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FIVE-METER SPHERICAL MILLIMETER-BAND ANTENNA

P.M. Geruni

This article presents the basic parameters of millimeter-
and centimeter-band spherical twin-reflector antennas in which
the diameter of the large stationary reflector is about 5 meters.

The choice of parameters is substantiated and data are
presented on the design execution. Information is given on
spatial orientation, on the automatic control system and on
the radiometer. Some findings from experimental investigation
of the antenna and measurements of the solar and lunar temper-
ature at a wavelength of 8 mm are presented

INTRODUCTION

The five-meter spherical twin-reflector antenna system (DAS-5) deployed

near the village of Byurakan in the Armenian SSR at an altitude of 1600 meters

above sea level is a precision instrument designed for radioastronomical and

radiophysical research in the millimeter and centimeter wavebands. Another goal

of creating this antenna was to check the operation of a twin-reflector antenna

system with a spherical stationary main reflector and to find optimal

relationships within such a system. In this sense, the DAS-5 is a prototype

for studying the possibility of creating larger instruments within this system.
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Development and work on building the DAS-5 began in late 1960-early 1961-

The first integrated tests were made in May of 1966, and work on measuring the

antenna parameters was carried out between September and November 1966.

The basic operating principles and questions relating to the theory and

analysis of twin-reflector antennas with a large spherical reflector were

examined in [1,21 Specific material relating to this antenna will be pre-

sented below

SELECTION OF PARAMETERS. RADIOPHYSICAL DATA

Figure 1 shows the schematic diagram of the spherical twin-reflector

antenna and presents basic notation. The second (small) reflector is used

for total correction of spherical aberrations. In addition, it is used to

change the direction of emission of the antenna over a wide range without

distortion. In order to do this, it is only necessary to turn the small

4 reflector about the center of the sphere without moving the large reflector.

The coordinates of the points of the profile of the small reflector,

obtained from the equiphase condition of the field in the antenna aperture

are provided by the relationships:

x =A.-pcos20,
y= A.-psin 20,

vhere
A,= I- 2 ( -cosO)cos'0,

A, = sin 19-( -cos 0) sin 20,

e-(A, - A)'2
2 [c -(A,-t ) s20 - Ay s. 2ej

c= --21+f.



Fig. 1.

In order to realize a high utilization factor, to improve the noise

tolerance of the antenna, and for design considerations as well, the small

reflector was placed beyond the focal point of the large one (1<0.5 R0 ),

and the following basic system parameters were used (Ro=l): c-0,6246, R-0.6293,

aO.7571, f-0.6046, X-0.4900, X=0.6221. Y=0.1002, where X and Y are the

coordinates of the extreme points of the small reflector, and 2R is the diameter

of the utilized (or irradiated) aperture.

*These parameter values were selected on the basis of the following premises:

1. A millimeter-band antenna of this diameter should be used primarily for

investigating heavenly bodies within the Solar System. Consequently, a view of

the sky within the meridional plane within +250 of the zero declination point is

sufficient. This is determined by the ratio R/a (the geometric aperture

utilization factor).

2. Since the absolute dimensions of the antenna and the small reflector are

small, it made no sense to attempt to minimize the dimensions of the latter just

to simplify construction.
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By increasing Y slightly, it was possible to obtain a higher geometric

aperture utilization coefficient, i.e., the ratio of the "illuminated"

aperture to the total aperture. These considerations are at the basis of

the ratio Y/R. The shadow from the small reflector is 2.5% of the area of the

utilized aperture (CiR 2 ). In addition, X and Y are selected such that the edges

of the small reflector fall short of reaching the focal plane of the large

reflector by the amount 2X in the middle of the band.

3. The apex of the small reflector is located 32 mnm (i.e., more than A

for millimeter-band waves) above the apex of the focal surface of the large

reflector; hence 9=0.49.

4. The aperture angle 24 of the small reflector is -2000, which makes it

easier to obtain a low level of irradiation of the edges of the small reflector,

and helps to produce nearly uniform field amplitude distribution across the

active aperture of the large reflector in this particular scheme [2]. Besides

providing high efficiency, the use of a large aperture angle also meets the

requirements of providing a low level of internal antenna noise. These are

the considerations involved in the choice of f.

5. The value of the constant c is determined uniquely by the choice of l

and f(Ro-l).

These premises, plus a number of other factors (constructiveness and

adaptability to manufacture, convenience in operating and control, etc.),

determine these final data (di-ensions in millimeter):

R0-3200; 2a-4850; 2R-4000; f-L935; L-1568; 2Y-641; X--423.

If S -wR2  is the effective area of the antenna, we call R2  /R2 the
30 30 3

aperture utilization factor (kip). As usual, this is the product of a number of

components: the power (amplitude) dissipation kip, the shading kip, etc. the

ratio R2 /a2 is conveniently called the geometric kip (kipg), while R2 /a2 is

the total kip (kipp).
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Since the total (geometric) area of the aperture of the large reflector

in the DAS-5 is 18.5 m 2 , the utilized aperture area 12.6 m 2 and the effective

area 9 2 m2 (see below), the kip is 0.73, and the kipp0o.5 (kipg-0.685).

The waveband of the DAS-5 extends from 2mm to 12 cm. The antenna can

operate without using the second reflector at longer wavelengths (to 1 m).

At a wavelength of 4 mm, the diameter of the utilized aperture is lOOOX

In order to define the tolerances for installation of the system elements,

phase distortions in the aperture were analyzed when the parameters deviate from

the calculated values. Computer analyses yielded the following values: the

accuracy with which the small reflector is placed along the x axis is +0.6 -,,

and +0.3 mm on the y axis; the accuracy of focal placement of the reflector

is +1.2 mm along the x axis and +0.8 mm along the y axis. The precision of thL

surface of the large reflector is +0.3 m, and +0.2 mm for the small reflector.

The precision with which the radius of curvature of the large reflector is

executed is +0.8 m. Deflection of the small reflector suspension must not

exceed +1 minute of arc. These are the maximum tolerable deviations for which

the greatest phase errors in the aperture at a wavelength of 8 mm do not exceed

X/20, or 180.

CONSTRUCTION

The large reflector, 4850 mm in diameter and weighing 4 tons, was cast in

eight wedge-shaped pieces of aluminum-zinc alloy. The casting was done in a

special molding frame from a wood model. The radius of curvature of thejloo
reflector was to have been approximately -tmm after mechanical polishing. The

castings were 50 - thick, with stiffening ribs 150 - thick.

In order to polish the reflector, a rotary grinding tool was set up at the

antenna site (Fig. 2). The reflector (1) was assembled in a rigid frame (2)

and placed on a turning table (3) with a vertical axis of rotation. A grinding
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head (5) holding an end-milling cutter was fastened to a boring bar (4) which

rotates (through 500) about the center of curvature of the reflector and which

is counterbalanced by counterweight (6). The entire structure rested on an

Wx meter concrete foundation (7). The drive mechanisms for the table, boring

bar, milling head, etc., were controlled from a main and a portable panel. The*1 table drive was built with adjustable d.c. motors. The speed was varied in
order to maintain a constant grinding mode.

Fig. 2.

Figure 3 shows the setup in operation. Several "rough" and two "clean"

surface layers were cut from the reflector. The depth of the cut during the

last pass was 0.5 mm. In order to maintain a constant temperature while

removing this "clean" layers, the entire setup was covered with a tarpaulin, and

work was done only at certain times of day. The main difficulties involved

controlling vibration, play and temperature deformations, and of monitoring

coincidence of the vertical axis of rotation of the table and the horizontal

axis of rotation of the boring arm. Were this not done, a toroid would have

resulted rather than a sphere. The sphericity was monitored, and the

co-axiality adjusted, by cutting a radial "control" strip across the reflector

(Fig. 4.) and then turning the table through 1800 and measuring the difference

of the readings of micron indicator I (Fig. 4a) fastened to "flag" 2. By

regulating the position of the boring arm shaft, coaxial deviation was reduced

to within +0.1 = of zero.
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A series of measurements of the reflector surface after polishing

indicated that it had been finished to within +0.25 mm (maximum error).

Certain difficulties were overcome in measuring the absolute radius of

curvature. As a result of repeated measurements, a value of RO-32O2.7 mmwas

* obtained.

After this work, the polishing assembly was removed, and then the mirror,

permanently fixed to the supporting foundation, was tilted 400 to the south

together with the base (cf. below).

A tripod made of double-walled tubing (to provide high rigidity even

though the diameter is small) was used to hold the central and cardan frames

holding the gears and drive mechanisms which move the shaft which turns the

small reflector. Then the "yoke", small reflector and counterweights were

* put in place.

The profile of the small reflector was designed by computer with a 0.1 -m

* step (considering R0=3202.7 mm). The reflector itself was cast of duralumin in

a mold from a wood model and finished on a lathe to within +0 2 mm.

The small reflector and "yoke" were made coaxial during finishing, and then

trued optically. According to geodetic measurements, the deflection of the

"yoke" did not exceed 1' at the maximum angles from vertical even with the

additional load imposed by the small reflector.

The total shadowing of the structures in front of the large reflector

comprises 9-11% of the area of the utilized aperture (depending upon the

spatial position of the beam).

The "yoke" holds the drive mechanism which is used for remote adjustment of

the suspension of the small reflector, which provides setting accuracy of +0.1 mM

over a range of +30 mm.



The antenna feed and receiver waveguide sections are installed at the

focus of the small reflector on an adjustable triood made of chrome-plated rods

10 mm in diameter. The entire feed assembly can be moved smoothly along the

antenna shaft through a range of +35 mm during adjustment. The feed assembly

creates no additional shadowing

Fig. 5.

The shaft on which the small reflector turns was set to intersect the

center point of the large sphere experimentally, using a micron indicator

fastened to the yoke and touching the surface of the large reflector. This

work was only done at a particular time of day as well. After the large

reflector had been rotated again and finally set in place, the surface accuracy

was re-checked. No significant deviations were noted.

Figure 5 shows an external view of the antenna.
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SPATIAL ORIENTATION

The main area of application of the DAS-5 antenna in radio astronomy is the

millimeter waveband. In the millimeter band, we can expect to receive thermal

radiation, which with a 10 m2 antenna area actually reduces the problem to that

of working with radiation sources within the Solar System: in this case there

* is no need for a wide view of the sky. In order to ensure year-round

observation, a declination view within limits of 6=+250 is, generally speaking,

.1 sufficient.

In order to provide a view of this declination sector, the main axis of the

* antenna is directed along the line of the intersection of the planes of the

equator and the local meridian. The antenna beam is able to move through an

angle of 250 on both sides of the main axis. Figure 6a shows the orientation

* of the field of view of the antenna. A conical viewing sector with an apical

* angle of 500 facilitates the observation of each radiation source for an

average of 2 hours daily near the highest apparent altitude (Fig. 6b). The

viewing time (in hours) can be calculated using the formula

0~= 0, 133 arc cos [ o a - tan 8 tan (i-)(9)
ICos6 Cos (p - )

where for our case the latitude of the site *in400, the angle of inclination

between the beam and the main axis (x250, and the angle of inclination of the

main axis from the zenith point (in the meridian plane) *,=400.

With an angle of beam deviation of 230 from the main axis, distortions in

the directivity pattern due to loss of aperture area approach 8% [~2]. The losses

result from the fact that when aL>13 0 part of the utilized aperture "extends"

* beyond the edges of the large reflector.

10
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Key: (1) pole; (2) zenith; (3) horizon; (4) Equator.

CONTROL SYSTEM

The automatic control system is designed using a plan [4] which allows the

influence of yoke deformations to be eliminated. In order to accommuodate the

optical radiator, the construction of the cardan frame provides a free area

near the center of the large sphere. However, since the yoke of this antenna

is rigid, the automatic control system thus far uses an ordinary scheme in which

* the error signal is simulated (or comes from a photoelectric guiding device).

* The control panel is housed in a small building located 60 meters from the

antenna. There is a coarse and a fine scale for each shaft. The shaft and

scale gears are high-precision, as are the gears in the main drives of the small

reflector; the system used is a parallax system. The main motors are powered

from electronic and magnetic amplifiers. The speed of the small reflector can

be varied continuously for both shafts separately. The maximum-speed is

20 deg/min for both shafts. The guidance accuracy is no worse than 1 minute of

arc. There is a remote control panel on the top antenna frame. An optical

guidance telescope with a 0.50 field of view is also installed there on the

* counterweights. The system is also equipped with a precise automatic photo-

electric guidance device for the Sun and Moon. The control panel also has

quartz clock scales for solar and stellar time. The control system allows a

scanning mode following some defined rule to be imposed on the basic beam



guidance mode during manual or photoelectric guidance. The length of the yoke,

i.e., the suspension height of the small reflector, is adjusted from the

control panel. The control panel cormunicates with the antenna via a duplex

*l radiotelephone link.

jRADIOMETER

The Xf8mm wavelength radiometer uses an ordinary superheterodyne modulation

circuit, with an amplitude modulator. Figure 7 shows a functional diagram of

the high frequency section. This section of the radiometer is located at the

focus along the shaft of the small reflector (Fig. 8). The i-f preamplifier,

power supply filters, auxiliary electric motors, etc. are fastened to the out-

side of the small reflector.

The operations building, located 60 meters from the antenna, contains the

other sections of the radiometer: the i-f amplifier, low-frequency

amplifiers, synchronous detector, oscillators, power supplies and recording

equipment. An adjacent room contains a Nairi computer which is used for

calculations. The basic specifications of the present version of the radiometer

are as follows: modulation frequency -- 32 Hz (rectangular), i-f carrier -- 57 MHz,

i-f preamplifier gain 20, i-f amplifier -- ls, -f amplifier 104; the i-f

preamplifier-i-f amplifier bandpass is 7 MHz. The resultant sensitivity is

150K with a 2-second time constant.

I Yyya- flna of-flo..-L.

(6) Q 7

Fig. 7.

Key: (1) feeder; (2) directional coupler; (3) modulator;
(4) directional coupler; (5) mixer; (6) noise generator;
(7) synchronous motor; (8) klystron.
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The radiometer is calibrated by means of a type GSh-6 argon noise tube

inserted in the waveguide and connected to the circuit through a 10 dB

directional coupler. The spectral density is 61 kT. Ignition is done

* remotely from the radiometer racks in the'operations building. The constant

component of the mixer current, synchronous operation of the modulator, etc.,

are also monitored there.

4f.

Fig. 8.

EXPERIMENTAL RESULTS

Experimental investigation of the antenna parameters involved a number of

difficulties. Since the antenna cannot "look" any lover than 250 to the

horizon (south), and the boundary of the far zone for X-8 mmis 3-4 km away and

the terrain itself drops off to the south, parameters cannot be taken using a

tower-mounted oscillator. A tower 100 meters high is needed even at a

distance of 250 meters. The use of helicopters and aerial balloons is very

13



* I difficult, since the expected directivity pattern width is only a few minutes

~1 of arc even at X=8 mm. This leaves only radioastronomical methods. The

brightest "point" source is Venus. The expected antenna temperature from Venus

for the center phase is 20K (at a wavelength of 8 ma). Such a signal can be

received only with an adjusted antenna and improved radiometer. The only

possibility of measuring the pattern now is thus to use the edge of the Solar

.4 and Lunar disc. Unfortunately, the accuracy of this method is low, and side

lobes are practically impossible to measure.

Preliminary trueing of the antenna was done using optical methods. The

quality of finish of the surface of the large reflector makes acceptable

optical reflection possible. For this reason, the quality of the large

reflector could be given a positive evaluation in advance, since the focal

surface was clearly described in space when the reflector was illuminated by

* the Sun or Moon. The paper began to char at a quasi-focal spot (apex of

focal surface) 5-7 cm in diameter. The small reflector was polished in order

* to do the optical trueing. When the small reflector is positioned correctly,

the focal spot from the Moon (it was impossible to work with the Sun because

of the extreme brightness and high temperature in the small reflector) had a

slightly elongated shape and was 2-3 cm in diameter. When a lamp was placed at

the focus (even a very weak one) it was possible to see the focal surface (of

the large reflector) and a "util'ized" spot 4 meters in diamter on the large

* reflector with very sharp edges. The amplitude distribution in the aperture

corresponded to uniform irradiation of the small reflector, i.e., the intensity

in the utilized spot increased sharply toward the edges.

In order to obtain near-uniform amplitude distribution in the antenna

aperture, special waveguide feeders were developed and tested at X-n8 mmwhich

created a strong field at small angles to the axis. Figure 9a,b shows one

such feeder and its directivity pattern in two planes, taken experimentally,

SWRI ,13.
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In order to evaluate the internal antenna noise, two "levels" were

recorded: the level of "internal" noise was recorded with the antenna aimed

at an angle of 300 to zenith, then the level was measured with an unmatched

load at the radiometer input (-3000K); finally, the level was measured with

the noise generator activated (-16000K). Allowing for the quality of the

matching of the input load, the amount of attenuation in the directional

* coupler, tropospheric noise and other factors, a value of 10-150K was obtained

for the internal antenna noise.

Figure 10 shows examples of the recording of Solar (a) and Lunar (b)

radiation at Xw8 m. The calibration pulses from the noise generator can also

be seen here.

In order to determine the directivity pattern of the antenna, the average

envelope was constructed from the recording (Fig. 10Oa) and its first derivative

found. At half-power, the vidth of the main lobe is 6.5-7 minutes of arc (the

15
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Fig. 10.

* feeder receives only a single linearly polarized field component). This

recording of the Sun contains radiation from a group of spots on the right

half (of the recording) of the Solar disc. Since the angular dimensions of[

active formations in the region of sun spots are smaller than the angular

dimensions of the antenna directivity pattern, when they pass through the

pattern, the plot of the recording imitates the shape of the pattern. The

figure shows recording of the main lobe of the directivity pattern from two

adjacent spots. Measurements of the pattern in the perpendicular plane (by

scanning the Solar disc) also yielded a value of 6.5-7 minutes of arc for

the half-power width of the main lobe.

Since the width of the directivity pattern at half power is less (by a

factor of 5) then the angular dimensions of the source, we can assume with a

certain degree of accuracy that we are dealing with a case of thermodynamic

16



equilibrium, and the temperature at the antenna focus (antenna temperature Ta)

must be approximately equal to the brightness temperature of the source T

(Translator's note: Subscript letter 'Wa" indicates "brightness"]. The source

is practically "seen" only by the main and first side lobes of the pattern;

about 30% of the energy is dissipated in the other directions. In addition,

energy is lost due to tropospheric absorption, losses in the antenna

(efficiency), feeder (due to mismatch) and in the circuit (in the section

between the feeder and the point at which the noise generator is connected).
4, These losses comprise another 15%.

The energy of the noise generator is lowered when it reaches the receiver

input due to attenuation in the directional coupler (about 10 dB) and losses

due to non-ideal matching of the hot tube and the circuit. Considering these

losses, the amplitude of the recording of the calibration signal at the

receiver output corresponds to 16000K. Since the amplitude of the Solar

* recording is accordingly 40000K, considering the above we obtain T.-67000 for

the brightness temperature of the Sun, which agrees with previous observations

[61.

Taking the radiation flux density of the Sun at X=8 mm to be

* 235-10-2' w/m2-Hz [51, allowing for absorption in the troposphere (which is

low in this case because of the dryness of the air and the high elevation

above sea level), and introducing a factor which allows for the comparability

of the angular dimensions of the source in the beam, we obtain a value of

9.2 M2 for the effective antenna area. Calculation of the efficiency for the

* main lobe of the pattern.(2.3.106) and allowing for the share of the others

produces an analogous result. The utilization factor of the aperture area

kipin9.2/12.6-0.73, while the gain G=1.81*10 , or 62.6 dB.

The values obtained for the area utilization factor, gain and noise

temperature are preliminary and require further clarification. However, there

is no reason to suppose that they will change significantly. Consequently, we

can assert that the DAS-5 is a high-efficiency antenna, which provides

17



convincing confirmation of the possibility of using a two-reflector spherical

plan as the basis for building larger instruments. It must be emphasized that

the value kip=0.73 which was obtained is unobtainable for fully-rotatable

parabolic antennas of the same electrical dimensions. Close kip values have

been obtained only for horn-parabolic antennas.

In Fig. 10b, the calibration pulse is reduced in scale. The amplitude of

the Lunar recording is 150 0K (the recording was made during a full Moon on

25 November 1966). Consequently, the average brightness temperature of the

Moon across the disc is 2400K. An elevated brightness temperature of up to

270 0K was recorded at the center of the disc.

CONCLUSION

A number of new experiments are now being undertaken to investigate the

antenna parameters in detail.

Receiving equipment is also being fabricated to record planetary radiation

at wavelengths of 8 mm and 4 mm.

In conclusion, the author is pleased to emphasize that the building of

the DAS-5 antenna was the result of the labor of a large collective. Radio

engineers and scientific colleagues Razmik Garsevanyan, Levon Nalbandyan,

Grachik Arshakyan, Sergey Sarkisyan, Kima Karapetyan and others participated

actively in calculating and designing the antenna, building, installing and

adjusting the radio equipment and automatic control system. A leading role

in developing and creating the antenna structures was played by design

engineers and technologists Yuriy Simonyan, Garri Galstyan, Marlen Arakelyan,

Georgiy Ter-Ovakimyan and others. A great deal of work and thought was invested

in the fabrication of the antenna by master technicians Shmavon Voskanyan,

Vage Minasyan, Artem Balyan, Zaven Aleksanyan and others.
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Academician V.A. Ambartsumyan attended constantly to the building of the

DAS-5 during all stages of work.
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FLEXIBLE ELLIPTICAL WAVEGUIDES -- NEW CENTIMETER-BAND FEEDER LINES
(Review of Technical Status)

G.I. Troshin, E.F. Ykstin and V.A. Khudyakova

It is shown that elliptical waveguides are better than
rectangular waveguides having the same cross-sectional
perimeter with respect to attenuation. The maintenance of
the polarization plane with respect to the cross section
makes it preferable to a round waveguide. The flexibility
of elliptical waveguides, their ability to be wound on
drums, and the capability of making long (on the order of
hundreds of meters) sections without flanges allows this
type of feeder to be considered as basic, especially for
mobile radio relay stations.

Analysis of the requirements imposed on modern centimeter-band feeder

lines, as well as evaluation of the electrical, physical-mechanical and

operating characteristics of these lines (coaxial cables, periscopic systems,

single-conductor transmission lines, rectangular, round and elliptical wave-

guides) indicate that flexible elliptical waveguides are extremely promising.

An elliptical waveguide with the same cross-sectional perimeter as a

square waveguide has less attenuation. The fact that the surface is corrugated
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makes it easy to make flexible waveguides which can be wound on drums.

The elliptical cross section makes it possible to retain the positioning of

the polarization plane of the signal with respect to the cross section

regardless of the manner in which the waveguide is installed, i.e., the positive

feature of rectangular waveguides is retained.

1Flexible elliptical waveguides provide maximum speed in setting up and

dismantling mobile stations, along with low weight and the ability to deploy

4 the equipment far away from the mast foundation.

This combination of positive qualities, together with satisfaction of the

4 main requirements imposed on modern radio system, has brought many developers

here in the USSR as well as abroad to investigate elliptical waveguides.

The matter of electromagnetic wave propagation in electrical waveguides was

first resolved in 1938 by L. Chu [1]; however, practical work on elliptical

waveguides has been underway only for the last 10-15 years.

This has been promoted especially by the development of mills for welding

and corrugating long tubes from metal strips.

France, Germany and the U.S. have now developed and are producing a series

of flexible corrugated elliptical waveguides for feeder systems operating in

the 3000-12,000 MHz band. They are made of hollow round corrugated copper tubing

fabricated from copper strips by welding and corrugating on machines specially

built by the Hackethal company [5].

Electric-arc welding in an inert gas medium (argon-arc welding) is used. In

this welding method, the two edges of the metal strip are melted by the electric

arc and then fused together in an argon medium, forming a seam which is free of

any significant rolls. The Hackethal company has developed three types of
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machines for argon-arc welding and corrugating round metal tubes of different
Idiameters, some technical data on which are presented in Table 1.

Table I

I Machine type

Machine indicators Minivema Univema Grovema
small universal large
machine machine machine

welded tube diameter, mm up to 25.4 15.2-78.8 58.5-118

wall thickness, mm 0.2-0.4 0.3-0.6 0.5-0.7

output, m/min 6-24 3-15 2.4-9

machine length and
width, m2  5.5x2.1 9.6x2.4 12.6x3.0

All three machines use the same principle, which is shown schematically

in Fig. i. The machine consists of the following four basic assemblies [53:

I. Assembly which forms tube from strip.

II. Tube welding section.

III. Belt tractio., assembly.

IV Tube corrugation assembly.

The shaping assembly consists of a cleaning (etching) tank, cutting and

straightening rollers and tube shaping rollers.

The welding assembly is in the middle of ihe machine. The position of the

welding head is adjusted by means of a special device. The end of the electrode

and welding arc are observed through a system of lenses and light filters. A

nozzle near the end of the electrode directs argon around the welding arc and

the section of melted metal at the edges of the welded strip.
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The traction device pulls the welded tubing through the machine at a

uniform rate. Clamps fastened to the belt grip the tube without damaging it

and keeping it from turning, and eliminates the torque produced by the

corrugating device. The tube is corrugated by a wheel which turns in a medium

of lubricating and cooling emulsions. Radial movement of the turning wheel

sets the required corrugation depth, while the spacing is determined by the

*! linear rate of movement of the tube and the speed of rotation of the wheel.

Fig. 1.

Key: I -- metal strip feed; 2 -- tube formation device; 3 -- welding head;
4 -- traction device with clamps; 5 -- corrugating device; 6 -- take-up
drum; I -- shaping assembly; II -- welding assembly; III -- belt-type
traction device; IV -- corrugating device.

The machines are equipped with a number of auxiliary devices which make it

easy to obtain tubes with the required dimensions. These devices include tzpe

thickness and width monitoring instruments, solution recovery devices, strip

cleaning devices, metal strip feed devices, corrugated tube take-up devices, etc.

The argon-arc seam welding method has a number of advantages over other

methods:

1. The welding operation is continuous and moves rather rapidly (3-19 m/min).

2. The method can be used for a number of metals (steel, aluminum, copper).
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3. The method can be used successfully for welding strips between 0.2 and

2.5 n thick.

4. No rolling occurs along the seam.

5. The concentrated but limited heating ensures uniform melting of the

edges of the strip.

6. Limited heating area.

7. The argon protects the melted metal from oxidation during welding.

8. Hollow tubes can be welded without inserting a special tool.

In order to make flexible elliptical waveguides, the argon-arc welding and

corrugating machine is augmented with a dye which is installed between the

corrugation and take-up devices which converts the round cylinder into an

elliptical one.

The initial experiments conducted in Germany to make elliptical waveguides

used the outside conductor of type 14/42 and 10/30 coaxial cables [2]. The

corrugated coaxial cable outside conductor, which had an inside diameter of

42 mm, was deformed into an ellipse with a long axis 2a=49 mm long and a small

axis of 2b-35 mm (eccentricity e-0.7).

Deformation of the outside'conductor of 10/30 coaxial cable produced an

ellipse with dimensions of 2a-34,3 mm (long axis) and 2b-22 mm (short axis).

The eccentricity of this ellipse was 0.765. The attenuation in the 4.4-5.5 GHz

frequency band was measured for an elliptical waveguide (2a-49 mm and 2b-35 mm).

Figure 2 shows the relationship which was found. Also shown is a comparison

between the experimental findings and the results of measuring and calculating

the attenuation in a brand R48 rectangular waveguide (made of copper with

inside dimensions of 47.6x22.2 mm). It is apparent from the figure that the
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attenuation of the elliptical waveguide is 0.05-0.3 dB/m in the 4.4-5.4 GHz band,

and is comparable with the attenuation of a standard rectangular waveguide in

the same frequency band. The arithmetic mean of the coefficient of reflection

in an elliptical waveguide 50 meters long did not exceed 0.075 in the

4.4-5 GHz band, while the maximum value was 0.19.

0  dB/km T

30 --.-
'i "--! - ---"

Fig. 2.

Key: 1 -- elliptical waveguide at 5 GHz (experiment); 2 -- R48 (experiment);
3 -- R48 (calculated).

Figure 3 shows the attenuation in an elliptical waveguide with dimensions

of 2a=34.3 mm and 2b=22 nmm as a function of frequency, found experimentally, in

comparison with an R70 rectangular waveguide (made of copper, with inside

dimensions of 34.8x15.8 mm). It is apparent from the figure that the

attenuation of the elliptical waveguide between 6.5 and 8 GHz exceeds that in

a standard rectangular waveguide by approximately 20%, amounting to 0.06-0.09 dB/m.

The mean value of the coefficient of reflection for that waveguide, as

determined for a segment 40 meters long, was 0.04; the maximum value was 0.07.

The flexibility of the elliptical waveguides was checked [4] by rewinding

the waveguide in "S" fashion from one drum (0.1 m in diameter) to another

while monitoring the waveguide performance with respect to coefficient of

reflectior after a particular number of rewindings. A slight increase in
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.0 dB/km

0 ,, GHz

. 70 75 8.0

Fig. 3.

Key: I -- corrugated elliptical waveguide at 7.0 GHz (experiment);
2 -- R70 (experiment); 3 -- R70 (calculated).

coefficient of reflection was noted after 300 rewindings for a large-diameter

waveguide (2a=49 mm, 2b=35 mm), and 200 rewindings for a smaller waveguide

(2a-34.3 mm, 2b=22 mm), and some fine cracks (marks) were detected on the

surface of the outside casing.

The initial experiments on constructing elliptical waveguides were thus

* promising.

A series of brand EN (where N is the center frequency of the band in

hundreds of megahertz) of corrugated copper waveguides has been developed in

Germany [3].

Table 2 presents the basic technical characteristics of this series of

corrugated copper elliptical waveguidesI,

1 According to data from the Telefunken Company.
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Table 2

-'wa

TI<I'ChjrO ;:J ON ',JC-UT .. C " -1 a+ + ; + '- t ++I

(_ _ _ (2) (4) " (6)

E 41) 2'05% :-.120) 74 47 ,
- E 4s 4 j - 00 57 43 ,. 1 4B,,1

E 62 .'00 6501 31) 33 1, 1.7 4;

E 68 6400-7150 47 31 3uu ,. B
E 73 7110+ 7800 41 29 +.'5 +, .7

E 84 7700 -8600 37 26 0.1 <).9"

E '00 8300-+-10000 35 24 0. 0977 ,1,

E 120 10000.-12400 29 20 O,15 3k I

Key: (I) elliptical waveguide brand; (2) operating frequency
range, MHz; (3) outside dimensions of ellipse measured across
protective casing; (4) attenuation, dB/m, in center of working
band; (5) minimum radius of curvature for a single bend in
electrical plane, mm; (6) weight, kg/m.

The elliptical waveguides indicated in the table are made from a copper strip

with composition close to that of domestic brand MI copper with thickness of the

order of 0.5 mm. An anticorrosive bitumen-based composition coats the outside

surface of the corrugated elliptical tube. The protective casing is made of

pigmented polyethylene with a radial thickness of 2-2.5 mm.

Elliptical waveguides of all dimensions are transported in long lengths

wound on a drum 1200 mm in diameter and are delivered with end adapters which

are square in shape, making it possible to hook up to any equipment. The

elliptical waveguides are manufactured with high precision, and make possible

a mean coefficient of reflection in the working frequency band of less than

0.05.

Since elliptical waveguides can be used successfully in mobile technical

devices where great mobility is required, their mechanical characteristics

are of great importance (maximum acceptable stretching force, number of
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acceptable bends, resistance to radial pressure, acceptable excess pressure

within waveguide cavity, etc.). Because of the contradictory requirements

imposed on the electrical and mechanical characteristics of the waveguide,

and because of their variety, compromises must be made in the selection of

their basic geometric dimensions. For example, flexibility and resistance to

radial pressure will be the better, the deeper the corrugation and more closely

it is spaced. However, from the viewpoint of resistance to axial stretching

forces, a wide, shallow corrugation is desirable. The choice of waveguide

cross section is analogous: while an elliptical cross section is required from

the electrical viewpoint, a round shape is preferable mechanically.

Some investigations have been made of the mechanical characteristics of

brand E48 flexible corrugated elliptical waveguides [4] (internal ellipse

axes 2ai=47.1 m, 2bi=31.5 mm; external ellipse axes 2a2 -53.4 mm, 2b2=38.1 mm),

as well as brand E75 (internal ellipse axes 2ai=33.1 mm, 2bi=19.5 mm, external

ellipse axes 2a2=37.4 mm, 2b2-24.1 mm). We know that when the waveguide is

removed from the drum and hoisted onto the antenna tower, or when the waveguide

is suspended freely, axial stretching forces arise which cause stretching of

the waveguide along the longitudinal axis and compression of the short axis of

the ellipse.

The investigations of both types of waveguides indicated, depending upon the

axial stretching force, that they operate within the elastic deformation limits

up to a defined load magnitude. This load is 70 kg for the E48, and 100 kg for

the E75. When the load is increased beyond these values the process becomes

irreversible, and residual stretching occurs. For example, if a flexible E75

waveguide is subjected to an axial stretching force of 215 kg, the stretching

under load amount to 0.435%, with residual stretching of 0.1%.

The experiments indicated that the maximum tolerable stretching load is

about 143 kg for the E48 waveguides, and 124 kg for the E75, with residual

stretching not exceeding 0.02%. The acceptability of this load from the

viewpoint of electrical characteristics depends upon the acceptable deformation
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of the axes of the ellipse. For example, when an axial load of 138 kg is

applied to a flexible E75 waveguide, the short axis shrinks by 0.056 mm,

with residual reduction of that axis of 0.023 mm after the load is removed.

The research showed that a reduction of the length of the short axis of the

ellipse of 0.044 is tolerable from the viewpoint of electrical characteristics.

Based on this, it was established that the flexible E48 waveguide can withstand

a stretching force of up to 100 kg, and an E75 -- up to 110 kg. With the

1.3 kg/m running weight of the E48 waveguide and 0.78 kg/m of the E75 this

means that a suspended E48 waveguide can span 77 meters, and an E75 -- 141 meter.

Under these circumstances, there is no danger of residual deformation of the

short axis exceeding 0.04 mm. Experiments conducted to determine the

destruction loads indicated that the E48 waveguide breaks under a stretching

force of 1870 kg, and the residual stretching amounts to 29%. These values are

smaller for the E75 waveguide, equalling 1190 kg and 18%.

In order to find the acceptable loading along the axis of the ellipse when

it is fastened in place using clamps, experiments were conducted to compress

the waveguides between two parallel steel plates which created a linearly

distributed load acting along the short axis of the ellipse. If we use an

acceptable deformation of the short axis of the ellipse of 0.04 Mm, the

tolerable load for the E48 waveguide is 34 kg, and 26 5 kg for the E75.

Comparative testing of standard R48 rectangular waveguides under analogous

conditions (with the load applied along the center line) indicated that the

rectangular waveguide has lower resistance to compression under a linear load

of 12.5 kg. The latter confirms the strength of the shape of the corrugated

elliptical waveguide.

The acceptable load along the long axis for the E48 waveguide is 36.5 kg,

and 31 kg for the E75, with acceptable short-axis deformation of 0.04 mm.

The above experiments to determine the acceptable loads as a function of

the direction of application (short or long axis) were conducted on waveguide
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specimens 100 mm long.

Since under actual operating conditions elliptical waveguides are held at

a slight positive internal gas pressure (nitrogen or "dry" air), in order to

avoid condensation of moisture on the inside surface of the waveguide

experiments were conducted to determine the deformation of the waveguides

for various amounts of positive pressure. It was found that in both types of

waveguides only a change in the short axis as a function of the amount of

internal pressure is noticeable. If we use 0.04 mm as the acceptable deformation

of the short axis, the waveguide can withstand 2.75 atm over a long period, or

6 atm briefly. These values are 1.55 atm and 5 atm, respectively, for the E75

waveguide. The experiments also showed that the waveguide can withstand

excess pressure of 10 atm for many hours without destruction, but the

residual deformation of the short axis exceeds the acceptable value.

Elliptical waveguides are subject to bending under production and operating

conditions. The waveguide undergoes bending forces when wound on the drum.

When it is bent around the drum, the waveguide is compressed on the inside at

the point of the bend and stretched on the outside. The amount of these

deformations depends upon the cross section of the waveguide and the radius of

the bend.

Experiments have shown [4] that when a waveguide is wound around a drum

1200 = in diameter (maximum radius of curvature 600 mm), the deformation

along the long axis of the ellipse for the E48 waveguide was 2.7%, and 1.75% for

the E75. However, these numbers contradict the requirements that the necessary

rigidity be maintained in the axial directions. It is necessary to make an

optimal decision from the viewpoint of waveguide rigidity as well as its

flexibility, which is facilitated by the appropriate choice of the corrugation

depth and spacing. For example, with a deep corrugation in which the ratio of

the equivalent outside diameter of the corrugated tube to the equivalent inside

diameter of the tube was .-- 1.25 [Translator's note: Russian ;iap
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denotes outside diameter; Russian H denotes inside diameter], the waveguide

was highly bend-resistant, but not sufficiently resistant to stretching forces.

With shallow corrugation, when -jZ =1.05, the waveguide could not withstand
BIH

bending. A ratio of -1.12 was recognized optimal [5]. The flexibility of
xJBH

the waveguides was checked by rewinding the waveguide from one drum onto another

drum of a particular diameter [3]. The supply drum was braked in doing this in

order to create the necessary stretching force. The rewinding was done so that

the waveguide was bent at one end in a "C" shape, and in an "S" shape on the

other side. The number of rewinding cycles before damage occurs is four times

greater for a "C"-shaped bend than for an "S"-shaped bend.

The corrugation parameters selected provided the required rigidity and

flexibility for 600 "C" rewindings, or 150 "S" rewindings, without damage to

the material.

X-ray pictures of the structure of the E75 waveguide material for a selected

corrugation shape which had undergone 320 "S"-rewindings showed the presence of

narrow, shapeless cracks in the valleys of the corrugation. Investigation of

the waveguide after 150 "S" rewindings showed no cracks, The presence of

deformations in the cross section of the waveguides was monitored by measuring

the coefficient of reflection before and after the rewinding. The measurements

indicated that the waveguides were suitable for use after the tests described

above were made. Measurements of the coefficient of reflection of the

elliptical waveguides developed by the Telefunken Company (E40-E120) indicated

that the maximum coefficient of reflection is 0.05 for a line approximately

40 meters long, and that the mean coefficient of reflection does notexceed

0.03 [3]. The measurements indicated that the coefficient of reflection

increases as the depth and spacing of the corrugation increases.

It follows from the published data that the spacing of the corrugation for

the entire series of elliptical waveguides varies between 6 and 12 mm.

31



2I

The Andre Corporation (U.S.) produces flexible elliptical waveguides for

the 3700-13,200 MHz band with a mean standing wave ratio of 1.05-1.06, with

ii occasional overshoot reaching 1.15-1.20 [6].

Based on research done on the electrical and mechanical characteristics

of their series of elliptical corrugated waveguides, the Telefunken Company

guarantees the following-

1. Attenuation values close to those of rectangular waveguides in the

corresponding frequency ranges.

2. Average reflectivity measured in an elliptical waveguide 40 meters long

K; along with its adapters of 0.03-0.05 (depending upon waveguide brand), with

occasional overshoot of up to 0.07-0.1.

3.operation onmobile radio devices using a drum at least 1200 mmn in

diameter with no more than 300 rewinding operations.

4. Stationary operation in radio devices with a minimum radius of

curvature (for one bend) in the electrical plane of 300-400 -m.

5. Maximum acceptable amount of stretching force of 100 kg.

6. Maximum acceptable linear distributed load acting along the axes of the

ellipse of 10 kg/cm.

7. Acceptable internal operating pressure of 1500 g/cm2.

The data on elliptical waveguides provided in messages and catalogs do not

U..

make it possible to establish precise geometric relationships for the dimensions

of their cavity (for the long and short axes of the ellipse), which would make it

possible to determine the acceptable operating frequency bands most precisely for
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individual brands of wavev.uides. However, based on the dimensions of the E48

and E75 waveguides, as well as the average axis lengths for E84 and El00

waveguides plus the outside dimensions of all types of waveguides, the internal

dimensions for all types of E-series waveguides can be determined accurately

enough for a preliminary estimate. Based on general theoretical premises, these

dimensions can be used to obtain the acceptable working bands of individual

brands of waveguides and the losses occurring therein as compared with standard

rectangular waveguides.

Based on these conditions, the following internal cavity dimensions and

basic geometric characteristics of the ellipse cross section should be used for

the E-series waveguides. These dimensions are presented in Table 3.

As can be seen from the table, eccentricity of the order of 0.75-0.85 is

characteristic for E-series waveguides (developed by the Telefunken Company).

In order to estimate the maximum operating frequencies and the range

covered, we note, as is accepted in international practice, the lowest

operating frequency for an elliptical waveguide must be approximately 1.2 of

the critical frequency (frequency at which even oscillations of type cHll

! 0occur), and the upper frequency must be correspondingly 0.95 of the maximum

frequency) frequency at which even oscillations of type cE01 or odd sH11

occur).

The elliptical waveguide in this case is a single-wave transmission line

operating at a wavelength of cHll. The general solutions for the transverse-

electrical and transverse-magnetic field components are expressed through

Mathieu's function [1,7]. In order to determine the phase coefficient

(critical wavelength), it is assumed that the tangential components of the

electrical field become zero at the wall of the waveguide. This requirement

leads to the condition that the corresponding Mathieu functions become zero.
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Table 3

Internal cavity

waveguide Long axis 2a, short axis 2b, coefficient of eccentricity
brand n n mnn compression

E40 62.5 34.2 0.547 0.837

E48 47.1 31 5 0 668 0.745

E62 41.6 23.9 0.575 0.821

E68 39.1 21.3 0.545 0.84

E75 33.1 19.5 0.589 0.809

E84 28.8 17.8 0.618 0.787

E100 26.6 15.6 0.586 0.81

E120 23.6 12.6 0.534 0.847

For a wave cH11

R.,(P,; P = . (1)

and for a wave cE01

RO(cPm; u) =0. (2)

In expressions (1) and (2)

Rcl(cPil; ua) is the derivative of a modified first-order Mathieu

function;

Rco(cPOl; ua ) is a modified zero-order Mathieu function;

II_P:'. cPlI, cP01

and ch ua- are the first parametric roots of the Mathieu functions
determined from conditions (1) and (2).
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The critical wavelength is determined by the formula

(3)

where e is the eccentricity of the internal cavity of the elliptical

waveguide, a is one-half the long axis of the internal cavity of the

waveguide, pmn is the parametric root of the Mathieu function determined

from equations (1) and (2), (Xk)mn is the critical length of the Emn or

Hmn waves.

Figure 4 shows the characteristics of the ratio of the critical and

limiting wavelengths to the length of the long axis of an elliptical waveguide

as a function of eccentricity [71 Based on these data and the data in Table 3,

Table 4 shows the results of calculating the critical, limiting, upper and

lower working frequency for series-E waveguides.

Table 4

Bran of rlpe' I operating band, MHz

elliptical Xk, mm X , m fk, MHz z
wavgudeeg MHz f =1.2f f =0.95f

waegid H X B rip=

E40 104.5 56.4 2872 5410 3446 5141

E48 79.3 47.4 3783 6328 4540 6012

E62 70.0 38.0 4289 7901 5147 7705

E68 65.6 34.5 4574 8686 5489 8251

E75 55.5 309 5402 9706 6482 9220

E84 48.2 27.8 6219 10810 7469 10270

El00 44.7 24.8 6714 12106 8057 11501

E120 36.6 20.6 8194 14598 9833 13808

[Translator's Note: The subscripts rnpeg , H , Kp and B above indicate

limiting, lower, critical and upper, respectively.]
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Fig. 4.

Key: I -- to determine critical wavelength in elliptical waveguide,
2 -- to determine limiting wavelength.

Figure 5 shows a diagram of the coverage of the 3000-15,000 MHz frequency

range series-E waveguides and the corresponding series-R rectangular waveguides.

The critical wavelength in the rectangular waveguides is taken to be 2 G

03 -- size of wide wall), while the limiting wavelength is taken as 3 (if the

ratio of the wide wall to the narrow wall is equal to or greater than 2). The

lowest frequency in the operating band fH =1.25 f , while the top frequency

f =0.95 f . It is apparent from the figure that frequency coverage of

elliptical waveguides is satisfactory, comprising more than 500 MHz for series E.

The frequency range coverage of rectangular waveguides within the working

band (ratio of top frequency to bottom frequency in working band) is 1.52. For

elliptical waveguides with eccentricity of 0.7 and 0,8 this value is slightly

less, equalling 1.25 and 1.40, respectively. It should be noted that in a round

cylindrical waveguide the ratio of the top and bottom frequencies of the working

band is still smaller, amounting to only 1.155, i.e., the round waveguide has

narrower bandwidth. (For cylindrical waveguides values of f, 1 -1 fk, fr

-0.975 f are used.)
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brands of elliptical and
-rectangular waveguides

1?~z 103

3 4 5 5 7 8 9 0 fl 12 3 14 5

": Fig. 5.
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Figure 6 shows the amounts of losses for series-E and -R waveguides

according to data from the Telefunken Company. Determination of the

parameters of the internal cavity and their relationship for elliptical and

rectangular waveguides, as well as the relationship between the losses in these

waveguides, allow the following conclusions:

1. With a rectangular and elliptical waveguide perimeter ratio of

approximately 1.12 (perimeter ratios for R4 0 /E4 0 ; R84 /E84 ; R4 8 /E4 8 ), loss ratios

of approximately 1, 0.95 and 0.88, respectively, are observed. The respective

eccentricity is 0.84, 0.79 and 0.75. Thus, if the perimeter of a rectangular

waveguide is approximately 10% larger than that of an elliptical waveguide, their

losses are approximately the same (ellipse eccentricity E=0.84). The losses in

an elliptical waveguide for the case in question will be 5-10% greater when the

eccentricity is reduced to 0.79-0.75.

2. If the ratio of the perimeters of elliptical and rectangular waveguides

is approximately I (for R1 00 /E1 0 0 ), with an ellipse eccentricity of 0.81 the

losses in a brand El00 waveguide are approximately 30% lower than in a

corresponding rectangular waveguide.
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The materials presented above concerning the amount of attenuation,

frequency range covered, and physical-mechanical characteristics of

elliptical waveguides confirm the promise of their utilization in the

centimeter band for both stationary and mobile radio installations.
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BEAM ROCKING IN MIKAELYAN LENS

Ye.G. Zelkin, V.A. Andreyev

This article considers the question of beam rocking in
a nonuniform Mikaelyan lens, and analyzes the phase of the
field and maximum amount of distortion of the phase front
within the aperture of that lens

INTRODUCTION

This article examines the question of the possibility of using a nonuniform

Mikaelyan lens in antenna devices which require beam rocking.

In principle, a Mikaelyan lens is a focusing non-aplanatic system. However,

we know that any optical system permits practically undistorted beam rocking

within some limited angular sector with the radiation source moving along the

focal surface. Such systems include, for example, parabolic reflector antennas.

The field phase and maximum phase front distortion in the aperture of a
Mikaelyan lens are calculated below, as is the angle of deviation of the beam

from the axis when the radiation source moves out-of-focus along the y coordinate
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(Fig. 1), in order to determine the sector of practically undistorted beam

rocking

Fig. 1.

A plane problem is considered, i.e., it is assumed that the index of

refraction of the lens is a function only of the y coordinate and is

independent of the x and z coordinates:

n=f(y).

The radiation source in such a lens must be a linear feeder.

Calculation of Field Phase Within Lens Aperture

As we know [I, the curve of the beam propagation in a Mikaelyan lens is

described by the following equation:

cos 7 cot ex sinh 2y

2b 2b ' (1)

where Ox is the angle between the x axis and the tangent to the beam at the

point of intersection of the beam and the ordinate, b is the thickness of the

lens.
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- I The index of refraction in a Mikaelyan lens changes according to the

principle

cosh--= (2)

where no is the index of refraction at the axis of the lens.

Since the index of refraction is independent of the x coordinate, we

shall use the following equation instead of expression (1):

sin.(X -x)= cot ex sinh !Y. (3)
2b 2b

We are easily convinced that this equation covers all cases of beam pro-

* ;pagation in a medium with these parameters. Furthermore, the distances

from the point at which the beam trajectory intersects the x axis to the

coordinate origin are determined by the quantity X, and the angle between

the tangent to the beam trajectory and the x axis is Ex.

We shall position the lens with respect to the coordinate system as is

shown in Fig. I, i.e., so that the lens aperture coincides with the x=b plane,

and the feeder is located at the point M(O;R).

For further analysis, we shall consider the bundle of beams exiting the

feeder to be a bundle of curves passing through point M (Fig. 1).

The optical length of the path along the beam from the point (O;R), where

the feeder is located, to the point (b;y 2) in the aperture of the lens can be

found from the following expression

dX-x) d'u (4)
ft

for the case in which the curve is written in parametric form. Here tl(O;R)
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and t2(b;y 2 ) are the points on the trajectory of the beam in question, n(y) is

the index of refraction, which var-ies according to (2). We shall introduce the

designation a- cot ex to equation (3)

*1 _-t I (5)
'nu sinh

2b

and write this expression in parametric form:

)- . (6)
2b !

Hence (X- -x) - arc sin arcsinh
a (7)

d1 d(--x) 2b I 2

- -. w - (8)

Substituting the value for y from (7) in (2), we obtain

tug) = _ _ (9)

Substituting the values of n(y), dy/dt and d(X-x)/dt in expression (4),

'S

2- - ' 'b

After some simple transformations

S =no -b a1 I
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It is easy to compute the latter integral. Substituting t= sin O, we

obtain [21 s',zd
S - I"t j'( '-.-sin' ). o,

Cos a'. 21f2
3" !. -: (at - sin22) :os ; a3-- Sin'

San a tg
, ~~a V a: t

Since t i -b i

! 2b

To.- - (X -- 2n

and (12) can be written as

;vii"i

S ~n 2barctam 2b 2b
7 " - -26 t (13)

But

tan r(x-b) -cot rx

2b 2b'

whence, in turn, it follows that

tan (.--a..n 1

, 2b 2b n X X 1)

2b2 2bx x
Ssin -5 coa-s (15)

Substituting (14) and (15) in (13), we obtain

2b 77____S NO --arct (16)' S-n° arc~an.!X AX
sin - Cos (16)

* 2b 2b
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Expression (16) yields the value of the electrical length of the curve with

parameters a and X on the segment between the planes x=O and x=b.

We now eliminate the parameter X from (16). Since

sin -- =a sinh __

2b 2b' (17)

2b
S - no  --o:ctaatS "n-actin -- I !--=sinh2 'R(18)

S sinh- (18)
2b

Here a-cotO. is the parameter which defines the beam in question within the

bundle of beams passing through the point M; (O;R) is the locus of the feeder.

Varying (x, and correspondingly parameter a, within some selected range of

values, we can obtain the electrical length of the path along any beam between

the planes x=O and x=b.

However, for practical purposes it is of interest to calculate the

electrical length of the path along the beam in the sector bounded by the

aforementioned planes as a function of the parameter Y2 -- the distance from

the axis of the lens to the point at which the beam in question intersects the

lens aperture. Let us make the following transformations as well.

By analogy with (17), we have the following for the point with the

coordinates (b;y 2)

sin -
b) -a sinh Y2

2b 2b ' (19)

where a is naturally the same parameter as in (17) for the same value of X.

From (17)
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; rc in fas

(20)

Substituting (20) in (19),

- 2b,< .. Rin are -in Usinh l-ba asi --

whence it follows that

1-a 2 sinh2 nR -a2 sinh2..L2
2b 2b

then

a-

' nhs inh nh ...,(21)

Substituting (21) in (18), we obtain the following convenient expression

for determining the optical length of the path along the beam from the

point (O;R) -- the point at which the feeder is located -- to the point

(b;y 2 ) -- the point on the aperture of the lens -- as a function of the

parameter y2 :

2b-
= - arctan ""U'

" he re
' { = h' _ ; ipsi "mh .1- " (22)

2b 2b

It should be noted that we are not mainly interested in the length of the

optical path, but rather its deviation from average value, e.g., the value

of the optical path along the beam which intersects the lens aperture at the

* Ipoint (b;0). Substituting Y2-0 in (22), we are easily convinced that the

length of the optical path along the beam in question

SS 0=n0 b. (23)

Incidentally, we note that the tangent to that beam at the point (0;R)

will be parallel to the x axis.
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We shall designate AS the deviation of the optical length of the path of
the beam from the value SO; it is the case that

AS-S-So.

Substituting the values from (22) and (23) in (24), we obtain

2b I %
AS=no arc |  -.

whence it follows that
2b ;J ,,A

AS= no arctaal - (25)
(25)

.1 19

Fig. 2.

It is easy to show that the deviation of the wave front from being in phase will

be antisynmetrical with respect to the center of the aperture. It is apparent

from Fig. 2 that all beams originating at point A intersect at point B, which is

located antisymmetrically to point A, with respect to the lens aperture.

Consequently, the optical lengths of all of the paths along the beams from
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point A to point B have the same value, namely 2n0b. It follows from this that

the sum of the optical paths from point a to the aperture of the lens along the

two beams which intersect the aperture at points equidistant from the X axis,

e.g., D and C, is also 2nob. It is the case that

SAD+SDB= 2nob

and SDB=SAC;

consequently, SAD+SAc=2nob .

The latter expression shows that the curve of the deviation of the optical

paths as a function of Y2 will be antisymmetrical with respect to the x axis.

In some practical cases, it may be inconvenient to have the value no in

expression (28), since it may be that the phase distortions in the lens aperture
are being calculated for the purpose of selecting no based on conditions of

minimum distortions.

We know from [1] that

no=nr cosh , R.(2/' (26)

where nr is the index of refraction at the point y=R, , 2R1 is the size of

the lens aperture [Translator's Note: The subscript n denotes "lens"].

If we set x-b and y-R in expression (3), then

tan (-t.'sixiR., (27)

where emax is the aperture angle of the radiator if the letter is located at

the focus of the lens.
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It follows from (27) that

" .&. 2arcsinh(tan0max).

(28)

We substitute (28) in (26), and assuming nr=l, we obtain

n0=cosh arcs inh (tarw' (29)

We substitute the value obtained for no in (25). Then we finally obtain
p'. 2b

"AS= .-T os max (30)

where

sih, i-j

Formula (30) was used to calculate the value of AS for various values of R --

the distance between the feeder and the focus of the lens. The results of the

calculation are shown in Fig. 3 as a series of curves. It is apparent from

the figure that when the value of R increases, the slope of the phase front

increases and its distortion grows as well.

PHASE DISTORTIONS IN LENS APERTURE

Let us estimate the phase nonlinearity in the lens aperture In order to

do this, we expand (30) into a series with respect to y. Limiting ourselves to

the first three terms of the expansion, we obtain

r _._- __ _,, (31)

Cos ema Y -- 24 1 ') b I

Using the least-squares method, we find the slope of a plane front equivalent

to the front in question. In order to do this, we define the coefficient a

which characterizes the slope of the equivalent plane front using the expression
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-Rc

{fAS- 7Y)"Idy -0.
-R (32)

where Rc is half the utilized lens aperture, which is less than or equal to

-- half the calculated lens diameter.

A~s P,.

R. Re - .,

06 04h

* 0201

a;z

0 0.1 V 0. t24 0.5 3.6 .7 9.8

Fig. 3.

We note that in speaking of using part of the aperture of a lens with radius

Rc, we are of course assuming that a lens with diameter 2Rc is the actual

implemented part of the calculated lens with diameter 2R , where the dimension

RI is the distance from the axis of the lens to the point at which n=l, and

Rc is selected on the basis of thR tolerable distortion for the case in question.

Accordingly, the aperture angle of the feeder of a lens with 2Rc will be

smaller than the angle emex and must be calculated separately for each value Rc.
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Substituting (31) in (32) and performing the appropriate calculations, we

obtain

" =tan (33)
nHs 40(1 b2

where F is the angle of inclination of the equivalent plane front.

Substituting the value of 1 in (33) in accordance with (22), in solving

(33) for 4, we obtain the following final formula for determining the angle

of deviation of the directivity pattern of the lens antenna

sinh 'R t, j2s 1?"

7 arctan h - s

S1lsini ntoii

where R -- distance between feeder and focus of lens;

emax -- aperture angle of total-lens feeder;

b -- lens thickness;

Rc -- radius of utilized portion of lens.

The difference between the optical paths between the actual phase fiont and its

equivalent plane front at the distance of Rc from the x axis is

A SKP : A A.5 1C-- a t R . ( 35 )

Substituting the values of AS and tan * in (35) and limiting ourselves to

terms below y5 , we obtain the following expression for the quantity ASICP
a s* (2 - i)3

Aso= 2.)1) R 3  (36)
600 co , I .4~)3 C

Formula (36) can also be written in the following form:
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/W

i i , ,o.. x  I, ' '(37)

This notation is more convenient, since the quantity Rc/b is a determining

parameter of the lens, while the quantity AS P/X is a determining parameter

for the distortions in the aperture in fractions of a wavelength. Substituting

the value of i9in (37), we obtain the following final expression for determining

the quantity ASp /X
KPt

Tr sijxj Z.2. i2+sirO -

AS R,: 2 2b 2b

b (8
C6(ICO t J+sijt(38)

Formula (34) and (38) are basic for calculating phase distortions in the

lens aperture during beam rocking. Formula (34) can be used to determine

the angle of deviation of the directivity pattern, while formula (38) can be

used to find the phase front distortions at the edge of the lens aperture.

It should be considered that these formulas produce correct results only

for Rc<0.6, since only for these values are the quantities Rc valid in the

expansion we have done.

Formulas (34) and (38) were used to calculate the values of AS P /X and

as functions of the distance from the feeder to the axis of the lens for two

values of Rc. The calculation was done for a lens with the following calculated

parameters1 :

no2 -- index of refraction on lens axis;

nrul -- index of refraction at edge of lens;

lThe values of b, , and Rc are given in relative units.
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b=1.2 -- lens thickness;

21 =2 -- lens diameter;

9 max -- aperture angle of feeder for lens with diameter of 2;

Rcl=0.5 -- utilized portion of aperture;

Rc2=2.6 -- utilized portion of aperture.

The results of the calculation are shown in Figs. 4, 5 and 6 as a group of

curves.

Figure 4 shows the angle of deviation of the beam as a function of the
distance of the radiator from focus.

!i22 41 a..s

Fig. 4.

Figures 5 and 6 show the amounts of phase distortions in the lens aperture

with various angles of deviation and various relative aperture dimensions in

beam wavelength. In Fig. 5 Rcl-0.5; in Fig. 6 Rc2=0,6. The curves are con-

structed only for S X/4. As can be seen from Figs. 5 and 6, the Mikaelyan

lens allows the beam to be rocked over a fairly wide sector with practically

acceptable phase front distortions.
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It is easy to note that if we limit ourselves to distortions not exceeding

* X/8, the beam can deviate by several directivity pattern widths.

*1 c, 32

/t

0.4a

Fig. 6.
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* SYNTHESIS OF RADIATOR CROSS-COUPLING COMPENSATION CIRCUIT IN PHASED ANTENNA
ARRAY

O.G. Vendik, L.V. Ryzhkova

The general method is proposed for synthesizing
a cross-coupling compensation circuit in a phased array.
If each isolated radiator is matched, in order to
determine the parameters of the compensation circuit it
is sufficient to know only the normalized mutual impedances

* of the radiators. A cross-coupling compensation circuit
for two antennas is calculated as an example.

INTRODUCTION

* I As we know, a significant cross-coupling effect between individual

radiators is observed in phased antenna arrays consisting of a large number of

* omnidirectional radiators placed close together.

The antenna characteristics are influenced by cross-coupling in three basic

- directions:

I 1. The matching between each individual radiator and the feeder line is

disrupted during operation in the system, which reduces the antenna gain.
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2. Energy leakage into adjacent channels can change the amplitude-phase

distribution assigned by the control system significantly, and consequently
a reduce the beam-setting accuracy and increase the side lobe level.

3. Scattering by each aperture of the energy reaching it from the other

apertures due to cross-coupling, sometimes called re-radiation, also changes

the directivity pattern of the antenna

We can state with certainty that reducing the harmful influence of cross-

coupling between radiators on the antenna parameters is now one of the most

urgent problems for the developers of phased arrays.

One method which is extremely interesting in this connection is that pro-

posed in 1963 by Hannan (11 for matching the impedances of phased arrays in

a wide scanning angle based on creating artificial coupling between the radiators

which compensate for reflections occurring due to cross-coupling in the system.

* That article cites experimental data which provide evidence that the use of

the proposed matching method reduces energy losses in the system significantly.

However, introducing artificial coupling between the feeder lines which

compensates for the coupling which exists between the radiating apertures in

an array makes it possible to reduce mismatch between the radiators and their

own feeders as well as to achieve the individual channel decoupling which is

necessary to independent control of each radiator.

* A general method for synthesizing a compensating circuit is proposed;

special attention will be devoted to compensating for waves which leak into

adjacent channels, i.e., those which disturb the amplitude-phase distribution

* assigned by the control system.
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SETTING UP COMPENSATION EQUATION

:We shall consider an antenna system consisting of N radiating elements.

Such an antenna can be represented as a multi-port network [21 with N pairs

I of input terminals and an infinite number of output terminals (corresponding

*i to representing the antenna field as a spherical wave sum). However, if we

ignore the directivity pattern formed by the antenna and consider only what

happens at the input of such a system, it is more convenient to represent the

system as a system of N connected waveguides working into unmatched loads.

When this is done, we can ignore all of the output terminals and consider

*the antenna as a multi-port network having a total of N pairs of terminals.

Leakage of energy from one channel to another, as well as reflection of the

energy at the system inputs, are fully defined by the impedance matrix of

the aperture system

ZU,. Z1 . . .. ,

z1A

L ).,. ,... J
where zii is the inherent radiation impedance of the element, Zik is the cross-

impedance of two radiators.

If the elements in the impedance matrix are measured or calculated [3],

the following formula can be used to define the scattering matrix of the multi-

port network:

SA-(ZA-l)(ZA+l)-1, (1)

where 1 is an Nth-order identity matrix. The matrix SA, as usual, inter-

connects the column vectors of the incident and reflected waves

(bO =SA (a. (2)
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It can be shown that if a system is mutual and the radiators in the system

are alike, the scattering matrix of the array system appears as:

S.SI--',!S

.1A

Now let the cross-coupling compensation circuit be a multi-poet waveguide

network connected between the controlled system and the system of radiating

apertures. Obviously, this multi-port must have N pairs of input and N pairs of

output terminals (Fig. I).

(() 2' (2 ) - - - (3)

4'#7
ICU~m " ! I c~uu IC, ,eM

Fig, 1.

Key: (1) control system; (2) compensation circuit; (3) rad-
iator system.

The systems of incident and reflected waves at the terminals of the

compensation circuit are connected by the scattering matrix SM:

b a1
* b) 2M :'~ (3)

') ,25N,
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It is easy to see that the waves reaching the output terminals of the

compensation circuit are reflected from the aperture system, and conversely,

i.e.,

( bV 2) b a - (4)

If we substitute equation (4) in (2), we obtain the following connection

compensation circuit:

(5)(>), (
Let us now consider a new multi-port representing a cascaded connection of

a compensation circuit and system of apertures. Its terminals coincide with

the first N pairs of terminals of the compensation circuit, and the scattering

matrix connects the incident and reflected waves at the input terminals of the

compensation circuit.

I)6

Simultaneous solution of systems of equations (3) and (5) makes it

possible to define the scattering matrix S of the multi-port network. In

order to operate with matrices of the same order, we must do some transformations.

We divide the matrix SM into four blocks:
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' -j ..! t ,,

In addition, we introduce the following notation:

'-, a. ."

a .-.

Then equation (3) appears as

b I -  a S~r r :(7)

It - . 1 a, S; a

(8)

Instead of (5) and (6), we can write:

(9)
a,, -SA bi

b,- Sat (10)

Solving equations (7), (8) and (9) simultaneously, we obtain

b, S, a, - S1 ,, (1 -. SASI,,y-1 SS,,i I a, (11)

It follows from (10) and (11) that

-=S1 -S I /I('-SAS1 
- IS .%S u '  (12) i
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It is easy to show that all of the elements of the matrix SASI I, are

4 significantly less than unity; therefore, the matrix (l-SASII II is not always

* singular and consequently has an inverse. One exception is the case, of no

practical interest, in which the system in question is severely mismatched.

* We have thus obtained the sought connection between the incident and
reflected waves at the input terminals of the compensation circuit under the

condition that its output terminals are loaded to a system of coupled apertures.

As follows from the synthesis problem formulated above, the combined

scattering matrix obtained for a system with cross-coupling compensation must

be diagonal. This assertion allows us to setup the following compensation

A equations:

0~-~; £k; i. k 1, 2 .. ..., (13)

where sik are elements of matrix S.

If the primary task of the investigation is not to obtain substantial

channel decoupling, i.e., precise maintenance of the amplitude-phase

distributions on the antenna assigned by the control devices, but rather to

match each individual channel, it then follows, conversely, to zero the

diagonal elements of the matrix S:

When this is done, the mismatch between each radiator and its feeder

line occurring in the antenna array due to coupling between the radiators

can be fully eliminated.

The solution to system of equations (13) with respect to the elements

of matrix SM defines the sought parameters of the compensation circuit with
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respect to the known values of the scattering matrix of the system of

apertures SA defined by equation (1) from the impedance matrix.

As will be shown below, under defined conditions the inherent radiation

2 impedance of the elements can be ignored; then it is sufficient to know only

the normalized mutual impedances of the radiators in order to determine the

parameters of the compensation circuit

DETERMINATION OF PARAMETERS OF COMPENSATION CIRCUIT FOR CROSS-COUPLING OF
TWO RADIATORS

The problem of synthesizing a cross-coupling compensation circuit for

two antennas is of interest in order to illustrate the general methodology

presented above; it is also of independent practical value, e.g., in single-

pulse systems. This problem can be formulated as follows: let it be required

to determine the parameters of a waveguide circuit connecting the feeder line

of two antennas such that the existing coupling between the radiating apertures

is compensated.

Let there be a system of two antennas for which the elements of the

impedance matrix are calculated or measured:

where UK

Ic
!, I 1I-0

If the system is mutual (zl2-z21 ) and the antennas are identical (zllmz22),

then

ZA Z Z1, 2

212 211
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We use formula (1) to define the scattering matrix

I).ii

If the antennas were not coupled, the scattering matrix would appear as

follows:

s 1s _ - fl2

We shall assume that each radiator taken separately is matched. Then S'A is

obviously a null matrix. It follows directly from this that zll=l.

We then obtain the following formula for the scattering matrix of the

system of apertures

$ S. S,

where: ,(

1  - _ .(15)

4 - 4 - 2

Let us now set up the compensation equations. Let the compensation

circuit represent a mutual four-port waveguide network which is symmetrical

with respect to two relatively perpendicular axes. Then, as we know
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I,,I
$S" S+$I*SI Sr1+

S S1 1  S1 .

S4S131S1.2  S11

Substituting the elements of matrices SA and SM in formula (12), we

obtain the combined system scattering matrix S. The compensation condition

(diagonality of matrix S) has the following appearance in expanded form:

(s.s 13  sls1 4) (s.stj -- sls12) (s. -- s-sI3)4 - sIA ( - 1 -- S s1 1 )

S.si - $tS1, - (s.SS - s IS1,) (S's - SIS14)] 0, (16)

where Sl, s2 -- are the elements of matrix SA,

Sll, s12, s13 , s14 -- are the elements of matrix SM .

We shall implement the compensaioD ;ircait as a system of two waveguides

connected via a coupling port as La sU3Wuw Lr Fig. 2.

Here 1,2,3,4 are the terminal numbers of the multi-port waveguide network.

The scattering matrix can be written as follows:

-r -- '" 1--'- - 2

__/2____,2

S. -e 2--

64



where r is the coefficient of reflection from the section containing the

coupling port, a is the gain of the coupling port. (The diameter of the

port is assumed to be fairly small, and the port itself is considered to be

a waveguide which passes only frequencies above those of the coupled waveguides.)

7 , '

Fig. 2.

As we know, the condition that there be no active losses in the circuit

requires that the scattering matrix be unitary. It is easy to show that a

matrix is unitary if af2=2r(l-r). Substituting the elements of SM in equation

(16), we obtain

• . - i~se h s-; k

The elements of the scattering matrix of the aperture system can either

be measured directly [41, or calculated using formulas (15). In the latter

case, the solution for the electrical length of the bridge appears as follows:

Oc
tan 6-1-

where a=2r; r-i--z 1 2;

b '2r-- 4rr

4.
C

r-
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Since rz<l, there are always two real solutions for tan e which coincide

when r=O; accordingly, there are two solutions for the coefficient of

reflection ror the gaina.

We thus obtain two systems of parameters for the circuit which compensates

a wave passing from one channel to another because of cross coupling due to

the wave which enters that channel via the coupling port.

It is clear that both the radiators and the compensation circuit produce

some reflection at the input of the system. Obviously, with the appropriate

phase relationships these two reflected waves can be at least partially

compensated. Therefore, of the two solutions obtained for (16) above, the

one for which ISII has the smallest value should be selected; then the antenna

system with total compensation of energy leakage from one channel to another

will have the least possible reflection at the input.

An example of the calculation follows.

The fallowing two solutions were obtained for the compensation equation

for coupling impedance z1 2=-0.13--i0.44:

-' -196 3ol I, 13 014

1 , i-),50: .l ' .037

, 0,308; o 0.26.

(It is easy to show that two different solutions occur forr ande because of

the mismatch between each radiator and its feeder line when operating in the

system.)

Substitution of the solutions obtained in the formula for SI produce the

following results:

)Sill 0, 218: oS,2  0.0199.
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Obviously, the second solution is preferable, since it provides partial

cross-compensation for reflected waves, as a result of which a 2% coefficient

of reflection is obtained at the input of the entire system with total channel

decoupling.

CONCLUSION

The phenomenon of leakage of electromagnetic energy from the aperture of

one radiator to the input of another, sometimes called "backward" cross-

coupling, produces variation in the amplitude-phase distribution in the

antenna assigned by the contol system.

The method proposed in the present work makes it possible to determine

the parameters of a waveguide connection which compensates for "backward"

cross-coupling.

Further development of this method will make it possible to compensate

for "forward" cross-coupling, which causes distortion of the directivity

pattern of a radiator in a system.
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METHODS FOR CALCULATING EDGE EFFECTS IN PHASE DIPOLE ARRAY

L.A. Cherches

Iterative computational methods are used to determine
the distribution of currents over the elements of an array.
The convergence of the iterative processes is investigated..
Examples of the variation in the impedance and gain of the
elements as a function of their position in the array are

Interaction between the elements in antenna arrays produces significant

variation in the input impedance, directivity pattern and gain of the elements

as compared with isolated radiators. However, practically all of the literature

on this matter is devoted to the characteristics of antennas with few elements

or the central elements in multi-element arrays. In the latter case, the

parameters are examined for an infinite array. As concerns the parameters

of the edge radiators of multi-element arrays, there is not enough information

concerning them in the literature. An approximate examination of special cases

is given in [1,21; [31 notes the complexity of the problem. The present work

investigates methods for calculating edge effects in an active array (in which

each element is driven by a separate oscillator or loaded to a receiver). For

simplicity we shall assume that all of the radiators and oscillators (receivers)
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are the same. The phase in each element of the array can be adjusted.

It is most difficult to calculate the current distribution across the

elements of an array with a large but finite number of radiators (or in a

semi-infinite array).

The current distribution is found from the following system of linear

algebraic equations:

I.., i2 'z , .. . I .. 1
Z.) .Z,

where Imo is the current from the mth element in the absence of cross-coupling

between elements; N is the number of elements in the array, Z0 is the inherent

impedance of the element, ZH is the load impedance referred to the element input,

is the impedance produced by the pth element on the mth; the prime next to the

summation symbol designates that the term in which prm is missing. In thin

dipoles (with electrical radius pfkr of the order of, or less than, 0.1) which

are not located too close together (with an electrical distance between the

centers of adjacent elements of t>l) and which are near-resonant (half-wave),

the lengthwise current distribution is close to the sinusoidal distribution

used in the approximate theory [4]; we use the induced emf method to determine

the induced impedances.

Direct methods of solving system (1) for multi-element arrays are difficult

even when computers are used. It is more convenient to use iterative methods.

According to a simple iterative process (method of sequential approximation)

[5],

Zo _r Z " "P-1 (2)

We car use
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as the initial approximation. We shall estimate the convergence region of the

iterative process based on the condition, rigorously valid for an infinite array,

that

'Z"aS 'Z, Z '~

where Z is the impedance induced on the element by other elements.

The rate of conversei ce of the iterative process from the convergence factor

magnitude

* corresponds to a geometric progression.

* Figure 1 shows the convergence regions for parallel half-wave dipoles with

various load impedances:

Z14 Z0  matching between isolated dipole and load,

Z H -O -0 short-circuiting of dipole,

Z H Z,--matching between dipole and load in infinite phased array.

Here Y is the quantity complex conjugate with Z.

The iterative process can be caused to diverge by the reduced spacing which

results from increased cross-coupling between elements, by the direction of the

primary radiation approaching the plane of the array, and by reduction in the

load impedance resulting in weakening of condition (3), and by approaching the

zone in which the secondary diffraction beam appears. The latter produces a

drop in the directional gain, and consequently an increase in the impedance of

the dipole due to increased induced impedance. As a result, the absolute value
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of the induced impedance increases, which degrades condition (3).

1.0

. . . .. . . . . . . . . . . . .. .. .

Fig. 1.

Key: (1) spacing, expressed in wavelengths; (2) inclination
of wave front to array plane.

In the most important case of matching dipoles in the center of a phase

multi-element array (Z H=Z,), the convergence region is large and includes theH
* most interesting values of array spacing and wave front slope. As the load

impedance drops, the convergence region becomes significantly smaller. The following

examples are given for the worst case of convergence (ZH -0).

Figure 2 shows convergence regions for shielded arrays (in which a metal

shield is placed in front of the dipole plane). With small distances from the

shield d the interval s/X which provides the convergence varies little from an

angle of inclination of the wave front to the array plane 0, and is wider than

without the shield. When there is a substantial difference between the array
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plane and the shield, the contour of the convergence region is analogous to

that when there is no shield (with a "tongue" in the area of occurrence of

the secondary diffraction beam).

Figure 3 shows the convergence factor as a function of the angle of

inclination of the wave front for beam rocking in different planes [H, E,

diagonal CD)] for a two-dimensional array of half-wave dipoles with elements

arranged in a square (with spacing in the H olane the same as the spacing in

the E plane) with a typical distance from the shield of d=X/4. Figure 4 shows

the convergence factor for beam rocking in the E plane for various spacing.

These curves characterize the convergence region (q<l) and rate of convergence,

which increases as q drops.

1. Z,f-O
Z" 0

* N *$--d--- --=r

*" I_ *. -*I -- -" "

0K
• -- , I

Fig. 2. Fig. 3.

It is not difficult to calculate the current distribution allowing for

edge effects for a linear array, but the same calculation for a two-dimensional

array is extremely cumbersome. In many cases (for example when studying edge
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effect in the H plane) a quasi-two dimensional array model (unbounded in the E

plane) is useful [1]. It is convenient to do the preliminary analysis for an
array of conductors [1] with uniform current distribution. The introduction of

a conductor to the discussion is the same as considering only the constant

components of the actual current distribution along the vibrator column line.

The interaction among the higher harmonics of the currents is weaker: a rapidly

converging iterative algorithm can be constructed which uses the solution for a

conductor array.

Fig. 4.

Let us consider a system of conductors in more detail. In this case,

referring all of the impedance to a conductor section one wavelength long,

according to [1] we have the following for thin dipoles:

Z= 60-2 H12 (p).

Fig 6. 4.(m-pn

where H(2 )(x) is a Henkel function of the second sort. For phased excitation

along the conductor with uniform phase distribution of the emf between the

conductors, the current distribution is determined by the following system of

equations: A'
I ' "60-.: Hl- (Ira - p n 1 , e'"' '  (4)lm'60 12H ) (p) R 'd
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Here ZH is the load impedance for a conductor segment with length X.

Using the sequential approximation method

i. I____ _ U - , Mt -1rl. "

e m
For the null approximation we can, for example, use

4i

The convergence region of the iterative process can be estimated on the

basis of an array which is unbounded on both sides. For a phased array the

convergence condition

J,t - (Pt) 1 <' -'Pt K ,- '.(5)

For t<21

H121 -(C- In
t I j .-t, ti

-2I

-2t 2a( 2!)

for (2) (pt C
2 iL C--In I

where C is Euler's constant.

Figure 5 presents a diagram of the coefficient of convergence. With

close spacing, on the order of a wavelength, with which a secondary diffraction

lobe occurs directed along the array, the iterative process diverges.
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j

Fig. 5.

Key: (1) distance between conductors, wavelengths;
(2) conductor radius, wavelength.

These few examples explain that a simple iterative process is usually

suitable (converges rapidly). However, in a number of cases, for example when

the spacing is close, a simple iterative process (and analogous processes)

either converges slowly or even diverges. In these cases, it is necessary to

construct more complicated iterative algorithms which converge rapidly. Here

is an example of such an iterative process for matrix equation (4).

Let us consider the standard integral equation

' (M) - 6o2 H(2) Im-xjt)l'(x dx-em'sin (6)

'n-a.5 *V-L-0,5

Here the symbo means Equations (4) and (6) can be considered
0.5 n-,.5

as functional equations with operators which are close in some space. The

iterative algorithm used to solve (4) on the basis of (6) appears as follows:
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,.o 7)

A;

Here r is the resolvent of the standard equation.

Let us consider the solution of the standard equation for N- (for a

semi-infinite array). An asymptotic solution can be devised for large finite

N. We designate u=mt, u'=xt and 1(u) -- the function complex conjugate with

I(u). Then

Here

I" I'

We introduce the following equation with a close integration domain

1(u)- K"'* I hi t, - " (8)

This is a nonuniform equation of the Weiner-Hopf-Foch second sort. Using the

familiar factorization [6], we have
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where

II

Here

sino --
t Z, Z

Then we find 1(u) using the iterative algorithm for solving an integral

equation based on an equation with a close kernel [7]. Variation in the

integration domain in the equation for l(u) rather than the equation for l(u)

can be considered as replacing the kernel

K:- H'11iu- ')

with the close kernel

HI:'lp --u'!-  .(0. 5t[ m- 0,5) t H 0m O t. 51t,

- (0; 0.5t) t [m- ,5t, [m -0,5]t).

As a result

700 60.0t7t"1  (u)='i(u)- " 603o'i- ) A1K 7 "-I(u')du',
(U) I (11))t ) all

where
0.5L (i- .3.1

o n -),5), ( 10)

K" H,', (w - u') - r (u, v) I lu-u'),dv.
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Here r is the resolvant [81 of equation (8);

Z:- . - I yu-z". O)',(v-W. O)dW,

0-1- U < 0,

where

in. ) - 1 I)dx
* i Ch xj hax - coS -)

Let us examine the error of approximate solution using the example of an

unbounded phased array of conductors. In this case the solution of a matrix

equation of type (4) appears as

I

S - **On \g-20a (p )
pi

and the approximate solution (solution of standard equation)

120.-rT
t . ,t1. 

z  
, ,! - , - .

Z 

.

if

It is not difficult to determine the relative error of the approximate solution

I, -- I

Considering
H,21 0 ') du'.51210 [2 -

I- . . '-

where Sol(x) are zero- and first-order Struve functions, respectively; HJ2 )(x) is

a first-order Henkel function of the second sort. For example, when t-1, p-0.01,

zH -+0, 1671=0.05.
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* In many cases, the solution to the standard equation is closer to the

currents being determined than a substantial sequence of simple iterations

(not to mention that the standard-equation method is sometimes applicable when

.j a simple iterative process diverges). Iterative algorithm (7) can be used to

* increase accuracy.

With the usual distance between the plane of the array and the shield

d=X/4 and spacing s=X12, a simple iterative process for a system of conductors

is satisfactory with any wave front slope. The coefficient of convergence

where T=2kd is the electrical distance between the conductor and its image on

the ship"-,.

* Figure 6 shows the coefficient of convergence as a function of scanning

angle.

We have dealt with the computational aspect of determining the currents in so

much detail because this calculation is the most difficult and serves as the key

to research allowing for the edge effect of the remaining characteristics (array

directivity pattern, input impedance, element directivity pattern and gain).

The formulas needed for an unbounded array are contained in [91. Without

* dwelling on these standard (for predefined currents) calculations, we now

present some numerical findings to illustrate the nature of the edge effect.
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Fig. 6.

Key: (1) without shield; (2) with shield.

Figure 7 shows the odd component, with respect to the middle of the array,

of the variation in the phase of the current due to cross-coupling for edge

elements. (The odd component is of more interest than the even one because

it produces asymmetry in the array directivity pattern.) Although the results

shown in Fig. 7 are calculated for a system of conductors (with load impedance

corresponding to matching in a phased unbounded array), the nature of the

relationships remains essentially unchanged for linear and two-dimensional

half-wave parallel dipoles as well.

IT

/ zN.zU

/ _4

S.-" .X -- ,75A
* ~J edr=4; jr=0.7A

20

Fig. 7.

The diagram in Figs. 8 and 9 show the input impedance and gain of the

elements Gm of phased semi-infinite arrays of collinear and parallel half-wave
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dipoles as a function of their position with respect to the edge.

The parameters of the elements near the edge differ significantly from

the parameters of other elements. This is also the case for other types of

multi-element arrays.

M. OM M_-.*

2i

40.

Fig. 8.

Key: (1) collinear dipoles; (2) parallel dipoles.

3 __( 2 ) A_________ _ .. ..

I ,zp r-.. .

Fig. 9.

Key: (1) collinear dipoles; (2) parallel dipoles.
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Fig. 9.

Key: (1) collinear dipoles; (2) parallel dipoles.
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CONSIDERATION OF CROSS-EFFECT OF RADIATORS IN CYLINDRICAL SLOT ANTENNA ARRAYS

B.A. Panchenko

Analytical formulas are obtained to allow for the
influence of radiator cross coupling on the admittance
and energy characteristic of antenna arrays consisting
of long slots on the surface of a round cylinder. Linear7
and ring arrays operating in phase and equiphase are
examined.

INTRODUCTION

In analyzing the operation of antenna arrays, attention has recently begun

to be devoted to effects occurring in antennas due to interaction of the

radiators [1,2,3,41. This interest is entirely justified, since certain array

parameters depend significantly upon the amount of interaction between the

radiators. Regardless of whether the array elements are driven individually or

a branched feed system is used, a significant share of the interaction effect

belongs to coupling of the radiators through external space. This portion of the

problem must be solved for the specific type of radiators and the geometry of

the external region. The solution which is obtained can then be used in
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estimating the parameters of an antenna system using a specific feed system.

In addition, solving the external problem makes it possible to determine

changes in the antenna parameters, e.g., the directional gain, caused by

interaction of the elements in the external space alone.

The influence of cross-coupling of radiators in a multi-element antenna

array consisting of long slots arranged on the surface of a round cylinder is

investigated below.

INTERACTION OF ELEMENTS IN LINEAR ARRAY OF SLOTS ON A CYLINDER

The interaction of radiators in the form of longitudinal slots arranged

in a single row on the surface of a round cylinder (Fig. i) is examined. It

is assumed that the uniform array contains a fairly large number of elements,

so that the influence of "edge" effects on the overall antenna characteristics

can be disregarded.

The conductivity of the nth array element, allowing for mutual effect

(Y'm ) is determined by the intrinsic Ynn and mutual Ypn conductances of

the longitudinal slots on the cylinder:

(1)

where K= -, is the wave number, e is the angle in the

direction of which the array is phased.

On the other hand, considering that the elements are arranged periodically

in the array, Y'nn can be considered as the intrinsic conductance of a slot

which radiates into a fictive radial round waveguide witn distance d between
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its walls in the direction of the long axis. The conductivity of a slot in

such a waveguide with electrical field intensity En(r) distributed in the port

is defined by the general expression [5]

r" . .(2)

where G(r,r') is the Green function of the external region of the cylinder

in the presence of additional barriers which form a radial waveguide;

(3)

where m and q are integers; H(2) (x) H(2)'x) is Henkel's function and its

Cx), )f

derivative.

.2q

Fig. 1.

With a "waveguide" treatment of the problem, the expression for the

conductivity after transformations in expression (2) takes on the form
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-. 1 77 .iti< ['7 '1(4)
This expression is complex. In the future we shall be interested primarily in

the active component of the conductivity

0 TM

.'" tI :2 :I J =' " "d' ,u .. H K a 1-!- .t-sin 9 5

LI m-1O'

* The prime over the summation sign in expression (4) [sic] indicates that those

: members of the series for which(27rq/kd- sin 0)iare considered in the

Ssummation.

, 1. Considering each new term of the series q is associated with the

* i possibility of propagation of the next type of wave in the fictive waveguide.
In an actual array, this corresponds to the instant of occurrence of the
diffraction maxima in the directivity pattern.

Expression (5) can be simplified in some cases. For example, for an

equiphase array with elements spaced d< apart, only the term with q a must

ebe considered in the second sum.
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Figure 2 shows the plots calculated for the conductivity of the elements

in the array as a function of the radius of the cylinder. Because of the complex

relationship between the conductivity and the period of the array, the curves

for different dA may be either above or below the limiting term for dA - .

In order to allow for the influence of cross-coupling on directional gain,

we introduce the coefficient g which characterizes the ratio of the directional

gain of the array considering cross-coupling to the directional gain of the

same antenna disregarding coupling [6]. In the case of a linear array (disregarding

edge effects) the coefficient g is associated very simply with the active con-

ductance of the element:

S(6)

where Go is the radiation conductance of the single slot.

bI

,' ' I1/- -

AA

.2

_.5_ _ _-_ .,
_-.47

Fig. 2. Fig. 3.
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Figure 3 shows the plots of g=f(e) with several values of the array period

41 for ka=2.0. The nature of the variation of g differs little from the

corresponding plots for a linear array on a plane (61; however, the numerical

values for these two cases differ significantly. The calculation was done

using formulas (5) and (6).
!.t.

INTERACTION OF ELEMENTS IN MULTI-ROW ARRAYS

Let the array consist of N rows of regularly arranged longitudinal slots

(cf. Fig. lb). It is sometimes convenient to consider this antenna as a multi-

ring antenna with N radiators in each ring. As we know, these arrays can

operate in either the equiphase directional radiation mode, or the phased

directional radiation mode.

The "waveguide" treatment of the problem is extremely fruitful in analyzing

operation in the equiphase radiation mode; the use of this treatment will save

substantial time in the calculations. The conductances of all of the elements

in the array (except for the end elements in each row) are the same, and equal

to the conductance of the slot which radiates into a radial sector waveguide

with sector apex angle of =27r/N and distance d between the plates in the

direction of the long axis. With an array period of d<X, the expression for

the active conductance appears as

G'= " I' = -: ' .(7)

In the calculations, it is sufficient in (7) to consider those members of

the series in which the index of the Henkel functions are equal to or smaller

than the argument of the function, i.e., m<.ka/N. Figure 4 shows the resulto of

numerical calculations of the normalized active conductance of elements as a

function of the number of radiators in a ring. The plots are oscillatory in

nature. For small N the influence of adjacent elements due to surface curvature
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is small (with respect to the flat initial segment of the curves). With large

N (a distance <0.5X between adjacent elements in a ring), the conductance

increases monotonically because of the strong coupling.

The plot of the relationship between G' and the distance between the rings

* has monotonic sections and brakes which correspond to the instants at which

the diffraction maxima occur in the antenna directivity pattern. The influence

of curvature of the shield has an effect on the numerical conductance values

(Fig. 5). The calculated data are obtained for an array with a distance d'-O.Sx

between the elements in the azimuthal direction.

*.v.

a~ 16 40

Fig. 4. Fig. 5.

The coefficient g in this 'case is also defined as the inverse of the

normalized value of the active conductance considering interaction (6).

Two methods were used simultaneously in analyzing the admittance and

energy characteristics of multi-row phased arrays: the "waveguide" method,

* I allowing for interaction between elements in a row and the element by element

approach for a ring (31.
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In order to obtain phased radiation in the direction of angles EO

the voltage on the pth element in each ring must be

where =--,p=..,.J.

The conductance of the pth radiator, allowing for interaction of elements in

a ring,

..- A - ,"-- "5 ....- '" .. .(8)

Here Yrn considers the interaction of the radiators in a row:

A -W

i',n - % "- B'  :  "  "
,, .in

r ...-
' ' ,' '-"(9 )

NJJ

In contrast to the cases considered above, in the directional radiation

mode the conductances of the individual elements in a ring depend upon the

phasing direction and the element number p-l2,.. ,N.

The expression for g for the phased array takes on the appearance:

,* A'G,,n! t % ,, r{- , " "' -;.
0(10)
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" denotes a complex conjugate function.

Calculations using formulas (8), (9) and (10) are extremely laborious for

large N. However, it is possible to represent g in a form suitable for

numerical calculations with large N. In the transformations in (10), the

exponents were twice expanded into a series with respect to Bessell functions

Js(x)

e- e a CoS = (- 1),JI (Ka cos(.). e' 1

and the property of the sum

V e- =V s ....

0 in the remaining cases.

As a result of the transformations, we obtain

-,, g=~~~Go .V=" -.-Y(-r *--D(.:
m-o s-o -o (11)

17- i ""(Ka cos 9) "-n (Ica cOs 8) J.,.,_, (Ka cos ()

' vr+ (Ka cos ) ( IN,+) J (Ka cos 6.) J,,-. (Ka cos 8)JI1-

The larger N, the more rapidly the series converge with respect to s and r; the

number of members of the series needed with respect to m are determined by the

radius of the cylinder ka.

In special cases of practical interest, expression (11) is significantly

simpler. Since for d'/X<0.5 (d' -- distance between adjacent radiators in a

, ring),

0  =o- G,,, [J2 (Ka cos ) + ,(Ka cos)-
I-' (12)

-( - )M I., (Ka) cos () d,%._,, (Ka cos 2])
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With even smaller distances between radiators (d'/X<0.25), we obtain

.G[VV:.m2Kcs~i~ ~ (13):z G, O6V 1,JI., (Ka Cos - .

The coefficient Gm is determined from (9). For an array of half-wave

slots with a distance between the rings of less than a wavelength

4 . (14)
.Fx tx)'Vu °2 (xa)j2

Figure 6 shows plots of g as a function of N(d'A). The equiphase array

has an extremely favorable arrangement of elements which can provide a significant

increase in the array directivity. In the phased radiation mode, these large

increases in g are not observed, which is explained primarily by the different

phasing of the ring elements. The drop in directional gain as (d'A)+0 is

explained by the reduction in the dimensions of the array, and the fact that the

amplitude-phase distribution used does not correspond to the super-directivity

mode.

*,,g

Fig. 6.

Key: (1) equiphase array; (2) phased array.
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CONCLUSION

The formulas obtained make it possible to allow for the effect of external

cross-coupling between radiators in multi-element arrays consisting of slots

on a round cylinder. For individual elements the conductance depends upon the

operating mode of the array, the distances between adjacent elements and the

curvature of the shield. These relationships must be considered in selecting

and designing the array feed system. Allowance for interaction of elements

can introduce a significant correction to the calculated (disregarding interaction)

directional gain of the system.
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EFFECTS CAUSED BY LOAD MISMATCH IN PERIODIC SYSTEMS OF COUPLED RADIATORS

I.V. Guzeyev, A.B. Kolot

Expressions are obtained for the directivity pattern
and wave amplitudes in the feeders of periodic systems of
coupled radiators, assuming that the scattering matrix which
allows for external cross-coupling of radiators, their partial
fields (patterns) and parameters of oscillators or loads which
are matched in the general case with the wave impedance of the
feeder line are known.

INTRODUCTION

A substantial amount of attention has recently been devoted to investigating

multi-element arrays. In these arrays, the cross-coupling between radiators

can cause energy from 'a single driven radiator to reach the P-' rs of all of

the other radiators and, depending upon the nature of the ic.. , :hese feeders,

be either completely absorbed or cause a process of repeated reflection and

re-radiation. The pattern of a single element in an array thus depends upon the

scattering matrix of the array as a multi-port network, and upon the loads of

the feeders of the other radiators. An analogous phenomenon occurs when a row

of radiators in the system is driven simultaneously. As far as we know,
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phenomena caused by mismatching of the impedances of the oscillators or loads

and the wave impedance of the feeder line have not been described sufficiently

in the literature for systems of coupled radiators. However, it should be

noted that these phenomena are important in a number of practically important

cases. The present work fills this gap to some extent.

The analysis is done for periodic radiating systems which approximate the

operating conditions of large arrays quite well.

FIELDS IN INFINITE PERIODIC SYSTEMS OF RADIATORS

Let us consider an infinite linear periodic array of radiators which,

together with their feeders, are identical (Fig. 1). We shall assume that the

feeders support only the propagation of one (basic) type of wave with forward

(an) and reverse (bn) wave intensity amplitudes associated as [I:

b. , n=O. -1, ± 2,(

where Snm are the elements of the scattering matrix which are assumed to be

known either experimentally or as a result of solving the boundary problem in

slectrodynamics.

Let ec). m. yz), kZ I (X. Y, be dimensionless vector functi3ns ("partial

fields") of the radiators in the system, i.e., the fields created by the nth

radiators when the feeders of the remaining radiators are infinite (or loaded

by their wave impedances), and a wave with unit amplitude is propagating in the

nth feeder toward the radiator. In this case, significant currents will be

present only in the nth radiator and those close to it; therefore, at distances

greater than the size of the region occupied by these radiators, the "partial

patterns" f)n correspond to the partial field c n c)
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Since the system is periodic and satisfies the mutuality principle, the

following relationships are valid for it:

S S n--S l S. n. m, p . 0, - I. - 2 (2a)

e, 'ix, Y' Z- )-) e'CIX " , Z- ,---- . (-, .P- -Co

(20)

''I

1

Z-n

E-n .-2

Fig. 1.

Based on the superposition principle, when waves ap are present in all of

the feeders, the resultant field or directivity pattern are:

E(x. y, z)= ae(c) (x, ), 2);F(,q )- "' a,)'()q, (3)

We shall now introduce Fourier series consisting of the amplitudes ap,

b and the elements of the scattering matrix:
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.1P
;(U eb0,,6e S (1)- V 'S AM Y m ' (4)I- -

Using the method in 12], it is easy to show that we can obtain the relationship

(5)
j !) S (, ) il:

instead of (1); then the expression for the resultant directivity pattern is

written as:

FO', (P, a 'O (Kd ,cos i). (6)

Analogously, for a planar array (Fig. 2), introducing dual Fourier series

je~~~ V ,,,efu+I PV ; V b iuP- a - b (i, V)b e" +

n--M P--W .- M p-. (7)

s (u, V) S V" e! " -
Pv

we obtain:

- --(8)b(u. v) -s¢.. v),a (11, V)

F (41, ?) ='( (. ip) a(Kd, sin 1) cos p, Kdt sin 4 sin (). (9)

where 1()(&,o) is the partial pattern of the radiator located at the coordinate

origin.
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2 3--h

Fig. 2.

The Fourier series s(u) and s(u,v), comprised of the elements of the

scattering matrix, will be called scattering functions below.

We note that these are even functions, since the systems in question are

* periodic and satisfy the mutuality principle, i e.,

S. 5 i
5 ~ l, Sn. ,, *~S ,

ARRAY OF RADIATORS DRIVEN BY EMF SOURCES

In order to find the amplitudes ap, bp or their corresponding Fourier

series 1(u), b(u), equations (1) and (5) must be supplemented with the

connection between these amplitudes and the oscillator parameters -- emf Zp
and the coefficients of reflection rp characterizing their internal impedances
Zp. This connection can be written as1 (3]

a , =c. --- |,, b,,

where I-
C,,." , - i - . (10)

1This work uses the practical MKS system of units. The time dependency is used

in the form d~iwt.
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In the case of oscillators with identical internal impedances whose emf
satisfies the relationship

introducing the Fourier series

e. e cu,,j -K"

instead of (10), we obtain the following relationship:

1 -(12)

From the system of equations (5), (12), we find:

-C - (13)

1 - r 1 I

The amplitudes ap, bp are obtained from (13) by the inverse Fourier

transform:

a C (u,) e- ' P"ul 1 ,1, S :, ,I -I '

-r 2a:. b,: (14)
--

Based on (6) and (13), the ezrression for the directivity pattern of a linear

array takes on the appearance

i.C fAd - )

i - r . ., (15)
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Let us consider in more detail the practically interesting special case in

which only radiator is active (F O when p=O), while the other radiators are

passive (p=O when p#O). In this case, we have

)(16a)

e:PU du rC s (u) e-1 PUdu (16b)
2.& 2.c, -u-q --. l- rs (u) - I - rs (a)

F i, rn co""'
r fs (led cos (16c)

On the basis of (16b), we obtain the following expression for the coefficient

of reflection at the input of the active radiator:

s (u)du

rs -r7(u) I2n (16d) a i r
____u 1I ' d1ddu du

".I- Fs~u) '.l- -

By substituting elu-z, the integrals in expressions (14) and (16d) are

transformed to contour integrals about a circle IzI=l in the plane of the

complex variable z, and can be calculated on the basis of the theorem of

residues. The next section presents an expression for r BX calculated using
this method (cf. also Appendix).

With one active radiator, it is also easy to consider the case in which

the loads in the passive channels are not equal to the internal impedance of

the oscillator in the active channel (roO). Actually, in this case
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'I.

a Iu =(aO - r bo) - rbu)- ao i - Prx)-- r b(u); a0. c. -- r b.;
i -rr -, I -rrx

a (u) a-,-, .... a, - S-. Ui - rsw() i - r sourrr, - (17a)

i, rr s acoo ).

If the oscillator is matched with the wave impedance of the feeder

(rosO), a0 is independent of the load in the feeders of the passive elements.

When a0=l (volts/meter), we designate the directivity pattern corresponding to

this case as

/. )= -,j c ,, qi. (17b)
1 - Is (tcd co.- .,b

4 When I rs(u)1<<l, which corresponds to a system of fairly weakly coupled

and well matched radiators (S.I<<l; p=O,+l...), or the case of near-wave loads

(Irl<<l), instead of (16d) and (17b), we obtain approximately

(18a)r,, s. S- 2r % s P2

o toS(KdCos ))-S,)C18b)

As follows from expressions (18a,b), in the case of weak cross-coupling

the directivity pattern of a radiator in the system f ( ,4) and the
coefficient of reflection at its input r in the load function in the feeders

of the passive elements are of the first and second order of smallness,

respectively, with respect to the coupling coefficients.
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Let us also consider the case of equal-amplitude linear-phased

excitation of the radiators when

I where 1 is the phase difference between adjacent radiators.

In this case

* u= 2-EoAu-; C1u)-- - ,J - I'.,-" (19)

where &2 (u-0) is a periodic delta-function [2].

*Substituting (19) in (14), we obtain

- --1..- "71 - .. (20)=a ;-, I "1 t1 F , - : ,

As might be expected, in this case the absolute values of ap and bp are

independent of the number.

By analogy with [41, we define the actual coefficient of reflection at the

input of an element in the array in question as the ratio
1

lrD coincides with r in an active radiator when all of the other radiators
are passive.
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As follows from (20),

regardless of the radiator number.

Since Ia.I and IbpI in this case are independent of the element number,

the energy balance for the entire array is equivalent to the energy balance of

a single radiator, i.e.,

consequently, the elements of the scattering matrix of a linear periodic system

of arbitrary radiators are such that the Fourier series comprised of them does

not exceed unity in absolute value.

Let us also consider briefly the case in which the internal impedances of

the oscillators are different. In this case, system (1), (10) can be solved

iteratively. It is natural to use the value of ap and bp as the null

approximation in the absence of cross-coupling:

aj() C" bM =. o O).

When this is done, it is easy to obtain the following expressions for the

, values of ap, bp in the ctth approximation:

S-r. S,, • _

~~b") =  I Cps,- V j

0

7 1. 2, . . 0 p= , ± 1, 2, .
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Obviously, when cp changes evenly and the c:oss-coupling is weak, the

iterative process will convert rapidly.

In the case of a planar array, introducing the dual Fourier series:

C I U, i

--0 2f -F ( u m u ,

we can obtain the following expressions:

C (U, .e- ("u  Ot,) dudr2

" . - rs (u, v)

4.t

.,s (u, t,) dud-s,

S- s U. V I) 4)

s(,dudv r

i , =- __ -Is(u.z, - ' _ - 1 --_____. :_

If the emf of the oscillators in the planar array have the same amplitudes and

linear phases for both coordinates, i.e.,

; ... ,-f-ip-iD'

then by analogy with a linear array

0 < is 4-'1 'I I.
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DIRECTIVITY PATTERN AND COEFFICIENT OF REFLECTION AT INPUT OF RADIATOR IN
LINEAR ARRAY AS FEEDER LOAD VARIES

To illustrate the relationships obtained above, let us consider a linear

array of horns (Fig. 3) with a single active radiator (horns polarized per-
5

pendicular to the axis of the array); d 8

I/

terminal plane shorting plunger

Fig. 3.

We shall use movable shorting plungers spaced at equal distances from

the terminal sections as the loads in the feeders of the passive radiators.

The coefficient of reflection from the loads (in the terminal section)

F - 1-;- ,i '  ( 2 1 )

r' -e

(

.v. -- 6 - - (- 4- P ± .±... 2a

IFor definition, the terminal plane is selected such that arg s+1-0.
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args., -(IP -1)Kd, p=± I, ± 2. (22b)

s, =0, 129e"" *. (22c)

The scattering function s(u) corresponding to (22a,b,c) can be represented as

s(u)=so+s, +-e7° . -T 7w-ein - " e I

Figure 4 shows the representation of s(u) of the complex plane.

., 7MI/
~41

1500 -a03 -a2 -at OJ Joe'

~./

Fig. 4.

As follows from (17b), the deformation of the directivity pattern of the

active radiator is characterized by the function

M(u, V)= = -- ; u=Kdcos ). (23)
, 0 P) 1 - r '
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For the case of shorting plungers in the passive channels, we obtain the

following on the basis of (21) and (23):

/ I - fl~x2 - 2!.r i cos (2V 1 arg I )-AlU, V)A= / (24,a)
I -!S (U)I- 2ns fu)lcos [2p -arg S(uAJ

IV (u, Vp) arg M (u. V) arc tg rIln(2' -arg[')
iJ - jr ,l .:o- -2 - arg r.,)

(24b)

- arctg ,Siullsin 2 - arg s (u1J

I-- s (.)I cos [2V - arg S (u)

The complex coefficient of reflection at the input of an active

radiator in three-term approximation to the series (18a)

r..(W) --so 2r s' so- 2s2e-I (25)

The corresponding rigorous expression obtained in the Appendix reduces to the

following form after a series of transformations:

J(A - 1)
S .(26a)

where

= l+ 4r - +4rt I Z - - - ' s

2 ' (26b)

where the branch corresponding to ReA>O should be used in the expression A.

Figures 5 and 6 show plots of the absolute value and argument of the

deformation function M(u,*) which reflect the variation in the amplitude and

phase patterns while the shorting pistons are moved in the passive channels.
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It iU interesting to note that when qi450 and 1350, the function

IM(u,) -.l. so that the pattern of the radiator in an array with shorting

plungers is close to the pattern of a radiator in an array with waveguide loads.

This is explained by the fact that the region of maximum values of ll(u)I

corresponds to arg g(u)=n.

Imp , J MO,-0

17q ' - , . .

iM(Li.'v9)

1.7--- , .' I ; ,.  ! ,,"-

50'

ag -

ao A

Fig. 5. Fig. 6.

Figure 7 shows the relationships between Ur ( J)I and arg rx (')

* Icalculated on the basis of (22a-d), (25) and (26a,b). Their comparison with

Figs. 5 and 6 shows that variation in the loads in the passive channels has

a more significant influence on the directivity pattern, and has a relatively

weak effect on the coefficient of reflection at the input of the active element.

This fact agrees with formulas (18a and b). It should also be noted that the

order of the quantities r3X calculated by formulas (25) and (25a,b) coincides.

The difference between the curves in Fig. 7 is explained by the fact that

formula (26a,b) allows for the influence of the loads in the feeders of all of

the radiators while formula (25) considers the influence of the loads in only
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2123 L- \

170 0-17e ( .6)( 2)

'F F70 U. -7.-

'908

6
; , 70 rfe (25f) ( )

1j &17-4 2F,-j

J T9 -0J SO9 %' 1 29 140 '6u '80

Fig. 7.

Key: (1) by formula (25); (2) by formula (26 a,b).

the feeders serving the closest (n*1.) radiators.

APPENDIX

Substituting the variable z-eiu, we obtain

,r, l = S(z)= so - ,
* where•

w e-iKd

Finding %x consists of calculating the contour integral

2x--= l- " () 2. . zl - rs(z)l
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where C is a circle of unit radius with center at the point z-O.

Performing simple transformations and using the theory of residues, the

following expressions can be obtained for J(r):

ri-- 7 , I - 1

',', .if jz', <
zi - I

where[.

,:3 :, = ' - l/ * ' T C.i- ' . = ; ztzi = :l
i;':I  %' = ~~~2,r s, -( --r so) (1 -72: , =F € - )+ =

It can be shown that for the linear array considered in the preceding section

Izli<I, so that after simple transformations we obtain

Sr =z, • .

Then the expression for r takes on the appearance:
BX

,r (-) 1 -

I+ Z--
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EXCITATION OF SURFACE WAVES NEAR EDGE OF HOLLOW DIELECTRIC WEDGE

N.G. Khrebet

This article considers the problem of excitation of
surface waves near the edge of a hollow dielectric wedge
occurring when struck by a planar electromagnetic wave.

STATEMENT OF PROBLEM AND DERIVATION OF GENERAL FORMULAS

Let a hollow dielectric wedge consisting of two semi-infinite plane-

parallel plates of equal thickness be struck by a plane electromagnetic wave

polarized such that the electrical (E) or magnetic (H) field vector is parallel

to the edge of the wedge. We shall assume that the edge of the wedge is not

sharp, but represents the two contiguous ends of the plates comprising the

wedge.(Fig. 1). The surface waves are excited by the electrical and magnetic

currents induced by the incident plane wave on the outside surface of the end

* of each wall of the wedge. Disregarding leakage of currents from one end to

the other, we can reduce the problem in question to that of excitation of

surface waves on a semi-infinite dielectric sheet, and write the solution for

the wedge as the superimposition of the solutions for each wall.
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(1z

II

Fig. 1.

~From the viewpoint of the practical applicability of the final results,

this approximation is fully acceptable.

Considering the above, let us consider the problem of the excitation of

surface waves on a semi-infinite dielectric plate with thickness of 2d.

In the rectangular system of coordinates shown in Fig. 2, the field of

the plane wave incident on the plate is written as

where (D is the field vector parallel to the edge of the wedge. The currents

induced by wave (1) on the surfaces of the plate produce a diffraction field [1],

and we shall not be considering them. That portion of the currents which is

induced on the inside surface of the end of the plate is the source of the surface

waves. The number of types of waves excited on a plate depend upon its thickness

[2]. Without losing generality, we shall limit ourselves to a plate whose

thickness does not exceed one-half of a wavelength:
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2d 0,5 (2)

where e is the dielectric permeability of the material of the plate.

Fig. 2.

only the "primary" type of surface wave can propagate along such a plate, i.e.,

a wave for which there are no limitations on plate thickness (for more detail

cf. [21). The nature of the surface wave excited depends upon the polarization

of the incident plane wave: a perpendicularly polarized plane wave will
4.

excite a surface H-wave, since in this case the magnetic vector H will have a

z-component; analogously, a parallel polarized plane wave will excite a surface

E-wave, since in this case the vector E will have the z-component.

Since the discussion and exposition are the same for calculating H- and E-

waves, we shall limit ourselves to calculating the surfaces of an H-wave, pre-

senting the results for the E-wave as well at the end. The currents induced on

the inside surface of the end by an incident perpendicularly polarized wave will

be

I, 1 1rw~I L -[rmujj (3)
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where E and H are the field vectors of the plane wave passing throughripan rtpau
the end:

E.,o, . i r., r. e (4),t:I.:

Here t is the Fresnel coefficient of passage (with the subscript indicating

polarization) ;E 0 is the amplitude of the incident wave; n I is the unit vector

in the direction of propagation of the wave which has passed through; k , Z

are the wave number and wave impedance of the plane wave in a dielectric; r is

the radius vector of the observation point (r=yy).

In the general case, the field of a surface wave is the superimposition

of two waves propagating in opposite directions. In our case there are no

conditions to generate the reverse wave. Therefore,

Sa-E1 - . - aiH -(5)

(the superscripts h and e designate H- or E-waves, respectively). We shall
h

use Lorenz' lemma to calculate the amplitude a+

({EH~j-[.H 1j) dS - I 1~V 6

where E1 and Hl is the field generated by currents le, IP; E2H2 is an arbitrary

auxiliary field; V is the space in which the currents are concentrated; S is a

closed surface surrounding space V. We shall understand the vectors El, Hl in

equation (6) to be the field components of the sought surface wave propagating in

the positive direction:Elna+E+;Hlua+H+. We shall use as auxiliary vectors E2

and H2 the field vectors of the surface wave propagating in the negative

direction: E2-aE-; H2=a-H-. As a result, we obtain the following from equation

(6):
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-. .FH if .Is (7)

where the currents le and I are defined by (3). In our case, the currents

'e and I 1are surface currents which occupy a narrow band along the y axis,

and an infinite band along the x axis (the end of the plate). Considering that the

currents and fields are independent of the x coordinate, we obtain the linear

integral (~ ) in the numerator of expression (7) instead of a volumetric

integral. We shall use as the closed surface S the plane S, coinciding with

the end plane, and the surface S' which extends the plane S, to a closed

surface at infinity. The integral taken over S' will be zero because of the

attenuation at infinity of the surface wave. The integral taken over the

plane S, becomes linear because the fields are independent of the x coordinate.

As a result, we obtain (omitting the subscript + for amplitude)

(l... lI1dy

ail -d (8)

( f~ -+ d/

* The integral in the denominator of (8) is separated because the structure of

the surface waves inside and outside the plate is different.

In order to define this structure, we must solve the wave equation for a

wave propagating along the plate using boundary conditions requiring that the

tangential field components on its surfaces be equal.

These calculations are given in [21; this is the final result:
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- , _ - - -inside plate, (9)
kiAK, 0Z-e outside plate,

where f 2 *(0

E" - inside plateHh -L AA
i ,i.~E x00 -outside plate (I

H 'si C ' s 
)

n  
i.- inside plate;

'-z A e ' 'e- iVz outside plate.

(12)

The field .h

The fields E_ and H_ are obtained by changing the sign in the exponent in

formulas (9) and (10). The following notation is introduced in formulas

(9)-(12):

"zsl Y-i • K-y-. (13)

where y is the propagation constant of the surface wave calculated from the

transcendental equation

"x. % .Jl.(14)

A and C are coefficients which are related by the following condition which

follows from the boundary conditions on the surfaces of the plane:

A .2 (15)
C

The upper symbol in formulas (9)-(12) refers to the upper half-space (y>d),
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while the lower refers to the lower half-space (y<-d).

Substituting the currents (3) and fields (9)-(12) in formula (8),

after the necessary transformations we obtain the following expression for

the sought amplitude:

4 (16)

where

qo =tE0  (17)

- (jI ,--{ n
€

(e' -- angle of incidence of plane wave on end counting from its normal).

Analogous calculations for a surface E-wave produce the following result:

a - e 'i..

where qo11 is obtained from formula (17) by substituting t1_It 1 1 ; E0-PHO (til Fresnel

coefficient of passage for parallel polarization), and the propagation constant y

is found from the equation

,t ,d?. (19)

Figure 3 shows plots of the relative propagation constant y/k0 as a function of

plate thickness for different C calculated using formulas (14) and (19).

Substituting in the first expression in (5) the value found for the amplitude (16)
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-- -- -4° . . . . " . . . . . . . .

hand the value of the field vector Eh from (9), considering equations (14)

and (15), we obtain the following expression for the electrical field of
e 

- ' 
- z

the surface H-wave: q, -e outside plate,
e-,d (20)
s(.d)- -e - inside plate.

Z3 20 S -

.J l,1,9

17 - 77

k °, ,8 F- 3 76

7.5 7615 3

: 1,31- - 7d=
,2 22

1.1 . wave A 7-wave

S0,1. 0,2 0.4 05 0 Ol 0,2 0.3 0.4 05
Fig. 3

We can also obtain expressions for the magnetic vector component of the H-wave

from formulas (11), (12) and (16). In particular, we obtain the following from

(II) for the y-component (which we will need below):

lae-'yl e- i q - outside plate,

o0 KoZo e- ' =

q0 co (, y)e-il (21)
qn 2-A- COS(,,) outside plate.

Expressions for the field components of the surface E-wave (excited by parallel

polarized plane wave) can be obtained from formulas (20) and (21) by substituting
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As a result, we obtain

q...:7 - outside plate,

q -inside plate,

' -Z,,- e outside plate,

E2-- (23)
:.. q, Z. 'Y.... -

I:d) q Z e -inside plate.

We recall that the expression for the excitation amplitude qo11 can be obtained

from formula (17) by substituting tI- tII; E0rH 0 . the expression for the Fresnel

passage coefficients t1 and t1l is presented in [3]. It follows from formulas

(20)-(23) that a surface wave propagating outside the plate attenuates along the

y axis with attenuation constant i=k0/(y/k 0 ) -l. Figure 4 shows the calculated

curves, which indicate the distance from the plate y ' at which the wave isIx

attenuated by a factor of 10.

2 &-wave . wave

44 \ "4 L-

42
0 ..

al 0,2 02 O 0,45O 07 211 P. 2

Fig. 4.

The nature of the relationship between the excitation amplitudes qoI and

qoIj and the plate thickness, dielectric permeability £ and angle of incidence of

the plane waveV'0 on the end is illustrated by the curves in Figs. 5 and 6 which
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are calculated using formula (17) (the amplitude of the incident wave was

taken to be unity in the calculations). It is apparent from these figures,

in particular, that the amplitude of excitation is a strong function of the

angle of incidence of the plane wave on the end of the plate: it is maximum

for normal incidence on the end (0 =ir12), and minimum with normal incidence

on the surface of the plate (0=00 ). It should be noted that, as the

experiments indicated, a surface wave, albeit very weak (approximately 2-3

orders of magnitude less than for f0on/2) is also excited in the latter case.

This divergence is a consequence of the fact that our calculations ignored

leakage of surface currents from the surfaces of the plate to its end.

.-wave f wave' - 2---,-i~~... rJ! ..
6=4 V

6=1 64

J al 52 5,5 4 a5 o al a2 a3 a4 O0

Fig. 5.

qv

a5 - f waveA5 ' wave
S. wave

/'- wave4, Of

/ -,.. -wv i-wv

az / ~ a /1 6-2.6
0. 0.-G6 -4

0 20 SO 6 80 0 2040609 80

Fig. 6.

121

L -



CONSIDERATION OF OHMIC LOSSES

The dielectrics which are used in practice have ohmic losses characterized

by the imaginary part of the complex dielectric permeability c'fe(l-i tan 6),

where tan 6 isthe tangent of the loss angle. Because of this, the surface wave

propagation constant y found from equations (14) and (19) will also be a

complex quantity, the imaginary part of which will characterize the degree of

attenuation of surface waves along the z axis. This part can be obtained from

the aforementioned equations if we consider that the dielectric permeability

which enters in is a complex quantity. Corresponding calculations (allowing

for the smallness of tan 6) produce the following result:

A . x - :

_.x - x (24 )

(RM (VIKOJJ -t [ae (25)iJsin x z - I

x [Re (y/Ko)2-iL

where x=2 Re(vd); the superscripts e and h designate E- and H-waves, respectively.

Figure 7 shows the curves calculated for the coefficients oe and 6h as a function

of the plate parameters. We are easily convinced that in the limiting cases

(d-+O and d-ow), formulas (24) and (25) produce physically obvious results; when

d+O Jm(y/ko)-O; when d-c Jm(y/ko).!"2 tan 6.
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POWER TRANSFERRED BY SURFACE WAVE

Besides the change in the structure of the field near the plate surfaces,

the influence of surface waves is also manifested in that part of the energy

of the incident field is consumed in exciting them which, e.g., in the case of
pointed barriers, results in a further reduction of their efficiency.

Obviously, the portion of the energy lost in exciting surface waves is the same

as the power which those waves carry.

Since in the present case the system is infinite along the x axis, we shall

do the calculation for a band with unit dimension along this coordinate and

infinite dimensions along the y coordinate. As we know, the power flux carried

by an electromagnetic wave is characterized by the Umov-Poynting vector
| v---*

(26)
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The power carried within the band we have selected

' ' -lugf i.dy.

(27)
whence we obtain

I,., j I2 H" )dy.

where the first superscript refers to the H-wave, and the second to the E-wave.

We shall limit ourselves to presenting the calculation for the H-wave, and

*: present the results for the E-wave at the end as well.

-:1 Since the expressions for the field components of a surface wave are

different inside and outside the plate, we shall calculate the integral in

(27) separately for free space and for the dielectric:

p ill P - 21 = (E,H,) dy - (E.,H-t) dy. (28)
-d

Substituting in (28) the corresponding values of the fields Ex and Hy

from (20) and (21), and introducing the coefficient nh=P 2/PI, which is equal

to the power ratio inside and outside the plate, we obtain:

P, = NP( +,,. (29a)

where
P" = ,qoZo _). J, (29b)

(h )v.\i2, d -sin 2,d
5 ,= j 2sil, d (29c)

Analogous calculations for the E-wave produce
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p' p -(I

(30a)where

Ka -, (30b)
". '" .' •, .

16 ' - -- £--

(30c)

Expressions (29) and (30) still do not give a clear representation of the

energy lost in exciting the surface wave. We shall estimate this loss below

while considering surface waves near a wedge.

CALCULATION OF SURFACE WAVE WITHIN HOLLOW WEDGE

We shall select a rectangular system of coordinates such that the

x axis coincides with the touching ends of the plates forming the wedge and

the z axis is directed along the bisector of the wedge (Fig. 1). Obviously,

the field of the surface wave at a point M(y,z) lying within the wedge is the

superimposition of the surface fields propagating along each of the walls of

the wedge:

where hl and h2 represent the distance from the observation point to the

corresponding wall along the normal to it, and zl and z2 represent the distance

along the surface of the wall from the end to the point at which the normal

intersects the wall surface:

h,=zsin9,'2-ycos.Q;2: Il. - sinl2'--yc,,'4. 2. (31)
z,= zcosQ1.2- ysinQ,2: z, :cos,2--9ii .2 "

where gis the angle of the wedge.
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In particular, we shall have the following for the electrical vector of

the H-wave [cf. formula (20)1:

E.y. - - (32)

|-J

Let us estimate the portion of the energy consumed in exciting surface

waves. In order to do this, we place a receiving antenna inside the wedge

which has one linear dimension of 2a (along the y axis), with the other being

a unit dimension (along the x axis). We shall compare the power carried by

the surface waves with the power received by this antenna in the absence of the

wedge. For simplicity, we shall assume that the incident plane wave propagates

along the wedge bisector. Then the powers carried along each wall will be the

same:

The power received by the antenna when the plane wave strikes it is, as

we know:

P,= - 6-0, (33)

where ISl is the absolute value of Umov-Poynting vector (26), G0=K-4 2a - 1)

is the antenna gain, K is the reflector utilization factor. Substituting the

values of isI and G0 in (33) and taking the ratio CB /PA' we obtain

A ,2a )2(34)
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For a wedge with an apex angle of 2=30o and walls 2d/X-0.286 thick

dielectric permeability c=4, expression (34) takes on the following numerical

values for an E-wave:

l ' 1 o 2d~15; K =. 6,

P, 12, for 2d,',. = 5; K =O. 6.

Thus, the portion of the plane wave energy lost in exciting surface waves can

in certain cases be considerable.

COMPARISON WITH EXPERIMENT

The formulas obtained for surface waves were checked experimentally by

using a dipole to measure the electromagnetic field near the surface of a plane

dielectric sheet with a plane electromagnetic wave incident upon it. The

* transmitting antenna (horn) and dipole were stationary with respect to one

another. A vertical sheet of acrylic plastic was placed near the dipole and

oriented so that the wave struck its end at an angle of 0'=150 . A picture of

the field was taken (with respect to power) immediately next to the surface of

* the sheet while the latter was moved evenly in a horizontal direction in the

vertical plane such that the angle of incidence of the wave on the end and the

distance from the dipole to the surface of the sheet remained constant. The

variable quantity was thus the distance z from the end of the sheet to the

dipole.

The dotted line in Fig. 8 shows the experimental curve. The field received

by the dipole in the absence of the sheet was taken to be unity.

* The solid line in the same figure shows the calculated curve for the total

* field allowing for diffraction (1) and the surface H-wave (in the experiments,

the electrical vector of the incident wave field was parallel to the end):
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Eo . =E -- q 2 eY'. (35)

The dot-and-dash line in Fig. 8 shows the calculated curve of the

diffraction field 1E 12 disregarding the surface wave. It follows from

comparing these curves that surface waves have a significant influence on
the nature of the field near the sheet.

I-.

o I Il "

,V I \ ' I

2 f

- Fig. 8.

The good agreement between the experimental and calculated data indicate

the validity of the surface wave formulas obtained in the present work.
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* RADIATION OF ELECTRICAL DIPOLE LOCATED NEAR AN ELONGATED IDEALLY CONDUCTING
SPHEROID ON AND PERPENDICULAR TO ITS LONG AXIS

D.A. Duplenkov, A.N. Kovalenko

The eigenfunction method is used to find a rigorous
solution to the simplest problem of asymmetrical excitation
of an elongated ideally conducting spheroid. A number of
characteristics of the radiation are calculated for the
secondary and total fields for the case of several spheroids
with the same interfocal distance and different radial
surface coordinates with different distances between the
spheroid and the dipole. A solution regarding plane-wave
diffraction is obtained for the special case of an
infinite distance between the spheroid and the dipole.

INTRODUCTION

The problem of excitation of a body in the form of an elongated spheroid

has in recent decades attracted the attention of many investigators interested

in boundary problems in electrodynamics. This interest is understandable, since

a system of elongated spheroidal coordinates makes it possible to isolate the

variables in a scalar wave equation, consequently making it possible to use

the eigenfunction method to solve the problem. On the other hand, a body in

the form of an elongated spheroid has a significantly more complex form than a
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sphere or cylinder, for which solutions were obtained previously The articles

which have been devoted to the problem of excitation of a body in the form of

an elongated spheroid are numerous, and can be divided conditionally into two

groups. The first group includes a number of fundamental works on the theory

*iI  of spheroidal functions. This is mainly [1]-[41, as well as a number of other

articles which consider more special problems of the theory of radial and

angular spheroidal functions.

The second group includes the series of articles [51-[161, which are

devoted to solving various special cases of excitation. The basic work in

this group is [5], which formulates in general form the solution to the

problem of asymmetrical excitation of an elongated spheroidal body. The

other articles examine the solution of narrower questions. However, except

for [8], [9), all of these works, which consider the problem of diffraction of

a plane wave incident on a spheroid along the long axis, involve the symmetrical

method of excitation. Because of their complexity, problems of asymmetrical

excitation have thus far remained practically unsolved even in the simplest

special cases.

The present article is the first attempt to attain numerical results for

the simple problem of asymmetrical excitation of an elongated ideally con-

ducting spheroid. Excitation is done by means of an elementary electrical

dipole placed on the long axis of the spheroid. The axes of the dipole and the

spheroid are perpendicular to one another. The distance between the spheroid

and the dipole may vary, In the special case for an infinite distance, a

solution is obtained for the diffraction of a plane wave incident on the spheroid

along its long axis.

SOLUTION

In [5], the problem of excitation of a body in the form of an elongated

ideally conducting spheroid is solved in general form. It is shown that for an

arbitrary system of exciting currents (for an arbitrary primary field), the
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* problem of finding the coefficients of expansion of the secondary field into

* a series with respect to spheroidal functions reduces to solving an infinite

* system of algebraic equations.

7.;,

Fig. 1.

In solving the present special problem of excitation, in which a

spheroidal body is excited by an elementary electrical dipole (Fig. 1), we

shall use the general methodology developed in [5] as a basis. Since we are

considering a special case of the general problem, it becomes possible to

simplify significantly the mathematical apparatus.

First of all, the possibility for this simplification comes from

specifying the field of the primary source. Therefore, we shall first consider

the primary field of the dipole in a spheroidal coordinate system. The dipole

is displaced from the coordinate origin, and located on the axis of the system
with the axis of the dipole perpendicular to the axis of the system.

Since the Green function of the scalar equation is known [4), [11, the
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intensity of the source magnetic field can be calculated by the following

formula 15]:

• 7ii ." grad. i dv' (I)

Here j is the volumetric density of the electrical current of the source,

G - ' S,(h YS ,,)cosr(q-')..
, m *O l.m .

tii je?., (h, ' for -
the~2h, D)jeMI(h. ') for >, ' LGr een function,

Snt(h, r-d-angular spheroidal coordinates,jemn, (h, )-radial spheroidal functions of the first
I.. sort,

e(. -radial spheroidal frunctions of the fourth
sort,

-1

Ni~j " angular function standard,

12Br m=1, 2, 3.
iedh r--parametric characterizing interfocal2 distance,

d- interfocal distance.

The symbol q denotes differentiation over the source points whose coordinates are

designated with primes. The integration in expression (I) is done over the

source points.

Substituting in expression (I) the expansion for Green's function and

making a series of transformations, we obtain the following expressions for

the Cartesian components of the magnetic field
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H,- S, (h, he'ih ) {a,(a cos m (p-a 2sinm(p,2 a i .V~n mI '

mn-O 1-m

2- i -%',n S,,(h, I he th, cos m b2sinmp),(2)

S,. {h Itt e cCos m (P - 2 sn/n-)

If we consider that in this case the outside electrical current has only an

fl-component and is assigned in the form of a 6-function, i.e., the volumetric

current density can be expressed by the equation

.!3

where n n=l, =O are the dipole coordinates, the values of the

coefficients entering into (2) are represented by the following formulas:

n , j j! grad jS,,. h, - )je,.,(h ')cosmt fl, d,'

a' - "[j grad (S, (, j) /'e.,,(h, t) sin m i ,dJ

bm,= J[i,3 grad (S,, (h.,,) je,,, (h, ')cos m if du
U . (4)

b2

bM -- [. grad (S., (h. e.) , h. ,' sin mg'}, dv',(4

1c,,1 = f grad (S,,, (h, ")ie,,1 (h, .") cos m }z: do,

1,2 1,2 1 2

When formulas (4) are used to calculate the coefficients am bmj , c , they

all turn out to be zero except for boand clE. Substituting these values in

formulas (2) and using the connection between the Cartesian and spheroidal

components of the vector, we write the following expressions for the spheroidal
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components of the magnetic field of the dipole:

H , %- S"'lz)zeh
• "°" "2~ i ol

2-t i '-j o

h e,: (h, e) h, ) (
-

14.

e, (h. [ l - h (h.

tothe egion ad the second to ev, h, huj olh t) h f

: " ,t.8 - 1 .2

.el'

I pato hepolm wh cocen fi'in the fiel of an elmnayeetia

ch p oit w t c o i t e )(h , e, , ih, we hav

fonThe rimayfl of the sorce. fthexrions or thefrua coepons

Sthe primary field are characterized by a simple relationship with the coordinate

*,which significantly simplifies the solution to the second part of the problem,

* namely finding the coefficients of expansion of the secondary field, i.e., the

field of the currents induced on the spheroid.
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The field of the currents induced on an ideally conducting spheroid is

represented in general field by expansions (2) as well, since these expansions

were obtained for an arbitrary system of currents. In the special case, these

may be surface currents on the spheroid. However, the coefficients a,b and c in

this case are not defined by equations (4). They are unknown and must be

defined from the boundary conditions on the surface of the spheroid (51. The

problem becomes that of solving an infinite system of algebraic equations for
the sought coefficients. We note that the simple relationship between the

primary field and the coordinate 0 simplifies the problem significantly.

Analysis shows that the only non-zero coefficients of expansion in expressions
1 2 2 1 2 1(2) will be bok, clk, a2k and b2k of the secondary field, where a2k=-b2k. The

numerical values of these coefficients are determined from the following

infinite system of algebraic equations, which is significantly simpler than

that written in [5]:

2 h '  e .., (h , a -h e "', o (It, to) b , .- I

!=0
- a A

,V g

h V -Vi

1-0

E 1 .2[t'hoe(,2) h. it) B1

Se 1 (h, ( e
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!.,

-2 A !1 I h""e,. h, ., -

10: -- [ J ---L(& o, (4,-. e; tI:,J.'. " c

The following notation is used here:

AK -- t' s,,,l, ,,.(h , v,) ,
At'. a-T

(7)
.!

The expansions themselves for the field in this case (for the region > )

take on the following form:

1't ", ,K 2

H . sin q) -)- h
1-2

00( 2

#1": y -csE -L S,(h, ,)h e (h, ) a +
1-0

. . . . .T N I, '1 (8)

HDT CosAP - - -LS,, (h, ) he(2) (h, )a2 +

* I+~~S. (h, Y.) he()(h,
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Investigating the field in the far zone, i.e., where we can

simplify expressions (8). In order to do this, we use certain asymptotic

representations for the radial spheroidal functions and assume that the

spheroidal system of coordinates becomes spherical in this case. The final

expressions for the summary field in the far zone take on the following form:

'~
' '=  

' -in - -.

I , 0. _ I, | (1--4. -

sin 2p ebCos
S21 (h, Y,)e' 4 - -o S., (h. te 

b
o

'
,

J-0

-sln 2 S. (h, )e' clj

i-I

flcym . - Cosq - cose e ihb (9)4a, r (9)

o1(14-1 )
, So (h, -) e- - b

.oNo l
1-0 j

The problem is thus in principle solved completely, since all of the

necessary relationships have been obtained.

CALCULATION OF DIRECTIVITY PATTERNS

The calculation of directivity patterns using the formulas obtained above

is divided naturally into several stages.

In the first stage, all of the functions which enter into system of

algebraic equations (6) must be calculated. We are talking primarily about the

spheroidal functions and their derivatives. This problem can be solved most

simply by using tables of the coefficients of expansion of angular and radial

functions with respect to adjoint Legendre polynomials and spherical Bessell
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and Neumann spherical functions, respectively [3]. This was the method used in

the present work. However, significant difficulties are encountered on thisI

simple path involving the poor convergence of the series for radial spheroidal

functions. These can be overcome by using a certain recursive formula for the

coefficients of expansion of angular spheroidal functions, as well as a recurrent

formula for spherical Neumann functions. Operating with the sequences of the

ratios of later members to earlier members and considering an extremely large

number of members of the series, a computer can be used to obtain tables of

spheroidal functions for those parameter values for which the coefficients of

expansion are tabulated.

It is no less difficult to calculate the coefficients of (7) which

represent integrals of the products of the angular spheroidal functions with

certain additional factors. It is extremely difficult to calculate these

coefficients, although it is simple in principle. Each spheroidal function

must be represented in the form of an expansion with respect to adjoint Legendre

polynomials, and each polynomial must be used in convoluted form. The result

is finally obtained at an infinite series of integrals of step functions with

certain coefficients which include the coefficients of expansion of the

spheroidal functions.

After these additional calculations, it becomes possible to solve system

(6), since all of the special functions which enter into it are represented

numerically. Considering the fact that every other integral in (7) becomes

zero, depending upon the numbers Z and k, it becomes possible to divide system

of equations (6) into two infinite systems of algebraic equations for odd- and

even-numbered sought coefficients, respectively. In practical calculations, the

order of the system matrix must be limited. Modern computing technology allows

us to deal freely with complex matrix up to order 80; however, in our case the

computer cannot determine the order of the matrices being manipulated. The

limiting factor is the table of spheroidal functions which, based on 13], cannot

be calculated for numbers Z.>8. Finally, the highest possible order of the matrix
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of the system of linear algebraic equations for even coefficients is 12, and

9 for odd coefficients. Experience in doing this calculation has shown that

this order of matrices provides more or less acceptable accuracy of solution

only for bodies with extremely small electrical dimensions. Thus, in this

stage the solution of two complex systems of algebraic equations allows us to

find all of the necessary coefficients of expansion of the field a,b,c which

enter into (8) and (9)

The last stage consists of calculating the components of the total and

secondary fields of the system using equations (9). This calculation presents,

in principle, no difficulties.

As examples, the directivity patterns of an elementary dipole with

current P located in the plane crO near the elongated spheroid in Fig. 1x
were calculated. The following parameters were used for the spheroid: h-1,

O=1.O44, 1,077, 1, 2, 2.0. The dipole was located on the axis of the spheroid
* with radial coordinates of F4 2.0, 2.65, 4.22, -. The directivity patterns were

k ~ calculated for the planes d-O and 0w1/2. Figures 2-7 show the calculated

directivity patterns. In this manner, questions associated with variation in

the directivity patterns as a function of the transverse dimensions of the

spheroid were investigated to a certain extent, since variation in O designates

a change primarily in the transverse dimensions; the directivity characteristics

as a function of the distance between the dipole and spheroid were also

investigated.

CONCLUSION

The present work provides concrete results for the problem of asymmetrical

excitation of an elongated ideally conducting spher,*.d. The basic analytical

formulas are given along with a comentary on the difficulties involved in

making specific calculations. The main limitation on using the developed

apparatus to obtain a wide group of sufficiently precise numerical results for
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this problem, as well as other asymmetrical excitation problems, is the lack

of complete tables of spheroidal functions. Instead of tables, it should be

agreed that it is often convenient in practical calculations to use a computer

program which follows a defined algorithm to compute the required function each

time as needed. Such a program can usually successfully replace a table;

however, developing an algorithm for calculating spheroidal functions with

sufficient accuracy and writing the program represent an independent mathematical

problem.

.44

I4

0 24 48 72 Z \ V' 144 78

Fig.5.

The present work presents calculations, based on tables, of coefficients of

expansion of spheroidal functions (31 which are substantially limited, which

results in low accuracy of the result (of the order of 10-20% for the secondary

field). The variation in the order of the system of algebraic equations with

respect to the unknown coefficients of expansion for the field gives an idea

* of the accuracy of the solution. In addition, the results make it possible to

investigate several interesting relationships.
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Figures 2 and 3 present series of patterns in the plane zx(0=O) and

zy( =1T/2), respectively, which illustrates the change in the picture of the

secondary field as a function of the distance between the spheroid and the

elementary dipole. The directivity pattern changes little for the region of

radial coordinates of dipole position &,>4. This indicates that when the

distance between the spheroid and the dipole exceeds one-half wavelength, and

with a thin spheroid, the secondary field practically coincides with the plane-

wave diffraction field.

The series of patterns in Figs. 4 and 5, referring respectively to planes

zx(O-0) and zy(O=n/2), illustrate the relationship between the secondary field

and the transverse dimensions of the spheroid. This relationship is strong.

The patterns for the case of spheroid which is close to a sphere &0-2 differs
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sharply from the patterns of thin spheroids.

Figures 6 and 7 use a polar system of coordinates to show the directivity

patterns of the total (solid line) and secondary (dotted line) fields in the

zx and zy planes. These patterns, as well as other calculations, show that the

secondary field in all of the cases examined has significantly lower amplitude

than the primary field. Therefore, the patterns of the total field differ from

those for the primary field only for near-spherical spheroids.

144



LITERATURE

.1 A\. Stratton. P. M. Morse, L. 1. Chui R. A. Hutner. tEIliptic
C%:rdu 'r .:.Ji Sph.2roidai wave Functions*, New Jork. 1941.

2. J k P. i n e r, FW S ch i f k e, KMathieusche Fiinktionen und Sphiroidfunk
tio,,fln. 13.rlin. 1954.

3, J A. S! rat ton. P M. Morse, L. J. Cn u, J1. D. Little, F. J1. Corbato.
-Som-I wpv'a Funktionis New Jork, 1956.

4. C a r s o r. F I a m mn e r, cSpheroidaI wave Funuctiolsp. Stauford. Califor-
nia, 1957

5. 7 T. M3Po a ia Pazuiaexpmta H 3J16(KTPOHHX2a1, T. 1I, 3btrn. 4. 1957.
'a. I- I C h u, J. A. S t ra tt on. Jour. ApI. Phys.. vol. 12. 241. 1941.
7 E. C. H atcher, A. Leither, Jour. AppI.* Phvs.. vol. 25. 1250. 1954.
3 K< M. Siegir, rl. V. Shyltz, B. H. G ere, F.* B. S lea ter, Trans IRE,

AP............ ...... , 1956.
1 H. K.o6aifc ix uA. Tpy.7u BBHA mm. )Kyloscoro, sbin. 6.30, 1957.

fl. f i 'K H Ha. C60PHHK C'raTeA 4*1Nt)PaiKlHR 3oeKrpo~tarHItTHb1X SOIH
-er . i.ax aaamemisiv. iCo~eco 9IO 1957.\1 e4 r s, T r a n s, IRE, AP-4. 58, 19).6

:.C. P W ellIs. Trans IRE. AP-4. M 1, 1958.
1 2 .X 2 v-i. e!4K 0B, C. H. H 58 NOa. H35. BUMLI. 'tl. 3ane:1. ciaiin-

4. V T MapKOB. .2. A. a2ynaeHKcOB, H. cb. Oc~iaoati-i. 113s. sbrcCI.
V11. -38t Paia;orbitHxaD. T. VIII. Ng~ 1. 1965.

f I I 12 -'iet 11cK a. A. H. Ko B a.1e HtX 0, KTO. T. XXXV.V?8, 1965.
6. J R W a i t. Radio Science v. I (New series) NO 4. 1966.

145



*1

STATISTICS OF FIELD OF LINEAR ANTENNA WITH ARBITRARY AMPLITUDE-PHASE DISTRIBUTION
AND ANY FORM OF ERROR CORRELATION COEFFICIENT

V.I. Zamyatin, L.G. Korniyenko

Asymptotic expressions are obtained for the average
directivity pattern and efficiency of a linear antenna for
the case of small and large (in comparison with antenna
length) radii of the correlation phase errors. The expressions
are suitable for arbitrary amplitude-phase distribution and
any form of error correlation coefficient. A number of

examples are examined.

1. As we know, one of the basic problems in statistical antenna theory is

that of finding the statistical characteristics of the antenna field for given

error statistics. Analytical results naturally depend upon what sort of error

statistic we assign. Errors are usually assumed normal and stationary along the

antenna. The correlation coefficient is usually Gaussian or exponential.

Gaussian form, in particular, is used in [1], which contains the most complete

exposition of the fundamentals of statistical antenna theory.

However, situations are possible in practice for which the error statistic

differs from that used in [I] or other analogous works. In this connection, it
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is extremely important to develop statistical theory in the direction of

eliminating various assumptions regarding error statistics. In particular, it

is desirable to obtain convenient analytical relationships which are suitable

for any form of error correlation coefficients. It is difficult to do this for

I arbitrary values of the error correlation radius. However, such relationships

I can be obtained for small or large (in comparison with the antenna size)

I correlation radii. The derivation and analysis of these relationships for

- arbitrary amplitude-phase distributions comprise the subject of the present

article.

2. A linear system of continuously distributed sources with random phase

errors is examined. To the extent possible, the directivity pattern will be

F Mi,= fJf A (x) A* x)e( (x,) 1+.xx dxdx, C

to within a constant factor, where AWx is the determinate amplitude-phase

distribution of the sources, Wx are the phase errors, assumed normal and

stationary below, ITL sin0 is a generalized angle, x 2z- is a generalized
coordinate. The asterisk denotes a complex conjugate quantity.

Averaging equation (1) and using an expression for the two-dimensional

* characteristic function (cf. for example, (21), we find the average directivity

pattern in terms of power

FT)m A (x) A* (x,) dxdx,,)JI~z, (2)

where R(x-xl) is the phase error correlation coefficient, and is their

dispersion.
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Expression (2) can be transformed as follows:

_-e_' F V)-d dxdxij-F ~ ~ ~~1 M1 F )- A(x)A*(x,)Rm(x--,e * '  xx

L-i -i (3)

LLd

Here FO( ) is the pattern in the absence of errors,

'(4)

S, (r) = R" (x) e- dx.

The first term in (3) is proportional to the pattern in the absence of errors;

the second term determines the scattered (due to phase fluctuations) power.

It characterizes the distortion in the shape of the directivity pattern. As we

can see from (3), the angular distribution of the scattered power is a function

of the type of correlation coefficient and the directivity pattern in the

absence of errors.

3. Let us now consider the most important case of small phase errors.

The correlation functions which are used in practice can be represented in

the following form:

R(x) =r(x) a. ael *  (5)

where r(x) is the envelope of the correlation coefficient. Here 2a, =1,

since R(O)r(O)-l.

Now expression (3) takes on the form
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r- ,F _V .z , j (p

( )-2 a  .  ,  (6)
where

1(l)= M S,- -T)-)F.(T)dIt
- " ( 7 )

is the integral of the product of the undistorted pattern and envelope

spectrum

S, (T) = r rx) e- h-dx. (8)

It is apparent from relationship (6) that calculating the integral in (7)

provides the basis for calculating the average pattern. Let us examine this

integral for the cases of small and large (in comparison with antenna length L)

error correlation radii p.

Small correlation radius )<<L). In this case, the spectrum width Sr(T) is

significantly greater than the width of the directivity pattern. If we assume

that the maximum of the directivity pattern in the absence of errors is located

in the direction 4=b, then

F() 2x

j 1 (9)" d"- Fe , + s(V- b) FoT) d T.

Here S(T) is the energy spectrum of the phase fluctuations, determined by

expression (4) with mil.
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As we can see from (9), the angular distribution of the scattered power is

independent of the amplitude-phase distribution, and is determined only by the

energy spectrum of the phase fluctuations.

Let us consider the matter of antenna efficiency. If we assume that the

power radiated by the antenna remains unchanged in the presence of errors, then

D, F (,0

where D and Do are the average efficiency and efficiency in the absence of errors,

respectively.

Using (9), we have the following for the case in question (p<<L)

Do (b) Xa~ F(Tdje (10)

In writing (10), we discarded the second term inside the square brackets, since

S(b)<<l when p<<L, and the value of the integral is of the order w. The formula

-D = e-a  is often encountered in various articles on antenna statistics.Do
As follows from the above, this relationship is independent of the amplitude-

phase distribution and the form of the correlation coefficient.

5. Let us now consider the case in which p>>L. In this case, the function

Sr(*) varies much more rapidly than Fo(*). The essential domain of integration

in the integral in (7) is near the point *-Bn. Expanding FO(T) near this point,

we have the following from (7):

I.,(i) 1 (- I)m, (7a)
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where inK=S-(g)rdv=2.(-i KJO) is the kth moment of the envelope

spectrum.

Since r(O)=l, r'(0)=0, the first two terms in series (7a) contain no

information about the specific form of the correlation coefficient. Therefore,

limiting ourselves further to three terms in the series (7a), we obtain the

following from (6):

It follows from expression (11) that the magnitude and angular distribution of

the scattered power is a function both of the shape of the directivity pattern

(i.e., the amplitude-phase distribution) ai well as the type of correlation

function.

6. Let us consider some examples.

a. A linear equiphase antenna with uniform amplitude distribution A(x)'

=AO-I/21. The correlation coefficient R(x)- R(x)= -os~x,

where c - is the relative radius of the phase error correlation. When B-0
L

we have the Gaussian correlation coefficient form which is widely used in

antenna statistics. In the present case:

IWe select the value of AO such that the value of the field in the direction of
the maximum is equal to unity (F0()M-l).
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- ' sin)S , V)= c l ice 4 , F (,p) =Ins

-C When c<I S I ( )cI - and

-- [sins V.c

" iThe scattered power is independent of the angular coordinates, and is

fairly small. Therefore, the influence of the scattered power is felt only

!' I in the direction of the nulls of the pattern in the absence of errors.

: When c>>l

F' (ip) =e-  F(2)o.

r(2() F~: -} ,.~~ , :- 1 lc - ,.(12)

whee he Funto (2) e-} sinC'

where= th unton1cV [(3 2*-") cos 2 -4V si n 2*: - 31

is tabulated in [1].

For a-f0, expression (12) coincides precisely with the results in [11

Let us investigate the nature of the variation in the angular distribution of

the scattered power F p() as a function of the quantity $, which characterizes

the oscillation frequency of the correlation function with a relative phase

error correlation radius c-6 (Fig. 1). It is apparent from Fig. 1 that as the

frequency of 6 increases, the amount of scattered power in the direction of

the main maximum of the theoretical pattern FO(*) gradually decreases, and

increases in the vicinity of the side lobes. However, up to a certain value of

$the amount of scattered power is maximum in the direction %b-fO. The nature of

the angular distribution changes qualitatively for B>1.5. The curve has two

=peaks with a valley at r)'. The power is redistributed from the main lobes to

Sthe side lobes of the pattern FO(*). As $ increases, the maximum scattered power

moves away from the ordinate, which for certain values of leads to a sharp

filling of the nulls of the theoretical pattern FO(*).

152

fItfh J/

*,.*.1. _ ,.. -L -C ,'7- . .. L L , 2 -- _ 2; --, - .. ..:-..



b. Linear equiphase antenna with Gaussian amplitude distribution

-2 In this case F06F)=[AB eRc()2
as I*BI*.eBRO P

where Z -- I- , --Z)eprobability integral. If weB 2 1~

require that FO)-1, then ,I, = (B I -Re 0(z~l..)'.

As before, we take the correlation coefficient in the form

R(x=e C
6 cos~3x.

When c<<l, the results converge with the results obtained in section a.

Fig. 1.

[Footnote, not keyed in text: A thorough table of Fourier transforms is given,
for example, in [31. -- Tr.
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Let us consider in more detail the case of large relative radii of phase

error correlation (c>>l). In this case

21 2
FO OP Pr20 (2)(j.:p

where

F(2) ( )-B'r e 2  VT' -l[Re0(z)]'B3J. e- 4

Reet(z)[2cosi-3 i sin i +2Bsinf e--

(2)

In order to calculate the quantity F0 (), we can use the table of the values

of the function W(z) [41 and the expression

* I -ireBI (iz)cosi-JmW(iz)sinV].

which can be obtained from the formula V(z)ez W(-iz)-l [4]. Figure 2 shows

curves which characterize the angular distribution of the scattered power Fp( )

for c=6 and B-0.5, 5 for the different values of B-0,1,2,3. The values of B are

selected such as to equate the angular distribution of the scattered power with

a nearly uniform amplitude distribution (B-5) and a distribution which drops off

rapidly toward the edges (B-0.5). It is apparent from the figure that the nature

of the variations in the curve for the scattered power as a function of the

frequency of $ for B-05 remains the same as for B-5. However, for a dropping

amplitude distribution the curves for the scattered power are less sensitive to

changes in S . This means that when 8 varies we should expect a more severe

* distortion in the shape of the directivity pattern for a uniform amplitude

distribution (especially for $>1.5). The latter is confirmed by Figs. 3 and 4,

which show plots of the average directivity patterns in terms of power for B-0,5

(Fig.3) and B-5 (Fig. 4) with a relative phase error correlation radius of c-6
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and dispersion a=0.5. It is also apparent from the figures that even for small

phase errors and large correlation envelope radii the shape of the average
directivity pattern can be distorted significantly (for large 0).

7. We examined the case of small phase errors above. However, situations

may occur in practice in which the errors are large (t>>1). In this case, 4e can

find an asymptotic expression for the average directivity pattern. Let us look

at the solution to this problem for the special case A(x)=Ao=I/2. The

expression for the average directivity pattern will be

--I

Fig. 2.

When c>>l, the main contribution to the integral is from the region in the

vicinity of the point x-O of the function R(x). Representing the correlation

coefficient in the vicinity of this point as
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$ Pl' X .R ) -- R i0 x -- ''0x' RZ. :,,

we obtain
[drx eI °Ix c" . li--x

4 I

where
2

The integral

I(C,,, it)= Ce -~X
Ca 

.2

r f2
=C. ; Re,]-- 0 --- - _

- 2c F i cos 2q-
L

(Where F (z) =e - 0 et'dt).

is calculated and tabulated in (1]. Figure 5 shows graphs of the average

directivity patterns for various ca . As cc drops (for example, as the errors

increase), the average directivity pattern is "blurred". At a fairly small

value of -R(2)(0), the quantity car-I and the pattern acquires directional

properties.

We note in conclusion that the methodology developed in this article can

be used for other purposes than calculating the average directivity patterns

and efficiency. In fact, a number of other statistical characteristics of

antennas are also expressed through the integral In(W), the value of which are

given in this article for c<<1 and c>>l.

The authors thank Ya.S. Shifrin for supervising this work.
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BANDWIDTH PROPERTIES OF DECIMETER-BAND STRIPLINE Y-CIRCULATORS

M.V. Vamberskiy, S.A. Shelukhin, V.I. Kazantsev, B.P. Lavrov

This article analyzes the bandwidth properties of
decimeter-band stripline Y-circulators operating above
resonance. Recommendations are given on the choice of
ferrite brand and basic design dimensions of a
Y-circulator which make it possible to obtain a device
which is optimal in terms of operating bandwidth.
Various methods are considered for correcting the
frequency response of Y-circulators.

INTRODUCTION

Ferrite strirline Y-circulators, which are used very widely in microwave

technology, have an important disadvantage: the maximum operating bandwidth

which can be provided without using any matching devices does not exceed

7-12% in the decimeter band.

The problem of creating Y-circulators with wider bandwidth has until now

been solved almost purely experimentally.
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Some quantitative relationships are obtained in [1] which illustrate the

influence of the parameters of the ferrite and some of the dimensions of a

Y-circulator on its bandwidth, but these data are not sufficient for competent

design.

The purpose of the present work is to fill in the gap which exists in

this area to some extent.

THEORETICAL ANALYSIS OF CIRCULATOR BANDWIDTH PROPERTIES

One possible approach which can be used to obtain quantitative

relationships for circulation conditions and to calculate the Y-junction

characteristics in the frequency band is to use the apparatus of scattering

matrices.

The eigenvalues of the scattering matrix of a ferrite Y-junction with the

configuration shown in Fig. I are described by the following expression [21:
'Z I sinni 2 1

7 nVp n k J" (X)

a-3m+xv

z ± 4.(x)

where k-0,l,2 is the eigenvalue number, m-0, +1, +2,...,

z'0 I/-2 - i'- k'

go x~ x=kR - V vusR; jL

Here 0, co -- magnetic and dielectric permeability, respectively, of medium

filling the lead-in striplines;

£ -- dielectric permeability of ferrite;

and k -- diagonal and non-diagonal components of magnetic permeability

tensor of ferrite, respectively;

-- wavelength in free space;
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h height of ferrite disc;

R -radius of ferrite disc;

Jn(x) -- nth order Bessell function of the first sort;

In(x) -- its derivative with respect to x

-*10

• 'a

Fig. 1.

Imposing on the eigenvalues thus obtained the following necessary and

sufficient conditions for turning a Y-junction into an ideal circulator:

eo-e 1 = ± 120 o,
8, --e2= 120',  (2)

82 -0, = + 120', -

the circulation equations can be obtained.

The equations thus constructed are not limited to an a priori choice of the

required number of harmonics excited in the ferrite disc, thus making it possible
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in principle to find arbitrarily precise relationships between the parameters

of the ferrite and geometry of the Y-junction which satisfy the circulation

conditions.

As a result of solving these equations by computer and subsequent processing

of the results obtained, graphs were constructed (Fig. 2) which demonstrate the

interconnection and interdependence at the circulation point between the

parameters of the ferrite and the geometry of the Y-junction for various values

of o=yHo/f. The use of these graphs makes it easier to design Y-circulators.

Substituting the values found for the quantities x, k/i, pI, h/X and R/X

for the circulation point in expression (I), and knowing the frequency

relationships of the ferrite parameters, we can calculate the eigenvalues within

the frequency band. Then, using some connection (cf. e.g. [21) between the

elements of the Y-junction scattering matrix and its eigenvalues, it is also

easy to obtain the bandwidth characteristics of the device. The behavior of

a Y-circulator in the frequency band can only be described with sufficient

accuracy (the better, the smaller the ratio k/Vi at the circulation point [1,21)

using the first harmonics excited in the ferrite discs. We use the simple

erression obtained in this approximation for the voltage gain of a Y-circulator

into a decoupled branch y (amount of decoupling P =20 log (I/Y), dB):
pa3

4c2F2 . 2 -4c 2 -Fz
V (40 -  I)  12c 2F2 1'3 (4a_ F2)t.. 12tF ' (3)

where c=(k/U)Ii.84 and where the value used for the ratio k/11 is that occurring

at the circulation point, F= Ji (x)  L 1.31 131.
.11(x) fo

Finding the absolute value of y:

2cF

I 3 - 12 2 (4)
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we can then connect the Y-circulator bandwidth with the ferrite parameters at

the decoupling level of interest.

For the cases which are of interest to developers in which P =20 dBpa3

(y=0.1) and P =15 dB (y=0.178), we obtain these 
equations:

pa3

2 -! =0,29 (P,,, 20 dD). (5)

" 0,54- (Ppa, 15 dB).
10 (6)

Considering that these relationships between operating bandwidth and the

ratio k/p at the circulation point are also valid for calculating using a larger

number of harmonics, the frequency scale 26f/f0 can be entered beside the

scale for k/ji in the graphs above.

The values of the quantities for which the relationship is reflected by

the curves in Fig. 2 are limited to those which are maximally realizable in

the decimeter band using existing brands of ferrite by the value of relative

saturation magnetization (PmaxS6) and values of the angle * (cf. Fig. 1) within

limits of 15°<,<35o. These boundaies are, of course, fairly conditional,

since Y-circulators can be created in practice in which the angle * will be

less than 150 or greater than 350; however, the accuracy of the proposed cal-

culation is somewhat lower when applied to such devices.

SOME METHODS FOR EXPANDING OPERATING BANDWIDTH OF Y-CIRCULATORS

The operating bandwidth of a tuned Y-circulator can be expanded through two

methods: by selecting ferrite parameters and geometrical dimensions for the

Y-junction which approximately fulfill the circulation conditions over the

broadest possible band of frequencies, or by synthesizing a correcting two-port
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network which, when included in all sections of the device, compensates for

the effects which occur when there is a departure from the circulation point.

Analysis of the curves in Fig. 2 shows that in order to create

Y-circulators with greater bandwidth, ferrites should be used with the highest

possible saturation magnetization, and the device should operate with small

values of the magnetic field constants.

As the value of a drops, the dissipative losses in the ferrite increase

as a result of the fact that ferromagnetic resonance is approached. This limits

the selection of operating values of a on the part of small magnetic fields.

In the general case, in order to create Y-circulators with wider bandwidth

it is desirable to have a material with the highest possible value of p and a

narrow ferromagnetic resonance line AR.
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One result of solving the circulator equations by computer is the

relationship

h
SZ' (7)

This shows that the value of the ratio k/V at the circulation point is

inversely proportional tore- . Consequently, the operating bandwidth of a

Y-circulator increases as E decreases in approximate proportion to I/vT,

hence the advisability of selecting a ferrite with the smallest possible value

of E

Using the proposed graphs in designing Y-circulators makes it possible

in each specific case to select a design version which provides a device with

optimal operating bandwidth. However, as Fig. 2 shows, the maximally

attainable bandwidth values are limited to values of approximately 10%,

which often is not satisfactory for developers.

The bandwidth of a Y-circulator can be increased by introducing a slight

gap between the ferrite discs and the grounded plates or center conductor. This

can be explained by the reduced value of the effective dielectric permeability

Eb of the space in the center of the junction. For small gaps, £3 can be

defined using the formula

3 (8)

where 93 is the length of the gap; C3 is the dielectric permeability of the

material in the gap; h is the distance between the center conductor and the

grounded plates.
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An experiment was conducted in the decimeter band to check this

assumption using a prototype in which ,3-0.1h, E3 =-1, E=9. The introduction

of a gap increased the bandwidth by a factor fo 1.4, which confirms the

theoretical conclusions.

Let us now turn to questions of expanding the bandwidth by using external

correcting two-ports. As we know [3,4], a nonmutual reactive three-port

network with a scattering matrix

:LY i (9)

becomes an ideal circulator when each of its sections has connected to it

a reactive two-port in which the coefficient of reflection r is related with

the elements of the matrix S as1  K

_ =(10)

Using the expressions which define the bandwidth dependencies of a, B, y [2],

we arrive at the following relationship for r:

(11)
p- =_ -TF--I2V3cF

F_-P+ 12cTF

Figurp 3 shows the frequency relationships of the absolute value of r
and phase 4x for a value of k/U-0.3.

lEquation (10) is written for the case y<S.
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Using familiar methods from circuit theory 15] to examine the possibility

of synthesizing reactive two-ports which implement the frequency relationship

(11), we can arrive at the conclusion that they cannot be used to implement

this relationship.

The characteristics of a Y-circulator can be improved significantly by

using correcting two-port networks in which the coefficient of reflection is

complex-conjugate with the coefficient of reflection a of the original

circulator :

fK'a'. (12)

However, research analogous to the foregoing indicated that this frequency
relationship is also impossible to realize using reactive (or, in the general j
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case, passive) two-port networks.

Analyzing the frequency dependence of the absolute value of the

coefficient of reflection needed for optimal correction, we can conclude that

the latter can be realized by connecting two-port networks with the circuits

shown in Fig. 4, where the Q of the tuned circuits are related with the

quantity k/V at the circulation point as

Q
(13)

a) Ibd f.&UM

4 ir~#E

.=R r

Fig. 4.

The frequency dependencies of the phases of the coefficients of

reflection from these two-ports, assuming that a matched load (R-1) is

connected to their input terminals, appear as

1, ,435_ , (14a)

S=arctan 1 4350)

( 14b)

As can be seen from Fig. 3, the phase characteristics and

diverge rather substantially, with the divergence being the greater, the further
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the current frequency f is from the circulation frequency fo" Obviously,

in order to obtain the required phase values for the coefficient of reflection,

the tuned circuit (Fig. 4b) which is connected to the line in parallel must

be located at a distance of 2=X o/4 from the ferrite-air interface plane.

An equivalent for a series resonant tuned circuit in the microwave range

is a shorted line segment with length of X0/2, or a segment of open-ended line

with length of A0/4. Considering (13), we express the characteristic

impedances of these segments (stubs) through k/ i

0,444-c (15a)

o1 =f-- k/. (15b)

The maximum bandwidth of a Y-circulator if series-connected stubs are

used for correction is limited by the increase in phase error as the deviation

from the circulation frequency becomes greater. Allowing for the influence of

this phase error on the characteristics of a Y-circulator with series-coinected

stubs in its branches made it possible to calculate its bandwidth for various

values of the ratio k/V at the circulation point. Figure 5 shows the relationship

obtained, which is approximated fairly accurately by the straight line

I(16)

If we move the point at which the stub is connected away from the plane of

the ferrite-air interface, we can satisfy the conditions of optimal correction

* both with respect to absolute value and phase at frequencies fl or f2,

respectively lover or higher than the circulation frequency; the frequency

characteristics of the circulator then have two peaks with a second extremal

point at these frequencies. Figure 5a also shows the maximum bandwidth as a
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function of k/4 for these cases. In order to realize the bandwidths shown in

this figure, the stub must be connected at a point approximately 1.6X0 /4 from

the ferrite-air interface plane in order to obtain the second decoupling peak

at a frequency higher than the circulation frequency of the original junction

(fl>f0 ); this distance is approximately 0.3X0/4 in order to obtain an

analogous effect at a frequency f2 <f0 .

a) 2f, b) zSf ,
r-I - 30rP, "

O , ---- ' - 7 - .

- 2,- fo . . O (

10 !- 25- -....

'I ' / *7 -
l.1 . - 5-.

).05 3.7 0.75 3 .2 02 5 a b 9 0.0.5 an 2 a 0z 3 3"

Fig. 5..

Key: (I) original Y-circulator.

Thus, series-connected stubs can be used to expand the bandwidth of a

Y-circulator significantly. However, these are difficult to execute,

especially at high power levels.

A simple equivalent to a parallel resonant tuned circuit in the microwave

range is either a shorted line segment with length of X0/4, or a segment of

open-ended line XO/2 long. In this case, the required values of the impedance

characteristics are calculated by the formulas

ZVo." -2,26±, (17a)

t ~ZK3, 1 , 13_..
11-(17b)

Figure 5b shows the bandwidth at the 20 dB decoupling level as a function of the

ratio k4 at the circula-tion point for correction using parallel stubs connected
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at a point X0 /4 from the plane of the ferrite-air interface. This relationship

is approximated fairly closely by the straight line

2, f
-- 0.5 *-. (

0.5 (18)

If we change the distance from the point at which the stub is connected

and the ferrite-air interface plane we can, like in the case above, obtain a

circulator frequency response with two peaks. Figure 5b shows the maximum

bandwidth as a function of the ratio k/j for these cases as well. The optimal

distances for the stub connection point are approximately -0,7- for
'i ~frequencies higher than the circulation frequency, and approximately-,4 -

4

-J1 for frequencies below the circulation frequency.

In order to check the proposed relationships experimentally, a stub was

used to expand the bandwidth of a Y-circulator, the characteristics of which

are shown by the fine lines in Fig. 6 (p=l, a-1.8 ). The ratio k/tg=0.25 for

this device. The following are the required values for the impedance

characteristics:

Z.' = 56,5 Ohms,

ZOp = 28,2 Ohms,

Since it is fairly hard to realize a characteristic impedance of Z0=28.2 Ohms,

the correction was done using half-wave open-ended stubs. The heavy lines in

Fig. 6 show the responses of a Y-circulator with the stubs. Ln order to

achieve maximum bandwidth, an experiment was conducted to obtain a response

with two peaks at frequencies below the circulation frequency. As a result

(Fig. 7), the following responses were obtained with a band of +10,5% of the
center frequency:

PU 20 6, P,*,< 0,8 0,VSWR < 1,4.
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Key: (1) VSWR (voltage standing-wave ratio;

(2) fine lines indicate circulator response

prior to correction.

As was indicated above, it is fairly hard to implement series-connected

-* stubs in striplines. Therefore, an experiment to illustrate their effect on

the responses of a Y-circulator was setup using a Y-circulator with coaxial

input feeders (Fig. 8), which made the configuration of the junction

significantly different from that under consideration. With a value of Z0=3

(at a calculated value of 6.3) and stub length of X0/4, the use of these stubs

expanded the bandwidth at the 20 dB decoupling level from 4.8% to 14% (the

bandwidth expansion was somewhat asymmetrical).

There is also another way to expand the bandwidth of Y-circulators which

differs in principle from that explained above. A Y-junction with a ferrite

*l is assigned so that, without being an ideal frequency at any of the frequencies

within the range in question, it has frequency responses which are optimal for

correction. This method can be implemented by using Y-circulators with dielectric

transformers. The optimality criterion for the frequency responses of the

original Y-junction should be compactness of the curves of its impedance within

the frequency range on a circle diagram. Calculations showed that if the
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Key: (i) VSWR; (2) fine lines show Key: (i) VSWR: (2) along AA.
responses prior to correction.

imaginary component of the impedance . of a Y-junction with a ferrite is zero

at the center frequency of the band, the degree of compactness of the curve Z=(f)

(where f is frequency) is a function of the size of its real component R0 at the

circulation frequency f0 . Figure 9a shows the frequency dependency of Z for

different values of R0 (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0). The curves

for Zi)f) corresponding to R0=0.5-0.6 are most compact. A circulator can now

* be obtained by connecting appropriate quarter-wave transformers. to all of the

Y-junction inputs.

it should be noted, however, that coupling between different branches of the

initial Y-junction has a significant effect on the responses of a circulator

obtained as a result of this correction.
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It can be shown that in the similar case in which the correcting devices are

two-ports in which the coefficient of reflection is complex-conjugate with the

coefficient of reflection of the original Y-junction, decoupling of greater

than 20 dB can only be obtained if the decoupling provided at that frequency

by the original junction P >10.5 dB. Invescigation of the frequency responses
pa3 -

of a Y-junction with a ferrite showed that the width of the frequency band

within which the original junction provides this decoupling is a strong function

of R0 (Fig. 9b). Comparison of the data in Fig. 9a and 9b allows to conclude

that only when R0=0.5-0.6 does the use of transformers allow maximum utilization

of the capabilities of obtaining decoupling exceeding 20 dB within the frequency

band. 30 --
JO pa, B

On 3 TOM#Upt M U 'e , Ou O.0

20 "0a3

3, (2)F ()

900 950 TM0o 'CS ' MHz

Fig. 10.

Key: (i) VSWR; (2) fine lines indicate circulator
responses without transformer.

Selecting thus the quantity RO, the geometrical dimensions of the ferrite discs

can be calculated using the following formulas:

R _0.29

2-R

A 0,35 for Z,. --75 Ohm;
A=0.2 for Zo-50 Ohm.
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Putting quarter-wave transformers with characteristic impedances

ZTVRO_ in all branches of the Y-circulator designed using these data, we obtain

a device which can operate in a near-circulation mode. Figure 10 shows the

responses of two Y-circulators which use a 30SCh4 ferrite and have ferrite discs

with equal heights. The ferrite discs in the Y-circulator without transformers

had dimensions of h=7.8 mm, R=25 mm. A value of RO=0.5 was selected for the

case in which transformers were used, hence the disc radius of R=21.5 mm at the

same height for the following transformer specifications: ZT=4 9 mm (ZT -- trans-

former length), ET=2 .05 (ET -- dielectric permeability of transformer material).

Polystyrene was the material used for the transformer. The best bandwidth

characteristics were obtained with ZT= 4 5 mm for discs with a radius of R=21 mm.

The bandwidth at the 20 dB level was approximately twice that of a circulator

without transformers. The value of the magnetizing field in the device using

transformers was 1.7 times lower than without transformers; the induced losses

were somewhat higher, but agree well with the conclusions which follow from

analyzing relationships (19).

CONCLUSION

Analysis of the bandwidth properties of ferrite plane Y-circulators

operating beyond resonance indicates that the maximum attainable frequency band-

width for these devices at the 20 dB decoupling level is 10-12% (without any

matching devices).

As a result of investigating various methods for expanding bandwidth, it

was established that introducing a gap between the ferrite specimens and grounded

plates or inside conductor increases the bandwidth by a factor of 1.3-1.4; the
use of series-connected stubs approximately triples the bandwidth, while

parallel stubs and dielectric transformers increase the bandwidth by a factor

of 2-2.5.

Specific requirements will dictate the use of each of the methods examined

above. However, in most cases, especially when operating at high power levels,

176

o6.



it is better to use parallel stubs, rather than series-connected, since the

latter are difficult to build.
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