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FIVE-METER SPHERICAL MILLIMETER-BAND ANTENNA
P.M. Geruni

This article presents the basic parameters of millimeter-
and centimeter-band spherical twin-reflector antennas in which
the diameter of the large stationary reflector is about 5 meters.

The choice of parameters is substantiated and data are
presented on the design execution. Information is given on
spatial orientation, on the automatic control system and on
the radiometer. Some findings from experimental investigation
of the antenna and measurements of the solar and lunar temper-
ature at a wavelength of 8 mm are presented

INTRODUCTION

The five-meter spherical twin-reflector antenna system (DAS-5) deployed
near the village of Byurakan in the Armenian SSR at an altitude of 1600 meters
above sea level is a precision instrument designed for radioastronomical and
radiophysical research in the millimeter and centimeter wavebands. Another goal
of creating this antenna was to check the operation of a twin-reflector antenna
system with a spherical stationary main reflector and to find optimal
relationships within such a system. In this sense, the DAS-5 is a prototype

for studying the possibility of creating larger instruments within this system.

|
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Development and work on building the DAS-5 began in late 1960-early 1961.
The first integrated tests were made in May of 1966, and work on measuring the

antenna parameters was carried out between September and November 1966.

The basic operating principles and questions relating to the theory and
analysis of twin-reflector antennas with a large spherical reflector were
examined in [1,2]. Specific material relating to this antenna will be pre-

sented below
SELECTION OF PARAMETERS. RADIOPHYSICAL DATA

Figure 1 shows the schematic diagram of the spherical twin-reflector
antenna and presents basic notation. The second (small) reflector is used
for total correction of spherical aberrations. In addition, it is used to
change the direction of emission of the antenna over a wide range without
distortion. 1In order to do this, it is only necessary to turn the small

reflector about the center of the sphere without moving the large reflector.

The coordinates of the points of the profile of the small reflector,
obtained from the equiphase condition of the field in the antenna aperture

are provided by the relationships:

x=A,~pcos26,
y=A,—~psin26,
where
A,=1—2(1—cos 8)cos*8,
A, =sin®—(1 —cos 6) sin 28,
S— (A —pr— 43

P

T 2c—(Ar—~ 826 — A4, &n 28]
c=1=2+f,
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In order to realize a high utilization factor, to improve the noise
tolerance of the antenna, and for design considerations as well, the small
reflector was placed beyond the focal point of the large one (2<0.5 Rg),
and the following basic system parameters were used (Rg=1): ¢=0.6246, R=0.6293,
a=0.7571, f=0.6046, 2=0.4900, X=0.6221. Y=0.1002, where X and Y are the
coordinates of the extreme points of the small reflector, and 2R is the diameter

of the utilized (or irradiated) aperture.
These parameter values were selected on the basis of the following premises:

1. A millimeter-band antenna of this diameter should be used primarily for
investigating heavenly bodies within the Solar System. Consequently, a view of
the sky within the meridional plane within +25° of the zero declination point is

sufficient. This is determined by the ratio R/a (the geometric aperture
utilization factor).

2. Since the absolute dimensions of the antenna and the small reflector are

small, it made no sense to attempt to minimize the dimensions of the latter just
to simplify construction.




By increasing Y slightly, it was possible to obtain a higher geometric
aperture utilization coefficient, i.e., the ratio of the "illuminated"
aperture to the total aperture. These considerations are at the basis of
the ratio Y/R. The shadow from the small reflector is 2.5%Z of the area of the
utilized aperture (fR%®). 1In addition, X and Y are selected such that the edges
of the small reflector fall short of reaching the focal plane of the large

reflector by the amount 2\ in the middle of the band.

3. The apex of the small reflector is located 32 mm (i.e., more than 3\
for millimeter~band waves) above the apex of the focal surface of the large

reflector; hence £=0.49.

4. The aperture angle 2y of the small reflector is ~200°, which makes it
easier to obtain a low level of irradiation of the edges of the small reflector,
and helps to produce nearly uniform field amplitude distribution across the
active aperture of the large reflector in this particular scheme [2]. Besides
providing high efficiency, the use of a large aperture angle also meets the
requirements of providing a low level of internal antenna noise. These are

the considerations involved in the choice of f.

5. The valug of the constant ¢ is determined uniquely by the choice of ¢
and f(Rg=1).

These premises, plus a number of other factors (constructiveness and
adaptability to manufacture, convenience in operating and control, etc.),
determine these final data (diwensions in millimeter):

Rp=3200; 24=4850; 2R=4000; £=1935; 2=1568; 2Y=641; X-L=423.

1f Saub=wkza¢° is the effective area of the antenna, we call R"':a”/l!2 the
aperture utilization factor (kip). As usual, this is the product of a number of
components: the power (amplitude) dissipation kip, the shading kip, etc. the
ratio R?/a? is conveniently called the geometric kip (kipg), while RZB‘”/a2 is

the total kip (kipp).
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Since the total (geometric) area of the aperture of the large reflector
¥ in the DAS-5 is 18.5 m?, the utilized aperture area 12.6 m? and the effective

area 9 2 m® (see below), the kip is 0.73, and the kipp=0.5 (kipg=0.685).

The waveband of the DAS-S extends from 2mm to 12 cm. The antenna can

operate without using the second reflector at longer wavelengths (to 1 m).

At a wavelength of 4 mm, the diameter of the utilized aperture is 1000) .

]
!
N In order to define the tolerances for installation of the system elements,
i . . . .
! phase distortions in the aperture were analyzed when the parameters deviate from

i -

.

the calculated values. Computer analyses yielded the following values: the

-
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accuracy with which the small reflector is placed along the x axis is +0.6 mm,
and +0.3 mm on the y axis; the accuracy of focal placement of the reflector
is +1.2 mm along the x axis and +0.8 mm along the y axis. The precision of the

surface of the large reflector is +0.3 mm, and +0.2 mm for the small reflector.

PO

The precision with which the radius of curvature of the large reflector is
executed is +0.8 mm. Deflection of the small reflector suspension must not
; exceed +1 minute of arc. These are the maximum tolerable deviations for which

the greatest phase errors in the aperture at a wavelength of 8 mm do not exceed
A/20, or 189,

CONSTRUCTION

‘ The large reflector, 4850 mm in diameter and weighing 4 tons, was cast in
‘i eight wedge-shaped pieces of aluminum-zinc alloy. The casting was done in a
B special molding frame from a wood model. 332? radius of curvature of the
reflector was to have been approximately 2 mm after mechanical polishing. The

castings were 50 mm thick, with stiffening ribs 150 mm thick.

In order to polish the reflector, a rotary grinding tool was set up at the

antenna site (Fig. 2). The reflector (1) was assembled in a rigid frame (2) ]

and placed on a turning table (3) with a vertical axis of rotation. A grinding :
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head (5) holding an end-milling cutter was fastened to a boring bar (4) which

rotates (through 50°) about the center of curvature of the reflector and which

is counterbalanced by counterweight (6). The entire structure rested on an

The drive mechanisms for the table, boring
The

8x8 meter concrete foundation (7).
bar, milling head, etc., were controlled from a main and a portable panel.

table drive was built with adjustable d.c. motors. The speed was varied in

order to maintain a constant grinding mode.

Fig. 2.

Figure 3 shows the setup in operation. Several "rough" and two "clean"

surface layers were cut from the reflector. The depth of the cut during the

last pass was 0.5 mm. In order to maintain a constant temperature while

removing ths "clean" layers, the entire setup was covered with a tarpaulin, and

work was done only at certain times of day. The main difficulties involved

controlling vibration, play and temperature deformations, and of monitoring
coincidence of the vertical axis of rotation of the table and the horizomtal
axis of rotation of the boring arm. Were this not done, a toroid would have
resulted rather than a sphere. The sphericity was monitored, and the
co~axiality adjusted, by cutting a radial "control" strip across the reflector
(Fig. 4.) and then turning the table through 180° and measuring the difference
of the readings of micron indicator 1 (Fig. 4a) fastened to "flag" 2. By

regulating the position of the boring arm shaft, coaxial deviation was reduced

to within #0.1 mm of zero.
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Fig. 4.
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A series of measurements of the reflector surface after polishing

indicated that it had been finished to within +0.25 mm (maximum error).

Certain difficulties were overcome in measuring the absolute radius of
curvature. As a result of repeated measurements, a value of Ry=3202.7 mm was

obtained.

After this work, the polishing assembly was removed, and then the mirror,
permanently fixed to the supporting foundation, was tilted 40° to the south

together with the base (cf. below).

A tripod made of double-walled tubing (to provide high rigidity even
though the diameter is small) was used to hold the central and cardan frames
holding the gears and drive mechanisms which move the shaft which turns the
small reflector. Then the "yoke", small reflector and counterweights were

put in place.

The profile of the small reflector was designed by computer with a 0.1 mm
step (considering Rp=3202.7 mm). The reflector itself was cast of duralumin in

a mold from a wood model and finished on a lathe to within +0 2 mm.

The small reflector and "yoke" were made coaxial during finishing, and then
trued optically. According to geodetic measurements, the deflection of the
"yoke" did not exceed l1' at the maximum angles from vertical even with the

additional load imposed by the small reflector.

The total shadowing of the structures in front of the large reflector
comprises 9-11% of the area of the utilized aperture (depending upon the

spatial position of the beam).

The "yoke'" holds the drive mechanism which is used for remote adjustment of

the suspension of the small reflector, which provides setting accuracy of +0.1 mm

over a range of +30 mm.
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The antenna feed and receiver waveguide sections are installed at the
focus of the small reflector on an adjustable triood made of chrome~plated rods
10 mm in diameter. The entire feed assembly can be moved smoothly along the
antenna shaft through a range of +35 mm during adjustment. The feed assembly

creates no additional shadowing

The shaft on which the small reflector turns was set to intersect the
center point of the large sphere experimentally, using a micron indicator
fastened to the yoke and touching the surface of the large reflector. This
work was only done at a particular time of day as well. After the large
reflector had been rotated again and finally set in place, the surface accuracy

was re-checked. No significant deviations were noted.

Figure 5 shows an external view of the antenna.

s




SPATIAL ORIENTATION

The main area of application of the DAS-5 antenna in radio astronomy is the
millimeter waveband. In the millimeter band, we can expect to receive thermal
radiation, which with a 10 m? antenna area actually reduces the problem to that
of working with radiation sources within the Solar System: in this case there
is no need for a wide view of the sky. In order to ensure year-round
observation, a declination view within limits of §=+25° is, generally speaking,

sufficient.

In order to provide a view of this declination sector, the main axis of the
antenna is directed along the line of the intersection of the planes of the
equator and the local meridian. The antenna beam is able to move through an
angle of 259 on both sides of the main axis. Figure 6a shows the orientation
of the field of view of the antenna. A conical viewing sector with an apical
angle of 509 facilitates the observation of each radiation source for an
average of 2 hours daily near the highest apparent altitude (Fig. 6b). The

viewing time (in hours) can be calculated using the formula

1

T tan b tan (q>—¢)J. (9)

cos a

t"= 0,133 arc cos [———————-
cos 8 cos (9 — )

where for our case the latitude of the site $=40°, the angle of inclination
between the beam and the main axis @=25°, and the angle of inclination of the

main axis from the zenith point (in the meridian plane) Y=400°,

With an angle of beam deviation of 239 from the main axis, distortions in
the directivity pattern due to loss of aperture area approach 8% [2]. The losses
result from the fact that when a>13° part of the utilized aperture "extends"

beyond the edges of the large reflector.

10
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Fig. 6.
Key: (1) pole; (2) zenith; (3) horizom; (4) Equator.

CONTROL SYSTEM

The automatic control system is designed using a plan [4] which allows the
influence of yoke deformations to be eliminated. In order to accommodate the
optical radiator, the construction of the cardan frame provides a free area
near the center of the large sphere. However, since the yoke of this antenna
is rigid, the automatic control system thus far uses an ordinary scheme in which
the error signal is simulated (or comes from a photoelectric guiding device).
The control panel is housed in a small building located 60 meters from the
antenna. There is a coarse and a fine scale for each shaft. The shaft and
scale gears are high-precision, as are the gears in the main drives of the small
reflector; the system used is a parallax system. The main motors are powered
from electronic and magnetic amplifiers. The speed of the small reflector can
be varied continuously for both shafts separately. The maximum speed is
20 deg/min for both shafts. The guidance accuracy is no worse than 1 minute of
arc. There is a remote control panel on the top antenna frame. An optical
guidance telescope with a 0.5° field of view is also installed there on the
counterweights. The system is also equipped with a precise automatic photo-
electric guidance device for the Sun and Moon. The control panel also has
quartz clock scales for solar and stellar time. The control system allows a

scanning mode following some defined rule to be imposed on the basic beam

11
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guidance mode during manual or photoelectric guidance. The length of the yoke,
i.e., the suspension height of the small reflector, is adjusted from the
control panel. The control panel communicates with the antenna via a duplex

radiotelephone link.

RADIOMETER

The A=8mm wavelength radiometer uses an ordinary superheterodyne modulation
circuit, with an amplitude modulator. Figure 7 shows a functional diagram of
the high frequency section. This section of the radiometer is located at the
focus along the shaft of the small reflector (Fig. 8). The i-f preamplifier,
power supply filters, auxiliary electric motors, etc. are fastened to the out-

side of the small reflector.

The operations building, located 60 meters from the antenna, contains the
other sections of the radiometer: the i-f amplifier, low-frequency
amplifiers, synchronous detector, oscillators, power supplies and recording
equipment. An adjacent room contains a Nairi computer which is used for

calculations. The basic specifications of the present version of the radiometer

are as follows: modulation frequency ~- 32 Hz (rectangular), i-f carrier ~- 57 MHz,

i-f preamplifier gain 20, i-f amplifier -- 105, 2-f amplifier 10%; the i-f
preamplifier-i-f amplifier bandpass is 7 MHz. The resultant sensitivity is

159K with a 2-second time comstant.

Oényva - Manp. omb. Madyna- Han Cmecu-
ey f 6 mag3) PERS | “mengs Y
(6)__ (7)
Yymofod Cumpons
a&ﬁgmw 0&2&?%@‘5& MWW?§§
Fig. 7.

Key: (1) feeder; (2) directional coupler; (3) modulator;
(4) directional coupler; (5) mixer; (6) noise generator;
(7) synchronous motor; (8) klystron.

12




The radiometer is calibrated by means of a type GSh-6 argon noise tube

inserted in the waveguide and connected to the circuit through a 10 dB

Py and

directional coupler. The spectral density is 61 kT. Ignition is done
remotely from the radiometer racks in the operations building. The constant

component of the mixer current, synchronous operation of the modulator, etc.,

are also monitored there.

Pk e it B e it e bt o
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EXPERIMENTAL RESULTS

: Experimental investigation of the antenna parameters involved a number of
| - difficulties. Since the antenna cannot "look" any lower than 25° to the
horizon (south), and the boundary of the far zone for \=8 mm is 3-4 km away and
: the terrain itself drops off to the south, parameters cannot be taken using a
tower-mounted oscillator. A tower 100 meters high is needed even at a

distance of 250 meters. The use of helicopters and aerial balloons is very

13
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difficult, since the expected directivity pattern width is only a few minutes
of arc even at A=8 mm. This leaves only radioastronomical methods. The
brightest "point" source is Venus. The expected antenna temperature from Venus
for the center phase is 29K (at a wavelength of 8 mm). Such a signal can be
received only with an adjusted antenna and improved radiometer. The omnly

possibility of measuring the pattern now is thus to use the edge of the Solar

and Lunar disc. Unfortunately, the accuracy of this method is low, and side

lobes are practically impossible to measure.

Preliminary trueing of the antenna was done using optical methods. The
quality of finish of the surface of the large reflector makes acceptable
optical reflection possible. For this reason, the quality of the large
reflector could be given a positive evaluation in advance, since the focal
surface was clearly described in space when the reflector was illuminated by
the Sun or Moon. The paper began to char at a quasi-focal spot (apex of
focal surface) 5-7 cm in diameter. The small reflector was polished in order
to do the optical trueing. When the small reflector is positioned correctly,
the focal spot from the Moon (it was impossible to work with the Sum because
of the extreme brightness and high temperature in the small reflector) had a

slightly elongated shape and was 2-3 cm in diameter. When a lamp was placed at

the focus (even a very weak one) it was possible to see the focal surface (of
the large reflector) and a "utilized" spot 4 meters in diamter on the large
reflector with very sharp edges. The amplitude distribution in the aperture
corresponded to uniform irradiation of the small reflector, i.e., the intemnsity

in the utilized spot increased sharply toward the edges.

In order to obtain near-uniform amplitude distribution in the antenna -
aperture, special waveguide feeders were developed and tested at \=8 mm which

created a strong field at small angles to the axis. Figure 9a,b shows one

such feeder and its directivity pattern in two planes, taken experimentally,
SWR=1.13.
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In order to evaluate the internal antenna noise, two "levels'" were
recorded: the level of "internal” noise was recorded with the antenna aimed
at an angle of 30° to zenith, then the level was measured with an unmatched
load at the radiometer input (~300°K); finally, the level was measured with
the noise generator activated (~1600°K). Allowing for the quality of the
matching of the input load, the amount of attenuation in the directional
coupler, tropospheric noise and other factors, a value of 10-15°K was obtained

for the internal antenna noise.

Figure 10 shows examples of the recording of Solar (a) and Lunar (b)
radiation at \=8 mm. The calibration pulses from the noise generator can also

be seen here.

In order to determine the directivity pattern of the antenna, the average
envelope was constructed from the recording (Fig. 10a) and its first derivative

found. At half-power, the width of the main lobe is 6.5-7 minutes of arc (the

Tia e dmane
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feeder receives only a single linearly polarized field compoment). This
recording of the Sun contains radiation from a group of spots on the right
half (of the recording) of the Solar disc. Since the angular dimensions of
active formations in the region of sun spots are smaller than the angular
dimensions of the antenna directivity pattern, when they pass through the
pattern, the plot of the recording imitates the shape of the pattern. The
figure shows recording of the main lobe of the directivity pattern from two
Measurements of the pattern in the perpendicular plane (by

adjacent spots.
scanning the Solar disc) also yielded a value of 6.5-7 minutes of arc for

the half-power width of the main lobe.

Since the width of the directivity pattern at half power is less (by a
factor of 5) then the angular dimensions of the source, we can assume with a

certain degree of accuracy that we are dealing with a case of thermodynamic
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" (efficiency), feeder (due to mismatch) and in the circuit (in the section

equilibrium, and the temperature at the antenna focus (antenna temperature T,)
must be approximately equal to the brightness temperature of the source Tk
{Tranglator's note: Subscript letter "a" indicates "brightness"]. The source
is practically "seen" only by the main and first side lobes of the pattern;
about 30% of the energy is dissipated in the other directions. In addition, é{

energy is lost due to tropospheric absorption, losses in the antenna

between the feeder and the point at which the noise generator is connected).

These losses comprise another 15%.

The energy of the noise generator is lowered when it reaches the receiver
input due to attenuation in the directional coupler (about 10 dB) and losses
due to non-ideal matching of the hot tube and the circuit. Considering these
losses, the amplitude of the recording of the calibration signal at the
receiver output corresponds to 1600°K. Since the amplitude of the Solar
recording is accordingly 4000°K, considering the above we obtain TH=6700° for

the brightness temperature of the Sun, which agrees with previous observations

[6].

Taking the radiation flux density of the Sun at A=8 mm to be
235°10"2! w/m?*Hz [5], allowing for absorption in the troposphere (which is
low in this case because of the dryness of the air and the high elevation
above sea level), and introducing a factor which allows for the comparability
of the angular dimensions of the source in the beam, we obtain a value of
9.2 m® for the effective antenna area. Calculation of the efficiency for the
main lobe of the pattern .(2.3°10%) and allowing for the share of the others
produces an analogous result. The utilization factor of the aperture area
kip=9.2/12.6=0.73, while the gain G=1.81°10%, or 62.6 dB.

The values obtained for the area utilization factor, gain and noise
temperature are preliminary and require further clarification. However, there
is no reason to suppose that they will change significantly. Consequently, we

can assert that the DAS-5 is a high-efficiency antenna, which provides
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3 convincing confirmation of the possibility of using a two-reflector spherical
plan as the basis for building larger instruments. It must be emphasized that
the value kip=0.73 which was obtained is unobtainable for fully-rotatable

1 parabolic antennas of the same electrical dimensions. Close kip values have

been obtained only for horn-parabolic antennas.

In Fig. 10b, the calibration pulse is reduced in scale. The amplitude of

the Lunar recording is 1509K (the recording was made during a full Moon om

25 November 1966). Consequently, the average brightness temperature of the

e,

Moon across the disc is 2409°K. An elevated brightness temperature of up to

270°K was recorded at the center of the disc.

CONCLUSION

. Pas 4 %
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A number of new experiments are now being undertaken to investigate the

antenna parameters in detail.

Receiving equipment is also being fabricated to record planetary radiation

at wavelengths of 8 mm and 4 mm.

In conclusion, the author is pleased to emphasize that the building of
the DAS~5 antenna was the result of the labor of a large collective. Radio
engineers and scientific colleagues Razmik Garsevanyan, Levon Nalbandyan,
Grachik Arshakyan, Sergey Sarkisyan, Kima Karapetyan and others participated
actively in calculating and designing the antenna, building, installing and
adjusting the radio equipment and automatic control system. A leading role
in developing and creating the antenna structures was played by design
engineers and technologists Yuriy Simonyan, Garri Galstyan, Marlen Arakelyan,
Georgiy Ter-Ovakimyan and others. A great deal of work and thought was invested
in the fabrication of the antenna by master technicians Shmavon Voskanyan,

Vage Minasyan, Artem Balyan, Zaven Aleksanyan and others.
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Academician V.A. Ambartsumyan attended constantly to the

DAS-5 during all stages of work.
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FLEXIBLE ELLIPTICAL WAVEGUIDES -- NEW CENTIMETER-BAND FEEDER LINES
(Review of Technical Status)
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? . G.1. Troshin, E.F. Ykstin and V.A. Khudyakova

! It is shown that elliptical waveguides are better than
rectangular waveguides having the same cross-sectional
perimeter with respect to attenuation. The maintenance of
the polarization plane with respect to the cross section
makes it preferable to a round waveguide. The flexibility
, of elliptical waveguides, their ability to be wound on
| drums, and the capability of making long (on the order of

i hundreds of meters) sections without flanges allows this

: type of feeder to be considered as basic, especially for

| mobile radio relay stations.

Analysis of the requirements imposed on modern centimeter-band feeder

lines, as well as evaluation of the electrical, physical-mechanical and

| operating characteristics of these lines (coaxial cables, periscopic systems, .
; single~conductor transmission lines, rectangular, round and elliptical wave-

guides) indicate that flexible elliptical waveguides are extremely promising. .

An elliptical waveguide with the same cross—sectional perimeter as a

square waveguide has less attenuation. The fact that the surface is corrugated
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makes it easy to make flexible waveguides which can be wound on drums.

The elliptical cross section makes it possible to retain the positioning of
the polarization plane of the signal with respect to the cross section
regardless of the manner in which the waveguide is installed, i.e., the positive

feature of rectangular waveguides is retained.

Flexible elliptical waveguides provide maximum speed in setting up and
dismantling mobile stations, along with low weight and the ability to deploy

the equipment far away from the mast foundationm.

This combination of positive qualities, together with satisfaction of the
main requirements imposed on modern radio system, has brought many developers

here in the USSR as well as abroad to investigate elliptical waveguides.

The matter of electromagnetic wave propagation in electrical waveguides was
first resolved in 1938 by L. Chu [l]; however, practical work om elliptical

waveguides has been underway only for the last 10~-15 years.

This has been promoted especially by the development of mills for welding

and corrugating long tubes from metal strips.

France, Germany and the U.S. have now developed and are producing a series
of flexible corrugated elliptical waveguides for feeder systems operating in
the 3000-12,000 MHz band. They are made of hollow round corrugated copper tubing
fabricated from copper strips by welding and corrugating on machines specially
built by the Hackethal company [5].

Electric~arc welding in an inert gas medium (argon-arc welding) is used. 1In
this welding method, the two edges of the metal strip are melted by the electric
arc and then fused together in an argon medium, forming a seam which is free of

any significant rolls. The Hackethal company has developed three types of

21
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machines for argon-arc welding and corrugating round metal tubes of different

diameters, some technical data on which are presented in Table 1.

Table 1
Machine type
Machine indicators ' Minivema Univema i Grovema .

small universal large

machine machine machine
welded tube diameter, mm | up to 25.4 15.2-78.8 58.5-118
wall thickness, mm | 0.2-0.4 0.3-0.6 0.5-0.7
output, m/min ! 6-24 3-15 2.4-9

i
machine length and :
width, m? ' 5.5x2.1 9.6x2.4 ' 12.6x3.0
gy t

All three machines use the same principle, which is shown schematically

in Fig. 1. The machine consists of the following four basic assemblies [5]:

I. Assembly which forms tube from strip.
II. Tube welding section.
111, Belt tractio:. assembly.

v Tube corrugation assembly.

The shaping assembly consists of a cleaning (etching) tank, cutting and

straightening rollers and tube shaping rollers.

The welding assembly is in the middle of ihe machine. The position of the
welding head is adjusted by means of a special device. The end of the electrode
and welding arc are observed through a system of lenses and light filters. A -
nozzle near the end of the electrode directs argon around the welding arc and

the section of melted metal at the edges of the welded strip.
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The traction device pulls the welded tubing through the machine at a
uniform rate. Clamps fastened to the belt grip the tube without damaging it
and keeping it from turning, and eliminates the torque produced by the
corrugating device. The tube is corrugated by a wheel which turns in a medium
of lubricating and cooling emulsions. Radial movement of the turning wheel
sets the required corrugation degth, while the spacing is determined by the

linear rate of movement of the tube and the speed of rotation of the wheel.

Key: 1 -- metal strip feed; 2 -- tube formation device; 3 -- welding head;
4 -~ traction device with clamps; 5 -- corrugating device; 6 -- take-up
drum; 1 -- shaping assembly; II -- welding assembly; III -- belt-type
traction device; IV -- corrugating device.

The machines are equipped with a number of auxiliary devices which make it
easy to obtain tubes with the required dimensions. These devices include tzpe
thickness and width monitoring instruments, solution recovery devices, strip

cleaning devices, metal strip feed devices, corrugated tube take-up devices, etc.

The argon-arc seam welding method has a number of advantages over other

methods:
The welding operation is continuous and moves rather rapidly (3-19 m/min).

2. The method can be used for a number of metals (steel, aluminum, copper).

T ST N S




3. The method can be used successfully for welding strips between 0.2 and

2.5 mm thick.

4. No rolling occurs along the seam.

5. The concentrated but limited heating ensures uniform melting of the

edges of the strip.

6. Limited heating area.

7. The argon protects the melted metal from oxidation during welding.

8. Hollow tubes can be welded without inserting a special tool.

In order to make flexible elliptical waveguides, the argon-arc welding and
corrugating machine is augmented with a dye which is installed between the
corrugation and take~up devices which converts the round cylinder into an

elliptical ome.

The initial experiments conducted in Germany to make elliptical waveguides

used the outside conductor of type 14/42 and 10/30 coaxial cables [2]. The f
corrugated coaxial cable outside conductor, which had an inside diameter of
42 mm, was deformed into an ellipse with a long axis 2a=49 mm long and a small

axis of 2b=35 mm (eccentricity e=0.7).

Deformation of the outside’ conductor of 10/30 coaxial cable produced an
ellipse with dimensions of 2a=34.3 mm (long axis) and 2b=22 mm (short axis). .
The eccentricity of this ellipse was 0.765. The attenuation in the 4.4-5.5 GHz
frequency band was measured for an elliptical waveguide (2a=49 mm and 2b=35 mm).

Figure 2 shows the relationship which was found. Also shown is a comparison

between the experimental findings and the results of measuring and calculating
the attenuation in a brand R48 rectangular waveguide (made of copper with

inside dimensions of 47.6x22.2 mm). It is apparent from the figure that the
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attenuation of the elliptical waveguide is 0.05-0.3 dB/m in the 4.4~5.4 GHz band,
and is comparable with the attenuation of a standard rectangular waveguide in
the same frequency band. The arithmetic mean of the coefficient of reflectiom
in an elliptical waveguide 50 meters long did not exceed 0.075 in the

4.4-5 GHz band, while the maximum value was 0.19.
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Fig. 2.

Key: 1 -~ elliptical waveguide at 5 GHz (experiment); 2 -- R48 (experiment);
3 -~ R48 (calculated).

Figure 3 shows the attenuation in an elliptical waveguide with dimensions
of 2a=34.3 mm and 2b=22 mm as a function of frequency, found experimentally, in
comparison with an R70 rectangular waveguide (made of copper, with inside
dimensions of 34.8x15.8 mm). It is apparent from the figure that the
attenuation of the elliptical waveguide between 6.5 and 8 GHz exceeds that in
a standard rectangular waveguide by approximately 20%, amounting to 0.06-0.09 dB/m.
The mean value of the coefficient of reflection for that waveguide, as

determined for a segment 40 meters long, was 0.04; the maximum value was 0.07.

The flexibility of the elliptical waveguides was checked [4) by rewinding
the waveguide in "S" fashion from one drum (0.1 m in diameter) to another
while monitoring the waveguide performance with respect to coefficient of

reflection after a particular number of rewindings. A slight increase in
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Key: 1 -- corrugated elliptical waveguide at 7.0 GHz (experiment);
2 -- R70 (experiment); 3 -- R70 (calculated).

coefficient of reflection was noted after 300 rewindings for a large-diameter
waveguide (2a=49 mm, 2b=35 mm), and 200 rewindings for a smaller waveguide
(2a=34.3 mm, 2b=22 mm), and some fine cracks (marks) were detected on the

surface of the outside casing.

The initial experiments on constructing elliptical waveguides were thus
promising.

A series of brand EN (where N is the center frequency of the band in

hundreds of megahertz) of corrugated copper waveguides has been developed in
Germany [3].

Table 2 presents the basic technical characteristics of this series of

corrugated copper elliptical waveguidesl .

1 According to data from the Telefunken Company.
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E 100 ‘ 8300-~10000) 35 1 M40 0.7 30 Ry
E 120 10000-1200 29 | 20 D 045 dw

Key: (1) elliptical waveguide brand; (2) operating frequency
range, MHz; (3) outside dimensions of ellipse measured across
protective casing; (4) attenuation, dB/m, in center of working
band; (5) minimum radius of curvature for a single bend in
electrical plane, mm; (6) weight, kg/m.

The elliptical waveguides indicated in the table are made from a copper strip
with composition close to that of domestic brand M1 copper with thickness of the
order of 0.5 mm. An anticorrosive bitumen-based composition coats the outside
surface of the corrugated elliptical tube. The protective casing 1s made of

pigmented polyethylene with a radial thickness of 2~2.5 mm.

Elliptical waveguides of all dimensions are transported in long lengths
wound on a drum 1200 mm in diameter and are delivered with end adapters which
are square in shape, making it possible to hook up to any equipment. The
elliptical waveguides are manufactured with high precision, and make possible
a mean coefficient of reflection in the working frequency band of less than

0.05.

Since elliptical waveguides can be used successfully in mobile technical
devices where great mobility is required, their mechanical characteristics

are of great importance (maximum acceptable stretching force, number of
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acceptable bends, resistance to radial pressure, acceptable excess pressure
within waveguide cavity, etc.). Because of the contradictory requirements
imposed on the electrical and mechanical characteristics of the waveguide,

and because of their variety, compromises must be made in the selection of
their basic geometric dimensions. For example, flexibility and resistance to
radial pressure will be the better, the deeper the corrugation and more closely
it is spaced. However, from the viewpoint of resistance to axial stretching
forces, a wide, shallow corrugation is desirable. The choice of waveguide
cross section is analogous: while an elliptical cross section is required from

the electrical viewpoint, a round shape is preferable mechanically.

Some investigations have been made of the mechanical characteristics of
brand E48 flexible corrugated elliptical waveguides [4] (internal ellipse
axes 2a1=47.1 mm, 2b;=31.5 mm; external ellipse axes 2a3=53.4 mm, 2by=38.1 mm),
as well as brand E75 (internal ellipse axes 2a3=33.1 mm, 2b;=19.5 wm, external
ellipse axes 2a7=37.4 mm, 2by=24.1 mm). We know that when the waveguide is
removed from the drum and hoisted onto the antenna tower, or when the waveguide
is suspended freely, axial stretching forces arise which cause stretching of
the waveguide along the longitudinal axis and compression of the short axis of

the ellipse.

The investigations of both types of waveguides indicated, depending upon the
axial stretching force, that they operate within the elastic deformation limits
up to a defined load magnitude. This load is 70 kg for the E48, and 100 kg for
the E75. When the load is increased beyond these values the process becomes
irreversible, and residual stretching occurs. For example, if a flexible E75
waveguide is subjected to an axial stretching force of 215 kg, the stretching

under load amount to 0.435%, with residual stretching of 0.1%.

The experiments indicated that the maximum tolerable stretching load is
about 143 kg for the E48 waveguides, and 124 kg for the E75, with residual
stretching not exceeding 0.02%. The acceptability of this load from the

viewpoint of electrical characteristics depends upon the acceptable deformation
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of the axes of the ellipse. For example, when an axial load of 138 kg is
applied to a flexible E75 waveguide, the short axis shrinks by 0.056 mm,

with residual reduction of that axis of 0.023 mm after the load is removed.

The research showed that a reduction of the length of the short axis of the
ellipse of 0.044 is tolerable from the viewpoint of electrical characteristics.
Based on this, it was established that the flexible E48 waveguide can withstand
a stretching force of up to 100 kg, and an E75 -~ up to 110 kg. With the

1.3 kg/m running weight of the E48 waveguide and 0.78 kg/m of the E75 this
means that a suspended E48 waveguide can span 77 meters, and an E75 -- 141 meter.
Under these circumstances, there is no danger of residual deformation of the
short axis exceeding 0.04 mm. Experiments conducted to determine the
destruction loads indicated that the E48 waveguide breaks under a stretching
force of 1870 kg, and the residual stretching amounts to 29%. These values are

smaller for the E75 waveguide, equalling 1190 kg and 187%.

In order to find the acceptable loading along the axis of the ellipse when
it is fastened in place using clamps, experiments were conducted to compress
the waveguides between two parallel steel plates which created a linearly
distributed load acting along the short axis of the ellipse. If we use an
acceptable deformation of the short axis of the ellipse of 0.04 mm, the
tolerable load for the E48 waveguide is 34 kg, and 26 5 kg for the E75.
Comparative testing of standard R48 rectangular waveguides under analogous
conditions (with the load applied along the center line) indicated that the
rectangular waveguide has lower resistance to compression under a linear load
of 12.5 kg. The latter confirms the strength of the shape of the corrugated

eﬁliptical waveguide.

The acceptable load along the long axis for the E48 waveguide is 36.5 kg,
and 31 kg for the E75, with acceptable short-axis deformation of 0.04 mm.

The above experiments to determine the acceptable loads as a function of

the direction of application (short or long axis) were conducted on waveguide




specimens 100 mm long.

Since under actual operating conditions elliptical waveguides are held at
a slight positive internal gas pressure (nitrogen or "dry" air), in order to
avoid condensation of moisture on the inside surface of the waveguide
experiments were conducted to determine the deformation of the waveguides
for various amounts of positive pressure. It was found that in both types of
waveguides only a change in the short axis as a function of the amount of
internal pressure is noticeable. If we use 0.04 mm as the acceptable deformation
of the short axis, the waveguide can withstand 2.75 atm over a long period, or
6 atm briefly. These values are 1.55 atm and 5 atm, respectively, for the E75
waveguide. The experiments also showed that the waveguide can withstand
excess pressure of 10 atm for many hours without destruction, but the {

residual deformation of the short axis exceeds the acceptable value.

Elliptical waveguides are subject to bending under production and operating
conditions. The waveguide undergoes bending forces when wound on the drum.
When it is bent around the drum, thevwaveguide is compressed on the inside at
the point of the bend and stretched on the outside. The amount of these
deformations depends upon the cross section of the waveguide and the radius of

the bend.

Experiments have shown (4] that when a waveguide is wound around a drum

1200 mm in diameter (maximum radius of curvature 600 mm), the deformation

along the long axis of the ellipse for the E48 waveguide was 2.7%, and 1.75% for
the E75. However, these numbers contradict the requirements that the necessary
rigidity be maintained in the axial directions. It is necessary to make an
optimal decision from the viewpoint of waveguide rigidity as well as its

flexibility, which is facilitated by the appropriate choice of the corrugation

depth and spacing. For example, with a deep corrugation in which the ratio of

the equivalent outside diameter of the corrugated tube to the equivalent inside

diameter of the tube was %:an-'=1.25 [Translator's note: Russian nﬁap
H
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denotes outside diameter; Russian HBH denotes inside diameter], the waveguide
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was highly bend-resistant, but not sufficiently resistant to stretching forces.

OF e

With shallow corrugation, when %:ap =1.05, the waveguide could not withstand
H

bending. A ratio of ;Egn‘ =1.12 was recognized optimal [5]. The flexibility of

—— e

the waveguides was checked by rewinding the waveguide from one drum onto another

e

drum of a particular diameter {3]. The supply drum was braked in doing this in

order to create the necessary stretching force. The rewinding was done so that

the waveguide was bent at one end in a "C" shape, and in an "S'" shape on the

FORPRRNCIORA. SR W
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other side. The number of rewinding cycles before damage occurs is four times

e,
e

Toe

greater for a '"C"-shaped bend than for an "S"-~shaped bend.

Ak

- The corrugation parameters selected provided the required rigidity and
flexibility for 600 "C" rewindings, or 150 "S" rewindings, without damage to

the material.

X-ray pictures of the structure of the E75 waveguide material for a selected
corrugation shape which had undergone 320 "S"-rewindings showed the presence of
narrow, shapeless cracks in the valleys of the corrugation. Investigation of
the waveguide after 150 "S" rewindings showed no cracks. The presence of
deformations in the cross section of the waveguides was monitored by measuring
the coefficient of reflection before and after the rewinding. The measurements
indicated that the waveguides were suitable for use after the tests described
above were made. Measurements of the coefficient of reflection of the
‘_ elliptical waveguides developed by the Telefunken Company (E40-E120) indicated
- that the maximum coefficient of reflection is 0.05 for a line approximately

40 meters long, and that the mean coefficient of reflection does not. exceed
0.03 [3]. The measurements indicated that the coefficient of reflection

. ’ increases as the depth and spacing of the corrugation increases.

It follows from the published data that the spacing of the corrugation for

the entire series of elliptical waveguides varies between 6 and 12 mm.
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The Andre Corporation (U.S.) produces flexible elliptical waveguides for
the 3700-13,200 MHz band with a mean standing wave ratio of 1.05-1.06, with

occasional overshoot reaching 1.15-1.20 [6].
Based on research done on the electrical and mechanical characteristics
of their series of elliptical corrugated waveguides, the Telefunken Company

guarantees the following-

1. Attenuation values close to those of rectangular waveguides in the

corresponding frequency ranges.
2. Average reflectivity measured in an elliptical waveguide 40 meters long
along with its adapters of 0.03-0.05 (depending upon waveguide brand), with

occasional overshoot of up to 0.07-0.1.

3. Operation on mobile radio devices using a drum at least 1200 mm in

diameter with no more than 300 rewinding operationms.

4, Stationary operation in radio devices with a minimum radius of

curvature (for one bend) in the electrical plane of 300-400 mm.
5. Maximum acceptable amount of stretching force of 100 kg.

6. Maximum acceptable linear distributed load acting along the axes of the

ellipse of 10 kg/cm.

7. Acceptable internal operating pressure of 1500 g/cm?. *

The data on elliptical waveguides provided in messages and catalogs do not
make it possible to establish precise geometric relationships for the dimensions
of their cavity (for the long and short axes of the ellipse), which would make it

possible to determine the acceptable operating frequency bands most precisely for
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individual brands of wavecuides. However, based on the dimensions of the E48

and E75 waveguides, as well as the average axis lengths for E84 and E100

ek

waveguides plus the outside dimensions of all types of waveguides, the internal
dimensions for all types of E-series waveguides can be determined accurately

enough for a preliminary estimate. Based on general theoretical premises, these

P

dimensions can be used to obtain the acceptable working bands of individual
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brands of waveguides and the losses occurring therein as compared with standard

rectangular waveguides.

Based on these conditions, the following internal cavity dimensions and

basic geometric characteristics of the ellipse cross section should be used for

B the E-series waveguides. These dimensions are presented in Table 3.

. As can be seen from the table, eccentricity of the order of 0.75-0.85 is

characteristic for E-series waveguides (developed by the Telefunken Company).

In order to estimate the maximum operating frequencies and the range
covered, we note, as is accepted in international practice, the lowest
operating frequency for an elliptical waveguide must be approximately 1.2 of
the critical frequency (frequency at which even oscillations of type cHil
occur), and the upper frequency must be correspondingly 0.95 of the maximum

frequency) frequency at which even oscillations of type . Eq or odd gHyj

; occur).

’V ‘ » I3 »

F- The elliptical waveguide in this case is a single-wave transmission line
E'i operating at a wavelength of _Hy;. The general solutions for the transverse-

electrical and transverse-magnetic field components are expressed through
Mathieu's function [1,7]. In order to determine the phase coefficient

a ’ (critical wavelength), it is assumed that the tangential components of the
= electrical field become zero at the wall of the waveguide. This requirement

j leads to the condition that the corresponding Mathieu functions become zero.
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Table 3
Internal cavity
waveguide long axis 2a, short axis 2b, coefficient of eccentricity
brand mm mm compression
E40 62.5 34.2 0.547 0.837
E48 47.1 315 0 668 0.745
E62 41.6 23.9 0.575 0.821
E68 39.1 21.3 0.545 0.84
E75 33.1 19.5 0.589 0.809
E84 28.8 17.8 0.618 0.787
E100 26.6 15.6 0.586 0.81
E120 23.6 12.6 0.534 0.847
For a wave cHi1
Ry ( Py 4a) =0, (1)
and for a wave .Eg;
R (ePoi 4,)=0. (2)

In expressions (1) and (2)
Re1(cP{1; ug) is the derivative of a modified first-order Mathieu
function;
Reo(cPQ1; Ua) is a modified zero-order Mathieu function;
P, cPiys cPO1
and c¢h ua’: are the first parametric roots of the Mathieu functions

determined from conditions (1) and (2).
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The critical wavelength is determined by the formula

nae
V oun (3)

(7). ==

where e is the eccentricity of the internal cavity of the elliptical
waveguide, a is one-half the long axis of the internal cavity of the
waveguide, ppn is the parametric root of the Mathieu function determined

from equations (1) and (2), (Ag)pn is the critical length of the Epy or

Hyy waves.

Figure 4 shows the characteristics of the ratio of the critical and
limiting wavelengths to the length of the long axis of an elliptical waveguide
as a function of eccentricity [7]. Based on these data and the data in Table 3,
Table 4 shows the results of calculating the critical, limiting, upper and

lower working frequency for series-E waveguides.

Table 4

Brand of £ operating band, MHz

elliptical Ay, mm A , mm  fi, MHz TTPET _ _

waveguide nmpen MHz fH —l.ZfKp fB =0.95¢f
E40 104.5 56.4 2872 5410 3446 5141
E48 79.3 47 .4 3783 6328 4540 6012
E62 70.0 38.0 4289 7901 5147 7705
E68 65.6 3.5 4574 8686 5489 8251
E75 55.5 30.9 5402 9706 6482 9220
E84 48.2 27.8 6219 10810 7469 10270
E100 44.7 24.8 6714 12106 8057 11501
E120 36.6 20.6 8194 14598 9833 13808

[Translator's Note: The subscriptsmpen ,u, xkp and B above indicate

limiting, lower, critical and upper, respectively.]
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2 Key: 1 == to determine critical wavelength in elliptical waveguide,
2 -- to determine limiting wavelength.

Figure 5 shows a diagram of the coverage of the 3000-15,000 MHz frequency
range series-E waveguides and the corresponding series—-R rectangular waveguides.
The critical wavelength in the rectangular waveguides is taken to be 2 B
(@ -- size of wide wall), while the limiting wavelength is taken as 2 (if the
. ratio of the wide wall to the narrow wall is equal to or greater than 2). The

lowest frequency in the operating band fH =1.25 £ while the top frequency

K 2
fB =0.95 . It is apparent from the figure that frequency coverage of

elliptical waveguides is satisfactory, comprising more than 500 MHz for series E.

o The frequency range coverage of rectangular waveguides within the working
band (ratio of top frequency to bottom frequency in working band) is 1.52. For
elliptical waveguides with eccentricity of 0.7 and 0.8 this value is slightly

. less, equalling 1.25 and 1.40, respectively. It should be noted that in a round
‘ cylindrical waveguide the ratio of the top and bottom frequencies of the working
band is still smaller, amounting to only 1.155, i.e., the round waveguide has
narrower bandwidth. (For cylindrical waveguides values of fH =1.1 fy, f. =

r
20.975 f are used.)
npen
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Figure 6 shows the amounts of losses for series-E and -R waveguides
according to data from the Telefunken Company. Determination of the
parameters of the internal cavity and their relationship for elliptical and
rectangular waveguides, as well as the relationship between the losses in these

waveguides, allow the following conclusions:

1. With a rectangular and elliptical waveguide perimeter ratio of
approximately 1.12 (perimeter ratios for R,g/E;q; Rgs/Egy; R48/E4g), loss ratios
of approximately 1, 0.95 and 0.88, respectively, are observed. The respective
eccentricity is 0.84, 0.79 and 0.75. Thus, if the perimeter of a rectangular
waveguide is approximately 107 larger than that of an elliptical waveguide, their
losses are approximately the same (ellipse eccentricity E=0.84). The losses in
an elliptical waveguide for the case in question will be 5-10% greater when the

eccentricity is reduced to 0.79-0.75.

2. If the ratio of the perimeters of elliptical and rectangular waveguides
is approximately 1 (for Rygg/E1gg), with an ellipse eccentricity of 0.8l the
losses in a brand E100 waveguide are approximately 30% lower than in a

corresponding rectangular waveguide.
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= The materials presented above concerning the amount of attenuation,
frequency range covered, and physical-mechanical characteristics of
F elliptical waveguides confirm the promise of their utilization in the
L centimeter band for both stationary and mobile radio installationms.
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BEAM ROCKING IN MIKAELYAN LENS

Ye.G. Zelkin, V.A. Andreyev

This article considers the question of beam rocking in
a nonuniform Mikaelyan lens, and analyzes the phase of the
field and maximum amount of distortion of the phase front
within the aperture of that lens.

INTRODUCTION

This article examines the question of the possibility of using a nonuniform

Mikaelyan lens in antenna devices which require beam rocking.

In principle, a Mikaelyan lens is a focusing non-aplanatic system. However,
we know that any optical system permits practically undistorted beam rocking
within some limited angular sector with the radiation source moving along the

focal surface. Such systems include, for example, parabolic reflector antennas.

The field phase and maximum phase front distortion in the aperture of a
Mikaelyan lens are calculated below, as is the angle of deviation of the beam

from the axis when the radiation source moves out-of-focus along the y coordinate
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(Fig. 1), in order to determine the sector of practically undistorted beam

rocking

Fig. 1.

A plane problem is considered, i.e., it i1s assumed that the index of
refraction of the lens is a function only of the y coordinate and is

independent of the x and z coordinates:

n=f(y).
The radiation source in such a lens must be a linear feeder.
Calculation of Field Phase Within Lens Aperture

As we know [1l], the curve of the beam propagation in a Mikaelyan lens is

described by the following equation:

Ix, inh 1L
cos o= cot Ox sinh T (1)

where Oy is the angle between the x axis and the tangent to the beam at the
point of intersection of the beam and the ordinate, b is the thickness of the

lens.
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The index of refraction in a Mikaelyan lens changes according to the
principle
ny
i) =

coshL& (2)
28

where ng is the index of refraction at the axis of the lens.

Since the index of refraction is independent of the x coordinate, we

shall use the following equation instead of expression (1):
sint{X-%)= cot @, sinh IY. (3)
2b 2b

We are easily convinced that this equation covers all cases of beam pro-
pagation in a medium with these parameters. Furthermore, the distances
from the point at which the beam trajectory intersects the x axis to the
coordinate origin are determined by the quantity X, and the angle between

the tangent to the beam trajectory and the x axis is Q.

We shall position the lens with respect to the coordinate system as is
shown in Fig. 1, i.e., so that the lens aperture coincides with the x=b plane,

and the feeder is located at the point M(O;R).

For further analysis, we shall consider the bundle of beams exiting the

feeder to be a bundle of curves passing through point M (Fig. 1).

The optical length of the path along the beam from the point (0;R), where
the feeder is located, to the point (b;y;) in the aperture of the lens can be

found from the following expression

G
-

A . ‘
s~ y, TESZ 2T
L

for the case in which the curve is written in parametric form. Here t)(0;R)
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and ty(b;ys) are the points on the trajectory of the beam in question, n(y) is ”
;“,-" the index of refraction, which varies according to (2). We shall introduce the o
- designation a= cot Oy to equation (3)

A ;
E' 1 cinn AR X} u sinh H (5) '
| ) 2b

1
R { ‘
; and write this expression in parametric form: , 4
Il sin 222 L asinh 2, (6)

e A 2 25
: ) 2 inh &

i Heénce (X—x)=-2arcsin, y-:-—2arcsinh — :
ko ( ) b ey h a n 1
‘." z :# d(,\' — ) - ﬁ { : il— . _._'_)_ ___‘_f-"A — . %
. dt Ty T = at q ) .

A l bt (8) =
E *
= Substituting the value for y from (7) in (2), we obtain

niy) = 2 (9)

L L 1
- ( A |
Substituting the values of n(y), dy/dt and d(X-x)/dt in expression (4),
¢ T 7 : .
‘ I D S— A B S

S .;\ l'_[v(L)z ; \:tll—-l‘) (a:‘l ‘——,:_ P (10)

| ' -1 v

& After some simple transformations
2 K ¢
b - ' d
=fy—ala-l| ———— 11)

. S=m ol Ve = ¢
b . 1

!

i ‘,1-
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It is easy to compute the latter integral.

obtain [2] ‘ 1. 2
" ar - ' cosada e da
(W~ y|=¢ j (aq? —~ Sin’:) 0§ 2 ‘_J ad+ sind a2 N

] T 2, ’

'l/u‘ T @y
tanl__z’;_,g ,)
ay a ~1 @,
< Yt \ ——
S =n, -—_;[arctml i’__a_&_L tg 12) -—arcmﬂ( u;;lﬁnzl )

Since ¢ sinz= sin 258 .
24

0 2 Q.‘((X — Xx) 9=

2b
and (12) can be written as
A — [t‘m—“(x _b)__:m"‘xl
5 ‘
S~n, iarctzn : 26 25

But

7(x~b) X
tan ——-—=2b cot T

whence, in turn, it follows that

tan WX = O 8 X
26

20 L
tan 23X =8 rmaX - — 1
2% o sin ﬁ cosfi( .
2% 26

Substituting (14) and (15) in (13), we obtain

aVa+i
- —— o7 g s e
R) n,,‘arc s.'n-’g(—co;"x .
2 20
43

Substituting t= sin q, we

.

(12)

(13)

(14)

(135)
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Expression (16) yields the value of the electrical length of the curve with

parameters a and X on the segment between the planes x=0 and x=b.

We now eliminate the parameter X from (16). Since

.oakX . R
sin = =a sinh T8
2% 2b’ (17)
- b - }oas
S - n,, —:!- J‘Cfa:l ey —_————— R (18)
sinh = ! - uiginh2 L2

= ‘ 2b

Here a=cot@y is the parameter which defines the beam in question within the

bundle of beams passing through the point M; (0;R) is the locus of the feeder.

Varying Oy, and correspondingly parameter a, within some selected range of
values, we can obtain the electrical length of the path along any beam between

the planes x=0 and x=b.

However, for practical purposes it is of interest to calculate the
electrical length of the path along the beam in the sector bounded by the
aforementioned planes as a function of the parameter y; -- the distance from
the axis of the lens to the point at which the beam in question intersects the

lens aperture. Let us make the following transformations as well.

By analogy with (17), we have the following for the point with the
coordinates (b;yj;)

—b T
in "'——(Xn ® _ g sinh 1r2

s 2
26 2b (19)

where a is naturally the same parameter as in (17) for the same value of X.
From (17)
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N2 e smfasn'h—‘-—)
20

T

(20)
Substituting (20) in (19),
sin -f—{—b— arc sin usnh—-, ~b}=a sirh 1.2
20 A )
whence it follows that
<a? sinht TR 2 2" Y2
1-a* sinh T sinh® —= TS
then
. !
]/sxnh-—grsuix=—;f (21)
Substituting (21) in (18), we obtain the following convenient expression
for determining the optical lemngth of the path along the beam from the
point (QO;R) -~ the point at which the feeder is located -=- to the point
(b;yz) -- the point on the aperture of the lens -- as a function of the
parameter yp:
b T =t ar
S_-no——arct:anl -I——Lu;——u—-
where
i'=‘sirhﬂ; =sivh =2 (22)
26 24
"It should be noted that we are not mainly interested in the length of the
optical path, but rather its deviation from average value, e.g., the value
of the optical path along the beam which intersects the lens aperture at the
point (b;0). Substituting y;=0 in (22), we are easily convinced that the
length of the optical path along the beam in question
Sg=ngb. (23)

Incidentally, we note that the tangent to that beam at the point (O;R)

will be parallel to the x axis.




We shall designate AS the deviation of the optical length of the path of

the beam from the value Sg; it is the case that

AS=8~5¢ .
Substituting the values from (22) and (23} in (24), we obtain

Qb -— e yd X
AS=n,,T’\arctall iz - ——7).

& -

whence it follows that

FEYYH]

2b
AS=%:wmm4 T

Fig. 2.

It is easy to show that the deviation of the wave front from being in phase will
be antisymmetrical with respect to the center of the aperture.
from Fig. 2 that all beams originating at point A intersect at point B, which is
located antisymmetrically to point A, with respect to the lens aperture.
Consequently, the optical lengths of all of the paths along the beams from

46
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point A to point B have the same value, namely 2ngb. It follows from this that

the sum of the optical paths from point a to the aperture of the lens along the
two beams which intersect the aperture at points equidistant from the X axis,

e.g., D and C, is also 2nmpb. It is the case that
Sap+Spp=2npb

and SpB=Sac;

consequently, Sap*Sac=2ngpb.

The latter expression shows that the curve of the deviation of the optical

paths as a function of yjy will be antisymmetrical with respect to the x axis.

In some practical cases, it may be inconvenient to have the value ng in
expression (28), since it may be that the phase distortions in the lens aperture
are being calculated for the purpose of selecting ng based on conditions of

minimum distortions.

We know from [l] that

np=n, cosh f{%L_ (26)

where n, is the index of refraction at the point y=R; , 2R is the size of

71
the lens aperture [Translator's Note: The subscript ;1 denotes “"lens"].

1f we set x=b and y-RJI in expression (3), then

tan l-;mxssith—_%’- . (27)

where Opax is the aperture angle of the radiator if the letter is located at
the focus of the lens.
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It follows from (27) that

Fa2 2 arcsinh(tanBpzx) -
v (28)

We substitute (28) in (26), and assuming n,=1, we obtain

1

ng=cosh arcsinh(tantyyg, )= _~%”_~ (29)

max

We substitute the value obtained for ng in (25). Then we finally obtain

o (30)
where

Formula (30) was used to calculate the value of AS for various values of R -~
the distance between the feeder and the focus of the lens. The results of the
calculation are shown in Fig. 3 as a series of curves. It is apparent from
the figure that when the value oé R increases, the slope of the phase front

increases and its distortion grows as well.
PHASE DISTORTIONS IN LENS APERTURE

Let us estimate the phase nonlinearity in the lens aperture. 1In order to
do this, we expand (30) into a series with respect to y. Limiting ourselves to

the first three terms of the expansion, we obtain

S=; ) 3 y— i:Z—-:,‘f') at g (254 — 2% 2 et . : ' (31)
cos Bmax V' T +»? H(l—mp ‘ lozim )

Using the least-squares method, we find the slope of a plane front equivalent
to the front in question. In order to do this, we define the coefficient q

which characterizes the slope of the equivalent plane front using the expression

& a Bidbiah a2

e
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R,

y[gﬁAS—wyﬂdy;Q
R, ? 4 (32)

where R; is half the utilized lens aperture, which is less than or equal to

2
Sy T

“
N ) SN

Rn -- half the calculated lens diameter.
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Fig. 3.

We note that in speaking of using part of the aperture of a lens with radius
R., we are of course assuming that a lens with giameter 2R, is the actual
implemented part of the calculated lens with diameter 2Rn , where the dimension
- Rn is the distance from the axis of the lens to the point at which n=1, and
R, is selected on the basis of the tolerable distortion for the case in question.

Accordingly, the aperture angle of the feeder of a lens with 2R; will be

smaller than the angle Op,y and must be calculated separately for each value R..
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Substituting (31) in (32) and performing the appropriate calculations, we

obtain
" . T2 —any RIN
astan W = b | ] — BT (33)
cnsH | O SR (1 = a%) bt/

max

where { is the angle of inclination of the equivalent plane fromt.

Substituting the value of & in (33) in accordance with (22), in solving
(33) for ¢, we obtain the following final formula for determining the angle

of deviation of the directivity pattern of the lens antenna

. . I
sinh %#3 ’ n:!Zﬁnﬂ%;f~;pf \
¥ -arctan = 1 — -"p )
/ R ¥ . Z.‘!-_‘»‘ -
R ﬂm l// 1+sink? 5\ 0 f\l‘ﬁsn'h i ’ (34)
where R -~ distance between feeder and focus of lens;

Omax —- aperture angle of total-~lens feeder;
b -- lens thickness;
R. ~- radius of utilized portion of lens.
The difference between the optical paths between the actual phase fiont and its

equivalent plane front at the distance of R. from the x axis is

'—\Sxp’:-'-\'sk‘c-mwpo (35)

Substituting the values of AS and tan { in (35) and limiting ourselves to

terms below ys , we obtain the following expression for the quantity Asxp :

P 600% o8 B yane ¥ (1 < 123 R:. (36)

Formula (36) can also be written in the following form:
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\Sepp R, R Tt

’ ’

This notation is more convenient, since the quantity R./b is a determining
parameter of the lens, while the quantity ASKp/A is a determining parameter
for the distortions in the aperture in fractions of a wavelength. Substituting
the value of & in (37), we obtain the following final expression for determining

t y
. 2 -I ff}:\ !zls]'d? ' :

601cos Hmax ]/E—*’sn‘hz ‘:—:f .l (38)

Formula (34) and (38) are basic for calculating phase distortions in the
lens aperture during beam rocking. Formula (34) can be used to determine
the angle of deviation of the directivity pattern, while formula (38) can be

used to find the phase front distortions at the edge of the lens aperture.

It should be considered that these formulas produce correct results only
for R.<0.6, since only for these values are the quantities R, valid in the

expansion we have done.

Formulas (34) and (38) were used to calculate the values of ASyp /) and ¢
as functions of the distance from the feeder to the axis of the lens for two
values of Ry. The calculation was done for a lens with the following calculated

parameterslz

ng=2 -~ index of refraction on lens axis;

n,~*l -- index of refraction at edge of lens;

1The values of b, R, and R, are given in relative units.
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b=1.2 -- lens thickness;
2%n=2 -- lens diameter;
O max —— aperture angle of feeder for lens with diameter of 2;
Re3=0.5 -- utilized portion of aperture;

Rc9=2.6 -- utilized portion of aperture.

The results of the calculation are shown in Figs. 4, 5 and 6 as a group of

curves.

Figure 4 shows the angle of deviation of the beam as a function of the

distance of the radiator from focus.

SN

2h a2 a3 ]

Fig. 4.

Figures 5 and 6 show the amounts of phase distortions in the lens aperture
with various angles of deviation and various relative aperture dimensions in

beam wavelength. In Fig. 5 R;1=0.5; in Fig. 6 R¢p=0.6. The curves are con-

structed only for SKP < A\ 4. As can be seen from Figs. 5 and 6, the Mikaelyan

lens allows the beam to be rocked over a fairly wide sector with practically

acceptable phase front distortions.
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;\; SYNTHESTS OF RADIATOR CROSS-COUPLING COMPENSATION CIRCUIT IN PHASED ANTENNA §
S ARRAY

- 0.G. Vendik, L.V. Ryzhkova

The general method is proposed for synthesizing
a cross-coupling compensation circuit in a phased array.
. I1f each isolated radiator is matched, in order to
determine the parameters of the compensation circuit it
: is sufficient to know only the normalized mutual impedances
of the radiators. A cross-coupling compensation circuit
for two antennas is calculated as an example.

INTRODUCTION

,;l As we know, a significant cross-coupling effect between individual
P!

i radiators is observed in phased antenna arrays consisting of a large number of

omnidirectional radiators placed close together.

The antenna characteristics are influenced by cross-coupling in three basic

directions:

1. The matching between each individual radiator and the feeder line is

disrupted during operation in the system, which reduces the antenna gain.
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2. Energy leakage into adjacent channels can change the amplitude-phase
distribution assigned by the control system significantly, and consequently

reduce the beam-setting accuracy and increase the side lobe level.

3. Scattering by each aperture of the energy reaching it from the other
apertures due to cross-coupling, sometimes called re-radiation, also changes

the directivity pattern of the antenna.

We can state with certainty that reducing the harmful influence of cross-
coupling between radiators on the antenna parameters is now one of the most

urgent problems for the developers of phased arrays.

One method which is extremely interesting in this connection is that pro-
posed in 1963 by Hannan [1] for matching the impedances of phased arrays in
a wide scanning angle based on creating artificial coupling between the radiators
which compensate for reflections occurring due to cross-coupling in the system.
That article cites experimental data which provide evidence that the use of

the proposed matching method reduces energy losses in the system significantly.

However, introducing artificial coupling between the feeder lines which
compensates for the coupling which exists between the radiating apertures in
an array makes it possible to reduce mismatch between the radiators and their
own feeders as well as to achieve the individual channel decoupling which is

necessary to independent control of each radiator.

A general method for synthesizing a compensating circuit is proposed;
special attention will be devoted to compensating for waves which leak into

adjacent channels, i.e., those which disturb the amplitude-phase distribution

assigned by the control system.
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SETTING UP COMPENSATION EQUATION

We shall consider an antenna system consisting of N radiating elements.
Such an antenna can be represented as a multi-port network [2] with N pairs
of input terminals and an infinite number of output terminals (corresponding
to representing the antenna field as a spherical wave sum). However, if we
ignore the directivity pattern formed by the antenna and consider only what
happens at the input of such a system, it is more convenient to represent the
system as a system of N connected waveguides working into unmatched loads.
When this is done, we can ignore all of the output terminals and consider
the antenna as a multi-port network having a total of N pairs of terminals.
Leakage of energy from one channel to another, as well as reflection of the
energy at the system inputs, are fully defined by the impedance matrix of

the aperture system

where zjj is the inherent radiation impedance of the element, z;, is the cross-

impedance of two radiators.
If the elements in the impedance matrix are measured or calculated [3],

the following formula can be used to define the scattering matrix of the multi-

port network:
Sa=(Zp-1)(Z4+1)"1, (1)

where 1 is an Nth-order identity matrix. The matrix S,, as usual, inter-

connects the column vectors of the incident and reflected waves

(b2 =S:(a4) - (2)
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It can be shown that if a system is mutual and the radiators in the system

are alike, the scattering matrix of the array system appears as:

Now let the cross-coupling compensation circuit be a multi-port waveguide
network connected between the controlled system and the system of radiating
apertures. Obviously, this multi-port must have N pairs of input and N pairs of

output terminals (Fig. 1).

b.r' ——— ' be]
W r= @) =k (3)
g 2 £ 204
Ynvadne- Y Crema Lucmemay
owan AOMNEH-| unyva-
cucmemg Syuu mened
Sy Sa
e ¥ N
A ——— - 7 2N
Sy~ b .
L )
_________________ —
Fig. 1

Key: (1) control system; (2) compensation circuit; (3) rad-
iator system.

The systems of incident and reflected waves at the terminals of the

compensation circuit are connected by the scattering matrix Sy:

b, a,
E RN (3)
b,y Loy,
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It is easy to see that the waves reaching the output terminals of the

compensation circuit are reflected from the aperture system, and conversely,

i.e.,
b.\;[ a.V;l\
a, - vez | by - qy—e (4)
b,y Loy
If we substitute equation (4) in (2), we obtain the following connection
between the incident and reflected waves at the output terminals of the
compensation circuit:
. 5
=1 oo
d. oy, o
‘ N D (5)

Let us now consider a new multi-port representing a cascaded connection of
a compensation circuit and system of apertures. Its terminals coincide with
the first N pairs of terminals of the compensation circuit, and the scattering

matrix connects the incident and reflected waves at the input terminals of the

compensation circuit.

b, - a,

br | i 2 \

: ' (6)
b, a

Simultaneous solution of systems of equations (3) and (5) makes it
possible to define the scattering matrix S of the multi-port network. In

order to operate with matrices of the same order, we must do some transformations.

We divide the matrix Sy into four blocks:




In addition, we introduce the following notation:

a‘ 1 o e !
a -a,; b, b ( H..,_,. ) ; o. }
.a, N b a,y P

Then equation (3) appears as

b -5 e S, 12
tl)”- S‘,[ al S”, d,,
Instead of (5) and (6), we can write:
a, Siby,:
b,=Sa, .

Solving equations (7), (8) and (9) simultaneously, we obtain

b=8,a,~S ,( =88, )7 SS9

It follows from (10) and (11) that

$-§, -5, n{1=S.S, LSS, ;-

(7

(8)

(9)

(10)

(11)

(12)
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It is easy to show that all of the elements of the matrix S48y 17 are

significantly less than unity; therefore, the matrix (1-S5S77 11) is not always

singular and consequently has an inverse. One exception is the case, of no

practical interest, in which the system in question is severely mismatched.

We have thus obtained the sought connection between the incident and

reflected waves at the input terminals of the compensation circuit under the

condition that its output terminals are loaded to a system of coupled apertures.

As follows from the synthesis problem formulated above, the combined
scattering matrix obtained for a system with cross-coupling compensation must
be diagonal. This assertion allows us to setup the following compensation

equations:

where sji are elements of matrix §S.

If the primary task of the investigation is not to obtain substantial
channel decoupling, i.e., precise maintenance of the amplitude~phase
distributions on the antenna assigned by the control devices, but rather to
match each individual channel, it then follows, conversely, to zero the

diagonal elements of the matrix S:

$:,=0;, i=12_. . N.

When this is done, the mismatch between each radiator and its feeder
line occurring in the antenna array due to coupling between the radiators

can be fully eliminated.

The solution to system of equations (13) with respect to the elements

of matrix Sy defines the sought parameters of the compensation circuit with

i
1
-
|9
t
y

(13)

(14)
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respect to the known values of the scattering matrix of the system of

apertures Sp defined by equation (1) from the impedance matrix.
A

As will be shown below, under defined conditions the inherent radiation
impedance of the elements can be ignored; then it is sufficient to know omnly
the normalized mutual impedances of the radiators in order to determine the

parameters of the compensation circuit.

DETERMINATION OF PARAMETERS OF COMPENSATION CIRCUIT FOR CROSS-COUPLING OF
TWO RADIATORS

The problem of synthesizing a cross-coupling compensation circuit for
two antennas is of interest in order to illustrate the general methodology
presented above; it is also of independent practical value, e.g., in single-
pulse systems. This problem can be formulated as follows: let it be required
to determine the parameters of a waveguide circuit connecting the feeder line
of two antennas such that the existing coupling between the radiating apertures

is compensated.

Let there be a system of two antennas for which the elements of the

impedance matrix are calculated or measured:

ZA==z" 4zi.

2 222
where U,

Z‘K=:——I,
/n ] ‘-=0.
¢

e = 7¢ { =0
-K [

If the system is mutual (zj7=271) and the antennas are identical (z)}3=23;),

then

2y e

Z, = .
212 2y |

A
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We use formula (1) to define the scattering matrix

Z)
I

If the antennas were not

follows:

We shall assume that each radiator taken separately is matched.

obviously a null matrix. It follows directly from this that zj;=l.

We then obtain the following formula for the scattering matrix of the

system of apertures

where:

Let us now set up the compensation equations. Let the compensation

circuit represent a mutual four-port waveguide network which is symmetrical

with respect to two relatively perpendicular axes. Then, as we know
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Substituting the elements of matrices S, and Sy in formula (12), we
obtain the combined system scattering matrix S. The compensation condition

(diagonality of matrix S) has the following appearance in expanded form:

Spa [(1— 5,5, — SaS10) —($a51; = ,5,)%] = 813 (1 — 81511 —52812) -
© (SaS13 2= S15pa) = (SaSyy == $1512) (SaSpa = $i513)] — Spa (1 —Se8y3—81S1)
12511 — $yS13) — (SaSyy — §;5p2) (SaSy3 — $1510)] = 0, (16)

where s1, S2 —- are the elements of matrix S,
$11, S12, S13» 814 —— are the elements of matrix Sy.

We shall implement the compensa.lon circuait as a system of two waveguides

connected via a coupling port as is suwown ir Fig. 2.
Here 1,2,3,4 are the terminal numbers of the multi-port waveguide network.

The scattering matrix can be written as follows:

2q




where ' is the coefficient of reflection from the section containing the
coupling port, o is the gain of the coupling port. (The diameter of the

port is assumed to be fairly small, and the port itself is considered to be

a waveguide which passes only frequencies above those of the cbupled waveguides.)

i

heceotaaescomns o ERCRISIRRE |

Fig. 2.

As we know, the condition that there be no active losses in the circuit
requires that the scattering matrix be unitary. It is easy to show that a
matrix is unitary if q2=2T'(1-T). Substituting the elements of Sy in equation

(16), we obtain
il e”
The elements of the scattering matrix of the aperture system can either

be measured directly [4], or calculated using formulas (15). In the latter

case, the solution for the electrical length of the bridge appears as follows:

tan A —

where a=2r, r—izr= 24




o4

Since r?<l, there are always two real solutions for tan @ which coincide

when r=0; accordingly, there are two solutions for the coefficient of

reflection ['or the gaing.

T

We thus obtain two systems of parameters for the circuit which compensates
a wave passing from one chanmnel to another because of cross coupling due to

the wave which enters that channel via the coupling port.

Y AR T

It is clear that both the radiators and the compensation circuit produce

o s

some reflection at the input of the system. Obviously, with the appropriate
phase relationships these two reflected waves can be at least partially

= compensated. Therefore, of the two solutions obtained for (16) above, the

1 one for which /Syl has the smallest value should be selected; then the antenna
system with total compensation of energy leakage from one channel to another 1

s will have the least possible reflection at the input.
An example of the calculation follows.

The following two solutions were obtained for the compensation equation
for coupling impedance z};=-0.13--i0.44:

=180 30 w13
I', - 0,050; [, o035
7, - 0,308: 7, - 0,20,

(It is easy to show that two different solutions occur for [ and @ because of

the mismatch between each radiator and its feeder line when operating in the

system.)

Substitution of the solutions obtained in the formula for Sy produce the

following results:

IS --0.218; |S,],=0.0199.




Obviously, the second solution is preferable, since it provides partial

cross—compensation for reflected waves, as a result of which a 2% coefficient

of reflection is obtained at the input of the entire system with total channel

decoupling.
CONCLUSION

The phenomenon of leakage of electromagnetic energy from the aperture of
one radiator to the input of another, sometimes called "backward" cross-
coupling, produces variation in the amplitude-phase distribution in the

k- antenna assigned by the contol system.

:q The method proposed in the present work makes it possible to determine
the parameters of a waveguide connection which compensates for "backward"

R cross-coupling.

Further development of this method will make it possible to compensate
3 for "forward" cross-coupling, which causes distortion of the directivity
- pattern of a radiator in a system.
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METHODS FOR CALCULATING EDGE EFFECTS IN PHASE DIPOLE ARRAY

L.A. Cherches

Iterative computational methods are used to determine
the distribution of currents over the elements of an array.
The convergence of the iterative processes is investigated.
Examples of the variation in the impedance and gain of the
elements as a function of their position in the array are

presented.

Interaction between the elements in antenna arrays produces significant
variation in the input impedance, directivity pattern and gain of the elements
as compared with isolated radiators. However, practically all of the literature
on this matter is devoted to the characteristics of antennas with few elements
or the central elements in multi-element arrays. In the latter case, the
parameters are examined for an infinite array. As concerns the parameters
of the edge radiators of multi-element arrays, there is not enough information
concerning them in the literature. An approximate examination of special cases
is given in [1,2]; [3] notes the complexity of the problem. The present work
investigates methods for calculating edge effects in an active array (in which
each element is driven by a separate oscillator or loaded to a receiver). For

simplicity we shall assume that all of the radiators and oscillators (receivers)
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are the same. The phase in each element of the array can be adjusted.

It is most difficult to calculate the current distribution across the

elements of an array with a large but finite number of radiators (or in a

semi-infinite array).

The current distribution is found from the following system of linear

algebraic equations:

where Ipg is the curreant from the mth element in the absence of cross-coupling

between elements; N is the number of elements in the array, Zy is the inherent
impedance of the element, Z; is the load impedance referred to the element input,
Zmp is the impedance produced by the pth element on the mth; the prime next to the
summation symbol designates that the term in which p*m is missing. In thin
dipoles (with electrical radius p=kr of the order of, or less than, 0.1) which

are not located too close together (with an electrical distance between the
centers of adjacent elements of t>1) and which are near-resonant (half-wave),

the lengthwise current distribution is close to the sinusoidal distribution

used in the approximate theory [4]; we use the induced emf method to determine

the induced impedances.

Direct methods of solving system (1) for multi-element arrays are difficult

even when computers are used. It is more convenient to use iterative methods.

According to a simple iterative process (method of sequential approximation)
(51,
.V ,
19 =g ——— NV 2, foir

2o+ Zn ﬂ (2) i

We car use
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as the initial approximation. We shall estimate the convergence region of the

iterative process based on the condition, rigorously valid for an infinite array,

that
Ziani < 2, Zup,
(3
where 2 is the impedance induced on the element by other elements.
The rate of convergerce of the iterative process from the convergence factor
magnitude

q - ' Zuan i

v Ze Za

corresponds to a geometric progression.

Figure 1 shows the convergence regions for parallel half-wave dipoles with

various load impedances:

Z, =Zy -- matching between isolated dipole and load,
ZH'*O -- short-circuiting of dipole,
Z, 52” -- matching between dipole and load in infinite phased array.

Here Z is the quantity complex conjugate with Z.

The iterative process can be caused to diverge by the reduced spacing which
results from increased cross-coupling between elements, by the direction of the
primary radiation approaching the plane of the array, and by reduction in the
load impedance resulting in weakening of condition (3), and by approaching the
zone in which the secondary diffraction beam appears. The latter produces a
drop in the directional gain, and consequently an increase in the impedance of

the dipole due to increased induced impedance. As a result, the absolute value
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of the induced impedance increases, which degrades condition (3).

>
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(2) ‘/U/l/'ﬂ" :,'(,J’..:m\ DO0~TE - e L ey,

Fig. 1.

Key: (1) spacing, expressed in wavelengths; (2) inclinatiom
of wave front to array plane.

In the most important case of matching dipoles in the center of a phase
multi-element array (EH »Zx), the convergence region is large and includes the
most interesting values of array spacing and wave front slope. As the load
impedance drops, the convergence region becomes significantly smaller. The following

examples are given for the worst case of convergence (ZH +0).

Figure 2 shows convergence regions for shielded arrays (in which a metal
shield is placed in front of the dipole plane). With small distances from the
shield d the interval s/)\ which provides the convergence varies little from an %-
angle of inclination of the wave front to the array plane ¢, and is wider than

without the shield. When there is a substantial difference between the array




plane and the shield, the contour of the convergence region is analogous to

that when there is no shield (with a '"tongue" in the area of occurrence of

the secondary diffraction beam).

Figure 3 shows the convergence factor as a function of the angle of

inclination of the wave front for beam rocking in different planes [H, E,

diagonal (D)] for a two-dimensional array of half-wave dipoles with elements
arranged in a square (with spacing in the H nlane the same as the spacing in
the E plane) with a typical distance from the shield of d=A/4. Figure 4 shows

the convergence factor for beam rocking in the E plane for various spacing.

These curves characterize the convergence region (q<l) and rate of convergence,

e o e S i e

RS o o

which increases as q drops.
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It is not difficult to calculate the current distribution allowing for

edge effects for a linear array, but the same calculation for a two-~dimensional

array is extremely cumbersome. In many cases (for example when studying edge
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effect in the H plane) a quasi-two dimensional array model (unbounded in the E
plane) is useful [1]. It is convenient to do the preliminary analysis for an
array of conductors [1] with uniform current distribution. The introduction of
a conductor to the discussion is the same as considering only the constant
components of the actual current distribution along the vibrator column line.
The interaction among the higher harmonics of the currents is weaker: a rapidly
converging iterative algorithm can be constructed which uses the solution for a

conductor array.
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Fig, 4.

Let us consider a system of conductors in more detail. In this case,
referring all of the impedance to a conductor section one wavelength long,

according to {1} we have the following for thin dipoles:

ZO= 60'-'2 H:}:) (p)v
Z,, = 6052 HE (im— pin,

where H(%)(x) is a Henkel function of the second sort. For phased excitation
along the conductor with uniform phase distribution of the emf between the
conductors, the current distribution is determined by the following system of

equations: »

.'—.-————l—-——- v’e =2 —pnf :_‘e‘ﬂ’S(:10
fm 60n2 HY (p) + Zy ﬁ 0 5 im—pii, . %)
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Here Z, is the load impedance for a conductor segment with length X.

z Using the sequential approximation method

Iﬁ'f:eim'““¢~~-—_——i—~7-— NViiom s
/:"u? e _d ’
; fhqs o=
. i
e For the null approximation we can, for example, use
It 4
1
] ) I‘iln e e b
!
i
42
Y The convergence region of the iterative process can be estimated on the
A
e basis of an array which is unbounded on both sides. For a phased array the
153 convergence condition
; . ~e ' i 71
. ; B L HT .
‘ N < S a=
.‘ ¢ ‘i P i ) N -t (5) j
, | pe=l
4
f ' For t<2y
; S ! T 4n
3 AN H™ (pf)= —-7?-Af———li—-——(C-—h1——;—-
P31 ’
20
. “1( 1 1 )
T ead\) 2= 231!}
, {==]
| for !<<Im
e i hd l I .
| N g o0 ~— -+ L -2,
- ad 2 t x t !
p=1

where C is Euler's constant.

Figure 5 presents a diagram of the coefficient of convergence. With

close spacing, on the order of a wavelength, with which a secondary diffraction

lobe occurs directed along the array, the iterative process diverges.
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Key: (1) distance between conductors, wavelengths;
(2) conductor radius, wavelength.

These few examples explain that a simple iterative process is usually
suitable (converges rapidly). However, in a number of cases, for example when

the spacing is close, a simple iterative process (and analogous processes)

7 A e g e g e N g T ] AT N, s L0 e M g Y

either converges slowly or even diverges. In these cases, it is necessary to
construct more complicated iterative algorithms which converge rapidly. Here

is an example of such an iterative process for matrix equation (4).
Let us consider the standard integral equation
’ 607% ) ’ i mt sin @ (6)
f (m)"—z———é—‘ H2(m—x|)I' (x) dx =e
0T Ll

m—93,5 V=05

Equations (4) and (6) can be considered

P
w ?

Here the symbol‘[ means
as functional equations with operators which are close in some space. The

b s
m-=t,5

iterative algorithm used to solve (4) on the basis of (6) appears as follows:
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Here I is the resolvent of the standard equation.

Let us consider the solution of the standard equation for N-w (for a
semi~infinite array). An asymptotic solutiom can be devised for large finite
N. We designate u=mt, u'=xt and I(u) -- the function complex conjugate with

I'(u). Then

- s " - .
/ [ -*——_.-\—_— ".‘ ¢ ‘ .-/,- e Lot
18 Zo - 21 } i ¢ L
Here
":—_0.5” >
| | {
e

Z() - 60:;H:);)|(v|. Zu o AN

We introduce the following equation with a close integration domain

A

;hn-» — }‘Hf)uu sl vdn e (8)

(Zy ~ Zuls

This is a nonuniform equation of the Weiner-Hopf-Foch second sort. Using the

familiar factorization [6], we have
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. ) it e |
T (9)
i
where
. R o T g— ; . .
ylrcosy. ——— — s -
R ST SR
Here
. 120n2
sing

L AZy- ot

Then we find I(u) using the iterative algorithm for solving an integral
equation based on an equation with a close kernel [7]. Variation in the
integration domain in the equation for I(u) rather than the equation for I(u)

can be considered as replacing the kernel

K= HOlju—u)

with the close kernel

¥,=ﬂﬁww~ww—..XQMM—Oﬂnuumert )
| Q v — .. .0; 0.5 wi([m —0,5]1, [m—0,3] 0\,

As a result

o (u)=R[,,+TZﬂ“_7'_)_T j"* & T (@) due
Q0" L

where
0.3¢ (m- 5t

J.,__‘_ e
] im—9,5)¢t ( 10)
Kt-MMW—wD—IEm,MH?m—MDM.

0
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Here T is the resolvant [8] of equation (8);

Fue o wmncLOM—[wu—w.myw—unmdm
b
0<u v o,
where

an
. sins \‘ o MM N3y ) dy

yichx) (vhin —cos?z)

Let us examine the error of approximate solution using the example of an
unbounded phased array of conductors. In this case the solution of a matrix

equation of type (4) appears as

12013 >
| = N\ H (pt)
80a H}; (p,_z"ﬁ

and the approximate solution (solution of standard equation)

1207° ! : .
1. - \ Hym v du
oozt vy - Za

It is not difficult to determine the relative error of the approximate solution

W 1—-—,—-1

Considering

\ HDw)dw Do ISW0.50A TN 5 ::-_sl.o.::f‘//u-'.n.f.,.

9.5t h
where Sg 1(x) are zero- and first-order Struve functionms, respectively; H{2)(x) is
a first-order Henkel function of the second sort. For example, when t=1, p=0.01,

ZH —0,|811=0.05.
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In many cases, the solution to the standard equation is closer to the

|
- currents being determined than a substantial sequence of simple iterations
1

AR A A Al e i ki A L=

(not to mention that the standard-equation method is sometimes applicable when
a simple iterative process diverges). Iterative algorithm (7) can be used to

increase accuracy.

With the usual distance between the plane of the array and the shield
d=)/4 and spacing s=)/2, a simple iterative process for a system of conductors

is satisfactory with any wave front slope. The coefficient of convergence

R e eI Nnmn e tee e WAL Al s et 5, fin o
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¥ where T=2kd is the electrical distance between the conductor and its image on !4
H
§

Figure 6 shows the coefficient of convergence as a function of scanning

angle.

We have dealt with the computational aspect of determining the curreants in so

much detail because this calculation is the most difficult and serves as the key

s P SN

- to research allowing for the edge effect of the remaining characteristics (array
directivity pattern, input impedance, element directivity pattern and gain).
The formulas needed for an unbounded array are contained in [9]). Without
dwelling on thesa standard (for predefined currents) calculations, we now

present some numerical findings to illustrate the nature of the edge effect.
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Fig. 6.
Key: (1) without shield; (2) with shield.

] f Figure 7 shows the odd component, with respect to the middle of the array,

i of the variation in the phase of the current due to cross-coupling for edge

elements. (The odd component is of more interest than the even one because

,; ; it produces asymmetry in the array directivity pattern.) Although the results

- " shown in Fig. 7 are calculated for a system of conductors (with load impedance
corresponding to matching in a phased unbounded array), the nature of the
relationships remains essentially unchanged for linear and two-dimensional

half-wave parallel dipoles as well.
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Fig. 7.

The diagram in Figs. B and 9 show the input impedance and gain of the

elements Gy of phased semi-infinite arrays of collinear and parallel half-wave
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!
1 dipoles as a function of their position with respect to the edge.
| |
;| The parameters of the elements near the edge differ significantly from
H
. ..
' the parameters of other elements. This is also the case for other types of
.; multi-element arrays.
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Key: (1) collinear dipoles; (2) parallel dipoles.
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CONSIDERATION OF CROSS~EFFECT OF RADIATORS IN CYLINDRICAL SLOT ANTENNA ARRAYS

B.A. Panchenko

Analytical formulas are obtained to allow for the
influence of radiator cross coupling on the admittance
and energy characteristic of antenma arrays consisting
of long slots on the surface of a round cylinder. Linear

and ring arrays operating in phase and equiphase are
examined.

INTRODUCTION

In analyzing the operation of antenna arrays, attention has recently begun

to be devoted to effects occurring in antennas due to interaction of the
radiators [1,2,3,4]. This interest is entirely justified, since certain array
parameters depend significantly upon the amount of interaction between the
radiators. Regardless of whether the array elements are driven individually or
a branched feed system is used, a significant share of the interaction effect
belongs to coupling of the radiators through external space. This portion of the
problem must be solved for the specific type of radiators and the geometry of

the external region. The solution which is obtained can then be used in !
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estimating the parameters of an antenna system using a specific feed system.
In addition, solving the external problem makes it possible to determine
changes in the antenna parameters, e.g., the directional gain, caused by

interaction of the elements in the external space alone.

The influence of cross-coupling of radiators in a multi-element antenna
array consisting of long slots arranged on the surface of a round cylinder is

investigated below.
INTERACTION OF ELEMENTS IN LINEAR ARRAY OF SLOTS ON A CYLINDER

The interaction of radiators in the form of longitudinal slots arranged
in a single row on the surface of a round cylinder (Fig. 1) is examined. It
is assumed that the uniform array contains a fairly large number of elements,
so that the influence of "edge" effects on the overall antenna characteristics

can be disregarded.

The conductivity of the nth array element, allowing for mutual effect
(Y'qr ) is determined by the intrimsic Y, and mutual Y,, conductances of

the longitudinal slots on the cylinder:

(1)

r— 2 . . .
where K= o =X is the wave number, @ is the angle in the
’

direction of which the array is phased.

On the other hand, considering that the elements are arranged periodically
in the array, Y'p, can be considered as the intrinsic conductance of a slot

which radiates into a fictive radial round waveguide witn distance d between
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; its walls in the direction of the long axis. The conductivity of a slot in

‘, such a waveguide with electrical field intensity E,(r) distributed in the port

P & E

b | is defined by the general expression [5]

. : - — N ,".' . . N . -
L \ tn‘”(’\" — \ Garoradl i
] . - .

# R (2)
B > > .
where G(r,r') is the Green function of the external region of the cylinder v
i
in the presence of additional barriers which form a radial waveguide; : t
T4
¢
N Y L
Hy\a 8 '(_—-~h’n}1“.i
~ ' d
6o v = -
i 2T o ) 2y : ‘
' '*..f.a Hy a V' K- 1 . '
B \ L T4
;- . ]
Py i - b . 1
. O IS 4 ]
! R 2 - ]
L l N—" m ~asin M ;'
1
; . . 4(2) (2)) . ) . .
! where m and q are integers; Hm (x), Hm (x) is Henkel's function and its
? derivative. ]
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With a "waveguide" treatment of the problem, the expression for the

conductivity after transformations in expression (2) takes on the form
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This expression is complex. In the future we shall be interested primarily in

the active component of the conductivity

: “’l '::}:1‘:\§‘:m \(i v 1

TiRd ot ard » a! é— -l ) =t

CL T 3ag . &FF
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The prime over the summation sign in expression (4) [sic] indicates that those

members of the series for which(bnq/kd- sin @)ﬁl are considered in the
summation.

1. Considering each new term of the series q is associated with the
possibility of propagation of the next type of wave in the fictive waveguide.
In an actual array, this corresponds to the instant of occurrence of the

diffraction maxima in the directivity pattern.

Expression (5) can be simplified in some cases. For example, for an

equiphase array with elements spaced d¢) apart, only the term with q=0 must
be considered in the second sum.
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Figure 2 shows the plots calculated for the conductivity of the elements
in the array as a function of the radius of the cylinder. Because of the complex
relationship between the conductivity and the period of the array, the curves

for different d/A may be either above or below the limiting term for d/A*®.

In order to allow for the influence of cross-coupling on directional gain, i
we introduce the coefficient g which characterizes the ratio of the directional
gain of the array considering cross—coupling to the directional gain of the
same antenna disregarding coupling [6]. 1In the case of a linear array (disregarding
edge effects) the coefficient g is associated very simply with the active con-

ductance of the element: 1

; - (6)

where Gy is the radiation conductance of the single slot.




Figure 3 shows the plots of g=f(Q) with several values of the array period
for ka=2.0. The nature of the variation of g differs little from the
corresponding plots for a linear array on a plane [6]; however, the numerical
values for these two cases differ significantly. The calculation was dome

using formulas (5) and (6).
INTERACTION OF ELEMENTS IN MULTI-ROW ARRAYS

Let the array comsist of N rows of regularly arranged longitudinal slots
(cf. Fig. 1b). It is sometimes convenient to consider this antenna as a multi-
ring antenna with N radiators in each ring. As we know, these arrays can
operate in either the equiphase directional radiation mode, or the phased

directional radiation mode.

The "waveguide" treatment of the problem is extremely fruitful in analyzing
operation in the equiphase radiation mode; the use of this treatment will save
substantial time in the calculations. The conductances of all of the elements
in the array (except for the end elements in each row) are the same, and equal
to the conductance of the slot which radiates into a radial sector waveguide
with sector apex angle of ¢=27/N and distance d between the plates in the
direction of the long axis. With an array period of d<), the expression for

the active conductance appears as

A s E: % em ;
G Td | -1) b= \.'.40 [, s (7
m=y .

In the calculations, it is sufficient in (7) to consider those members of
the series in which the index of the Henkel functions are equal to or smaller
than the argument of the function, i.e., m<ka/N. Figure 4 shows the results of
numerical calculations of the normalized active conductance of elements as a
function of the number of radiators in a ring. The plots are oscillatory in

nature. For small N the influence of adjacent elements due to surface curvature
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is small (with respect to the flat initial segment of the curves). With large

N (a distance <0.5\ between adjacent elements in a ring), the conductance

increases monotonically because of the strong coupling.

The plot of the relationship between G' and the distance between the rings
has monotonic sections and brakes which correspond to the instants at which
the diffraction maxima occur in the antenna directivity pattern. The influence
of curvature of the shield has an effect on the numerical conductance values
(Fig. 5). The calculated data are obtained for an array with a distance d'-0.5\

between the elements in the azimuthal directiom.
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Fig. &4. Fig. 5.

The coefficient g in this case is also defined as the inverse of the

normalized value of the active conductance considering interaction (6).

Two methods were used simultaneously in analyzing the admittance and
energy characteristics of multi-row phased arrays: the "waveguide" method,
allowing for interaction between elements in a row and the element by element

approach for a ring [3].
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In order to obtain phased radiation in the direction of angles @, ¢

the voltage on the pth element in each ring must be

R A T S

U
¢
N

. o L
,o=1,2.35....MN

where ¢g,.=

The conductance of the pth radiator, allowing for interaction of elements in

a ring,

Fp d 4 [

poo=de o Ny L SNy e s e (8)
Yo -

Here Y. considers the interaction of the radiators in a row:
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In contrast to the cases considered above, in the directional radiation
mode the conductances of the individual elements in a ring depend upon the
phasing direction and the element aumber p=1,2,...,N.
The expression for g for the phased array takes on the appearance:
\Go N
g= R : o - (10)
: : G W1, l l Graexp{—1 ainmt ~g. ’
pml Tl Amliad
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V" denotes a complex conjugate function.

Calculations using formulas (8), (9) and (10) are extremely laborious for
large N. However, it is possible to represent g in a form suitable for
numerical calculations with large N. In the transformations in (10), the
exponents were twice expanded into a series with respect to Bessell functions

Jg(x)

iNg cos @ cos 5, - N (: l)‘ ‘/5 (xa cos (-:p" e T a

Sm—o0

and the property of the sum

a

‘5 il I VI Sent A, RS
i - T =0=1=2...
s 0

in the remaining cases.

As a result of the transformations, we obtain

2=G VN BN e (1P (— 1) Gy ¥
mm0 s=0 r—0 (11)
r 1 -
r J oo m(Kkacos9)J,. (kacos @)f?- I ysm (kG COSO) <
v (KGCOSOV (=)™ T (kacos@)J, _ (kacos G)J ';—l.

The larger N, the more rapidly the series converge with respect to s and r; the
number of members of the series needed with respect to m are determined by the

radius of the cylinder ka.

In special cases of practical interest, expression (l1) is significantly

simpler. Since for d'/\<0.5 (d' -- distance between adjacent radiators in a

ring),

Ne—m

¢ =G, l‘\f' Nz G, /2 (kacos@) -~ J3_ (xacosO)—
i !
= (12)
-1
—(—=1)mJ. (ka)cosB)J,._  (kacosO)] ]l .
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With even smaller distances between radiators (d'/3<0.25), we obtain

K,
4= G,,[V N2 G2 (ka cos‘-‘)] .
. -—
mm=()
‘ The coefficient Gy is determined from (9). For an array of half-wave
i slots with a distance between the rings of less than a wavelength
4 3
é-i
3 4 -
Gt T o
i atxd (ka)? o |HY (xa) [
%
:si R N 3
Figure 6 shows plots of g as a function of N(d'/y). The equiphase array »

C e

mamba et

has an extremely favorable arrangement of elements which can provide a significant

increase in the array directivity. In the phased radiation mode, these large
E:: increases in g are not observed, which is explained primarily by the different

! phasing of the ring elements. The drop in directional gain as (d'/\ »0 is
explained by the reduction in the dimensions of the array, and the fact that the

amplitude-phase distribution used does not correspond to the super-directivity

mode.
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Key: (1) equiphase array; (2) phased array.




CONCLUSION

The formulas obtained make it possible to allow for the effect of external
cross-coupling between radiators in multi-element arrays consisting of slots
on a round cylinder. For individual elements the conductance depends upon the
operating mode of the array, the distances between adjacent elements and the
curvature of the shield. These relationships must be considered in selecting
and designing the array feed system. Allowance for interaction of elements
can introduce a significant correction to the calculated (disregarding interaction)

directional gain of the system.
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EFFECTS CAUSED BY LOAD MISMATCH IN PERIODIC SYSTEMS OF COUPLED RADIATORS

I.V. Guzeyev, A.B. Kolot

Expressions are obtained for the directivity pattern
and wave amplitudes in the feeders of periodic systems of
coupled radiators, assuming that the scattering matrix which
allows for external cross-coupling of radiators, their partial
fields (patterns) and parameters of oscillators or loads which
are matched in the general case with the wave impedance of the
feeder line are known.

INTBODUCTION

A substantial amount of attention has recently been devoted to investigating
multi-element arrays. In these arrays, the cross-coupling between radiators

-

can cause energy from a single driven radiator to reach the “se''rs of all of

the other radiators and, depending upon the nature of the lc. : hese feeders,
be either completely absorbed or cause a process of repeated r2flection and
re-radiation. The pattern of a single element in an array thus depends upon the
scattering matrix of the array as a multi-port network, and upon the loads of
the feeders of the other radiators. An analogous phenomenon occurs when a row

of radiators in the system is driven simultaneously. As far as we know,

9%




phenomena caused by mismatching of the impedances of the oscillators or loads

and the wave impedance of the feeder line have not been described sufficiently
in the literature for systems of coupled radiators. However, it should be
noted that these phenomena are important in a number of practically important

cases. The present work f£ills this gap to some extent.

The analysis is done for periodic radiating systems which approximate the

operating conditions of large arrays quite well.
FIELDS IN INFINITE PERIODIC SYSTEMS OF RADIATORS

Let us consider an infinite linear periodic array of radiators which,
together with their feeders, are identical (Fig. 1). We shall assume that the
feeders support only the propagation of one (basic) type of wave with forward

(ap) and reverse (b,) wave intensity amplitudes associated as [l1]:

b, = N =0, =1, =2
b'l P Snmum' n Or — lv P e Y ) (1)

118 20 o OO

where S;, are the elements of the scattering matrix which are assumed to be
known either experimentally or as a result of solving the boundary problem in

2lectrodynamics.

Let ilfwx.y.zh E}Wx.y,:) be dimensionless vector functions ("partial

fields") of the radiators in the system, i.e., the fields created by the nth
radiators when the feeders of the remaining radiators are infinite (or loaded
by their wave impedances), and a wave with unit amplitude is propagating in the
nth feeder toward the radiator. 1In this case, significant currents will be

present only in the nth radiator and those close to it; therefore, at distances

greater than the size of the region occupied by these radiators, the "partial

<> - -
patterns" fiC)(i>,¢) correspond to the partial field e§C), hiC).
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Since the system is periodic and satisfies the mutuality principle, the

following relationships are valid for it:

Sam ™S

am TS TS MM 0 L L (2a)

e (x, g z—pd) = e (x, u, z—qd)'

f‘ E}”(x.y,z«—pd): h}’La y. z—qd)l (2b)

O

O @) = 5 e

i pRd cos

e Yo o

-

-
- A e e

A

s LB il

o

& wem m

Fig. 1.

Based on the superposition principle, when waves ap are present in all of

the feeders, the resultant field or directivity pattern are:

Etx.y. 9= 3 4,854 2 Fph o= N 2750 q) (3)
DR 00 Pm—ce

We shall now introduce Fourier series consisting of the amplitudes ap,

bp and the elements of the scattering matrix:
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Using the method in [2], it is easy to show that we can obtain the relationship

- o (5)
Bun sUaa
instead of (1); then the expression for the resultant directivity pattern is
vwritten as:
Fov, ) == f§7 (%, @)a(xd cos i, (6)
Analogously, for a planar array (Fig. 2), introducing dual Fourier series
g ey — v N tnadlpy , _ U < inutipy |
Jt 0= ‘\_ : a,, e . ob{u, 0= 2 2 b,, e .
n=m—co pum—oc Nas—co pam—oe (7 )
;(u, VY= AN Snp e(nua—!pv‘
r r
i ==00 Jume—c0
we obtain:
~ ~ - (8)
bi{u. v) =sfu, Vyatu, v)
F(“' ?) ==

50 (o, w)g(wl sin cos ¢, Kd,sin?d sing). (9)

where fgg)(ﬂ,q,) is the partial pattern of the radiator located at the coordinate

origin.
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The Fourier series s(u) and Z(u,v), comprised of the elements of the 3

. -

scattering matrix, will be called scattering functions below.

-
e
ad

We note that these are even functions, since the systems in question are

i

periodic and satisfy the mutuality principle, i .e.,

n " T—p i .o = Sennp = St b

ARRAY OF RADIATORS DRIVEN BY EMF SOURCES

In order to find the amplitudes ap, bp or their corresponding Fourier ;
series a(u), B(u), equations (1) and (5) must be supplemented with the
connection between these amplitudes and the oscillator parameters -- emf 8p
and the coefficients of reflection Tp characterizing their internal impedances

ZP' This connection can be written asl {3]

a.=c,~I,b,
where i

C,,—.:%-Rl — -l g (10)

lThis work uses the practical MKS system of units. The time dependency is used 1
in the form diwt, ;
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In the case of oscillators with identical internal impedances whose emf

satisfies the relationship

N i<

Da—

introducing the Fourier series

-

; @4u)==:E & e™ aw ;T” ] éf(L—F'giu! :
g p=—x ) ' (11) !
b1 b

i
1
2’
& instead of (10), we obtain the following relationship:

(12)

-~ ~

Q) = i -Dhon,

b «
bl

A e o e

From the system of equations (5), (12), we find:

~. ¢ (u - ‘.u L
a(ll)=——(—'——, b‘[l)“‘k(\,”,

I =T s

(13)

e SN

The amplitudes ap, bp are obtained from {13) by the inverse Fourier

transform:

1 l a, 1 \' € (u) e~ gy oy L s T (14)
l 2z, - T2a - :
- 1 =T su - ! —T ey

Based on (6) and (13), the e:rression for the directivity pattern of a linear

array takes on the appearance

cqndeos )

F(u_ 7. F):?‘I,‘"'(H. )

(15)

=T {xvos oy
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Let us consider in more detail the practically interesting special case in

which only radiator is active (E.p#o when p=0), while the other radiators are

| passive (£P=O when p#0). In this case, we have
.
Qluy=—0 Py = S (16a)
1 —=Ts(u) 1._1";(,,)
s ipu T~ -
. @ = | ————du. b= 2| SweT (16b) ,
‘ :zl*FS(u) = —_ l—rl(u)
1 - ey i
. ;! F b, o, [‘):L-o._f_o_&_@__ . i
| | —T s (xd cos ») (16¢) i
Y|
o
™
15 On the basis of (16b), we obtain the following expression for the coefficient
gﬂ of reflection at the input of the active radiator:
Ji . ;(u)du
: by _ Sel—=Cs@ _ 1 (i on
| nﬁ"l=—7“__*_=T'h'*T"_'—" (16d)
} g‘ du ¥ du
| o~ L. 1=
i
Z By substituting eiU=z, the integrals in expressions (14) and (16d) are
7 transformed to contour integrals about a circle [z|=1 in the plane of the
‘, complex variable z, and can be calculated on the basis of the theorem of
‘ residues. The next section presents an expression for er calculated using

this method (cf. also Appendix).

With one active radiator, it is also easy to consider the case in which

the loads in the passive channels are not equal to the internal impedance of

the oscillator in the active channel (I'¥lg). Actually, in this case
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21 =(ay—T b;) = [ biu) = ay(1 —PTag) + T b(u); @y =Co—T by

~ I — T[T, = —ITex ~
alu)=a, L. biwy=a, ———s(u);
I =T s(u) 1 —T su)
- 1 —TIT - ] (17a)
Fv, @, T)=ayg————" (), ).
| — T s(xdcosit)

I1f the oscillator is matched with the wave impedance of the feeder
(r0=0), ag is independent of the load in the feeders of the passive elements.

When ag=1 (volts/meter), we designate the directivity pattern corresponding to

this case as

. | =TT, ~
/‘Sm o, §)= __T~L Ir'}f’ (i, ), (17b)

| =T s (xd cos 1)

When | TS(u)l<<l, which corresponds to a system of fairly weakly coupled
and well matched radiators (ISPI<<1; p=0,+1...), or the case of near-wave loads

(ITl<<1), instead of (16d) and (17b), we obtain approximately

~ (18a)
F,,=s°-e2f : Sg'.
21
7{-,“’ 3, @ z?{f' (¢ l-‘-r‘[;wdcus M—s,} .
(18b)

As follows from expressions (18a,b), in the case of weak cross-coupling
the directivity pattern of a radiator in the system ;SH)({§,¢) and the
coefficient of reflection at its input Pax in the load function in the feeders
of the passive elements are of the first and second order of smallness,

respectively, with respect to the coupling coefficients.
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Let us also consider the case of equal~-amplitude linear -phased

excitation of the radiators when

61=‘GUII t‘—"év p -0, - l' - 2- e o

where ¢ is the phase difference between adjacent radiators.

In this case

s

é(m=2={on'I:_'(u—¢\; ;(u)—-tf;| R T (19)

ot -

P o2
-

e D e ae et 4 Aval

R
-

_— b aea

where &n(u-9) is a periodic delta-function [2].

Substituting (19) in (14), we obtain

- L=irh

\ .
(J;)':"—"' ] — =T —— b - (20) !

b 2 ¢ =
: U =T st 4

s e s

As might be expected, in this case the absolute values of ap and bp are

- independent of the number.

- By analogy with [4], we define the actual coefficient of reflection at the

p? b,
Iy =22,

ti input of an element in the array in question as the ratiol
' @ 4 i

in an active radiator when all of the other radiators

1
!
(
3 ip .. .
‘ p coincides with T
' BX

are passive.
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As follows from (20),

FD: ;(Cbl

regardless of the radiator number.

Since lapl and lbpl in this case are independent of the element number,
the energy balance for the entire array is equivalent to the energy balance of

a single radiator, i.e.,

1652 ~ -
oF =|s@FL

(£

consequently, the elements of the scattering matrix of a linear periodic system
of arbitrary radiators are such that the Fourier series comprised of them does

not exceed unity in absolute value.

Let us also consider briefly the case in which the internal impedances of
the oscillators are different. In this case, system (1), (10) can be solved
iteratively. 1t is natural to use the value of ap and bp as the null

approximation in the absence of cross-coupling:

a(O) - il

CpO =5 g®
p 1—T,s p 0 p

When this is done, it is easy to obtain the following expressions for the

values of ap, bp in the ath approximation:

) o0
i :
[3-3 ISR 4. N n—1)
a® == [q,, r, 5,275 ]

| - F,, Sy P
l x
(a) — =\ (m—1)
b T (:c,,s,, o Sa ]
qm—o0
30

(z=1.2,,,

aop=0, =1 =2 . )
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Obviously, when ¢p changes evenly and the ¢ross-coupling is weak, the

iterative process will convert rapidly.

In the case of a planar array, introducing the dual Fourier series:

\‘

® 0=

Gy -

s

HEA

Cnu—ipr. 1 T L
G T mamz?klnfﬂ—ﬂémw

we can obtain the following expressions:

T e

v T eye—itie po) i
a,, = | \ \ c(u, te dudy i
o ) - ' b
= - | —~Ts(u, o) i
L clu o) s, o) TR0 gy }

ZEP) ; ‘ \ - ’

e 1 —TCs(u, o)
\“‘ T s (u, t)dudy

- 2.0 I =Tsw. o 1 1q¢ i
ax = = e | — — - i E
‘n J. dudp r “ \'_‘ ude ! 1i
Y. Y. I ~Tsiu.» ' _»l, oo l=r ' |

1f the emf of the oscillators in the planar array have the same amplitudes and
linear phases for both coordinates, i.e.,

6 ‘G ! \—i’l"P—iD'l'
then by analogy with a linear array

T, . sup ¥ |

0 s, Pl
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DIRECTIVITY PATTERN AND COEFFICIENT OF REFLECTION AT INPUT OF RADIATOR IN
LINEAR ARRAY AS FEEDER LOAD VARIES

To illustrate the relationships obtained above, let us consider a linear
array of horns (Fig. 3) with a single active radiator (horns polarized per-

pendicular to the axis of the array); d-‘-gs-i- .

terminal plane shorting plunger

Fig. 3.

We shall use movable shorting plungers spaced at equal distances from
the terminal sections as the loads in the feeders of the passive radiators.

The coefficient of reflection from the loads (in the terminal section)

F= —e% (21)

where ‘P:-Z-;-f-l? is the electrical distance from the terminal section to the
2

plunger. As has been established experimentally, the elements of the scattering

matrix in such an array are approximated well by the relationshipsl:

I8l06) =—[214+6(pl—=Dl p=x1 =2, ... (22a)

lFor definition, the terminal plane is selected such that arg s,;=0.
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| args,=—I(lp| —l)kd, p=%1, =2.. . ., (22b)

5o =0,129€"¥,
(22¢)

The scattering function s(u) corresponding to (22a,b,c) can be represented as

y
i S(w) [— + '
;3 s()=s,+5
: 0T e—lu__‘_e-um ol ,_’_.e—lxd I
. 2 2
N
'-

Figure 4 shows the representation of s(u) of the complex plane.

: F ' / Vmi{lll
& / /

Fig. 4.

As follows from (17b), the deformation of the directivity pattern of the

o= active radiator is characterized by the function

g ' " “' -—
Mu, ¢)= B2C. 9 - Er‘—'; 4 = xd cos D, (23)
' AN @ =T s
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For the case of shorting plungers in the passive channels, we obtain the
following on the basis of (21) and (23):

T~ T2 =2 =
(M, Y)| = ‘/’// ]+ {Fuxj? — 2 Tyu) cos (29 -+ arg Tuy)

- = (24a)
b= ds ()l 2! s (u)jcos [ 24 + arg s (u)]

Tyl sin (2¢ — arg Cyo)
W (u, ¢) =arg M (u. ¢) = arc tg —=2
¢ w) g ( ‘p) ¢ 1 —Falcos 2§ — arg [yy)

- - (24b)
—arc tg sl sinf2y - arg s u)) ‘

L~ {8 (u)] cos (2% ~ arg s (u)]
The complex coefficient of reflection at the input of an active

radiator in three-term approximation to the series {(18a)

Cax () 2 5, = 2T ¥ = 5, — 257 e~ (25)

The corresponding rigorous expression obtained in the Appendix reduces to the
following form after a series of transformatioms:

SH+(d-1 3
Fox = O (26a)
e g == a
. b
where
/r"; -i—.
— — §s 2
A=) lar(—f—— %) R
. @ - — 2 2 —
2

(26b)

where the branch corresponding to ReA>0 should be used in the expression A.

Figures 5 and 6 show plots of the absolute value and argument of the
deformation function M(u,y) which reflect the variation in the amplitude and

phase patterns while the shorting pistons are moved in the passive channels.
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It ‘5 interesting to note that when Y=45° and 1359, the function

IM(u,}) = \.so that the pattern of the radiator in an array with shorting
plungers is close to the pattern of a radiator in an array with waveguide loads.
This is explained by the fact that the region of maximum values of |5(u)|

corresponds to arg s{u)=m.

wiM(u.?Q )
MR LA T T T
6 . L QJU
15 DR, S
“ o [r L | spe TV #=45°
i i i i |

IA] ; : ‘ - s W //,L~.ﬁ-.:j>j
© ; L' A ) I L

o e T
’J i 2 . 1; ! lr*u'; x.'—r—"—‘ e e— e
10 — ——

T | l
a7 .

o
s |
a5
&% .
m —
p il
O T A AR B
Fig. 5. Fig. 6.

Figure 7 shows the relationships between |I , ()| and arg Igy, (§)
calculated on the basis of (22a-d), (25) and (26a,b). Their comparison with
Figs. 5 and 6 shows that variation in the loads in the passive channels has

a more significant influence on the directivity pattern, and has a relatively

weak effect on the coefficient of reflection at the input of the active element.

This fact agrees with formulas (18a and b). It should also be noted that the
order of the quantities Tgx calculated by formulas (25) and (25a,b) coincides.
The difference between the curves in Fig. 7 is explained by the fact that
formula (26a,b) allows for the influence of the loads in the feeders of all of

the radiators while formula (25) considers the influence of the loads in only
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Key: (1) by formula (25); (2) by formula (26 a,b).

the feeders serving the closest (n=+l) radiators.

APPENDIX
Substituting the variable zwell, we obtain

~ 1 2
s(—llnz)=$(z)=so'f"51(‘—z_, ‘?‘1-.::)' |
where |
rm o eind
P

-

Finding Eax consists of calculating the contour integral

i du 1og dz
J(r)-—— = = n » l
2"L . 2“‘? P =Tst] ‘1
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where C is a circle of unit radius with center at the point z=0.

Performing simple transformations and using the theory of residues, the

following expressions can be obtained for J(T'):

(= =~z
t—1 (—-—.,
R b 2 .
J\r‘;=~(-y—] 1= . ,if la < L
L -1
- ‘1
(Zg‘l)z—'—Zo)
.’(I‘)=—(-:~) } 4 2 1 loo) < 1;
x| Z—1 H1f <l
where e
a=:xyIT T, =i )R, $=E;-; HZy=1;

y=21's ~ (1 =Cs) (1 — 12, =T (5 — $912) +12

It can be shown that for the linear array considered in the preceding section

fz11<1l, so that after simple transformations we obtain

22,-(1-!—-‘—)

z ) 2

j([‘)=z‘(_r_) -—-__22—]_ .
. 11—

Then the expression for En: takes on the appearance:

Fo=—]1— 1_1-(;,_-'-)
' r (2 —~23) {2y — —
Wl ke
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EXCITATION OF SURFACE WAVES NEAR EDGE OF HOLLOW DIELECTRIC WEDGE
N.G. Khrebet

This article considers the problem of excitation of
surface waves near the edge of a hollow dielectric wedge
occurring when struck by a planar electromagnetic wave.

STATEMENT OF PROBLEM AND DERIVATION OF GENERAL FORMULAS

Let a hollow dielectric wedge consisting of two semi-infinite plane-
parallel plates of equal thickness be struck by a plane electromagnetic wave
: polarized such that the electrical (E) or magnetic (E) field vector is parallel
A 1 to the edge of the wedge. We shall assume that the edge of the wedge is not
l sharp, but represents the two contiguous ends of the plates comprising the
wedge (Fig. 1). The surface waves are excited by the electrical and magnetic
currents induced by the incident plane wave on the outside surface of the end
of each wall of the wedge. Disregarding leakage of currents from one end to

the other, we can reduce the problem in question to that of excitation of

[
-

surface waves on a semi-infinite dielectric sheet, and write the solution for

the wedge as the superimposition of the solutions for each wall.
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Fig. 1.

From the viewpoint of the practical applicability of the final results,

this approximation is fully acceptable.

Considering the above, let us consider the problem of the excitation of

surface waves on a semi-infinite dielectric plate with thickness of 2d.

In the rectangular system of coordinates shown in Fig. 2, the field of

the plane wave incident on the plate is written as

2 = l-':¢c§ o=l e G:"r)' (1)

where ; is the field vector parallel to the edge of the wedge. The currents
induced by wave (1) on the surfaces of the plate produce a diffraction field (1],
and we shall not be considering them. That portion of the currents which is

? induced on the inside surface of the end of the plate is the source of the surface

waves. The number of types of waves excited on a plate depend upon its thickness

A [2]. Without losing generality, we shall limit ourselves to a plate whose

? thickness does not exceed one-half of a wavelength:




e Dk

s Abbie

e e e O it e

B

od 0.5 (2)

where ¢ is the dielectric permeability of the material of the plate.

ol
\\ \ y ‘
o
.
ok -

Fig. 2.

Only the "primary" type of surface wave can propagate along such a plate, i.e.,
a wave for which there are no limitations on plate thickness (for more detail
cf. [2]). The nature of the surface wave excited depends upon the polarization
of the incident plane wave: a perpendicularly polarized plane wave will

excite a surface H-wave, since in this case the magnetic vector ﬁ will have a
z-component; analogously, a parallel polarized plane wave will excite a surface

3 . . > -
E-wave, since in this case the vector E will have the z-component.

Since the discussion and exposition are the same for calculating'ﬁ- and.E-
waves, we shall limit ourselves to calculating the surfaces of an H-wave, pre-
senting the results for the E-wave as well at the end. The currents induced on
the inside surface of the end by an incident perpendicularly polarized wave will

be

-

I~ WHopoul J: 12—t ] (3)
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where E and Hrr are the field vectors of the plane wave passing through

the end:

-

2y Lyt (4)

.
{

-
.
-~
S~

My

.
1

e

wpow - baly g€ 4 GOCHE !

Here t is the Fresnel coefficient of passage (with the subscript indicating

polari;ation);Eo is the amplitude of the incident wave; ;1 is the unit vector
in the direction of propagation of the wave which has passed through; kn s ZJJ
are the wave number and wave impedance of the plane wave in a dielectric; r is

. . . >
the radius vector of the observation point (r=1yy).

In the general case, the field of a surface wave is the superimposition
of two waves propagating in opposite directions. In our case there are no

conditions to generate the reverse wave. Therefore,

-E.;ion (JLE;1 . I-;'rx —‘vai.‘;_ ) (5)

(the superscripts h and e designate H- or E-waves, respectively). We shall

use Lorenz' lemma to calculate the amplitude a:

VAEAA—ERN S =) 1LE: =T Thav. (6)
s i
-> -~ -> -> - &>
where E; and H; is the field generated by currents I, I,; EjHy is an arbitrary
auxiliary field; V is the space in which the currents are concentrated; S is a
closed surface surrounding space V. We shall understand the vectors El: ;1 in
equation (6) to be the field components of the sought surface wave propagating in
the positive direction:Elaa+E+;§1=a;;+. We shall use as auxiliary vectors Ez
and ;2 the Eielq*vegsors gf the surface wave propagating in the negative

direction: Ep=a_E.; Hy=a_H.. As a result, we obtain the following from equation

(6):
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f“ETﬁ"]‘[E_ﬁAnJE (7
5

I

a’l

-> >
where the currents I, and Iu are defined by (3). In our case, the currents

-> -> . .
Je and 1 are surface currents which occupy a narrow band along the y axis,

and an infinite band along the x axis (the end of the plate). Considering that the

currents and fields are independent of the x coordinate, we obtain the linear

integral ("_¢?) _ in the numerator of expression (7) instead of a volumetric
Wk

integral. We shall use as the closed surface S the plane S, coinciding with

the end plane, and the surface S' which extends the plane ST to a closed

surface at infinity. The integral taken over S' will be ze;o because of the

attenuation at infinity of the surface wave. The integral taken over the

plane S, becomes linear because the fields are independent of the x coordinate.

As a re;ult, we obtain (omitting the subscript + for amplitude)

4 L

J b= 1.0 )y

= (8)

at=

I S T - - -
( V) + \){[E+H_]— [E_H_1}i. dy
- =d 4
The integral in the denominator of (8) is separated because the structure of
the surface waves inside and outside the plate is different.
In order to define this structure, we must solve the wave equation for a
wave propagating along the plate using boundary conditiouns requiring that the

tangential field components on its surfaces be equal.

These calculations are given in [2]; this is the final result:
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e " —i " —i¥z . .
£l =y u--t.! ChoZyvcost-y)e™ — . oide plate, (9)
lAkZy e YoV Gueside plate,

Hn—-*—lH+ le+

(10
where )
E% —inside plat
H* = i e
| *oZe E* —outside plate (11)
~iv
Hro | CAsintig)e™™ — 11 Cide plate;
z l— 'l Ty -—in .
—Axe — outside plate.
(12)
. *h +h . . . . .
The fields E_ and H. are obtained by changing the sign in the exponent in
formulas (9) and (10). The following notation is introduced in formulas
(9)-(12):

’*‘l-§?::€7 - ZE::F? (13)
where y is the propagation constant of the surface wave calculated from the
transcendental equation

3 ',tg(.d']_ (14)
A and C are coefficients which are related by the following condition which
follows from the boundary conditions on the surfaces of the plane:
A 2 : (15)

— e Ny

The upper symbol in formulas (9)-(12) refers to the upper half-space (y>d),
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while the lower refers to the lower half-space (y<-d).

"Wk

Substituting the currents (3) and fields (9)-(12) in formula (8),
after the necessary transformations we obtain the following expressiom for

! the sought amplitude:

i Pt
. _i Qi rE TR} q . (16)

Ly
i where ) S - R
; AT b TS
a {—l —_— . —— ] l SR MY
5 Q9 =1t E, \ H H VA
3 . 0 — & Lo BRI P T .
i A T (17)
d i i
‘ S
ITodio—n, sint g,
I R S

(@' ~-- angle of incidence of plane wave on end counting from its normal).
Analogous calculations for a surface E-wave produce the following result:

—iZy S
a=—="c o !
Akg -

where qp is obtained from formula (17) by substituting t,+t; ; Eg~Hy (t; Fresnel
coefficient of passage for parallel polarization), and the propagation constant y

is found from the equation

o= g d) (19)

Figure 3 shows plots of the relative propagation constant y/kg as a function of
plate thickness for different ¢ calculated using formulas (14) and (19).

Substituting in the first expression in (5) the value found for the amplitude (16)
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and the value of the field vector El.: from (9), considering equations (14)

and (15), we obtain the following expression for the electrical field of

- . ety
the surface H-wave: g4 —e ‘. utside olate, 20)
it o - ¢
i Evo—atEl =i oS (e y) -V ..
. —_— —_—
. l 95 cos (vd) inside plate.
b { I &=3
> _Vg
i 20 a0
2 )
g 1 8
17 v
B 4
- 15 £€=3 16
! 5 15
4 M T4
1
13 ¢=2 13
12 12
g v #- wave & v
"0 " L H . I'U " A e
0 01 02 03 04 35 0 91 22 03 04 Q.
Fig. 3

We can also obtain expressions for the magnetic vector component of the H-wave
2 from formulas (11), (12) and (16). In particular, we obtain the following from

(11) for the y-component (which we will need below):

—2|y| .
V_ & 2 e oubside plate,

e Hll —-a”Hh- _ 0 KoZo o4
f b+
t Y Cos(vy) _—igz . (21)
1 ——— e —
, 9. TZn 05 (v 4) outside plate.
’,., Expressions for the field components of the surface E-wave (excited by parallel

polarized plane wave) can be obtained from formulas (20) and (21) by substituting
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~h e h _e 1 1
Fiop + Hnop 3 HEls dopraolls Zovzy; 2, >7. -
As a result, we obtain
o } - ¥ .
4 Dy —— ¢ " — outside plate,
- | How - I ¢ (22)
. " ¢ [§¢ irh —Y
- [ Din Tont oy ‘= inside plate,
ii} ' Qv-_l'z~%— eA..l:“"outsi.de late
bk ': Ee . ‘ L L P » (23)
d
PRESESEINER
A 4 W SF o @ o 7 inmside plate.
:
N
M . . . .
= We recall that the expression for the excitation amplitude qq|| can be obtained
}.g from formula (17) by substituting t{+t||; Eg*Hg. the expression for the Fresnel
>t EgHg

passage coefficients t| and t|| is presented in [3]. It follows from formulas

(20)-(23) that a surface wave propagating outside the plate attenuates along the

y axis with attenuation constant K=k0/(Y/ko)z-l. Figure 4 shows the calculated
)

curves, which indicate the distance from the plate L. at which the wave is
attenuated by a factor of 10.

y’ ;
| v

122+ £- wave 12

. a5+
= ol
i o
x J‘ A
a1 29 7 e 25
" Fig. 4.

; The nature of the relationship between the excitation amplitudes qg| and
qp|| and the plate thickness, dielectric permeability ¢ and angle of incidence of

the plane wave@'p on the end is illustrated by the curves in Figs. 5 and 6 which
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are calculated using formula (17) (the amplitude of the incident wave was

taken to be unity in the calculations). It is apparent from these figures,
in particular, that the amplitude of excitation is a strong function of the
angle of incidence of the plane wave on the end of the plate: it is maximum

for normal incidence on the end (Qp=1/2), and minimum with normal incidence

on the surface of the plate (B=0°9). It should be noted that, as the
experiments indicated, a surface wave, albeit very weak (approximately 2-3
orders of magnitude less than for @g=r/2) is also excited in the latter case.
This divergence is a consequence of the fact that our calculations ignored

leakage of surface currents from the surfaces of the plate to its end.

0. 4 qﬂl

ask H-wave st £- wave £ =2
6=2

o =3 Wt

. C_j £=3
v= b
€=§ v S=4

a2z ar E=§

art ~{1 arr 'i‘

0 W az 03 % a5 0 o 0z a3 % a5

Fig. 5.
§ %
05t £- waveldd
&} w/f-Wwave,, |
/’,’ *
ar //' 23
az»- // E=y 0.2
art / %"0,286 ar
/4
2 — o r da -
0 20 40 60 80 0 20 4w 50 &
Fig. 6.
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CONSIDERATION OF OHMIC LOSSES

The dielectrics which are used in practice have ohmic losses characterized
by the imaginary part of the complex dielectric permeability ¢'=¢(l-i tan §),
where tan § isthe tangent of the loss angle. Because of this, the surface wave
propagation constant y found from equations (14) and (19) will also be a
complex quantity, the imaginary part of which will characterize the degree of
attenuation of surface waves along the z axis. This part can be obtained from
the aforementioned equations if we consider that the dielectric permeability
which enters in is a complex quantity. Corresponding calculations (allowing

for the smallness of tam §) produce the following result:

Sea X . an x
= — - Ru v
Jm(yiay) = xl 'Si“ al ——ta “--ftan § , (24)
(Rewll = 7 ety — 1
( sin
LIl R
: X | e _ .
Im (y/ky)* = — ————tm & - ptan 8, (25)

., S i
(Re (Y/%o)] |1 + |

x  [Re(y/xg)]*—1

where x=2 Re(yd); the superscripts e and h designate E- and H-waves, respectively.
Figure 7 shows the curves calculated for the coefficients g® and gh as a function
of the plate parameters. We are easily convinced that in the limiting cases

(d+0 and d»»), formulas (24) and (25) produce physically obvious results; when
&0 Jm(y/kqg)»0; when d»w Jm(y/ko)ézg: tan §.
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- POWER TRANSFERRED BY SURFACE WAVE

Besides the change in the structure of the field near the plate surfaces,
the influence of surface waves is also manifested in that part of the energy
of the incident field is consumed in exciting them which, e.g., in the case of
pointed barriers, results in a further reduction of their efficiency.
Obviously, the portion of the energy lost in exciting surface waves is the same

as the power which those waves carry.

i Since in the present case the system is infinite along the x axis, we shall
L do the calculation for a band with unit dimension along this coordinate and
infinite dimensions along the y coordinate. As we know, the power flux carried
by an electromagnetic wave is characterized by the Umov-Poynting vector

4 - 1 ==
) . —— *
. S= |EF*). (26)
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The power carried within the band we have selected

.8

o . b
“nus 3

'EnogH;.OD l_dy

-

w

27)

whence we obtain

e — -:i—- ‘)‘ (E, :JH:' RECR

where the first superscript refers to the H~wave, and the second to the E-wave.
. N P 4
We shall limit ourselves to presenting the calculation for the H-wave, and :

present the results for the E-wave at the end as well,

Since the expressions for the field components of a surface wave are
different inside and outside the plate, we shall calculate the integral in

(27) separately for free space and for the dielectric:

T e ) 4
P’==P':—Ps=[‘| “‘)](E,;Hy)dy—-j(E,Hy)dy. - (28)
4 —d

——c0

Substituting in (28) the corresponding values of the fieldsEy and Hy
from (20) and (21), and introducing the coefficient nh=P2/P1, which is equal

to the power ratio inside and outside the plate, we obtain:

' PP =P (1 =), (29a)
where
a_ by
Pi= 5= @Y, (29b)
o _(_1-_)“2”1 L sin2+d
CET) T
2sin®v d (29¢)

Analogous calculations for the E-wave produce
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where (30a)
1y .
Pf—’ iy 1 270 “1011};;
S o mro (30b)
ﬂ”TZI-L)-' doosinlod
‘.-‘:in'-’ d
(30¢)

Expressions (29) and (30) still do not give a clear representation of the
energy lost in exciting the surface wave. We shall estimate this loss below

while considering surface waves near a wedge.
CALCULATION OF SURFACE WAVE WITHIN HOLLOW WEDGE

We shall select a rectangular system of coordinates such that the
X axis coincides with the touching ends of the plates forming the wedge and
the z axis is directed along the bisector of the wedge (Fig. 1). Obviously,
the field of the surface wave at a point M(y,z) lying within the wedge is the
superimposition of the surface fields propagating along each of the walls of

the wedge:

-

5(9' Z) 1(151‘\!'!1.:1) (f),_.:’]_:_ M (30)

where hy and h) represent the distance from the observation point to the
corresponding wall along the normal to it, and z and z; represent the distance
along the surface of the wall from the end to the point at which the normal

intersects the wall surface:

Bl

po— H “" ..1". PR NALY \
hy=2sinQi2—ycos Q2 Ny -=zsinQul--yensd2 (31)
2, =2c08Q2+—ysinQ2; z, :rcostdl—pntll

where } is the angle of the wedge.
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In particular, we shall have the following for the electrical vector of

the H-wave [cf. formula (20)]:

Yy

E"’;ny‘ Iy S, et 4 _‘;,_V_‘,;" (32)

Let us estimate the portion of the energy consumed in exciting surface
waves. In order to do this, we place a receiving antenna inside the wedge
which has one linear dimension of 2a (along the y axis), with the other being
a unit dimension (along the x axis). We shall compare the power carried by
the surface waves with the power received by this antenna in the absence of the
wedge. For simplicity, we shall assume that the incident plane wave propagates
along the wedge bisector. Then the powers carried along each wallwill be the

same :

K L}
Pnnn QP.:OI )

The power received by the antenna when the plane wave strikes it is, as

we know:

I*,i (33)
4n

-
where |S| is the absolute value of Umov-Poynting vector (26), G°==Kﬁg}(20 -1y
A

is the antenna gain, K is the reflector utilizatiom factor. Substituting the

values of ISI and Gy in (33) and taking the ratio €$;B /Pp, we obtain

P oy (@,
Pi a2 l(qu)’(!,;vf). (34)
2
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For a wedge with an apex angle of Q=30° and walls 2d/x=0.286 thick
dielectric permeability €=4, expression (34) takes on the following numerical

values for an E-wave:

prae 4 4 fr 247=15 K= 0.6,
TP, T 112 for 24n=3 K=06

Thus, the portion of the plane wave energy lost in exciting surface waves can

in certain cases be considerable.
COMPARISON WITH EXPERIMENT

The formulas obtained for surface waves were checked experimentally by {

using a dipole to measure the electromagnetic field near the surface of a plane
dielectric sheet with a plane electromagnetic wave incident upon it. The
transmitting antenna (horn) and dipole were stationary with respect to onme
another. A vertical sheet of acrylic plastic was placed near the dipole and
oriented so that the wave struck its end at an angle of ©'=159. A picture of
the field was taken (with respect to power) immediately next to the surface of
the sheet while the latter was moved evenly in a horizontal direction in the
vertical plane such that the angle of incidence of the wave on the end and the
distance from the dipole to the surface of the sheet remained constant. The
variable quantity was thus the distance z from the end of the sheet to the

dipole.

The dotted line in Fig. 8 shows the experimental curve. The field received

by the dipole in the absence of the sheet was taken to be unity.
The solid line in the same figure shows the calculated curve for the total

field allowing for diffraction (1) and the surface H-wave (in the experiments,

the electrical vector of the incident wave field was parallel to the end):
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iEno‘n;2 = %E;mw - qo e-iyzF. (35)

The dot-and~dash line in Fig. 8 shows the caloulated curve of the
diffraction field |E ' |2 disregarding the surface wave. It follows from
comparing these curves that surface waves have a significant influence on

the nature of the field near the sheet.
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Fig. 8.

The good agreement between the experimental and calculated data indicate

the validity of the surface wave formulas obtained in the present work.
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B RADIATION OF ELECTRICAL DIPOLE LOCATED NEAR AN ELONGATED IDEALLY CONDUCTING
L ! SPHEROID ON AND PERPENDICULAR TO ITS LONG AXIS

D.A. Duplenkov, A.N. Kovalenko

The eigenfunction method is used to find a rigorous
solution to the simplest problem of asymmetrical excitation !
of an elongated ideally conducting spheroid. A number of
characteristics of the radiation are calculated for the
secondary and total fields for the case of several spheroids
with the same interfocal distance and different radial
surface coordinates with different distances between the !
spheroid and the dipole. A solution regarding plane-wave i
diffraction is obtained for the special case of an
infinite distance between the spheroid and the dipole.

u INTRODUCTION

The problem of excitation of a body in the form of an elongated spheroid
has in recent decades attracted the attention of many investigators interested
in boundary problems in electrodynamics. This interest is understandable, since

' ; a system of elongated spheroidal coordinates makes it possible to isolate the

variables in a scalar wave equation, consequently making it possible to use

the eigenfunction method to solve the problem. On the other hand, a body in ]

the form of an elongated spheroid has a significantly more complex form than a
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sphere or cylinder, for which solutions were obtained previously The articles
which have been devoted to the problem cf excitation of a body in the form of
an elongated spheroid are numerous, and can be divided conditionally into two
groups. The first group includes a number of fundamental works on the theory
of spheroidal functions. This is mainly [1]-[4], as well as a number of other
articles which consider more special problems of the theory of radial and

angular spheroidal functions.

The second group includes the series of articles [5]-[16], which are
devoted to solving various special cases of excitation. The basic work in
this group is [5], which formulates in general form the solution to the
problem of asymmetrical excitation of an elongated spheroidal body. The
other articles examine the solution of narrower questions. However, except
for [8], [9], all of these works, which consider the problem of diffraction of
a plane wave incident on a spheroid along the long axis, involve the symmetrical
method of excitation. Because of their complexity, problems of asymmetrical
excitation have thus far remained practically unsolved even in the simplest

special cases.

The present article is the first attempt to attain numerical results for
the simple problem of asymmetrical excitation of an elongated ideally con-
ducting spheroid. Excitation is done by means of an elementary electrical
dipole placed on the long axis of the spheroid. The axes of the dipole and the
spheroid are perpendicular to one another. The distance between the spheroid
and the dipole may vary. In the special case for an infinite distance, a
solution is obtained for the diffraction of a plane wave incident on the spheroid

along its long axis.
SOLUTION
In [5], the problem of excitation of a body in the form of an elongated

ideally conducting spheroid is solved in general form. It is shown that for anm

arbitrary system of exciting currents (for an arbitrary primary field), the
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| problem of finding the coefficients of expansion of the secondary field into
,;f a series with respect to spheroidal functions reduces to solving an infinite

. system of algebraic equations.
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Fig. 1.

In solving the present special problem of excitation, in which a
spheroidal body is excited by an elementary electrical dipole (Fig. 1), we
shall use the general methodology developed in [5] as a basis. Since we are
considering a special case of the general problem, it becomes possible to

simplify significantly the mathematical apparatus.

o First of all, the possibility for this simplification comes from

specifying the field of the primary source. Therefore, we shall first consider
the primary field of the dipole in a spheroidal coordinate system. The dipole
is displaced from the coordinate origin, and located on the axis of the system

with the axis of the dipole perpendicular to the axis of the system.

Since the Green function of the scalar equation is known (4}, [14]), the
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intensity of the source magnetic field can be calculated by the following

:?' formula [5):

\ 7 ograd G Je
H :\,, grad G (1)

' Here j is the volumetric density of the electrical current of the source.

§
i e R im . oy
s : O~ " Z Z o St ) Sy the ) cosm (@ — @) -
.:-. N m=Q lam .
4 |iemth heR (h ¥) gor §<F
F D lhedin, Dienih ¥) for §>y | Creen function,
!
..j 'SmA7.]d-—angular spheroidal coordinates,
lemf(‘ré)“radéal spheroidal functions of the first
x . sort,
by | he (i 3)\%) —radial spheroidal frunctions of the fourth
sort,
-1
Nai=) Sa\h )dn — angular function standard,'
Tt S
/1 for . m=0,
Em‘—-
12 &mm:1=l,2,&.m
h= — —parametric characterizi i
2 ~Rirametri erizing interfocal
d — interfocal distance.
The symbol q denotes differentiation over the source points whose coordinates are
L |

designated with primes. The integration in expression (1) is done over the

4 source points.

' Substituting in expression (1) the expansion for Green's function and

making a series of transformations, we obtain the following expressions for

the Cartesian components of the magnetic field
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If we consider that in this case the outside electrical current has only an
n-component and is assigned in the form of a §-function, i.e., the volumetric
current density can be expressed by the equation

I3 (3 —8)3 (- — 1) 3 (9 —0)

l'. = I’lh!h’ ’ (3)

where g=ga » n=l, ¢=0 are the dipole coordinates, the values of the

coefficients entering into (2) are represented by the following formulas:

‘J’l»;{ "‘J . /3 grad {S:’:( (h' % )jem."-h' .;”\C()Sm({ Hx dU',
ai, = .i (72 grad (S, (7, ) jeq (h, Sysinmy ji,de .
o

b= J 172 €rad {Sug (1, %) s, hcosmig ), o
v (4)
b, = .\ [l: grad (S (B, ') jen th, §)sinmyg'}, de’,
)

chy= 1 (72rad {Smy(h, %) jepth, Tycosm ), dv’,
Py

c,":"=J [j2grad (S, (h, %) je,; (h, FVcosmy )] dv.
2

When formulas (4) are used to calculate the coefficients a‘}‘iz

. b‘tiz, c}&z, they
all turn out to be zero except for b&and C%!L- Substituting these values in
formulas (2) and using the connection between the Cartesian and spheroidal

components of the vector, we write the following expressions for the spheroidal
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components of the magnetic field of the dipole:

he&\h,;);;[]ewyh,;»k.=

S — ——

jeo th 3 SSlhes i Tl

o hethd, Sije, . o
: 4 - iVt @ 1! 1.4
—_ _’L_S“(/‘ ‘/)i([_l)_| .

VEZ Gy E e Y 2 ljewth DA L

(5)

21, [+ F

K . '

H., = — ——sing ————-_‘_ ; —b LR

T x4 'r.l"“ W, Y
=L‘

h”'ew(k-§)j%[/ew(h*g)i"

|
)
lieol(h §) —[he”’ (h, 3

1]
]

- _JT._V_Ll_:_fZ Sk D hell (h, B)j ey (k. 3 )
bof—rbeE "1-1‘ jeyg(h, Bhed (A [
) - he(h, 3 (j eq (h, 3
2[31 : 0/ az’ ) o Ut 3
H, =_-§§7—;’.-°-cosq> ' T"—S,,‘(h, 1) :
=0 i eqlft, 4;)—fhe“”(hl ..o

s

The first line of the radial spheroidal functions in these formulas corresponds

to the region £>€5 » and the second to §<f4 . We have thus solved the first

part of the problem, which concerns finding the field of an elementary electrical
dipole located at the point with coordinates £=€y , n=l, ¢=0, i.e., we have

found the primary field of the source. The expressions for the components of

the primary field are characterized by a simple relationship with the coordinate
¢ , which significantly simplifies the solution to the second part of the problem,
namely finding the coefficients of expansion of the secondary field, i.e., the

field of the currents induced on the spheroid.
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The field of the currents induced on an ideally conducting spheroid is

represented in general field by expansions (2) as well, since these expansions

were obtained for an arbitrary system of currents. In the special case, these
may be surface currents on the spheroid. However, the coefficients a,b and ¢ in
this case are not defined by equations (4). They are unknown and must be
i defined from the boundary conditions on the surface of the spheroid {5]. The
3 problem becomes that of solving an infinite system of algebraic equations for
(¥f the sought coefficients. We note that the simple relationship between the
i primary field and the coordinate ¢ simplifies the problem significantly.
Analysis shows that the only non-zero coefficients of expansion in expressions
- (2) will be bék, c%k, a%k and b%k of the secondary field, where a%k=-b%k. The
;f* numerical values of these coefficients are determined from the following
' infinite system of algebraic equations, which is significantly simpler than

o that written in [5]):

$]

h? ey (h, 3505, — Y o= hed (, 3960l -
7:3””

S‘ nilh he{,‘(h, B P E—14 =

I-l

h ol You -
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Pt [ .
== [?:-m\,‘—ieo,(h B2 el h 3 e, Chm

.v .Lv ‘O

_ ——— ey, F) (1) heD k34l (6)
) Nuy’: l ) o) I ( ) (A |
; C ]
! I VAT he? lewe g2 =BV L 2y 577
.i 2oy e thad(h Dlmeab ) g 5o d ¥
] ‘ {0
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X hegd (h, Bla b L Sk ik Yl B, =
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The following notation is used here:
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The expansions themselves for the field in this case (for the region €,>§8 )
take on the following form:
Iy Ix? S VITT @
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Investigating the field in the far zome, i.e., where £+®, we can
simplify expressions (8). 1In order to do this, we use certain asymptotic
representations for the radial spheroidal functions and assume that the
spheroidal system of coordinates becomes spherical in this case. The final

expressions for the summary field in the far zone take on the following form:

72 x —ikr | .. had
H;yuu -t : sin @ | e a3 cos® — _2_ —cosB Z _?_ s
ni l ] = Ny

{~-n- LU+
;~<s,,(h,1,)e T -Z—so,(h 7)e 2 1,},,]+

2 ; U=

. b]

;mezfdﬂmme L
=] .\l“

M ¢ ¢
HY™ = — cos o cos O ety 09

44 r l - (9)

—ixr ‘

9 [ o o i(H;l) " . ‘
=y =8, (A, 0
i l l; ‘v" 2 ( 1‘) e Qo J

—-_—

d+H = “

"Z—Sol ne : btl)l

The problem is thus in principle solved completely, since all of the

necessary relationships have been obtained.

CALCULATION OF DIRECTIVITY PATTERNS

The calculation of directivity patterns using the formulas obtained above
is divided naturally into several stages.

In the first stage, all of the functions which enter into system of
algebraic equations (6) must be calculated. We are talking primarily about the
spheroidal functions and their derivatives. This problem can be solved most
simply by using tables of the coefficients of expansion of angular and radial

functions with respect to adjoint Legendre polynomials and spherical Bessell

138




b e e e d

o

—_—

e —

and Neumann spherical functions, respectively [3]. This was the method used in

the present work. However, significant difficulties are encountered on this

simple path involving the poor convergence of the series for radial spheroidal
functions. These can be overcome by using a certain recursive formula for the
coefficients of expansion of angular spheroidal functions, as well as a recurrent
formula for spherical Neumann functions. Operating with the sequences of the
ratios of later members to earlier members and considering an extremely large
aumber of members of the series, a computer can be used to obtain tables of
spheroidal functions for those parameter values for which the coefficients of

expansion are tabulated.

It is no less difficult to calculate the coefficients of (7) which
represent integrals of the products of the angular spheroidal functions with ;
certain additional factors. It is extremely difficult to calculate these
coefficients, although it is simple in principle. Each spheroidal function 1
must be represented in the form of an expansion with respect to adjoint Legendre
polynomials, and each polynomial must be used in convoluted form. The result
is finally obtained at an infinite series of integrals of step functions with
certain coefficients which include the coefficients of expansion of the

spheroidal functions.

After these additional calculations, it becomes possible to solve system
(6), since all of the special functions which enter into it are represented
numerically. Considering the fact that every other integral in (7) becomes
zero, depending upon the numbers £ and k, it becomes possible to divide system
of equations (6) into two infinite systems of algebraic equations for odd- and
even-numbered sought coefficients, respectively. In practical calculations, the
order of the system matrix must be limited. Modern computing technology allows
us to deal freely with complex matrix up to order 80; however, in our case the
computer cannot determine the order of the matrices being manipulated. The

limiting factor is the table of spheroidal functions which, based on [3], cannot

be calculated for numbers £>8. Finally, the highest possible order of the matrix
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of the system of linear algebraic equations for even coefficients is 12, and
9 for odd coefficients. Experience in doing this calculation has shown that
this order of matrices provides more or less acceptable accuracy of solution
only for bodies with extremely small electrical dimensions. Thus, in this
stage the solution of two complex systems of algebraic equations allows us to
find all of the necessary coefficients of expansion of the field a,b,c which

enter into (8) and (9)

The last stage consists of calculating the components of the total and
secondary fields of the system using equations (9). This calculation presents,

in principle, no difficulties.

As examples, the directivity patterns of an elementary dipole with
current fi located in the plane $=0 near the elongated spheroid in Fig. 1
were calculated. The following parameters were used for the spheroid: h=1,
£0=1.044, 1,077, 1, 2, 2.0. The dipole was located on the axis of the spheroid
with radial coordinates of £,=2.0, 2.65, 4.22, ®. The directivity patterns were
calculated for the planes ¢=0 and ¢=n/2. Figures 2-7 show the calculated
directivity patterns. In this manner, questions associated with variation in
the directivity patterns as a function of the transverse dimensions of the
spheroid were investigated to a certain extent, since variation in &3 designates
a change primarily in the transverse dimensions; the directivity characteristics
as a function of the distance between the dipole and spheroid were also

investigated.
CONCLUSION

The presemt work provides concrete results fcr the problem of asymmetrical
excitation of an elongated ideally conducting spher. 'd. The basic analytical
formulas are given along with a commentary on the difficulties involved in

making specific calculations. The main limitation on using the developed

apparatus to obtain a wide group of sufficiently precise numerical results for
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this problem, as well as other asymmetrical excitation problems, is the lack

of complete tables of spheroidal functions. Instead of tables, it should be
agreed that it is often convenient in practical calculations to use a computer
program which follows a defined algorithm to compute the required function each
time as needed. Such a program can usually successfully replace a table;
however, developing an algorithm for calculating spheroidal functions with
sufficient accuracy and writing the program represent an independent mathematical

problem.
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The present work presents calculations, based on tables, of coefficients of
expansion of spheroidal functions [3] which are substantially limited, which
results in low accuracy of the result (of the order of 10-20% for the secondary
field). The variation in the order of the system of algebraic equations with
respect to the unknown coefficients of expansion for the field gives an idea
of the accuracy of the solution. In addition, the results make it possible to

investigate several interesting relationships.
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Figures 2 and 3 present series of patterns in the plane zx(¢=0) and
zy(¢=n/2), respectively, which illustrates the change in the picture of the
secondary field as a function of the distance between the spheroid and the
elementary dipole. The directivity pattern changes little for the region of
radial coordinates of dipole position £y 4. This indicates that when the
distance between the spheroid and the dipole exceeds one-half wavelength, and
with a thin spheroid, the secondary field practically coincides with the plane-

wave diffraction field.

The series of patterns in Figs. 4 and 5, referring respectively to planes
z2x($=0) and zy(¢p=n/2), illustrate the relationship between the secondary field
and the transverse dimensions of the spheroid. This relationship is strong.

The patterns for the case of spheroid which is close to a sphere =2 differs

et
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sharply from the patterns of thin spheroids.

Figures 6 and 7 use a polar system of coordinates to show the directivity

patterns of the total (solid line) and secondary (dotted line) fields in the

2x and zy planes. These patterns, as well as other calculations, show that the

secondary field in all of the cases examined has significantly lower amplitude

than the primary field. Therefore, the patterns of the total field differ from

M those for the primary field only for near-spherical spheroids.
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p- STATISTICS OF FIELD OF LINEAR ANTENNA WITH ARBITRARY AMPLITUDE-PHASE DISTRIBUTION
' AND ANY FORM OF ERROR CORRELATION COEFFICIENT

dom Al s e e

V.1. Zamyatin, L.G. Korniyenko

Asymptotic expressions are obtained for the average ;
directivity pattern and efficiency of a linear antenna for '
the case of small and large (in comparison with antenna
length) radii of the correlation phase errors. The expressions
are suitable for arbitrary amplitude-phase distribution and
any form of error correlation coefficient. A number of
examples are examined.

1. As we know, one of the basic problems in statistical antenna theory is
that of finding the statistical characteristics of the antenna field for given
! error statistics. Analytical results naturally depend upon what sort of error
statistic we assign. Errors are usually assumed normal and stationary along the
antenna. The correlation coefficient is usually Gaussian or expomential.
Gaussian form, in particular, is used in [1]), which contains the most complete :

exposition of the fundamentals of statistical antenna theory.

However, situations are possible in practice for which the error statistic

differs from that used in [l] or other anmalogous works. In this connection, it
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is extremely important to develop statistical theory in the direction of
eliminating various assumptions regarding error statistics. In particular, it
is desirable to obtain convenient analytical relationships which are suitable
for any form of error correlation coefficients. It is difficult to do this for
arbitrary values of the error correlation radius. However, such relationships
can be obtained for small or large (in comparison with the antenna size)
correlation radii. The derivation aud analysis of these relationships for
arbitrary amplitude-phase distributions comprise the subject of the present

article.

2. A linear system of continuously distributed sources with random phase

errors is examined. To the extent possible, the directivity pattern will be

i
Fo)= [ f A@) A* (x) el OmemiBbe=m gy

(L

to within a constant factor, where A(x) is the determinate amplitude-phase
distribution of the sources, ¢(x) are the phase errors, assumed normal and
stationary below, ¢=%% sin® is a generalized angle, x=%% is a generalized
coordinate. The asterisk denotes a complex conjugate quantity.

Averaging equation (1) and using an expression for the two-dimensional
characteristic function (cf. for example, [2]), we find the average directivity

pattern in terms of power

l )
ﬂw=jSAumqmgﬂthWWhmum' (2)
—1

where R(x-x1) is the phase error correlation coefficient, and o is their

dispersion.
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Expression (2) can be transformed as follows:

o0 i
Fyy=e° {Fo W=y o) | ACOA* )R (x—xy)e !t dxdx‘] =
i

ma=|

w0 w (3)
—e | o)~ L oy —_
=e [ro(q) b Z = J Sn(D) Fol¥ t)dr],
Maml| -0
Here Fg(y) is the pattern in the absence of errors,
Sa(@= | Rm(x)e” "dx, (4)

The first term in (3) is proportional to the pattern in the absence of errors;
the second term determines the scattered (due to phase fluctuations) power.

It characterizes the distortion in the shape of the directivity pattern. As we
can see from (3), the angular distribution of the scattered power is a function

of the type of correlation coefficient and the directivity pattern in the
absence of errors.

3. Let us now consider the most important case of small phase errors.

The correlation functions which are used in practice can be represented in
the following form:

= 8 B x
R(x)==r(x) 8 age®*, (5)

Nu—o0

where r(x) is the envelope of the correlation coefficient. Here ‘:a1==L
since R(0)=r(0)=1. ’

Now expression (3) takes on the form
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(6)
where
L) = [ S.(¢—B,—7) Fyrpit
- (7
is the integral of the product of the undistorted pattern and envelope
spectrum
S, (v)= f rixye~™ g, (8)

It is apparent from relationship (6) that calculating the integral in (7)
provides the basis for calculating the average pattern. Let us examine this
integral for the cases of small and large (in comparison with antenna length L)

error correlation radii p.

Small correlation radius p<«L). In this case, the spectrum width S,(t) is

significantly greater than the width of the directivity pattern. 1If we assume
that the maximum of the directivity pattern in the absence of errors is located

in the direction {=b, then

Flo= e““[F.(\P)+2%Z:a..S,(\P—ﬁ.—b) N Fo(r)dr]z

- (9)
z'3-"[1"» %)+ %S('P- b) S Fyv)d 1’-]

Here S(t) is the energy spectrum of the phase fluctuations, determined by

expression (4) with m=1.
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As we can see from (9), the angular distribution of the scattered power is
independent of the amplitude-phase distribution, and is determined only by the

energy spectrum of the phase fluctuationms.

Let us consider the matter of antenna efficiency. If we assume that the

power radiated by the antenna remains unchanged in the presence of errors, then

F (b
Fe(®) '

D_
Dy

where D and Dg are the average efficiency and efficiency in the absence of errors,
respectively.

Using (9), we have the following for the case in question (p<<L)

=}

® _ e 1425k ( ~ =D
Doy [H' 2as(b)_S.F°(‘)“']~° : (10)

In writing (10), we discarded the second term inside the square brackets, since

S(b)<<l when p<<L, and the value of the integral is of the order 7. The formula

D —e*

5 is often encountered in various articles on antenna statistics.
(]

As follows from the above, this relationship is independent of the amplitude-

phase distribution and the form of the correlation coefficient.

5. Let us now consider the case in which p>>L. In this case, the function
S¢(y) varies much more rapidly than Fp(y). The essential domain of integration

in the integral in (7) is near the point y-8,. Expanding Fo(1) near this point,
we have the following from (7):

= Fi0 (0 —8w
Lw=Y (=1 my, (7a)

«l
=0

150

1




¥ v

Y

s
o aete M A st

\ g

*

where my= J‘S,(ﬂr" de=2=(—i)* r*{0) is the kth moment of the envelope

spectrum.

Since r(0)=1, r'(0)=0, the first two terms in series (7a) contain no
information about the specific form of the correlation coefficient. Therefore,
limiting ourselves further to three terms in the series (7a), we obtain the

following from (6):

n

Fipr~e™ {Fo ($)+2 Z a, [F, (\p—p,)—iz(—o) F@ (\p_p")]} . (1)

It follows from expression (11) that the magnitude and angular distribution of
the scattered power is a function both of the shape of the directivity pattern
(i.e., the amplitude-phase distribution) as well as the type of correlation

function.
6. Let us consider some examples.

a. A linear equiphase antenna with uniform amplitude distribution A(x)=

SAA®E 1 3 11 = —-7}-:—_“ N
Ag=1/2*. The correlation coefficient R(x) R(x)=¢ © cosps,
where c=%§

is the relative radius of the phase error correlation. When §=0
we have the Gaussian correlation coefficient form which is widely used in

antenna statistics. In the present case:

lye select the value of Ag such that the value of the field in the direction of
the maximum is equal to unity (Fg(0)=1).
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The scattered power is independent of the angular coordinates, and is
fairly small. Therefore, the influence of the scattered power is felt only

in the direction of the nulls of the pattern in the absence of errors.

When c>>1

- { z [ 2
F ) =e™ £y (8 + 5 | Folb—B— 252 P2 (g —) = Fy(p— i —

@0 . i —g SNt 2
—L%JF?@—ﬁ)'=e¢:w.4“TUWw%—m~1m¢+mL. (12)
where the function /(c, )= s‘;#— :,:F[(s—zxpz) cos 25 + 4y sin 2 — 3]

is tabulated in ([1].

For g=0, expression (12) coincides precisely with the results in (1]
Let us investigate the nature of the variationm in the angular distribution of
the scattered power FP(¢) as a function of the quantity B, which characterizes
the oscillation frequency of the correlation function with a relative phase
error correlation radius ¢=6 (Fig. 1). It is apparent from Fig. 1 that as the
frequency of g increases, the amount of scattered power in the direction of
the main maximum of the theoretical pattern Fgp(y) gradually decreases, and
increases in the vicinity of the side lobes. However, up to a certain value of
8 the amount of scattered power is maximum in the direction {=0. The nature of
the angular distribution changes qualitatively for g>1.5. The curve has two
peaks with a valley at |=0. The power is redistributed from the main lobes to
the side lobes of the pattern Fo(y). As g increases, the maximum scattered power
moves away from the ordinate, which for certain values of g leads to a'sharp

filling of the nulls of the theoretical pattern Fg(y).
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b. Linear equiphase antenna with Gaussian amplitude distribution

' W) PN
- In this case F, = [ - .
AW =4de & o V= | 4B e Red(df,
1 b8 20 -t L .
where Z=?—l—2—' diz2)= '3 fe -- probability integral. If we

M
require that Fp(0)=l, then 4 —(B} TRe®(2)].m0)".

As before, we take the correlation coefficient in the form

X2
R(xi=e  cospr.

When c<<l, the results converge with the results obtained in sectiom a.

VW)

6 5 4 32 7 01 72 4 % 586

Fig. 1.

[Footnote, not keyed in text: A thorough table of Fourier transforms is given,
for example, in {3]. ~~ Tr.]
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Let us consider in more detail the case of large relative radii of phase

error correlation (¢>>1l). In this case

Fiw)=e{F, ()~ [Folo—B)— 252 Fn (: — )=

@ .
- F,,(\p;ﬂ)__’2_(°)[:‘()2)(¢_fﬁ) L' _
where

e 1 sege

;%—Fg?) ($)=Bt= e 2 [y2B'—1][Re® ()] +B°] e B+ .

- Re ®(2){2cos p— 3y B*sin ] + 28B4 sin? \pe- L

In order to calculate the quantity FéZ)(w), we can use the table of the values
of the function W(z) [4] and the expression

-}
Red(z)=1—e & 4.[ReW(iz)cosy—JmW(iz)siny].

which can be obtained from the formula ®(z)=e~2’ W(-iz)-1 [4]. Figure 2 shows
curves which characterize the angular distribution of the scattered power FP(W)
for ¢=6 and B=0.5, S5 for the different values of 8=0,1,2,3. The values of B are
selected such as to equate the angular distribution of the scattered power with

a nearly uniform amplitude distribution (B=5) and a distribution which drops off
rapidly toward the edges (B=0.5). It is apparent from the figure that the nature
of the variations in the curve for the scattered power as a function of the
frequency of B for B=0.5 remains the same as for B=5  However, for a dropping
amplitude distribution the curves for the scattered power are less semsitive to
changes in B. This means that when 8 varies we should expect a more severe
distortion in the shape of the directivity pattern for a uniform amplitude
distribution (especially for 8>1.5). The latter is confirmed by Figs. 3 and 4,
which show plots of the averaé; directivity patterns in terms of power for B=0,5

(Fig.3) and B=5 (Fig. 4) with a relative phase error correlation radius of c=6
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and dispersion @=0.5. It is also apparent from the figures that even for small
phase errors and large correlation envelope radii the shape of the average

directivity pattern can be distorted significantly (for large B).

7. We examined the case of small phase errors above. However, situations
may occur in practice in which the errors are large (a>>1). 1In this case, We can
find an asymptotic expression qu the average directivity pattern. Let us look
at the solution to this problem for the special case A(x)=Ag=1/2. The
expression for the average directivity pattern will be

t
/—:1 \]) = %S \ e—fz[l—Ru—x.;l-f—i.ar— ‘“«IXJXI,
—i

oyt
‘7

te6 0/ i gug
§=5 -

Fig. 2.

When a>>1, the main contribution to the integral is from the region in the

vicinity of the point x=0 of the function R(x). Representing the correlation
coefficient in the vicinity of this point as




v

T R
ORI S A 3 P

Fig. 4.
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we obtain
i % R(.’)

= 13
Fiy) : }.\e

(0)ix= 1P bil (x—xy)

!
dxdx, - —4—-]((1, V.

where
- 5]
* l’ R0

The integral

1 —.i::;'—'.—l'.lx-—x,.

Ie, p={le ™ dxdx,
-1
lc2
- -—= [ ¥ep 2 ¥
=cq) =e ! Ref\c—'—"l-—a‘(b —— i
Ly & 2 \rz 2 ,
—Ci.{ e L * cos

2
(Where F(z)=e"""\e"ur).
)

is calculated and tabulated im {[1]. Figure 5 shows graphs of the average
directivity patterns for various cy . As cy drops (for example, as the errors
increase), the average directivity pattern is "blurred". At a fairly small

value of -R(Z)(O), the quantity cy~l and the pattern acquires directional

properties.

We note in conclusion that the methodology developed in this article can
be used for other purposes than calculating the average directivity patterns
and efficiency. 1In fact, a number of other statistical characteristics of
antennas are also expressed through the integral I, (y), the value of which are

given in this article for c<<l and ¢>>1.

The authors thank Ya.S. Shifrin for supervising this work.
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", BANDWIDTH PROPERTIES OF DECIMETER-BAND STRIPLINE Y-CIRCULATORS
M.V. Vamberskiy, S.A. Shelukhin, V.I. Kazantsev, B.P. Lavrov

This article analyzes the bandwidth properties of
decimeter—-band stripline Y-circulators operating above
resonance. Recommendations are given on the choice of
ferrite brand and basic design dimensions of a
Y-circulator which make it possible to obtain a device
which is optimal in terms of operating bandwidth.
Various methods are considered for correcting the
frequency response of Y-circulators.

INTRODUCTION

2 Ferrite stripline Y-circulators, which are used very widely in microwave
- technology, have an important disadvantage: the maximum operating bandwidth
which can be provided without using any matching devices does not exceed

7-12% in the decimeter band.

The problem of creating Y-circulators with wider bandwidth has until now

heen solved almost purely experimentally.
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Some quantitative relationships are obtained in [l] which illustrate the
influence of the parameters of the ferrite and some of the dimensions of a
Y-circulator on its bandwidth, but these data are not sufficient for competent

design.

The purpose of the present work is to fill in the gap which exists in

this area to some extent.
THEORETICAL ANALYSIS OF CIRCULATOR BANDWIDTH PROPERTIES

One possible approach which can be used to obtain quantitative
relationships for circulation conditions and to calculate the Y-junction
characteristics in the frequency band is to use the apparatus of scattering

matrices.

The eigenvalues of the scattering matrix of a ferrite Y-junction with the

configuration shown in Fig. 1 are described by the following expression [2]:

| -»i—-f-"-‘— S‘ (smnw- l

Ja Jo(x

. . Ak _ 5

e‘ X = = ——— « o e X u Jll (x,
. LanTp kO smmp) ' (n

=i —_——

Z; R 4 g . Ja(x

¢ II-##—K L % -— Il( )

x u I (%)

where k=0,1,2 is the eigenvalue number, m=0, +1, +2,...,

Zg—‘/—; x=k R= -%-V.v R;p, =%

Here pg, €g -- magnetic and dielectric permeability, respectively, of medium
filling the lead-in striplines;
¢ -— dielectric permeability of ferrite;
py and k -- diagonal and non-diagonal components of magnetic permeability
tensor of ferrite, respectively;

A —— wavelength in free space;
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h -- height of ferrite disc;

R == radius of ferrite disc;
Jn(x) -- nth order Bessell function of the first sort;
I&(x) -- its derivative with respect to x.
\‘x\\\ SONSANNMANSANNRANNL
< (
~ +
3
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Fig. 1.

Imposing on the eigenvalues thus obtained the following necessary and

sufficient conditions for turning a Y-junction into an ideal circulator:

8,—8, = + 120°,
8, —8, = + 120°, (2)
8, —O, = % 120", —

the circulation equations can be obtained.

The equations thus constructe

required number of harmonics excit

d are not limited to an a priori choice of the

ed in the ferrite disc, thus making it possible
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in principle to find arbitrarily precise relationships between the parameters
of the ferrite and geometry of the Y-junction which satisfy the circulation

conditions.

As a result of solving these equations by computer and subsequent processing
of the results obtained, graphs were constructed (Fig. 2) which demonstrate the
interconnection and interdependence at the circulation point between the
parameters of the ferrite and the geometry of the Y-junction for various values

of g=yHy/f. The use of these graphs makes it easier to design Y-circulators.

Substituting the values found for the quantities x, k/u, pi, h/A and R/A
for the circulation point in expression (1), and knowing the frequency
relationships of the ferrite parameters, we can calculate the eigenvalues within
the frequency band. Then, using some connection (cf. e.g. [2]) between the
elements of the Y-junction scattering matrix and its eigenvalues, it is also
easy to obtain the bandwidth characteristics of the device. The behavior of
a Y-circulator in the frequency band can only be described with sufficient
accuracy (the better, the smaller the ratio k/u at the circulation point [1,2])
using the first harmonics excited in the ferrite discs. We use the simple
exnression obtained in this approximation for the voltage gain of a Y-circulator

into a decoupled branch Y (amount of decoupling Ppas =20 log (1/Y), dB):

- 4eF 2 —ioP
V=T e =P 2R 13 Ge— i 2aF (3)

where c=(k/y)/1.84 and where the value used for the ratio k/W is that occurring

at the circulation point .
POREEs L L3t (31,
Jy(x) fo
Finding the absolute value of y:
2cF
V=TT o By = e (4)
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we can then connect the Y-circulator bandwidth with the ferrite parameters at

the decoupling level of interest.

For the cases which are of interest to developers in which %xma =20 dB

(y=0.1) and Ppaa =15 dB (y=0.178), we obtain these equations:

2Lk (p,, - 20dD, (s)
fo .

£ (P, =15dD),

2L~ 0,54-

fo (6)

Considering that these relationships between operating bandwidth and the
ratio k/u at the circulation point are also valid for calculating using a larger
number of harmonics, the frequency scale 26f/f0 can be entered beside the

scale for k/u in the graphs above.

The values of the quantities for which the relationship is reflected by
the curves in Fig. 2 are limited to those which are maximally realizable in
the decimeter band using existing brands of ferrite by the value of relative
saturation magnetization (Pp,®6) and values of the angle ¥ (cf. Fig. 1) within
limits of 159<y<35°. These bounda.ies are, of course, fairly conditional,
since Y-circulators can be created in practice in which the angle § will be
less than 15° or greater than 35°; however, the accuracy of the proposed cal-

culation is somewhat lower when applied to such devices.
SOME METHODS FOR EXPANDING OPERATING BANDWIDTH OF Y-CIRCULATORS

The operating bandwidth of a tuned Y-circulator can be expanded through two

methods: by selecting ferrite parameters and geometrical dimensions for the

- Y~junction which approximately fulfill the circulation conditions over the

broadest possible band of frequencies, or by synthesizing a correcting two-port
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network which, when included in all sections of the device, compensates for

the effects which occur when there is a departure from the circulation point.

Analysis of the curves in Fig. 2 shows that in order to create
Y-circulators with greater bandwidth, ferrites should be used with the highest
possible saturation magnetization, and the device should operate with small

values of the magnetic field constants.

As the value of ¢ drops, the dissipative losses in the ferrite increase
as a result of the fact that ferromagnetic resonance is approached. This limits

the selection of operating values of 0 on the part of small magnetic fields.

In the general case, in order to create Y-circulators with wider bandwidth
it is desirable to have a material with the highest possible value of p and a

narrow ferromagnetic resonance line AH.




One result of solving the circulator equations by computer is the

relationship

2

h 4 —2 R
—_— —_— = 11107 —
R ZQ ‘ £ R

b

(7)

This shows that the value of the ratio k/u at the circulation point is
inversely proportional to y&~. Consequently, the operating bandwidth of a
Y-circulator increases as ¢ decreases in approximate proportion to lNE ,
hence the advisability of selecting a ferrite with the smallest possible value

of e

Using the proposed graphs in designing Y-circulators makes it possible
in each specific case to select a design version which provides a device with
optimal operating bandwidth. However, as Fig. 2 shows, the maximally
attainable bandwidth values are limited to values of approximately 10%,

which often is not satisfactory for developers.

The bandwidth of a Y-circulator can be increased by introducing a slight
gap between the ferrite discs and the grounded plates or center conductor. This
can be explained by the reduced value of the effective dielectric permeability
€2 of the space in the center of the junction. For small gaps, e3¢ can be

defined using the formula

h (8)

3,¢= “_’_+h-13 ’

i 3

where 13 is the length of the gap; €5 is the dielectric permeability of the
material in the gap; h is the distance between the center conductor and the

grounded plates.
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An experiment was conducted in the decimeter band to check this
assumption using a prototype in which 13=0.1h, €4 =1, ¢=9. The introduction
of a gap increased the bandwidth by a factor fo 1.4, which confirms the

theoretical conclusions.

Let us now turn to questions of expanding the bandwidth by using external
correcting two-ports. As we know [3,4], a nonmutual reactive three-port

network with a scattering matrix

ENR
§:;f v i ﬁl, (9)
p v =

becomes an ideal circulator when each of its sections has connected to it
a reactive two-port in which the coefficient of reflection 2( is related with

->
the elements of the matrix S asl

Ty N S (10)
ay—§*

Using the expressions which define the bandwidth dependencies of &, é, & [2],

we arrive at the following relationship for g(

— (11)
Foo—=P—A2VTcF
x T 12

Figura 3 shows the frequency relationships of the absolute value of q(
and phase O for a value of k/u=0.3.

lgquation (10) is written for the case y<B.
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Using familiar methods from circuit theory [5] to examine the possibility
of synthesizing reactive two-ports which implement the frequency relationship

(11), we can arrive at the conclusion that they cannot be used to implement

this relationship.

The characteristics of a Y-circulator can be improved significantly by
using correcting two-port networks in which the coefficient of reflection is
complex-conjugate with the coefficient of reflection & of the original

circulator:

fﬁ,au_ (12)

However, research analogous to the foregoing indicated that this frequency

relationship is also impossible to realize using reactive (or, in the general
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case, passive) two-port networks.

Analyzing the frequency dependence of the absolute value of the
coefficient of reflection needed for optimal correction, we can conclude that
the latter can be realized by connecting two-port networks with the circuits
shown in Fig. 4, where the Q of the tuned circuits are related with the

quantity k/y at the circulation point as

Q= 2,696 ]
4 (13)

a ) 0- “g
& [}
R=1
Vs

Fig. 4.

The frequency dependencies of the phases of the coefficients of
reflection from these two-ports, assuming that a matched load (R=1) is

connected to their input terminals, appear as

Prgen = arctan L330k12 ‘f;sfk"' . (142)
5 1o
- 1,435kf
Crap= = arctm——:‘ T
(14b)

As can be seen from Fig. 3, the phase characteristics by and ¢

diverge rather substantially, with the divergence being the greater, the further
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the current frequency f is from the circulation frequency fp. Obviously,
in order to obtain the required phase values for the coefficient of reflection,
the tuned circuit (Fig. 4b) which is connected to the line in parallel must

be located at a distance of =) /4 from the ferrite-air interface plane.

An equivalent for a series resonant tuned circuit in the microwave range
is a shorted line segment with length of )\g/2, or a segment of open-ended line
with length of Ag/4. Considering (13), we express the characteristic

impedances of these segments (stubs) through k/u :

0,444
= 1
Z% Pl (15a)
Im 088

onoca k/u

(15b)

The maximum bandwidth of a Y-circulator if series-connected stubs are
used for correction is limited by the increase in phase error as the deviation
from the circulation frequency becomes greater. Allowing for the influence of
this phase error on the characteristics of a Y-circulator with series~-connected
stubs in its branches made it possible to calculate its bandwidth for various
values of the ratio k/u at the circulation point. Figure 5 shows the relationship

obtained, which is approximated fairly accurately by the straight line

.Mso,sa_s., (16)

1f we move the point at which the stub is connected away from the plane of
the ferrite-air interface, we can satisfy the conditions of optimal correction
both with respect to abasolute value and phase at frequencies f; or fj,
respectively lower or higher than the circulation frequency; the frequency
characteristics of the circulator then have two peaks with a second extremal

point at these frequencies. Figure 5a also shows the maximum bandwidth as a
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function of k/y for these cases. 1In order to realize the bandwidths shown in
this figure, the stub must be connected at a point approximately 1.6)Ap/4 from
the ferrite-air interface plane in order to obtain the second decoupling peak
at a frequency higher than the circulation frequency of the original junction

(£1>fg); this distance is approximately 0.3)g/4 in order to obtain an
analogous effect at a frequency fy<fg.

20t 257
a) Jorq%’——.. b) tD’%
= M = I
——gr . _—r,
?5 f:,.-fz —#‘ 2% /c’-;b e e —
R Ruupayseine ——rx, Vaumanmapﬁ(l)

20 " ‘T—
15
0

2205 31 23532 22533 05 2 aasw 215 0.20.250.30.35

Fig. 5..

Key: (1) original Y-circulator.

Thus, series-connected stubs can be used to expand the bandwidth of a
Y-circulator significantly. However, these are difficult to execute,

especially at high power levels.

A simple equivalent to a parallel resonant tuned circuit in the microwave
range is either a shorted line segment with length of \g/4, or a segment of
open-ended line ) /2 long. In this case, the required values of the impedance
characteristics are calculated by the formulas

k
zp,=226 —. (17a)

A

/-]
20 1135
onab ' (17b)

Figure 5b shows the bandwidth at the 20 dB decoupling level as a function of the

ratio k41 at the circulation point for correction using parallel stubs connected
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at a point \g/4 from the plame of the ferrite-air interface. This relationship

is approximated fairly closely by the straight line

23 -
20352 (18)

o .

If we change the distance from the point at which the stub is connected
and the ferrite~ailr interface plane we can, like in the case above, obtain a
circulator frequency response with two peaks. Figure 5b shows the maximum
bandwidth as a function of the ratio k/y for these cases as well. The optimal
distances for the stub connection point are approximately *“03“%1 for
frequencies higher than the circulation frequency, and approximately -L4%%

for frequencies below the circulation frequency.

In order to check the proposed relationships experimentally, a stub was
used to expand the bandwidth of a Y-circulator, the characteristics of which
are shown by the fine lines in Fig. 6 (p=1, g=1.8). The ratio k/u=0.25 for
this device. The following are the required values for the impedance
characteristics:

Zgl'm =56,5 Ohms,

Z'(;-:“p =28,2 Ohms,

Since it is fairly hard to realize a characteristic impedance of Zp=28.2 Ohms,
the correction was done using half-wave open-ended stubs. The heavy lines in
Fig. 6 show the responses of a Y-circulator with the stubs. In order to
achieve maximum bandwidth, an experiment was conducted to obtain a response
with two peaks at frequencies below the circulation frequency. As a result

(Fig. 7), the following responses were obtained with a band of +10.5% of the

center frequency:

Poes 20 36, Py, < 0,8 36,VSWR < 1.4,
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Fig. 6.

Key: (1) VSWR (voltage standing-wave ratio;
(2) fine lines indicate circulator response
prior to correction.

As was indicated above, it is fairly hard to implement series-connected
stubs in striplines. Therefore, an experiment to illustrate their effect on
the responses of a Y-circulator was setup using a Y-circulator with coaxial
input feeders (Fig. 8), which made the configuration of the junction
significantly different from that under consideration. With a value of Zg=3
(at a calculated value of 6.3) and stub length of A\g/4, the use of these stubs
expanded the bandwidth at the 20 dB decoupling level from 4.8% to 14% (the

bandwidth expansion was somewhat asymmetrical).

There is also another way to expand the bandwidth of Y-circulators which
differs in principle from that explained above. A Y-junction with a ferrite
is assigned so that, without being an ideal frequency at any of the frequencies
within the range in question, it has frequency responses which are optimal for
correction. This method can be implemented by using Y-circulators with dielectric
transformers. The optimality criterion for the frequency responses of the
original Y-junction should be compactness of the curves of its impedance within

the frequency range on a circle diagram. Calculations showed that if the
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Fig. 7. Fig. 8.

Key: (1) VSWR; (2) fine lines show Key: (1) VSWR: (2) along AA.
responses prior to correction,

imaginary component of the impedance 2 of a Y-junction with a ferrite is zero
f: at the center frequency of the band, the degree of compactness cf the curve 2=¢(f)
(where f is frequency) is a function of the size of its real component Ry at the
circulation frequency f(. Figure 9a shows the frequency depeadency of Z for
different values of Ry (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0). The curves
for i=¢(f) corresponding to Ry=0.5-0.6 are most compact. A circulator can now
t‘ be obtained by connecting appropriate quarter-wave transformers. to all of the

v Y-junction inputs.

,; it should be noted, however, that coupling between different branches of the
{ initial Y-junction has a significant effect on the responses of a circulator

f
; : obtained as a result of this correction.
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It can be shown that in the similar case in which the correcting devices are
two-ports in which the coefficient of reflection is complex-conjugate with the
coefficient of reflection of the original Y~junction, decoupling of greater

than 20 dB can only be obtained if the decoupling provided at that frequency

K by the original junction Ppas >10.5 dB. Invescigation of the frequency responses
of a Y-junction with a ferrite showed that the width of the frequency band

' within which the original junction provides this decoupling is a strong function

i
i
! of Rgp (Fig. 9b). Comparison of the data in Fig. 9a and 9b allows to conclude
i : that only when Rp=0.5-0.6 does the use of transformers allow maximum utilization
;i‘ of the capabilities of obtaining decoupling exceeding 20 dB within the frequency
g band.
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' Fig. 10.

Key: (1) VSWR; (2) fine lines indicate circulator
responses without transformer.

Selecting thus the quantity Ry, the geometrical dimensions of the ferrite discs

can be calculated using the following formulas:

R _ 02

| ST
h _ k/u T 1
T’A:T__l/-z—ono' (19)

$ A=035for Z. =75 Ohm;
A=02for Z,=- 50 Ohm.
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Putting quarter-wave transformers with characteristic impedances
Zr=/Rg in all branches of the Y-circulator designed using these data, we obtain
a device which can operate in a near-circulation mode. Figure 10 shows the
responses of two Y-circulators which use a 30SCh4 ferrite and have ferrite discs
with equal heights. The ferrite discs in the Y-circulator without transformers
had dimensions of h=7.8 mm, R=25 mm. A value of Rp=0.5 was selected for the
case in which transformers were used, hence the disc radius of R=21.5 mm at the
same height for the following transformer specifications: 2p=49 mm (L} -- trans-
former length), €7=2.05 (er -- dielectric permeability of transformer material).
Polystyrene was the material used for the transformer. The best bandwidth
characteristics were obtained with &7=45 mm for discs with a radius of R=21 mm.
The bandwidth at the 20 dB level was approximately twice that of a circulator
without transformers. The value of the magnetizing field in the device using
transformers was 1.7 times lower than without transformers; the induced losses
were somewhat higher, but agree well with the conclusions which follow from

analyzing relationships (19).
CONCLUSION

Analysis of the bandwidth properties of ferrite plane Y-circulators
operating beyond resonance indicates that the maximum attainable frequency band-
width for these devices at the 20 dB decoupling level is 10-12% (without any

matching devices).

As a result of investigating various methods for expanding bandwidth, it
was established that introducing a gap between the ferrite specimens and grounded
plates or inside conductor increases the bandwidth by a factor of 1.3-1.4; the
use of series-connected stubs approximately triples the bandwidth, while
parallel stubs and dielectric transformers increase the bandwidth by a factor

of 2-2.5.

Specific requirements will dictate the use of each of the methods examined

above. However, in most cases, especially when operating at high power levels,
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it is better to use parallel stubs, rather than series-connected, since the

latter are difficult to build.
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