
A-Alll S77 FORD AEROSPACE AND OS.NICATIONS CORP PALO AL.TO CA W--ETC F/0 9/9
KSOS SECLME UNIX OPERATINS SYST9M LUES PIAIAJALS. (KERNELIEU0 SE-ETC EU)
Dec so DA90S-77-C-0353

L90CLASSIEII PA.

El I h h h h E Eo sh E E E
mohhEEEohhEshI
EohmhshhhEEmhI
EhmhEmhhmhhEEE



1 11142

MIL25 .4$OLU I .6

MICROCOPY RISOLU1ION TEST CHART



December 1980

*ADA11 15 7 7

* .1 SECURE MINICOMPUTER OPERATING SYSTEM (KSOS)

SECURE UNIX OPERATING SYSTEM
USERS MANUALS

~ ~I Department of Defense Kernelized Secure Operating System

I Contract MDA 903-77-C-0333
CDRL 002AJk

Prepared for: '

Defense Supply Service - Washington
* Room 1 D245, The Pentagon

Washington, DC 20310

tAJ

Approved for Public release; distribution unlimited.

Ford Aerospace &
Communications Corporation
Western Development
Laboratories Division

3939 Fabian Way
Palo Alto, California 94303



acemode(I) KSOS 1/6/81 ac_mode(I)

NAME
acemode - access mode

SYNOPSIS
bits;

DESCRIPTION
Ace mode describes the access allowed a process to a particular segment
of its current segment set. An ace mode is composed of three bits indi-
cating permission to read, to write, and to execute. They are equivalent
to selected discretionary ace bits. The correspondences are:

CONST
readAcc - owner Read;

- writeAcc = owner Write;
executeAcc M owner Execute;

- The ace mode of a segment is initialized when its segment is made a part
of the process's segment set using K build segment or
K rendezvous segment. The ace mode may be changed using
K set segment status or K remap. In no case does a segment's ace mode
(which is always in relation to a process) allow more permissive access
than that allowed the process by the segment's discretionary access.

- SEE ALSO
K _remap (II), X_rendezvous segment (II), K set segment status (II),
discraccess (I), segstat.block (I),

Accesnion For

ITIS CP&

I D7-

1~-



compart-set(I) KSOS 1/6/81 compart-set(I)

- NAME
compart set -set of security compartments

DESCRIPTION

A maximum of 32 security compartments may be used in a KSOS system. The
type independent information (the tii -struct) of every object contains a

-comsart set field that determines which security compartments the object
belongs ko; with each bit indicating one compartment. A process may not

= read an object if the object belongs to any compartments which the pro-
cess does not belong',1,o. A process may not write on an object if the

- process belongs to any compartments that the object does not belong .o

* The 32 compartments are given arbitrarty names via an enumerated type as

* - is shown below:

compartments -
SYSTEM, compartl1, compart-2, compart -3,

-compart -4, compart -5, compart -6, compart-7,
compart -8, compart9, compart -10, compart-11,
compart, 12, compart 13, compart, 14, compart 15,

-compart_16, compart 17, compart 18, compart 19,
compart 20, compart 21, compart 22, compart 23,
compart 24, compart 25, compart 26, compart 27,
compart,_28, compart 29, compart_30, compart-31

SEE
- tii-struct(I)

!.OL



discraccess(I) KSOS 1/6/81 discraccess(l)

NAME
discr.access - discretionary access

SYNOPSIS

bits;

DESCRIPTION

The discr access type describes the discretionary access to Kernel
objects. Discretionary access is divided into three sets of three bits

_each. The first set refers to the object's owner, the next to others in
* the same user group, and the last to all others. Within each set the

three bits indicate permission to read, to write, and to execute. The
execute bits are meaningful only if a process has the privRealizeExecPer-

- mission privilege. Each execute bit is then equivalent to the
corresponding read bit. Setuid and setgid are special bits used in con-
junction with the execute bits. When a process image is created from an

- object with the setuid bit, the owner of the process is temporarily
changed to be the owner of that object. Setzid is analogous to setuid,
operating on group rather than owner.

-- The following table contains the bit- definitions for the discretionary
access field.

* setuid 10
setgid 9

ownerRead 8
- ownerWrite 7

ownerExecute 6
groupRead 5

- groupWrite 4
groupExecute 3
allRead 2
allWrite 1

- allExecute 0

SEE ALSO
-- Kbuild segment (II), Kcreat (II), Kset-da (II), priv (I)

IX

-*

.* i



file_statblock(I) KSOS 1/6/81 file statblock(I)

NAME
filestatblock - file status block

SYNOPSIS
- file stat block - RECORD

f size cardinal32;
subtype seid;

* time last mod cardinal32;
open at crash boolean

END;

DESCRIPTION

The file status block is used to return information about files, termi-
nals, extents and devices.

F_size is the number of characters in the file. The kernel keeps
internal track of the highest block number written in the
file. The K device function SETFILESIZE can also be used
to set this field.

Subtype is the Seid of the subtype of the I/O object or the null
seid if the object is not subtyped.

Timelastmod is the time of last modification of the text of a file.
It is represented as the number of ticks since January 1,
1980. This time is only updated on K open and K close if
the open mode allows write access. For all I/O objects
other than files, this value is zero.

Open at crash is true if the file was open for writing when the system
crashed. The next open for writing will clear
open at crash. The file system recovery program(s) should
be run on all files with this field set. For non-file
objects, open at crash is always false. It should be
noted that when open at crash is true, f size may be
incorrect.

SEE ALSO
K.etfilestatus (II), K device-function (II), Seid (I)

Am

- 1



integrity-cat type(I) KSOS 1/6/81 integritycat type (I)

NAME
integrity cattype - integrity categories

SYNOPSIS
integrity cat type - ( integrity cat 0, integrity cat 1,
integrity cat 2, integrity cat 3, integrity cat 4,
integrity cat 5, integrity cat 6, integrity cat 7,
integrity integritntegrity cat 9, integrity cat 10,

integrity cat 11, integrity cat 12, integrity cat 13,
integrity cat 14, integrity cat 15

DESCRIPTION
There are a 16 possible integrity categories on a KSOS system. These
categories are defined in the integrity cat type enumerated type. The
integrity categories form an ordered set which, along with the security
category and security compartments, control access to and from the
objects of the system. If object A has a higher integrity category than
object B then:

A cannot read B
A can write B

B can read A
B cannot write A

SEE
compartset (I) securitycat-type (I)

.4

L

'-1-

-F -



INTRO(I) KSOS 1/6/81 INTRO(I)

INTRODUCTION TO KERNEL INTERFACE TYPES

Section I of this manual describes all the types used by the Kernel Call
Interface (section II). The kernel types defined in the interface are com-
posed of 7 different basic types and 3 structure types. All the kernel type
definitions are built from these types. Understanding these types is essen-
tial for using and building future kernel call interfaces.

char is an eight bit unsigned quantity. It is used to represent
variables with up to 256 distinct values. A char field must
be and'ed with a 377(8) mask when converted to a 16 bit
quantity because of the PDP-11 hardware sign extension on
byte to word data transfer instructions.

boolean is also an eight bit quantity. A boolean variable may have
one of two values - true or false The false value is defined
always to be zero. The true value is any nonzero value.

bits is a 16 bit quantity. The bits are numbered right to left
starting with zero (i.e. bit 0 is the rightmost ( least sig-
nificant) bit).

bits32 as suggested by its name, is 32 bits long. However, the
bits are numbered left to right starting with zero (i.e.,
bit 0 is the leftmost (most significant) bit). If bits32 is
accessed as an array of bits, a[O] contains bits 0 through
15 and a[l1 contains bits 16 to 31.

integer is a 16 bit signed quantity in two's complement notation.

- cardinal is a 16 bit unsigned quantity in two's binary notation.

cardinal32 is a 32 bit unsigned quantity. If cardinal32 is accessed as
an array of cardinal, a[O] contains the high order word and
a[l] contains the low order word.A

The structured types are used to build data structures from the basic
types. The structured types are enumerations, records and arrays.

Enumerations An enumeration is a list of identifiers which denote the
values constituting a data type. These identifiers may be
used as constants in programs. They, and no other values,
belong to the enumerated type. An ordering relation is

- defined on these values by their sequence in the enumera-
tion.

Records A record structure consists of a number of components
where each component is identified by a unique field iden-
tifier. Field identifiers are known only within the
record structure definition and within field designators,
i.e., when they are preceded by a qualifying record vari-
able identifier.

-- 1 . - ------



INTRO (I) KSOS 1/6/81 INTRO (I)

Arrays An array structure consists of a number of components.
Each component is identified by a number of indices whose
range is specified in the declaration of the array struc-
ture.

SEE ALSO
Modula Specifications, NEWcalls .mod

I

'4

- 2



ioStatus(I) KSOS 1/6/81 ioStatus(I)

NAME

ioStatus - Status of I/O operation

SYNOPSIS
ioStatus - RECORD

devIndep: K err num;
* ~devDep : bit_s

DESCRIPTION

devIndep contains the device independent status upon completion of an

1/0 operation. The status returned is one of the Kernel's
exception numbers.•

devDep contains the device dependent status upon completion of an
1/0 operation. This field is only defined for special dev-

ices, such as the network devices, which have peculiar pro-
parties.

SEE ALSO
K_devicefunction (II), K_read (II), K_write (II), K_err_num (I)

- -1 -

-- ... " '" -... 7 1:i I
i
. ... .... : 1i ... .. ..' 

-
.. ... .. ii .. .. .



ipc block(I) KSOS 1/6/81 ipcblock(I)

NAME
iptblock - inter-process communication messages

SYNOPSIS
msR limit = 11;

msA struct - ARRAY 0:msa limit OF char;

ipc 'lock - RECORD

ipc seid: seid;
ipcms msit:Rktruct

END;

DESCRIPTION
An ipc block is the general form for all the different types of inter-
process communication messages (e.g. signals and IPC's). Messages can be

- generated by the kernel, by your process or by other processes.

The ipc seid contains the seid of the process which sent the ipc block.

The ipc msg contains the text of the ipcblock.

The first byte of the ipc msg, by convention, is the event type. This
- field and the ipc seid, determines the message type. The following event

types are predefined and can not be used for other purposes. All other
event type numbers can be used by cooperating processes as they wish.

null event 0
memerr event 1 memory error
bpt,_event 2 break point trap instruction
iot event 3 input output trap instruction
cpuerrorevent 4 cpu error
illinst event 5 illegal instruction
mm event 6 memory management
fltpnt event 7 floating point processor
ttoggle event 10 timer toggle

- talarm event 11 timer alarm
emulcall event 12 emulator call
iocomplete_event 13 I/O completion

Kernel Generated Messages

This type of message can only be generated by the kernel. These messages
always come through the hardware pseudo interrupt-channel. The seid
field contains the Kernel Seid. The event type must be one of the fol-
lowing:

memerrevent
bptevent
iot event

- - 1- t



ipcblock(I) KSOS 1/6/81 ipcblock(I)

cpuerrorevent
illinst_event
mm._event
f 1 tpnt event

The time of the pseudo-interrupt is placed in the last four bytes of the
ipc mag.

The floating point processor message also has its status register stored
in bytes 2 and 3 of the ipc msx.

Messages on the Behalf of Your Process

These messages can only be generated by some action to or by your pro-
cess .

The seid field contains the Kernel Seid except I/0 completion which con-
tains the process Seid. Messages of this type have the following event
types:

ttoggleevent
talarmevent
emulcallevent
iocompleteevent

The timer and I/O completion come through their respective pseudo-
interrupt vectors. The emulator call pseudo-interrupts through at base
level. This pseudo-interrupt will occur no matter what the pseudo-
interrupt level is set at.

The emulator call message occurs synchronously when your process requests
them. An I/O completion message occurs asynchronously after your process
initiates an I/0 requesting such a message. The timer messages can be
caused either by your process or by another process setting the timer
related fields in the process status block.

The last four bytes of both the timer messages and the emulator call con-
tain the time that the pseudo interrupt occurred.

The I/O completion message has the following structure: .

RECORD

event-type : char; -

stat : ioStatus
byteCount : cardinal;
async : cardinal;
filler : ARRAY 1:2 OF char;

END;
where

event-type has the value of iocomolete event.

2 4 I



ipc4block(I) KSOS 1/6/81 ipc_block(I)

stat.devlndep contains the device independent completion status. This
field is valid for all I/O completion messages.

stat.devDep contains the device dependent completion status. This

field is valid only for special devices. The meaning of
this field can be found with the supported device manual
pages.

byteCount is the number of characters transferred by this asynchro-
nous request.

- async is the user supplied asynchronous identifier.

Messages generated by Processes

Messages of this type are sent using K iixnal or K post and are received
either through the pseudo interrupt vectors or by K receive. The seid
field contains the sending process seid. The ipc msx record can contain
anything. By convention, the first byte contains the event type.

SEE ALSO
w ioStatus (1), Seid (1), Pseudo Interrupts (I), Kpost (II), Ksignal

(II), Kreceive (II)

-3

,.-g



K err_num(1) KSOS 1/6/81 Kerrnum(l)

NAME
K_errnum - Kernel error numbers

SYNOPSIS
cardinal;

DESCRIPTION
This list of Kernel error numbers is subject to revision pending resolu-
tion of discrepancy reports concerning them. The actual numerical value
for each exception may be found in NEWcalls.mod.

KPR related Kernel calls and the exception values they return follow:

XOK No exception
XKemt kernel generated EMT
XKapPr bad mapping process
Xaborted I/O request was aborted
Xasync asynchronous I/O initiated
XdtEot OK but tape is now after EOT
Xattn secure attention char input
XbAddr bad address

- XbEmt bad emt
XbFn bad function code
XbLc.ArgSg bad location for arg seg

- XbMapIn cannot map in PCS
XbMapOut cannot map out PCS
XbMovln bad PCS move in
XbMovO bad PCS move out
XbNoMes No message
XbParam bad Kernel interface param
XbPcsRef bad PCS reference
XbPcsSd bad PCS seid
XbPm
XbPrSd bad process seid
XbPsLev bad pseudo interrupt level
XbSchL bad scheduler action
XbSgDes bad seg des
XbSgRng bad seg range
XbSgSd bad seg seid
XbSgSz seg size is not mult of 512
XbS.Pm bad status parameter
XbSwp bad PCS swap
XbSz bad size parameter
XbSzArgSg bad size for arg seg (too large)
XbTiiPm bad tii parameter
XbadBlockNo bad block number on I/O
XbadDa SMXdap failure
XbadFsl 1: did not find expected slot kind

- XbadFs2 2: bad checksum in slot
XbadFs3 3: reserved
XbadLink Klink overflowed count (LEAK)
XbadModes illegal combination of open modes

- -1i-

*



K_errnum(I) KSOS 1/6/81 Kerrnum(I)

XbadNsp
XbadOd
XbadPriv
XbadRef Count
XbadSize invalid size in pBlock
XbadSlot bad upt slot
XbadStCap
XbadSubtype
XbadSubtypeMatch

XbadVol unacknowledged disk volume
XbdDm bad domain
XbdKcl bad Kernel call
XblAdVacfmu block addr has vacant page reg
XblNtInSg block not in seg
XbpT break point trap
Xbusy Exclusive use fails because busy
XcPsInt cannot pseudo interrupt
XchglDspc attempt to change I/D space of seg
XchgSgOwn attempt to change owner of seg
XcpuT cpu error
XcritExcl
XdapViol
Xdown Hardware is now down
XdupSg attempt to duplicate use of a seg
Xempty empty upt slot
XendOfFile read would pass end of file
Xerror Retryable hardware error
XexFile Exclusive open on fork attempt
XexSpace extent table full (LEAK)
Xfault Non-retryable hardware error
XfloT floating point unit trap
XiiT illegal instruction
XinBuf Input buffer illegal for fn
XinSgAldMap incoming seg already mapped
XindMap bad mapping index
XioT I/O trap
Xmark EOF mark read from magnetic tape
XmemT memory error
XmmT memory management trap
Xmoving offline motion (rewind) going
XmtSpace mount table full (LEAK)
XnPgSg seg does not cross page boundary
XnPvLkSg no priv to set memlock (swappable)
XnPvStkSg no priv to set swap lock (sticky)
XnSgDes not a seg des (out of range)
XnWrtArgSg non-writable arg seg

XncnDo cannot say why
XnoAcc no access
XnoAsync asynchronous queue full (LEAK)
XnoClass Object wrong class for this call
XnoExclWrite
XnoFile
XnoFunct Hardware does not support this fn

-2-



a-K Kerr num(I [SOS 1/6/81 K err num(I

XnoHelp no aiwap help possible
Xnolnit mapping process not initrXhoMap no existing map
XnoMode No open mode given
XnoObj object non-existent
XntoOwner
XnoPriv does not have privilege
XhoProc no more process allowed
XnoSLev no privSetLevel
XnoSPriv no privSetPriv
XnoSpace No file system space left
XnoStCap
XnoTranquil tranquility violation
XnotReadable Object not open for reading
XnotWritable
Xnw~utSg non-writable outgoing segment
XodSpace
XopenFiles Global open table full (LEAK)

ifoXoutSgAldUmp outgoing seg already unmapped
XpostEh POST exhaustedIXprvFn privileged function not allowed

FXsgMap seg mapped when setting acc,loc
XsgNoAcc seg no access
XsgSw seg swapped out
XshSg seg is sharable
XsltAl bad PCS slot allocation
Xtimeout Hardware did not respond in time
XUDlnt cannot interrupt for [ signal
XvrtMmCf 1 virtual memory conflict
XWOalSg attempt to make write-only seg

-3-



openDescriptor(I) KSOS 9/9/80 openDescriptor(I)

_NAME

openDescriptor - open file handle

SYNOPSIS
integer;

DESCRIPTION
OpenDescriptors are used to reference open objects in the various I/O
Kernel calls. When a K create or a K open is done, an openDescriptor is

* returned.

SEE ALSO
Kclose (II), K_create (II), Kdevicefunction (II), K_getfilestatus
(II), Kopen (II), K_read (II), K set filestatus (II), K write (II)

m

-1

.......... 4 -



-, openModes(I) KSOS 1/6/81 openModes ()

... NAME
openModes - open modes

SYNOPSIS
openModes RECORD

read : boolean;
write : boolean;

exclusive read : boolean;
exclusive write : boolean

END;

DESCRIPTION
The OpenModes record is used to indicate the mode in which an object is

to be opened or created. The list below describes each field.

read when true, indicates that the object should be opened or
created for reading.

write when true, indicates that the object should be opened or
created for writing.

exclusiveread when true, indicates that the object should be opened or
created for reading by the calling process only.

exclusivewrite when true, indicates that the object should be opened or
created for writing by the calling process only.

The only valid combinations of open modes fields are:

exclusive
read write read write

true false false false Normal read.
false true false false Normal write.
true true false false Normal read and write.
true true false true Lock out all other writers.

-,true true true true Lock out everybody else.

All other combinations are invalid.

SEE ALSO
SK creat (II), Kopen (II)

I q-I -



Pblock(I) KSOS 9/5/80 pblock(I)

NAME
p_bPlock -parameter block

SYNOPSIS

RECORD

location: virt loc;
b size : cardinal;

END;

* DESCRIPTION

P block contains the I/O buffer description.

location is the virtual location of the I/O buffer.

-b-size is the byte size of the I/O buffer.

SEE ALSO
6. virt-lbc MI, K device-function (II), K_read (II), K _write (II)



priv struct(I) KSOS 9/5/80 priv-struct(I)

NAME
priv struct -set of privileges

SYNOPSIS
bits32:

DESCRIPTION

Each bit corresponds to a privilege in the priv names enumeration. See
the B-5 specifications for the meaning of the different privileges.

*priv-names O (bit numer*)

privFileY~pdateS tatus,( 00 *

* privLink, (*01 C

privLockSeg, (C02 C

priv~odifyPriv, (C03 C

priv~ount, (C04 C

* privSetLevel, (05SC

privStickySeg, (C06 C

privSetPath, (C07 C

t - privViolSimpSecurity, (C08 C

privViolStarSecurity, (C09 C

privViolSimplntegrity, (C10 C

privViolStarlntegrity, (C11 CI - privViolDiscrAccess, (C12 *
privRealizeExecPermission, (C13 C

privSignal, (*14 C

- privWalkPTable, (*15 C

priV~alt, (C16

privKernelCall, (C17 C

privViolCompartments, (C18 C

privSetComm, (19 C

privlmmigrate, (C20 *
privViolTranquility (C21 C

SEE ALSO
Ksetpriv (II)



pseudo int vector(I) KSOS 1/6/81 pseudoint vector(l)

NAME
pseudoint vector - pseudo-interrupt vector

SYNOPSIS
- pseudo int vector - RECORD

interrupted pc cardinal;
interrupted ps cardinal:

- interrupted p level cardinal;
int mg: ipc block;
new C cardinal;
new s cardinal

END;

DESCRIPTION
interrupted_pc

pc of process when (before) pseudo-interrupt asserted

interruptedps
ps of process when (before) pseudo-interrupt asserted

interrupted_p_level
pseudo-interrupt level of process when (before) pseudo-
interrupt asserted

int msg pseudo-interrupt message

newpc pc of process after pseudo-interrupt asserted

new ps ps of process after pseudo-interrupt asserted

-. pseudo interrupt levels

baselev = 0; (* emulator call
ipc..lev - I; (* IPC pseudo int
timelev - 2; (* timer pseudo int
siglev - 3; (* I signal pseudo int *)
io lev - 4; (* I/O pseudo int
hardlev - 5; (* hardware pseudo int )

-7--



proc stat block(I) KSOS 1/6/81 proc-stat block(I)

NAME
proc- statblock - process status block

SYNOPSIS
proc stat block - RECORD

own : seid;
Parent :seid;
family cardinal;

owner : cardinal;
group : cardinal;

aprio : cardinal;
Pseint : cardinal;
2-- : cardinal;

alarm : cardinal;
clock : cardinal32;
tt : boolean;

stiming : cardinal;
utiming : cardinalEND;

DESCRIPTION

This record contains process dependent information.

A fields with an asterisk by its name is a read only variable.

*own is the said of the process associated with this status

block.

*parent is the said of the process which created the process, named
by own

family is the family name controlled by the NKSR. This field may
only be set by processes with the privilege privSetLevel.

owner is the real user identifier. This field may only be set by
processes with the privilege privSetLevel.

group is the real group identifier. This field may only be set by
processes with the privilege privSetLevel.

aprio is the advisory priority of the process. A process in user
domain can set this field between 0 and 63. A process in
supervisor domain can set this field between 0 and 127. A
process with privSetLevel can set this field between 0 and
255. Priority 0 is the lowest priority.

7 77- 1A-



procstat block(I) KSOS 1/6/81 proc statblock(I)

pseint is the current pseudo-interrupt level of the process.

ps is the processor status word of the process.

alarm is the value of the real-time timer alarm in clock ticks.
Setting this field activates the real-time timer which will
generate a timer pseudo-interrupt. Setting this field to
zero cancels the alarm.

clock is the value of the time of day clock in clock ticks. This
field is read-only except for the Initial Process.

tt is the timer toggle clock. Setting this field to true
causes a timer toggle pseudo-interrupt on every clock tick.

*stiming is the amount of time spent in the supervisor domain in
clock ticks.

*utiming is the amount of time spent in the user domain in clock
ticks.

SEE ALSO
priv-struct (I), seid (I) tii struct I), Kgetprocess_status (II),
Ksetprocess_status (II)

2-



securitycattype (I) KSOS 1/6/81 security cattype (I)

NAME
securitycat type - security categories

SYNOPSIS
security cat type = ( security cat 0, security Cat I,
security cat 2, security Cat 3, security cat 4,
security cat 5, security Cat 6, security cat 7,
security cat 8, security Cat 9, security Cat 10,
security cat 11, security cat 12, security cat 13,
security cat 14, security Cat 15

DESCRIPTION
There are a 16 possible security categories on a KSOS system. These
categories are defined in the security cat type enumerated type. The
security categories form an ordered set which, along with the integrity
category and security compartments, control access to and from the
objects of the system. If object A has a higher security category than
object B then:

A can read B
A cannot write B

B cannot read A
B can write A

SEE
compart set(I), integritycat type(I)

5-1

.1$



said(I) KSOS 1/6/81 seid (I)

a- NAME
said - secure entity identifier

SYNOPSIS
nasp type - char;

said - RECORD

nso nap type;

uniq idO: char;
uniq idli cardinal

END;

DESCRIPTION
-A said uniquely identifies each ksos object. A said has two fields, the

name space partition (nap) and a 24 bit field. Each kernel object class
is given its own nap. The 24 bit field is used to identity the indivi-
dual instances of the kernel object. (This field is subdivided into
unig ido and unil idi pieces.)

The following table contains the valid name space partitions.

null_nasp 0 null
extent-nap I extents
terminal -sp 2 terminal
device _nap 3 devices
process nap 4 processes
segment__nsp 5 segments
subtype__nsp 6 subtypes
kernel nsp 7 kernel
same_nap 128 reserved for directories

* -root_nsp 129 ROOT file system
lowfile.asp 129 lower limit on file system nap
high_file nsp 255 upper limit on file system nap

The root file system has the distinguished value of 129. All other file
systems have nap values from 130 to 255, which are returned by the kernel
when the file system is mounted.

The description given is sufficient for all users except system program-
mers. The 24 bit quantity has many different fields discriminated by the

-- nsp.

Null Said

The null said is a distinguished value. Uniq idO and unig idl have
values of zero. In general the null seid acts as a place holder. The
null said is always translated by the kernel interface to be the said of
the calling process.

-1



seid (I) KSOS 1/6/81 seid (I)

Process Seid

Each process has a seid which is valid for the life of the process.
Unig idO contains the process table index. Uniq idl contains a random
number to make the process seid unique over some period of time.

Segment Seid

Each segment has a seid which is valid for the life of the segment.
Unip idO contains the global segment table index, while unig idl contains
a random number to make the segment seid unique over some period of time.

Kernel Seid

The kernel seid is a distinguished value used to identify messages sent
by the kernel. Both uniq idO and uniq idl contain zero values.

Device Seid

Each device has a seid which is valid for the life of KSOS. Changing
these seids will cause compatibility problems between KSOS systems.
Uniq idO contains the device class. The device class identifies the type
of device being used. The following device class assignments tave been
made.

disks 1-9
tapes 11-19
asynchronous communication devices 21-29
synchronous communication devices 31-39
network communications devices 41-49
paper tape devices 51-59
card readers 61-69
printers 71-79

The following device class numbers have been assigned to the following
devices.

disks RK05 1 RWP04 2
RWP05 3 PWP06 4
RWS04 5

tapes TWE16 11 TMhu 12
TU56 13

network IMPUIB 41 LHDH 42

paper tape PRIl 51 PC11 52

printers LP11 71

Unig idl distinguishes multiple devices of the same type. The first dev-
ice has a value of zero and all the rest are numbered sequentially. This
field can not be greater than 256.

-2-



seid(I) KSOS 1/6/81 seid(I)

Extent Sei'

All block address.ble devices contain extents. Each extent has its own
seid. For each device, the first four extents are predefined across all
KSOS systems. Uniq idO is the same as uniq.id0 on the device seids for

the device upon which the extent rides. Uniq idl however, has the low
order byte containing Unig idl of the device seid. The high order byte
contains the extent number.

Subtype Seid

The subtype seids are valid across all KSOS systems. Subtype seids are

always predefined. The following subtype seids have been defined.

seid uniqid0 uniqidl

UNIX directory 100 0
KSOS file system 100 1
Network Files 100 2

Terminal Seid

Each terminal has a seid which is valid across all KSOS systems. Two
types of terminal devices are supported, the DL and DH. DL devices have

uniq idO values of 0 through 49. The value of 0 is reserved for the con-
sole device. DR devices have their uniq idO starting with 50. Uniq idl
is always the terminal path number. The path number is assigned each

time a user changes to a new level by the NKSR. The path numbers 0 and I

are reserved for the secure server and the secure services respectively.

File Seid

A file has a seid which is valid for the life of the file. The nsp indi-
cates which file system the file is on. The uniq idO and uniq idl fields

contain the file's 24 bit Jnode number.

3 -



-j segstatblock(I) KSOS 1/6/81 seg_stat block(I)

r

NAME
seg_stat block - segment status block

SYNOPSIS
sex stat block -RECORD

mem lock : boolean;
mem advise boolean;
swap lock : boolean;
sharable boolean;
growth direction;
stat size seg size;
stat said seid;

stat des : seg des;
stat mapped : boolean;
stat acc : acc mode;
stat le : virt loc;

END;

DESCRIPTION

Fields marked with an asterisk (*) are read only. Fields marked with a
double asterisk (**) are read only while mapped in.

memlock is true if a segment is locked into memory (may not be
swapped out). The privilege privLockSeA is required to lock
a segment into memory.

memadvise is true if the segment is liable to be locked down in
memory. I/O segments should be given this attribute by usa
programs.

swap lock is true if the segment is locked into swap space (sticky:
must not be deleted). The privilege privStickySeg is
required to lock a segment into swap space.

sharable is true if the segment may be shared with other processes.
A segment's discretionary access controls whether it is
sharable. A sharable segment can not have its global attri-
butes changed. For example, once a segment is shared, it
can not be made unsharable. However, it can still be mapped
anywhere in a process's address space.

growth indicates the growth direction of the segment. A downward-
growing segment starts at a high memory address and ends at
a low memory address. Its virtual address must be the high,
byte address ( i.e. the address is odd). An upward growing
segment starts at a low memory address and ends at high
memory address. Its virtual address must be the low byte
address( i.e. the address is even).

,1i

-1-

S . . . S r . . ' .



segstat_block(I) KSOS 1/6/81 segstatblock(I)

*statsize is the length of the seguent in bytes. This must be a mul-

tiple of 512.

*statseid is the segment's seid.

*stat des is the segment's open descriptor (process-local segment

number).

*statmapped is true if the segment is currently mapped into the
process's address space.

**stat_acc is the access allowed the calling process to a segment. The
access allowed must always be a subset of the access allowed
this process by the TII of the segment.

**stat-_loc is the last known virtual location (in the process's address

space) of a segment. If the segment is upward-growing, this
address must be a multiple of 64; if downward-growing, this
address must be one less than a multiple of 64.

SEE ALSO
K_buildsegment (II), Kget segmentstatus (II), K_set_segment status
(II), privstruct (I), tiistruct (I)

-2-

* 4. .b . h i U~



tiistruct(I) KSOS 1/6/81 tiistruct(l)

NAME

tiistruct - type independent information

SYNOPSIS

privstruct - bits32;

compart set - bits32;

accesslevel type - RECORD
securitycategory : security cat-type;
integrity__category : integrity cattype;
securitycompart : compartset

END;

tiistruct - RECORD

accesslevel : accessleveltype;
owner : cardinal;

group : cardinal;
da : discr access;

- tiipriv : privstruct
END;

DESCRIPTION

accesslevel contains the security and integrity levels, and the secu-
rity compartment of the object.

owner contains the (effective) user identifier for the object.

- group contains the (effective) group identifier for the object.

da contains the discretionary access bits for the object.

tiipriv contains the privileges belonging to the object.

SEE ALSO
K get object_level (II), K set objectlevel (II), priv struct (I),
compart-set (I), discr_access (I)

- -1!-

* -S4 ** 4 ** .



virt loc(I) KSOS 1/6/81 virt loc(I)

NAME
virt_lo - virtual location

SYNOPSIS
domain type - ( (* domains *)

nulldomain,
kernel_domain,
supervisordomain,
userdomain

mem type = C (* memory space divisions *)
null space,
dspace,
i-space

virtloc - RECORD (* virtual location *)
domain domaintype;
space mem._type;
address cardinal;

END;

DESCRIPTION

A virtual location specifies the domain, space, and address of where the

location exists in the user process.

domain contains either the user domain or the supervisor domain.
The null domain is a distinguished value which the kernel

-translates to the domain from which a kernel call has been
made.

space contains which space within the domain the data buffer is
located. The null space is a distinguished value which is

converted to data space on separate I/D space programs, and
otherwise to instruction space.

address contains the address of the location involved.

SEE ALSO
K remap (II), Krendezvoussegment (II)

-A' i
* i- I *** *j~~



C-Kernel_Interface(II) KSOS 9/3/80 C-KernelInterface(II)

NAME
C-Kernel_Interface - C Interface to the Kernel Calls

DESCRIPTION
The C-Kernel interface consists of 38 C routines. One interface routineexists per Kernel call. The interface routines are used in conjunction
with the types defined in KERcalls.h

The general procedure followed in the interface routines is to put the
arguments of the interface routine into one contiguous block of memory.

-Then through an assembly language subroutine, a pointer to the block with
the arguments is passed to the appropriate kernel call. Upon completion,
the kernel call places any return values into the argument block and
returns an exception. This exception is then passed upward by the assem-

" bly language subroutine. The interface routine unpacks the return values
from the argument block and returns the exception to the calling C pro-
gram.

The 38 C interface routines are contained in 38 seperate files, named
KOO.C through K37.c. The assembly language subroutines are contained on
files named EMTOO.s through EMT37.s. The C routines are archived into

one file (EKL.a) and the assembly 
subroutines into another (EMT.a).

To use the C-Kernel interface routines put the archive file names on your
compile command line. An example of compiling a program, "test", that
uses the interface routines is:

cc test EKL.a EMT.a

FILES
KOO.c - K37.c, EMTOO.s - EMT37.s, EKL.a, EMT.a

SEE ALSO
KERCalls.h

- -1I-

' 'I.- *



w K_boo(II) KSOS 12/1/80 Kbeot (II)

NAME
K_boot

MODULA SYNOPSIS
CONST b sea: sea des;
VAR stat: K err hum;

sta.t :- NK beot(b sea);

C SYNOPSIS

sea des b seg;
int stat;

stat - K boet(b sea)-

DESCRIPTION
K boot releases (as with K release segment) the segment indicated by the
argument and maps in (as with K remap) all other segments attached to the
process. Execution of the process continues at location 0 of the
process's supervisor I-space.

SEE ALSO
K_release_segment(II), K remap(II)

S

S



K_build segment(II) KSOS 12/1/80 Kbuild segment(II)

NAME
K_build-segment

MODULA SYNOPSIS
CONST status: seg stat block-

CONST da: discr access;
VAR seaSeid: seid;
VAR segDes: seg des;
VAR stat: K err hum;

stat :- NK build segment(status, da, segSeid, segDes);

C SYNOPSIS

seg stat block status;
diser access da;

seid sexSeid;
seg des seRDes;
int stat;

stat - K build segment (&status, da, &segSeid, &seDes);

DESCRIPTION
K build segment creates a new process segment and maps it into the

process's virtual address space. Its operation includes the following
actions:
* A global segment descriptor is allocated and swap space is alioated.
* A process-local segment descriptor is allocated and associated with

the created segment.
* Page registers for the process are chosen according to the address

range specified for the segment, and are partially initialized.
* Physical memory is allocated for the segment and the physical memory

address of the segment is set up in its page registers. The

segment's memory is guaranteed to be all zeros.

Information needed to build the segment is taken from the parameters.
From status (see segstat block(I)) are taken:
mem_lock whether to lock the segment in memory; the privilege

privLockSeg is required for this action

mem_advise whether the segment may be locked in memory, particularly by
I/0 operations

swap lock whether to lock the segment in swap space: the orivilege
privStickySeg is required for this action

sharable whether to allow sharing of the segment with other processes
growth segment's direction of growth
statsize size of the segment in bytes

statacc access the cailing process is to have to the segment

stat lec virtual location pf the segment in the process's address
space

The da parameter supplies the discretionary access for the segment, to be

placed in its type-independent information (see tiistruct(I)). The ac-

- -- I------



K_buildsegment (II) KSOS 12/1/80 Kbuild segment(II)

Ces to the segment allowed by the stat ace field of the status parameter
must be a subset of the access allowed by the owner part of the da param-
eter. Write-only access (write without read) may not be specified in ei-

ther the stat ace field or the da parameter. The remaining fields of the
type-independent information for-the segment are taken from these of the

calling process.

Values produced by the call art returned in seRSeid (the SEID created for
the segment); and seaDes (the process-local segment number).

Segments may be shared between processes providing that the security, in-
tegrity and discretionary access checks would allow such sharing. Shar-
ing of segments requires that the first process to desire to share the
segment create it. Subsequent to creation, the segment SEID must be made
available to processes wishing to share the segment, typically either via
placing it in a mutually agreed upon file, or by passing it via an IPC
message. The other processes would then issue K rendezvous segment calls
(below) to gain access to the segment.

It is the responsibility of the processes sharing the segment to see to
it that it is properly initialized, either by the Kernel's guarantee of
all zeros, or by explicit initialization. The initialization may require
cooperation or mutual exclusion to be completed successfully. This is
particularly true in the case of shared pure text segments which are to
be resident in the Instruction Space on the PDP-1l/70. Since such seg-
merits cannot be written into, they must be created as writable segments,
initialized from the appropriate image file, and then have their status
changed to make them reside in the correct space and be non-writable.
Care should be taken in the design of programs like the Process
Bootstrapper which perform such initializations to assure that duplicate
initialization attempts or multiple copies of the same shared text seg-
ment do not occur.

The virtual address and domain parameters shall be for the calling pro-
cess only. Other processes sharing the segment may map it into their
virtual address spaces as desired through their use of the
K rendezvous segment calls. Of course, some segments, e.g. text seg-
ments, may operate correctly only if mapped starting at a specific virtu-
al address.

EXCEPTIONS
XbSgRng Bad segment range: set of addresses specified for the segment

would lie outside a 64K address space.
XbSgSz Bad segment size: segment size of zero specified
XnPgSg No page in segment: segment address range does not cross or is

not adjacent to some multiple of 8K (address range must include
an 8K multiple or have top address tI..t one less than an 8K
multiple).

XnPvLkSg No privilege to lock segment: memlock specified, but without
necessary privilege

XnPvStkSg No privilege to make sticky segment: swaplock specified, but
without necessary privilege

XncnDo Cannot do! global resource exhaustion

-2-



K-build segment(II) KSOS 12/1/80 K-build-segment(II)

XpostEh Process open segment table exhaustion: too many process seg-
mnents

- XvrtMmCf I Virtual memory conflict: some subset of the address range of
this segment would use a page register(s) already in use by an
existing segment (high-order three bits the same).

-XwOnlSg Write-only segment: attempt to create write-only segment

L



K_close([I) KSOS 9/8/80 Kclose(II)

NAME
K_close - close a file

MODULA SYNOPSIS
CONST od: openDescriptor;
VAR status: K err num;

status :- NK close(od);

C SYNOPSIS
- char od;

int status;

Status - K close(od);

DESCRIPTION
K close closes the file, terminal, extent, or device identified by the
given open descriptor (previously returned from a K__create or a K open).
Upon process exit, close of all open files, extents, terminals, and dev-
ices is performed automatically.

K close does not cause any device action, such as tape rewinding.

SEE ALSO

K_create(Il), Kopen(II)

V

KL .

-1-



K_create(II) KSOS 12/1/80 Kcreate(II)

- NAME

K_create

MODULA SYNOPSIS
CONST protoSeid: seid;
CONST am: peModes;

CONST da: discr access:
- CONST stCa : openDescriptor;

VAR fSeid: seid;

VAR 'd: openDescriptor;

VAR stat: K err hum;

stat :- NK create(proteSeid, em, da, stCap, fSeid, od);

C SYNOPSIS
seid proteSeid;
open mode am;
discr access da;
openDescriptor stCap;
said fSeid;
openDescriptor ad;
int stat;

stat - K create (protoSeid, em, da, stCap, &fSeid, &od);

DESCRIPTION
K create creates and opens a new file on the same file system as the file
protoSeid. protoSeid need not refer to an actual file; only the name
space partition part of the soid is examined to determine which file sys-
tem is to be used.

The file is created with size zero, the subtype specified by stCap, and
is opened with the specified open modes, which must be valid open modes
as defined for K open(II). The file is created with a link count of
zero. This implies that the file will be deleted when closed by the
creating process unless the link count of the file is first incremented
by K link(II). Use of K link(II) is normally restricted to the UNIX
directory manager, which thus restricts the creation of permanent files
to those under the central of the directory manager.

The said of the new file, fSeid, is chosen pseudo-randomly by the system.
The concept of re-creating ap existing file is thus not meaningful.

The open descriptor ad is a local name which the process can subsequently
use to access the created file.

SEE ALSO
K.pen(II), K_close(II)

* .. .. . .. I- -* - I t l .n ll



K device function(II) KSOS 12/1/80 K device functien(II)

NAME
K_devicefunction - perform arbitrary I/O function

MODULA SYNOPSIS
CONST od: openDescripter;

CONST funct: ioFunction;
CONST blockNe: fBlockNumber;
CONST inP: p block;
CONST outP: p block;
CONST id: asyncId;
VAR errs: loStatus;
VAR bytesDone: cardinal;
VAR status: K err num:

status - NK device function(od, funct, blockNo, inP, outP, id, errs, bytesDone);

C SYNOPSIS
openDftcriptor ed;
int funct;
long blockNo;

-- pblock inp;
pblock outp;
int id;

ioStatus errsi
int bytes;
int status;

- status - K device function(od, funct, bleckNo, &in , &outp, Id, &errs, &bytes);

DESCRIPTION
K device function can be used for performing all I/O functions. There
are a number of I/O functions, some of which have meaning only for cer-
tain devices. The parameter blocks inP and outP define the memory areas
to be used for input (into memory) and output (from memory). Either or
both parameter blocks may be null (size - 0) depending on the require-
ments of the I/O function.

SPECIFIC FUNCTIONS
Functions are specified in the frune argument.

- READ Read. (same as K read block(II)) Valid inP and open
for read required.

WRITE Write. (same as K write block(II)) Valid outP and
open for write required.

SETEOMCHARS Sets the set of characters considered to end a single
input request for a terminal. See KSOS Input/Output
Guide.

REWIND Rewind (tape only). Open for write required.
UNLOAD Unload removable medium. Rewinds tapes tff-line

condition, steps disk drives where hardware permits.

.--.



Kdevice function(II) KSOS 12/1/80 Kdevice function(II)

Open for write required.
WRITEMARK Write tape mark. Open for write required.
SETDENSITY Set tape writing density. Open for write required.

The density (800 or 1600) is placed in the blockNo
argument.

SETTERMMODES1 Set raw mode, echo, etc. for terminals - see KSOS
Input/Output Guide. Open for read and write
required.

SETTERMHODES2 Set parity, density, etc. See KSOS Input/Output
Guide. Open for read and write required, and the
caller must have the privilege to set these
security-related modes. Open for read and write
required. [requires privSetComm]

GETTERMMODES Get terminal modes - see KSOS Input/Output Guide.
Open for read and valid inP required.

SETFILESIZE Set byte size of file. The size is submitted in
blockNe, and must be compatible with the current high
written block of the file. (I.e. (bytes + 511) DIV
512 - blocks) This function does not allocate or
release file space. Open for write required.

ERASEFILE Get rid of all space in a file. Open for write
required.

VOLUMEVALID Mark removable medium as usable. Open for read and
write required. [Requires privImmigrate]

VOLUMEINVALID Mark removable medium as unusable. Where hardware
permits, performs an UNLOAD. Open for read and write
required.

INPUTWAIT This function is used to wait until input is avail-
able from a terminal. It is only valid as an asyn-
chronous request, and only for a terminal. When an
INPUTWAIT request completes, a following K read block
request for input from the terminal will return
immediately with input data. Thus, the effect of
asynchronous terminal reads (which are not supported)
is available by performing an INPUTWAIT to wait until
input is available, and then when the asynchronous
completion message is received, performing a
K read block request. Open for read is required.

SETPATH Connect physical terminal to a different logical ter-
minal path. The desired path number is placed in the
blockNo argument. Open for read and write required.
[Requires privSetPath]

ASYNCHRONOUS REQUESTS
I/O and computation (and to a limited extent I/O and I/) may be over-
lapped within a single process. Normal calls to K device function,
K read block , and K write block should have a zero in the id argument.

* Such requests wait until the I/O operation is complete. If anything else
is placed in the id argument, the request is asynchronous and the call
may return before the operation is complete. When the operation com-
pletes, an I/O completion message (see the ioCompletionMessagetype ) will
be sent to the process which did the K device function (or K read block
or K write block) call.

-2-

2 1*I _ _ - _ _ _ . .



K_device function(II) KSOS 12/1/80 K devicefunction(II)

Only when status is XOK and errs.devlndep is Xasync should an I/0 comple-
tion message be expected. On asynchronous requests, some errors are
reported through errs.devIndep in the call and some are reported through
the errs.devlndep field in the I/0 completion message. It is generally
possible to have several requests in progress for different devices from
the same process, but an asynchronous request for a busy device will bs
delayed until the device is available.

SEE ALSO
K_readblock(II), K_write_block(II)

[ -
-3-

_______ _______ ______ _______ __&___ AI - ------- TA



K fork(If) KSOS 9/10/80 K tork(II)

NAME
K__fork

MODULA SYNOPSIS
VAR own: seid;

VAR ether: seid;
VAR stat: K err hum;

stat :- NK fork(own, other);

C SYNOPSIS
seid own;
seid other:
int stat;

stat - K fork (&own, &other);

DESCRIPTION
The K fork primitive creates a process. The new process is remembered as
a child of the caller (parent). The child is an exact duplicate of the
parent. The process id of the parent is returned to the child. The pro-
cess id of the child is returned to the parent. The program counter of
the parent is not adjusted as it is in standard UNIX. The returned pro-
cess id will be sufficient to distinguish parent and child. The type in-
dependent information of the child process is identical to the type in-
dependent information of the parent process.

The non-sharable segments of th process are copied into new segment in-
stances for the child. The reference counts of sharable segments are in-
cremented. The process local segment names are the same in both the

- parent and child, although in the case of non-sharable segments they
refer to a different segment instance (and therefore, a different segment
SEID) for the child than for the parent.

The child inherits the open objects of the parent. That is, each object
that is open in the parent is opened in the child, and has the same local
open object descriptor. The open counts of the open objects so inherited

- are incremented to reflect the fact that another process (the child) has
them open. If the parent has an object open for exclusive use, the
K fork call fails, preventing two processes from having simultaneous ac-
cess to the same exclusive use object.

An error is returned in stat if the pool of available processes has been
exhausted.

,- -

-



SKgat-filestatus (II) KSOS 9/10/80 Kget_filestatus(II)
A9

NAME
K_getfile status

MODULA SYNOPSIS
CONST fSeid: seid:
CONST stCay: openDescriptor;
VAR status: file stat block;
VAR stat: K err num;

stat :- NK get file status(fSeid, stCay, status);

C SYNOPSIS
seid fSeid;
openDescrlptor stCavp;
file stat block status;
int stat:

stat - K get file status (fSeid, stCap, &status):

DESCRIPTION
K get file status returns the type dependent information associated with
a file, terminal, extent, or device. This information includes the size
of the object in bytes (zero for non-addressable devices), and the time
of the last open for writing (meaningful for files only). The invoking
process must have read access to the file with respect to the mandatory
security and integrity rules only. No discretionary access checking is
performed.

The stCap arguement to this call is ignored.

-- ,

* - 5 - - -. .. .. . . . •



p

Kget objecevel (II) KSOS 9/8/80 K Set objectlevel (II)

NAME
K_get objectlevel

MODULA SYNOPSIS
CONST obiSeid: seid;
VAR level: tii struct;
VAR stat: K err hum;

stat :- NK get object level(eblSeid, level);

C SYNOPSIS
seid oblSeid;

tii struct level;
int stat;

stat K get object level (obiSeid, &level);

DESCRIPTION
Given obiSeid, the primitive K get object level returns the type indepen-
dent information for an object in level.

-- .

, . - *- ., - . . . . . .. . _ 0 . ,. . .



K get processstatus(II) KSOS 9/8/80 Kgetprcess-status (II)

FAME
K get_processstatus

MODULA SYNOPSIS
CONST procSeid: seid;
VAR status: proc stat block;
VAR stat: K err num;

stat :- NK get process status(procSeid, status);

C SYNOPSIS
seid procSeid;;
prec stat block status;
int stat

stat - K get process status (pro.cSeid, &status);

DESCRIPTION
The K get process status call returns, in the status parameter, the type

dependent information about the process specified by procSeid. A process
may successfully request information of processes that it can access
given its level and the level of the target process.

* . ,-" 1 -r-



Kgetsegment_ status(II) KSOS 9/10/80 Kgetsegment-status(II)

NAME
Kjet segmentStatus

MODULA SYNOPSIS
CONST seRSeid: seid;
CONST sezDES: seg des;
VAR status: seg stat block;
VAR stat: K err hum;

stat :- NK get seRment status(segSeid, status);

C SYNOPSIS
seid segSeid;
seg des seRDes;
sea stat block status;

int stat;

stat = K get segment status (seqSeid, &status):

DESCRIPTION
K get segment status returns, in the parameter status, the type dependent
information associated with a segment seSeid. A process may successful-
ly obtain type dependent status about any segment from which information

could flow to the process. No discretionary access checking shall be
performed.

EXCEPTIONS

XbSgDes Bad segment designator: This segment designator is
inactive.

XbSgSd Bad segment seid: segSeid is not the said of an exist-
ing segment or process does not have manditery (securi-
ty) access to the segment.

XnSgDes Not a segment designator: This number is outside the
set of segment designators.

-- 1-



- K_halt(II) KSOS 9/8/80 Khalt(II)

NAME
K halt

MODULA SYNOPSIS
-VAR stat:.K err num;

stat :- NK halt;

C SYNOPSIS

int stat;

St:L - K halt ()

DESCRIPTION

K halt causes the entire system to halt. Use of this call is restricted
to processes with the privRalt privilege.

SEE ALSO
privstruct(I)

-"

-1

. -. .



K interrupt_return(II) KSOS 9/10/ 0 Kinterrupt return(II)

NAME
K_interrupt return

MODULA SYNOPSIS
VAR stat: K err num;

stat :- NK interrupt return:

C SYNOPSIS
- nt stat:

stat - K interrupt return ( );

"* DESCRIPTION

K interrupt return provides an atomic return operation from pseudo inter-
rupts. It can be thought of as being analogous to the PDP-I1 RTI and RTT
instructions. When a pseudo interrupt occurs, the program counter, pro-
cessor status word, and current pseudo interrupt level are saved in a
pseudo interrupt vector for the particular type of pseudo interrupt which
occurred. In the PDP-I1 implementation, these vectors are located at
fixed locations in the supervisor domain. The K interrupt return call
res..ores the process, state from these saved values. Because the inter-
rupted process state is accessible to the process, the K interrupt return
call checks the saved state prior to restoring it. The process is not be
permitted to increase its privileges or accessible domains. (Similar
checking takes place in the processing of the pseudo interrupt itself.)



K_invoke(II) KSOS 12/1/80 Kinvoke(II)

NAME
K invoke

MODULA SYNOPSIS
CONST immSeid: seid;
CONST ar: seg des:

VAR stat: K err num;

stat :- NK invoke(immSeid, ars);

C SYNOPSIS
seid immSeid;
sea des arR;
int stat;

stat - K invoke (immSeid, ar);

DESCRIPTION
The purpose of the K invoke primitive is the invocation of potentially
privileged software. The effect of this call is to replace the existing
segment map (including the executing text segment) by a new process im-
age. All segments will be released except for the argument segment
specified by arg. The new process image has only the intermediary seg-
ment and the argument segment active (mapped in). Arguments for use by
the intermediary process may be placed in the argument segment. The ex-
act format of the argument segment Is determined by the particular in-
termediary specified in the call. The argument segment may be used by
the intermediary as a scratch pad as the intermediary builds any other
segments it requires. It is the responsibility of the newly executing
program (the intermediary) to create its own working segments. The

- privileges of the process are set to these associated with the intermedi-
ary segment. In the PDP-11/70 implementation, the intermediary is mapped
into location 0 of the supervisor domain instruction space, and the argu-
ment segment is mapped out. The intermediary may perform' any arbitrary
function. Thus, applications of the KSOS Kernel may elect to create spe-
cialized intermediaries to perform specific functions. The only pre-
defined intermediary is the Process Bootstrapper, described next.

The Process Bootstrapper segments implement a trusted process whose sole
purpose is the creation of other, potentially trusted, environments by
replacing itself with image from the prototype file whose name is passed
in as an argument. The Process Bootstrapper has the following
privileges:

to set privileges

to set the effective owner

to set the security and integrity level

-1



r
K.invoke(II) KSOS 12/1/80 Kinvoke(II)

to realize execute permissions (i.e. use the execute permissions for read
access attempts)

Using the parameters specified in the argument segment, the Process
Bootstrapper builds a new set of process segments conforming to the pro-
cess prototype file. The privileges for the new environment is obtained
from the process prototype file. If the prototype file has no privileges
associated with it, the new environment is unprivileged. If the prote-
type file specifies that it is to execute in a different discretionary
access domain, the bootstrap changes the effective user and/or group of
the process to the owner of the prototype file. The new trusted process
is then set into execution by the Process Bootstrapper. Note that a com-
pletely trusted path exists from the K invoke call, through process con-
struction, to the execution of the trusted software.

The use of the K invoke call is not limited to the invocation of trusted
processes. Untrusted processes may also be executed through the t invoke
call. If change of discretionary access domain or privilege is not re-
quired by the type dependent information associated with the process pro-
totype file, the process bootstrap simply removes all privileges prior to
setting the new image into execution.

The privilege information associated with a process prototype file is
controlled by the Privilege Control Process, a restricted use program
discussed in the Non-Kernel Security-Related Software CPCI Specification
(NKSR 781.

SEE ALSO
P B(III), Kspawn(II)

-2-

"° .



K link(II) KSOS 9/8/80 Klink(II)

NAME
K link

MODULA SYNOPSIS
- CONST fSeid: seid;

VAR stat: K err num;

stat - NK link(fSeid);

C SYNOPSIS

said fSeid;
mnt stat;

at - K link (fSeid):

DESCRIPTION
K link increments the reference count of a Kernel file specified by the
seid fSeid. The reference count is normally used to indicate the number
of UNIX directory entries which point to this SEID. Applications of the
KSOS Kernel which do not use the UNIX directory structure and semantics
may use the reference count for other purposes. The reference count may
only be incremented by processes with the privLink privilege. Such
processes should be carefully designed to reduce the bandwidth of the
resultant confinement channels and to preserve the integrity of the
higher level directory structure, if any. The security and integrity
checking on K link is as if the user were reading and writing the file.
No discretionary access checking is performed. Thus, the processes
privileged to use K link may implement whatever discretionary checking
they choose.

SEE ALSO
K create(II), K unlink(II).

.4 --L
r-



K mount (II) KSOS 9/8/80 Kmount(II)

NAME
K_mount

MODULA SYNOPSIS
CONST extSeid: seid;
CONST readOnly: boolean:
VAR nsp: nsp type;

VAR stat: K err num;

stat :- NK mount(extSeid, readOnly, nsi);

C SYNOPSIS
seid extSeid;
nsp type nsp;

boolean readOnly;
int stat;

stat = K mount (extSeid, readOnly, &nsp§);

DESCRIPTION
The K mount call performs the function of associating a particular file

name space partition with the extent, extSeid, making it possible to

access files in the mounted file system.

Use of this call requires the privilege privMount which normally res-

tricts the use of this call to the NKSR 'mount' program. It is the
responsibiity of the privileged program to insure that the file system
being mounted is a valid file system, that the Immigration Officer func-
tion has approved its use, and that the user invoking 'mount' is author-
ized to operate on the file system involved.

Each mounted KSOS file system belongs to a different name space parzi-
tion. The Kernel assures this by assigning a name space partition to the
file system when the file system is mounted. The Immigration Otficer
software [NKSR 78] maintains a data base of file systems currently immi-
grated. When a extent is mounted, the Kernel shall update an internal

data base which tells it on which extent the SEIDs in the mounted name
space partition may be found. The nsp value returned by the K mount call
determines the name space partition which the Kernel will expect in
operations referring to files in the newly mounted file system.

The first K mount after startup of the Kernel will always return the same
value, and by convention this value is associated with the "root" file

- system.

It is possible to mount a file system as read only by setting readOnly to

true in which case no file on the file system can be opened for writing,
new files cannot be created, and existing files cannot be altered or
deleted. The physical device may be placed in write-protect mode without

interfering with read-only mounts.

L S - I



Y-mount(II) KSOS 9/8/80 K-uount(II)

Each file system contains type independent information. The security and
integrity levels of the file system shall be interpreted as the maximum
levels allowed for any file on the extent. The Kernel prevents K create
operations by any process not permitted data flow to the file system
under the security model.

Note that extents may contain data structures other than KSOS file sys-
tems. A given extent may be assigned for private, non-file system use.
However, only extents belonging to the subtype 'file system' may be
mounted.

SEE ALSO
K_create(II)

-2-



K_nap(II) KSOS 12/1/80 Knap(II)

NAME
Knap

MODULA SYNOPSIS
CONST timeOut: cardinal:
VAR stat: K err hum;

stat :- N_ nap(timeOut);

C SYNOPSIS
-- cardinal timeOut;

int stat;

-- stat -K nap (timeOut);

DESCRIPTION

K nap is a mechanism for explicitly giving up the processor when a higher

level blocking condition occurs. This situation occurs when, for exam-

ple, processes implementing semaphores on top of the Kernel become logi-

cally blocked on a semaphore. K nap provides an alternative to busy

waiting for the semaphore. The timeOut argument is the incremental time

(in 1/60th second clock ticks) before which the process should not be

rescheduled by the Kernel. Processes using K nap should check that the

logical condition for which they were waiting has occurred when they are

activated.

f

'-1-



f
K_pdn(II) KSOS 9/8/80 K open(II)

NAME
K open - open a file, terminal, extent, or device

MODULA SYNOPSIS
CONST fSeid: soid;
CONST em: OpenModes:

CONST stCap: 6penDescriptor;
VAR od: openDescriptar:

status: K err num;

status :- NK open(fSeid, em, stCap, od);

C SYNOPSIS
seid fSeid;
KopenModes _m;
char stCap;

char ad;
int status;

status - K oen(fSeid, GM, stCap, &ad);

DESCRIPTION
K open opens the file, terminal, extent, or device specifiad by fSeid.
The open descriptor is returned in the arguement od.

No initialization of the device occurs when a device is opened. Devices
which are not ready (no tape mounted, etc.) can be opened, but devices
which are not physically present cannot be opened.

om contains the requested open modes, which are

om.reaci Open for reading
om.write Open for writing
eom.exclusive read Lock out all other readers
on. exclusive write Lock out all other writers

- Only the following Combinations of modes are permitted:

exclusive
read write read write

true false false false Normal read.
false true false false Normal write.
true true false false Normal read and write.
true true false true Lock out all other writers.
true true true true Lock out everlbody else.

When an open request fails because of an exclusive use blockage, an
exception is retur-id. There is no blockia or delay associated with

-1-



Kopen(II) KSOS 9/8/80 K-open(II)

exclusive use failure. Note, though, that exclusive use is available
only to those with the ability to open for writing.

SUBTYPES
Subtypes are predefined openable objects which central access to other
objects. If an object is subtyped, a requestor can open it for writing
only if the subtype is already open for writing to that process and the
open descriptor of the subtype is submitted in the stCay argument. A
similar rule applies for reading. Files may be created in a subtype by
providing the subtype, opened for reading and writing, to K create(II).
Subtypes are primarily used by the directory manager to protect direc-
tories and are of limited use to most users. -

SEE ALSO
K_create(II), K._close(II)

-2-

-In



K post (II) KSOS 9/10/80 Kpost (II)

NAME
Kpost

MODULA SYNOPSIS
CONST receiver: seid;
CONST pslnt: boolean;
CONST max: msg struct;
VAR stat: K err num;

stat :- NK post(receiver, pslnt, msa);

C SYNOPSIS
seid receiver;
boolean psInt;
msg struct msg;
int stat:

stat - K post (receiver, psInt, &M&);

DESCRIPTION
K post sends a short message to another process specified by the seid re-
ceiver. A pseudo interrupt is asserted at the destination process, if
selected, and if the receiving process has IPC pseudo interrupts enabled
(i.e. that its pseudo-interrupt level is sufficiently low to allow pseudo
interrupts). A header is attached to the message indicating the SEID of
the originating process.

The type independent information for the two processes is used to deter-
mine rights of the originating process to communicate with the the desti-
nation.

f-

-1

- . N



K_readblock(II) KSOS 9/8/80 Kreadblock(II)

NAME
K readblock - perform read

MODULA SYNOPSIS
CONST od: openDescripter;
CONST blockNo: fBlockNumber;
CONST inP: p block;
CONST Id: asyneld;
VAR errs: ioStatus;
VAR bytesRead: cardinal;
VAR status: K err num;

status :- NK read block(od, blockNo, inP, id, errs, bytesRead);

C SYNOPSIS
openDescriptor od;
long blockNo;
pblock inp;
int id;
ioStatus errs;
int bytes;
int status;

status - K read block(ed, blockNo, &in, id, &errs, &bytes);

DESCRIPTION
K read block is used to request reading from files, terminals, extents,
and devices. The parameter block inP defines the memory area to be used
for input.

Files and extents are stored in units of 512 byte blocks. From I to 64
blocks can be read from a file or extent with one request. A single big
request is much faster than many small requests. Files which contain
"holes" (unwritten blocks) are treated on read as if the unwritLen block
contained all zero bytes. Transfers are always in multiples of 512
bytes, regardless of the byte size of the file.

Terminals may be read and written in sizes from 1 to 128

Devices may have different rules for each device on block size. See the
specific device in (VTZ'. KSOS Input/Output Guide

ASYNCHRONOUS REQUESTS
See K device function(II). To make a normal, synchronous, request, the
id argument should be zero.

SEE ALSO
Kdevicefunction(II), K_write.block(II)

ONE"-



K_read block(II) KSOS 9/8/80 K_read_block(II)

EXCEPTIONS
See K device function(II).

ERROR CODES

Error information is returned in errs. After an operation which did not

return an exception, errs.devlndep contains one of the values given
below, and, for operations on devices, errs-devD.y contains 16 bits of
hardware status as described in (VI) under the specific device. See
K device function(If) for further details. -

.2

i-

S-2-

q



K_receiv(II) KSOS 12/1/80 K_receive(II)

NAME
K_receive

MODULA SYNOPSIS
CONST timeOut: cardinal;
CONST n p.: pseudo int levels-
VAR msa: ipc block;
VAR stat: K err num;

stat :- NK receive(timeOut, n.p.., ma);

C SYNOPSIS

cardinal timeOut;
pseudo int levels n Pil;
ipc block msit;
int stat;

stat K receive (timeOut, rp il, &MU);

DESCRIPTION
K receive suspends the execution of a process until the receipt of an IPC
message or until a time out. The return value indicates the condition
which caused the process to be restarted.

The first message in the queue of received IPC messages is returned. If
more than timeOut "clock ticks' expire before any IPC messages are re-
ceived, no message is returned and the error code so indicates. The
n pil parameter sets the pseudo interrupt level of the process before be-
ginning the wait. This is analogous to a K set pil call.

1

- 1

.44,, . .4- A



K release process(II) KSOS 12/1/80 K releaseprocess(II)

~NAME
K_releaseprocess

MODULA SYNOPSIS
CONST procSeid: seid;
VAR stat: K err num;

stat := NK release process(procSsid);

C SYNOPSIS
said procSeid;
int stat;

-- stat - K release process (procSeid);

DESCRIPTION
K release process deallocates all of the Kernel level resources associat-
ed with the named process. A K release process call with the null_seid
argument releases the calling process. Only a process with the same own-
er or a process privileged to change its owner may issue a
K release process for another process. The effects of K close for all
open files and of a K release uegment for all the segments of the process
occur. Shared segments remain intact un' ss the reference count to the
segment has reached zero. Segments with a zero reference count are deal-
located unless they have been created to be '.icky'. Files are deallo-
cated if their link counts and open counts are zero. The process seid
becomes unknown.

1

-1

.t*,.



e(KSOS 9/10/80 K releasesement(II)

NAME
K_release_segment

MODULA SYNOPSIS
CONST se: sex des;
VAR stat: K err hum;

stat :- NK release segment(sez);

C SYNOPSIS
- sep des sep:

int stat;

stat - K release segment (sez);

DESCRIPTION
The primitive K release segment releases the Kernel level resources asso-
ciated with the specified segment. The segment is not deleted if other
processes are still using it or if its swaplock (sticky) bit is set.

SEE ALSO
segstatblock (I)

EXCEPTIONS

XbSgDes Bad segment seid: segSeid is not the seid of an exist-
ing segment or process does not have manditory (securi-
ty) access to the segment.

XnSgDes Not a segment designator: This number is outside the
set of segment designators.

- -1-

-. - 1 -- I.



K-remap(II) KSOS 9/10/80 K-remap(II)

NAME
K_remap

MODULA SYNOPSIS
CONST inSeg: seg des:
CONST inLoc: virt loc;
CONST inAcc: ace mode;
CONST outSet: seg des;
CONST outSize: seg size;
CONST choice: selector;
VAR stat: K err mum;

stat :- NK remap(inSeq, inLoc, inAc , outSeg, outSize, choice):

C SYNOPSIS

seg des inSeg;
virt loc inLoc;
ace mode inAcc;
sex des outSeg;
seR size outSize;

selector choice;
int stat;

stat -K remap (inSex, inLoc, inAcc, outSeg, outSize, choice);

DESCRIPTION
The K remap primitive permits the process to change its segment map. The
outgoing segment is no longer directly addressable by the process through
machine instructions. The incoming segment becomes directly addressable

- by the process. The outgoing segment is not released. However, the
memory management hardware of the segment to be removed from the current
mapped set may be used to satisfy the hardware requirements of the incom-
ing segment. When a process segment is mapped into the current address-

- able set of segments, it occuppies the virtual address vector .efined by
the arguments to Kremap. Either or both of the segment designators may
be null. If both are null the call has no effects. The incoming segment
must fit into the virtual memory and memory management resources avail-
able after the outbound segment is unmapped. If it does not, or if any
of the other error Conditions occur, or if both segment designators are
null, the call has no effect on the segment mapping.

* If the alter virtual location flag (vlFlg) within the choice parameter is
TRUE, the incoming segment is mapped into the location specified as argu-

4W ments to the call, and its status information adjusted to reflect this as
a permanent change. Otherwise, the segment is mapped into the location
specified in its permanent status information.

If the alter discretionary access information flag (daFlg) within the
choice parameter is TRUE, the modes in which this process will access the
segment are checked against the permitted access modes for the segment,

- and if allowed, will become the access modes for the segment. This may

- w."



K__rmap(II) KSOS 9/10/80 Kremap(II)

alter the settings of memory management hardware when the segment is
mapped back in.

If the alter size flag (osFIg) within the parameter choice is TRUE, the
size of the outbound segment are set to the value outsize. The expansion
or truncation of the segment is performed at the end of segment specified
by the growth attribute of the segment specified when built. Expanded
parts of segments are filled with zeros. The size change can only be ap-
plied to segments that are not sharable.

EXCEPTIONS

XbSgRng Bad segment range: set of addresses specified for the
segment would lie outside a 64 K address space.

XbSgDes Bad segment designator: this segment designator is
inactive.

XinSgAldMp Incoming segment already mapped.

XncnDo Cannot do: global resource exhaustion.

XnoAcc No access: cannot access this object.

XnPgSg No page in segment: segment address range does not
cross or is not adjacent to some multiple of 8 K (ad-
dress range must include an 8K multiple or have top ad-
dress that one less than an 8K multiple).

XoutSgAldUmp Outgoing segment already unmapped.

Xvrth-Cfl Virtual memory conflict: some subset of the address

range of this segment would use a page register(s) al-
ready in use by an existing segment (high-order three
bits the same).

*1a

-2 -



K rendezvoussement(II) KSOS 9/10/80 K__radezvouss___nt(II)

NAME
K_rendezvous segment

MODULA SYNOPSIS
CONST seRSeid: seid;
CONST location: virt loc:
CONST access: ace mode;
VAR sskDes: seg des;
VAR stat: K err num;

stat :- NK rendezvous segment(segSeid, location, access, segDes);

C SYNOPSIS
seid sexSeid;

virt loc location;
ace mode access;
seg des seRDes;
int stat;

stat - K rendezvous segment (seaSeid, location, access, &seDes);

DESCRIPTION
The Kernel call K rendezvous segment is the mechanism by whizh processes

are able to share segments. If the segment requested exists and is ac-
cessible, it is mapped into the processes address space as requested,
providing that the requested mapping information is valid. The Kernel
will check that the segment may be mapped into the process issuing the
K rendezvous segment call. The checks include:

that the segment seid is active

that the segment may be shared

that the security/integrity level of the process allows it to aczess the
segment

that the discretionary access for the segment allows it to be accessed in

the requested way

that the virtual address supplied is valid

EXCEPTIONS

XbSgRng Bad segment range: set of addresses specified for the
segment would lie outside a 64 K address space.

XbSgSd Bad segment said: segSeid is not the said of an exist-
ing segment or process does not have manditory (securi-
ty) access to the segment.

-1

--- ,4 .



K_rendezvoussegment(I) KSOS 9/10/80 K rendezvous segment(II)

XdupSg Duplicate segment: some process-local segment designa-
tor is already attached to the segment.

XncnDo Cannot do: global resource exhaustion.

XnPgSg No page in segment: segment address range does not
cross or is not adjacent to some multiple of 8 K (ad-
dress range must include an 8K multiple or have top ad-
dress that one less than an 8K multiple).

XpostEh Process open segment table exhaustion: too many process
segments.

XsgNoAcc Segment no access: discretionary access of the segment
does not allow the requested access.

XvrtMmCfl Virtual memory conflict: some subset of the address
range of this segment would use a page register(s) al-
ready in use by an existing segment (high-order three
bits the same).

I

I
Ii

-V

2- --



K_secure_terminallock(II) KSOS 9/8/80 Ksecureterminallock(II)

NAME
K_secure-terminallock

MODULA SYNOPSIS
- CONST tSeid: seid;

VAR stat: K err num;

stat :- NK secure terminal lock(tSeid);

C SYNOPSIS
seid tSeid;
int sta___t;

- stat - K secure terminal lock (tSeid);

DESCRIPTION
This Kernel call has been deleted.

-. . q I -' - A ,



K-set-de(II) KSOS 12/1/80 Kstd(I

NAME Kstd

MODULA SYNOPSIS
CONST obiSeid: seid;
CONST da: discr access;
VAR stat: K err aum;

Stat*:- NK set da(obiSeid, d4a);

C SYNOPSIS
seid oblSeid:
discr acces da;

- mt stat;

;tat*- K set da (obiSeid, da);

DESCRIPTION
K set da sets the discretionary access of the object specified by the
first argument to that given in the second argument.

---------



i K se~ tile_status (II) KSOS 9/8/80 Kset_filestatus(II)

V NAME
K set file_status

DESCRIPTION
This Kernel call has been deeted.

!.

* U-

ie



K_set_realid(II) KSOS 9/10/80 K set-realid(II)

NAME
K_ setrealid

MODULA SYNOPSIS
VAR stat: K err mum;

stat :- NK set real id;

C SYNOPSIS
int stat;

Stat - K set real id();

-" DESCRIPTION
K set real id sets the process' effective id to its real id. The effec-
tive id is set by doing a K set object level call, while the real id is
set by doing a K set process status call.

-.

! -1-

-1



K set object levdl(II) KSOS 9/8/80 K_set_object level(II)

NAME
K_set -object_level

MODULA SYNOPSIS
CONST obiSeid: seid:

CONST level: tili struct;
VAR stat: K err num;

stat :- NK set object level(obiSeid, level, choice);

C SYNOPSIS
seid obiSeid;
tii struct level;
int stat:

stat - K set object level (obiSeid, &level):

DESCRIPTION
The K set object level primitive sets the security relevant type indepen-
dent information for an object.

Processes with the privilege to set object level shall be capable of
changing

* the user which owns the object

* the group which owns the object

* the security level (security category and compartments)

4 the integrity level (integrity category and (presently null) com-
partments.)

-1 -



K set pil(II) KSOS 9/8/80 K set pil(II)

NAME
K_setpil

MODULA SYNOPSIS
CONST new pil: pseudo int levels;
VAR old pil: pseudo int levels;
VAR stat: K err num;

stat :- NK set pil(new pil, old pil);

C SYNOPSIS
pseudo int levels new pil;
pseudo init levels old pil;
int stat;

stat - K set pii (new pil, &old pil);

DESCRIPTION
K set pil sets the process' pseudo interupt level to the first argument.

The process' old pseudo interupt level is returned in the oldpil field.

- -1

,, 5-- " - q I ,=* ,1*



K-setpriv(II) KSOS 9/8/80 Ksetpriv(II)

= NAME
Kset priv

MODULA SYNOPSIS
CONST obiSeid: seid;
CONST priv: priv struct;
VAR stat: K err hum;

stat :- NK set priv(obiSeid, priv);

C SYNOPSIS
said obiSeid;
priv struct priv;
Jut stat;

stat = K set priv(obiSeid, priv);

DESCRIPTION
K set priv sets the privileges of the object specified by the first argu-

ment to the privileges specified by the second argument.

1

q i .=•.



K-setprocessstatus(II) KSOS 9/8/80 K set_process_status(II)

NAME

K_set process status

MODULA SYNOPSIS
CONST procSeid: seid;
CONST status: proc stat block;
CONST choice: selector;
VAR stat: K err num;

stat :- NK set process status(procSeid, status, choice);

C SYNOPSIS
seid procSeid;
proc stat block status;
selector choice;
int stat;

stat - K set process status (procSeid, &status, choice);

DESCRIPTION
-The K set process status call permits the process to change those type

dependent parameters that are not controlled by other primitives.

The K set process status Kernel call supplies an advisory scheduling
priority to the Kernel level scheduler. The Kernel may elect to adjust
the advisory priority to guarantee equitable service to all processes.

The notion of real and effective user identification shall be retained at
the Kernel level because these identifiers determine the access permis-
sions extended to a process. The effective user and group ID's are part
of th type independent information for the process, because they are
what determine the discretionary access rights. The real user and group
ID's are part of this type dependent information and require the
privilege privSetLevel to modify.

The timer toggle and pseudo interrupt level control the pseudo interrupt
mechanism. If the timer toggle is TRUE, a pseudo interrupt shall be gen-
erated every clock tick (machine dependent time unit). This mechanism
may be used for periodic sampling of user mode program counter values for
the construction of execution profiles. The pseudo interrupt level is

. analogous to the hardware interrupt level. Pseudo interrupts shall be
transmitted to the process only if the level of the pseudo interrupt is
above the level of the process.

.- U=

I - .-



K set-sagment-status(II) KSOS 9/8/80 K si -segmont-status(II)

- NAME

K_set segment Status

MODULA SYNOPSIS
CONST seRSeid: said;
CONST status: sex stat block;
CONST choice: selector;

- VAR stat: K err num;

Stat :- NK set segtment statue(segSeid, status, choice);

C SYNOPSIS
seid sepSeid;

- -eStat block status;
choice sel-ctor;-
int stat:

stat -K set segment status (segSeid, &status, selector);

DESCR IPTION
- K set segment status supports modification of the type dependent informa-

tion of a segment. The invoking process shall have appropriate privilege
in order to modify the "sticky" flag or the "lock" flag.



K-signal(II) KSOS 9/8/80 K_signal (II)

NAME

K_signal

MODULA SYNOPSIS
CONST procSeid: seid;
CONST siRMsg: msR struct;

VAR stat K err num;

stat : NK signal(procSeid, siqMsg);

C SYNOPSIS
seid procSeid;
msX struct siRMsx;
int stat;

stat - K signal (procSeid, &siAMs&);

DESCRIPTIOV
The K signal primitive provides a means for privileged processes to
transmit a high priority pseudo-interrupt to a process. K signal differs
from the K post IPC mechanism in several ways. First, K signal always
generates a pseudo interrupt. The pseudo-interrupt level of the K signal
pseudo-interrupt is above that of normal IPC. Second, the K signal pseu-
do interrupt will abort long running Kernel calls (i.e. terminal I/O)
which receiving the K post mechanism does not. The intended use of
K signal is to provide a mechanism for a privileged process to "get
through" to another process, typically to ask it to terminate. The cal-
ling process must have the privilege privSignal.

I



Kspawn(II) KSOS 9/10/80 Kspawn(II)

NAME
K spawn

MODULA SYNOPSIS
CONST immSeid: seid;
CONST arx: sea des;
VAR child: seid;
VAR stat: K err num;

stat :- NK spawn(imuSeid, art, child):

C SYNOPSIS
scid immSeid;
sea des arx;
seid child;
int stat;

stat*-K spawn (immSeid, arg, &child);

DESCRIPTION
The Kernel primitive K spawn combines the functions of K fork and
K invoke into one operation. The K spawn primitive permits process crea-
tion without the cost of copying the parent process image to the child
process. The effect of K spawn is to create a new process and to force
the effect of a K invoke call upon the newly created process. The parent
process may therefore completely specify the contents of the child pro-
cess image.

The parameters to K spawn are the same as the parameters to the K invoke
primitive. These parameters are used to determine the effect of the
K invoke call forced upon the child process. (See K invoke above for a
discussion of this primitive.) The full semantics of K invoke are imple-
mented. Hence, a child process may acquire more privilege than the

" parent and may operate in a different discretionary access domain.

SEE ALSO
K invoke(II)

:-1



K special-function(II) KSOS 9/8/80 K special-function(II)

NAME
Kap ecial-fuction

DESCR IPTION
- This Kernel call has been deleted.

..



Kunlink(II) KSOS 9/8/80 K ut sAuk(II)

NAME
K_unlink

MODULA SYNOPSIS
- CONST fSeid: seid;

VAR stat: K err num;

stat :- NK unlink(fSeid);

C SYNOPSIS
seid fSeid;
int stat;

-- stat - K unlink (fSeid);

DESCRIPTION
K unlink decrements the file reference count of the specified file. When
the file reference count is zero and no process has the file open, the
file is deleted. When the count is decremented from one to zero, the
file becomes logically nonexistent. If a file is logically nonexistent,
but the file has not been deleted because some process still has it open,
it cannot be opened again, and the file does not exist for Kernel calls
which take file SEIDs as arguments, such as K link(II). When a file is
created with K create(II) it has a referenct count of zero, but does have
logical existence and thus K link(II) can be used to increment its count.

The security and integrity checking are as if the file is being opened
for reading and writing, except that no discretionary access checking is
done by the Kernel, allowing processes privileged to use this primitive
to perform whatever checking they choose to.

The use of K unlink requires the privilege privLink. This privilege is
normally restricted to the UNIX directory manager.

1
.4 0



K unmount(II) KSOS 9/10/80 K unmount(II)

NAME
K unmount

MODULA SYNOPSIS
CONST usp: nsp type;
VAR stat: K err hum;

stat:- NK unmount(nsp);

C SYNOPSIS
nap type nsp;
int stat;

stat - K unmount (nasp);

DESCRIPTION
The Kernel primitive K unmount logically unmounts the file system speci-
fied by the name space partition nsp. The following checks must be
satisfied before the Kernel will unmount a file system:

6 the process must have the privilege to issue the call

* the device must have file system mounted on it

* the extent must be tranquil (no open files)

After normal completion of the Kernel call, the disk has been returned to
the 'unmounted' condition and can be mounted again in the future without
performing file recovery.

Should a disk device fail and have to be shut down, it is still possible
to perform a K unmount to inform the Kernel that the file system is now
unmounted. Although the K unmount will return an I/0 error exception
(Xerror or Xfault) the Kernel's internal database will still be purged of
information about the file system. This allows mounting the disk on
another drive and (after file system recovery, if required) remounting
the file system.

SEE ALSO
KSOS Operator / Administrator Reference Manual [reference to be sup-

plied]

-

, 7 -  . ., ... .. ,, . , . i-1 -,'
... - - -- .* ,, ... "i.. .. - - - ,'* .. J I , - - - iL. . . - i ' - ' .. .. . .,i , .. . tl i~ '

3 l



a i w

Kwalkprocess table(II) KSOS 9/10/80 K _alk.processtable(II)

NAME
K_valk_process table

MODULA SYNOPSIS
CONST index: cardinal;
VAR P said: sdid;
VAR stat: K err num;

stat :-NK walk process table(index, p seid);

C SYNOPSIS
cardinal index;
seid y said;
int stat;

stat - K walk process table (index, & p_eid);

DESCRIPTION
The K walk process table primitive is a means for privileged software to
obtain the SEIDs of active processes. The primitive returns the SEID of
the process which occupies slot index of the global process table. This
SEID can then be used in K get obiect level or K net process status
calls. The call fails if the process does not possess the privilege to
issue it, or if index is not a valid index number for the process table.

I-

-1

!A
!4



K write_block(II) KSOS 9/8/80 K write_block(II)

NAME
K_writeblock - perform write

MODULA SYNOPSIS
CONST od: openDescriptor;
CONST blockNo: fBlockNumber;

CONST outP: p block;
COY!ST id: asyncld;
VAR errs: ,oStatus;
VAR status: K err num;

status :- NK write block(.d, blockNo, outP, id, errs);

C SYNOPSIS
openDescriptor od:
long blockNo;
pblock outp;
int id;
,oStatus errs;

int status;

status - K write block(od, blockNo, &outp, id, &errs);

DESCRIPTION
K write block is used to request writing to files, terminals, extents,
and devices. The parameter block outP defines the memory area to be used
for output.

Writing to a file will cause file space to be allocated as required. A
write which increases the highest block number of the file sets the byte
size of the file to (high block x 512). The user may later indicate, via
the SETFILESIZE function of K device function(II), that the size of the
file in bytes is up to 511 less. This will not prevent the entire last
block from being read.

Files may contain "holes", (unwritten blocks) but extremely sparse files
are inefficient.

ASYNCHRONOUS REQUESTS
See K device function(II). To make a normal, synchronous, request, id
should be zero.

SEE ALSO
K_devicefunction(II), K read block(II)

- 1

:" II 
h " '

. . . . . .. . I .. . l .,. . . . . .. . l . . . . . " . . .. I 
- ' - -

. .. S' " S



Modula(KernelInterface) KSOS II Modula(KernelInterface)

NAME
ModuleKernelInterface - Modula Interface to the Kernel Calls

DESCRIPTION
Modula interface routines for the Kernel calls are available in the file
NKcalls.mod. One interface routine exists per Kernel call. The inter-
face routines are used in conjunction with the types and-low level inter-
face procedures defined in NEWcalls.mod

The general procedure followed in the interface routines is to put the
arguments into one contiguous block of memory. Then through an assembly
language subroutine, a pointer to the block with the arguments is passed
to the appropriate kernel call. Upon completion, the kernel call places
any return values into the argument block and returns an exception. This
exception is then passed upward by the assembly language subroutine. The
interface routine unpacks the return values from the argument block and
returns the exception to the calling Modula program.

To use the Modula Kernel interface routines include the file NKcalls.mod
at the beginning of your Module program. The file NEWcalls.mod is expli-
citly included in NKcalls.mod.

FILES
NKcalls.mod, NEWcalls.mod

- -1

4 -- I.-



KSOS (III) KSOS 10/16/80 KSOS(III)

NAME
acpop - operator interface to the audit capture process

SYNOPSIS
acp op flag [file-name]

DESCRIFTION
Acp op is an operator interface to the audit capture process. This
interface requires one of the following flags:

-c Changes the device to which the audit capture messages are writ-
ten. If the messages are currently written to a file, the file
will be closed and the messages will be diverted to the console.
This function enables the operator to close all acp files and,
for example, unmount the root file system.

-i Identifies the file in which the acp messages are currently being
placed.

-p Prints out the acp file given in the filename field.

-r Removes the acp file specified in the filename field.

-s Switches the file in which the acp messages are placed to a new
file. The name of the current file is printed out. The file is
then closed and a new file is opened. The name of the new acp
file is also printed.

DIRECTORIES
/sys/sysAudit

H



KSOS (III) KSOS 1/13/81 KSOS (III)

- NAME
btcp - boot copy program

* - SYNOPSIS
btcp packseid [-9] [-0 levOboot] [-1 levlboot] [-k keruelimage] [-u ini-
tialimage]

- DESCRIPTION

BtcP copies files required to boot a KSOS system to their correct place
on the specified initialized KSOS pack. Btco is spawned by the secure
server at the request of a user running at OPERATOR or higher security

level.
s copy the system security map to extent 4 of the pack.
O copy the specified level 0 boot program to extent 1 of the pack.
1 copy the specified level I boot program to extent 2 of the pack.
k copy the specified kernel image to its proper place on the pack -

extent 5 beginning at block 0.
u copy the specified initial process image to its proper place on

the pack - extent 5 beginning at block 314.

FILES
/sys/dataBases/security 

system security map.

SEE ALSO
exi, pki

- -1

9 ------ -

'-.4-



CAL(III) KSOS 10/7/80 CAL(III)

NAME
cal - change access level

SYNOPSIS

Cal [pathname]

DESCRIPTION

Change access level, cal, allows a user to create an environment at a new
security level, or to return to a previously interrupted environment. If
the "pathname" argument is given, the level of the environment will be
that of the file specified by "pathname": otherwise cal will prompt for a
new access level. If an environment already exists at the requested
level, cal will revert to that environment; otherwise a new environment
will be created.

Like login, cal should create the new environment by spawning the
user/supervisor domain programs given for the user's login id in the
user access authentication database. However, as an interim measure, cal
will prompt for the pathname of the supervisor domain program to be
spawned. This program will normally be a UNIX emulator.

Each user environment corresponds to a different terminal path. There are
a fixed number (currently 3) of paths on which user environments can be

-created. One of these is used by login for the user's initial environ-
ment; the remainder are available for allocation by al.

FILES
/sys/dataBases/user user access authentication database
/sys/dataBases/group group access authentication database
/sys/dataBases/trminal terminal profile database
/sys/dataBases/system system profile database

SEE ALSO
SSP(III), login(III), user(IV), group(IV), terminal(IV), system(IV)

DIAGNOSTICS
"object not found" "pathname" does not exist
"no free paths"
"1you can not change to that level"

• i i-



DPE (III) KSOS 10/7/80 DPE (III)

NAME
dpe - device profile database editor

SYNOPSIS
dpe

DESCRIPTION

Dpe interactively edits the device profile database and is invoked from
the secure server. The editor commands include add, change, delete, find,
next, print, view, and quit. A description of command action follows.
The character preceding the closing parenthesis, ')', is the coumnand
code. Any unrecognized character causes printing of the command list.

A)dd prompts the user for all information and appends the new record to
the end of the database. The following questions are asked:

Enter name (max 8 char):
Enter desired device name space:
Enter desired device type (high byte):
Enter desired device unit number (low word):
Enter user name of owner (max 8 char):
Enter login name of group (max 8 char):
Does this device allow Valid required ? (y or n)
Can user assign with assign function ? (y or n)
Enter desired discretionary access for owner:
Enter desired discretionary access for group:
Enter desired discretionary access for all:
ENTER ACCESS LEVEL DEFAULT
SECURITY CATEGORY
Enter desired SECURITY category:
INTEGRITY CATEGORY
Enter desired INTEGRITY category:
Enter numbers of desired suzurity compartments
separated by spaces (carriage return for NULL):

SS)hanze changes a specific field in tho current record. Chang accepts
the following commands:

ex)it
* v)iew

n)ame
s)eid
g)roup id
d)iscret access
a)ccess level
r)valrequr
1 )assignment allowed

d)elete the current record by asking "Do you want to delete (current
record name] (y or n) :"

p)rint the current database records, including modifications, to the
lineprinter.

I--I



DPE (III) KSOS 10/7/80 DPE (III)

v)iev outputs the current record to the terminal

f)ind searches the database for the specified name and sets the current
pointer to the record. The user is prompted for the name; dipe responds
"Record is not found", if the name not in the database.

n)ext moves the current pointer is to the next record. If the pointer is
currently pointing to the last record, it is moved to the first record.

&)uit ends execution of the editor. If modifications were made, the
question "Do you want to save the updates?" is asked and a y or n is
expected in response.

FILES
/sys/dataBases/device device profile database
/lys/dataBases/security system security map

SEE ALSO
SME(III), UCE(III), GAA(IV), device(IV), security(IV), user(IV),
group (IV)

ERRORS
can't open device database
can't create tempfile
can't open user database
can't open group database
can't open security map

-2-



KSOS (III) KSOS 12/01/80 KSOS (III)

NAME
exi initialize pack extents

SYNOPSIS
exi deviceSEID C-rv]

DESCRIPTION
Exi is a pack initialization tool which enables the administrative user
to interactively view, define and modify KSOS pack extent map slots. It
is a very powerful tool and should be used carefully. Exi is spawned by
the secure server at the request of a user running at OPERATOR or higher
security level. It is commonly used to initialize KSOS file systems.
The argument deviceSeid specifies the pack which is to be operated on
(e.g. d1/0). The -r option indicates a read only mode of operation in
which extent map slots may be viewed but not modified. The -v option
causes exi to interact with the user in a verbose manner.

Commands which operate on a particular extent map slot may be optionally
preceded by the extent number. Specifying extent number 0 allows modifi-
cation of the pack master mount item. If no extent number is supplied
the current extent is assumed. Recognized commands include:

[n]v View the specified extent map slot. A formatted dump is pro-
duced.

[nif Free i ie extent.

1 List extents. The extent label, first block number, last block
number and extent size for each extent on the pack are displayed.

(n]a Add extent. The user is prompted for all the information neces-
sary to create a new extent. If desired, exi will prompt the
user for information needed to initialize the extent as a KSOS
file system.

e Exit exi.

[Unm Modify extent map slot. This command places the user in modifi-
- cation mode. Both the pack master mount item and extent items

may be modified. After receiving the prompt, the user types the
control character corresponding to the slot field to be modified

- and exi responds by asking for specific data. To return to nor-
mal mode, type an empty line (<CR> only). Control characters for
each type of slot are listed below.

extent item:
v view extent item.

a modify access rights, security and integrity.
1 modify label field.
s modify subtype field.

- 1



KSOS (11) KSOS 12/01/80 KSOS (11I)

mount item:
v view mount item slot.
a modify access, security and integrity information.
1 modify label field.

SEE
pki, mce

BUGS -

Currently EXI opens the whole pack unexclusively. It opens the whole
pack because EXI contains the functionality to initialize file systems.
It does not open the pack for exclusive use because, at least initially,
EXI must be able to modify extents residing on a pack with a mounted file
system. EXI should be split into two programs - one for extent modifica-
tion which exclusively accesses the extent map extent, and a separate
program for file system initialization.

42

** - - *_________
iq



KSOS (III) KSOS 12/23/80 KSOS (III)

NAME
fam - file access modifier

S _SYNOPSIS

fam [-v] [[key argument] ... filename

DESCRIPTION
Fam allows file access modifications of files owned by the user. The

argument -v puts fam into an interactive mode where the user will be
prompted for commands, if no other arguments other than the filename are
given interactive mode is assumed, also the -v flag must always appear
before any key arguments. Key flags must always be followed by an
appropriate arfument.

The following are descriptions of the keys and their arguments.

-d modify the discretionary access. The argument following this
flag must be an octal number.

-g change the group id of the file. The argument following this
flag must be a legal group name.

-o change the owner of the file. The argument following this flag
must be a legal user name.

-s change the security level of the file. The argument following
the flag must be a legal security level name.

-i change the integrity level of the file. The argument following
the flag must be a legal integrity level name.

-c delete a compartment from the compartment set. The argument fol- 4
loving the flag must be a legal compartment name. mc..

+C add a compartment to the compartment set. The argument following
the flag must be a legal compartment name.

Fam will never allow the user to modify files he does not own or
" can not access. Also the integrity level of a file can never be

raised above that of the user. It should be noted that when a
user request that a file be given a lower security level (by
either changing the security category to a lower one, or deleting
a compartment) the entire file will be displayed before the
change is allowed.

-" BUGS

Fam does not check to see if the filesystem maximum level is
lower than a security request being made.

-

--



KSOS (III) KSOS 1/13/81 KSOS (III)

NAME
fsd - incremental file system dump

-SYNOPSIS

fsd filesystem [-Ovc] [-e extentseid] [-b blocks] f-d days] [-f device]
[-h hours]

DESCRIPTION
Fsd makes an incremental dump of all files on the specified KSOS file
system which were changed after a certain date. Fsd is spawned by the
secure server at the request of a user running at OPERATOR or higher
integrity level. The save medium may be either tape or an existing KSOS
extent. Fsd opens the file system for exclusive use, thus the file sys-
tem must be unmounted.

b The next argument is the maximum size of the save tape (or
extent) in blocks.

c If the dump tape overflows, increment the minor device number and
continue. Normally, you are asked to change tapes.

e Dump to the specified defined extent instead of to tape.
- d The next argument specifies the dump date as some number of days

prior to the current date.
f Use the next argument as the save device instead of the default

-_ (devicensp, 11, 0).
v Print out the information in the dump header.
h The next argument specifies the dump date as some number of hours

prior to the current date.
0 Dump from the beginning of time.

DIAGNOSTICS
Generally errors are fatal. Files found in an unSAFE condition are not
dumped, but the Jnode is dumped and the high block field is set to 0. A
message to this effect is printed for each bad file encountered.

FILES
/sys/dataBases/security system security map

SEE ALSO
fsr(1), dump (IV)

BUGS
The d and h options are not implemented - all dumps are from the beginning of
time. When dumping to an extent, fsd could recover from most errors. Unfor-
tunately, fsd's approach is to exit if anything is wrong.

-1-



KSOS(II) KSOS 1/13/81 KSOS (III)

NAME
fsr- incremental file system restore

SYNOPSIS
fsr filesystem [-citrJ [-e extentseid] [-f device]

DESCRIPTION
For is used to restore files dumped using the fad command. It is spawned
by the secure server at the request of a user running at OPERATOR or
higher level. The dump tape (or extent) is read and files are copied to
the file system specified. The Jnode number of a restored file will be
equal to its number before it was dumped. The latest incremental dump
must be restored first onto a clear file system. At this time, jnodes
are created for all files on the filesystem and they are restore locked
to prevent their use for other purposes (such as indirect slots). As
previous dumps are restored, only files with a Jnode in the restore
locked state are actually copied from the dump medium. Thus, to restore
a file system, the incremental dumps must be restored in reverse order of
that in which they were made. Optional arguments include:

c If the tape overflows, increment the minor device number and con-
tinue on the new drive.

e Restore from the specified extent and not from tape.
r Reconstruct the system space of the file system. The first

restore to a clear extent must be done with this option. This
should not be done lightly since any existing information on the
extent will be lost.

f Read the dump from the tape drive specified by the next argument
instead of from the default drive d11/0.

t Print the numbers of all jnodes restored.

SEE ALSO
fsd(l) ,dump (IV)

DIAGNOSTICS
If the security map on the dump tape and the system to which it is being
restored do not agree fsr sends an audit capture message and aborts.

BUGS
The c option is not yet implemented.
No audit capture messages are sent, ever.

1

- 1

-i.



GAA (V) KSOS 10/7/80 GAA (V)

NAME
gsa - group access authentication database editor

SYNOPSIS
Raa

DESCRIPTION

Gaa interactively edits the group access authentication database and is
invoked from the secure server. The editor commands include add, change,
delete, find, next, print, view, and quit. A description of command
action follows. The character preceding the closing parenthesis, ')', is
the command code. Any unrecognized character causes printing of the com-
mand list.

a)dd prompts the user for all information and appends the new record to
the end of the database. The following questions are asked:

Enter name (max 8 char):
Enter password (max 10 char):
Enter password again to verify
Enter group identification number:
Enter user name of administrator (max 8 char):
ENTER MAXIMUM ACCESS LEVEL
SECURITY CATEGORY
Enter desired SECURITY category:

INTEGRITY CATEGORY
Enter desired INTEGRITY category:
Enter numbers of desired security compartments

separated by spaces (carriage return for NULL):

_)hange changes a specific field in the current record. Change accepts
the following commands:

ex)it
v)iew
p ) assword
g)roup id
a)dmin
m)ax access level

d)elete the current record by asking "Do you want to delete (current
record name] (y or n) :"

p)rint the current database records, including modifications, to the

lineprinter.

v)iew outputs the current record to the terminal

f)ind searches the database for the specified name and sets .he current
pointer to the record. The user is prompted for the name; xaa responds
"Record is not found", if the name not in the database.

- -1-



GAA (V) KSOS 10/7/80 GAA(VM

n)ext moves the current pointer is to the next record. If the pointer is
currently pointing to the last record, it is moved to the first record.

*g)uit ends execution of the editor. If modifications were made, the
question "Do you want to save the updates?" is asked and a y or n is
expected in response.

FILES
!sys/dataBases/user user access authentication database-
/sys/dataBases/group group access authentication database
/sys/dataBases/security system security map

SEE ALSO
TCE(III), SME(III)

MRORS
can't open gaadb
can't create tempfile
can't open uaa
can't open security__map



I-

LOGIN (III) KSOS 1O/7/80 LOGIN (III)

ti NAME

login - sign onto KSOS

DESCRIPTION

The login command is used when a user initially signs onto KSOS. When
the user hits the attention key at a terminal which is not logged in, the
secure server (SSP) invokes login at that terminal.

Login prompts for a user name and password. Echoing is turned off (if
possible) during the typing of the password, so it will not appear on the
written record of the session.

After a successful login, the user and supervisor domain programs speci-
fied in the user access authentication database (user) should be entered.
This will normally be the UNIX emulator. However, as an interim measure,
login will prompt for the pathname of an emulator.

The user's security level will normally be the default level specified in
the user access authentication database for the given login name. If
this level is higher than the maximum level of the terminal or the
current maximum level of the system, the user's level will be lowered
accordingly and a diagnostic message will be issued.

FILES
/sys/dataBases/user user access authentication database
/sys/dataBases/group group access authentication database
/sys/dataBases/terminal terminal profile database
/sys/dataBases/system system profile database

SEE ALSO
SIP(III), SSP(III), user (IV), group (IV), terminal (IV), system(IV)

DIAGNOSTICS
,-"Login denied," if user does not exist or wrong password is given.

"Your maximum level is too low to login."

!.

* . - .



LOGOUT (III) KSOS 9/11/80 LOGOUT (IIl)

logout - sign off from KSOS

.F NAME

DESCRIPTION

:"The 
logou command is used to sign off from KSOS. If the user has any

active processes, these are immediately killed.

SEE ALSO

SSP(III), login(III)

.A

-
x 1

- . -- - -- - - - - -
_ .

4 

.. 
.. .. 

.. . . -- '-S



A-AIII ST? FORD AEROSPACE AND COOMMICATIONS CORP PALO ALTO CA N-E9TC F/0 9/2
KSOS SECURE UNIX OPERATING SYSTEm USERS MANUALS. (ICERNELIZE1D SE-E9TC (U)
DEC S0 NDA90377-C-03S3

UNCLASSIFIED IA.2, lf1Zflfl**



U ii 1.0 1 2,8 112,5
till AM-

11111125

MICROCOPY RESOIUTION TEST CHART

-I ~t b



-' KSOS (III) KSOS 1/13/81 KSOS (III)

NAME
mce - modify KSOS file system control entries

- SYNOPSIS
mce deviceseid extent [-rvpl

DESCKIPTION
Mce is a file system maintenance tool which can be used to interactively
view and modify KSOS file system control slots. The argument deviceseid
specifies the device on which the file system resides (e.g. dl/0).
Extent is a decimal integer specifying the extent on which the file sys-
tem resides. By default mce is rather verbose and leads the user by the
hand; the -v option instructs me to interact with the user in an even
more verbose mode. The -p option instructs mce to print out the direct
and indirect pointer table values when viewing a jnode. The -r option
indicates read only operation where slots may be viewed but not modified.
This option allows the user to view a mounted file system. Only an
unmounted file system may be modified.

Commands which operate on a particular slot may be optionally preceded by
the slot number. If no slot number is supplied the current slot is
assumed. Mcee considers all numbers to be decimal, except where expli-
citly stated otherwise. Recognized commands include:

+ Increment current slot by one.

Decrement current slot by one.

[n]v View slot. A formatted dump of the contents of the specified
slot is produced. Slots of type jnode, indirect, reserved, free,
mount item, extent item, and allocation item are recognized.

[n]i[m] Set current slot to the slot number pointed to by indirect
pointer number m of the jnode or indirect slot number n.

[nf Free the slot. Returns slot to free space.

a Exit mee.

[n]m Modify slot. This command places the user in modification mode.
At this time jnodes, indirects and mount items may be modified.

- A special prompt (*) indicates modification mode. After receiv-
ing the prompt, the user types the control character correspond-

* ing to the slot field to be modified and mce responds by asking
for specific data. To return to normal mode, type an empty line
(<CR> only). Modifications are buffered until leaving modifica-

.4 tion mode, at which time the user may elect to save the changes
or throw them away. Control characters for each type of slot are
listed below.

Jnode:
V view jnode.

-1-

4 .. - . .. .



KSOS (III) KSOS 1/13/81 KSOS (III)

a modify access rights, secutrity and integrity.
c modify condition field.
1 modify link count field.
h modify high block field.
p modify privileges.
t modify tail count field.
s modify self field.
i modify indirect pointer table.
d modify direct pointer table.

indirect slot:
v view indirect slot.
h modify home jnode field.
p modify parent field.
t modify treeN field.
i modify indirect pointer table.
d modify direct pointer table.

mount item:
v view mount item.
a modify access, security and integrity information.
m modify mounted field.

PRIVILEGES
privMount (* temporary *)
privViolStarSecurity
privViolStarIntegrity
privViolDis crAccess

WARNINGS
Mce is a powerful tool. Because of its power, it is also a very
dangerous tool. A malicious user, or even a well-intentioned user who
mistypes a character could potentially iuvalidate an entire file system
or worse.

BUGS
MCE sends no audit capture messages.

-2-



wI

KSOS(III) KSOS 10/16/80 KSOS(III)

NAME
mnt - mounts a file system

SY'NOPSIS
-Mint [filesystem name driveno mount on entry] f-ri

DESCRIPTION
Ma.t logically mounts the given file system on the mount on entry. To be
able to mount a particular file system, that file system must be listed
in the immigration data base.

The first argument, filesystem-name, contains the name of the file system
to be mounted. The driveno argument gives the drive where the filesys-
tem is located. The mount onentry argument is the complete pathname to
the entry on which the file system is to be mounted. This entry must
already exist. The -r flag, if present, indicates that the file system
is to be mounted read only. Finally, if no arguments are given, a list
of the currently mounted file systems is given.

The user must be at OPERATOR level or above to actually mount a file sys-
tem.

FILES
/sys/dataBases/mountTable
/sys/dataBases/i-migrat ion

SEE
umt(III)



NKcopy(III) KSOS 12/2/80 NKcopy(III)

NAME
NKcopy - copy program

- SYNOPSIS
nkeopy

DESCRIPTION
NKcopy copies information from a given input seid to a given output seid.
It is used primarily to copy from tape to a file; however it can be used
to copy between any two objects. This program is provided for develop-
ment purposes only.

NKcopy excepts a single or multi-file tape. Each file should be written
to tape in 512 byte blocks terminated by a tape mark (end of file).
Under UNIX the files can just be cat'ed or cp'ed to tape. Once the tape
is made it should be mounted on a TUI6 tape drive.

NKcopy can be invoked by the secure server to copy the files on the tape
to the desired files. When invoked NKcopy prompts for input and output
seids and block lengths. Seids should be given in the following format.

name space/ unique id 0/ uniq id 1

Well known namespaces:
r - root name space.
d - device name space. The seid of the TU16

drive is d/ll/unit number (0, 1)
n - null name space.

If a null output seid is given then a file is created and the seid of the
newly created file is printed.

NKcopy also has the ability to mount another file system and copy the
file to that file system.

BUGS
NKcopy does not use the directory manager. Presently it is necessary to
create a file with the directory manager test frame (udmtf), then
remembering the seid, copy the input file to the newly created file file.

SEE

UDMTF - UDM Test Frame

-

4r,,



PBB(III) KSOS 10/7/80 PBB(III)

NAME
PBB - Process Bootstrapper

DESCRIPTION
The Process Bootstrapper may only be used by a process executing in
supervisor space. It is an intermediary that is brought into execution
via the K invoke and K spawn Kernel calls. The function of the PBB is to
replace the segments of its process with segments filled from the image
files specified in the argument segment passed to the Bootstrapper.
After this replacement has been accomplished, the PBB sets the
privileges, sets the effective user and group id's, and transfers control
to the supervisor domain at a well-defined location.

The steps performed when an invoke or spawn is executed, using PBB as the
intermediary, are given below.

a. The calling process (via the spawn/invoke interfaces used by the
NKSR) will construct the argument segment for the process
bootstrapper. The argument block is built in location 0, user
domain, d-space.

b. It will then map the argument segment out of its' address space.

c. Kinvoke or K-spawn will be called. ( Kinvoke will release all
of the calling segments except the argument segment. K spawn
will only instantiate the argument segment. )

d. Kinvoke/K spawn will then rendezvous with a copy of the

intermediary segment and put it at supervisor domain, i-space,
address 0. The current pc/ps will be set to address 0 in the
supervisor domain. This set up is required for the process
bootstrapper to run non-separate I&D.

e. The process bootstrapper will map the argument segment into its
supervisor i-space, thus maintaining non-separate I&D.

f. The process bootstrapper will then build the invoked aupervisor
domain image in the user domain and then map it out, and use
K set segment_status to make the vitual address be supervisor
domain instead of user domain.

g. The process bootstrapper will then build the invoked user domain
image in the user domain.

h. The process bootstrapper will release the argument segment.

i. The process bootstrapper will then issue a Kboot call with the
segment descriptor of the intermediary segment. The Kboot Ker-
nel call will release the intermediary segment and then map in
the supervisor domain segments to where they belong. The pc/ps
will be set to address 0 in the supervisor domain.

i - -1-



PBB(II) KSOS 10/7/80 PBB(III)

The invoked process image nov exists and is executing.

The initial process builds two bootstrapper segments: a user process
bootstrapper and a secure server bootstrapper segment.

The user process boostrapper segment is available to all users. The new
process runs at the same level as the parent process, and is given the
privileges of its' a.out file.

The secure server process bootstrapper segment is only used by the NKSR
and exists at system high level. It takes a tii structure as part of the
argument block. The child process runs with a tii equal to that which
was passed in the argument block.

Once the process bootstrapper segments are built, the secure initiator
process (SIP) makes directory entries "/sys/sysbin/userPBB" and
"/sys/sysbin/serverPBB".

-2 -



.1.

P1B(II) KSOS 10/7/80 PB (III)

The user process bootstrapper argument segment has the following format:

User Domain

Arguments

160014B --------------
+ Supv_size

Supervisor Domain

Arguments

argsaddr =
160014B - --------------------

User arguments size user_Size
160012B ------------ -----

Supervisor arguments size s -upv size
160010B

User Domain fseid = user-seid

160004B

Supervisor Domain fseid = supvyseid

160000B ---- -------

= argsegaddr

AA



PBB (III) KSOS 10/7/80 PBB(III)

The secure server process bootstrapper argument segment has the following
format:

- - -- - -

I User Domain

I ArgumentsI

+ sugy-size I
I Supervisor Domain

I Arguments

argsaddr-I
160034B I--

STII Itii
160014B I---

I User arguments size I-user-size-
160012B --- ------- -------

I Supervisor arguments size I supv-size
160010B - - -

User Domain f-seid I-user-seid

160004B I-----

Supervisor Domain f seid I-supv_seid

160000B -------------------------
-argsegaddr

SEE ALSO
SIP(III)

-4-



KSOS (IlI) KSOS 12/1/80 KSOS (III)

NAME
pki - pack initialization program

SYOPSIS
pki packseid [-a]

-DESCRIPTION

Pki initializes the pack reserved extents on an uninitialized pack. Pki
is spawned by the secure server at the request of a user running at
OPERATOR or higher security level. The pack master slot is initialized
and the pack is given the proper access level. The pack reserved extents
(extents 1-4) are created and given the system subtype and an access
level of SYSTEMTII. The -a option indicates that the user should be
prompted for the pack's access level. The default level is: syshi secu-
rity, syslow integrity, all compartments, NKSR owner and group, and a
discretionary access of rwx---.

SEE ALSO
exi(I), btcp(I)

.1 :

-- 1



Ksos (I0) KSOS 10/2/80 KSOS (III)

- NAME
rkgdt - Get files from RK05 pack.

SYNOPSIS
rkget

DESCRIPTION
Rkiet copies files from a specially formatted rkO5 pack to the specified
KSOS filenames. The user is prompted for an rk file number and a KSOS
destination file name. If the KSOS destination file already exists it is
written over; otherwise a new file is created. RkRet is normally used to
retrieve files written to the rk pack using the UNIX cprk program.

'1 _

A -

- 1

i "



VKSOS (III) KSOS 11/10/80 KSOS (III)

NAME
setvv -set volume valid

SYNOPSIS
setvv deviceseid

DESCRIPTION
Setvv is a utility used to set the volume-valid condition on the device

specified by deviceseid (e.g. setvv d4/0). This marks a removable medium

as usable. The volume valid operation is accomplished using the
K device -function kernel call. Setvv is spawned by the secure server at

the request of a user running at operator or higher security level.

PRIVILEGES
privlmmigrate



SME(III) KSOS 12/1/80 SME(III)

NAME
gas security map editor

SYNOPSIS
sme

DESCRIPTION

Sme interactively edits the security map database and is invoked from the
secure server. The editor commands include add, change, delete, level,
print, view, and quit. A description of command action follows. The
character preceding the closing parenthesis, ")', is the command code.
Any unrecognized character causes printing of the command list.

a)dd prompts the user for all information and appends the new record to
the end of the database. The following questions are asked:

Enter entry number where addition is to be placed:
Enter short name (max 12 char):
Enter long name (max 50 char):
Is this entry to be active (yes or no):

S)han e asks for the entry number to be changed. Change accepts the fol-
lowing commands:

ex)it
v)iew
s)hort name
2)ong name
a) ctive

d)elete asks for the entry number to be deleted.

S)rint the current database records, including modifications, to the
lineprinter.

= v)iew outputs the current level records to the terminal

.)uit ends execution of the editor. If modifications were made, the
question "Do you want to save the updates?" is asked and a "y" or "n" is

=expected in response.

FILES
/sys/dataBases/security system security map

SEE ALSO
security(IV)

ERRORS
can't open security map database

c-a-



SPE (III) KSOS 12/1/80 SPE (III)

NAME
spe - system profile editor

SYNOPSIS

DESCRIPTION

Sp interactively edits the system profile database and is invoked from
the secure server. The editor commands include quit, view, print, and
change of various fields. A description of command action follows. The
character preceding the closing parenthesis, ")°, is the command code.
Any unrecognized character causes printing of the command list.

*)uit ends execution of the editor. If modifications were made, the
question "Do you want to save the updates?" is asked and a "y" or "in" is
expected in response.

v)iew outputs the record to the terminal

p)rint has not been implemented.

Change accepts the following commands:
s)ys name

i)nst name
sys n)um
ve(r)sion num
gen d)ate
m)ax ace lev
)urr max acc lev
min l)ogin ace lev

The three access level fields have the following dialog with the user:

SECURITY CATEGORY
Enter desired SECURITY category:
INTEGRITY CATEGORY
Enter desired INTEGRITY category:

-Enter numbers of desired security compartments
separated by spaces (carriage return for NULL):
ENTER MAXIMUM ACCESS LEVEL

- SECURITY CATEGORY
Enter desired SECURITY category:
INTEGRITY CATEGORY
Enter desired INTEGRITY category:
Enter numbers of desired security compartments
separated by spaces (carriage return for NULL):

-- FILES
/sys/dataBases/system system profile database
/sys/dataBases/security system security map

-1



SPE (III) KSOS 12/1 /80 SPE(III)

SEE ALSO
St4E(IITt), system(EV), security(IV)

ERRORS
can't open sysdb
can't create tempfiile

can't open securityjmap

-2-



ite

SSP(III) KSOS 9/11/80 SSP(III)

- NAME

SSP - secure server process

- DESCRIPTION

The secure server is essentially a rudimentary command interpreter which
allows a user to execute programs ("services"). One secure server is
spawned for each configured terminal on the system. When the secure
attention key is struck, the secure server responds by either invoking
login or by prompting for a command if someone is already logged in. The
server prompt is "* ". The environment active when the secure attention
key is struck is suspended. Typing a carriage return in response to the
server prompt will resume the interrupted environment.

Server commands are just a single line of input, the first word specify-
ing the particular service to be performed. The remainder of the line is
passed, uninterpreted by the server, as an argument to the requested ser-
vice. The server provides limited editing capabilities on terminal
input: backspacing will erase single characters, and an '@' will erase
the whole line.

Some commands such as change access level ( cal ) and logout are inter-
preted directly by the server. The remainder are the file names of pro-
grams which are in the server's program directories.

The server only permits one service to be executing at any one time, and
an attempt to execute more than one concurrently will produce a diagnos-
tic message. An interim feature of the server is the kill command, which
perenptorily kills any service the user is currently executing.

FILESFIE /sys/dataBases/user user access authentication database
/ays/dataBases/group group access authentication database
/sys/dataBases/terminal terminal profile database
/sys/dataBases/system system profile database
/sys/server/admin a server program directory
/eye/server/operator a server program directory
/sys/server/user a server program directory

SEE ALSO
SIP(III), login(Ill), cal(III), logout(III), user(IV), group(IV),
terminal(IV), system(IV)

DIAGNOSTICS
"service still executing"

- -1-L-A-
. . . . . .... o



STC (III) KSOS 12/1/80 STC(III)

4- NAME
Astc- storage consistency check

SYNOPSIS
ste deviceseid extent

Stc examines the KSOS file system residing on the specified extent and

reports any inconsistencies.
Diagnostic messages report on the following inconsistencies:

- Blocks claimed by more than one jnode or the free list.
- Blocks or slots outside the range of the file system.
- Lost blocks and slots.
- Bad file condition.
- Incorrect file size.

Upon completion ate outputs the following summary information:
Total files on the system.

Total blocks on the system.
# blocks allccated.
# of free blocks.
# of lost blocks.
# of duplicated blocks.
Total slots defined.
# slots allocated.
# free slots.

# lost slots.
# duplicate slots.

-" SEE ALSO
Mee

BUGS No scratch file is used, so the size of a system which can be checked is
limited.
No audit capture messages are ever sent.

A -1-

r-"- - * . .
-' ""4 -. 

:...;, ,~



TPE(III) KSOS 12/1/80 TPE (III)

NAME
tpe - terminal profile database editor

SYNOPSIS

DESCRIPTION

Tve interactively edits the group access authentication database and is
invoked from the secure server. The editor commands include add, change,
delete, find, next, print, view, and quit. A description of command
action follows. The character preceding the closing parenthesis, ")', is
the command code. Any unrecognized character causes printing of the com-
mand list.

._)dd prompts the user for all information and appends the new record to
the end of the database. The following questions are asked:

Enter tty id:
Is the terminal configured ? (y or n)
Is the terminal to be treated as a console ? (y or n)
Enter default transmission baud rate:
Enter default receiveing baud rate:
Enter default parity (even, odd, or none) :
Enter clear screen sequence (max 8 chars) :

ENTER MAXIMUM ACCESS LEVEL
SECURITY CATEGORY
Enter desired SECURITY category:
INTEGRITY CATEGORY
Enter desired INTEGRITY category:
Enter numbers of desired security compartments
separated by spaces (carriage return for NULL):

c)hanae changes a specific field in the current record. Change accepts
the following commands:

ex) it
v)iew
i)d
f )configured
c)onsole
t)ransmit rate
r)eceive rate
p)arity
s)creen clear
m)ax access level

d)elete the current record by asking "Do you want to delete [current
record name] (y or n) "

p)rint the current database records, including modifications, to the
lineprinter.

- -1-

r



TPE (III) KSOS 12/1/80 TPE (III)

v)iew outputs the current record to the terminal

f)ind searches the database for the specified id and sets the current
pointer to the record. The user is prompted for the id; tPe responds
"Record is not found", if the id is not in the database.

n)ext moves the current pointer is to the next record. If the pointer is
currently pointing to the last record, it is moved to the first record.

_l)uit ends execution of the editor. If modifications were made, the
question "Do you want to save the updates?" is asked and a y or n is
expected in response. "

FILES
/sys/dataBases/terminal terminal profile database
/sys/dataBases/security system security map

SEE ALSO
SME(III), terminal(IV), security(IV)

ERRORS
can't open tpdb
can't create tempfile
can't open securitymap

2

o. . .



S---- -

UCE (V) KSOS 12/1/80 UCE (V)

NAME
uce - user access authentication database editor

SYNOPSIS

ucMe

DESCRIPTION

Uce interactively edits the user access authentication database and is
invoked from the secure server. The editor commands include add, change,
delete, find, next, print, view, and quit. A description of command
action follows. The character preceding the closing parenthesis, ")', is
the command code. Any unrecognized character causes printing of the com-
mand list.

a)dd prompts the user for all information and appends the new record to
the end of the database. The following questions are asked:

Enter name (max 8 char):
Enter password (max 10 char):
Enter password again to verify

- Can this owner login ? (y or n)
Enter owners id number
Enter owners group name
ENTER ACCESS LEVEL FOR LOGIN
SECURITY CATEGORY
Enter desired SECURITY category:
INTEGRITY CATEGORY
Enter desired INTEGRITY category:
Enter numbers of desired security compartments
separated by spaces (carriage return for NULL):
ENTER MAXIMUM ACCESS LEVEL

=- SECURITY CATEGORY
Enter desired SECURITY category:
INTEGRITY CATEGORY
Enter desired INTEGRITY category:
Enter numbers of desired security compartments

separated by spaces (carriage return for NULL):
Enter directory pathname (max 63 char)
Enter shell pathname (max 63 char)
Enter emulator pathname (max 63 char)

_S)han e changes a specific field in the current record. Change accepts
the following commands:

ex)it
v)iew
p) assword
1)ogin ok
o)wner id
$g)roup name
m)ax access level
curr a)ccess level
d)ir path

.1 - 1



UCE (V) KSOS 12/1/80 UCE (V)
p

s)hell path
e)mul path

d)elete the current record by asking "Do you want to delete [current
record name] (y or n) :" _

j)rint the current database records, including modifications, to the
lineprinter. _

v)iew outputs the current record to the terminal

f)ind searches the database for the specified name and sets the current -
pointer to the record. Receives search string from "Enter name
Responds "Record not found", if name not in database.

n)ext moves the current pointer to the next record. Pointer moved to the
first record if currently pointing to the last record.

A)uit ends execution of the editor. If modifications were made, the
question "Do you want to save the updates?" is asked and a y or n is
expected in response.

PILES
/sys/dataBases/user user access authentication database
/sys/dataBases/group group access authentication database
/sys/dataBases/security system security map

SEE ALSO
GAA(III), SME(III), user(IV)

ERRORS
can't open uaadb

,. can't create tempfile
can't open gaa
can't Open security map

I

- 2..



UDM(III) KSOS 10/7/80 UDM(III)

NAME
UDM - UNIX Directory Manager.

DESCRIPTION
UDM maintains a UNIX-like directory structure on top of a KSOS file sys-
tem. All directory operations, creating entries, removing entries and
searching directories is supported by the directory manager and directory
manager interface procedures.

Directories are of a distinguished subtype known as the directory sub-
type. The directory subtype is used to insure that the UDM is the only
process that is allowed to write directories. However, other processes
may open directories for reading by presenting a read directory subtype
open descriptor to K-open.

Access to the directory manager is provided by the directory manager
interfcae, which must be compiled with the program which plans to use it.
The directory manager interface provides a procedure call interface to
the UDM. The interface handles the packing of a UDM argument block, the
building an argument segment, the spawning of the UDM and the waiting for
IPC status return.

DEFINITIONS
Path Name - A path name is a character array of directory names, where

the character "/" is used to separate directory names.

Leaf Name - The leaf component of a path name is the last name in a path
name.

Starting Directory - Directory operations take a path name and a starting
directory (seid) as arguments. If a rooted path name (a path name
that begins with "/") is given to a directory manager interface
procedure, the directory operation assumes the root directory as
the starting directory regardless of the starting directory given.

Directory Subtype - The directory subtype is a well known seid.
seid (subtypensp, char(100) cardinal (0))

All directories are of directory subtype.

Root Directory - The seid of the first mounted file system, which is know
as the root file system, is:seid (root_nsp, char(O) cardinal (5))

UDM Event Type - The directory manager process co-municates status infor-
mation to its parent, the directory manager interface procedure,
via an IPC. The first byte of the message portion of the IPC con-
tains the event type of the IPC. The IPC returned from the direc-
tory manager shall always have event type 26 decimal.

UDM.error - UDM error is an enumerated type that is declared in UDM
interface. Its MODULA definition is:



UDM(III) KSOS 10/7/80 * TDM(III)

0DM erro~r - (0DM -no -error,
0DM cannot-do,
0DM cannot link,
1DM_cannot_unlink,-
UDM _entry epxists,
0DM ~entry_does _uot exist,
0DM cannotoppen directory,
0DM seid-refers-to_£_directory,
UDM cannot-create-directory,
1DM cannot-remove-directory,
0DM-directorynot,_empty,
0DM not directory,

0D~irectr not vwritable,
0DM not-executable,
UDnojpath,
0DM not-found,
0DM cannot-link-across-file systems,
0DM cannot. mount,
0DM cannot-unMOUnt);

Note that an enumerated type in MODULA begins at zero.

-2-



UDM(III) KSOS 10/7/80 UDM(III)

INTERFACE PROCEDURE

UZM_mkentry - make a directory entry

MODULA SYNOPSIS
CONST SEID of dir : seid;

CONST SEID of entry : said:
CONST path name : ARRAY integer OF char;
CONST wait flag : boolean;
CONST UDMstat : UDMHerror;

UDMstat :- UDM_mkentry ( SEID of dir,
SEID _of_entry,
pathname,

wait-flag);

DESCRIPTION
The UDM mkentry procedure causes a directory entry to be made. Starting
at the directory specified by SEID of dir, the components of the path
name Path name are used to find subordinate directories until only a leaf
component of the path name remains. A directory entry is then made in
the parent directory of the leaf name. This directory entry is composed
of the SEID of entry and the leaf component of path name. Seids with any
name space may be used as a SEID of entry. However seids with a file
name space shall be linked.

The wait flag specifies if the directory operation is to be synchronous
or asynchronous. If the wait flag is true then the procedure shall not
return until a IPC status block is received from the UDM.

Note that files are created with a zero link count and remain in
existence so long as they are open or have a non-zero link count. There-
fore, the proper way to make a directory entry for a newly created file
is to create the file, call UDM mkentry, and then close the file.

DIAGNOSTICS

UDM mkentry returns the following error codes:
UDMno error

UDMcannot_link
UDMentry_exists
UDM_cannotppen_ directory
UDMseidrefers to a directory
UDMcannot_link_across_file.systems

J3

*_7
a

--L -



UDM(III) KSOS 10/7/80 UDM(III)

INTERFACE PROCEDURE
UDMmkdir - create a directory

MODULA SYNOPSIS
CONST SEIDofdir seid;

CONST dirname ARRAY integer OF char;
CONST wait-flag boolean;
VAR UDM.stat UDMerror;

UDMstat :- UDMmkdir ( SEIDof-dir,
dir.name,
waitflag);

DESCRIPTION
UDM mkdir creates a directory. Starting at the directory specified by
SEID of dir the components of the path name dir name are used to find
subordinate directories until the last parent directory component is
found. A directory is then created in the parent directory with the name
of the leaf name. This newly created directory shall have access modes
of read, write, execute by owner and read, execute by group and others.
Also, this directory shall contain two distinguished directory entries,

." and "..". The "." directory entry shall refer to the newly created
directory and the ".." directory entry shall refer to the parent direc-
tory.

The wait flag specifies if the directory operation is to be synchronous
or asynchronous. If the wait flag is true then the interface procedure
shall not return control to the caller until an IPC status block is
received from the UDM.

DIAGNOSTICS
UDM mkdir returns the following error codes:

TDMnoerror
DMent ry exists
UDM_cannot open directory
UDMcannotcreatedirectory

-4-



UDM(III) KSOS 10/7/80 UDMt.II)

INTERFACE PROCEDURE
UDMrm - remove a directory entry

MODITLA SYNOPSIS
CONST SEID of dir : seid;
CONST path name ARRAY integr OF char;
CONST wait flag boolean;
VAR UDM-stat :UDM_error;

UDM stat :- UDM_rm ( SEID of Dir,
path-name,
wait-flag);

DESCRIPTION
The UDM rm procedure dauss a director'j ricry, which uay be a file or
directory, to be removed. Starting at the directory specified by
SEID of Dir the components of the path name path namae are used to find
subordinate directories until only a l=af component of the path name
remains. The leaf name directory entry is then removed. If the direc-
tory entry to be removed is a file, K unlink is called. If the directory

entry to be removed is an empty directory, consisting of only "." and

".." entries, the directory is removed.

The wait fjAg specifies if the directo:y )puration is to 1.e synchronous
or asynchronous. If the wit flag is true then the procedure shall not
return until a IPC status block is received from the UDM.

DIAGNOSTICS
UDM rm returns the following error codes:

UDM no error
U1DM not_found
UDM cannot onlink

DM_d i rec to ry not .emp L y
UDMcannot_..opendirectory
UDM_ cannot remov,_ dire ctory

-I

2-i!



ZD incd PatiIll Z...L . LL L

MODULA SYNOPSIS
CONST &tart-ng dir__=l a I
CONST path name AL ;F (chgr
CONST operation pth~
VAR partent-dir .stid Seid;
VAR entry .Seidi _.id;
VAR ! fiv r, _,,Arut uK' k-, -gtu

'VAR J-DMs._ j DM -

DESCRI?'f..01r
UDM f ad pe;rrfcL6 ~f >~pC ~ <! ), t~t at Lh _ direc-
tory specified by >: ir .~~ re~cihC path,1 name
. !L -A r U ltv(z ~O iid sabord3nui . .c: t: if cz
9pneft of tl-e Pil.11 h : ~ x~ -,ciicr*
t,.oD is thi~u per.:or&.d.

For all directory oprtoiif p.Atti rp:e - T  fr-n,: 6,r=ctory of
the leaf name i., iegdl, Lu1elfl Lhe ri4a nt .- r sed :az is with t he Sed
of the parent directory dad the envrv name is filledi -w-La it leaf namie.
If the entrycame d, ruc_1.nry entry exists thez. .tlt_,--ad is filled wit~h
the setd of that diar:c ory nr.

io tdl'..wiing patn1 )Cerat iil Ie.1.e.

po_.mk,:anry -. V t:.c;n QLtpl pl he. l C-.
be~ madd. A stdatus n U)M icror i6i rtt..,r- if the proctzss
Inas rt*, as ' in .'~pc d~e--- nd i.f (-he entrv
ot the_ de.-Ic6- ax3Tc cLi , sa~'±y

Call b C,=mW - A st,,tus zs tMr.~ f the:
prrnctfsi has Ct w fe. bi,-;,j _r, thtt parte.i j-1-.ec.ory and the
leaf 1,,1 3 z,~r ire~~t: s - -1: namt. is direc-

tirv-~~~ ~~ h.wl ".." ''i~t- ~ V directory

r ~ ~ ~ ~ ~ ~ ~ t l'ci% -t1:; L2 c i,- -i ex c.tespc d narme
eI sta A st~i*u! -11 111' ;1 7 c s : r-dir the entry is

f ound.-



-UDM(III) KSOS 10/66~ tmMI(III)

- pochdir -checks -,t th-- scied dxc~to.ry t-atry IS a directory
and that the pro-ess has searcn/",xecute pdrmi.ssiorns for that
directory. if the dbovtt znezks dte satisfied a Status ot

- UDM no tirvo itS curiied.

poexcc - checks it thu speciiied diectory entry exists and is an
executable tilet. A status of 10DM no error is returned if the

-process haa execute permislsI ons for that fiie and ii the file
contains the magic numbers of 407, 410 or 411 (octal').

DIAGNOSTICS
IJDMfind returns Lhe raloiing crr,, L~deb:

0DM no error
UDM4-nopath
UDM cannot-do
UDMnot-found
0DMentry exist!-71 0DM not directory
0DM cannot optn r, .c

0DM -directory riot -,ritdble



USING THE UDM INTERFACE
Two tTDM interfaces exist, one rOr SdpertE- MkUJifj"a jlr~gl'dws dfld on rir
supervisor C programs.

To use the 11DM interface tor MODULA one must;

a) Define the rollowing cpp cons'.ants: k_ojldseg. ktjnvok-, k -spiLwn,
kgetpa, k-relseg, k getss, k--setss, k.setpa, and k._setda.
Defining these constants aliows the related k~rne.L .alis to be
conditionally compiled with the soure.-

b) Include KERcalla-mad.

c) Define tht- .p coast. rit ip,. 7rThu i? C,)tfl lo h

IPC handling proce~dure to hLbu~i~

d) Declare the Prcoctdure 1KC v.,d. I Lic ocLcture is: ilaportvd
into (-,L:ien.~t............~~ i iue c
chec!k the V~iZV3. i i. -, L it -L u )r, thl IPC queae.
This procedure al"cvWS a pl'6 t-63te thav: its IPC qut~ie
will not gzt fillied wita ucwdrt~cI !PC'-~..T proceatire,
IPC valid should take an~ ;.,S as a pr~rauter and shrould
return a boolean result. Truc if the: 1?C 1.s to lbu pltced on the
queue and false if the- i'C is Lo be discaz.de-d.

l) nciuje; thte the skd rr i..-i~i11. o.o. i
Include the U11T di, t--rr:tY f ~ a or MC)DULA.

FILES

udm-lib-rnod - TTOJh iriterface fc. >O-U, A

EDI-h - U11 interface fcor
npi-mod - Pseudor-interrdpt ha--Ahilr,, ocu

SEE ALSO
ipc block fl)

* seid (I)

*Mg



udmtf (III) KSOS 10/2/80 udmtf (III)

-NAME

udmtf - UDM Test Frame

SYNOPSIS
udmtf

DESCRIPTION
The udmtf allows one to exercise the directory manager. It is often used
to create files, which can be overwritten by NKcopy. Udmtf prompts with
a ">" and accepts the following commands:

is (-IrT] Ldirectory name provides a similar functionality to the

UNIX Is.

1 signifies that a long listing is to be performed.

r signit1s that a the subdirectories are to be recur-
Ivel7j listed.

-T signitieb that the security information is to be
printed.

mkentry creates a file.

rm removes a file or a directory.

mkdir creates a direcUtry.

quit causes the udmtt process to exit.

- BUGS
Erase and kill processing is not pe-formed on input.

I7

J-



KSOS(III) KSOS 10/16/80 KSOS(III)

NAME
umt - unmounts a file sys =m

SYNOPSIS
umt filesystemname

DESCRIPTION
Umt logically unmounts the file system given in the filesystem name argu-
ment. The name must consist of a full pathname to the file system.

The user must be at OPERATOR level or above to aetually unmount a file

system.

FILES
/sys/dataBases/mountTable
/sys/dataBases/immigration

SEE
mnt (III)

S -- 1

i_ _ _ _ _ _ _ _ _ _ _-~*.

.* .* *'* **p i



I

DEVICE(IV) KSOS 9/29/80 DEVICE(IV)

NAME
device - device profile dat±zae

DESCkiPTION

The device profile data base contains the owner and maximum access level
for each device on the system.

The modula definition of a device profile database record is:

RECORD SIZE
deviceName ARRAY 0:7 CF char; 8 bytes
deviceSeid :seid; - bytes
device ti tilt struct; 16 bytes
valid required : boolean; I byte
assign required boolean; I byte

END;
30 bye

deviceNane Name of tre de'ice.

deviceSeid Seid of the device.

device tii Includes device owner, group and maximum access level of
the device.

validrequired This device is a disk. A VOLUME VALiD K device function
is required on this device before the disk can be
accessed.

assign_required This device can only be accessed after it has been

assigned.

The device profile database can be noditied with the device protile edi--
tor (DPE). All fields of the device profile record can be modified with
this editor.

This data base is read by the secure initiator (SIP), assign (ASG) and
deassign (DSG).

FILES
/sys/dataBases/device

SEE ALSO
DPE(III), ASG(III), DSG{(II), til struct(I), seid(I)

S-

II



I KSOS(IV) KSUS 1/18/8, KSOS(IV)

-- NAME
dump - incremental dump tcrmat

DESCRIPTION
The fsd and fsr programs are used to incrumuntaily dumap and restore KSOS
file systems. The dump format consists of four sections, each of which
is an integral number of 512-byte blocks long: a one block dump master,
the file system's security map, a dump map and, finally, the jnodes and
data blocks for each file dumped. The complete dump is Written out as
one long record composed of logical 512-byte blocks. The first block has
the following structure:

dumpmaster - RECORD
mount : mountItem (* fs mount item - 102 bytes *)
from date : timeStamp; (* incremental dump date *)
dumpdate : timeStamp; (* date this dump was taken *)
size : cardinal32; (* blocks used on save device *)
secmapszC : cardinal, (* securiy iadp size (blocks) *)
filler : ARRAY 1:D-M FILLSZ OF char; (* filler *)
checksum : cardinal; (* block checksum *)

END;

The security map is a copy of the security map database for the KSOS sys-
tem on which the file system resides. Its size is specified by
secmapsize and is normally 8 blocks long. The dump map contains one
boolean element for each slot in the system space of the file system. It
indicates which file system slots contain jnodes. It is essentially a
copy of the file system allocatior, map minus references to indirect
items. Its size (in blocks) is equal to (total system slots)/(512*8 bits
per block) rounded up. The rest of the tape is made up of the data
blocks for each dumped file. Each set of data blocks is immediately pre-
ceded by a block containing the jnode for the file. These Jnode blocks
each contain a dump block number and a checksum. The final block on the
tape has a dump block number of 0.

.. .
-. -I --

_ - - --.. . . . . , . . . . . , , . - - : . . . . 4 , -- _ _ , - .;



GROUP(IV) KSOS 9/29/80 GROUP(IV)

NAME
group - group access authentication database

DESCRIPTION

The group access authentication database contains group Identification,
administrator and maximum access level Information.

The modula definition of a group access authentication database record
Is:

RECORD SIZE
groupName ARRAY 0:7 OF char; 8 bytes
groupPassword ARRAY 0:10 OF char; 12 bytes
groupid cardinal; 2 bytes
maxLevel : access level type; 6 bytes.
groupAdmin : integer; 2 bytes

END;
30 bytes

groupName name of the group

groupPassword encuded password of the group

groupid unique group identification number

maxLevel maximum access level of the group

groupAdmin a user that serves as the group administrator

The group access authentication database can be modified with the user

control editor (UCE). All fields of the group access authentification

record can be modified with this editor.

The data base is read by the secure server (SSP), and file access modifi-

cation (FAM).

FILES
/sys/dataBases/group

SEE ALSO
UCE(III), SSP(1II), FAM(III), access level type(l)

.. t



-' SECURITY(IV) KSOS 9/29/80 SECURITY(IlV)

NAME
security - security map database

DESCRIPTION

The security map database specifies the defined security levels,

integrity levels and security compartments of the system.

The security map database is divided into three sections. There are 16

security level entries, 16 integrity level entries, and 32 security com-
partment entries.

The modula definition of a security map database record Is:

RECORD SIZE
shortName : ARRAY 0:11 OF char; 12 bytes

longName ARRAY 0:49 OF char; 50 bytes
fIlnull : char; 1byt
active char; byte

END;
64 bytes

shortName is in uppercase and does not need to end with null.

longName is uppercase, may include blanks, and must end with

null.

active is 'A' active or 'I' inactive.

The map has 64 entries: 0 - 15 are security level cazegorles, 16 - 31 are

integrity level categories, and 32 - 63 are security compartments.

The security map database can be modified with the security map editor

(SME). All fields of the security map record can be modified with this
editor.

FILES
/sys/dataBases/securicy

SEE ALSO
SME(III)

.71 fil m -



SYSTEM(IV) SOS 9/29/80 SYSTEM(IV)

NAME

system - system profile database

DESCRIPTION

The system profile database contains system identification and access

level information.

The modula definition of a system profile database record is:

RECORD SIZE
sys name :ARRAY 0:59 OF char; 60 bytes
inst name :ARRAY 0:59 OF char; 60 bytes
sys no :cardinal; 2 bytes

- version :versionType; 4 bytes
gen date :cardlnal32; 4 bytes
systemMax :access level type; 6 bytes

- currentMax :access level type; 6 bytes
currentMinLax :access level type; 6 bytes

END;
148 bytes

sys name system name for this system
Inst name name of installation where this system is located
Sys no unaque KSOS system number
version KSOS OS version number (major/minor)
gen date KSOS OS system generation date (ticks since January 1,

1980)
systemMax max levei ever .,ermitted for this system
currentMax max level currently permitted on this system
currentMinMax defines the lowest maximum level needed to login in

(i.e. if a user's max level is less than this level he
can not login)

The system profile database can be modified with the system prorile edi-
tor (SPE). All fields of the system profile record can be modified with
this editor.

The data base is read by file access modification (FAM) and secure server
(ssP).

FILES
/sys/dataBases/syste:n

SEE ALSO
SPE(III), FAM(III), SSP(III), access level type(I)

-- - ' ,, . . .. I . .

... : .e.: -.. _ -- ' . . ." '- "; "I ' ' " ' -i i h ' - ' f " ' " .,....-1 - n- . .



TERMINAL(IV) KSOS 9/29/80 TERMINAL(IV)

NAME
terminal - terminal profile database

DESCRIPTION

The terminal profile database contains terminal configuration and access
level information.

The rodula definition of a terminal profile database record is:

RECORD SIZE
ttyid :char; 1 byte

config :boolean; Ibyte
console :boolean; 2 bytes
xmitBaud :cardinal; 2 bytes
recBaud :cardinal; 2bytes
parity :cardinal; 2 bytes
clrScreen :ARRAY 1:8 OF char; bytes

maxLevel :access level type; 6 bytes
END;

24 bytes

ttyid unique terminal id

config terminal is configured
k console terminal is to be treated as a console

xmitBaud default transmit baud rate
recBaud default recieve baud rate

parity default parity
* clrScreen sequence required to clear the screen

maxLevel maximum access level for this terminal

The terminal profile database can be modified with the terminal profile

editor (TPE). All fields of the terminal profile record can be modified
with this editor.

- The data base is read by the secure server (SSP) and file access modifi-

cation (FAM).

FILES
/sys/dataBases/terminai

SEE ALSO
TPE(III), SSP(III), FAM(IIt)



USER(IV) KSOS 9/29/80 USER(IV)

NAME

user - user access authentication database

DESCRIPTION

The user access authentication database contains user identification and
access level information.

The modula definition of a user access authentication database record is:

RECORD SIZE
userName ARRAY 0:7 OF char; 8 bytes
userPassword z ARRAY 0:10 OF char; 12 bytes

nO__k :boolean; 2 bytes
maxLevel : access level type; 6 bytes
tii til struct; 16 bytes
l--inDir ARRAY 0:63 OF char; 64 bytes
logInShell : ARRAY 0:63 OF char; 64 bytes
loginEmul : ARRAY 0:63 OF char; 64 bytes
filler : ARRAY 0:19 OF char; 20 bytes

-- END;
256 bytes

userName name of the user

userPassword password of the user

loginOk true if user can login

maxLevel maximum access level

tii login access level

loginDir login directory pathname

loginSheil iogin shell pathname

loginEmul login emualator pathname

The user access authentication database can be modified with the user

control editor (UCE). All fields of the user access authentication
record can be modified with this editor.

The data base is read by the secure server (SSP) and file access modifi-
-. cation (FAM).

FILES
/sys/dat aBases/user

SEE ALSO
UCE(III), SSP(III), FAM(III), tilistruct(I), access leveltype(l)

.- . .. . ' .. , .



BREAK(VI) KSOS 12/9/80 BREAK(VI)

K

NAME
break, brk, sbrk - change core allocation

SYNOPSIS
(break - 17.)

sys break; addr

char *brk(addr)

char *sbrk(incr)

DESCRIPTION
Break sets the system's Idea of the lowest location not used by the pro-
gram (called the break) to addr (rounded up to the next multiple of 5i2
bytes). Locations not less than addr and below the stack pointer are not
in the addres. space and will thus cause a memory violation if accessed.

From C, brk will set the break to addr. The old break is returned.

In the alternate entry sbrk, incr more bytes are added to the program's
data space and a pointer to the start of the new area is returned.

When a program begins execution via exec the break is set at the highest
location defined by the program and data storage areas. Ordinarily,
therefore, only programs with growing data areas need to use break.

SEE ALSO
exec (II), alloc (III), end (III)

DIAGNOSTICS
The c-bit is set if the program requests more memory than the system
limit or if more than 8 segmentation registers would be required to
implement the break. From C, -1 is returned for these errors.

Setting che break in the range 0177700 to 0177777 is the same as setting
it to zero.

KSOS
Note that in KSOS, the system's memory grain size is 512 bytes as opposed
to the 64 bytes of UNIX.

A -

-, ... , - - _ , = , l'. .. - ' . . I. ,
. . .. . . ..I : !' ' l l

" : 'r"
"i 'l I I 

'
.. . . . : i .. .. , , - '... .. ; . t.I~ ' - . ., - " "- ) - '-, = : - - a J,1'--.



CHDIR(VI) KSOS 12/9/80 CHDIR(Vi)

NAME
chdir - change working direccory

SYNOPSIS
(chdir - 12.)

sys chdir; dirname

chdir(dirname)
char *dirname;

DESCRIPTION
Dirname is the address of the pathname of a directory, terminated by a

null byte. Chdtr causes this directory to become the current working
directory.

SEE ALSO
chdir (I)

DIAGNOSTICS
The error bit (c-bit) is set If the given name is not that of a directocy

or is not readable. From C, a -1 returned value indicates an error, 0
indicates success.

KSOS

1

,-1

C



CHMOD(VI) KSOS 12/9/80 CHMOD(VI)

NAME
chmod - change mode of file

SYNOPSIS
(chmod 15.)
sys chmod; name; mode

chmod(name, mode)
char *name;

DESCRIPTION
The file whose name is given as the null-terminated string pointed to by
name has its mode changed to mode. Modes are constructed by ORing
together some combination of the following:

4000 set user ID on execution
2000 set group ID on execution
0400 read by owner
0200 write by owner
0100 execute (search .n directory) Dy cOWreC
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

Only the owner of a file may change its mode.

SEE ALSO
chmod (I)

DIAGNOSTIC
Error bit (c-bit) set if name cannot be found or if current user is not
the owner of the file. From C, a -1 returned value indicates an error, 0
indicates success.

KSOS
Note that uid and gid do not work as in UNIX. In particular, fromt the
Emulator it is not possible to change the setting of the set user or set
group ID bits.



CHOWN(VI) KSOS 12/9/80 CHOWN(VI)

NAME
chown - change owner and group of a file

SYNOPSIS
(chmod - 16.)
sys chown; name; owner

chown(name, owner)
char *name;

DESCRIPTION

The file whose name is given by the null-terminated string pointed to by
name has its owner and group changed to the low and high bytes of owner
respectively.

SEE ALSO
-hown (VIII), chgrp (VIII), passwd (V)

DIAGNOSTICS
The error bit (c-bit) Is set on illegal owner changes. From C a --I
returned value Indicates error, 0 indicates success.

KSOS
This system call Is subsumed by the NKSR; attempted use under the UNIX
Emulator will result in an error.

II

1



CLOSE (VI) KSOS 9/29/80 CLOSE(I)

j

NAME

close - close a file

SYNOPSIS
(close - 6.)
(file descriptor in rO)
sys close

close(fildes)

DESCRIPTION
Given a file descriptor such as returned from an open, creat, or pipe
call, close closes the associated file. A close of all files is
automatic on exit, but since processes are limited to 15 simultaneously
open files, close is necessary for programs which deal with many files.

SEE ALSO
creat (II), open (II), pipe (iI)

DIAGNOSTICS
- The error bit (c-bit) Is set for an unknown file descriptor. From C a -i

indicates an error, 0 indicates success.

KSOS

4

.
:

I - - . - -



CREAT(VI) KSOS 12/9/80 CREAT(VI)

NAME

creat - create a new file

SYNOPSIS
* - (creat 8.)

sys creat; name; mode

(file descriptor in rO)

creat(name, mode)
char *name;

DESCRIPTION
Creat creates a new file or prepares to rewrite an existing fiie called
name, given as the address of a null-terminated string. If the file did
not exist, it is given mode mode. See chmod (II) for the construction of
the mode argument.

If the file did exist, its mode and owner remain unchanged but it is
truncated to 0 length.

The file is also opened for ,,riting, and its file descriptor is returned
(in rO).

The mode given is arbitrary; it need not allow writing. This feature is
used by programs which deal with temporary files of fixed names. The
creation is done with a mode that forbids writing. Then if a second
instance of the program attempts a creat, an error is returned and the
prograa knows that the name is unusable for the moment.

SEE ALSO
write (II), close (II), stat (II)

DIAGNOSTICS
The error bit (c-bit) may be set if: a needed directory is not search-
able; the file does not exist and the directory in which it is to be
created is not writable; the file does exist and is unwritable; the file
is a directory; there are already too many files open.

From C, a -1 return indicates an error.

KSOS

-

-1

* *----



CSW(Vl) KSOS 12/9/80 CSW(VI)

NAME
csw - read console switches

SYNOPSIS
(csw 38.; not in assembler)
sys c8w

getcsw( )

DESCRIPTION
The setting of the console switches is returned (in rO).

KSOS
This call is not supported by KSOS. Attempted use will result in an

error.

-w



DUP(VI) KSOS 12/9/80 DP(V2

NAME
dup - duplicate an open file descriptor

SYNOPSIS
(dup = 41.; not in assembler)

(file descriptor In rO)
sys dup

dup(fildes)
mnt fildes;

DESCRIPTION
Given a file descriptor returned from an open, pipe, c:eat, or port call,
dup will allocate another file descriptor synonymous with tre original.

- The new file descriptor is returned In rO.

Dup f3 used more to reassign the value of file descriptors than to
* genuinely duplicate a file descriptor. Since the algorithm to allocace

file descriptors reaur-as the lowest available value, comhinations of dup
and close can be used to manipulate file descriptors In a general way.
This is handy for manipulating standard input and/or standard output.

SEE ALSO
creat (II), open (II), close (II), pipe (II)

DIAGNOSTICS
The error bit (c-bit) is set If: the given file descriptor is invalid;
there are already too many open files. From C, a -1 returned value indi-
cates an error.

KSOS

i -
-1-1

- S., 7 r .



EXEC(V!) KSOS 12/91?0 '.i' ')

NAME

s l exeCv .- -ecaze a fil:

SYN~iM: i S

sys exec; name; args

nam: <..\0>

argsa argO; argl; ....; 0
argO; <... \O>

argl <.-.\0>

execl(eaze, agO, 0),.., ar'-n O)

char 1 nawe, * at'r, *acgI, .. , *argn;

DE SCR f P'i !ON

Exec veclays the -ailing pjoce6s witL fCic n,.aK-a file, then transfcrs ta

the oeginning of Lhe core iLo-ge of thtt file. There can be no return Zrom

the file; the cailing core iurage is lost.

F'iles reain open acro,. exec calls. Ignored r"main Ignored

across exec, but signals that are caught are reset" to their default
~values.

Each user has a real user iD and group ID and ax effective usar ID and

group 1D. The real ID identifies the person using the system; the efec-

tive ID determines his access privileges. Exec changes the effec:±ve
user and group ID to the owner of the executed ffle if the filE ias the

sec-user-ID' or "set-group-ID' modes. The ra. user ID 4s n3taffet ted.

Tl',e form of this call differs, somewhat depending , 1iether it is called

from assembly language or C; see below for the C version.

The first acgument to exec is a pointer to the name of the file to be
executed. The second Is the address of a null-terminaced lis of

pointers to arguments to be paissed to the file. CoaventIonaii1N, the

first argument is the name of the file. Each pointer adorr-sses a s':ring
terminated by a null byte.

Once the calied file starts execution, the argaments :;re ' avai.ble as

zolioas. The stack pointer points to a word contaiafng the number of
argument6. Just above this number is a list of pointers to the argument

strings. The arguments are placed as high as possible in core.

. . , .. ,



EXEC(VI) KSOS 12/9/80 EXEC (VI)

sp-> nargs

argo

argO: <argO\0>

argn: <argn\O>

From C, two interfaces are available. execl is useful when a known file

with knows arguments is being called; the arguments co execl are the

zharactdr string-s constituting the file and the arguments+; as in the
basic call, the first argument is conventionally the saute as rhe file
name (or its last component). A 0 argument oust end the argument list.

The exezv vezslon is useful when the number of arguments is unknown in

advance; the argruments to execv a:e the name of the file to be executed
and a vector of iT r:ings- concalntng the -_umanrs. The latt argument

;lE'in, ljiras ne followev by a !) pointer.

When a C program is executed, it is called as follows:

main(argc, argv)

inc argc;
char **argv;

where arg is the argument count and argv is an array of character

pointers to the arguments themselves. As indicated, argc is convention-

ally at least o;.e and the first member of the array points to a string

containing the name of the file.

g is not directly usable in another execv, since arg!v[argc] is -- and

not 0.

SEE ALSO

fork (II)

DIAGNOSTICS

If the file cannot be found, if it is not executable, if it does not have

a valid header (407, 410, or 411 octal as first word), if maximum memory

is exceeded, or if the arguments require more than 512 bytes a return
from exec constitutes the diagnostic; the error bit (c-bit) is set. From

C the returned value is -I.

BUGS
3n!y 512 characters of argumenc; ac allow,-.

iOS

A z'



P

EXIT(VI) KSOS 9/29/80 EXIT(VI)

NAME
exit -terminate process

SYNOPSIS
(exit - 1.)
(status in rO)
Sys exit

exit(status)
nt status;

DESCRIPTION
Exit is the normal means of terminating a process. Exit closes all the
process's files and notifies the parent process if it is executing a

wait. The low byte of rO (resp. the argument to exit) is available as
status to the parent process.

This call can never return.

SEE ALSO
wait (II)

DIAGNOSTICS

None.

KSOS

1

*1..-1



FORK(VI) KSOS 12/9/80 FORK(VI)

NAME
fork - spawn new process

SYNOPSIS
(fork - 2.)
sys fork
(new process return)
(old process return)

fork( )

DESCRIPTION
Fork is the only way new processes are created. The new process's core
image is a copy of that of the caller of fork. The only distinction is
the return location and the fact that rO in the old (parent) process con-
tains the process ID of the new (child) process. This process ID is used
by wait.

The two returning processes share all open files that existed before the
call. In particular, this Is the way that standard input and output
files are passed and also how pipes are set up.

From C, the child process receives a 0 return, and the parent receives a
non-zero number which is the process ID of the child; a return of -1
indicates inability to create a new process.

SEE ALSO
wait (II), exec (II), sfork (II)

DIAGNOSTICS
The error bit (c-bit) is set in the old process if a new process could
not be created because of lack of process space. From C, a return of -1
(not just negative) indicates an error.

KSOS

.* . . .. ,1 . , . , .. . . ., ; .



FSTAT(VI) KSOS 12/9/80 FSTAT(VI)

NAME
fstat - get status of open file

SYNOPSIS
(fstat - 28.)

(file descriptor in rO)
sys fatat; buf

fstat(fildes, buf)
struct tiode *buf;

DESCRIPTION
This call is identical to stat, except that it operates on open files
instead of files given by name. It is most often used to get the status
of the standard input and output files, whose names are unknown.

SEE ALSO
stat (II)

DIAGNOSTICS

The error bit (c-bit) is set if the file descriptor is unknown; from C, a
-1 return indicates an error, 0 Indicates success.

-KSOS
Not all fields of the status structure are meaningful in KSOS. The fstat

call supplies zeroes In such fields.

iWAR_
A

*1

4 -% . -. . . , , . . . ,. ,, " . .



GETGID(VI) KSOS 9/29/80 GETGID(VI)

NAME
getgid - get group identifications

SYNOPSIS
(getgid - 47.; not in assembler)
sys getgid

getgid( )

DESCRIPTION
Getgid returns a word (in rO), the low byte of which contains the real
group ID of the current process. The high byte contains the effective
group ID of the current process. The real group ID identifies the group
of the person who is logged in, in contradistinction to the effective
group ID, which determines his access permission at the moment. It is
thus useful to programs which operate using the "set group ID" mode, to
find out who invoked them.

SEE ALSO
setgid (II)

DIAGNOSTICS

KSOS
KSOS group IDs are 16 bits each, but are mapped into 8 bits by using only
the low order byte.

1

* -- - I -I



GETPID(VI) KSOS 12/9/8C GETPID(VI)

NAME
getpid - get process identification

SYNOPSIS
(getpld - 20.; not in assembler)
sys getpid
(pId in rO)

getpid( )

DESCRIPTION
Getpid returns the process ID of the current process. Most often it is
used to generate uniquely-named temporary files.

SEE ALSO

DIAGNOSTICS

KSOS

Process Ids are unique only within an Emulator family.

I. 7

. . .. -



GETUID(VI) KSOS 9/29/80 GETUID(VI)

NAME
getuid - get user identifications

SYNOPSIS
(getuid - 24.)

sys getuid

-. getuid( )

DESCRIPTION
- Getuid returns a word (in rO), the low byte of which contains the real

user ID of the current process. The high byte contains the effective
user ID of the current process. The real user ID identifies the person
who is logged in, in contradistinction to the effective user ID, which
determines his access permission at the moment. It is thus useful to
programs which operate using the "set user ID" mode, to find out who
invoked them.

SEE ALSO
setuid (II)

DIAGNOSTICS

KSOS

KSOS user IDs are 16 bits each, but are mapped into 8 bits by using only
the low order byte.

- k

i - * -



- TTY(VI) KSOS 9/29/80 CTTY(VI)

NAME
gttY- get terminal status

- SYNOPSIS
(grty -32.)
(file descriptor in ro)
aye gtty; arg

arg: .-. +6

- gtty(fildes, arg)

mnt arg[3];
- DESCRIPTION

gtty stores in the three words addressed by !r& the status of the type-
writer whose file descriptor is given in rO (resp, given as the first
argument). The format is the same as that passed by stty.

SEE ALSO
stty (II)

DIAGNOSTICS
Error bit (c-bit) is set if the file descriptor does not refer to a type-
writer. From C, a -1 value is returned for an error, 0, for a successful
call.

KSOS
As the manipulation of terminal speeds (and parity) is an NKSR function
under KSOS, the terminal speed information returned by this call is mean-
ingless.

A-A'4 at
-- 5. I



7M

INDIR(VI) KSOS 9/29/80 INDIR(VI)

NAME
indir - indirect system call

SYNOPSIS
(indir = 0.; not in assembler)
aya Indir; syscall

DESCRIPTION
The system call at the location syscall is executed. Execution resumes
after the indir call.

The main purpose of indir is to allow a program to store argumentE in
system calls and execute them out of line In the data segment. This
preserves the purity of the text segment.

If indir is executed indirectly, it is a no-op. If the instruction at
the indirect location is not a system call, the executing process will
get a fault.

SEE ALSO

DIAGNOSTICS

KSOS

1"

:-1

-- I --



INTRO (V I) KSOS 12/9/80 INTRO(VI)

INTRODUCTION TO SYSTEM CALLS

Section I of this manual lists all the entries into the KSOS Unix emulator.
In most cases two calling sequences are specified, one of which is usable from
assembly language, and the other from C. Most of these calls have an error
return. From assembly language an erroneous call is always indicated by turn-
ing on the c-bit of the condition codes. The presence of an error is most
easily tested by the instructions bes and bec ("branch on error set (or
clear)''). These are synonyms for EWe bcsi-d bcc instructions.

From C, an error condition is indicated by an otherwise impossible returned
value. Almost always this is -1; the individual sections specify the details.

In both cases an error number is also available. In assembly language, this
number Is returned in rO on erroneous calls. From C, the external variable
errno is set to the error number. Errno is not cleared on successful calls,
so it should be tested only after an error has occurred. There is a table of
messages associated with each error, and a routine for printing the message.
See perror (i1).

The possible error numbers are not recited with each writeup in section II,
since many errors are possible for most of the calls. Here is a list of the
error numbers, their names inside the system (for the benefit of system-
readers), and the messages available using perror. A short explanation is
also provided.

0 - (unused)

I EPERM Not owner and not super-user
Typically this error indicates an attempt to modify a file in some way for-
bidden except to its owner. It is also returned for attempts by ordinary
users to do things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist
but doesn't, or when one of the directories in a path name does not exist.

3 ESRCH No such process
The process whose number was given to signal does not exist, or is already
dead.

-4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has
elected to catch, occurred during a system call. If execution is resumed
after processing the signal, it will appear as if the interrupted system
call returned this error condition.

5 EIO I/O error
- Some physical 1/0 error occurred during a read or write. This error may in

* some cases occur on a call following the one to which it actually applies.

- - . . . . _ _ , .. • -.



INTRO(VI) KSOS 12/9/80 INTRO(VI)

6 ENXIO No such device or address
I/0 on a special file refers to a subdevice which does not exist, or beyond
the limits of the device. It may also occur when, for example, a tape
drive Is not dialled in or no disk pack Is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 512 bytes (counting the null at the end of
each argument) is presented to exec.

8 ENOEXEC Exec format error
A request is made to execute a file which, although It has the appropriate
permissions, does not start with one of the magic numbers 407 or 410.

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (resp. write)
request is made to a file which is open only for writing (resp. reading).

10 ECHILD No children
Wait and the process has no living or unwaited-for children.

11 EAGAIN No more processes
In a fork, the system's process table is full and no more processes can for

the moment be created.

12 ENOMEM Not enough core
During an exec or break, a program asks for more core than the system is
able to supply. This is not a temporary condition; the maximum core size
is a system parameter. The error may also occur if the arrangement of

text, data, and stack segments is such as to require more than the existing

8 segmentation registers.

13 EACCES Permission denied
An attempt was made to access a file In a way forbidden by the protection

system.

14 - (unused)

15 ENOTBLK Block device required
A plain file was mentioned where a block device was required, e.g. in
mount.

16 EBUSY Mount device busy
An attempt to mount a device that was already mounted or an attempt was

made to dismount a device on which there is an open file or some process's
current directory.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g. link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device

-2-



INTROvI) KSOS 12/9/80 INTRO(VI)

An attempt was made to apply an inappropriate system call to a device; e.g.

read a write-only device.

20 ENOTDIR Not a directory

A non-directory was specified where a directory is required, for example In

a path name or as an argument to chdir.

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINVAL Invalid argument
Some invalid argument: currently, dismounting a non-mounted device, men-

tioning an unknown signal in signal, and giving an unknown request in stty
to the TIU special file.

23 ENFILE File table overflow

The system's table of open files is full, and temporarily no more opens can

be accepted.

24 EMFILE Too many open files

Only 15 files can be open per process.

25 ENOTTY Not a typewriter
The file mentioned in stty or gtty Is not a typewriter or one of the other

devices to which these calls apply.

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is currently open for

writing (or reading!). Also an attempt to open for writing a pure-

procedure program that is being executed.

27 EFBIG File too large
An attempt to make a file larger than the maximum cf 32768 blocks.

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the dev-

ice.

29 ESPIPE Seek on pipe
A seek was issued to a pipe. This error should also be issued for other
non-seekable devices.

* 30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted
read-only.

31 EMLINK Too many links
An attempt to make more than 127 links to a file.

32 EPIPE Write on broken pipe
A write on a pipe for which there is no process to read the data. This

condition normally generates a signal; the error is returned if the signal

is ignored.

3I.



INTRO(VI) KSOS 12/9/80 INTRO(VI)

33 EMTTY Too many open TTYs in the family

An attempt to open too many terminals within the same emualator process fam-
ily. This error is a KSOS UNIX Eulator addition.

100 ENOSYS Nonexistent system call
This error indicates an attempt to make a nonexistent system call.

KSOS
Due to the differing Internals of UNIX and the KSOS UNIX Emulator, the
error codes returned from failed Emulator calls are frequently only approx-
Imations to the corresponding UNIX error codes.

-4-

--- i i _ ,



KILL(VI) KSOS 12/9/80 KILL(VI)

NAME
kill - send signal to a process

SYNOPSIS
(kill - 37.; not in assembler)
(process number in rO)
sys kill; sig

kill(pid, sig);

DESCRIPTION
Kill sends the signal sig to the process specified by the process number
in r0. See signal (II) for a list of signals.

The sending and receiving processes must have the same effective user ID.

If the process number is 0, the signal is sent to all other processes
which have the same controlling typewriter and user ID.

In no case is it possible for a process to kill itself.

SEE ALSO
signal (II), kill (I)

DIAGNOSTICS
The error bit (c-bit) is set if the process does not have the same effec-
tive user ID, or if the process does not exist. From C, -1 is returned.

0KSOS
Signals have effect only within the Emulator family of the sender.

7 -

j

4q



LINK(VI) KSOS 12/9/80 LINK(VI)

NAME
link- link to a file

SYNOPSIS
(link -9.)
sys link; asal; nae2

link(namel, name2)
char *namel, *name2;

DESCRIPTION
A link to namel is created; the link has the name name2. Either name may
be an arbitrary path name.

SEE ALSO
link (I), unlink (II)

DIAGNOSTICS
The error bit (c-bit) is set when namel cannot be found; when name2
already exists; when the directory of name2 cannot be written; when an
attempt is made to link to a directory; when an attempt is made to link
to a file on another file system; when more than 127 links are made.
From C, a -1 return indicates an error, a 0 return indicates success.

KSOS

7

. ' .£,



MKNOD(VI) KSOS 12/9/80 MKNOD(VI)

NAME
mknod - make a directory or a special file

SYNOPSIS
(mknod - 14.; not in assembler)
sys mknod; name; mode; addr

iknod(am, mode, addr)
char *name;

DESCRIPTION
Mknod creates a new file whose name is the null-terminated string pointed
to by name. The mode of the new file (including directory and special
file bits) is initialized from mode. The first physical address of the
file is initialized from addr. Note that in the case of a directory,
addr should be zero. In the case of a special file, addr specifies which
special file.

SEE ALSO
mkdir (1), mknod (VIII), fs (V)

DIAGNOSTICS
Error bit (c-bit) is set if the file already exists. From C, a -1 value
indicates an error.

KSOS
Manipulation of special files is an NKSR function; hence, in the UNIX
Emulator, this call can only be used to make directories.

, . . . . ..



- MOUNT(VI) KSOS 12/9/80 MOUNT(VI)

* NAME
mount - mount file system

SYNOPSIS
(mount - 21.)
sys mount; special; name; rwflag

mount(special, name, rwflag)
char *special, *name;

DESCRIPTION
Mount announces to the system that a removable file system has been
mounted on the block-structured special file special; from now on, refer-
ences to file name will refer to the root file on the newly mounted file

system. Special and name are pointers to mull-terminated strings con-

taining the appropriate path names.

Name must exist already. Its old contents are inaccessible while the file

system is mounted.

The rwflag argument determines whether the file system can be written on;

if it is 0 writing is allowed, if non-zbro no writing is done. Physi-
cally write-protected and magnetic tape file systems must be mounted

read-only or errors will occur when access times are updated, whether or
not any explicit write is attempted.

SEE ALSO
mount (VIII), umount (II)

DIAGNOSTICS
Error bit (c-bit) set if: special is inaccessible or not an appropriate

file; name does not exist; special is already mounted; name is in use;

there are already too many file systems mounted.

BUGS

KSOS
this call is subsumed by the NKSR. Attempted use under the UNIX Emulator
will result in an error.

;-1



NICE(VI) KSOS 9/29/80 NICE(VI)

NAME
nice - set advisory program priority

SYNOPSIS
(nice - 34.)
(priority In rO)
Sys nice

nice(priority)

DESCRIPTION

The scheduling priority of the process Is changed to the argument. Posi-

tive priorities get less service than normal; 0 is default. The valid

range of priority Is 20 to -220. The value of 4 is recommended to users

who wish to execute long-running programs without flak from the adminis-
tration.

The effect of this call is passed to a child process by the fork system

call. The effect can be cancelled by another call to nice with a prior-
ity of 0.

The actual running priority of a process is the priority argument plus L

number that ranges from 100 to 119 depending on the cpu usage of the pro-

cess.

SEE ALSO
nice (I)

DIAGNOSTICS
The error bit (c-bit) is set if the user requests a priority outside the
range of 0 to 20 and is not the super-user.

KSOS
This call is not yet implemented. The description of priorities given

above is not accurate for KSOS.

-JAL--,.

,-i '. . - , ... . .



OPEN(VI) KSOS 12/9/80 OPEN(VI)

NAME
open - open for reading or writing

SYNOPSIS
(open = 5.)
sys open; name; mode
(file descriptGr in rO)

* open(name, mode)
char *name;

DESCRIPTION
Open opens the file name for reading (if mode is 0), writing (if mode is
1) or for both reading and writing (if mode is 2). Name is the address
of a string of ASCII characters representing a path name, terminated by a
null character.

The returned file descriptor should be saved for subsequent calls to
read, write, and close.

SEE ALSO
creat (II), read (II), write (II), close (II)

DIAGNOSTICS
The error bit (c-bit) is set if the file does not exist, if one of the
necessary directories does not exist or is unreadable, if the file is not
readable (resp. writable), or if too many files are open. From C, a -1
value is returned on an error.

,-SOS



PIPE(VI) KSOS 9/29/80 PIPE(VI)

NAME
pipe - create an interprocess channel

SYNOPSIS

(pipe 42.)
sys pipe
(read file descriptor in rO)
(write file descriptor in rl)

pipe(fildes)
int fildes[2];

DESCRIPTION
The pipe system call creates an I/O mechanism called a pipe. The file

* - descriptors returned can be used in read and write operations. When the
pipe is written using the descriptor returned in rl (resp. fildes[l]), up
to 4096 bytes of data are buffered before the writing process is
suspended. A read using the descriptor returned in rO (resp. fildes[01)
will pick up the data.

It is assumed that after the pipe has been set up, two (or more)
cooperating processes (created by subsequent fork calls) will pass data
through the pipe with read and write calls.

The Shell has a syntax to set up a linear array of processes connected by
pipes.

Read calls on an empty pipe (no buffered data) with only one end (all
write file descriptors closed) return an end-of-file. Write calls under
similar conditions generate a fatal signal (signal (II)); if the signal
is ignored, an error is returned on the write.

SEE ALSO
sh (I), read (II), write (II), fork (II)

DIAGNOSTICS
The error bit (c-bit) is set if too many files are already open. From C,
a -1 returned value indicates an error. A signal is generated if a write
on a pipe with only one end is attempted.

BUGS

KSOS
This call is not yet available.

4 - ' Z _, _



PROFIL(VI) KSOS 9/29/80 PROFIL(VI)

NAME
profil - execution time profile

SYNOPSIS
(profil - 44.; not in assembler)
sys profil; buff; bufsiz; offset; scale

profil(buff, bufsiz, offset, scale)
char buff[ ];
int bufsiz, offset, scale;

DESCRIPTION
Buff points to an area of core whose length (in bytes) is given by buf-
siz. After this call, the user's program counter (pc) is examined each
clock tick (60th second); offset is subtracted from it, and the result
-multiplied by scale. If the resulting number corresponds to a word
inside buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary
point at the left: 177777(8) gives a 1-1 mapping of pc's to words in
buff; 77777(8) maps each pair of instruction words together. 2(8) maps
all instructions onto the beginning of buff (producing a non-interrupting
core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered
ineffective by giving a bufsiz of 0. Profiling is also turned off when

an exec Is executed but remains on in child and parent both after a fork.

SEE ALSO
monitor (III), prof (I)

DIAGNOSTICS

KSOS
This call is not yet implemented.

iAl

1

..l..-"-....................................... . . ..... ....... .........



PTRACE(VI) KSOS 9/29/80 PTRACE(VI)

NAME
ptrace - process trace

SYNOPSIS
(ptrace = 26.; noc in assembler)
(data in rO)
sys ptrace; pid; addr; request
(value in rO)

ptrace(request, pid, addr, data);

DESCRIPTION
Ptrace provides a means by which a parent process may control the execu-
tion of a child process, and examine and change its core image. Its pri-
mary use is for the implementation of breakpoint debugging, but it should
be adaptable for simulation of non-UNIX environments. There are four
arguments whose interpretation depends on a request argument. Generally,

pid is the process ID of the traced process, which must be a child (no
more distant descendant) of the tracing process. A process being traced
behaves normally until i, encounters some signal whether internally gen-
erated like "'illegal instLuction'' or externally generated like "inter-
rupt.' See signal (II) for the list. Then the traced process enters a
stopped state and its parent is notified via wait (II). When the child
is in the stopped state, Its core image can be examined and modified
using ptrace. If desired, another ptrace request can then cause the
child either to terminate or to continue, possibly ignoring the signal.

The value of the request a 4,iment determines the precise action of the
call:

0 This request is the only one -sed by the child process; it declares
that the process is to be trac.d by its parent. All the other argu-
ments are ignored. Peculiar results will ensue if the parent does
not expect to trace the child.

1,2 The word in the child process's address space at addr is returned (in
rO). Request I indicates the data space (normally used); 2 indicates
the Instruction space (when I and D space are separated). addr mist
be even. The child aust be stopped. The input data is ignored.

3 The word of the system's per-process data area corresponding to addr
is returned. Addr must be eve, and less than 512. This space con-
tains the registers and other information about the process; Its lay-
out corresponds to the user structure in the system.

4,5 The given data is written at the word in the process's address space

corresponding to addr, which must be even. No useful value is
returned. Request 4 specifies data space (normally used), 5 speci-
fies instruction space. Attempts to write in pure procedure result
in termination of the child, instead of going through or causing an

error for the parent.

- I -



PTRACE(VI) KSOS 9/29/80 PTRACE(VI)

6 The process's system data is written, as it is read with request 3.
Only a few locations can be written in this way: the general regis-
ters, the floating point status and registers, and certain bits of
the processor status word.

7 The data argument is taken as a signal number and the child's execu-
tion continues as if it had incurred that signal. Normally the sig-

nal number will be either 0 to indicate that the signal which caused
the stop should be ignored, or that value fetched out of the
process's image indicating which signal caused the stop.

8 The traced process terminates.

As indicated, these calls (except for request 0) can be used only when
the subject process has stopped. The wait call is used to determine when
a process stops; in such a case the "'termination" status returned by
wait has the value 0177 to indicate stoppage rather than genuine termina-
t-Ion.

To forestall possible fraud, ptrace inhibits the set-user-id facility on
subsequent exec (II)
calls.

SEE ALSO

wait (II), signal (II), cdb (I)

DIAGNOSTICS
From assembler, the c-bit (error bit' is set on errors; from C, -1 is
returned and errno has the error node.

BUGS

The request 0 call should be able co specify signals which are to be
treated normally and not cause a stop. In this way, for example, pro-
grams with simulated floating point (which use "'illegal instruction"
signals at a very high rate) could be efficiently debugged.

Also, it should be possible to stop a process on occurrence of a system
call; in this way a completely controlled environment could be provided.

KSOS
This call is not yet implemented.

-2



READ(VI) KSOS 12/9/80 READ(VI)

NAM
read - read from file

SYNOPSIS
• (read -3.)

(file descriptor in rO)
sys read; buffer; nbytes

read(fildes, buffer, nbytes)
char *buffer;

DESCRIPTION
A file descriptor is a word returned from a successful open, creat, dup,
pipe, or port call. Buffer is the location of nbytes contiguous bytes
into which the input will be placed. It is not guaranteed that all
nbytes bytes will be read; for example if the file refers to a typewriter
at most one line will be returned. In any event the number of characters
read is returned (in rO).

If the returned value is 0, then end-of-file has been reached.

SEE ALSO
open (II), creat (II), dup (II), pipe (II)

DIAGNOSTICS
As mentioned, 0 is returned when the end of the file has been reached.
If the read was otherwise unsuccessful the error bit (c-bit) is set.
Many conditions can generate an error: physical I/O errors, bad buffer
address, preposterous nbytes, file descriptor not that of an input file.
From C, a -1 return indicates the error.

" KSOS

I-1

.- . .4 *1 .



SEEK(VI) KSOS 9/29/80 SEEK(VI)

NAME
seek - move read/write pointer

SYNOPSIS
(seek - 19.)
(file descriptor in rO)
sys seek; offset; ptrname

- seek(fildes, offset, ptrname)

* DESCRIPTION
The file descriptor refers to a file open for reading or writing. The
read (resp. write) pointer for the file Is set as follows:

if ptrname is 0, the pointer is set to offset.

if ptrname is 1, the pointer is set to its current location plus
offset.

if ptrname Is 2, the pointer is set to the size of the file plus
offset.

if ptrname is 3, 4 or 5, the meaning is as above for 0, 1 and 2 except
that the offset Is maltiplied by 512.

If ptrname is 0 or 3, offset is unsigned, otherwise It Is signed.

SEE ALSO
_ open (II), creat (II)

DIAGNOSTICS
The error bit (c-bit) is set for an undefined file descriptor. From C, a
- return indicates an error.

KSOS

f
* I

- I



SETGID(VI) KSOS 9/29/80 SETGID(VI)

- NAME
setgid -set process group ID

SYNOPSIS
(setgid -46.; not in assembler)
(group ID in rO)
sys setgid

setgid(gid)

* DESCRIPTION
The group ID of the current process is set to the argument. Both the
effective and the real group ID are set. This call is only permitted if
the argument is the real group ID.

* SEE ALSO
getgid (II)

DIAGNOSTICS
Error bit (c-bit) is set as indicated; from C, a -1 value is returned.

-KSOS

This call is not yet implemented.

A



SETUID(VI) KSOS 9/29/80 SETUID(VI)

NAME
setuid - set process user ID

SYNOPSIS
(setuid - 23.)

(user ID in rO)

sys setuid

setuid(uid)

DESCRIPTION
The user ID of the current process is set to the argument. Both the
effective and the real user ID are set. This call is only permitted if
the argument is the real user ID.

SEE ALSO
getuid (II)

DIAGNOSTICS
Error bit (c-bit) is set as indicated; from C, a -1 value is returned.

KSOS
This call is not yet implemented.

i-

vi--



SIGNAL(VI) KSOS 12/9/80 SIGNAL(VI)

NAME
signal - catch or ignore signals

SYNOPSIS
(signal - 48.)
sys signal; sig; label
(old value in rO)

signal(sig, func)
mnt (*func)();

DESCRIPTION
A signal is generated by some abnormal event, Initiated either by user at
a typewriter (quit, interrupt), by a program error (bus error, etc.), or
by request of another program (kill). Normally all signals cause termi-
nation of the receiving process, but this call allows them either to be
ignored or to cause an interrupt to a specified location. Here is the
list of signals:

1 hangup
2 interrupt
3* quit
4* illegal instruction (not reset when caught)
5* trace trap (not reset when caught)

6* 1OT Instruction
7* EMT instruction
8* floating point exception
9 kill (cannot be caught or ignored)
10* bus error
11* segrent. ition violation
12* bad argument to system call
13 write on a pipe with no one to read It

In the assembler call, if label is 0, the process is terminated when the
signal occurs; this is the default action. If label is odd, the signal
is ignored. Any other even label specifies an address in the process
where an interrupt is simulated. An RTI or RTT Instruction will return
from the interrupt. Except as indicated, a signal is reset to 0 after

* being caught. Thus if it is desired to catch every such signal, the
catching routine must issue another signal call.

In C, If func is 0, the default action for signal sg (termination) is
reinstated. If func is 1, the signal is ignored. If func Is non-zero
and even, it is assumed to be the address of a function entry point.
When the signal occurs, the function will be called. A return from the

- function will continue the process at the point it was interrupted. As
in the assembler call, signal must In general be called again to catch
subsequent signals.

When a caught signal occurs during certain system calls, the call ter-
minates prematurely. In particular this can occur during a read or write
on a slow device (like a typewriter; but not a file); and during sleep or

ima



SIGNAL(VI) KSOS 12/9/80 SIGNAL(VI)

wait. When such a signal occurs, the saved user status is arranged in
such a way that when return from the signal-catching takes place, it will
appear that the system call returned a characteristic error status. The
user's program may then, if it wishes, re-execute the call.

The starred signals in the list above cause a core image if not caught or
ignored.

The value of the call is the old action defined for the signal.

After a fork (II) the child inherits all signals. Exec (II) resets all
caught signals to default action.

SEE ALSO
kill (I), kill (II), ptrace (II), reset (III)

DIAGNOSTICS
The error bit (c-bit) is set if the given signal is out of range. In C,
a -1 Indicates ar e. ror; 0 indicates success.

BUGS

KSOS

1

-2- -.



SLEEP( VI) KSOS 9/29/80 SLEEP( V)

NAME
- sleep -stop execution for interval

SYNOPSIS
- (sleep =35.; not in assembler)

(seconds in rO)
Sys sleep

aleep(seconds)

DESCRIPTION
- The current process is suspended from execution for the number of seconds

specified by the argument.

- SEE ALSO
sleep I)

DIAGNOSTICS

KSOS



STAT(VI) KSOS 12/9/80 STAT(VI)

NAME
stat - get file status

SYNOPSIS
(stat - 18.)
sys stat; name; buf

stat(name, buf)
char *name;
struct Inode *buf;

DESCRIPTION
Name points to a null-terminated string naming a file; huf is the address
of a 36(10) byte buffer into which information is placed concerning the
file. It is unnecessary to have any permissions at all with respect to
the file, but all directories leading to the file must be readable.
After stat, buf has the following structure (starting offset given in
bytes):

struct inode {
char minor; /* +0: minor device of i-node */
char major; /* +1: major device */
mnt inumber; /* +2 */
nt flags; /* +4: see below */
char nlinks; /* +6: number of links to file */
char uid; /* +7: user ID of owner */
char gid; /* +8: group ID of owner */
char sizeO; /* +9: high byte of 24-bit size */
int sizel; /* +10: low word of 24-bit size */
L.,. addr[8]; /* +12: block numbers or device number */
mat actime(2]; /* +28: time of last access */
mnt modtime[2]; /* +32: time of last modification */

The flags are as follows:

100000 i-node is allocated
060000 2-bit file type:

000000 plain file
040000 directory
020000 character-type special file
060000 block-type special file.

010000 large file
004000 set user-ID on execution
002000 set group-ID on execution
001000 save text image after execution
000400 read (owner)
000200 write (owner)
000100 execute (owner)
000070 read, write, execute (group)
000007 read, write, execute (others)

-1-_



STAT(VI) KSOS 12/9/80 STAT(YI)

SEE ALSO
i(I), fstat (II), fs (V)

DIAGNOSTICS
Error bit (c-bit) is set If the file cannot be found. From C, a -1

return indicates an error.

KSSNot all fields are meaningful under KSOS. The stat call supplies zeroes 6

in such fields, which are: nli-nks, addr, and, actiume.



STIME(vI) KSOS 12/9/80 STIME(VI)

NAME
stime - set time

SYNOPSIS

(stim - 25.)
(time in rO-rl)
By$ StIme

stlme(tbuf)
int tbuf[2];

DESCRIPTION
Stime sets the system's idea of the time and date. Time is measured in
seconds from 0000 GMT Jan 1 1970. Only the super-user may use this call.

SEE ALSO
date (M), time (I), ctime (III)

DIAGNOSTICS
Error bit (c-bit) set if user is not the super-user.

KSOS
This call has been subsumed by the NKSR. Attempted use under the UNIX
Emulator will result in an error.

-o

-1



STTY(VI) KSOS 12/9/80 STTY(VI)

NAME
stty - set mode of typewriter

4SYNOPSIS

(stty = 31.)
(file descriptor in rO)
sys stty; arg

arg: .byte Ispeed, ospeed; byte erase, kill; mode

stty(fildes, arg)
struct {

char ispeed, ospeed;
\char erase, kill;
Int mode;

} *arg;

DESCRIPTION
Stty sets mode bits and character speeds for the typewriter whose file
descriptor is passed in rO (resp. Is the first argument to the call).
First, the system delays until the typewriter is quiescent. The input
and output speeds are set from the first two bytes of the argument struc-
ture as indicated by the following table, which corresponds to the speeds
supported by the DH-11 interface. If DC-li, DL-1I or KL-11 interfaces
are used, impossible speed changes are ignored.

0 (hang up dataphone)

1 50 baud
2 75 baud
3 110 baud
4 134.5 baud
5 150 baud
6 200 baud
7 300 baud

8 600 baud
9 1200 baud
10 1800 baud
11 2400 baud
12 4800 baud
13 9600 baud
14 External A
15 External B

In the current configuration, only 110, 150 and 300 baud are really sup-
ported on dial-up lines, in that the code conversion and line control
required for IBM 2741's (134.5 baud) must be Implemented by the user's
program, and the half-duplex line discipline required for the 202 dataset
(1200 baud) is not supplied.

The next two characters of the argument structure specify the erase and
kill characters respectively. (Defaults are # and @.)



STTY(VI) KOS 12/9/80 STTY(VI)

The mode contains several bits which determne the system's treatment of
the typewriter:

100000 Select one of two algorithms for backspace delays
040000 Select one of two algorithms for form-feed and vertical-tab

delays
03'000 Select one of four algorithms for carriage-return delays
006000 Select one of four algorithms for tab delays
001400 Select one of four algorithms for new-line delays
000200 even parity allowed on input (e. g. for M37s)
000100 odd parity allowed on input
000040 raw mode: wake up on all characters
000020 map CR into LF; echo LF or CR as CR-LF
000010 echo (full duplex) 1 1
000004 map upper case to lower on input (e. g. M33)
000002 echo and print tabs as spaces
000001 hang up (remove 'data terminal ready,' lead CD) after last

close

The delay bits specify how long transmission stops to allow fcr mechani-
cal or other movement when certain characters are sent to the terainal.
In all cases a value of 0 indicates no delay.

Backspace delays are currently ignored but will be used for Terminet
300's.

If a form-feed/vertical tab delay is specified, it lasts for about 2
seconds.

Carriage-return delay type 1 lasts about .08 seconds and is suitable for
the Terminet 300. Delay type 2 lasts about .16 seconds and is suitable
for the VT05 and the TI 700. Delay type 3 is unimplemented and is 0.

New-line delay type 1 is dependent on the current column and is tuned for
Teletype model 37's. Type 2 is useful for the VTO5 and is about .10
seconds. Type 3 is unimplemented and is 0.

Tab delay type I is dependent on the amount of movement and is tuned to
the Teletype model 37. Other types are unimplemented and are 0.

Characters with the wrong parity, as determined by bits 200 and 100, are
ignored.

In raw mode, every character is passed immediately to the program without
waiting until a full line has been typed. No erase or kill processing is
done; the end-of-file character (EOT), the interrupt- character (DEL) and
the quit character (FS) are not treated specially.

Mode 020 causes input carriage returns to be turned into new-lines; input
of either CR or LF causes LF-CR both to be echoed (used for GE TermiNet
300's and other terminals without the newline function).

-.2-

"a ' - *.. -. .. i . .



STTY(VI) KSOS 12/9/80 STTY(VI)

The hangup mode 01 causes the line to be disconnected when the last pro-
cess with the line open closes it or terminates. It is useful when a
port is to be used for some special purpose; for example, if it is asso-
ciated with an ACU used to place outgoing calls.

This system call is also used with certain special files other than type-
writers, but since none of them are part of the standard system the
specifications will not be given.

SEE ALSO
stty (I), gtty (II)

DIAGNOSTICS
The error bit (c-bit) is set if the file descriptor does not refer to a
typewriter. From C, a negative value indicates an error.

KSOS
It is not possible to set speeds or parity from the UNIX Eulator. In no
case are more than two delay algorithms available. Hangup mode is not
supported.

I
[-3-



SYNC(VI) KSOS 9/29/80 SYNC(VI)

NAME
sync - update super-block

SYNOPSIS
(sync - 36.; not in assembler)
sys sync

DESCRIPTION
Sync causes all information In core memory that should be on disk to be
written out. This includes modified super blocks, modified I-nodes, and
delayed block I/O.

It should be used by programs which examine a file system, for example

Icheck, df, etc. It is mandatory before a boot.

SEE ALSO
sync (VIII), update (VIII)

DIAGNOSTICS

KSOS
This call causes the Emulator Family buffer cache to be flushed.

+-1-

I -

t.



TIME(vI) KSOS 9/29/80 TIME(VI)

NAME
time - get date and time

SYNOPSIS
(time = 13.)
sys time

time(tvec)
Int tvec[2);

DESCRIPTION
Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in

seconds. From as, the high order word is in the rO register and the low

order is in rl. From C, the user-supplied vector is filled in.

SEE ALSO
date (I), stime (II), ctime (III)

DIAGNOSTICS

KSOS

f --

1'-1-

* .



TIMES (VI) KSOS 9/29/80 TIMES(VI)

NAME
times get process times

SYNOPSIS
(times - 43.; not in asiembler)

sys times; buffer

times (buffer)
struct tbuffer *buffer;

DESCRIPTION
Times returns time-accounting information for the current process and for
the terminated child processes of the current process. All times are in
1/60 seconds.

After the call, the buffer will appear as follows:

struct cbuffer {
int procuser time;
int procsystem time;

int child user tlme[2];
int childsystem_time[2J;

The children times are the sum of the children's process times and their
children's times.

SEE ALSO

time (I)

DIAGNOSTICS

BUGS
The process tiwas should be 32 bits, as well.

KSOS

|4 -

-1

$ .- .,o



UMOUrr(Vl) K-OS 12/9/80 UMOUNT(VI)

NAME

umount -dismount file system

SYNOPSIS
(umount =22.)

sys umount; special

DESCRIPTION
Umount announces to the system that special file special Is no longer to

contain a removable file system. The file associated with the special
file reverts to its ordinary Interpretation; see mount (IT).

SEE ALSO
umount (VIII), mount (II)

DIAGNOSTICS
Error bit (c-bit) set if no file system was mounted on the special file
or if there are still active files on the mounted file system.

KSOS
This call has been subsumed by the NKSR. Attempted use from the UNIX
Emulator will result in an error.

- -1

- - --



UNLINK(VI) KSOS 12/9/80 UNLINK(VI)

NAME
unlink - remove directory entry

SYNOPSIS
(unlink = 10.)
sys unlink; name

unlink(name)

char *name;

DESCRIPTION

Name points to a null-terminated string. Unlink removes the entry for
the file pointed to by name from its directory. If this entry was the
last link to the file, the contents of the file are freed and the file is
destroyed. if, however, the file was open in any process, the actual
destruction is delayed until it is closed, even though the directoryentry has disappeared.

SEE ALSO
rm (I), rmiir (I), link (II)

DIAGNOSTICS
The error bit (c-bit) is set to indicate that the file does not exist or
that its directory cannot be written. Write permission is not required
on the file itself. From C, a -1 return indicates an error.

KSOS

!

1f~*
-I



WAIT(VI) KSOS 12/9/80 WAIT(VI)

NAME
wait - wait for process to terminate

SYNOPSIS
(wait - 7.)

aye wait
(process ID In rO)
(status in ri)

wait (status)
Int *status;

DESCRIPTION
Wait causes its caller to delay until one of its child processes ter-

minates. If any child has died since the last wait, return is immediate;
if there are no children, return is immediate with the error bit set
(resp. with a value of -1 returned). The normal return yields the pro-
cess ID of the terminated child (in rO). In the case of several children
several wait calls are needed to learn of all the deaths.

If no error is indicated on return, the rl high byte (resp. the high byte
stored Into status ) contains the low byte of the child process rO (resp.
the argument of exit ) when it terminated. The rl (resp. status ) low
byte contains the termination status of the process. See signal (II) for
a list of termination statuses (signals); 0 status indicates normal ter-
mination. A special status (0177) is returned for a stopped process
which has not terminated and can be restarted. See ptrace (II). If the
0200 bit of the termination status Is set, a core image of the process
was produced by the system.

SEE ALSO
exit (II), fork (II), signal (II)

DIAGNOSTICS
The error bit (c-bit) is set if there are no children not previously

- waited for. From C, a returned value of -1 indIcates an error.

KSOS

J

i--



WRITE(VI) KSOS 12/9/80 WRITe(VI)

NAME
write - write on a file

SYNOPSIS
(write 4.)
(file descriptor in rO)

sys write; buffer; nbytes

write(f-ldes, buffer, nbytes)~char *buffer;

DESCRIPTION

A file descriptor is a word returned from a successful open, treat, dup,
pipe, or port call.

Buffer is the address of nbytes contiguous bytes which are written on the
output file. The number of characters actually written is returned (in
rO). It should be regarded as an error if this is not the same as
requested.

Writes which are multiples of 512 characters long and begin on a 512-byte

boundary in the file are more efficient than any others.

SEE ALSO
creat (II), open (II), pipe (II), eofp (II)

DIAGNOSTICS
The error bit (c-bit) is set on an error: bad descriptor, buffer address,

or count; physical I/0 errors. From C, a returned value of -1 indicates
an error.

KSOS

- I

" :' :: " " " .. .. .. ° - . . . .... I. .. .i .. . . .. . ... . .- ''1. .-" '



I

00;3mlmmbft---


