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Abstract

Economists often argue that predatory practices are irrational,
since there exist cheaper or more certain means to gain or maintain a
monopoly. Our game-theoretic, equilibrium analysis suggests that if a
firm is threatened by several potential entrants, then predation may
be rational against early entrants, even if it is costly when viewed in
isolation, because it yields a reputation which deters other entrants.
Asymmetric information plays a crucial role in our analysis, since it
provides the rationale for entrants to base their expectations of the
firm's future behavior on its past actions. The analysis also suggests

methods to treat general reputational phenomena.
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PREDATION, REPUTATION, AND ENTRY DETERRENCE*
by

Paul Milgrom** and John Roberts*#**

1. Introduction

Allegations of price cutting or similar tactics aimed at driving
a rival out of business are frequently heard, both in and out of law
courts. Yet a large fraction of the economics profession would argue
that such predation is an irrational strategy for attempting to gain
or maintain a monopoly position and that it is, therefore, unlikely to
be adopted in practice. This position rests on arguments that predation
is costly to the predator and is unlikely to succeed in driving out a
rival who understands that the price cutting is temporary. Further,
it is held that even if the rival is eliminated, any attempt to raise
prices so as to reap the benefits of the monopoly position may attract

1/

new entrants. Thus, any monopoly gains would be short-lived.— (See,

e.g., McGee [1958], [1980] for full expositions of these arguments, as
well as some indication of the nature of the opposing views.)

In this paper we present-a model in which predation emerges as
a rational, profit-maximizing strategy. In this model, predation is

g practiced not because it is directly profitable to eliminate the

*This work was begun while Roberts was on the faculty at Northwestern
. and completed while Milgrom was visiting Stanford. We would like to
. thank Robert Wilson and David Kreps for making their unpublished results
- available to us and for several helpful conversations, David Besanko and
b - Garth Saloner for their excellent research assistance, the referees for
. their useful comments, and the Center for Advanced Study in Managerial
i Economics, the Office of Naval Research (N00014-79-C-0685), the Institute
for Mathematical Studies in the Social Sciences (NSF Grant SOC 77-06000-Al),
and the National Science Foundation (SOC 79-07542, SES 80-01932, and
SES 81-08226) for financial support.

. **J.L. Kellogg Graduate School of Management, Northwestern University.

***Graduate School of Business, Stanford University.
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particular rival in question, but rather because it may deter future
potential entrants. The mechanism by which this deterrent effect

comes about is that by practicing predation the firm establishes a
repuation as a predator. This reputation then leads potential entrants
to anticipate that the incumbent firm will behave similarly if they
should enter, and, thus, entry appears less attractive to them.

In this context, it is worth noting that predation will emerge
in our model even if, as asserted by those who doubt the rationality
and relevance of predatory strategies, predation against a particular
rival involves losses that cannot be directly recouped in the given
market, even were exit to be induced. Moreover, viability of this
predatory strategy does not depend on being able to induce exit.
Rather, all that is needed is that the predator usually be able to
drive the rival's return from entry below that available elsewhere.

Examples consistent with the sort of analysis we will develop
are not hard to find. Government studies in the U.S. and the U.K. in
the early part of the century identified many instances of predatory
pricing against new entrants in the ocean shipping industry through the
use of "fighting ships'", and the U.S. Department of Justice {1977] has
documented more recent episodes in this industry which it views as pre-
i datory (see also Yamey [1972]). Although it is difficult to determine
if any of this price cutting was done with a view to deterring future
e entrants, one might expect that firms considering entering an industry

with a century-long history of aggressive responses to entry would at

) least entertain the idea that they might meet a similar response. More




directly, Brock's discussion [1975] of IBM's pricing and product strate-
gies against the "plug compatible" manufacturers (who were marketing

peripheral equipment for use with IBM central processing units) suggests

that IBM was concerned that failure to respond aggressively would
encourage further entry. Finally, the fierce price wars that erupted
as Proctor and Gamble introduced its Folger's brand of coffee into
local markets in the Eastern U.S. in competition with Maxwell House
may well have been central in P & G's decisions not to continue expansion
of its distribution area and, in particular, not to enter the New York
City marketgél

0f course, it has long been recognized in the literature on
industrial organization that the response that entrants expect from

incumbent firms would be a major factor in determining the attractive-

ness of entry, and much of the traditional literature on entry deter-
rence effectively hinges on the threat of predation (see, e.g., Dixit [1979]
or Spence [1979]). Most models involving such threats are, however,

subject to a telling, fundamental criticism. One should expect that

the threat of predation will be effective in preventing entry only if
entrants find the threat credible. But in these models, which involve
a single entrant, if the entrant were to call the incumbent's bluff by
entering despite the threat, the incumbent would not be willing to prey,
since sharing the market would typically be more the profitable course.
In contrast, the strategy of predation in our model does not involve

| threats which would not rationally be carried out, since the immediate

b i losses incurred in predation are offset by the gains from a reduced

[ 1 threat of further entry that building a predatory reputation yields.
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Thus, in our framework, a multiplicity of potential entrants
plays a key role in rationalizing a predatory strategy. If, in fact,
the established firm were to face a countable infinity of threats of
entry, all of which may be potentially carried out, then it is trivial
to identify an equilibrium which involves a credible threat of predation,
as we demonstrate in Appendix A. (We also show there that there are
numerous other equilibria in this framework.) If, however, there are
only a finite number of potential entrants, the issue is more compli-
cated. This point has been made by Selten [1978].

Selten considers a model which may be interpreted in terms of a
firm which operates in N identical markets (a chain store). Each
market has one potential entrant. Sequentially, the entrants must
individually decide whether to enter the corresponding markets. If
entry does not take place in market n (at stage n), the incumbent
enjoys its monopoly position in that market without further threat.

This contributes HM to its overall payoff. 1If entry occurs at stage
n, the incumbent must decide whether to prey on the entrant (yielding

HP) or to share the market (yielding HC). We assume T > HC > HP:
predation is costly. In any event, the next éntrant must then make its
decision, knowing the history of play up through the preceding stage. We
assume that the payoff to any entrant from meeting predation is strictly
less than that from staying out, which, in turn, is less than the payoff
from entry if no predation occurs.

Selten suggests, and it does seem intuitively appealing, that in

early rounds of this game the incumbent would adopt the costly predatory




action in order to persuade later entrants that they should best stay

out, and that only near the end of the game would it be willing to share
a market. Yet Selten also points out that this strategy cannot be
consistent with the natural solution concept (that of perfect equilibrium)
to employ in such situations.

The argument is the following. Consider the last entrant. It
knows that if it enters and meets predation, it would have been better é
off to stay out. But it also knows that, if faced by actual entry, the f
established firm is strictly better off if it behaves nonaggressively.
Thus, assuming that both firms will always act in their own best
interests, entry will occur in the last market to be threatened and will
meet a nonaggressive response, Moreover, this will be the result, no
matter what has been the history of play to this point.

Now consider the second-last market to be threatened. If entry

were to occur there and if the chain store could deter entry in the

last market by adopting predatory practices, it might well adopt such
measures. However, as just shown, the outcome in the last market is
completely determined, independent of the outcome in the second-last
market. Thus, if entry occurs, the chain store will share the second-

last market peacefully, and, thus, too, entry will occur in this market.

1 The induction is inexorable and the conclusion clear: in
equilibrium, predation will never be practiced. Moreover, even if (for
whatever reason) the chain store were observed to have preyed repeatedly

against every previous entrant, the logic still will lead the next




entrant to anticipate not that past behavior will be repeated but rather
that its entry will meet a nonaggressive response. Repeated observa-
tions of behavior which, a priori, the entrant expected never to see
cannot and do not shake its absolute confidence in its predictions of
future behavior,

The key factor driving this conclusion is that it is common
knowledge (see Aumann [1976], Milgrom [1981]) that accommodation is the
best response to entry and that entry is the best response to accommo-
dation. This common knowledge, in turn, arises from the situation
being represented as a game of complete and perfect information in which
all the firms are fully informed about the structure of the tree
describing the game being played, about the payoffs accruing to all
players, and about the others' past acts. As soon as the complete
information assumption on the game is relaxed, so that the common
knowledge condition no longer obtains, then the logic of the backward
induction breaks down. (This point is illustrated in Appendix B.) The
possibility of actions taken in the past being a useful guide to future
behavior in similar situations now opens up, and with this, reputationsgj
can come into play. Further, once the lack of complete information
gives rise to reputation possibilities, the players' equilibrium behavior
will adjust markedly. The resultant equilibrium is then radically
different than with complete information, for it has exactly the

qualitative properties of Selten's intuitive solution. Practicing

predation now gives one a reputation as a predator which is valuable in




oy,

deterring entry. Thus, if entry occurs at an early stage, it will meet
a predatory response, because any other response encourages

further entry. Recognizing this, potential entrants at these early
stages will enter only if the market is so lucrative that they are
willing to face certain predation. Omly as the horizon draws near and
the number of markets which may still be entered declines will the firm
be willing to share a market,.

In the following sections we present our analysis of a version of
Selten's model of multiple markets with sequential entry possibilities.
In contrast to Selten, however, we allow that there is some doubt in
the minds of the potential entrants concerning the established firm's

options, motivations and behavior. We compute an equilibrium in this

context which involves predation even by firms which find such a

strategy to be costly in the short run, and we show that this equilibrium
is the unique one involving sequential rationality by all players. We
also investigate some of the major comparative statics properties of this
model. The chief of these relate the value of a reputation -- and the
costs one will be willing to incur to obtain it -- positively to the
frequency with which the reputation may be used, as measured by the
length of the horizon and the inter-period discount factor. The final
section presents a summary and some suggestions regarding both the

implications of this analysis for policy and the possibilities for

developing other formal models involving reputations.
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2, The Model

As suggested in the previous section, incomplete, asymmetrically
distributed information plays a central role in our analysis of preda-
tion and, in particular, in undoing the logic leading to Selten's Chain
Store Paradox. One obvious way to introduce the requisite informational
asymmetry is to allow that the entrants do not know exactly the payoffs
accruing to the established firm from an aggressive response to entry
and that there is some positive probability that such a response is
directly more profitable in any given stage than a response of peaceful
coexistence. Kreps and Wilson [forthcoming (a)] employ this approach, and
we had also explored this avenue in earlier versions of this paper.é/

Here we adopt a different approach in which we assume that the
established firm definitely finds predation to be directly less profit-
able than sharing a given market, However, we also allow that there is
some arbitrarily small, but nonvanishing, element of doubt in the minds
of the entrants about whether their model of the established firm's
options, motivation, and behavior is correct. In particular, our
modeling allows that the entrants entertain some possibility that one
or another simple behavioral rule guides the actions of the established
firm. The nature of these rules is such that past behavior is repeated
when similar circumstances arise. While yielding an equilibrium with
exactly the same qualitative properties as that identified by Kreps

and Wilson and by us in our earlier modeling, the present approach

permits somewhat simpler arguments than we had needed before, it yields

Pro




a strong uniqueness result, and it also appears to have some measure
of applicability to a broad range of other problems. We will return
to these issues of motivation, interpretation and justification after
presenting the formal model.

We consider a game with N + 1 players. Player 0 1is the
established firm, while player n, n = N,...,l, is a potential entrant
in market n, where N 1is the first market threatened and 1 is the
last. Associated with each player i 1is a random variable Ti which
is uniformly distributed on [0,1], independent of the other Tj. We
refer to a realization t, of T, as the "type'" of player i,
i=20,1,...,N. As well, we have two strictly increasing, continuous

functions, o, and B, where

a: [0,1] + (~o,0)
and

g: [0,1] » (=0,1)

The function o will give the payoffs to firm O from preying at a
particular stage as a function of its type, while R gives the payoff
to an entrant which decides to stay out, again as a function of its
type.

The N + 1 firms will play one of three possible games, each
of which involves N repetitions of a particular stage game. (Only
the established firm will know which of these actually obtains.) The

first possibility is that the game is one where the n-th stage is
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Firm n
In Ovur
I; Firm O
: Frey SHARE
@] 1 B(tn)
The second possibility is that the game has as its n-th stage
Finm n
™ OuT
: Firn O
X
i O((to) 1
0 B(tn)

The third possibility is that the n-th stage is
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Fiam n

In Our !

K Firm O

(sz)/
(@)

1
1 B (tw)

The first pattern is initially assessed a probability of
1/(1 + € + 8), the second is given probability €/(1 + € + §) > 0, and
the third is given probability 6/(1 + € + §) 20. We think of € and

§ as being small. Note that the realized value of TO matters only

when it is the first of these games that is being played. It is then
convenient when referring to the situation where the second game is

being played to abuse the notation by saying that Tg = (w>1) in
this circumstance. Correspondingly, we will say that Ty = ~W when

it is the third game which is being played.

In each case, we have normalized the stage game payoffs so that

the profit accruing to the established firm in any market in which it
does not experience entry is 1 while its profit when peacefully

sharing the market is 0, and so that the profit to the entrant is 0

b a A = b

if it meets predation and 1 if its entry elicits a nonaggressive
response. These normalizations in no way affect the results: they i
solely serve to ease computations. In particular, they do not mean

o that the entrant "breaks even" when preyed upon, nor do they imply that,

- ‘_"..‘_..A." g i o g
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for example, the profits of the entrant if it is not preyed upon are
equal to the profits of the established firm when there is no entry.
The specifications of the ranges of the o and B functions do

have meaning in this context, however. That o 1s bounded above by

0, which is the profit payoff from preying, means that, other things

{ , being equal, any profit maximizing established firm would prefer to

share a single market rather than te prey. (We are thus building McGee's
arguments into our formal model.) Similarly, the upper bound of 1

on R means that the entrants’ outside opportunities are never better
than sharing the market if entry will meet a passive response. The
condition on ¢« 1is used in our uniqueness argument, but may not be

F necessary; the condition on f serves only to simplify the arguments

and could definitely be relaxed. Allowing that the realized values of

B may be negative recognizes the possibility that entry might occur

even if predation were certain. This could, for example, capture the

idea that predation would fail against a particular entrant.

Our model is distinguished from Selten's in two major respects,
both of which involve aspects of incomplete information. First, we
assume that each player has a continuum of possible types, with different
payoffs for each type. This assumption serves primarily to generate a pure
strategy equilibrium. Taking o and B to be constant functions would
eliminate this difference between our model and Selten's but would still
generate a predatory equilibrium strategy for the established firm. Hence,

! this first distinction cannot account for the qualitatively different equili-

brium behavior that we will find. The second difference is the positive
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€ and § assumed in our model; in Selten's model € = § = 0. We have
introduced positive values of € and § to capture the idea that
entrants entertain the possibility that a predatory response in one
period might be part of a general aggressive pattermn, and a cooperative
response might be part of a general cooperative pattern. It is impor-
tant to recognize that, if € = § = 0, there is no compelling reason
for an entrant to suspect that any observed behavioral pattern might
continue: past behavior, in that case, is utterly irrelevant in fore-

casting future behavior. It is precisely that irrelevance that leads

to and is the heart of Selten's paradox. We shall see later that even
as € and § approach zero, the potential entrants' strategies do not
approach those specified by Selten: As €,0 approach zero, the proba-
bility that predation deters entry can be bounded away from zero.
However, the probability that predation actually occurs does converge

to zero,

We assume that

a(l) > ‘P[l - B-l(o)l zq
1-00-8'O)

where p € (0,1) is the discount factor used by firm 0. This condi-
tion turns out to be necessary for any reputation building to occur.
While the basis for this claim must remain somewhat opaque for now, it
will be shown that the right-hand side of the inequality represents

the critical value of a(to) such that a firm of type t, 1is just

0
indifferent about preying when the horizon is infinite and a single
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act of predation convinces the entrants that predation is certain in
every future period, We also assume that B(l) > 0. Otherwise, there
is no possibility of deterring entry, since being preyed upon is always
better than the alternative opportunity involved in not entering.

It is worth noting in this context that the assumption that
the Ti are uniform random variables on [0,1] 1in fact imposes no
restrictions on the model. This is because a—l and B-l are the
cumulative distributions of the random payoffs.é/ Further, although
our assumptions that o and B are increasing functions means that
there are no mass points in these distributions, this assumption on «

is for convenience only. The strict monotonicity of B does assure

some useful continuity in the optimal responses, but this too can be

relaxed at the cost of complicating the equilibrium (see Kreps and i
Wilson [forthcoming (a)], Remark A).

Initially, the structure of the game is common knowledge. This
includes the values of 8 and €, the a and B functions, and the
distributions of the random variables Ti which determine the types.
As well, it is common knowledge that only player i knows the value
of Ti and that only player 0 knows which of the three repeated
stage games is being played. At each point in the game, each firm
knows the history of the moves taken to that point by it and the other
firms, but firm O0's payoffs in previous rounds are not observable by
the other firms. Finally, it is also common knowledge that firm O0's
payoff from the whole game is the present value of its profits at each

stage, calculated with the discount factor op.

This framewcrk corresponds to Harsanyi's treatment of games of incom-

plete information played by Bayesian players [1967-68]. The distributiomns




=15~

a'l and 3"1

reflect the various firms' beliefs about each other's
payoffs, and the € and & reflect the doubts that the entrants have
about whether their modeling of the established firm via the first

repeated game is correct. Since the players are not sure about either

the form of the tree describing the game they are playing (i.e.,

whether T, is +w, -w or in (0,1]) or the payoffs accruing to

various strategies (since the realized values of a and 8 are not

$ public information), the situation is a game of incomplete information.

Harsanyi's method for solving such games involves introducing a new

l game with complete but imperfect information, i.e., one in which the
players all know the full game tree and all the payoffs but are not

fully informed about the previous moves of the other players. In this game

there is an additional player, Nature, which moves first. Nature plays

a mixed strategy, selecting the actual types of the various players

according to the probability distribution over types that described the

players' prior beliefs about one another. This move by Nature in our
framework thus determines which of the three possible games is being
played and the actual, realized values of the payoffs to the N + 1
firms. However, only firm 0 1is informed about the outcome of Nature's
choice of the game tree and about the value of Toe and only firm n

- is informed about the realized value of Tn. Thus, the game, while one
of complete information, is also one with imperfect information, since

! a player's information sets typically include several different decision

nodes, with the node that actually obtains having been determined by

[

——
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an aspect of Nature's move about which the firm is not informed.
Harsanyi's approach is then to identify an equilibrium of this game
with complete, imperfect information as the equilibrium of the original
game of incomplete information.

In any game, a pure strategy for a player identifies an action
to take in each information set. Here, a player’s information sets
are differentiated in part by its type., For example, given any stage
n and any history of play by the firms up to that point, firm 0
still has a continuum of different information sets, one for each
possible determination of its type through Nature's move. Thus, if
only for this formal reason, a strategy for any firm must be a function
of its type and thus must specify what it would do if its type were,
say, some value E; even when its true (realized) type 1s something
different.

This fact often seems to cause difficulties for those who have

not previously dealt formally with games of incomplete information.

One way to interpret the idea that a strategy must specify behavior for
types that don't actually exist is to regard a strategy for a particular
player as a conjecture in the minds of the others about its behavior.
Then the dependence of the strategy on the player's type simply reflects
the other players' making allowances in forming these conjectures that

the player's behavior depends on its type, which is unknown to them,

In our model, these conjectures by the entrants about firm 1's behavior

! are first about whether or not they have correctly modeled the established

(]
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firm as choosing between predation and sharing, and secondly, 1if it

does make such choices rather than reacting mechanistically, about the

S

conditions under which it will prey. With this view, an equilibrium
involves each player reacting optimally to its conjectures about the
other's behavior, and these conjectures being consistent with the
choices actually made.

Our solution of this game employs the concept of sequential
equilibrium introduced by Kreps and Wilson [forthcoming (b)]. This equilibrium
notion requires that, at any decision node, the player take an action
that maximizes its expected payoff, given its current beliefs and
given that the others will henceforth follow the prescribed equilibrium
strategies. These current beliefs (about, e.g., which node in an
information set actually obtains) must be consistent with the player's
initial beliefs, with any information that it mzy have available (dircetly
or by inference) and, whenever possible, with the hypothesis that play
has evolved to this point under the equilibrium strategies.

To define a sequential equilibrium formally, let Hn denote the
history of the moves taken by the various firms from stage N to, but
not including, stage n. Let H: denote the resulting history in
stage n-l1 when predation occurred in stage n, let H; indicate that
sharing occurred, and let Hg indicate that there was no entry. Let
»; denote the possible histories of play up to stage n. Then a

strategy for firm O consists of N maps

sgz’ﬁx{{-w} v 00,10 v {w} + {Prev,Share}

2t et e . e - e i, P ot
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n=N,...,1, where sg(-,w) Z Prey and 33(0,-w) = Share. A
strategy for entrant n is a map r“:”nx[o,ll + {Enter, Stay Out}.
Then a sequential equilibrium is a strategy for each firm such that:
(1) for each n=1,...,N, each H E’Vn and each t e fo0,1]3,
Enter 1f {1 - p (W)] > B(t )
n n n
T (H,tn) =

Stay Out otheryiwis

(2) for each n=1,,.,,5, % He 741 and each t, ¢ {0,113,

-3 + o -
Prey if a(ro) + pzn_l(to,ﬂ ) > an_l(to,H )
n
so(H,to) =

Share otherwise

where thc value function V ic defincd recurcively, given GO =0, by

U (g B) = q (1) max [oy_ _ (£q,H), ale) + oV _ (e 6]

+ (1 - qn(H))fl + oﬁn_l(t,no)l ;

and
(3) for all n and all neﬂn
n
pn(H) - Prob{so(H,To) = prey |H}
and

qn(ﬂ) = Prob{rn(H,T“) = enter |H} .
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In this definition, the P, and Q> which are interpreted as
perceived probabilities of predation and of entry, respectively, repre-

sent the players' conjectures, and condition (3) is the rational expecta-
6/

Biad Mk A iy St i iin

tions consistency requirement.
Sequential equilibria are always Nash. Moreover, Kreps and Wilson

L ; have shown [forthcoming (b)] that "for 'almost all' pames [with finite strateev

spaces], the perfect and sequential equilibria 'nearly' coincide."

1 Although the continuum of choices open here to Nature renders this

result formally inapplicable to our model, the sequential equilibrium

still clearly captures the basic idea behind perfectness. An advantage

of the Kreps-Wilson equilibrium formulation over the perfectness

approach is that it greatly eases the problem of computing and verifying

that particular strategies constitute an equilibrium, since it allows

us to use the methods of dynamic programming to analyze the players'

decisions. To apply the methods of dynamic programming, it is necessary
to define one or more state variables that summarize some of what the
players know about the current position of the game. In the original
Kreps-Wilson formulation, the beliefs of each player function as his
personal state variable. In our model, the firm's reputation, which
will be defined by a statistic that summarizes the history of play,

will serve as a state variable.
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3. Existence, Uniqueness and Properties of the Equilibrium

To begin analysis of this game, note that at stage 1 (the last
market), firm O must never prey as long as ty # w, since to do so
lowers its payoff with no possible compensation. Thus, if it is known
that to # w, entry must occur at stage 1. But if firm 0 ever fails to
prey, the entrants can all immediately infer that to # w, (since
to = w automatically yields predation). It is then common knowledge
that firm 0 will not prey at stage 1, and Selten's argument applies.
Thus, once it has ever failed to prey, firm O cannot gain by preying
at stage 2, or, for that matter, at any other stage, since to do so
simply squanders profits (o 1is negative) and cannot influence future
entry decisions. Thus, if firm O ever fails to prey, it is clear
that it will never prey again in equilibrium. It is also then clear
that entry will occur in every succeeding market, since B(tn) is
less than the payoff from unopposed entry for all tn. Thus, in any
sequential equilibrium, failure td prey against a particular entrant

implies that the present value of the established firm's future payoffs

from this and all succeeding stages is zero.

Now suppose that firm O has never failed to prey, but that
entry has just occurred in market n. As just seen, failure to prey
yields a value of zero to the established firm for the rest of the
game. If, however, it adopts an alternative strategy which involves
preying at stage n, then, given the strategies of the remaining
entrants, it faces some list of possible patterns of future entries,
predatory episodes, and unentered markets. In expected present value

terms, let E, P, and M represent, respectively, the count of future

X
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entries, current and future predatory acts, and unshared markets

resulting from the alternative strategy. Then the expected present

value of future payoffs from following this strategy of predation is
equal to Pa(to) + M, given our normalizations. Since P 2= 1, this
expression is increasing in to, the value of Ty Thus, if it pays
firm 0 to prey at stage n when Tp=t (i.e., Poft) + M > 0), 1t
also pays when TO =t' >t., In fact, then, the maximized value of
future payoffs over all possible strategies is also increasing in to,
since it is the value of the maximum of increasing functions (including
the constant function 0).

These points can be effectively illustrated graphically. The

axes in Figure 1 are M and P, as defined above. Given the succeeding

entrants' strategies, a particular choice of strategy at stage n by
firm 0 results in a particular point in (P,M) - space. The convex
hull of the resulting points is graphed. Note that P + M < n, and

that the origin is always available. Firm O's preferences over this

space are given by the linear indifference curves corresponding to

Pa(to) + M= C. Payoffs are increasing as we increase M or decrease
P, and the slope of any particular type's indifference curves is

-u(to) > 0. Thus, if ts > tb, then the ts indifference curves are

flatter than those for té. It then is seen that the optimal P is

at least weakly increasing in tys and that 1f a given strategy yields

a positive payoff for a particular value of to, it yields a positive

payoff for all higher values of to
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Thus, in searching for an equilibrium, we can limit our attention
to pure strategies for firm O which call for predation at a particular
stage with a given history of play if and only if the value of TO
exceeds some critical value, where this value is 1 if the history to
that point involves any failure to prey. (Clearly, for To = |w|, there
is nothing to specify. The reason we can restrict ourselves to pure
strategies is that, with Pa(to) + M increasing in to, at most one
single type would ever be indifferent between the two possible actions
at any stage.)

Thus, in equilibrium, if firm O has preyed whenever entry has
occurred, the entrants can infer that either Ty =W or the value
of Ty exceeds the maximum of the critical values governing its past
predatory decisions. Let x be this maximum, and call x the
reputation of firm O with the given history of play. We make the
special conventions that if the established firm has ever failed to
prey, its reputation is x = -~, and that if no entry has previously
occurred, x = -1.

We w1l now characterize an equilibrium for this game in which
at stage n:

(1) firm n's decision depends only on the value of T and

on firm O's current reputation x;

(2) firm 0's decision (for the relevant case where |T0| 7 W)

depends similarly only on the value of Ty and on x;

(3) firm O0's new reputation on entering stage n - 1 depends
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only on his reputation entering stage n and the actions
taken there.

This equilibrium involves N numbers, Xy < X1 s.,.< Xy with
the property that, so long as it has never previously failed to prey,
firm 0 with |TO| # W will prey in response to entry in market n
if and only if t_. > X, Further, we show that X, = 1, that X, < x

0
=0 or 1, that 1lim X, = max [O,a—l(g)], and that, if

n-1

unless x
n-1

a(0) > o, there exists a finite k such that, for all n > k, X, = 0.
Thus, in this equilibrium, the set of firms which will prey at stage

n includes all those which will prey at any later stage when there
are fewer markets to protect, and, for large N, any firm for which
u(TO) > o will prey in the early rounds, regardless of the immediate
cost. We also show how to compute the X, values, demonstrate that
this is the unique sequential equilibrium, and obtain some comparative
statics results.

Since the entrants are to be looking only at their own types and
firm O0's reputation, and since the revision of the reputation is to
depend only on its current value and current actions, the expected
present value to firm 0, when entering stage n, of playing optimally
in this and all later stages depends only on the vaiue t of 1 and

0

on its current reputation x. Let Vh(t,x) denote this value, and

recall that, as argued above, Vn {8 increasing in t as the supremum
of increasing functions. We will describe recursively a set of strategies

based on these Vn functions, then verify that they do in fact consti-

tute the unique sequential equilibrium. ;
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Step 0: Initialization

Let Vo(t,x) =0 forall t and x. This is just an initiali-
zation based on a "dummy" stage 0. We also initialize by setting
firm O's rcputation entering stage N at -l.

n_at St n
Suppose firm O0's reputation entering stage n 1is x * -,

Then its reputation on entering stage n - 1 is

Qutcome in Market n Reputation Entering Market n -1
No entry X
Sharing -
Predation x Vv X

where "V" 1is the max operator and
x = inf {x € [0,1]|t > x implies of(t) + oV _ (t,e) > 0}

If x = -» at stage n, then firm O0's reputation at stage
n -1 is also -« independent of the actions taken at stage n.

Step 2: Firm O0's Actions at Stage n

Wwith T,=t € [0,1] and current reputation x * -« we specify

that firm O will prey at stage n if and only if
a(t) + pv _,(e,x v x) >0 ,

i,e., if and only if the current return plus the value of continuing

optimally exceeds zero, which, as argued above, is the value of the
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0). If

payoffs resulting from failure to prey (i.e., Vn(t,—W)

x = ~@, we specify that the firm will share the market if entry occurs.

This is clearly an optimal strategy for firm O.

Remark: Suppose now that firm 0 does follow this strategy.
What can subsequent entrants correctly infer from seeing firm 0 prey
at stage n? If the firm entered stage n with reputation x, then
the subsequent entrants need consider only firm types t that exceed
X. There are two possible cases.

First, if x > X s then x = x Vv X - In this case,
~ > -
a(t) + eV _,(e,x) 2 a(x) + oV _;(x,x) >0

so long as t 2 x, since G and Vn_1 are increasing in t. The
second inequality here follows from the definition of X and from
x > X . Thus, if the firm has already demonstrated that it is of type
t > X it will surely prey at stage n.

Second, if x < x, < 1, then X, =X VX Then the fact that

o and Vh_ are increasing in t implies that

1

Abv

alx ) + oV _,(x ,x ) 2 ae) + oV, _,(t,x )

as x (to be verified

n

Al v

t. Now, if x > 0, the continuity of V

n n-1
shortly) implies that the left-hand side of the inequality is zero.
Then the firm will in fact optimally prey if t > X will optimally
share if t < X and is otherwise indifferent. If X, = 0, then the
left-hand side is non-negative, t {is automatically greater than X

and predation is an optimal response, while if x = 1, then a similar

argument shows the optimality of sharing. Thus, we have verified that
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future entrants could correctly forecast that firm 0 will prey in
market n with reputation x # -» if and only if TO >x Vv X .
This justifies the evolution of reputations that we specified.

Step 3: Firm n's Actions at Stage n

In view of these computationg, if x > X s then entrant n will
in equilibrium correctly regard a predatory response as certain. If
x = -, entry will be correctly anticipated to meet a nonaggressive

response, In general, we have

pn(x) = the probability in equilibrium that firm O
will prey at stage n with reputation x,

given that TO 2 x

= the probability assessed by entrant n that,
given the reputation x, firm O will prey at

stage n

'rs+[1-(xvxn)]
e+ (I - % if x20

={ 0 if X = ~
fe + (1 - xn)]
\ [l + ¢+ 8] 1f x=-1 .

The entrant's best response at n 1is then to enter if and only
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pn(x).o + (1 - pn(x))'l > B(tn) .
i.e., if and only if
€, < 871(1 - p (0) Fq () .

Then q (x) is precisely the probability that n enters at stage n
when firm O0's reputation is x.

These strategies are clearly optimal responses to firm O's
strategy.

Step 4: Transition from Stage n to Stage n + 1

With the initialization for VO’ the preceding steps allow us

to calculate V1 as Vl(t,x) =1 - ql(x). To complete the recursive
cycle, we now have to specify how to move from stage n to n + 1,

For x # =%,
Vo (6% = qn+1(x) max [0,a(t) + pVh(t,x v xn)]

+ (1 - q )+ v (£,0) .

The first term on the right-hand side is the probability of entry times
the maximum of the expected present value of the payoffs either from
sharing the market and getting a reputation of -® (where we have used
the previously established fact that Vn(t,—w) = 0) or from preying
now and then continuing optimally with the new reputation x Vv X,

The second is the probability of no entry times the value of having

this market as a monopoly and then continuing optimally with one's

reputation unaffected.
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Note that it is now clear that Vn is continuous if Vn_1
is continuous. Thus, since VO = 0 1is continuous, all the Vn are.

It is also clear that Vn is the optimal value function and,
thus, that the strategies do constitute a sequential equilibrium.

Each firm is maximizing, given its beliefs and its conjectures about
the other firms' strategies, the beliefs are consistent, and the
conjectures are correct.

Before we turn to characterizing this equilibrium, some further
discussion of the determination of the X values may be useful. In
Figure 2 we show [0,1] x [0,1] with the diagonal. Think of the
horizontal axis as being reputations and the vertical as the type of
the established firm. Then we ask: if preying at stage n were to
yield a reputation x, which types of firms would be willing to prey?
The set of such firms is {t € [0,1]1]a(t) + an_l(t,x) > 0}.

Thus, the lowest type willing to prey is the inf over this set. Denote
this inf as hn(x), and note that hn is continuous and monotone
decreasing. Then x is the unique fixed point of hn(x), i.e., the
point where the graph of hn crosses the diagonal. To see this,

note that if x = X then the set of firms willing to prey if it
yields reputation x would not in fact justify the earning of that

reputation.

We now seek to characterize the equilibrium. In so doing, the

following function will be useful. Define g:R? + R by
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g(t,v) = (1 - ql(l))(t + pv) + ql(l) max (0,a(t) + pv) R

where ql(l) is the probability of entry against the "strongest" type
of established firm in the last period or, equivalently, the probability

of entry in any round against certain predation, i.e., ql(l) = 8_1(0).

Observe that Vm+1(t,1) = g(t,Vm(t,l)) and for all t, g 1is increasing

g in v and
5 Ig(tyvl) = g(tnvz)l < plvl - vzl ’
s so that g(t,*) is a contraction map. Let v(t) be the unique fixed

point for each t. Then one can verify that

r 1 - ql(l)
3 if t £x
1 - p(l - ql(t))
v(t) = ‘
1 - q((1 - o(t))
T— if t 2x
\
where
of ot - q(D) -1
Xx=o0 =a (@) .

This fixed point will provide a bound on Vn(t,°).
Note, too, that the relationship a(l) > a which was assumed
earlier is simply equivalent to x < 1. (At this point, one can

straightforwardly verify the claims and interpretations made in connec-

tion with this assumption.) Further, since g 1is an increasing

contraction map, we have the following result.
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Lemma: If v < v(t), then v < g(t,v) < v(t).

Proof: Let v < v(t). Then
g(t,v) < g(t,v(t)) = v(r)
Also, 4

v(t) - glt,v) = g(t,v(v)) - g(t,v)

A

o{v(t) - v)
<v(t) -v ,

so v < g(t,v). Q.%=.D.

Note that Vo(t,l) = 0 € v(t) (with strict inequality at least
for x < t) and that Vm+1(t,1) = g(t,vm(t,l)). Thus, in particular,
we have Vm(t,l) < v(t) for all m.

Proposition l: For any n, x

< i if
a1 < X s with strict inequality i

x #0 or 1. Further x* = lim x_ = max [0,x].
n n >~

The proof of this result is given in Appendix C.

Proposition 1 establishes the key point that any firm (defined

‘.'V’T“"‘ Ty T?’""w‘_‘" -

in terms of the costs it incurs in preying) which is willing to prey
;; when n markets are still threatened by actual or potential entry
will also prey when there are a greater number threatened. It further
i gives the asymptotic properties of the xn. If x <0, so that

x* = 0, then the convergence to x* 1is necessarily in finite time.

! Thus, for all n sufficiently large, the established firm will prey
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for sure unless TO = ~-w, If x > 0, then the cnnvcrgence is only
asymptotic: X > x for all n. Of course, for large enough values
of n, the differences between X and x, between Vn(t,x) and ;(t),

and between pn(x) and unity are arbitrarily small.

Note that none of these asymptotic properties depend on the
particular values of € >0 and 6 2 0.

In terms of Figure 2, the behavior of the hn functions as n
varies gives the evolution of the X, values. If 0a(l) is sufficiently
negative, no firm would find predation attractive if n is small, and
the corresponding hn functions are identically equal to 1. Even-
tually, however, acquiring a reputation of 1 (or close to it) by a
single act of predation will become attractive for firms with high
enough a(To) values, since such a reputation reduces the threat of
entry to (essentially) 6_1(0). Thus, at least near x = 1, hn(x)
lies below x, and X becomes strictly less than 1. The correspondence
between higher values of n and lower values of X then is a matter
of hn (at least near the diagonal) being above hn+l' Finally, all
the h converge in n to a constant function at x* = [0V x],
indicating that any type above x* would be willing to prey to get
such a reputation.

The equilibrium evolution of the game thus becomes clear. For
large n, if x < 0, then once firm 0 has preyed and thereby revealed

that it is not irrevocably committeed to sharing (To # -w), entrants

correctly regard predation as certain. Thus, the only entrants which
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will attempt entry for large n after one predatory episode are those
whose outside alternatives are so poor, relative to the profits avail-
able by entr:, that they are willing to face certain predation. The
probability of entry is then 6—1(0), which may be zero. If x > O,

then a second act of predation is not absolutely certain (since X+l >

x, > x for all n), but it is close to being so when n 1is large.
Consequently, the probability of entry is close to 3_1(0). In either
case, the established firm sees predation at an early stage as leading i
to a long string of monopoly returns, possibly interrupted by occasional
predatory episodes. If its payoff while preying exceeds a = a(x) =
[-o(1 - 8'1(0))]/[1 - o1 - 8-1(0))1, it prefers this to the continua-
tion value of zero which results from failure to prey. If t < x,
sharing is preferred.
Before the first attempt at entry, if & > 0 it is still possible
that the established firm is of the type that never preys. In this

case, the probability of predation is strictly less than one, even when

x < 0, and so one would expect (with probability strictly greater than

B_I(O)) to see a test of firm O0's fortitude by an entrant with a

relatively low value of T and thus low opportunity costs in entering.

If this entry meets predation, then the firm's reputation immediately
jumps to x 2 x*, and the game proceeds as described above.
As the number of markets remaining threatened decreases over

time and the horizon approaches, X increases. This begins immediately

if x > 0, and at some finite date if x < 0. Consequently, the condi-
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tional probability that To > X given the current reputation x,
and thus the probability of predation will start to decrease. If at

some stage this probability of predation is sufficiently low relative

in

to B(tn), entry will occur. If ¢t LI entry will meet a nonaggressive

response . The possibility that T =W is then eliminated, it thus
becomes certain that predation will not occur in market 1, Selten's
logic takes over, and unopposed entry occurs in all remaining markets.
If t > xn, predation occurs. The established firm's reputation now
rises to L the probability of predation at stage n - 1 now is
pn—l(xn) > pn_l(x), the attractiveness of further entry is reduced
from what it would have been if the value of TO were only known to
exceed x rather than X s and the probability of entry in future
rounds correspondingly falls.

We will now demonstrate that this is the unique sequential
equilibrium.

We have already observed that, in any sequential equilibrium,
if the established firm ever fails to prey, then there must be entry
and sharing at every later stage. Thus, it suffices to consider only
what happens when there has been no sharing. We have also observed
that at any stage n with any history of play to that point, firm O
with |TO| # w will prey if and only if TO exceeds some critical
value. Thus, at any sequential equilibrium all that can be inferred
from a given history involving no sharing is that 7, = © or

0

To € (x,1] for some x. As well, we have also observed that we need

consider only pure strategies.
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We now establish inductively that any sequential equilibrium
must agree with the one we have described earlier at all stages

m < n. The induction is made on n, and the case n = 0 is immediate.

Fix any sequential equilibrium and suppose that the result holds for

n = k. Then the value of entering stage k with TO = t and reputa-
tion x is Vk(t,x). Now consider firm O in stage k + 1 where the
history is H and the corresponding reputation is X. Let x zx
denote the reputation that 0 would have at this equilibrium if entry

and predation occurred at stage k + 1. Then firm 0 of type TO =t

would choose to prey or not according as

Al vV
o

o(t) + pvk(t,x)

The reputation x must be consistent with O0's actual strategy at

equilibrium, so we must have for t 2 x that

AV
L]

a(t) + v, (t,x) 20 as t

Using the monotonicity of V it is straightforward to check that the

k’

unique x 2 x for which this holds is x = x V Xy . Hence, the condi-

tional probability that entry will meet predation at stage k + 1

given the history H and reputation x 1is (x). The unique best

Prs1
response to this for firm k + 1 is to enter if and only if

B( ) < pk+1(;), and this completes the induction. Notice that the

Tirl

fact that strategies depend on history only through reputations has

been derived, not assumed. What the induction establishes is that 1if
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history affects play only through the reputation for stages m < k,
then the same is true at stage k + l. Since this is trivially true
for k = 0, it is true for all k.

The comparative statics properties of this equilibrium can be
stated rather simply. Those on N have already been established: the
values of the x, are, in fact, independent of N, so that the proba-
bilities of entry and of predation in round n < N do not depend on
N. Of course, we have already shown that x ~ converges monotonically
down to [0 v g]. Increases in p, the discount factor, tend to lower
the xn's. To see the sense behind this claim, note that against given
strategies by the entrants, a higher value of ¢ increases (in present
value terms) the reward to preying. The costs that the established
firm would be willing to incur in preying then increase, lowering the

cut-off level of x at which predation occurs. However, such a lower

value for xn will make entry less attractive, lowering qn(x) and

increasing the benefit from predation at stage n + 1. Thus we have a
snowballing effect, with everything working in the same direction. (A
formal proof of all the comparative statics results we will claim here
is given in Proposition 2.)

Together these two results indicate that the value of a reputa-
tion -- and the costs one would incur to achieve it -~ increase with
the frequency with which it may profitably be used. Either being able

to use the reputation more often at a given rate (increases in N) or

with less delay between uses (increases in p) increases the incentives
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for building and maintaining a reputation. We will later suggest some
interesting implications that would follow if this intuitively appealing
result carries over to other models,

The effects of changing the o or B functions in certain ways
can also be identified. Adding any positive function to B (while
still maintaining monotonicity and the upper bound of 1) yields a new
function whose inverse, as the distribution of the outside opportuni-
ties, stochastically dominates the original distribution B_l. This
change lowers the probability of entry against any given reputation,

given the established firm's strategy. However, the lower values of

the 9, tend to increase the value of preying (since they mean that
predation is more likely to deter future entry), so again we have the
snowballing effect we saw in the case of Q. Similarly, an increase ir
&, which shifts Q-l in the sense of stochastic dominance, also
decreases the X, Thus both an increase in the outside profit oppor-
tunities of the entrants (which lowers the attractiveness of entry) and
a decrease in the costs of preying tend to lower the X s thereby
increasing the probability of predation with any given reputation and
lowering the probability of entry.

_Finally, a higher value of ¢, the probability put on an auto-
matically aggressive response, also works in the same way to lessen
the X » and thus to increase the probability of predation with a given
reputation and lower the probability of entry.

All these properties are established formally by the following i

result, which is proven in Appendix D.
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i Proposition 2: Suppose p 2p, 0 20, B 2B and € 2 €. Then

x_ < x , for all n.
n n

‘ In this modeling, the possibility that T, = -w (with probability
§) was included largely for the sake of symmetry: either form of
mechanistic behavior pattern is possible. The sole effect of § on
the equilibrium is that it encourages an early test of firm 0 by some
entrant. In particular, the X values do not depend on the value of
§. 1In fact, as long as the probability that TO = w 1is kept bounded
from zero, we could also have allowed that the entrants also entertained
all the theories about the established firm's behavior which involve
it preying against every entrant until there are exactly k markets
left, k= 1,2,..., and then never preying again. The equilibrium
would not have been qualitatively changed.

Finally, let us examine the behavior of the equilibrium as
€ + 0 and thus as we approach the original Selten model. Consider
the case N = 2: the arguments can be extended for any N. By
Proposition 2, xg is increasing as e » 0 and so has a limit xg.
Then by the definition of xg, we have qi(xg) + max (0,1 + a(xg)/o].
Since o 1is bounded above by O, we then have that the limit is strictly

less than one. Further, if xg z 1, then we have 1lim qi(xg) =

: 1lim 8-1[1— ge/(e + 1 - xg)] = 1, and this contradiction shows that
. 0

- Xy = 1. Thus, as € + 0, the set of firms which will prey in equilib-
1
rium becomes null. However, since xg = 1, predation at stage 2

deters entry with probability equal to min [1,-0(1)/p] > 0. Note that
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this is a failure of upper hemicontinuity of the sequential and perfect
equilibrium correspondences as we change the information structure:
the established firm's equilibrium strategy converges to that identified

by Selten, but the entrants' strategies do not,

Another way to express the striking importance of even very
small positive values of € 1is to consider how the deterrent effect of
a strategy of always ~reying depends on €. The easiest case to
consider is when B(0) > 0. Suppose entry actually occurs at k
dates Myseeestys where m, occurs after L and these entries are
always met by predation. Then by examining the entrants' strategies

we find that for any two successive entry dates m, and m. 1o

i

1 - B(0) >1 - B(T Yy >le+1 - X 1J/le + 1 - x 1, where
Tio1 i-1 bt
X = 0. This gives a set of k inequalities which when multiplied

M+l N
together lead to [1 - B(0)) >le +1 -x 1le+1 - x I1>e/Q1 + €).
™ Bt
Hence, k < & [e/(1 + €)1/ [1 - B(0)]. This provides an upper bound

on the number of entries that can arise for any realizations of

T when entrants follow their equilibrium strategies and firm

LoeeaTy
0 adheres to an aggressive strategy. Note that the bound is independent
of N and grows only logarithmically in €. Even tiny values of €

can lead to moderate bounds on k. For example, if B(0) = .75, then

for € = 107> one obtains k < 4, for €= 107® one obtains k = 9,

9

and for € = 107, k S 14, Thus, tiny elements of uncertainty can

produce a significant deterrence of entry.
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4, Summary and Conclusions

We have demonstrated that the presence of informational asymmetries
can lead a firm operating in several markets to adopt a predatory
strategy against entrants, even though such behavior is irrational when
viewed in the context of a single market in isolation and even though
there are only a finite number of potential entrants. This same point is
made in the one-sided uncertainty model in the accompanying paper by Kreps
and Wilson [forthcoming (a)]. We view this model and our work as comple-
mentary, in that they display two different ways in which the recognition of
informational asymmetries can "resolve" the Chain-Store Paradox. This
resolution comes about because the informational asymmetry gives the
entrants reason to forecast future actions on the basis of past behavior.
This in turn gives the established firm reason to prey in order to build
a reputation which leads future entrants to predict that they too are
likely to meet predation.

The particular asymmetry we have introduced involves the entrants
being less than certain that they are correct in modeling the established
firm as rationally choosing between predation and peaceful coexistence.
Specifically, we allow that they entertain the possibility that an
episode of predation -- which ought not ever to occur in the complete
information set-up -~ may be part of a general pattern of predatory
behavior. The recognition of this possibility then results in the

marked change in the equilibrium behavior that we have demonstrated.
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There are numerous reasons why this element of uncertainty should
exist, On the one hand, the entrants could b« not completely sure
about the game being played. For example, it might be that the estab-
lished firm could actually be involved in some bigger game of which the
one studied here is only a part and that the firm's equilibrium strategy
in this larger game calls for it to prey in these markets. A second
possibility is that in the game actually being played, the established
firm may be able to precommit itself to an aggressive course of action
and may have done so. Other scenarios involve the entrants allowing
that the firm is not behaving as a fully rational game theorist.

For example, the fact that firms involve many individuals, each with
his or her own preferences and information, suggests that the appropriate
model of the firm would be one of group decision making, and there is
no compelling reason for choices in such situations to correspond to
the maximization of a single utility function. Alternatively, the
firm may have well-defined utility function, but it may not calculate
fully the equilibrium in the game being played. Instead, it may have
some more or less arbitrary conjectures about how the entrants will behave
in response to its actions, and its preying is the optimal behavior given
these conjectures. In fact, Rosenthal [forthcoming] has argued that games
of perfect information ocught to be analyzed as if the players were
decision theorists 1in this sense, rather than game theorists whose

conjectures about others' behavior must be correct. In this context,

Rosenthal suggested that his approach could resolve the Chain-Store
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Paradox, and Macgregor [1979] has verified this conjecture. Thus, for )
example, if the established firm believed that the entrants would simply
forecast that past behavior would be repeated, it would be led to prey.

In this regard, Scherer's discussion ([1980], pp. 338-9) of preda-
tion as a deterrence strategy is of interest. He notes that if entrants
perceive different markets as sufficiently similar and if "business managers
extrapolate from past events rather than sizing up the probabilities in
each new situation'”, then predation may have a deterrent effect. He
goes on to note that very little is known about the extent to which
such extrapolation occurs. Our analysis shows that even if everyone is
fully rational and does '"size up the probabilities 'in each new situation™,
as long as there is some doubt about whether this is the case, predation
can emerge.

The implications of this analysis for antitrust policy are straight-
forward. In multiple market situations, predation can be a rational
strategy which deters entry and thus supports monopoly. Thus, any
tendency to discount the likelihood or significance of predation on the
basis of its presumed irrationality should be checked when there are
multiple markets which might reasonably be regarded by potential
entrants as similar, (An interesting paper by Easley, Masson and Reynolds
[1981] in which firms can make their markets seem to be intrinsically
unprofitable candidates for entry by predation yields similar conclusions.)

Firms serving several geographically distinct markets are only one case
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where the model and its conclusions might apply. Firms with broad
product lines or those in which on-going technological change yields a
pattern of new product introduction over time are others. In this
context, it is worth noting explicitly that predation will only rarely
need to be practiced. The credible threat of predation will deter all
but the toughest entrants (those with low values of tn), and so the
occasions when the firm will be called upon to cirry out its threat
will be infrequent.

Two factors in our model lead to the emergence of reputations: the
informational asymmetries and the repeated actions with the possibility
of observing past behavior. These conditions will he necessary for
reputation huilding to occur in general, and it would further seem that
they are sufficient: in any situation where individuals are unsure
about one another's options or motivation and where they deal with each
other repeatedly in related circumstances (or where past dealings with
other people are observable), we would expect to see reputations develop.
A clear example of such a situation is in problems involving the choice
of product quality. Other examples in economics arise in credit relation-
ships, in labor negotiations and strikes, in implicit contract models,
and in the provision of auditing services, bond ratings, job recommenda-
tions and the like. The reader can easily provide more examples. More-
over, applications outside the traditional bounds of economics are at

least as numerous. We expect that the methods of this paper can be

applied in each of these contexts to yield important insights on the
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nature of observed behavior. We also would expect that the main
comparative statics result of this paper -- that the value of a reputa-
tion and the extent of reputation building increase with the frequency
of the opportunities for its use -- will prove generally true. If so,
this would provide insight on such issues as the costs of social mobility
in terms of reducing the opportunities and incentives for building
reputations for honest behavior, quality service, and the like.

The particular way in which we have introduced the informational
asymmetry in this paper is to assume that individuals ascribe some

positive probability to there being some alternative theory which

determines behavior. In some situations, there will be an alternative
[ theory which is particularly natural. In others, however, many perturba-

tions of the "basic'" complete information model will exist, and the

choice between them may appear arbitrary. This suggests the need for

a notion of robustness for these alternative theories. One such notion

is that a theory would be robust if its presence led to behavior which
did not refute the thecry. We plan to explore such ideas in the context
of developing reputation models of some of the phenomena discussed

above.
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Appendix A

In this Appendix we examine an infinite horizon version of
Selten's chain-store model. As we demonstrate, one trivially estab--
lishes existence of an equilibrium where any attempted entry is met by
predation, even with complete information. This equilibrium then
resembles that in Section 2 for large N. However, in contrast with
the finite horizon, incomplete information model, the set of equilibria

in this model is large and contains many intuitively unappealing strategy

combinations.
P C M . '
Let HO’ Ho and Ho denote the incumbent's payoffs to preda-
tion, coexistence and monopolization in a single market, and let the

corresponding payoffs to any entrant be Hf, Hf and H?. Given a

discount factor p for the incumbent, and denoting the play at round n
by hn’ where hn = +1 denotes predation, hn = 0 denotes no entry

and hn = -1 denotes sharing, the incumbent's payoff is
cs I MY
n n - n
T L o g e 3+ Mol A" ey * Mg L @ Ly gy o
o n 0 n 0 n

where IA is the indicator function for the event (se.) A, 1i.e.,

1 is equal to one for those n such t2t h_ = a and zero
{hd=a} n

otherwise.

We assume that the game is one of perfect information, so that

all players know the structure of the game tree, the payoffs, and the

O :
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actions taken at all previous moves. In contrast to the set-up in the

text, number markets forward in time: market n opens before market

P C M P C
n + 1., Assume Ho < Ho < Ho and Hl : H? < Hl'

oo
We now claim that, if Hg + Hg L pn > Hg L pn, then the following
1 0
strategies constitute a sequential equilibrium:

Firm 0: 1if h,,...,h 1 2 0 and entry occurs in market n,

1 n-
then prey.
If hk = -1 for any k <n and entry occurs in market

n, then share this market.

Firm n: If h ’hn—l 2 0, do not enter.

12
If hk = -1 for any k <n, enter.

o ©
So long as HP + Hg > Hg I 0% not only do these strategies

have the mutual best-responge pr0pert3 that makes them Nash equilibria,

but also this property obtains for the appropriately truncated strategies

starting from any node in the game tree, so in fact they yield a sequen-

tial equilibrium. }
However, as is again easily shown, the strategies of never

preying for the established firm and all potential entrants always

entering, regardless of the history, also constitute a perfect equilibrium.

© )
Moreover, if Hg + Hg X pn > Hg (1+2 pn), then there are uncountably
many pure-strategy per;ect equilibria: indeed, there are uncountably

many of the following form, parameterized by S.

Firm 0: If conditions (a), (b) and (c) hold at stage n, then

prey at n:
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. (a) h, 20 for all k <n, k ¢5
v |
(b) h, 0 forall k <n, k ¢8
(c) né¢sS .

_Otherwise, do not prey at n.

Firm n: If (a), (b) and (c) hold, stay out.

Otherwise, enter.

Among the sets S that make these strategies a perfect equilibrium

are: S = {klk 2 i} for any choice of i, and S = {k|k is divisible

by 1}, for any sufficiently large integer i. In view of this multi-
plicity, perfect equilibrium lacks any effective predictive power in

this infinite horizon model. Furthermore, predation would never be

w ey
A .

observed in the pure-strategy equilibria of this model, so it also fails

to explain apparent observed behavior.

For these reasons, and because we also believe that the finite

* horizon model has its own inherent interest, we concentrate on it in

the text.
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Appendix B

The following example illustrates our claim regarding the role
of lack of common knowledge in generating predatton,

Specifically, we consider a situation with the established firm,
0, and two entrants, 1 and 2. There are three possible states of the
world, a, b and ¢, all of which are equally likely. In state a, the
game at each stage is such that entry results automatically in predation.

In states b and c, the stage game is

Firm 1 1=1,2
In Out
Firm 0
Prey Share
-2 0 1 firm 0's payoff
0 1 .8 firm 1's payoff.

We can think of state a as one where the established firm is a
predator,
The firms differ in their information, which can be described

by the following partitions:

Firm O: [{a}.{b,c}]

Firm 1: [{a,b},{c}]

Firm 2: [{a},{b},{c}]
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Note that firm 2 has perfect information, and that in state ¢ it
is common knowledge between the two entrants and also between the é
established firm and entrant 2 (who is the first to threaten entry) :
that firm O is not a predator. Yet in equilibrium, firm 2 is

credibly threatened by predation! To see this, one need only note that

the following constitute a set of sequential equilibrium strategies:
Firm 2: Stay out

Firm l: Enter in event {c}, or if 2 entered and O

failed to prey. Otherwise, stay out.

Firm O: Prey if firm 2 enters. If firm 1 enters,

prey in event {a}, and do not prey in {b,c}.

What makes this work is that, when the actual state is b or ¢, fim
0 does not know whether 1 knows that it (0) is not a predator,
and everyone knows this. Note that O must take the same act in
events b and ¢, since it cannot distinguish them. Thus, it can
prey against firm 2 either in both states or in neither. If it
shares in both states, it gets an expected return of 0. That this
will result when c¢ is the actual state is clear. When b obtains,
? failure to prey against 2 allows 1 to infer that it will not meet
12 predation, and so entry in the last market again follows. If firm O

preys in both states, then it absorbs a cost of -.,2 against firm 2.

When ¢ 1is the state, it still experiences entry, so its total payoff
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is -.2. 1In state b, however, the act of predation prevents 1 from
inferring whether state a or b obtains. Entry in state a yields
1 a payoff of 0, entry in b yields it 1, and since it views the
two as equally likely, it prefers to stay out and receive .8. Thus,
from O0's point of view, predation yields equal chances of -.2 + 1
and -.2 + 0, for an expected return of .3. Since this exceeds the
expected return of zero resulting from failure to prey, it preys. Given
that 0 will prey no matter what the state, firm 2 1is then deterred
from entering. This is true even when (in state c¢) it and firm 0
both know that sharing is directly more profitable for 0, both know
that both know chis, both know that both know that both know this, ad

infinitum.

In Kreps, Milgrom, Roberts and Wilson [forthcoming], this type of

modeling is used to explain observed behavior in the finitely repeated

prisoner's dilemma game.
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Appendix C

In this Appendix we establish Proposition 1. The first part of

the argument involves a rolling induction on the following list of

propositions.

(P0O) Vn(t,x) is continuous in (t,x) and nondecreasing in t
(P1) Vn(t,x) is nondecreasing in x

(P2) *n+l s *n

(P3) For all u and all x ¢ X4l

1 + ¢ Vn(t,x) ~ max ofu) + pvn(t,x yl .

n+l

Since we have already established (PO), we turn to proving

(rl) - (P3).

Proof of (Pl) - (P3):

We proceed by a "rolling induction” on n., The initialization
for n = 0 is straightforward if we define Xq = L. i
Now suppose (Pl1) to (P3) hold for all n <m, and let us

check the case for n=m + 1.

(P1): Rearranging the recursion for Vm+1 yields:
Vm+l(t,x) = max (0,0(t) + pvm(t,x v xm+1))

+ (1 - qm+l(x)][(l + pvm(t,x))

)1 . |

- max (0,a(t) + PV (t,x v x

o 3
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The max term, the (1 - qm+1(x)) term, and the bracketed term are all
non-negative [by the inductive hypothesis (PB)) and non-decreasing in

x (by the inductive hypothesis (Pl)]. Thus, we have (Pl) for n =m + 1.

(P2): By the just proven fact that (Pl) holds for n = m + 1, we have

for all x that Vm+1(x,x) < Vh+1(x,l). Together with the observation

~

following the lemma, this gives Vﬁ+1(x,x) < v(x). So, using the lemma

and the fact that V (

m+1 X Vi€

xnﬂ-l‘xm+1) = g( m+1® 'm {which is

Xt 1 %)) »
seen to be just the defining recursion once we note that ql(l) = B-I(O)

qm+1(xm+1))’

alx i)+ PV Ko X

a(xm+1) + Og(xm+l,vm( xm+1,xm+1))

2 cx(me) + oV (x )

m okl ¥mel

If x = 1, there is nothing to prove. If x

<
1 1, then the

mt+l

right-hand side above is at least zero (by definition of x and

mt1
continuity of Vm). Hence, by the monotonicity and continuity of o

. <
and Vm+1 and by the definition of X 4os Ve have Xoeg 5% .

(As we argue in the main text, this inequality will turn out to be

m+1

strict if x  , > [0V x1.)

(P3): We now must show that (P3) holds for n =m + 1. The case where

0 2 a(t) + me+1(t,x is seen immediately to follow from the non-

m+2)
negativity of Vm+1(t,x). This in turn results from the availability

of the strategy of always sharing, which yields a non-negative payoff.
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<
Thus we concentrate on the case 0 < a(t) + 0Vm+1(t,xm+2). Using the

recursive expression for Vﬁ+l’ we then have

1+ me+1(t,x) - a(t) - DVm+1(t,xm+2)

)]

=1 + p{qm+1(x) max [0, a(t) + v (e,

+ 0= g 0I0L + pv_(£,07)

- a(t) - D{qm+1(xm+2) max [0,o0(t) + me(t,xm+1)]

+ (1 - qm+1(xm+2)][1 + me(t,xm+2)]}

= plq,, (x ) - qm+1(X)]{1 + pv_(t,x) - max [0,0(t) + QVm(t,xm+1)]}
+ poll - qm+1(xm+2)]{pvm(t,x) - pvm(t,xm+2)} +1 - a(t) .

By the induction hypothesis (P3), the first term in braces is non-

. < . ,
negative. Since X4y X by hypothesis and since Qpep 1S decreasing
in x (as is easily verified), we have -1 < qm+1(xm+2) - qm+l(x) < 0.
Since Vm is increasing in x by the induction hypothesis and since

X <X the second term in braces is non-positive. Thus, replacing

m+2°
p[qm+1(xm+2) - qm+1(x)] by -1 and p(l - qm+1(xm+2)) by its upper

bound, 1, we obtain, for x < X o4os
1 + pvm+1(t,X) - aft) - Ovm+1(tsxm2)
2 ~{1 + pV_(t,x) - max [0,a(t) + UGS R),

+ {pvm(t,x) - me(t,xm+2)} +1 -a(t) ,

= max [0,a(t) + pvm(t,xm+1)] ~ [o(t) + me(t,xm+2)]
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which we must show to be non-negative. For this, it is sufficient that

Vm(t,xm+2) < Vm(t,xm+1) .

But this inequality follows from (P1) and (P2), so we are done.

Thus, in particular, X+l < X, e now establish the remaining

claims made in the statement of the Proposition.

Since {xn} is a bounded, nonincreasing sequence, it has a

1limit x* 2 0. 1If the firm ever preys (without having failed to do so

before), it acquires a reputation x 2 x*, For any such x and any

n,

e+ 1-(xV xn)
pn(x) = e+ 1 -x

e+ 1 - (x*xV xn)
z pn(x*) = € + (1 - x%*)

But since x, x*, this last term conveiges to 1 as n > ®, Thus,

pn(‘) converges uniformly for x 2 x* to 1 as n goes to infinity,
- -1

and so q (x) = 8 1(1 - pn(x)) converges uniformly to B~ (0) = q,{1).

Predation is certain in the limit, and only those willing to be preyed

upon will enter.

¥ Then, since

;
4 v (£,x) = q (x) max (0,a(t) + v, (t,x v xn))

,‘j + (1 - qn(x))(l + an_l(t,x))
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for p < 1 we must have (by standard results in discounted dynamic

programming)

1'%

lim Vn(t,x) = v_(t,x) for x 2 x*

N
where V_(t,x) 1is the unique solution to
v (t,x) = ql(l)[max 0,a(t) + me(t,x)]
+[1 - ql(lj]_[l + pv_(t,x}]
z g(t,vm(t,x))

But, by definition, this solution is the fixed point, v(t). Thus, in
the limit, predation gives the firm a reputation x 2 x* and a continua-
tion value v(t). Then, the limiting condition guaranteeing that the
firm will prey is a(to) + pV(to) >0, i.e., t > x. Thus,

x* = lim x_ = fo v xI.

Since we assumed x < 1, we have thus demonstrated that predation

which is costly in the short run will still occur for n large enough.

Reexamination of the argument establishing (P.2) above now in

e et

fact reveals that x < x unless x is 0 or 1, since v(t)
n n-1 n-1

is strictly greater than Vn(t,x) for all the relevant values of t. !

Q.E.D.
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Appendix D

This proof of Proposition 2 involves a rolling induction on n

based on the following two statements.

(P4) ¥n X < X

(P5) ¥ x < X, Vn(x,x) 2 Vn(x,x) 20 .

Proof: Notice that (P5) for n = k implies (P4) for n = k + 1.

5T
To see this, note that if k were such that X1 X141

using the induction hypothesis (P5), the monotonicity of a and V

2 0, then,

k’

and the fact that x > 0, we have

k+1
Ay y) + 0 V(X)) <00q ) + PV Og X ) <0,

which contradicts the definition of x

K1 and the continuity of o

and Vﬁ.
To show (P5), note first that both (P4) and (P5) hold
trivially for n = 0 and that nonnegativity was shown in the proof of

Proposition 1. Suppose (P5) holds for n = k and (P4) holds for

n=k+ 1, Then, for x < X1
Vk+1(x,x) = qk+1(x) « 0+ (1 - qk+1(x))(1 +p Vk(x,x})
vk+1(x,x) = qk+1(x) e 0 4+ (1 - qk*l(x))(l + p Vk(x,x)) .

where the zero payoff in the first expression is because firm 0 will

not prey 4f x < x,,, and the second follows since x < x . < §£+1.

For the claimed inequality, it now suffices, given (P5) for n = k,
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Xeal S Xppp and € < € implies

E£+I(X) < pk+1(x), which in turn means that

to show that qk+1(x) < E£+1(x). But

‘ 3 . _ ) _
! qk+1(x) =B (l - pk+1(x)) > B 1(1 - pk+1(x))
-1
2871 - p ) 2 q,,0

and we are done.

Q.E.D.

— [ ..

Ly v,

b syl
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Footnotes

This latter argument seems to suggest the possibility of deterring
entry by holding current prices down. For a discussion of some

of the problems with this notion of limit pricing, see Milgrom
and Roberts [forthcoming].

In Section 4 of their companion paper, Kreps and Wilson [forthcoming (a)]
present a model which predicts behavior that closely approximates

that in the Folgers-Maxwell House competition in several important
aspects.

Most generally, a player's reputation in this context would be the
beliefs that other players hold about his unknown characteristics
and on the basis of which they predict his behavior. These

beliefs would depend on their initial beliefs and on their observa-
tions of the player's past behavior. In the model we develop here,
a simple sufficient statistic for these beliefs will be identified
as the firm's reputation.

While their analysis and ours originated independently, we have
since benefitted greatly from having access to their ideas. They
have also developed significant extensions of the "one-sided"
reputation models studied here. Their paper is highly recommended
to the reader.

Throughout, for increasing functions £: [0,1] + R, we employ the
conventions that if x < f(0), then f_l(x) =0 and if

x > £(1), then £ Y(x) = 1.

Note that the conditional expectations in (3) may not be
well-defined if H is a history of play that occurs with

probability zero under the specified strategies. 1In this case
there is some latitude possible in specifying pn(H) and qn(H)

although not any arbitrary specification will do. See Kreps and
Wilson [forthcoming (b)], and Milgrom and Roberts [forthcoming]
for further discussion of this point in related contexts.
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