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Abstract

Economists often argue that predatory practices are irrational,

since there exist cheaper or more certain means to gain or maintain a

monopoly. Our game-theoretic, equilibrium analysis suggests that if a

firm is threatened by several potential entrants, then predation may

be rational against early entrants, even if it is costly when viewed in

isolation, because it yields a reputation which deters other entrants.

Asymmetric information plays a crucial role in our analysis, since it

provides the rationale for entrants to base their expectations of the

firm's future behavior on its past actions. The analysis also suggests

methods to treat general reputational phenomena.
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PREDATION, REPUTATION, AND ENTRY DETERRENCE*

by

Paul Milgrom** and John Roberts***

1. Introduction

Allegations of price cutting or similar tactics aimed at driving

a rival out of business are frequently heard, both in and out of law

courts. Yet a large fraction of the economics profession would argue

that such predation is an irrational strategy for attempting to gain

or maintain a monopoly position and that it is, therefore, unlikely to

be adopted in practice. This position rests on arguments that predation

is costly to the predator and is unlikely to succeed in driving out a

rival who understands that the price cutting is temporary. Further,

it is held that even if the rival is eliminated, any attempt to raise

prices so as to reap the benefits of the monopoly position may attract

new entrants. Thus, any monopoly gains would be short-lived.!' (See,

e.g., McGee [1958], [19801 for full expositions of these arguments, as

well as some indication of the nature of the opposing views.)

In this paper we present a model in which predation emerges as

a rational, profit-maximizing strategy. In this model, predation is

practiced not because it is directly profitable to eliminate the

*This work was begun while Roberts was on the faculty at Northwestern

and completed while Milgrom was visiting Stanford. We would like to
thank Robert Wilson and David Kreps for making their unpublished results
available to us and for several helpful conversations, David Besanko and
Garth Saloner for their excellent research assistance, the referees for
their useful comments, and the Center for Advanced Study in Managerial

f Economics, the Office of Naval Research (N00014-79-C-0685), the Institute
for Mathematical Studies in the Social Sciences (NSF Grant SOC 77-06000-Al),
and the National Science Foundation (SOC 79-07542, SES 80-01932, and
SES 81-08226) for financial support.

**J.L. Kellogg Graduate School of Management, Northwestern University.

***Graduate School of Business, Stanford University.
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particular rival in question, but rather because it may deter future

potential entrants. The mechanism by which this deterrent effect

comes about is that by practicing predation the firm establishes a

repuation as a predator. This reputation then leads potential entrants

to anticipate that the incumbent firm will behave similarly if they

should enter, and, thus, entry appears less attractive to them.

In this context, it is worth noting that predation will emerge

in our model even if, as asserted by those who doubt the rationality

and relevance of predatory strategies, predation against a particular

rival involves losses that cannot be directly recouped in the given

market, even were exit to be induced. Moreover, viability of this

predatory strategy does not depend on being able to induce exit.

Rather, all that is needed is that the predator usually be able to

drive the rival's return from entry below that available elsewhere.

Examples consistent with the sort of analysis we will develop

are not hard to find. Government studies in the U.S. and the U.K. in

the early part of the century identified many instances of predatory

pricing against new entrants in the ocean shipping industry through the

use of "fighting ships", and the U.S. Department of Justice [1977] has

documented more recent episodes in this industry which it views as pre-

datory (see also Yamey [1972]). Although it is difficult to determine

if any of this price cutting was done with a view to deterring future

entrants, one might expect that firms considering entering an industry

with a century-long history of aggressive responses to entry would at

least entertain the idea that they might meet a similar response. More
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directly, Brock's discussion [1975] of IBM's pricing and product strate-

gies against the "plug compatible" manufacturers (who were marketing

peripheral equipment for use with IBM central processing units) suggests

that IBM was concerned that failure to respond aggressively would

encourage further entry. Finally, the fierce price wars that erupted

as Proctor and Gamble introduced its Folger's brand of coffee into

local markets in the Eastern U.S. in competition with Maxwell House

may well have been central in P & G's decisions not to continue expansion

of its distribution area and, in particular, not to enter the New York

City market. 
2 /

Of course, it has long been recognized in the literature on

industrial organization that the response that entrants expect from

incumbent firms would be a major factor in determining the attractive-

ness of entry, and much of the traditional literature on entry deter-

rence effectively hinges on the threat of predation (see, e.g., Dixit [1979]

or Spence [19791). Most models involving such threats are, however,

subject to a telling, fundamental criticism. One should expect that

the threat of predation will be effective in preventing entry only if

entrants find the threat credible. But in these models, which involve

a single entrant, if the entrant were to call the incumbent's bluff by

entering despite the threat, the incumbent would not be willing to prey,

since sharing the market would typically be more the profitable course.

In contrast, the strategy of predation in our model does not involve

threats which would not rationally be carried out, since the immediate

losses incurred in predation are offset by the gains from a reduced

threat of further entry that building a predatory reputation yields.

*.1k 7._
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Thus, in our framework, a multiplicity of potential entrants

plays a key role in rationalizing a predatory strategy. If, in fact,

the established firm were to face a countable infinity of threats of

entry, all of which may be potentially carried out, then it is trivial

to identify an equilibrium which involves a credible threat of predation,

as we demonstrate in Appendix A. (We also show there that there are

numerous other equilibria in this framework.) If, however, there are

only a finite number of potential entrants, the issue is more compli-

cated. This point has been made by Selten [1978].

Selten considers a model which may be interpreted in terms of a

firm which operates in N identical markets (a chain store). Each

market has one potential entrant. Sequentially, the entrants must

individually decide whether to enter the corresponding markets. If

entry does not take place in market n (at stage n), the incumbent

enjoys its monopoly position in that market without further threat.

This contributes RM to its overall payoff. If entry occurs at stage

n, the incumbent must decide whether to prey on the entrant (yielding

IP ) or to share the market (yielding HC). We assume RM > 1C > RP

predation is costly. In any event, the next entrant must then make its

decision, knowing the history of play up through the preceding stage. We

assume that the payoff to any entrant from meeting predation is strictly

less than that from staying out, which, in turn, is less than the payoff

from entry if no predation occurs.

Selten suggests, and it does seem intuitively appealing, that in

early rounds of this game the incumbent would adopt the costly predatory

L-7
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action in order to persuade later entrants that they should best stay

out, and that only near the end of the game would it be willing to share

a market. Yet Selten also points out that this strategy cannot be

consistent with the natural solution concept (that of perfect equilibrium)

to employ in such situations.

The argument is the following. Consider the last entrant. It

knows that if it enters and meets predation, it would have been better

off to stay out. But it also knows that, if faced by actual entry, the

established firm is strictly better off if it behaves nonaggressively.

Thus, assuming that both firms will always act in their own best

interests, entry will occur in the last market to be threatened and will

meet a nonaggressive response. Moreover, this will be the result, no

matter what has been the history of play to this point.

Now consider the second-last market to be threatened. If entry

were to occur there and if the chain store could deter entry in the

last market by adopting predatory practices, it might well adopt such

measures. However, as just shown, the outcome in the last market is

completely determined, independent of the outcome in the second-last

market. Thus, if entry occurs, the chain store will share the second-

last market peacefully, and, thus, too, entry will occur in this market.

The induction is inexorable and the conclusion clear: in

equilibrium, predation will never be practiced. Moreover, even if (for

whatever reason) the chain store were observed to have preyed repeatedly

against every previous entrant, the logic still will lead the next

' " - IAL
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entrant to anticipate not that past behavior will be repeated but rather

that its entry will meet a nonaggressive response. Repeated observa-

tions of behavior which, a priori, the entrant expected never to see

cannot and do not shake its absolute confidence in its predictions of

future behavior.

The key factor driving this conclusion is that it is common

knowledge (see Aumann [1976], Milgrom [1981]) that accommodation is the

best response to entry and that entry is the best response to accommo-

dation. This common knowledge, in turn, arises from the situation

being represented as a game of complete and perfect information in which

all the firms are fully informed about the structure of the tree

describing the game being played, about the payoffs accruing to all

players, and about the others' past acts. As soon as the complete

information assumption on the game is relaxed, so that the common

knowledge condition no longer obtains, then the logic of the backward

induction breaks down. (This point is illustrated in Appendix B.) The

possibility of actions taken in the past being a useful guide to future

behavior in similar situations now opens up, and with this, reputations-

can come into play. Further, once the lack of complete information

gives rise to reputation possibilities, the players' equilibrium behavior

will adjust markedly. The resultant equilibrium is then radically

different than with complete information, for it has exactly the

qualitative properties of Selten's intuitive solution. Practicing

predation now gives one a reputation as a predator which is valuable in

•
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deterring entry. Thus, if entry occurs at an early stage, it will meet

a predatory response, because any other response encourages

further entry. Recognizing this, potential entrants at these early

stages will enter only if the market is so lucrative that they are

willing to face certain predation. Only as the horizon draws near and

the number of markets which may still be entered declines will the firm

be willing to share a market.

In the following sections we present our analysis of a version of

Selten's model of multiple markets with sequential entry possibilities.

In contrast to Selten, however, we allow that there is some doubt in

the minds of the potential entrants concerning the established firm's

options, motivations and behavior. We compute an equilibrium in this

context which involves predation even by firms which find such a

strategy to be costly in the short run, and we show that this equilibrium

is the unique one involving sequential rationality by all players. We

also investigate some of the major comparative statics properties of this

model. The chief of these relate the value of a reputation -- and the

costs one will be willing to incur to obtain it -- positively to the

frequency with which the reputation may be used, as measured by the

length of the horizon and the inter-period discount factor. The final

section presents a summary and some suggestions regarding both the

implications of this analysis for policy and the possibilities for

developing other formal models involving reputations.
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2. The Model

As suggested in the previous section, incomplete, asymmetrically

distributed information plays a central role in our analysis of preda-

tion and, in particular, in undoing the logic leading to Selten's Chain

Store Paradox. One obvious way to introduce the requisite informational

asymmetry is to allow that the entrants do not know exactly the payoffs

accruing to the established firm from an aggressive response to entry

and that there is some positive probability that such a response is

directly more profitable in any given stage than a response of peaceful

coexistence. Kreps and Wilson [forthcoming (a)] employ this approach, and

4/
we had also explored this avenue in earlier versions of this paper.-

Here we adopt a different approach in which we assume that the

established firm definitely finds predation to be directly less profit-

able than sharing a given market. However, we also allow that there is

some arbitrarily small, but nonvanishing, element of doubt in the minds

of the entrants about whether their model of the established firm's

options, motivation, and behavior is correct. In particular, our

modeling allows that the entrants entertain some possibility that one

or another simple behavioral rule guides the actions of the established

firm. The nature of these rules is such that past behavior is repeated

when similar circumstances arise. While yielding an equilibrium with

exactly the same qualitative properties as that identified by Kreps

and Wilson and by us in our earlier modeling, the present approach

permits somewhat simpler arguments than we had needed before, it yields
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a strong uniqueness result, and it also appears to have some measure

of applicability to a broad range of other problems. We will return

to these issues of motivation, interpretation and justification after

presenting the formal model.

We consider a game with N + 1 players. Player 0 is the

established firm, while player n, n = N,...,1, is a potential entrant

in market n, where N is the first market threatened and 1 is the

last. Associated with each player i is a random variable T whichi

is uniformly distributed on [0,1], independent of the other T.. We

refer to a realization t. of T. as the "type" of player i,1 1

i = 0,1,...,N. As well, we have two strictly increasing, continuous

functions, a, and $, where

a: [0,1] (-,0)

and

The function a will give the payoffs to firm 0 from preying at a

particular stage as a function of its type, while gives the payoff

to an entrant which decides to stay out, again as a function of its

type.

* The N + 1 firms will play one of three possible games, each

of which involves N repetitions of a particular stage game. (Only

the established firm will know which of these actually obtains.) The

first possibility is that the game is one where the n-th stage is

!4



IN OUT

FIRM 0

CK(t.) 01
o 1 f3(tn)

The second possibility is that the game has as its n-th stage
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The third possibility is that the n-th stage is



00

The first pattern is initially assessed a probability of

1/(1 + E + 6), the second is given probability c/(1 + F + 6) > 0, and

the third is given probability 6/(l + E + 6) 2 0. We think of E and

6 as being small. Note that the realized value of T matters only

when it is the first of these games that is being played. It is then

convenient when referring to the situation where the second game is

being played to abuse the notation by saying that T = w (W > 1) in

this circumstance. Correspondingly, we will say that T = -W when

it is the third game which is being played.

In each case, we have normalized the stage game payoffs so that

the profit accruing to the established firm in any market in which it

does not experience entry is 1 while its profit when peacefully

sharing the market is 0, and so that the profit to the entrant is 0

if it meets predation and 1 if its entry elicits a nonaggressive

response. These normalizations in no way affect the results: they

solely serve to ease computations. In particular, they do not mean

that the entrant "breaks even" when preyed upon, nor do they imply that,



for example, the profits of the entrant if it is not preyed upon are

equal to the profits of the established firm when there is no entry.

The specifications of the ranges of the a and functions do

have meaning in this context, however. That a~ is bounded above by

0, which is the profit payoff from preying, means that, other things

being equal, any profit maximizing established firm would prefer to

share a single market rather than to prey. (We are thus building McGee's

arguments into our formal model.) Similarly, the upper bound of 1

on means that the entrants' outside opportunities are never better

than sharing the market if entry will meet a passive response. The

condition on ct is used in our uniqueness argument, but may not be

necessary; the condition on aserves only to simplify the arguments

and could definitely be relaxed. Allowing that the realized values of

6 may be negative recognizes the possibility that entry might occur

even if predation were certain. This could, for example, capture the

id(a that predation would fail against a particular entrant.

Our model is distinguished from Selten's in two major respects,

both of which involve aspects of incomplete information. First, we

assume that each player has a continuum of possible types, with different

payoffs for each type. This assumption serves primarily to generate a pure

strategy equilibrium. Taking a~ and 6 to be constant functions would

eliminate this difference between our model and Selten's but would still

generate a predatory equilibrium strategy for the established firm. Hence,

this first dis;tinction cannot account for the qualitatively different equili-

brium behavior that we will find. The second difference is the positive
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E and 6 assumed in our model; in Selten's model C 0. We have

introduced positive values of C and 6 to capture the idea that

entrants entertain the possibility that a predatory response in one

period might be part of a general aggressive pattern, and a cooperative

response might be part of a general cooperative pattern. It is impor-

Cant to recognize that, if C 0, there is no compelling reason

for an entrant to suspect that any observed behavioral pattern might

continue: past behavior, in that case, is utterly irrelevant in fore-

casting future behavior. It is precisely that irrelevance that leads

to and is the heart of Selten's paradox. We shall see later that even

as c and 6 approach zero, the potential entrants' strategies do not

approach those specified by Selten: As C ,6 approach zero, the proba-

bility that predation deters entry can be bounded away from zero.

However, the probability that predation actually occurs does converge

to zero.

We assume that

1 -P(1 - C1(0))

where p E (0,1) is the discount factor used by firm 0. This condi-

tion turns out to be necessary for any reputation building to occur.

While the basis for this claim must remain somewhat opaque for now, it

will be shown that the right-hand side of the inequality represents

*the critical value of ct(t 0) such that a firm of type t 0  is just

indifferent about preying when the horizon is infinite and a single
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act of predation convinces the entrants that predation is certain in

every future period. We also assume that a(l) > 0. Otherwise, there

is no possibility of deterring entry, since being preyed upon is always

better than the alternative opportunity involved in not entering.

It is worth noting in this context that the assumption that

the T i are uniform random variables on [0,1] in fact imposes no

restrictions on the model. This is because t Iand a- are the

cumulative distributions of the random payoffs. 5/ Further, although

our assumptions that a and 0 are increasing functions means that

there are no mass points in these distributions, this assumption on a

is for convenience only. The strict monotonicity of a does assure

some useful continuity in the optimal responses, but this too can be

relaxed at the cost of complicating the equilibrium (see Kreps and

Wilson [forthcoming (a)!, Remark A).

Initially, the structure of the game is common knowledge. This

includes the values of 6 and E, the a and a functions, and the

distributions of the random variables T . which determine the types.

As well, it is common knowledge that only player i knows the value

of 'Iiand that only player 0 knows which of the three repeated

stage games is being played. At each point in the game, each firm

knows the history of the moves taken to that point by it and the other

firms, but firm O's payoffs in previous rounds are not observable by

the other firms. Finally, it is also common knowledge that firm 0's

payoff from the whole game is the present value of its profits at each

stage, calculated with the discount factor p.

This framework corresponds to Harsanyi's treatment of games of incom-

plete information played by Bayesian players [1967-68]. The distributions
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a- and 8 reflect the various firmAs' beliefs about each other's

payoffs, and the C and eSreflect the doubts that the entrants have

about whether their modeling of the established firm via the first

repeated game is correct. Since the players are not sure about either

the form of the tree describing the game they are playing (i.e.,

whether T0is +wu, -w or in 10,11) or thtL payoffs accruing to

various strategies (since the realized values of a and 8 are not

public information), the situation is a game of incomplete information.

Harsanyi's method for solving such games involves introducing a new

game with complete but imperfect information, i.e., one in which the

players all know the full game tree and all the payoffs but are not

fully informed about the previous moves of the other players. In this game

there is an additional player, Nature, which moves first. Nature plays

a mixed strategy, selecting the actual types of the various players

according to the probability distribution over types that described the

players' prior beliefs about one another. This move by Nature in our

framework thus determines which of the three possible games is being

played and the actual, realized values of the payoffs to the N + 1

firms. However, only firm 0 is informed about the outcome of Nature's

choice of the game tree and about the value of Too and only firm n

is informed about the realized value of T n. Thus, the game, while one

of complete information, is also one with imperfect information, since

a player's information sets typically include several different decision

nodes, with the node that actually obtains having been determined by
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an aspect of Nature's move about which the firm is not informed.

Harsanyi's approach is then to identify an equilibrium of this game

with complete, imperfect information as the equilibrium of the original

game of incomplete information.

In any game, a pure strategy for a player identifies an action

to take in each information set. Here, a player's information sets

are differentiated in part by its type. For example, given any stage

n and any history of play by the firms up to that point, firm 0

still has a continuum of different information sets, one for each

possible determination of its type through Nature's move. Thus, if

only for this formal reason, a strategy for any firm must be a function

of its type and thus must specify what it would do if its type were,

say, some value t, even when its true (realized) type is something

different.

This fact often seems to cause difficulties for those who have

not previously dealt formally with games of incomplete information.

One way to interpret the idea that a strategy must specify behavior for

types that don't actually exist is to regard a strategy for a particular

player as a conjecture in the minds of the others about its behavior.

Then the dependence of the strategy on the player's type simply reflects

the other players' making allowances in forming these conjectures that

the player's behavior depends on its type, which is unknown to them.

In our model, these conjectures by the entrants about firm P's behavior

are first about whether or not they have correctly modeled the established
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firm as choosing between predation and sharing, and secondly, if it

does make such choices rather than reacting mechanistically, about the

conditions under which it will prey. With this view, an equilibrium

involves each player reacting optimally to its conjectures about the

other's behavior, and these conjectures being consistent with the

choices actually made.

Our solution of this game employs the concept of sequential

equilibrium introduced by Kreps and Wilson [forthcoming (b)]. This equilibrium

notion requires that, at any decision node, the player take an action

that maximizes its expected payoff, given its current beliefs and

given that the others will henceforth follow the prescribed equilibrium

strategies. These current beliefs (about, e.g., which node in an

information set actually obtains) must be consistent with the player's

initial beliefs, with any information that it may have available (directly

or by inference) and, whenever possible, with the hypothesis that play

has evolved to this point under the equilibrium strategies.

To define a sequential equilibrium formally, let H denote then

history of the moves taken by the various firms from stage N to, but

not including, stage n. Let H+ denote the resulting history in

n

stage n-I when predation occurred in stage n, let H indicate that

nsharing occurred, and let H0  indicate that there was no entry. Let

denote the possible histories of play up to stage n. Then a
n

strategy for firm 0 consists of N maps

u [U0,1] U {w TPrev.Share)
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n - N,...,I, where So( ,) Prey and s (*,-w) Share. A

strategy for entrant n is a map rn :Vn x[0,1] * {Enter, Stay Out}.

Then a sequential equilibrium is a strategy for each firm such that:

(1) for each n - 1,...,N, each H Eli and each t n [0,1],
n n

r n ) = inter if [I - Pn(H)] > a(tn)

r (H't n) =

Stay Out otherwA.,x

(2) for each n , .-. ,. E )I and each to  [0,1],

sPrey if ) V P'n-1(tOH+) > P-n-l(toH-)
s (H,t0) = ~c ( 0  + ' - .1 ) > P n . .~ ~ I

Share otherwise

where the value function V io defined rccurcivclv, givcn V0 -0, by

V n(t0 ,H) qn(H) max [ct(t0,H-), a(to) + PVn 1 (t0 ,H )]

+ - %(4)) I + QV_ 1(t,N)

and

(3) for all n and all H E- n

P (H) Prob{s0(H,TO) prey IH}

and

qn(H) - Probr n(H,Tn) - enter IHI
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In this definition, the pn and qn, which are interpreted as

perceived probabilities of predation and of entry, respectively, repre-

sent the players' conjectures, and condition (3) is the rational expecta-

tions consistency requirement.-
/

Sequential equilibria are always Nash. Moreover, Kreps and Wilson

have shown [forthcoming (b)] that "for 'almost all' games [with finite strategv

spaces), the perfect and sequential equilibria 'nearly' coincide."

Although the continuum of choices open here to Nature renders this

result formally inapplicable to our model, the sequential equilibrium

still clearly captures the basic idea behind perfectness. An advantage

of the Kreps-Wilson equilibrium formulation over the perfectness

approach is that it greatly eases the problem of computing and verifying

that particular strategies constitute an equilibrium, since it allows

us to use the methods of dynamic programming to analyze the players'

decisions. To apply the methods of dynamic programming, it is necessary

to define one or more state variables that summarize some of what the

players know about the current position of the game. In the original

Kreps-Wilson formulation, the beliefs of each player function as his

personal state variable. In our model, the firm's reputation, which

will be defined by a statistic that summarizes the history of play,

will serve as a state variable.

.4
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3. Existence, Uniqueness and Properties of the Equilibrium

To begin analysis of this game, note that at stage 1 (the last

market), firm 0 must never prey as long as t 0 w, since to do so

lowers its payoff with no possible compensation. Thus, if it is known

that t 0 w~u, entry must occur at stage 1. But if firm 0 ever fails to

prey, the entrants can all immediately infer that t 0 0 wi, (since

t= w automatically yields predation). It is then common knowledge

that firm 0 will not prey at stage 1, and Selten's argument applies.

Thus, once it has ever failed to prey, firm 0 cannot gain by preying

at stage 2, or, for that matter, at any other stage, since to do so

simply squanders profits (a is negative) and cannot influence future

entry decisions. Thus, if firm 0 ever fails to prey, it is clear

that it will never prey again in equilibrium. It is also then clear

that entry will occur in every succeeding market, since 8(t n) is

less than the payoff from unopposed entry for all t n. Thus, in any

sequential equilibrium, failure to prey against a particular entrant

Kimplies that the present value of the established firm's future payoffs

from this and all succeeding stages is zero.

Now suppose that firm 0 has never failed to prey, but that

entry has just occurred in market n. As just seen, failure to prey

yields a value of zero to the established firm for the rest of the

game. If, however, it adopts an alternative strategy which involves

preying at stage n, then, given the strategies of the remaining

entrants, it faces some list of possible patterns of future entries,

predatory episodes, and unentered markets. In expected present value

terms, let E, P, and M represent, respectively, the count of future

*.~. I.Z
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entries, current and future predatory acts, and unshared markets

resulting from the alternative strategy. Then the expected present

value of future payoffs from following this strategy of predation is

equal to Pa(tO) + M, given our normalizations. Since P > 1, this

expression is increasing in to, the value of TO. Thus, if it pays

firm 0 to prey at stage n when T = t (i.e., Pa(t) + M > 0), it

also pays when To - t' > t. In fact, then, the maximized value of

future payoffs over all possible strategies is also increasing in tog

since it is the value of the maximum of increasing functions (including

the constant function 0).

These points can be effectively illustrated graphically. The

axes in Figure I are M and P, as defined above. Given the succeeding

entrants' strategies, a particular choice of strategy at stage n by

firm 0 results in a particular point in (P,M) - space. The convex

hull of the resulting points is graphed. Note that P + M - n, and

that the origin is always available. Firm O's preferences over this

space are given by the linear indifference curves corresponding to

Pa(t ) + M = C. Payoffs are increasing as we increase M or decrease

P, and the slope of any particular type's indifference curves is

-a(t0) > 0. Thus, if to > t;, then the to  indifference curves are

flatter than those for t' It then is seen that the optimal P is
0-

at least weakly increasing in to, and that if a given strategy yields

a positive payoff for a particular value of to, it yields a positive

payoff for all higher values of to.

J "
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Poc(t'O')+MZ c'
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Thus, in searching for an equilibrium, we can limit our attention

to pure strategies for firm 0 which call for predation at a particular

stage with a given history of play if and only if the value of T 0

exceeds some critical value, where this value is 1 if the history to

that point involves any failure to prey. (Clearly, for T0= IWI, there

is nothing to specify. The reason we can restrict ourselves to pure

strategies is that, with Pci(t 0 ) + M increasing in to, at most one

single type would ever be indifferent between the two possible actions

at any stage.)

Thus, in equilibrium, if firm 0 has preyed whenever entry has

occurred, the entrants can infer that either T0= w or the value

of T0exceeds the maximum of the critical values governing its past

predatory decisions. Let x be this maximum, and call x the

reputation of firm 0 with the given history of play. We make the

special conventions that if the established firm has ever failed to

prey, its reputation is x = -00, and that if no entry has previously

occurred, x -.

We w:il now characterize an equilibrium for this game in which

7 at stage n*

(1) firm n's decision depends only on the value of T nand

on firm 0's current reputation x;

(2) firm 0's decision (for the relevant case where Ir.I X W)

depends similarly only on the value Of T and on x;

(3) firm O's new reputation on entering stage n -1 depends



only on his reputation entering stage n and the actions

taken there.

*This equilibrium involves N numbers, x N xNI _ . x,, with

the property that, so long as it has never previously failed to prey,

firm 0 with 1t01 ;cW will prey in response to entry in market n

if and only if t0 > x . Further, we show that x1  1, that x < xn~

unless x n-1 = 0 or 1, that lim. xn = max [0,(X (OL)], and that, if

00() > Ot, there exists a finite k such that, for all n > k, x n= 0.

Thus, in this equilibrium, the set of firms which will prey at stage

n includes all those which will prey at any later stage when there

are fewer markets to protect, and, for large N, any firm for which

a 0)> Oa will prey in the early rounds, regardless of the immediate

cost. We also show how to compute the x nvalues, demonstrate that

this is the unique sequential equilibrium, and obtain some comparative

statics results.

Since the entrants are to be looking only at their own types and

firm 0's reputation, and since the revision of the reputation is to

depend only on its current value and current actions, the expected

present value to firm 0, when entering stage n, of playing optimally

in this and all later stages depends only on the value t of -10and

on its current reputation x. Let V nCt,x) denote this value, and

recall that, as argued above, V is increasing in t as the supremum
n

of increasing functions. We will describe recursively a set of strategies

based on these V nfunctions, then verify that they do in fact consti-

tute the unique sequential equilibrium.
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Step 0: Initialization

Let V0 (t,x) - 0 for all t and x. This is just an initiali-

zation based on a "dummy" stage 0. We also initialize by setting

firm O's rsputation entering stage N at -1.

Sten le Reputation Revision at Stake n

Suppose firm O's reputation entering stage n is x =

Then its reputation on entering stage n - 1 is

Outcome in Market n Reputation Entering Market n - 1

No entry x

Sharing -CO

Predation x v x
n

where "v" is the max operator and

xn E inf {x E [0,111t > x implies a(t) + pVn 1(t,t) > 0}

If x = -00 at stage n, then firm O's reputation at stage

n - 1 is also -- independent of the actions taken at stage n.

Step 2: Firm O's Actions at Stage n

With T = t E[0,1] and current reputation x -c we specify

that firm 0 will prey at stage n if and only if

at(t) + PVn 1(t,X v Xn) > 0

i.e., if and only if the current return plus the value of continuing

optimally exceeds zero, which, as argued above, is the value of the

.- . .- ....................................... --... ,.
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payoffs resulting from failure to prey (i.e., V n(t,--) E 0). If

x = - we specify that the firm will share the market if entry occurs.

This is clearly an optimal strategy for firm 0.

Remark: Suppose now that firm 0 does follow this strategy.

What can subsequent entrants correctly infer from seeing firm 0 prey

at stage n? If the firm entered stage n with reputation x, then

the subsequent entrants need consider only firm types t that exceed

x. There are two possible cases.

First, if x > xn , then x - x v X. In this case,

a(t) + PVn 1 (tx) C(x) + PVn 1 (x,x) > 0

so long as t x, since a and Vn_ 1 are increasing in t. The

second inequality here follows from the definition of x and fromn

x > x . Thus, if the firm has already demonstrated that it is of typen

t > X, it will surely prey at stage n.

Second, if x 5 x < 1, then x - x v xh. Then the fact thatn n n

a and Vn- 1 are increasing in t implies that

a(xn ) + PVn(xx) a(t) + PV (t,x)
n n-I n n < n-1 n

as xn  t. Now, if Xn > 0, the continuity of Vn_ (to be verified

shortly) implies that the left-hand side of the inequality is zero.

Then the firm will in fact optimally prey if t > x , will optimally

share if t < xn , and is otherwise indifferent. If Xn = 0, then the

left-hand side is non-negative, t is automatically greater than x,

and predation is an optimal response, while if xn - 1, then a similar

argument shows the optimality of sharing. Thus, we have verified that

La a aa
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future entrants could correctly forecast that firm 0 will prey in

market n with reputation x s -- if and only if TO > x V xn

This justifies the evolution of reputations that we specified.

Step 3: Firm n's Actions at Stage n

In view of these computations, if x > xn then entrant n will

in equilibrium correctly regard a predatory response as certain. If

x = _ , entry will be correctly anticipated to meet a nonaggressive

response. In general, we have

Pn(X) = the probability in equilibrium that firm 0

will prey at stage n with reputation x,

given that TO -> x

= the probability assessed by entrant n that,

given the reputation x, firm 0 will prey at

stage n

- : + [1 - (x v Xn)]

n if x 0[ + (1 - x)

= 0 if -C

[+ (1-x
n

[1+ + 6 if x= -1

4The entrant's best response at n is then to enter if and only

if

u .,. .. ,+= .. ,+ 5... .. :: . .. ..... .. x..- lr .... . .. .. . .... i... . ..... ..... ... ... .,, ,+ .. . . .... .
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Pn(x).0 + (1 -p n(x)).1 -(t n )

i.e., if and only if

t - -1(1 - pn(x)) H q-n(x)

Then qn(x) is precisely the probability that n enters at stage n

when firm O's reputation is x.

These strategies are clearly optimal responses to firm O's

strategy.

Step 4: Transition from Stage n to Stage n + 1

With the initialization for V0 , the preceding steps allow us

to calculate V1 as VI(t,x) = 1 - q,(x). To complete the recursive

cycle, we now have to specify how to move from stage n to n + 1.

For x e -00,

V+l(t,x) = qn+l(x) max [0,a(t) + PV (t,x " X)J

+ (1 - q 1 (x))(1 + PVn(tx))

The first term on the right-hand side is the probability of entry times

the maximum of the expected present value of the payoffs either from

sharing the market and getting a reputation of -- (where we have used

the previously established fact that V(t,-o) - 0) or from preying

now and then continuing optimally with the new reputation x v Xn.

The second is the probability of no entry times the value of having

this market as a monopoly and then continuing optimally with one's

reputation unaffected.

* . :. * * - . . .
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Note that it is now clear that V is continuous if Vn~

is continuous. Thus, since VO 0 is continuous, all the V nare.

It is also clear that V nis the optimal value function and,

thus, that the strategies do constitute a sequential equilibrium.

Each firm is maximizing, given its beliefs and its conjectures about

the other firms' strategies, the beliefs are consistent, and the

conjectures are correct.

Before we turn to characterizing this equilibrium, some further

discussion of the determination of the x n values may be useful. In

Figure 2 we show [0,1J x [0,1J with the diagonal. Think of the

horizontal axis as being reputations and the vertical as the type of

the established firm. Then we ask: if preying at stage n were to

yield a reputation x, which types of firms would be willing to prey?

The set of such firms is {t E [O,1]Ict(t) + PV n- t x) > 01.

Thus, the lowest type willing to prey is the inf over this set. Denote

this inf as h (x), and note that h nis continuous and monotone

decreasing. Then x nis the unique fixed point of h n x), i.e., the

point where the graph of h ncrosses the diagonal. To see this,

note that if x s n , then the set of firms willing to prey if it

yields reputation x would not in fact justify the earning of that

reputation.

We now seek to characterize the equilibrium. In so doing, the

following function will be useful. Define g:R 2 R by
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g(r.,v) (I - ql(1))(t + pv) + ql(1) max (O,a(t) + pv)

where ql(l) is the probability of entry against the "strongest" type

of established firm in the last period or, equivalently, the probability

of entry in any round against certain predation, i.e., ql) = ().

Observe that Vm+l(t,l) = g(t,Vm(t,l)) and for all t, g is increasing

in v and

Ig(t,v I) - g(t,v 2 )1 < POv1 - v21

so that g(t,') is a contraction map. Let v(t) be the unique fixed

point for each t. Then one can verify that

1 - ql( 1)

if t < x
S-(I - ql(t))

v~t) =

1 - qt1O- a(t))
if 

t x1 - P

where

1 -p( - ql(l))I

- t I\-(l - lI

This fixed point will provide a bound on V n(t, .).

Note, too, that the relationship a(1) > a which was assumed

earlier is simply equivalent to x < 1. (At this point, one can

straightforwardly verify the claims and interpretations made in connec-

tion with this assumption.) Further, since g is an increasing

contraction map, we have the following result.

, A!
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Lemma: If v < v(t), then v < g(t,v) < v(t).

Proof: Let v < v(t). Then

g(t,v) < g(t,v(t)) = -v(t)

Also,

v(t) - g(tv) = g(t,v(t)) - g(tv)

SP(V(t) - v)

< v(t) - v

so v < g(tv). Q..D.

Note that V0 (t,l) = 0 5 v(t) (with strict inequality at least

for x < t) and that Vm+l(t,1) = g(t, Vm(t,l)). Thus, in particular,

we have V (t,l) -< v(t) for all m.m

Proposition 1: For any n, Xn+1 W n , with strict inequality if

x nr 0 or 1. Further x* H lim x = max [0,x].n nn -+o

The proof of this result is given in Appendix C.

Proposition 1 establishes the key point that any firm (defined

in terms of the costs it incurs in preying) which is willing to prey

when n markets are still threatened by actual or potential entry

will also prey when there are a greater number threatened. It further

gives the asymptotic properties of the x . If x < 0, so that
n

x* - 0, then the convergence to x* is necessarily in finite time.

Thus, for all n sufficiently large, the established firm will prey
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for sure unless T = -tW. If x > 0, then the cnnv rgence is only

asymptotic: xn > x for all n. Of course, for large enough values

of n, the differences between x and x, between Vn(t,x) and v(t),n

and between pn (x) and unity are arbitrarily small.

Note that none of these asymptotic properties depend on the

particular values of E > 0 and 6 2 0.

In terms of Figure 2, the behavior of the h functions as nn

varies gives the evolution of the x values. If a(l) is sufficiently

negative, no firm would find predation attractive if n is small, and

the corresponding h functions are identically equal to 1. Even-n

tually, however, acquiring a reputation of 1 (or close to it) by a

single act of predation will become attractive for firms with high

enough c(T0) values, since such a reputation reduces the threat of

entry to (essentially) B-(0). Thus, at least near x = 1, h nX)

lies below x, and x becomes strictly less than 1. The correspondencenI.between higher values of n and lower values of x then is a matter

of h (at least near the diagonal) being above h n+. Finally, alln 
n

the h converge in n to a constant function at x* = [0 v x1,n

indicating that any type above x* would be willing to prey to get

such a reputation.

The equilibrium evolution of the game thus becomes clear. For

large n, if x < 0, then once firm 0 has preyed and thereby revealed

that it is not irrevocably committeed to sharing (T0  -w), entrants

correctly regard predation as certain. Thus, the only entrants which
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will attempt entry for large n after one predatory episode are those

whose outside alternatives are so poor, relative to the profits avail-

able by entr, that they are willing to face certain predation. The

probability of entry is then -(0), which may be zero. If x > 0,

then a second act of predation is not absolutely certain (since xn+1 >

x > x for all n), but it is close to being so when n is large.n -

Consequently, the probability of entry is close to B- (0). In either

case, the established firm sees predation at an early stage as leading

to a long string of monopoly returns, possibly interrupted by occasional

predatory episodes. If its payoff while preying exceeds Q 
= a() =

[-Ali - a-I(0))1]/[1 - p(i - -(0))], it prefers this to the continua-

tion value of zero which results from failure to prey. If t < x,

sharing is preferred.

Before the first attempt at entry, if 6 > 0 it is still possible

that the established firm is of the type that never preys. In this

case, the probability of predation is strictly less than one, even when

x < 0, and so one would expect (with probability strictly greater than

$-(0)) to see a test of firm O's fortitude by an entrant with a

relatively low value of T and thus low opportunity costs in entering.
n

If this entry meets predation, then the firm's reputation immediately

jumps to x Z x*, and the game proceeds as described above.

As the number of markets remaining threatened decreases over

time and the horizon approaches, x increases. This begins immediately
n

if x > 0, and at some finite date if x < 0. Consequently, the condi-

I * . AI.
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tional probability that T0 > xn, given the current reputation x,

and thus the probability of predation will start to decrease. If at

some stage this probability of predation is sufficiently low relative

to (t n), entry will occur. If t x n, entry will meet a nonaggressive

responsc. The possibility that To = w is then eliminated, it thus

becomes (ertain that predation will not occur in market 1, Selten's

logic takes over, and unopposed entry occurs in all remaining markets.

If t > x , predation occurs. The established firm's reputation now
n

rises to Xn, the probability of predation at stage n - 1 now is

Pnil(Xn) > pn 1 (x), the attractiveness of further entry is reduced

from what it would have been if the value of TO were only known to

exceed x rather than xn , and the probability of entry in future

rounds correspondingly falls.

We will now demonstrate that this is the unique sequential

equilibrium.

We have already observed that, in any sequential equilibrium,

if the established firm ever fails to prey, then there must be entry

and sharing at every later stage. Thus, it suffices to consider only

what happens when there has been no sharing. We have also observed

that at any stage n with any history of play to that point, firm 0

with IT0I * w will prey if and only if TO exceeds some critical

value. Thus, at any sequential equilibrium all that can be inferred

from a given history involving no sharing is that T= or

T E (x,l] for some x. As well, we have also observed that we need

consider only pure strategies.

A
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We now establish inductively that any sequential equilibrium

must agree with the one we have described earlier at all stages

m S n. The induction is made on n, and the case n - 0 is immediate.

Fix any sequential equilibrium and suppose that the result holds for

n = k. Then the value of entering stage k with To  t and reputa-

tion x is Vk(t,x). Now consider firm 0 in stage k + I where the

history is H and the corresponding reputation is x. Let x x

denote the reputation that 0 would have at this equilibrium if entry

and predation occurred at stage k + 1. Then firm 0 of type TO = t

would choose to prey or not according as

CL(t) + PVk(t,x) 0

The reputation x must be consistent with O's actual strategy at

equilibrium, so we must have for t ? x that

ct(t) + PVk(t,x) Z 0 as t Z x

Using the monotonicity of Vk, it is straightforward to check that the

unique x x for which this holds is x = x v Xk* Hence, the condi-

tional probability that entry will meet predation at stage k + 1

given the history H and reputation x is pk+lX). The unique best

response to this for firm k + 1 is to enter if and only if

8(rk+l) < Pk+l(X), and this completes the induction. Notice that the

fact that strategies depend on history only through reputations has

been derived, not assumed. What the induction establishes is that if

. .. ...
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history affects play only through the reputation for stages m s k,

then the same is true at stage k + 1. Since this is trivially true

for k - 0, it is true for all k.

The comparative statics properties of this equilibrium can be

stated rather simply. Those on N have already been established: the

values of the xn are, in fact, independent of N, so that the proba-

bilities of entry and of predation in round n < N do not depend on

N. Of course, we have already shown that x converges monotonicallyn

down to [0 v x]. Increases in P, the discount factor, tend to lower

the x 's. To see the sense behind this claim, note that against givenn

strategies by the entrants, a higher value of p increases (in present

value terms) the reward to preying. The costs that the established

firm would be willing to incur in preying then increase, lowering the

cut-off level of x at which predation occurs. However, such a lower

value for xn will make entry less attractive, lowering qn(x) and

increasing the benefit from predation at stage n + 1. Thus we have a

snowballing effect, with everything working in the same direction. (A

formal proof of all the comparative statics results we will claim here

is given in Proposition 2.)

Together these two results indicate that the value of a reputa-

tion -- and the costs one would incur to achieve it -- increase with

the frequency with which it may profitably be used. Either being able

to use the reputation more often at a given rate (increases in N) or

with less delay between uses (increases in p) increases the incentives
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for building and maintaining a reputation. We will later suggest some

interesting implications that would follow if this intuitively appealing

result carries over to other models.

The effects of changing the t or a functions in certain ways

can also be identified. Adding any positive function to B (while

still maintaining monotonicity and the upper bound of 1) yields a new

function whose inverse, as the distribution of the outside opportuni-

-1ties, stochastically dominates the original distribution B- . This

change lowers the probability of entry against any given reputation,

given the established firm's strategy. However, the lower values of

the qn tend to increase the value of preying (since they mean that

predation is more likely to deter future entry), so again we have the

snowballing effect we saw in the case of P. Similarly, an increase ir

01, which shifts O-1 in the sense of stochastic: dominance, also

decreases the xn. Thus both an increase in the outside profit oppor-

tunities of the entrants (which lowers the attractiveness of entry) and

a decrease in the costs of preying tend to lower the x n, thereby

increasing the probability of predation with any given reputation and

lowering the probability of entry.

Finally, a higher value of c, the probability put on an auto-

matically aggressive response, also works in the same way to lessen

the xn, and thus to increase the probability of predation with a given

reputation and lower the probability of entry.

All these properties are established formally by the following

result, which is proven in Appendix D.

I
~ 4
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Proposition 2: Suppose p P p, a a a, and E c . Then

x x for all n.

In this modeling, the possibility that To = -w (with probability

6) was included largely for the sake of symmetry: either form of

mechanistic behavior pattern is possible. The sole effect of 6 on

the equilibrium is that it encourages an early test of firm 0 by some

entrant. In particular, the x values do not depend on the value ofn

6. In fact, as long as the probability that T = w is kept bounded

from zero, we could also have allowed that the entrants also entertained

all the theories about the established firm's behavior which involve

it preying against every entrant until there are exactly k markets

left, k = 1,2,..., and then never preying again. The equilibrium

would not have been qualitatively changed.

Finally, let us examine the behavior of the equilibrium as

c + 0 and thus as we approach the original Selten model. Consider

the case N = 2: the arguments can be extended for any N. By
E 0

Proposition 2, x2  is increasing as c -+ 0 and so has a limit x2 .

Then by the definition of x , we have qE(x ) - max(O,1 +

Since a is bounded above by 0, we then have that the limit is strictly

less than one. Further, if x 2 1, then we have lim qI(x2) =

lim [-E/(s + 1 - x2)] = 1, and this contradiction shows that

0
= . Thus, as e + 0, the set of firms which will prey in equilib-

x 0

rium becomes null. However, since x2 = 1, predation at stage 2

deters entry with probability equal to min [l,-a(l)/p] > 0. Note that

*I

I- -
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this is a failure of upper hemicontinuity of the sequential and perfect

equilibrium correspondences as we change the information structure:

the established firm's equilibrium strategy converges to that identified

by Selten, but the entrants' strategies do not.

Another way to express the striking importance of even very

small positive values of 6 is to consider how the deterrent effect of

a strategy of always ireying depends on C. The easiest case to

consider is when $(0) > 0. Suppose entry actually occurs at k

dates mkI,... ,mi, where mi occurs after mi+i, and these entries are

always met by predation. Then by examining the entrants' strategies

we find that for any two successive entry dates mi and mi-l,

I - 8(0) > 1 - a(T ) > [C + 1 - x ]/[6 + 1 - x ], wheremium- mi

x - 0. This gives a set of k inequalities which when multipliedmk+l

together lead to [1 - a(0)] > [E + 1 - x ]1/[6 + I - x l > E/Ml + E).
1 mnk+ I

Hence, k < Zn [c/(1 + E)J/in [i - a(0)]. This provides an upper bound

on the number of entries that can arise for any realizations of

Ti ,.. . ,TN when entrants follow their equilibrium strategies and firm

0 adheres to an aggressive strategy. Note that the bound is independent

of N and grows only logarithmically in C. Even tiny values of C

can lead to moderate bounds on k. For example, if 8(0) = .75, then

for C = 10-3 one obtains k -< 4, for E = 10- 6 one obtains k - 9,

and for E - 10- 9 , k 5 14. Thus, tiny elements of uncertainty can

produce a significant deterrence of entry.

I
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4. Summary and Conclusions

We have demonstrated that the presence of informational asymmetries

can lead a firm operating in several markets to adopt a predatory

strategy against entrants, even though such behavior is irrational when

viewed in the context of a single market in isolation and even though

there are only a finite number of potential entrants. This same point is

made in the one-sided uncertainty model in the accompanying paper by Kreps

and Wilson [forthcoming (a)]. We view this model and our work as comple-

mentary, in that they display two different ways in which the recognition of

informational asymmetries can "resolve" the Chain-Store Paradox. This

resolution comes about because the informational asymmetry gives the

entrants reason to forecast future actions on the basis of past behavior.

This in turn gives the established firm reason to prey in order to build

a reputation which leads future entrants to predict that they too are

* likely to meet predation.

The particular asymmetry we have introduced involves the entrants

being less than certain that they are correct in modeling the established

firm as rationally choosing between predation and peaceful coexistence.

Specifically, we allow that they entertain the possibility that an

episode of predation -- which ought not ever to occur in the complete

* information set-up -- may be part of a general pattern of predatory

behavior. The recognition of this possibility then results in the

marked change in the equilibrium behavior that we have demonstrated.
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There are numerous reasons why this element of uncertainty should

exist. On the one hand, the entrants could bt not completely sure

about the game being played. For example, it might be that the Pstab-

lished firm could actually be involved in some bigger game of which the

one studied here is only a part and that the firm's equilibrium strategy

in this larger game calls for it to prey in these markets. A second

possibility is that in the game actually being played, the established

firm may be able to precommit itself to an aggressive course of action

and may have done so. Other scenarios involve the entrants allowing

that the firm is not behaving as a fully rational game theorist.

For example, the fact that firms involve many individuals, each with

his or her own preferences and information, suggests that the appropriate

model of the firm would be one of group decision making, and there is

no compelling reason for choices in such situations to correspond to

the maximization of a single utility function. Alternatively, the

firm may have well-defined utility function, but it may not calculate

fully the equilibrium in the game being played. Instead, it may have

some more or less arbitrary conjectures about how the entrants will behave

in response to its actions, and its preying is the optimal behavior given

these conjectures. In fact, Rosenthal [forthcoming] has argued that games

of perfect information ought to be analyzed as if the players were

decision theorists in this sense, rather than game theorists whose

conjectures about others' behavior must be correct. In this context,

Rosenthal suggested that his approach could resolve the Chain-Store
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Paradox, and Macgregor [1979] has verified this conjecture. Thus, for

example, if the established firm believed that the entrants would simply

forecast that past behavior would be repeated, it would be led to prey.

in this regard, Scherer's discussion ([1980), pp. 338-9) of preda-

tion as a deterrence strategy is of interest. He notes that if entrants

perceive different markets as sufficiently similar and if "business managers

extrapolate from past events rather than sizing up the probabilities in

each new situation", then predation may have a deterrent effect. He

goes on to note that very little is known about the extent to which

such extrapolation occurs. Our analysis shows that even if everyone is

fully rational and does "size up the probabilities in each new situation",

as long as there is some doubt about whether this is the case, predation

can emerge.

The implications of this analysis for antitrust policy are straight-

forward. In multiple market situations, predation can be a rational

strategy which deters entry and thus supports monopoly. Thus, any

tendency to discount the likelihood or significance of predation on the

basis of its presumed irrationality should be checked when there are

multiple markets which might reasonably be regarded by potential

entrants as similar. (An interesting paper by Easley, Masson and Reynolds

[1981] in which firms can make their markets seem to be intrinsically

unprofitable candidates for entry by predation yields similar conclusions.)

* Firms serving several geographically distinct markets are only one case
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where the model and its conclusions might apply. Firms with broad

product lines or those in which on-going technological change yields a

pattern of new product introduction over time are others. In this

context, it is worth noting explicitly that predation will only rarely

need to be practiced. The credible threat of predation will deter all

but the toughest entrants (those with low values of t n), and so the

occasions when the firm will be called upon to c;:rry out its threat

will be infrequent.

Two factors in our model lead to the emergence of reputations: the

informational asymmetries and the repeated actions with the possibility

of observing past behavior. These conditions will be necessary for

re-putation building to occur in general, and it would further seem that

they are sufficient: in any situation where individuals are unsure

about one another's options or motivation and where they deal with each

other repeatedly in related circumstances (or where past dealings with

other people are observable), we would expect to see reputations develop.

A clear example of such a situation is in problems involving the choice

of product quality. Other examples in economics arise in credit relation-

ships, in labor negotiations and strikes, in implicit contract models,

and in the provision of auditing services, bond ratings, job recommenda-

tions and the like. The reader can easily provide more examples. More-

over, applications outside the traditional bounds of economics are at

least as numerous. We expect that the methods of this paper can be

applied in each of these contexts to yield important insights on the
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nature of observed behavior. We also would expect that the main

comparative statics result of this paper -- that the value of a reputa-

tion and the extent of reputation building increase with the frequency

of the opportunities for its use -- will prove generally true. If so,

this would provide insight on such issues as the costs of social mobility

in terms of reducing the opportunities and incentives for building

reputations for honest behavior, quality service, and the like.

The particular way in which we have introduced the informational

asymmetry in this paper is to assume that individuals ascribe some

positive probability to there being some alternative theory which

determines behavior. In some situations, there will be an alternative

theory which is particularly natural. In others, however, many perturba-

tions of the "basic" complete information model will exist, and the

choice between them may appear arbitrary. This suggests the need for

a notion of robustness for these alternative theories. One such notion

is that a theory would be robust if its presence led to behavior which

did not refute the theory. We plan to explore such ideas in the context

of developing reputation models of some of the phenomena discussed

above.
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Appendix A

In this Appendix we examine an infinite horizon version of

Selten's chain-store model. As we demonstrate, one trivially estab--

lishes existence of an equilibrium where any attempted entry is met by

predation, even with complete information. This equilibrium then

resembles that in Section 2 for large N. However, in contrast with

the finite horizon, incomplete information model, the set of equilibria

in this model is large and contains many intuitively unappealing strategy

combinations.

Let 1' 10 and I0 denote the incumbent's payoffs to preda-

tion, coexistence and monopolization in a single market, and let the

P C A
corresponding payoffs to any entrant be I 1 I and TI. Given a

discount factor p for the incumbent, and denoting the play at round n

by h n, where hn = +1 denotes predation, hn - 0 denotes no entry

and h = -1 denotes sharing, the incumbent's payoff isn

On1 P [ n I+M [
0 1{h =-1} +T0 (h =+} + 0 l {h =0}

0 n 0 n 0 n

where IA is the indicator function for the event (seL) A, i.e.,

I{h -a} is equal to one for those n such t",t h = a and zero
n

otherwise.

We assume that the game is one of perfect information, so that

all players know the structure of the game tree, the payoffs, and the
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actions taken at all previous moves. In contrast to the set-up in the

text, number markets forward in time: market n opens before market

P < C < HM and P < i < Cn +1. Assume <I0 II0  II0  and oo Il
0 0 0 1 .1 1*O

We now claim that, if H + 0 M E then the following
0 0 1

strategies constitute a sequential equilibrium:

Firm 0: if h,...,h n_1 a 0 and entry occurs in market n,

then prey.

If hk = -I for any k < n and entry occurs in market

n, then share this market.

Firm n: If hi ... ,hn_ > 0, do not enter.

If h = -I for any k < n, enter.

Solongas H n> C E , not only do these strategies
0 0 0 0

have the mutual best-response property that makes them Nash equilibria,

but also this property obtains for the appropriately truncated strategies

starting from any node in the game tree, so in fact they yield a sequen-

tial equilibrium.

However, as is again easily shown, the strategies of never

preying for the established firm and all potential entrants always

entering, regardless of the history, also constitute a perfect equilibrium.
P+ M n>

Moreover, if T0 + [ M p > 11C (1 + A p, then there are uncountably
0 01 0 111

many pure-strategy perfect equilibria; indeed, there are uncountably

many of the following form, parameterized by S.

Firm 0: If conditions (a), (b) and (c) hold at stage n, then

prey at n:
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(a) hk 0 for all k <n. k S

(b) h k 0 for all k < nk S

(c) n S

Otherwise, do not prey at n.

Firm n: If (a) , (b) and (c) hold, stay out.

Otherwise, enter.

Among the sets S that make these strategies a perfect equilibrium

are: S = {k~k ! D for any choice of i, and S = {klk is divisible

by i}, for any sufficiently large integer i. In view of this multi-

plicity, perfect equilibrium lacks any effective predictive power in

this infinite horizon model. Furthermore, predation would never be

observed in the pure-strategy equilibria of this model, so it also fails

to explain apparent observed behavior.

For these reasons, and because we also believe that the finite

horizon model has its own inherent interest, we concentrate on it in

the text.
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Appendix B

The following example illustrates our claim regarding the role

of lack of common knowledge in generating predation.

Specifically, we consider a situation with the established firm,

0, and two entrants, I and 2. There are three possible states of the

world, a, b and c, all of which are equally likely. In state a, the

game at each stage is such that entry results automatically in predation.

In states b and c, the stage game is

Firm i i 1,2

In out

Firm 0

Prey / Share)

-.2 0 1 firm O's payoff

0 1 .8 firm i's payoff.

We can think of state a as one where the established firm is a

predator.

The firms differ in their information, which can be described

by the following partitions:

Firm 0: [{a}.{b,c}]

Firm 1: [{a,b},{c}]

Firm 2: E{a}, {b), {c}]
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Note that firm 2 has perfect information, and that in state c it

is common knowledge between the two entrants and also between the

4 established firm and entrant 2 (who is the first to threaten entry)

that firm 0 is not a predator. Yet in equilibrium, firm 2 is

* credibly threatened by predation! To see this, one need only note that

the following constitute a set of sequential equilibrium strategies:

Firm 2: Stay out

Firm 1: Enter in event {c}, or if 2 entered and 0

failed to prey. Otherwise, stay out.

Firm 0: Prey if firm 2 enters. If firm 1 enters,

prey in event {a}, and do not prey in {b,c}.

What makes this work is that, when the actual state is b or c, firm

0 does not know whether 1 knows that it (0) is not a predator,

and everyone knows this. Note that 0 must take the same act in

events b and c, since it cannot distinguish them. Thus, it can

prey against firm 2 either in both states or in neither. If it

shares in both states, it gets an expected return of 0. That this

will result when c is the actual state is clear. When b obtains,

* failure to prey against 2 allows 1 to infer that it will not meet

- 4 predation, and so entry in the last market again follows. If firm 0

preys in both states, then it absorbs a cost of -.2 against firm 2.

When c is the state, it still experiences entry, so its total payoff
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is -.2. In state b, however, the act ot predation prevents I from

inferring whether state a or b obtains. Entry in state a yields

1 a payoff of 0, entry in b yields it 1, and since it views the

two as equally likely, it prefers to stay out and receive .8. Thus,

from O's point of view, predation yields equal chances of -.2 +~ I

and -.2 + 0, for an expected return of .3. Since this exceeds the

expected return of zero resulting from failure to prey, it preys. Given

that 0 will prey no matter what the state, firm 2 is then deterred

from entering. This is true even when (in state c) it and firm 0

both know that sharing is directly more profitable for 0, both know

that both know chis, both know that both know that both know this, ad

in fin iturn.

In Kreps, Milgrom, Roberts and Wilson [forthcoming], this type of

modeline is used to explain observed behavior in the finitely repeated

prisoner's dilemma game.
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Appendix C

In this Appendix we establish PropoRition I . The first part of

the argument involves a rolling induction on the following list of

propositions.

(PO) V (t,x) is continuous in (t,x) and nondecreasing in tn

(PI) V n(t,x) is nondecreasing in x

(P2) X 1  Xnnn l

(P3) For all u and all x 5 xn+1

1 + P Vn(t,x) -max a(u) + PVn (t,X n+ )

Since we have already established (P0), we turn to proving

(PI) - (P3).

Proof of (P) - (P3):

We proceed by a "rolling induction" on n. The initialization

for n = 0 is straightforward if we define x0  1.

Now suppose (P1) to (P3) hold for all n < m, and let us

check the case for n = m + 1.

(P1): Rearranging the recursion for VM+1  yields:

V 1 (tx) max (O,a(t) + Vm(t,x v x m+ )

+ -qm 4 1 (x))[(l + pV (t,x))

- max (o,a(t) + pV(t,x v x+))1]
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The max term, the (1 - qm+(x)) term, and the bracketed term are all

non-negative (by the inductive hypothesis (P3)) and non-decreasing in

x (by the inductive hypothesis (P1)). Thus, we have (PI) for n = m + 1.

(P2): By the just proven fact that (PI) holds for n - m + 1, we have

for all x that V (x,x) -5 Vm+l(x,l). Together with the observation
m+1 I+

following the lemma, this gives Vm (x,x) - v(x). So, using the lemma

and the fact that +(x ,X ) = g(X+l,V (xm+ ,xm+)), (which is

seen to be just the defining recursion once we note that q1() = f-'(O)

Sqm+ 1 (xm+))'

a(Xm+I) + PVm+ (xm+1 ,xm+I)

= c(xm+) + Pg (xm+1 ,Vm( X mx+m+))

- a(xm+1 ) + PVm(Xm+lxm+I)

If xM+I - 1, there is nothing to prove. If xm+1 < 1, then the

right-hand side above is at least zero (by definition of xm+1  and

continuity of V ). Hence, by the monotonicity and continuity of a
m

and Vii+1  and by the definition of xm+2, we have x,.2 -Xm+l

(As we argue in the main text, this inequality will turn out to be

strict if xm+1 > [0 V x].)

(P3): We now must show that (P3) holds for n - m + 1. The case where

0 > a(t) + PVm+1 (tXm+2) is seen immediately to follow from the non-

negativity of Vm1 (t,x). This in turn results from the availability

of the strategy of always sharing, which yields a non-negative payoff.
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Thus we concentrate on the case 0 < OL(t) + PVm~1 (t'xm 2). Using the

recursive expression for V M+ , we then have

1 + pVm~1 (t'x) - a~(t) - PV Clt, xm )

I+ Pfqc, 1 (x) max [O,a(t) + pVm(t,xm+1 )]

+ 11 qm+j(x)][l + PVm~t~x)]}

- c(t) - P{qm+ 1(x m 2 ) max [0,oL(t) + pVm(t,xm+1 )]

+ [1 - qm~l(xm+2)J[l + PVM(t'x +)J}

' 1m+l'xm+2) - 151-1)]{ +VM'tx - max [,t + pvM(txm,]

+ pE1 - qm~1 (x m2)]{PV (t x) - PV (t x m )1 + 1 - ai(t)

By the induction hypothesis MP), the first term in braces is non-

negative. Since xm+2 > x by hypothesis and since qM1is decreasing

in x (as is easily verified), we have -1 5 q m 1 (xm+2) - qm+1(x) 0.

Since V mis increasing in x by the induction hypothesis and since

X ' x +21the second term in braces is non-positive. Thus, replacing

P'qm~l(xm+2) - qm+1(x)] by -1 and P(l - qlm~l(xm 2) ) by its upper

bound, 1, we obtain, for x <_xm2

1 + PV 1 (t,x) - ctLt - PVM~ Ctx
M+1m 1 +

+ pV{ + QV(t~x) - max [0,adt) + pV m(t,x3 1 M]

+ {PV (t,x) - PV (t,x~.) + 1 - at(t)

-max [0,ct(t) + PVM(t'xm.i)] E a~t) + PVM(txm+j2)J



-55-

which we must show to be non-negative. For this, it is sufficient that

Vm(txm+2 ) < Vm(txm+1 )

But this inequality follows from (PI) and (P2), so we are done.

Thus, in particular, Xn+ 1 < xn . ':e now establish the remaining

claims made in the statement of the Proposition.

Since ix } is a bounded, nonincreasing sequence, it has an

limit x* - 0. If the firm ever preys (without having failed to do so

before), it acquires a reputation x > x*. For any such x and any

n,

P + 1 - (x V x )
Pn~ x  E + 1 -xn

p (x)) + =X

n + 1 - (x* v x )
> Pn (x*) ff £ + (I-x*) n

But since x n- x*, this last term converges to 1 as n - o. Thus,

pn( .) converges uniformly for x ? x* to i as n goes to infinity,

and so qn(x) = a-1(1 - Pn(x)) converges uaiformly to C (0) = ql.

Predation is certain in the limit, and only those willing to be preyed

upon will enter.

Then, since

ii

V n(t,x) = %(x) max (O,ct(t) + pV n_(t,x V x)n

+ (1- %(x))(1 + PVnil(t'x))

- - '4
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for p < 1 we must have (by standard results in discounted dynamic

programming)

lim V (t,x) = VM(t,x) for x x*,
n-)ow

where VOD(t,x) is the unique solution to

V o(t,x) = q(1)[max O,c(t) + PVOO(t,x)]

+[I - ql(1,j[l + PVoo(t,x]

=g(t,v(t,x))

But, by definition, this solution is the fixed point, v(t). Thus, in

the limit, predation gives the firm a reputation x x* and a continua-

tion value v(t). Then, the limiting condition guaranteeing that the

firm will prey is ±(t 0) + pv(t 0 ) > 0, i.e., t0 > x. Thus,

- x* = lim X = [0 v x1.n --

Since we assumed x < 1, we have thus demonstrated that predation

which is costly in the short run will still occur for n large enough.

Reexamination of the argument establishing (P.2) above now in

fact reveals that x < x unless x is 0 or I, since v(t)
n n-i n-I

is strictly greater than V (t,x) for all the relevant values of t.
n

Q.E.D.

II

A . . . . .
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Appendix D

This proof of Proposition 2 involves a rolling induction on n

based on the following two statements.

(P4) * n x n :xn n

(P5) *x < xn  V(x,x) - Vn(X,x) - 0.

Proof: Notice that (P5) for n k implies (P4) for n = k + 1.

To see this, note that if k were such that Xk+l > X k+a 0

using the induction hypothesis (P5), the monotonicity of a and Vk,

and the fact that Xk+I > 0, we have

a(x-k+ ) + P Vk(xk+lXk+l) < a(xk+l) + P Vk(xk+xk+l) 5 0

which contradicts the definition of Xk+1 and the continuity of O

and Vk'

To show (P5), note first that both (P4) and (P5) hold

trivially for n = 0 and that nonnegativity was shown in the proof of

Proposition 1. Suppose (P5) holds for n = k and (P4) holds for

n k + 1. Then, for x 5 'k+l,

Vk+l(xx) - qk+1 (x) * 0 + (I - qk+1 (x))(1 + p Vk(x,x-)

V (x)-q+(x) - qk+(x)( +Pv x)
vk+lx - + o 0+ (i - + ,

where the zero payoff in the first expression is because firm 0 will

not prey if x - Xk+1, and the second follows since x 5 Xk+l <5 k1"a

For the claimed inequality, it now suffices, given (P5) for n k,

. ..
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to show that q+(x) <5qk+(x). But xk~ 5 x k+Iand C 5 implies

Pk+1 (x) < pk+1 Wx, which in turn means that

qk+1 (x) E -Pk+ 1 (x)) - P k+lCx))

p - k+1(xW) qk+1 (x)

and we are done.

Q.E.D.

A V-
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Footnotes

1/ This latter argument seems to suggest the possibility of deterring
entry by holding current prices down. For a discussion of some
of the problems with this notion of limit pricing, see Milgrom
and Roberts [forthcoming].

2/ In Section 4 of their companion paper, Kreps and Wilson [forthcoming (a)]
present a model which predicts behavior that closely approximates
that in the Folgers-Maxwell House competition in several important
aspects.

3/ Most generally, a player's reputation in this context would be the
beliefs that other players hold about his unknown characteristics
and on the basis of which they predict his behavior. These
beliefs would depend on their initial beliefs and on their observa-
tions of the player's past behavior. In the model we develop here,
a simple sufficient statistic for these beliefs will be identified
as the firm's reputation.

4/ While their analysis and ours originated independently, we have
since benefitted greatly from having access to their ideas. They
have also developed significant extensions of the "one-sided"
reputation models studied here. Their paper is highly recommended
to the reader.

5/ Throughout, for increasing functions f: [0,1] R, we employ the

conventions that if x < f(O), then f (x) = 0 and if

x > f(), then f-1 (x) = 1.

6/ Note that the conditional expectations in (3) may not be
well-defined if H is a history of play that occurs with
probability zero under the specified strategies. In this case
there is some latitude possible in specifying pn(H) and qn(H)

although not any arbitrary specification will do. See Kreps and
Wilson [forthcoming (b)], and Milgrom and Roberts [forthcoming]
for further discussion of this point in related contexts.
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