we have the following equations
then I:/ - F,1 a (%e Remark 2.6 for this property of Q-realizations), for the closed-loop system, describing its internal behavior:
and by Lemma 3.3. if a is in P,, then 2 1 is an .-observer for 7. E)

Remark 3 : From a practical point of view. choosing y,, = u - I would x(f + l) = Fx(t) + Gu(i).
give us reduced order observers of order 1(g - I). Note that we are free to s(,) = Hx( r).
choose 'y, as we want, as long as y, ap - I. Note here that as 1, is the
Q,,-realization of Q,, 1[ RI : R,[. and Q,, is row proper. the characteristic x(t + l) = Fxjr) + G,,u(t) 4 G,,y(()
polynomial of F,, will be a. [See Remarks 2.6 and 2.7.[ Hence. we have an vjt) = Hv,(r) + Jy(t)
/.-observer whose characteristic polynomial can be arbitrarily assigned.
The constructive methods given in 171 in terms of linear equations over K -V,(i + 1)= FXt(f) 4 G, vr)
can be applied to obtain observers (also. regulators) provided that one can ytv,(1) = Hjx,() + Jjy( ).
solve the corresponding equations over K.

Remark 3. 7: For the regulator problem, one obvious choice for . and the feedback law
would be I,,. in which case, we will have a full state observer. Then, as the
transfer matrix of the composite of 1 and 11. is Z, one can apply u(t) r()- v()
dynamic state feedback as explained in Section I) and construct a
regulator to stabilize (coefficient-assignment) the closed-loop system. For where -(t) is the external input. When r -0. the equations of the overall

a detailed explanation of the internal stability aspect of the regulators closed-loop system can be written as

obtained this way, see Remark 3.8.rr
The advantage of choosing L. other than I.. would be that, first of all. F, , H , G J, , 1 ,

we would need lower order observers. If there exists an L in K1' I n, =X,(+ 1) H F+, H G,,iJiJJi11 i C,,(:
such that L(:l - F) 'G can be expressed as Q 'R with row proper Q, [x( + 1) 1 GH, GJH, F + GJJ,,h [x(t)
then we can construct a lower order compensator for coefficient-

assignment of the closed-loop system. Hence. we would reduce the orders The closed-loop system is said to he mernali stable iff
of both the observer and the compensator for coefficient-assignment.

In particular, if F' is cyclic with a generator h'. we can obtain :1 - F, - GI - GiJH
h(:i- F) 'Gusinganobserveroforderp - I. Then we can find a monic X: -GjH, :1 - F- GoJIH. - G.IJ, J,,I G,,If
polynomial q and a polynomial row vector R such that - G", - GJI H :1 - F - GJjJ, It

q 'R = h(:/ - F) 1G. is a stable polynomial. Multiplying the third row by G, and adding to the

Then using results of Section II, we can achieve coefficient-assignment second row we get

with a compensator of order v - I where r is the reachability index of -. :1 - F, - G, H, - GJH
We should note here that if the transfer matrix of I =( F. G. H) can be

expressed as Q 'R with Q. R being polynomial matrices satisfying X 0 :1 - F G H - G( :l -- F)
• GH i  - GJ, H o  zI- F -GJIJ,, If

QA + RB = I
Let us define

for some polynomial matrices A. B which is implied by I being split (see

1161) and if in addition such a Q can be chosen to be row proper one can G: = H - G(:1 - F).
directly use Theorem 2.4 bypassing the need for an observer. This latter
condition is equivalent to the fact that the observability indices of (11, F) Multiplying the second row by (: - F,,) '. and further multiplying the
add up to the dimension of F. second row by GI H, and adding to the first row. we get

Remark .1.8: We will now show that our technique of regulator synthe-
sis leads toan internally stable closed-loopsyslem. Let =F. G, H) be a -1 - F, 0 - GJH -6G, H,(:f - F) 'V
finite-free split system. Let Q, 11R, : R21 he the transfer matrix of a full
state observer as in Theorem 3.4. Then there exists a polynomial matrix T X = 

X F. 0 F - (:1 F,,) I'
such that - GH, - GJlI, (:1 - F) n GJjJ,,H

T"( zI- F) + R~l 2 -Q..
where X1: 1 - FI.

Furthermore, as Q,, is chosen to he row proper, KQ is a free K-module. Multiply the first row by (: - F0 . and further multiplying the first

.. . .
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row by GHi,. and multiplying the second row by CJ If,, and adding both IV. F.XAMPtES

to the third row. we get In this section wc will consider two example, to illustrate our result., on

l coefficient-assignment. observers, and regulator. for linear systems over
- XFXt,[( , ; :l ) ;,' commutatise rings In the first example. Ac consider a sNstem (F.( for

SI 1 which .oefficient-a.,ignment can not be achieved h constan state-
- - F1,( I F) f - .u'l-(.' -F,.)'j feedback We show how by using d,,namic state-feedback. coefficient-

assignment can be achieved In the second example. we consider a s% stem
Noting that ( 11. F, G) that is not strongl y obsen able We show how an obsc.rser and a

regulator can be obtained for this system b, using our approach
P,Q . 1/.( :l1 ) G1 +

- Example 4.1: Consider the pair

and combining terms, we have [o ". [ 0

~sX IkI-F- GP1 Q, Vil G;P1Q1 ',(l - I,) I'] I
over the ring of polynomials R[ jis the indeterminate o over the field of

F) - GPQ, 'II/,,(:/ - F,.) 'I+ ,,,If real numbers. This system is given a. an example in [21 of a reachable
systCm that is not coefficient-assignable. In the notation of (otollar% 2 .

Now %e hasc -2. Let us choosep, p2 2. and let # :" , :- I We wil

F,.) '[G,, : ( 0,,21+1 : J,,j Q,, '[T: R,] obtain a feedback compensator 7,- PQ,' such that the clos.d-loop
system will have f as its characteristic polynomial It is easils seen that

and

S) f 'R1-(4 2)

therefore Also.

I/,,(:- F,,I) + J,lII -I. :/ 11010) 1 (4 3)

Thus. we have If we no% solve for P, and Q, in the polynomial equation

X - x).,,,(:" F) - GPQ, 1  (:1- F)Q + (;P 0. (44)

K we get

As (p1' ,,. we have 4, Ij [ 0~: (4.3)
X - xrj.il

Therefore. the transfer matrix :1 of the feedback compensator is given b%

SinceX, .Q,, 1. and 1t are chosen to be stable polynomials Xis a stable Z,=P,=[o( o)* : (46)
polynomial. This shows that our technique of regulator synthesis leads to -(:-o ) O
an internally stable system, and hence provides a solution to the regulator
problem for finite free split systems over an arbitrary commutitive ring. With Z, as the feedback compensator and
Note that with a nonzero external input v. the transfer matrix from t to x
is Q10 'G (see Remark 2.6). and Q,, is cancelled. Thus, with our Z: (:I F) 'G (4.7)

synthesis, regulation and coefficient-assignment are achieved simulta-
neousy, it can be easily checked the overall closed-loop transfer matrix Z, is gsven

RemurA 3.Q: We will now show that strong observability of the pair by

(F. II) is also a necessary condition for the existence of full state Z7-(l+ZZi) Z Qm40 1(;
observers with arbitrary characteristic polynomial. Let ma ) denote I 4

the set of all maximal ideals of K. For any rn in max( K). let (F,. I. ) 0 (48) :2 0 (42
dcrotc the system over the field K, r obtained by reducing (F IF)
modulo m. Then, if the pair (F. 11) admits a full state observer with The Q; realization of Q 1 P is given by (F .G'. 1. J') where
arbitrary characteristic polynomial, it follows that the pair (F. II,,) also
admits a full state observer with arbitrary characteristic, polynomial for F, - G (each m in ma(K). But as F,. I,,,) is a system over a field, it is well Fz l 0 "
known that F,. H.,) admits a full state observer with arbitrary character. II O(
istic polynomial if and only if (F,. 11,,) is observable. Thus, ( F,,,. 1,.) is If J, ' 01 (4)
observable for each m. Now. by dualizing Lemma 3.12 of 1231 it follows
that I F. I1) is strongly observable. Thus. (F 1.G , I.JI) is a free realization of 7. The 0-realization

Remauk 3.10: It should be noted that observers can be constructed ( F, G, ii,L) of the overall closed-loop system transfer matrix Z, can be
under the weaker hypothesis of detectability (Ill. Hence. for detectable easily obtained as explained in Remark 2.6.
and reachable systems, observer and dynamic state-feedback construction A matrix representation of this realization is
can be completed. Further, that such a construction results in an intern-
ally stable system is clear from Remark 3.8. Thus, the constructions of f 0 1 0 0 ~ I 0
[I 11 can be combined with the techniques develoed in Sectior Itl to solve F, -, - 1 0 1 ; 0 1 0

the problem of regulation for detectable and reachable s,, ms The 0 0 0 wdt I 0 . I 0 0 0

reader is referred to [91 for further generalizations of the,. ... a t' -I 0 0 11. 0 (4.10)
detectable and stabilizable systems. For the conneictions betw . -.m

concepts and matrix fraction description over stable rational functions It can e easily seen that the characteristic polynomial of F, is (:4 +: I-
and stable transfer functions, see 1171. I).
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Ewmpke 4.11: We will now illustrate our technique of observer and +: 2:14 3: 4 2- +I -( -2 ?)2 (41)9)
regulator synthesis for a delaN -differential system. This example has been
worked out in detail in f 131 and [11I. Example 5.61. It will be seen that our It can be easily checked that ft is a stahle polynomial for continuwus time
observer turns out to be the same as that obtained in [I I Example 5.6[. systems. The polynomial matrix 41 turns out to be
We then cotnplete the regulators ' nihesis by obtaining a feedback com-' 2 2:
pensator to stabilze the system. I. 43 (4.20)

In this example, the system is not strongly observable. This example -I :

shows that observer synthesis can be approached with our results even if
the s - stein is not strongly observable. The reader is referred tol I II for a We need to solve for P, and Q, in the polynomial equation
generalization of the concept of detectability for algebras over fields. (: F)Q, i GAP 0. (4.21)

The delay -differential system is given by

X,(f- I + u(t), It is easy to cheek that

+, .s( 14 ,(I) 4 U(I), 'a ) [02.1+3 41 1.
(4.12)01 L 13a-- I a'+20 4 1

Let o denote the shift operator tr(x(f)): 1( ). Then the delay- Aslto o ,adQ sgvnb

differential system (4.12) can be modeled as a linear system over Rio]I. P, =[(3a - o2 -4).- +(o3 -2o2 +4o 3):
(For details, see [141.) The matrices ( F, G. 11) are given by (2a:4(

Il 110 I.Q L a .aa2 ~ ~ n (4.22)

It is shown in [IlIl that this system is not strongly observable and is --2o+4 : 1 a. a -)I
unstable. 1t is also shown that the polynomial : + sa is stable for Now the transfer matrix of the feedback compensator is given bN P1Q1
0< Ji -ir/2. We will construct a full state observer whose characteristic with Pl. Q, as in (4.22). The Ql-realization for the compensator can bepolynomial is z:4,pa. With the notation of Section Mf,1 we need to solve obtained as. explained in Remark 2.6.
for T' and R'2 in the equation The overall transfer matrix with the observer and feedback compensa-

(:1 - V) T'+ 11R 2  Q_. (4.14) tor is given by

Let us choose Z,= If Q,4 1(;. (4 23)

The 0-realization for (4.23) is given by the following equations:

0[±P 11-X~) 2r
Now a solution to (4.14) is given by XJ r) -i(r) 0 + ()0

[p:±6 p] T-*_f 0 (4. 16) .() ()2~()3~~)~~) ~)
1 0' x -p Oj* I 3iI(

Furthermiore.y(tI ir2)4i(1)+.,(

N TG a 0 A
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