AD=AL11 ST7 FORD AEROSPACE AND GOMMUNICATIONS CORP PALO ALTO CA W—=EYC F/6 9/
m secune UNIX OPERATING SYSTEM USERS MANUALS. (KERNELIZED Steetc()
WDA903-T7=C-033
UNCLASSIFIED

L
1
3
b
23
3
R
N

Lt N

AD.A1.11577 | Q

(OMG FILE coPY

December 1980

SECURE MINICOMPUTER OPERATING SYSTEM (KSOS)

SECURE UNIX OPERATING SYSTEM
USERS MANUALS |

Department of Defense Kernelized Secure Operating System

A
Contract MDA 903-77-C-0333 o s Al (i
CDRL 0002A) R Y‘“ Y
o~ =R
' AP 0 % 1082
Prepared for:
Defense Supply Service - Washington -)
Room 1D245, The Pentagon e

Washington, DC 20310

Approved for public release; distribution unlimited.

Ford Aerospace &
Communications Corporastion
Western Development
Laboratories Division

3939 Fabian Way
Palo Alto, California 94303

e

< [}
ace_mode(I) KSOS 1/6/81 acc_mode(I)
- NAME -
acc_mode - access mode
H SYNOPSIS
g - bits;
DESCRIPTION
2 - Acc mode describes the access allowed a process to a particular segment
‘f' of its current segment set. An acc mode is composed of three bits indi-
; cating permission to read, to write, and to execute. They are equivalent
- to selected discretionary acc bits. The correspondences are:
. CONST
- | readAcc = owner Read;
;J - writeAce = owner Write;
) executeAcc = owner Execute;
- - The acc mode of a segment is initialized when its segment is made a part

of the process’s segment set using K build segment or

. K rendezvous segment. The acc mode may be changed using

: K set segment status or K remap. In no case does a segment’s acc mode
I“ (which is always in relation to a process) allow more permissive access
than that allowed the process by the segment’s discretionary access.

SEE ALSO .
K_remap (II), R _reandezvous_segment (IX), R _set_segment_status (II),
discr_access (1), seg_stat_block (I),

Acceszion For
TNTIS GRARL
prTe T
oanso. a0t D
ST ML e ¥
Lo e
S—
B it .
I e
s ey .
- ! k]
\~_‘/ :) . RS
L
i
‘ .
1 \ '
1 ¥ D —

o . , PR g " . -
-

—

L] . .

compart_set(I) KSOS 1/6/81 compart_set (L)
- NAME

compart_gset - set of security compartments

SINOPSIS
- bits32;

DESCRIPTION
- A maximum of 32 security compartments may be used in a KSOS system. The

type independent information (the tii_ struct) of every object contains a
a __Sompart set field that determines which security compartments the object
E belongs o, with each bit indicating one compartment. A process may not

’ read an object if the object belongs to any compartments which the pro-
cess does not belong ta. A process may not write on an object if the
—e process belongs to any compartments that the object does not belong -te.

A The 32 compartments are given arbitrarty names via an enumerated type as
is shown below:

compartments = (
SYSTEM, compart_l, compart_2, compart_3,
- compart_é4, compart_5, compart_6, compart_7,
compart_8, comparc_9, compart_l0, compart_ll,
compart_12, compart_13, compart_lé, compart_15,
- compart_l6, compart_l7, compart_18, compart_19,
! compart_20, compart_21, compart_ 22, compart_23,
i compart_24, compart_25, compart_26, compart_27,
5 » compart_28, compart_29, compart_30, compart_31
N -);
= SEE
- A tii_struct(I)
- H
- .
E | -
. 1
4
‘; —
&
i

-
diser_access(I) KSOS 1/6/81 diser_access (1)
L
- NAME
discr_access - discretionary access

j SYNOPSIS
T bits:
N DESCRIPTION
D -
: * The discr access type describes the discretionary access to Kernel
- objects. Discretionary access is divided into three sets of three bits
C . each. The first set refers to the object's owner, the next to others in

. the same user group, and the last to all others. Within each set the
three bits indicate permission to read, to write, and to execute. The
. execute bits are meaningful only if a process has the privRealizeExecPer-—
i miggion privilege. Each execute bit is then equivalent to the
' corresponding read bit. Setuid and setgid are special bits used in con-
juncetion with the execute bits. When a process image is created from an
- object with the setuid bit, the owner of the process is temporarily
changed to be the owner of that object. Setgid is analogous to setuid,
operating on group rather than owner. .
bd The following table contains the bit- definitions for the discretionary
‘O access field.

—
o

setuid
setgid

O

ownerRead
ownerWrite
ownerExecute
groupRead

- groupWrite
groupExecute
allRead
allVWrite
allExecute

O~ NWHSUVO g

SEE ALSO
- K build segment (II), K creat (II), K set_da (II), priv (I)

N T

file_stat_block(I) KSO0S 1/6/81 file_stat_block(I)
NAME
file_stat_block - file status block
SYNOPSIS
file stat block = RECORD
f gize : cardinall?;
subtype ¢ seid;
time last mod : cardinall?;
open at crash : boolean
END;

DESCRIPTION L

The file status block is used to return information about files, termi-
nals, extents and devices.

F_size is the number of characters in the file. The kernel keeps
internal track of the highest block number written in the
file. The K device function SETFILESIZE can also be used

: to set this field.

D T R

Subtype is the Seid of the subtype of the I/0 object or the null
seid if the object is not subtyped.

Time_last_mod is the time of last modification of the text of a file.
It is represented as the number of ticks since January 1,
1980. This time is only updated on K open and K close if
the open mode allows write access. For all I/0 objects
other than files, this value is zero.

- Open_at_crash is true if the file was open for writing when the system
crashed. The next open for writing will c¢lear
open at crash. The file system recovery program(s) should
be run on all files with this field set. For non-file
objects, open at crash is always false. It should be
noted that when open at crash is true, f size may be
incorrect.

SEE ALSO
K_get_file_status (II), K device function (II), Seid (I)

-1 -

S adara, s it ot . im 'O P "

integrity_cat_type(I) KSOS 1/6/81 integrity_cat_type(I)

NAME
1 integrity_ cat_type ~ integrity categories
lf | - SYNOPSIS
’ integrity cat type = (integrity cat O, integrity cat 1,
] integrity cat 2, integrity cat 3, integrity cat 4, ’
: integrity cat 3, integrity cat 6, integrity cat 7, ;
b o~ integrity cat 8, integrity cat 9, integrity cat 10, !
; integrity cat 11, integrity cat 12, integrity cat 13, :
" integrity cat 14, integrity cat 15 b H
b -
] ’ DESCRIPTION
There are a 16 possible integrity categories on a KSOS system. These
. categories are defined in the integrity cat type enumerated type. The ‘
. - integrity categories form an ordered set which, along with the security
category and security compartments, control access to and from the

-, objects of the system. If objeet A has a higher integrity category than
1 — object B then:
A

A cannot read B

A can write B

B can read A

B cannot write A

SEE

compart_set(I) security_cat_type(I)

Summh Smnaibcinie Sute

T T

INTRO(I) KSOS 1/6/81 INTRO(I)

INTRODUCTION TO KERNEL INTERFACE TYPES

Section I of this manual describes all the types used by the Kernel Call
Interface (section II). The kernel types defined in the interface are com-
posed of 7 different basic types and 3 structure types. All the kernel type
definitions are built from these types. Understanding these types is essen-
tial for using and building future kernel call interfaces.

char is an eight bit unsigned quantity. It is used to represent
variables with up to 256 distinct values. A char field must
be and’ed with a 377(8) mask when converted to a 16 bit
quantity because of the PDP-l! hardware sign extension on
byte to word data transfer instructions.

boolean is also an eight bit quantity. A boolean variable may have
one of two values - true or false The false value is defined
always to be zero. The true value is any nonzero value.

bits i8 a 16 bit quantity. The bits are numbered right to left
starting with zero (i.e. bit 0 is the rightmost (least sig-
nifieant) bit).

bits32 as suggested by its name, is 32 bits long. However, the
bits are numbered left to right starting with zero (i.e.,
bit 0 is the leftmost (most significant) bit). If bits32 is
accessed as an array of bits, a[0) contains bits 0 through
15 and a[l]) c¢ontains bits 16 to 31.

integer is a 16 bit signed quantity in two’s complement notation.
cardinal is a 16 bit unsigned quantity in two’s binary notation.

cardinal32 is a 32 bit unsigned quantity. If cardinal3l? is accessed as
an array of cardinal, a[0) contains the high order word and
a{l] contains the low order word.

The structured types are used to build data structures from the basic
types. The structured types are enumerations, records and arrays.

Enumerations An enumeration is a list of identifiers which denote the
values constituting a data type. These identifiers may be
used as constants in programs. They, and no other values,
belong to the enumerated type. An ordering relation is
defined on these values by their sequence in the enumera-
tion.

Records A record structure consists of a number of components

where each component is identified by a unique field iden-~
tifier. Field identifiers are known only within the
record structure definition and within field designators,

i.e., when they are preceded by a qualifying record vari-
able identifier.

-y

TTTEE TWe s AT T AL

A O S aRC i s aia S

Sanmth. Soik i A S

INTRO(I)

Arrays

SEE ALSO

KSOS 1/6/81 INTRO(I)

An array structure consists of a number of components.
Each component is identified by a number of indices whose
range is specified in the deelar&t?bn of the array struc-
ture.

-4

Modula Specifications, NEWcalls.mod

ioStatus(I) KSOS 1/6/81 ioStatus(I)

-
- NAME
ioStatus -~ Status of I/0 operation
1
SYNOPSIS .
- ioStatus = RECORD I
devindep: K err num;
-~ devDep : bits
> END;
DESCRIPTION
-
\ devIndep contains the device independent status upon completion of an
I/0 operation. The status returned is one of the Kernel’s
b exception numbers.
devDep contains the device dependent status upon completion of an
- I1/0 operation. This field is only defined for special dev-
ices, such as the network devices, which have peculiar pro-
perties.
- SEE ALSO
K_device function (II), K read (II), K write (II), K err_num (I)
h -
N 1

C eeme b

ipe_block(1) KSOS 1/6/81 ipe_block(I)

= = NAME
% ¥ ip¢_block - inter-process communication messages
.
- - SYNOPSIS
E, meg limit = 11;
; - msg struct = ARRAY O:msg limit OF char;
(~
N ipe “lock = RECORD
;_ ‘ b ip¢c seid: seid;
- ipe msg : msg struct
. END;
f -~ ‘
: DESCRIPTION
2 An ipe block is the general form for all the different types of inter-
. process communication messages (e.g. signals and IPC“s). Messages can be
: - generated by the kernel, by your process or by other processes.
' The ipc seid contains the seid of the process which sent the ipc block.
L
1 The ipc msg contains the text of the ipe_block.
The first byte of the ipc msg, by convention, is the event type. This
3 b field and the ipc seid, determines the message type. The following event H
g types are predefined and can not be used for other purposes. All other
event type numbers can be used by cooperating processes as they wish.
g null_event 0
memerr_event 1 Dlemory error
- bpt_event 2 break point trap instruction
iot_event 3 input output trap instruction
cpuerror_event 4 ¢pu error
illinst_event 5 illegal instruction
b mm_event 6 memory management
fltpnt_event 7 floating point processor
K ttoggle event 10 timer toggle
- talarm event 11 timer alarm
‘) emulcall event 12 emulator call
% iocomplete_event 13 I/0 completion
i Kernel Generated Messages
} - This type of message can only be generated by the kernel. These messages

: always come through the hardware pseudo interrupt-channel. The seid
; field contains the Rernel Seid. The event type must be one of the fol-

. lowing:
memerr_event
bpt_event

- iot_event

ipc_block(I) KSOS 1/6/81 ipe_bloek(I)

Cpuerror_event

illinst_event -
om_event

fltpnt_event

i The time of the pseudo-interrupt is placed in the last four bytes of the

ipc msg.
. The floating point processor message also has its status register stored = T
j in bytes 2 and 3 of the ip¢ msg.
* Messages on the Behalf of Your Process -

These messages can only be generated by some action to or by your pro-
cess.

The seid field contains the Kernel Seid except I/0 completion which con-
3 tains the process Seid. Messages of this type have the following event
o types: -

; ttoggle event
3 talarm_event

emulcall event -
iocomplete_event
1 The timer and I/0 completion come through their respective pseudo- -
d interrupt vectors. The emulator call pseudo-interrupts through at base
level. This pseudo-interrupt will occur no matter what the pseudo-
interrupt level is set at. —

The emulator call message occurs synchronously when your process requests

them. An I/0 completion message occurs asynchronously after your process

initiates an I/0 requesting such a message. The timer messages can be -
caused either by your process or by another process setting the timer

related fields in the process status block.

The last four bytes of both the timer messages and the emulator call con-
tain the time that the pseudo interrupt occurred.
: The I/0 completion message has the following structure: -
; RECORD
! event_type : char; -
- stat : ioStatus :
- byteCount : cardinal;
g async : cardinal; -
A filler : ARRAY 1:2 OF char;
ki END;

where ¢

event_type has the value of iocomplete event.

ipe_bloek(I) KSOS 1/6/81 ipe_block(I)

stat.devindep contains the device independent completion status. This

- field is valid for all I/0 completion messages.
_ stat .devDep contains the device dependent completion status. This
. -~ field is valid only for special devices. The meaning of
: i this field can be found with the supported device manual
3 " pages.
L
R = byteCount is the number of characters transferred by this asynchro-
1 nous request.
’ bd asyuac is the user supplied asynchronous identifier.
Messages generated by Processes
=~ Messages of this type are sent using K _iignal or K post and are received
either through the pseudo interrupt vectors or by K receive. The seid
field contains the sending process seid. The ipc msg record can contain
bl anything. By convention, the first byte contains the event type.
4 SEE ALSO
) - ioStatus (I), Seid (I), Pseudo Interrupts (I), K _post (IL), K signal
(II), K _receive (II)

KL

% &

[

e e o e s ——— o e

K_err_num(I) KSOS 1/6/81 K _err_num(I)

NAME
K_err_num - Kernel error numbers

SYNOPSIS
cardinal;

DESCRIPTION
This list of Kernel error numbers is subject to revision pending resolu=-

tion of discrepancy reports concerning them. The actual numerical value
for each exception may be found in NEWcalls.mod.

KPR related Kernel calls and the exception values they return follow:

X0K No exception

XKemt kernel generated EMT

XMapPr bad mapping process

Xaborted I/0 request was aborted
Xasyne asynchronous I/0 initiated
XatEot OK but tape is now after EOT
Xattn secure attention char input
XbAddr bad address

XbEmt bad emt

XbFn - bad function code

XbLeArgSg bad location for arg seg
XbMapIn cannot map in PCS

XbMapOut cannot map out PCS

XbMovIn bad PCS move in

XbMovO bad PCS move out

XbNoMes No message

XbParam bad Kernel interface param
XbPesRef bad PCS reference

XbPesSd bad PCS seid

XbPm

XbPrsd bad process seid

XbPslev bad pseudo interrupt level
XbSehL bad scheduler action

XbSgDes bad seg des

XbSgRng bad seg range

XbSgsSd bad seg seid

XbSgSz seg size is not mult of 512
XbStPm bad status parameter

XbSwp bad PCS swap

XbSz bad size parameter

XbSzArgSg bad size for arg seg (too large)
bTiiPm bad tii parameter

XbadBloekNo bad block number on I/0
XbadDa SMXdap failure

XbadFsl 1: did not find expected slot kind
XbadFs2 2: bad checksum in slot
XbadFs3 3: reserved

Xbadlink K _link overflowed count (LEAK)
XbadModes illegal combination of open modes

s

L Atv-s acery 3

: K_err_num(I) KS0S 1/6/81 K_err_pum(I)
- XbadNsp
- XbadOd -
‘ XbadPriv
. XbadRef Count
- XbadSize invalid size in pBlock
' XbadSlot bad upt slot -
XbadStCap
3 XbadSubtype
s XbadSubtypeMatch -
XbadVol unacknowledged disk volume
XbdDm bad domain
XbdKel bad Kernel call
XblAdVacMmu block addr has vacant page reg =,
XblNtInSg block not in seg
XbpT break point trap
Xbusy Exclusive uge fails because busy -
XePsInt cannot pseudo interrupt
XchgIDspe attempt to change I/D space of seg
XchgSgOwn attempt to change owner of seg
XepuT ¢pu error -
XeritExcl
XdapViol
Xdown Hardware is now down -
XdupSg attempt to duplicate use of a seg
Xempty empty upt slot
. XendOfFile read would pass end of file
Xerror Retryable hardware error -
Y XexFile Exclusive open on fork attempt
: XexSpace extent table full (LEAK)
Xfault Non~-retryable hardware error —
Xf1loT floating point unit trap
XiiT illegal instruction
X XinBuf Input buffer illegal for fn -
a XinSgAldMap incoming seg already mapped
T XindMap bad mapping index
iy XioT 1/0 trap
: Xmark EOF mark read from magnetic tape -
| XmemT memory error
r. XomT memory management trap
- Xmoving offline motion (rewind) going -
XmtSpace mount table full (LEAK)
XnPgSg seg does not cross page boundary
XnPvLkSg no priv to set mem_lock (swappable)
XnPvStkSg no priv to set swap_lock (sticky) -.
XnSgDes not a seg des (out of range)
XnWrtArgSg non-writable arg seg
4 XnenDo cannot say why -
k- ! XnoAcc no access
XnoAsync asynchronous queue full (LEAK)
XnoClass Object wrong class for this call
. XnoExclWrite -
K XnoFile
XnoFunct Hardware does not support this fn

K_err_num(I)

-
f -
[
v |
» [
[S
-3
4
x -
#
i
»
" ~
2
; ~
B
A -
3 -
4 -
3
1
> -

XnoHelp
XnoInit
XnoMap
XnoMode
XnoObj
XnoOwner
XnoPriv
XnoProe
XnoSLev
XnoSPriv
XnoSpace
XnoStCap
XnoTranquil
XnotReadable
InotWritable
InwOut Sg
XodSpace
XopenFiles
Xout SgAldUmp
XpostEh
XprvFn
XggMap
XsgNoAce
XsgSw

XshSg

XsltAl
Xtimeout
XunInt
XvrtMmCfl
XwOnlSg

Ksos 1/6/81

K_err_num(I)

no swap help possible
mapping process not init
no existing map

No open mode given
object non-existent

does not have privilege
no more process allowed
no privSetlLevel

no privSetPriv

No file system space left

tranquility violation
Object not open for reading

non-writable outgoing segment

Global open table full (LEAK)
outgoing seg already unmapped
POST exhausted

privileged function not allowed
seg mapped when setting ace,loc
seg no access :

geg swapped out

seg is sharable

bad PCS slot allocation
Hardware did not respond in time
cannot interrupt for K signal
virtual memory conflict

attempt to make write=-only seg

-
g openDescriptor (1) KSO0S 9/9/80 openDescriptor(I)
) -
- NAME
openDescriptor - open file handle
SYNOPSIS
b integer;
DESCRIPTION
- OpenDescriptors are used to reference open objects in the various 1/0
X Kernel calls. When a K create or a K open is done, an openDescriptor is
* returned.
3 - SEE ALSO

K _close (I1), K create (II), K device_function (II), K _get_file_status
(I1), K open (II), K _read (IIL), K set_file_ status (II), K write (II)

openModes (1) KSOS 1/6/81 openModes (1)

NAME
openModes - open modes !
SYNOPSIS . !
openModes = RECORD
read : boolean;
write : boolean;
exclusive read : boolean;
exclusive write : boolean
END;
DESCRIPTION

The OpenModes record is used to indicate the mode in which an object is
to be opened or created. The list below describes each field.

read when true, indicates that the object should be opened or
created for reading.

write when true, indicates that the object should be opened or
. e¢reated for writing.

exclusive_read when true, indicates that the object should be opened or
created for reading by the calling process oanly.

exclusive write when true, indicates that the object should be opened or
created for writing by the calling process oanly.

The only valid combinations of open modes fields are:

exclugive i
read write read write .
true false false false Normal read. i
false true false false Normal write-
true true false false Normal read and write.
true true false true Lock out all other writers. !
true true true true Lock out everybody else.

All other combinations are invalid.

SEE ALSO
K_creat (I1), K _open (II)

ol p_block(I) KSOS 9/5/80 p_block(I)
-
- NAME
p_block - parameter block
SYNOPSIS
: RECORD
- location: virt loec;
b size : cardinal;
END;
R -
. DESCRIPTION
- P block contains the I/0 buffer description.
location is the virtual location of the I/0 buffer. i
P, - b_size is the byte size of the I1/0 buffer.
SEE ALSO
- virt_loc (I), K _device_function (II), K read (II), K _write (II)
! - s
i
: - i
!
-
i
!
- |
1
4' -
|
3 ' L]
': ’
4

priv_struct(Il) KSOS 9/5/80 priv_struct(I)
NAME
priv_struct - set of privileges
SYNOPSIS
bits32;
DESCRIPTION
Each bit corresponds to a privilege in the priv names enumeration. See
the B-5 specifications for the meaning of the different privileges.
priv_names = ((*bit number?*)
privFileUpdateStatus, (* 00 *)
- § - privLink, (* 01 ») \
- privLlockSeg, (* 02 *)
: privModifyPriv, (* 03 %)
3 privMount, (* 04 *)
o1 - privSetLevel, (* 05 *)
privStickySeg, (* 06 *)
» privSetPath, (* 07 %)
L - privViolSimpSecurity, (* 08 *)
3 privViolStarSecurity, (* 09 *)
b privViolSimpIntegrity, (* 10 *)
- privViolStarIntegrity, (* 11 %)
privViolDiscrAccess, (* 12 %)
- privRealizeExecPermission, (* 13 *)
1 privSignal, (* 14 *)
) - privWalkPTable, (* 15 %)
d privHalt, (* 16 %)
4 3 privKernelCall, (* 17 *)
A - privViolCompartments, (* 18 *%)
b privSetComm, (* 19 *)
3. privimmigrate, (* 20 *)
4 privViolTranquility (* 21 *)
x. -)3
' SEE ALSO
- K_set_priv (II)
-
]
. 4
-
-l -

pseudo_int_vector(I)

RSO0S 1/6/81

pseudo_int_vector (1)

NAME
pseudo_int_vector -~ pseudo-interrupt vector
SYNOPSIS
pseudo int vector = RECORD
interrupted pe : cardinal;
Anterrupted ps : cardinal:
interrupted p level : cardinal;
int mag : ipc bloek;
new pc : cardinal;
nev ps : cardinal
END;
DESCRIPTION
e interrupted pec
pc of process when (before) pseudo~interrupt asserted
- interrupted_ps
ps of process when (before) pseudo~interrupt asserted
interrupted p level
- pseudo-interrupt level of process when (before) pseudo-
interrupt asserted
- int_msg pseudo—-interrupt message
new_pc< pe of process after pseudo-interrupt asserted
- new_ps ps of process after pseudo-interrupt asserted
- pseudo interrupt levels :
base_lev = 0; (* emulator call *)
ipc_lev -1 (* IPC pseudo int *)
- time_lev = 2; (* timer pseudo int *)
sig lev =3, (* K_signal pseudo int *)
io_lev = 4; (* 1/0 pseudo int *)
- hard_lev = 5; (* hardware pseudo int *)

' L
-
Ef" proc_stat_block(I) KS0S 1/6/81 proc_stat_block(I)
» -
— NAME
proc_stat_block - process status block
SYNOPSIS
i - proc stat block = RECORD
own : seid;
~ parent : seid:
family : cardinal;
owner : cardinal;
- rou + cardinal;
aprio ¢ cardinal;
- pseint : cardinal;
ps : cardinal;
- alarm + cardinal;
clock : cardinall2;
tt : boolean;
- stiming : cardinal;
utiming : cardinal
END;
L
DESCRIPTION
' This record contains process dependent information.
A fields with an asterisk by its name is a read only variable.
- *own is the seid of the process associated with this status
block.
#*parent is the seid of the process which created the process, named
- b
y own
family is the family name controlled by the NKSR. This field may
- only be set by processes with the privilege privSetLevel. i
!
owner is the real user identifier. This field may only be set by :
processes with the privilege privSetLevel.
3 group is the real group identifier. This field may only be set by
i} processes with the privilege privSetLevel.
. aprio is the advisory priority of the process. A process in user
= domain can set this field between 0 and 63. A process in
‘ - supervigor domain can set this field between 0 and 127. A
process with privSetlLevel can set this field between O and
255. Priority O is the lowest priority.

=

R U

TR

proc_stat_block(I)

pseint

ps

alarm

clock

tt

*gstiming

*utiming

SEE ALSO

KSOS 1/6/81 proc_stat_block(I)

is the current pseudo-interrupt level of the process.
is the processor status word of the process.

is the value of the real-time timer alarm in clock ticks.
Setting this field activates the real-time timer which will
generate a timer pseudo-interrupt. Setting this field to
zero cancels the alarm.

is the value of the time of day clock in clock ticks. This
field is read-only except for the Initial Process.

is the timer toggle clock. Setting this field to true
causes a timer toggle pseudo-interrupt on every clock tick.

is the amount of time spent in the supervisor domain in
clock ticks.

is the amount of time spent in the user domain in clock
ticks.

priv_struct (I), seid (I) tii_struct (I), K _get process_status (II),
K_set_process_status (II)

security_cat_type(l)

NAME

KS0S 1/6/81

security_cat_type - security categeries

SYNOPSIS
security cat type = (

gsecurity cat 2,
security cat 5,
security cat 8,
gsecurity cat 11,
security cat 14,

DESCRIPTION

security cat 0,

security cat 3,
security cat 6,
security cat 9,
security cat 12,
security cat 15

security_cat_type(I)

security

cat 1,

security cat 4,
security cat 7,

security cat 10,
security cat 13,

)3

There are a 16 pessible security categeries en a KSOS system.
categories are defined in the security cat type enumerated type. The

gecurity categories ferm an ordered set which, aleng with the integrity

These

category and security cempartments, centrel access te and frem the

ebjects ef the system. If ebject A has a higher security categery than

ebject B then:

A can read

A cannet write
B cannet read
B can write

SEE

-]

> >

cempart_set(I), integrity cat_type(I)

hroiirs
raikd

SUAT TR T e TR e AR T

Y Gy

(S]

seid(I) KSOS 1/6/81 seid (I)

NAME

geid - secure entity identifier

SYNOPSIS

nsp type = char;

seid = RECORD

nsp : nsp type;
uniq id0: char;
uniq idl: cardinal

END ;

r———?

DESCRIPTION

Null

A seid uniquely identifies each ksos object. A seid has two fields, the
name sSpace partition (nsp) and a 24 bit field. Each kernel object class
i8 given its own nsp. The 24 bit field is used to identity the indivi-
dual instances of the kernel objeet. (This field is subdivided into
uniq ido and unil idi pieces.)

The following table contains the valid name space partitions.

null_nsp 0 null

extent_nsp 1 extents

terminal_ nsp 2 terminal

device_nsp 3 devices

process_nsp 4 processes

Segment_nsp 5 segments

subtype_nsp 6 subtypes

kernel_nsp 7 kernel

same nsp 128 reserved for directories

root_ nsp 129 ROOT file system

low_file nsp 129 lower limit on file system nsp
high file nsp 255 upper limit on file system nsp

The root file system has the distinguished value of 129. All other file
systems have nsp values from 130 to 255, which are returned by the kernmel
when the file system is mounted.

The description given is sufficient for all users except system program—

mers. The 24 bit quantity has many different fields discriminated by the
nsp.

Seid

The null seid is & distinguished value. Uniq id0 and uniq idl have
values of zero. In general the null seid acts as a place holder. The
null seid is always translated by the kernel interface to be the seid of
the calling process.

Ao x

s o e 2

seid (1) KSOs 1/6/81 seid(I)

Process Seid

Each process has a seid which is valid for the life of the process.
Uniq id0 contains the process table index. Uniq idl contains a random
number to make the process seid unique over some period of time.

Segment Seid
Each segment has a seid which is valid for the life of the segment.
Uniq id0 contains the global segment table index, while unig idl contains
a random number to make the segment seid unique over some period of time.

Kernel Seid

The kernel seid is a distinguished value used to identify messages sent
by the kernel. Both uniq id0 and uniq idl contain zero values.

Device Seid

Each device has a seid which is valid for the life of KSOS. Changing
these seids will cause compatibility problems between KSOS systems.

Uniq id0 contains the device class. The device class identifies the type
of device being used. The following device class assignments have been

made.
disks 1-9
tapes 11-19
asynchronous communication devices 21-29
synchronous communication devices 31-39
network communications devices 41-49
paper tape devices 51-59
card readers 61-69
printers 71-79
The following device class numbers have been assigned to the following
devices.
disks RKOS5 1 RWPO4 2
RWPOS 3 PWPO6 4
RWS04 5
tapes TWEL6 11 ™11 12
TUS6 13
network IMP11B 41 LHDH 42
paper tape PR1l 51 PCl1 52
printers LP1l1 71

Uniq idl distinguishes multiple devices of the same type. The first dev-
ice has a value of zero and all the rest are numbered sequentially. This
field can not be greater than 256.

A\

seid (1) KSOS 1/6/81 seid (1)

[

Extent Sei!

All block addressuble devices contain extents. Each extent has its own
geid. For each device, the first four extents are predefined across all
~ KSOS systems. Uniq id0 is the same as unig.id0 on the device seids for

. the device upon which the extent rides. Uniq idl however, has the low

i order byte containing Uniq id! of the device seid. The high order byte
contains the extent number.

-
Subtype Seid
. . The subtype seids are valid agross all KSOS systems. Subtype seids are
always predefined. The following subtype seids have been defined.

seid uniq_id0 uniq_idl

-~
UNIX directory 100 0 g
KSOS file systen 100 1

-y Network Files 100 2

1

Terminal Seid

Bach terminal has a seid which is valid across all KSOS systems. Two

- types of terminal devices are supported, the DL and DH. DL devices have
uniq id0 values of O through 49. The value of 0O is reserved for the con-
sole device. DE devices have their uniq id0 starting with 50. Unigq id}
is always the terminal path number. The path number is assigned each

- time a user changes to a new level by the NKSR. The path numbers 0 and 1
are reserved for the secure server and the secure services respectively.

- File Seid

A file has a seid whichk is valid for the life of the file. The nsp indi-
cates which file system the file is on. The uniq id0 and uniq idl fields
contain the file's 24 bit Jnode number.

wa

‘-

_y seg_stat_block(I) KSOS 1/6/81 seg_stat_block(I)

F .

F

ib

’ - NAME

seg_stat_block -~ segment status block
SYNOPSIS
. ~ seg stat block = RECORD
: mem lock : boolean;
e mem advise : boolean;
swap lock : boolean;
sharable : boolean;
- growth ¢ direction;
gtat size : seg gize;
stat seid : seid;
stat des : seg des;
- stat mapped : boolean;
stat acc : acc mode;
stat loc : virt locg;
- END;
DESCRIPTION

: - Fields marked with an asterisk (*) are read only. Fields marked with a

: double asterisk (**) are read only while mapped in.

E — mem_lock is true if a segment is locked into memory (may not be

t swapped out). The privilege privLockSeg is required to lock

[a gsegment intd WeMOry.

: - mem_advise is true if the segment is liable to be locked down in
memory. 1/0 segments should be given this attribute by usst
programs.

-
swap_lock is true if the segment is locked into swap space (sticky:
must not be deleted). The privilege privStickySeg is
required tc lock a segment into swap space.
-
R gsharable is true if the segment may be shared with other processes.
A segment's discretionary access controls whether it is
3 - sharable. A sharable segment can not have its global attri-
] butes changed. For example, once a saegment is shared, it
can not be made unsharable. However, it can still be mapped
- anywhere in a process’s address space.
growth indicuates the growth direction of the segment. A downward-
growing segment starts at a high memory address and ends at
b a low memory address. Its virtual address must be the high.

byte address (i.e. the address is odd). An upward growing
segment starts at a low memory address and ends at high

- memory address. Its virtual address must be the low byte
addregs(i.e. the address is even).

BV ER gl 37500 KT 1 et M 1By § PO AT

{

seg stat_block(I)

*gtat_size

*gtat_seid

- *gtat_des

*gtat_mapped

. *%*gtat_ acc

**gtat loc

SEE ALSO

KSos 1/6/81 seg_stat_block(I)

is the length of the seguent in bytes. This must be a mul-
tiple of 512.

i8s the segment’s geid.

is the segment’s open descriptor (procesgs-local segment
number) .

18 true if the segment is currently mapped into the
process’s address space.

is the access allowed the calling process to a segment. The
access allowed must always be a subset of the access allowed
this process by the TII of the segment.

is the last known virtual location (in the process’s address
space) of a segment. If the segment is upward-growing, this
address must be a multiple of 64; if downward-growing, this
address must be one less than a multiple of 64.

K _build _segment (II), K_get segment_status (II), K_set_segment_status
(II), priv_struet (I), tii_struct (I)

tii_struct(l) KSO0S 1/6/81 tii_struct (1)
- NAME
tii_struct - type independent information
- SYNOPSIS
. priv_struct = bits32;
Z - compart_set = bits32;
. access_level_ type = RECORD
- gecurity_category : security_cat_type;
integrity category ¢ integrity_cat_type;
security_compart ¢ compart_set
3 END;
-
tii_struct = RECORD
e access_level ¢ access_level type;
owner : cardinal;
: group : cardinal;
3 da : discr_access;
: - tii priv : priv_struct
i END ;
3
s - DESCRIPTION
access_level contains the security and integrity levels, and the secu-
rity compartment of the object.
owner contains the (effective) user identifier for the object.
— group contains the (effective) group identifier for the object.
f_ da contains the discretionary access bits for the object.
= tii_priv contains the privileges belonging to the object.
. SEE ALSO
- K get_object_level (II), K _set_object_level (II), priv_struct (I),

compart_set (I), discr_access (I)

virt_loe(1) KSOS 1/6/81 virt_loc(I)

NAME
virt_loc -~ virtual location
SYNOPSIS
domain_type = ((* domains *)
null_domain,
kernel_ domain,
supervisor_domain,
user_domain
)s
mem_type = ((* memory space divisions *)
null_space,
d_space,
i_space
)s
virt_loc = RECORD (* virtual location *)
domain : domain_type;
space : mem type;
address : cardinal;
H
DESCRIPTION

A virtual location gpecifies the domain, space, and address of where the
location exists in the user process.

domain contains either the user domain or the supervisor domain.
The null domain is a distinguished value which the kernel
translates to the domain from which a kernel call has been
made.

space contains which space within the domain the data buffer is
located. The null space is a distinguished value which is
converted to data space on separate I/D space programs, and
otherwise to instruction space.

add‘tess contains the address of the location involved.

SEE ALSO
K_remap (II), K _rendezvous_segment (II)

B

C-Kernel Interface(II) KS0s 9/3/80 C~Rernel_Interface(II)

NAME
C-Kernel_Interface - C Interface te the Kernel Calls

- DESCRIPTION
s - The C-Kernel interface censists ef 38 C reutines. One interface routine
: exists per Kernel call. The interface reutines are used in cenjunctien
with the types defined in KERcalls.h
. , -
e The general precedure follewed in the interface reutines is te put the
arguments of the interface reutine inte one centigueus bleck of memery.
- - Then threugh an assembly language subreutine, a peinter te the bleck with
* the arguments is passed te the apprepriate kernel call. Upen cempletien,
. the kernel call places any return values inte the argument bleck and
f returns an exceptien. This exceptien 1is then passed upward by the assem-
- bly language subreutine. The interface routine unpacks the return values
frem the argument bleck and returns the exceptien te the calling C pre-
gram.
! -~
The 38 C interface reutines are contained in 38 seperate files, named
S K0O.¢ through K37.c. The assembly language subreutines are contained on
’ | files named EMT00.s through EMT37.s. The C reutines are archived inte
E - ene file (EKL.a) and the assembly gsubroutines inte anether (EMT.a).
3 Te use the C-Kernel interface routines put the archive file names eon yeur
; - coempile command line. An example ef cempiling a pregram, '"test', that
1 uses the interface reutines is:
¢¢ test EKL.a EMT.a
‘ -
FILES
K00.¢ = K37-C, EMT00.8 - EMT37OS, EKL-a. EMT.a
[
. 1 SEE ALSO
o KERe¢alls.h
c -
* ar
;- [
t
-
L

-
K_beoet (1) KSos 12/1/80 K_beet (II)
ey i
|
- NAME)
d K_beet 4
' - MODULA SYNOPSIS
L CONST b seg: seg des;
. VAR stat: K err num;
o « o0
: - stat := NK beet(b seg);
N
- C SYNOPSIS
o seg des b seg;
3 int stat;
ad stat = K beet(b seg):
DESCRIPTION
-~ K beet releases (as with K release_segment) the Segment indicated by the
y argument and maps in (as with K_remap) all ether segments attached te the
: process. Executien of the process centinues at lecatien O ef the
process’s superviser Il-space.
; SEE ALSO
3 K_release_segment(Il), K_remap(II)
4 -
1
-
Kt
hand .
S ;
. i
~ M
- L 4

K_build_segment (II) Ksos 12/1/80 K_build_segment (I11)

NAME
K build_segment

MODULA SYNOPSIS
CONST status: seg stat bleck:
CONST da: discr access;
VAR segSeid: seid;

VAR segDes: seg des;
VAR stat: K err num;

« o @

stat := NK build segment(status, da, segSeid, segDes);

C SYNOPSIS
seg stat bleck status;
diser access da;
sefd segSeid;
seg des segDes;
int stat;

stat = K build segment (&status, da, &segSeid, &segDes):

DESCRIPTION
K build gsegment c¢reates a new precess segment and maps 1t inte the
process’s virtual address space. Its eperatien includes the fellewing
actiens:
* A glebal segment descripter is allecated and swap space is allecated.
* A precess-lecal segment descripter is allecated and asseciated with
the created segment.
* Puage registers for the process are chesen accerding te the address
range specified for the segment, and are partially initialized.
* Physical memery is allecated fer the segment and the physical memery
address eof the segment is set up 1in 1ts page registers. The
segment’s memery is guaranteed te be all zeres.

Information needed te build the segment i8 taken frem the parameters.
Frem status (see seg_stat_bleck(I)) are taken:
mem_leck whether te leck the segment 1in memery; the privilege
privLeckSeg 1s required for this actien
men_advise whether the segment may be lecked in memery, particularly by
1/0 eperatiens
swap_leck whether te lock the segment in swap space: the privilege
privStickySeg 18 required fer this actien
sharable whether te allew sharing eof the segment with ether processes
growth segment’s directien ef grewth
stat_size size of the segment in bytes
stat_acc access the calling precess is te have te the segment
stat_lec virtual lecatfen of the segment in the precess’s address
space

The da parameter supplies the discretienmary access fer the segment, te be
placed in its type-independent infermatien (see tii_struct(I)). The ac-

K_build segment(II) KSOS 12/1/80 K_butld segment (II)

cess to the segment allewed by the stat ace field of the status parameter
must be a subset of the access allewed by the owner part ef the da param-
eter. Write-only access (write witheut read) may net be specified in ei-
ther the stat acce fleld or the da parameter. The remaining fields of the
type-independent infermatien for the segment are taken frem these ef the
calling precess. —

Values preduced by the call arc returned in gegSefd (the SEID created fer
the segment); and segDes (the precess-lecal segment number).

Segments may be shared between precesses previding that the security, in-
tegrity und discretienary uaccess checks would allew such sharing. Shar-
ing ef segments requires that the first process te desire te share the -
segment create it. Subsequent te c¢reation, the segment SEID must be made
available te processes wishing te share the segment, typically either via
placing it {In a mutually agreed upen file, or by passing it via an IPC

message. The other precesses would then issue K _rendezveus segment calls -
(belew) te gain access te the segment.
It 13 the respensibility of the precesses sharing the segment te see to -

it that 1t is preperly initialized, either by the Kernel’s guarantee eof
all zeres, or by explicit initializatien. The initializatien may require
ceoperation eor mutual exclusien to be completed successfully. This 1is
particularly true in the case eof shared pure text segments which are te
be resident in the Instruction Space on the PDP-11/70. Since such seg-
ments Ccuannot be written inte, they must be created as writable segments,
initialized frem the apprepriate image file, and then have their status -
changed te make them reside in the cerrect space and be nen-writable.
Care sheuld be taken 1in the design of pregrams like the Process
Beotstrapper which perform such initializatiens te assure that duplicate
initializatfen attempts er multiple cepies of the gsame shared text seg-
ment do net eccur.

The virtual address and domain parameters shall be fer the calling pro-

- cess only. Other precesses sharing the segment may map it inte their
- virtual address spaces as desired threugh their use of the
K rendezveus segment calls. Of ceurse, some segments, e.g. text seg- -~

ments, may operate c¢errectly enly {f mapped starting at a specific virtu-
al address.

EXCEPTIONS -
XbSgRng Bad segment range: set of addresses specified for the segment
would lie eutside a 64K address space.
XbSgSz Bad segment size: Ssegment size of zere specified —
3 XnPgSg Ne page in segment: sSegment address range dees not cress er is
not adjacent te seme multiple of 8K (address range must include
- an 8K multiple or have top address thuit ene less than an 8K _
. multiple).
! XnPvLkSg No privilege te lock segment: mem_lock specified, but witheut
. necessary privilege
XnPvStkSg No privilege te make sticky segment: swap_leck specified, but -

witheut necessary privilege
XnenDe Cannot de: glebal reseurce exhaustien

[

s ik i R Lt JE aladh

[y

K_build_segment (II) KS0S 12/1/80 K _build_segment(II)

XpostEh Process open segment table exhaustien: tee many precess seg-
ments

XvrtMmCfl Virtual memory cenflict: some subset ef the address range eof
this segment would use a page register(s) already in use by an
existing segment (high-erder three bits the same).

XwOnlSg Write-only segment: attempt te create write—-only segment

\

-

[P

R At A s V' oo sunb it r—'m Rk 2 . s dhiie
. . h " " .
{ t

Y

K_clese(II) KSOS 9/8/80 K_clese (IT)

NAME
K_clese —~ clese a file

MODULA SYNOPSIS
- CONST ed: epenDescripter;
VAR status: K err num;

status := NK clese(ed);

C SYNOPSIS
char ed;
int gstatus;

status = K clese(ed);

DESCRIPTION
K clese cleses the file, terminal, extent, er device tdentified by the
given open descripter (previeusly returned frem a K create or a K epen).
Upen precess exit, clese of all epen files, extents, terminals, and dev-
ices 18 performed autematically.

K clese dees net cause any device actien, such as tape rewinding.

SEE ALSO
K create(I1), K_epen(II)

- —
., !
- K_create(II) KSO0S 12/1/80 K create(II)
- NAME
K_create
MODULA SYNOPSIS

CONST proteSeid: seid;

CONST em: _.penMedes;

CONST da: discr access:

- CONST stCap: epenDescripter;
VAR fSeid: seid;

VAR ed: epenDescripter;

VAR stat: K err num;

The file 13 created with size zero, the subtype spec¢ified by sgtCap, and
i8 eopened with the specified epen medes, which must be valid open medes
as defined fer K epen(II). The file is created with a 1link ceunt eof

- zero. This implies that the fille will be deleted when clesed by the
creating precess unless the link ceunt of the file is first incremented
by K 1link(II). Use of K 1ink(II) is nermally restricted te the UNIX

- directery manager, which thus restricets the creation of permanent files
to these under the centrel ef the directory manager.

-
stat := NK create(proteSeid, em, da, stCap, fSeid, ed);
Y B]
! C SYNOPSIS
seid preteSeid;
- epen mede om;
discr access da;
; epenDesceripter stCap;
geid fSeid;
- openDescripter ed;
int stat;
- gtat = K create (preteSeid, om, da, stCap, &fSeid, &eod);
DESCRIPTION
' K create creates and epens a new file en the same file system as the file
* - proteSeid. protoeSeid need net refer to an actual file; enly the name
space partitien part ef the seid is examined to determine which file sys-
[l tem 18 to be used.
-
1
)

The seid ef the new file, fSeid, {s chesen pseude~randemly by the system.
- The cencept of re~creating ar existing file is thus net meaningful.

The epen descripter eod i{s a lecal name which the process can subsequently
- use to uccess the created file.

SEE ALSO
K epen(II), K _clese(II)

o
s K_device_functien(II) KSOS 12/1/80 K_device_function(II)
- NAME
; K_device_functien ~ perferm arbitrary I/0 functien
! MODULA SYNOPSIS
{ = CONST od: openDescripter:
. CONST funct: {eFunctien;
i CONST bleckNe: fBleckNumber;
- CONST inP: p bleck:
CONST outP: p bleck:
CONST id: asyneld;
VAR errs: ieStatus;
! e VAR bytesDene: cardinal;
VAR status: K err num:
wr status = NK device functien(ed, funct, bleckNe, g\g, eutP, id, errs, bytesDene);
- C SYNOPSIS
openDe-~cripter ed;
int funct;
leng bleckNe;
- pbleck inp;
pbleck eutp;
int 1d;
- ieStatug errs:
int bytes;
int status;
hand status = K device functien(ed, funet, bleckNe, &inp, &eutp, id, &errs, &bytes);
; - DESCRIPTION
o K device functien can be used for performing all I/0 functiens. There
' are a number of I/0 functiens, seme of which have meaning enly for cer-
. tain devices. The parameter blecks inP and eutP define the memery ureas
- te be used for input (inte memery) and output (frem memery). ither or
beth parumeter blecks may be null (size = 0) depending en the require-~
. ments of the 1/0 functien.
SPECIFIC FUNCTIONS
Functiens are specified in the funct argument.
- READ Read. (same as K _read bleck(II)) Valid inP and eopen
fer read required.
WRITE Write. (same as K write bleck(II)) Valid eutP and
, - epen fer write required.
ot SETEOMCHARS Sets the set of characters censidered te end a single
input request fer a terminal. See KSOS Input/Output
Guide.
- REWIND Rewind (tape enly). Open for write required.
: UNLOAD Unlead remevable medium. Rewinds tapes . off-line
‘ cenditien, steps disk drives where hardware permits.
! [~

~- K_device_functien(II) KS0oS 12/1/80 K_device_function(II)

Open fer write required.

WRITEMARK Write tape mark. Open fer write required.

SETDENSITY Set tape writing density. Open fer write required.
The density (800 or 1600) is placed in the bleckNe
argument .

k- SETTERMMODES1 Set raw mede, eche, etc. for terminals - see KSOS
‘ Input/Output Guide. Open fer read and write

required.

SETTERMMODES 2 Set parity, density, etc. See KSOS Input/Output

Guide. Open fer read and write required, and the
caller must have the privilege te set these
security-related medes. Open for read and write
required. [requires privSetComm]

GETTERMMODES Get terminal medes - see KSOS Input/Output Guide.
Open fer read and valid inP required.
SETFILESIZE Set byte size of file. The size is submitted in

blockNe, and must be compatible with the current high
written bleck eof the file. (i.e. (bytes + 511) DIV
512 = blecks) This functien does not allecate or
releagse file space. Open for write required.

ERASEFILE Get rid of all space in a file. Open fer write
required.

VOLUMEVALID Mark removable medium as usable. Open fer read and
write required. [Requires privimmigrate)

3 VOLUMEINVALID Mark remevable medium as unusable. Where hardware
permits, perferms an UNLOAD. Open fer read and write
required.

INPUTWAIT This functien 13 used te wait until input is avail-

able frem a terminal. It 18 enly valid as an asyn-
chreneus request, and only fer a terminal. When an
INPUTWAIT request completes, a foellewing K read bleck
request fer input frem the terminal will return
immediately with input data. Thus, the effect ef
asynchrenous terminal reads (which are net supperted)
is avallable by perferming an INPUTWAIT te wait until
input is available, and then when the asynchrencus
¢completion message is received, performing a
K read bleck request. Open for read 1s required.
: SETPATH Connec¢t physical terminal te a different legical ter-
y minal path. The desired path number is placed in the
bleckNe argument. Open for read and write required.

(Requires privSetPath]

i1

ASYNCHRONOUS REQUESTS

1/0 and computatien (and te a limited extent I/0 and I/0) may be over-

lapped within a single precess. Nermal calls te K device functien,

K read bleck , and K write bleck sheuld have a zere in the id argument.

Such requests wait until the I/0 eperatien is cemplete. If anything else
0 is placed in the id argument, the request ig¢ asynchreneus and the c¢all

may return befere the eperatien 13 complete. When the eperation com-

pletes, an I/0 cempletien message (see the ieCempletienMessagetype) will

be sent te the precess which did the K device functien (er K read bleck

er K write_bleck) call.

T

K_device_functien(II) KSos 12/1/80 K _device_functien(II)

Only when gtatus is XOK and errs.devindep is Xasync sheuld an I/0 cemple-
tien message be expected. On asynchreneus requests, seme errers are
reported threugh errs.devindep in the call and seme are reperted threugh
the errs.devindep field in the I/0 cempletion message. It 18 generally
possible te have several requests in progress for different devices frem
the same precess, but an asynchrenous request fer a busy device will be
delayed until the device is available.

SEE ALSO
K _read bleck(II), K write bleck(II)

T

!

RK_ferk(II) KSOS 9/10/80 K _ferk(II)

NAME
K ferk

MODULA SYNOPSIS
VAR own: seid;
VAR eother: seid;
VAR stat: K err num;

stat := NK ferk(ewn, ether);

C SYNOPSIS
seid own;
seid ether:
int stat;

stat = K ferk (&ewn, ðer);

DESCRIPTION

The K fork primitive creates a process. The new process is remembered as
a <¢hild ef the caller (parent). The ¢hild is an exact duplicate of the
parent. The precess id of the parent is returned te the child. The pre-
cess 1id ef the child is returned te the parent. The pregram ceunter of
the parent is net adjusted as it is in standard UNIX. The returned pre-
cess id will be sufficient te distinguish parent and ¢hild. The type in-
dependent infermatien of the child precess is identical te the type in-
dependent infermation ef the parent precess.

The nen-sharable segments eof thé precess are copied Inte new segment in-
stances fer the child. The reference ¢counts of sharable segments are in-
cremented. The process lecal segment names are the same 1in beth the
parent and <¢hild, altheugh in the case of non-sharable secgments they
refer te a different segment instance (and therefere, a different segment
SEID) fer the child than fer the parent.

The ¢hild inherits the epen objects of the parent. That 1{s, each ebject
that 1is epen in the parent is epened in the ¢hild, and has the same lecal
epen ebject descripter. The epen counts of the open ebjects so inherited
are {Incremented te reflect the fact that anether precess (the child) has
them epen. If the parent has an ebject eopen for exclusive use, the
K ferk <¢all fails, preventing twe precesses frem having simultaneeus ac-
cess to the same exclusive use ebject.

An errer is returned in stat if the peeol of available precesses has been
exhausted.

A
e

4

LS S

i §

Py

Y

K_get_file status(Il) KS0S 9/10/80

NAME

K _get_file_status(II)

K get_file status

MODULA SYNOPSIS

CONST fSeid: seid:

CONST stCap: epenDescripter;
VAR status: file stat bleck;
VAR stat: K err num;

stat := NK get file status(fSeid, stCap, status);

C SYNOPSIS

seid fSeid;
epenDescripter stCap;
file stat bleck status;
int stat?

stat = K get file status (fSeid, stCap, &status):

DESCRIPTION

R get file status returns the type dependent informatien asseciated with
a file, terminal, extent, or device. This informatien includes the size
of the object in bytes (zere for nen-addressable devices), and the time
of the last epen fer writing (meaningful fer files enly). The inveking
precess must have read access te the file with respect te the mandatery
security and integrity rules enly. Ne discretienary access checking is
performed.

The stCap arguement to this call is ignered.

T e T

K_get_ebject_level (II) KS0S 9/8/80 K get_ebject_level (IT1)

NAME ' !
K_get_object_level

MODULA SYNOPSIS
CONST eobiSeid: seid;
VAR level: tii struct;
VAR stat: K err num;

. e

stat := NK get ebject level(ebiSeid, level);

C SYNOPSIS
gseid ebiSeid;
tif{ struct level;
int stat;

gtat = K get ebject level (ebiSeid, &level);

DESCRIPTION
Given ebjiSeid, the primitive K get ebject level returns the type indepen-
dent infermatien for an object in level.

P P

t
|
'

K_get_precess_status(IlI) KSOS 9/8/80 K_get_precess_status (II)

NAME
K_get_precess status

MODULA SYNOPSIS
- CONST prec¢Seid: seid;

VAR status: prec stat bleck:;
VAR stat: K err num;

. [
' stat := NK get precess status(precSeid, status);
- C SYNOPSIS
seld precSeid;;
prec¢ stat bleck status;
— int stat:
stat = K get precess status (precSeid, &status);

DESCRIPTION
The K get precess status call returns, in the status parameter, the type
dependent infermatien about the process specified by precSeid. A precess
- may successfully request infermatien of processes that 1t can access
given its level and the level of the target precess.

G s | b o e e S ani

K_get_segment_status (II) KS0S 9/10/80 K _get_segment_status (II)

— NAME
K _get_ gegment_status

MODULA SYNOPSIS

. CONST segSeid: seid;

- CONST segDES: seg des;

VAR status: seg stat bleck;
s e VAR stat: K err num;

gtat := NK get segment status(segSeid, status);

C SYNOPSIS
seid gsegSeid;
e gseg des segDes;
3 geg stat bleck status;
int stat;

h; -

stat = K get segment status (segSeid, &status):

DESCRIPTION
-~ K get Segment status returns, in the parameter status, the type dependent
infermatien asseciated with a segment SegSeid. A process may successful-
ly ebtain type dependent status abeut any segment frem which infermatien
-— could flew te the precess. Ne discretienary access checking shall be
perfermed.
EXCEPTIONS

XbSgDes Bad segment designater: This segment designater 1is
inactive.

XbSgSd Bad segment seid: segSeid is net the seid ef an exist-
ing segment or precess dees not have manditery (securi-
ty) access te the segment.

XnSgDes Net a segment designater: This number 1is eutside the
set of segment designaters.

- -1-

K _halt(II) KSOS 9/8/80 K _halt(II)
:K - NAME
: K halt
7 “
E MODULA SYNOPSIS
L ad VAR stat: K err num;
L gstat := NK halt;
- - —
s C SYNOPSIS
b - int stat;
i gtat = K halt ();
P - DESCRIPTION
K halt causes the entire system te halt. Use eof this call is restricted
te processes with the privHalt privilege.

SEE ALSO
priv_struct(I)

K_interrupt_returan(II) KSOS 9/10/40 K_interrupt_return(II)

) - NAME
. K_interrupt_return

. MODULA SYNOPSIS
VAR stat: K err num;

1 stat := NK interrupt return:
. b
3 C SYNOPSIS

? - int stat:

\ IS

stat = K interrupt returan ();

s DESCRIPTION
; K interrupt return provides an atemic return eperatien from pseudo inter-
rupts. It can be theught of as being analegous te the PDP-11 RTI and RTT
-— instructiens. When a pseude interrupt eccurs, the pregram counter, pro-
. cesser status werd, and current pseude interrupt level are saved in a
| pseude interrupt vector for the particular type of pseude interrupt which
; eccurred. In the PDP-ll1 4{mplementatien, these vectors are lecated at
- fixed locatiens in the superviser demain. The K interrupt return call
res.eres the precess state from these saved values. Because the inter-
] rupted precess state is accessible te the precess, the K interrupt return
call checks the saved state prier te restering it. The precess is net be
permitted to increase its privileges er accessible domains. (Similar
checking takes place in the processing ef the pseude interrupt itself.)

bk a1 el 2o

i

K_tinveke(II) KSOS 12/1/80 K_inveke(II)

NAME
K_inveke

MODULA SYNOPSIS
CONST immSeid: seid;
CONST arg: seg des:
VAR stat: K err num;

stat := NK inveke(immSeid, arg);

C SYNOPSIS
geid immSeid;
seg des arg;
int stat;

stat = K inveke (immSeid, arg);

DESCRIPTION
The purpese of the K inveke primitive is the invecatien of petentially
privileged software. The effect of this call is te replace the existing
segment map (including the executing text segment) by a new precess im-
age. All segments will be released except for the argument segment
specified by arg. The new precess image has only the intermediary seg-
ment and the argument segment active (mapped in). Arguments fer use by
the intermediary process may be placed in the argument segment. The ex-
act format of the argument segment 1is determined by the particular in-
termediary specified in the ¢all. The argument segment may be wused by
the intermediary as a scratch pad as the intermediary builds any other
segments it requires. It is the respensibility ef the newly executing
pregram (the intermediary) te <create 1its ewn werking segments. The
privileges of the precess are set te these associated with the intermedi-
ary segment. In the PDP-11/70 implementatien, the intermediary is mapped “
inte lecatien 0 ef the superviser demain instructien space, and the argu- :
ment Segment 1s mapped out. The intermediary may perferm’ any arbitrary

functien. Thus, applicatiens ef the KSOS Kernel muy elect te create spe- |
¢ialized intermediaries te perferm specifi¢ functiens. The only pre- ’
defined intermediary is the Precess Beetstrapper, described next. ?

The Precess Beetstrapper segments implement a trusted process whose seole
purpese 18 the creatien of other, potentially trusted, enviremments by
replacing itself with image frem the protetype file whese name is passed
in as an argumente. The Precess Beotstrapper has the feollewing
privileges:

te set privileges

te set the effective owner

te set the security and integrity level

K_inveke(II) KSOS 12/1/80 K_inveke(II)
K -
4
: te realize execute permissions (i.e. use the execute permissiens fer read
R access attempts)
A —
4 Using the parameters specified 1in the argument segment, the Process
< Boetstrapper builds a new set of precess segments cenferming te the pro-
P cess protetype file. The privileges for the new envirenment is ebtained -—
E frem the process pretotype file. If the protetype file has ne privileges
asseclated with it, the new envirenment is unprivileged. If the prete- :
R type file specifies that it 1is te execute in a different discretiemary - ?
; access demain, the boetstrap changes the effective user and/er greup ef ;

the process te the ewner of the pretetype file. The new trusted precess

is then set inte executien by the Precess Beetstrapper. Nete that a com—

: pletely trusted path exists frem the X inveke call, threugh precess cen=-
structien, te the executien ef the trusted seftware.

The use of the K inveke call is net limited te the invecatien ef trusted -
.precesses. Untrusted precesses may alse be executed threugh the K inveke
call. If change of discretienary access demain er privilege is net re-

' quired by the type dependent infermatien asseciated with the precess pro-
tetype file, the precess beetstrap simply remeves all privileges prior te
setting the new image inte executien.

The privilege infermatien asseciated with a precess pretetype file 1is
contrelled by the Privilege Contrel Precess, a restricted use pregram
discussed in the Non-Kernel Security-Related Seftware CPCI Specificatien

(NKSR 78].

SEE ALSO
PBB(III), K_spawn(II)

PLAN JE

DA pw s bt 2B
.."“'_’ i . i

E-~ K_link(II) KSOS 9/8/80 R_11nk(IT) P
-
-
~— NAME
K_link
MODULA SYNOPSIS
- CONST fSeid: seid;
VAR stat: K err num;
- stat := NK link(fSeid):
- C SYNOPSIS !
gseid fSeid;
int stat;
- stat = K link (f£Seid):
DESCRIPTION
- K link increments the reference ceunt ef a Kernel file specified by the

seid fSeid. The reference ceunt is nermally used te indicate the number
of UNIX directery entries which peint te this SEID. Applicatiens of the
KSOS Kernel which do net use the UNIX directery structure and semantics
- may use the reference count for other purposes. The reference count may
enly be incremented by precesgses with the privlink privilege. Such
processes should be carefully designed te reduce the bandwidth ef the
- resultant confinement <channels and te preserve the integrity of the
higher level directery structure, if any. The security and integrity
checking on K link is as if the user were reading and writing the file.
Ne discretionary access checking 1is perfermed. Thus, the precesses

- privileged te wuse K link may implement whatever discretienary checking
P they choese.
i - SEE ALSO
o K create(II), K unlink(II).
3
E -
L
b
i
h -
3
L

~

F i .

K_meunt (I1) KSOs 9/8/80 K_meunt (II)

K _meunt

MODULA SYNOPSIS

CONST extSeid: seid;

CONST readOnly: beelean:
VAR nsp: nsp type;
VAR stat: K err num;

stat := NK meunt(extSeid, readOnly, nsp):;

C SYNOPSIS

seid extSeid;

nsp type nsp;
beelean readOnly;
int stat;

stat = K mount (extSeid, readOnly, &nsp);

DESCRIPTION

The K meunt call perferms the functien of asseciating a particular file
name space partitiem with the extent, extSeid, making it pessible te
access files in the mounted file system.

Use of this call requires the privilege privMeunt which nermally res-
triets the use of this call te the NKSR ‘meunt’ program. It is the
respensibiity of the privileged pregram te insure that the file system
being meunted is a valid file system, that the Immigratien Officer funec-
tien has appreved its use, and that the user inveking ‘meunt’ is auther-
ized te operate en the file system invelved.

Each meunted KSOS file system belengs te a different name space parti=~
tien. The Kernel ussures this by assigning a name space partitien te the
file system when the file system is meunted. The Immigratien Officer
seftware [NKSR 78) maintains a data base eof file gystems currently immi-
grated. When a extent is meunted, the Rernel shall update an internal
data base which tells it en which extent the SEIDs in the meunted name
space partitien may be feund. The nsp value returned by the K meunt call
determines the name space partitien which the Kernel will expect in
operatiens referring te files in the newly mounted file system.

The first K_meunt after startup of the Kernel will always return the same
value, and by cenventien this value is asseciated with the "reot" file
gystem.

It is pessible te meunt a file system as read only by setting readOnly te
true in which case no file on the file gystem can be epened fer writing,
new files cannet be c¢reated, and existing files cannet be altered or
deleted. The physical device muy be placed in write-pretect mede without
interfering with read-enly meunts.

T B, TR Sy) Lok il il

‘
E‘.-J K_mount (L1) KSOS 9/8/80 K_meunt (I1)

Each file system centains type independent infermatien. The security and
| integrity levels of the file system shall be interpreted as the maximum -
- levels allewed fer any file en the extent. The Kernel prevents K ¢reate
eperatiens by any precess net permitted data flew te the file system
under the security medel.

Note that extents may centain data Structures other than KSOS file sys-
tems. A given extent may be assigned fer private, non-file system use.

Ter oo

However, enly extents belenging te the subtype ‘file System’ may be -
» meunted. A
> SEE ALSO

. K_create(II)

K_nap(II) KSOS 12/1/80 K_nap(II)

- NAME
K nap

. MODULA SYNOPSIS
_— - CONST timeOut: cardinal:
VAR stat: K err num;

#. N stat := NK nap(timeOut);
8 C SYNOPSIS
X - ¢ardinal timeOut;
int stat;
- stat = K nap (timeQut);
DESCRIPTION

K nap is a mechanism fer explicitly giving up the precesser when a higher

= level blecking cenditien eccurs. This situatien eccurs when, for exam—
: ple, precesses implementing semapheres en tep ef the Kernel beceme logi-
£ cally blecked en a semaphore. K nap provides an slternative te busy
- waiting fer the Semaphore. The timeOut argument is the incremental time
3 (fn 1/60th secend c¢leck ticks) befere which the precess sheuld net be

3 rescheduled by the Kernel. Processes using K nap should check that the
v — legical cenditien fer which they were waiting has eccurred when they are
i activated.

e

R

.
e P TR

t

K_epen(II) Ksos 9/8/80 K _epen(II)

NAME
K epen - open 4 file, terminal, extent, or device

. MODULA SYNOPSIS
o - CONST fSeid: seid;
CONST em: OpenMedes:
CONST stCap: epenDescripter;

— VAR ed: epenDescripter:
gstatus: XK err num;

status := NK epen(fSeid, om, stCap, od);

C SYNOPSIS
- geid £Seid;
KopenMedes om;
char gtlap;
char ed;
- int status;
status = K _epen(fSeid, em, stCap, &eod);
2 o
DESCRIPTION
- K epen opens the file, terminal, extent, er device specifiad by fSeid.
X The open descripter ig returned in the arguement ed.
! Ne initializatien of the device eccurs when a device is epened. Devices
ond which are not ready (ne tape meunted, etc.) can be epened, but devices
which are net physically present cannet be eopened.
- em contains the requested open medes, which are
ou.read Open fer reading
om.write Open fer writing
- em.exclusive read Lock out all ether readers
om.exclusive write Leck out all ether writers
- Only the fellewing cembinatiens of medes are permitted:
§ . exclusive
g = read write read write
bos
o true false false false Nermal read.
L - false true false false Normal write.
' true true falgse false Normal read and write.
true true falgse true Leck out all ether writers.
- true true true true Lock sut everybedy eilse.
. When an epen request fails because ef an exclusive use bleckage, an

ot exceptien 18 returrad. There is ne blockiiz er delay associated with

i
K_open(II) KSOS 9/8/80 K_epen(II)
exclusive use failure. Note, theugh, that exclusive use is available
only te these with the ability te epen fer writing. —
SUBTYPES
' X Subtypes are predefined epenable ebjects which centrel access te ether
objects. If an ebject is subtyped, a requester can epen it fer writing -
enly if the subtype is already open fer writing te that precess and the
- epen descripter eof the subtype is submitted in the gtCap argument. A .
5 similar rule applies for reading. Files may be c¢reated in a subtype by -
providing the subtype, epened for reading and writing, te K create(II).
Subtypes are primarily used by the directery manager te pretect direc-
- tories and are of limited use te mest users. -
SEE ALSO
K _create(Il), K _clese(Il)
, -
{ -
-
‘
-
! -
1
L)
|
-i

K_post (II) KSOS 9/10/80 K_pest (II)

- NAME
E K_pest

- MODULA SYNOPSIS
3 - CONST receiver: seid;
CONST psint: beelean:

CONST msg: msg struct;
. . VAR stat: K err num;

. stat := NK pest(receiver, pslnt, msg);

C SYNOPSIS
gseid receiver;
— beelean psint;
meg struct msg;
int stat:

stat = K pest (receiver, pslnt, &msg);

3 DESCRIPTION

$ - K pest sends a shert message te another precess specified by the seid re~
b ceiver. A pseude interrupt is asserted at the destinatien precess, if
: selected, and if the receiving precess has IPC pseude interrupts enabled
3 (i.e. that {ts pseude-interrupt level is sufficiently lew te allew pseude
. interrupts). A header is attached te the message indicating the SEID ef
the eriginating precess.

~— The type independent infermatien fer the twe precesses is used te deter-
mine rights ef the eriginating precess te cemmunicate with the the desti-
natien.
Aad ’
-
-
L

FI

JEmm———————) ,,_;_____--JEHII"

R_read_bleck(II) RSOS 9/8/80 K_read_bleck(II)

NAME
K_read_bleck - perferm read

MODULA SYNOPSIS
CONST ed: epenDescripter;
CONST bleckNe: fBleckNumber;
CONST inP: p bleck;
CONST id: asyncld;
VAR errs: ieStatus;
VAR bytesRead: cardinal;
VAR status: K err num;

status := NK read bleck(ed, bleckNe, inP, id, errs, bytesRead);

C SYNOPSIS
epenDescripter ed;
leng bleckNe;
pbleck inp;
int 1d;
ieStatus errs:
int bytes;
int status;

status = K read bleck(ed, bleckNe, &inp, id, &errs, &bytes);

DESCRIPTION
R read bleck is used te request reading frem files, terminals, extents,
and devices. The parameter bleck {nP defines the memory area te be used
for input.

Files and extents are stered in units of 512 byte blecks. Frem 1l te 64
blecks can be read frem a file or extent with ene request. A single big
request is much faster than many small requests. Files which centain
"heles" (unwritten blecks) are treated en read as if the unwritten bleck
contained all zere bytes. Transfers are always in multiples of 512
bytes, regardless of the byte size of the file.

Terminals may be read and written in sizes frem 1 te 128

Devices may have different rules fer each device en bleck size. See the
specific device in (VT)}. KSOS Input/Output Guide

ASYNCHRONOUS REQUESTS
See K device functien(II). Te make a nermal, synchreneus, request, the
id argument sheuld be zere.

SEE ALSO
K_device_functien(Il), K_write_bleck(II)

o ¢

K_read_bleck(II) KSOS 9/8/80 K_read_bleck(Il)
EXCEPTIONS
k- See K device functien(II). —
3 ERROR CODES
I~ Errer infermatien 18 returned in errs. After an eperatien which did net
o return un exceptien, errs.devindep contains ene ef the values given e
& below, and, fer eperatiens en devices, errs.devDep centains 16 bits ef
- hardware status as described in (VI) under the specific device. See
. K_device functien(II) fer further details. -~
3
2
;
-
L

[AR ———————————————

e
. K_receive(II) Ksos 12/1/80 K_receive(II)
- ~
. - NAME

K _receive

MODULA SYNOPSIS _
| - CONST timeOut: cardinalj; !

CONST n pil: pseude int levels: i

VAR msg: ip¢ bleck;
- VAR stat: K err num;

- o o

stat := NK receive(timeOut, n pil, msg);

C SYNOPSIS
cardinal timeQut;
- pseude int levels n pil:
ip¢ bleck msg;
int gtat;
- stat = K receive (timeOut, n pil, &msg);
DESCRIPTION
bt K receive suspends the executien of a precess until the receipt ef an IPC ;
message or until a time eut. The return value indicates the conditien :
which caused the precess te be restarted.

The first message in the queue of received IPC messages is returned. If
mere than timeQut ‘clock ticks’ expire before any IPC messages are re-
ceived, no message is returned and the error c¢ode so indicates. The

b n pil parameter sets the pseudo interrupt level of the process before be=-
ginning the wait. This is analogous to a K set pil call.

————— e = s

T

Sabdasest s

T

K_release_process(II) KSOs 12/1/80

K_release_process

MODULA SYNOPSIS

CONST proceSeid: seid;
VAR stat: K err num;

stat := NK release process(procSeid);

C SYNOPSIS

seid procSeid;
int stat;

stat = K release process (proc¢Seid);

DESCRIPTION

K release process deallocates all of the Kernel level resources
ed with the named process. A K release process call with the
argument releases the calling process. Only a process with the

er or a process privileged to change 1its owner may

K release process for another process. The effects of K close

Aot —— > e entiemt e

K _release_process (II)

asgociat-
null seid
sSame Oown~
issue a
for all

open files and of a K release segment for all the segments of the process
occur. Shared segments remain intact un'! .88 the reference count to the

segment has reached zero. Segments with a zero reference count

are deal-

located unless they have been cresated to be ‘avicky’. Files are deallo-
cated 1if their 1link counts and open counts are zero. The process seid
becomes unknown.

Lpi i L aa i i

K_release_ segment (II) KS0S 9/10/80 K_release_segment (1I)

NAME
K release_segment

MODULA SYNOPSIS
CONST seg: seg des;
VAR stat: K err num;

stat := NK release segment(seg);

C SYNOPSIS
seg des seg:

int stat;

. e o

gtat = K release segment (seg);

DESCRIPTION
The primitive K release segment releases the Kernel level resources asso-
ciated with the specified segment. The segment is not deleted if other
processes are still using it or if its swap_lock (sticky) bit is set.

SEE ALSO
seg_stat_block (I)
EXCEPTIONS
XbSgDhes Bad segment seid: segSeid is not the seid of an exist-
ing segment or process does not have manditory (securi-
ty) access to the segment.
XnSgDes Not a segment designator: This number 1is outside the

get of segment designators.

E ' K _remap (II) KSOS 9/10/80 K_remap (II)

NAME
K remuap

L MODULA SYNOPSIS

* CONST inSeg: seg des:

; CONST inLoc: virt loc;
CONST inAcce: ace mode;
CONST outSeg: seg des;
CONST outSize: seg size;
CONST choice: selector;
- VAR stat: K err num;

: stat := NK remap(inSeg, inLoc, inAce, outSeg, outSize, choice):

C SYNOPSIS
seg des inSeg;
virt loc inlLoe;
ace mode inAce;
seg des outSeg;
- seg size outSize;
gselector choice;
int stat;

stat = K remap (inSeg, inLoc, inAcg, outSeg, outSize, choice):

E DESCRIPTION
-— The X remap primitive permits the process to change its segment map. The
outgoing segment is no longer directly addressable by the process through
machine instructions. The incoming segment becomes directly addressable
- by the process. The outgoing segment is not released. However, the
memory management hardware of the segment to be removed from the current
- mapped set may be used to satisfy the hardware requirements of the incom-
. ing segment. When a process degment is mapped into the current address-
L - able set of segments, it occuppies the virtual address vector Jefined by
3 the arguments to K remap. Either or both of the segment designators may
be null. If both are null the call has no effects. The incoming segment
— must fit into the virtual memory and memory management resources avail-
able after the outbound segment is unmapped. If it does not, or if any
of the other error conditions oceur, or if both segment designators are
null, the call has no effect on the segment mapping.

- If the alter virtual location flag (vlFlg) within the choice parameter is

TRUE, the incoming segment is mapped into the locatfon specified as argu-

> - ments to the call, and its status information adjusted to reflect this as

- a permanent change. Otherwise, the segment is mapped into the location
ot specified in its permanent status informatiom.

~ If the alter discretionary access information flag (daFlg) within the

choice parameter is TRUE, the modes in which this process will access the

: segment are checked against the permitted access modes for the segment,
‘ - and if allowed, will become the access modes for the segment. This may

—

Ei K _remap(II) KSCS 9/10/80 K_remap (I1)

alter the settings of memory management hardware when the segment 1is
mapped back in.

If the alter size flag (osFlg) within the parameter choice fs TRUE, the
v size of the outbound segment are set to the value outsize. The expansion —
or truncation of the segment is performed at the end of segment specified
by the growth attribute of the segment specified when built. Expanded
parts of segments are filled with zeros. The size change can only be ap~

d plied to segments that are not sharable. =
' EXCEPTIONS
~y
XbSgRng Bad segment range: set of addresses specified for the '
segment would lie outside a 64 K address space.
XbSgDes Bad gegment designator: this segment designator is h
inactive.
XinSgAldMp Incoming segment already mapped. el
XncnDo Cannot do: global resource exhaustion.
XnoAce No ac¢cess: cannot access this object. =
XnPgSg No page in segment: segment address range does not
cross or 1is not adjacent to some multiple of 8 K (ad- had
dress range must include an 8K multiple or have top ad-
dress that one less than an 8K multiple).
P XoutSgAldUmp Outgoing segment already unmapped.
»
i XvrtMnCfl Virtual memory conflict: some subset of the address
x.. range of this segment would use a page register(s) al- -
» ready in use by an existing segment (high-~order three
LY
.- bits the same).
k —
:'
b
: -
;’ -y
T4
1
o ™)
i
L

-
;..,‘..,‘ K_rendezvous_segment (LI) KSOS 9/10/80 K_rendezvous_gegment (I1)
L
.
- " NAME ,
K rendezvous_segment
MODULA SYNOPSIS
- CONST segSeid: seid;
' CONST location: virt loe:
CONST access: acc mode;
- VAR segDes: seg des;
VAR stat: K err num;
- stat := NK rendezvous segment(SegSeid, location, access, segDes);
C SYNOPSIS
- seid segSeid;
virt loc location;
acce mode access;
- seg des segDes;
int stat;
stat = K rendezvous segment (segSeid, location, access, &segDes);
DESCRIPTION
The Kernel call K rendezvous segment is the mechanism by whi:h processes
- are able to share segments. If the segment requested exists and is ac-
cessible, it is mapped into the processes address space as requested,
providing that the requested mapping information is valid. The Kernel
will check that the segment may be mapped into the process issuing the
- K rendezvous gegment call. The checks include:
' — that the segment seid i{s active
l -
. that the segment may be shared
- that the security/integrity level of the process allows it to aczess the
segment
by - that the discretionary access for the segment allows it to be accessed in
the requested way
- that the virtual address supplied is valid
i
4 EXCEPTIONS
§ -
. XbSgRng Bad segment range: set of addresses specified for the
! segment would lie outside a 64 K address space.
~ XbSgSd Bad segment seid: segSeid is not the seid of an exist-

, ing segment or process does not have manditory (securi-
ty) access to the segment.

L

[

K _rendezvous_segment (1) KS0S 9/10/80 K_rendezvous_segment (1I)

XdupSg Duplicate segment: gome process-local segment designha-
tor is8 already attached to the segment.

XncnDo Cannot do: global resource exhaustion.

XnPgSg No page in segment: segment address range does not
cross or is not adjacent to some multiple of 8 K (ad-
dress range must include an 8K multiple or have top ad-
dress that one less than an 8K multiple).

XpostEh Process open segment table exhaustion: too many process
segments.

XsgNoAcc Segment no access: discretionary access of the segment
does not allow the requested access.

XvrtMmCEl Virtual memory conflict: some subset of the address

range of this segment would use a page register(s) al-
ready in use by an existing segment (high-order three
bits the same).

FESIETEOIOTET 4T

| PP

K_secure_terminal_lock(II) KSOS 9/8/80

NAME
K_secure_terminal_lock

MODULA SYNOPSIS
CONST tSeid: seid;
VAR stat: K err num;

gtat := NK secure terminal lock(tSeid);

C SYNOPSIS
seid tSeid;
int stat;

stat = K secure terminal lock (tSeid);

DESCRIPTION

This Kernel call has been deleted.

— e, S S e

K_secure_terminal_lock(II)

K_set_da(II)

K set_da

MODULA SYNOPSIS

CONST obiSeid: seid;
CONST da: diser access;
VAR stat: K err num;

stat := NK set da(obiSeid, da);

C SYNOPSIS

seid ob{Seid;

discr acces da;
int stat;

stat = K set da (obiSeid, da);

DESCRIPTION
K set da sets the discretionary access of the

first argument to that given in the second argument.

KS0S 12/1/80

K_set_da(II)

object specified by

Lol

the

K _set_file status(IXI) KSOS 9/8/80 K set_file status(II)

NAME
K _set_file status

’ — DESCRIPTION
o This Kernel call has been de.eted.
k-
&) “wa
1 ~
-

K_set_real id(II) KSOS 9/10/80 R set_real 1d(II)
-
4 - NAME
> K _set_real id
r - MODULA SYNOPSIS
i VAR stat: K err num;
ja
3 « .
! stat := NK get real id;
g -
C SYNOPSIS
2 - int stat;
| * e e
stat = K get real 1d();
~ DESCRIPTION
K set real id sets the process’ effective id to its real id. The effec-
tive 1id 1is set by doing a X set obfect level call, while the real id is
- set by doing a K get process status call.
b.
o -~
3
2 -
-
I+ -
- 13
;.
" - .
i |
|
; |
‘ :

e . e s v

K set_object_level (II) KSos 9/8/80 K_set_object_level (II)

NAME
K_set_object_level

MODULA SYNOPSIS
CONST obiSeid: seid:
CONST level: tii struct;
VAR stat: K err num;

stat := NK set objiect level(obiSeid, level, choice);

C SYNOPSIS
seid ob{Seid;
tii struct level;
int stat:

gtat = K set object level (obiSeid, Slevel):

DESCRIPTION
The K set obfect level primitive Sets the security relevant type indepen-
dent information for an object.

Processes with the privilege to set object level shall be capable of
changing

¢ the user which owns the object

¢ the group which owns the object

¢ the security level (security category and compartments)

¢ the integrity level (integrity category and (presently null) com-
partments.)

K_set_pil(ID) Ksos 9/8/80

NAME
K _set_pil

MODULA SYNOPSIS
CONST new pil: pseudo int levels;

VAR old pil: pseudo int levels;
VAR stat: K err num;

stat := NK set pil(new pil, old pil);

C SYNOPSIS
pseudo int levels new pil;
pseudo init levels old pil;
int stat;

« o o

stat = K set pil (new pil, &old pil);

DESCRIPTION

_h,‘___-i==ﬂIIlIIIIlIlllllllllllllllllllIlIIIIW'F!

K_set_pil (I1)

K gset pil sets the process’ pseudo interupt level to the first argument.
The process’ old pseudo interupt level is returned in the old_pil field.

-
K_set_priv(II) KSosS 9/8/80 K_set_priv(II)

‘o
- NAME

K_set_priv
- MODULA SYNOPSIS

CONST obiSeid: seid;

CONST priv: priv struct;

VAR stat: K err num;

stat := NK set priv(obiSeid, priv);
- C SYNOPSIS

seid obiSeid;

priv struct priv;
- int stat;

gtat = K set priv(obiSeid, priv);

DESCRIPTION
K set priv gsets the privileges of the object specified by the first argu-
ment to the privileges specified by the second argument.

'
LA

K_set_process_status (II) KSOs 9/8/80 K set_process_status(II)

NAME
K_set_process_status

MODULA SYNOPSIS

CONST procSeid: seid;

CONST status: proc stat block:
CONST choice: selector;

VAR stat: K err num;

stat := NK set process status(procSeid, status, choice);

C SYNOPSIS
seid procSeid;
proc stat block status;
selector choice;
int stat;

stat = K set process status (procSeid, &status, choice);

DESCRIPTION ‘
The K _set process gtatus call permits the process to change those type
dependent parameters that are not controlled by other primitives.

The X get process gtatus Kernel <¢usll supplies an advisory scheduling
priority to the Kernel level scheduler. The Kernel may elect to adjust
the advisory priority to guarantee equitable service to all processes.

The notion of real and effective user identification shall be retained at
the Kernel level becduse thegse identifiers determine the access permis-
sions extended to a process. The effective user and group ID’s are part
of the type independent information for the process, because they are
what determine the discretionary access rights. The real user and group
ID’s zre part of this type dependent information and require the
privilege privSetlevel to modify.

The timer toggle and pseudo interrupt level control the pseudo interrupt
mechanism. If the timer toggle is TRUE, a pseudo interrupt shall be gen-
erated every clock tick (machine dependent time wunit). This mechanism
may be used for periodic sampling of user mode program counter values for
the construction of execution profiles. The pseudo interrupt level |{s
analogous to the hardware interrupt level. Pseudo interrupts shall be
transmitted to the process only if the level of the pseudo interrupt is
above the level of the process.

T WA S SR O S S WO TRPUP O V) el ' ioa i B e F— e

7 » e 1
F}: K_setr_segment_status(II) KS0S 9/8/80 K_set_segment_status (II)
2
3 - NAME
1 K set_segment_status
l - MODULA SYNOPSIS
E~ _ CONST segSeid: seid;
' CONST status: geg stat block;
; CONST choice: gelector;
E - VAR stat: K err num;
E stat := NK set gegment status(segSeid, status, choice);
Ff C SYNOPSIS
‘ seid gsegSeid;
- seg stat block status:
choice gelector;
4 int stat:
E‘, stat = K set segment gtatus (segSeid, &status, selector);
]
DESCRIPTION 2
i - K set segment status supports modification of the type dependent informa-
: tion of a segment. The invoking process shall have appropriate privilege
E in order to modify the "sticky" flag or the "lock” flag.

R

e

K_signal (II) KSOS 9/8/80 K_signal (I1)

NAME
K_signal

MODULA SYNOPSIS
CONST procSeid: seid;
CONST sigMsg: msg struct;
VAR stat: K err num;

stat := NK signal(procSeid, sigMsg);

C SYNOPSIS
seid procSeid;
msg struct sigMsg;
int stat;

stat = K signal (procSeid, &sigMsg);

DESCRIPTION

The K signal primitive provides a wmeans for privileged processes to
transmit a high priority pseudo-interrupt to a process. K signal differs
from the K post IPC mechanism in several ways. First, K gignal always
generates a pseudo interrupt. The pseudo-interrupt level of the K signal
pseudo~interrupt is above that of normal IPC. Second, the K signal pseu-
do interrupt will abort long running Kernel culls (i.e. terminal I/0)
which receiving the K post mechanism does not. The intended use of
K gignal is to provide a mechanism for a privileged process to "get
through” to aanother process, typically to ask it to terminate. The cal-
ling process must have the privilege privSignal.

P Bnour: s et se.

K_spawn (II) KS0s 9/10/80 K_spawn(II)

- NAME
K_spawn

MODULA SYNOPSIS
CONST immSeid: seid;
CONST arg: seg des;
VAR ¢hild: seid;
VAR stat: K err num;

stat := NK spawn(immSeid, arg, child):

C SYNOPSIS
gseid immSeid;
seg des arg;
seid child;
int stat;

- o« s

stat = K spawn (immSeid, arg, &child);

DESCRIPTION
The Kernel primitive K spawn combines the functions of XK fork and
K _invoke into one operation. The K sSpawn primitive permits process crea-
tion without the cost of copying the parent process image to the child
- process. The effect of K spawn is to create a new process and to force
the effect of a K invoke call upon the newly created process. The parent

process may therefore completely specify the contents of the child pro-
cess image.

The parameters to K spawn are the same as the parameters to the X invoke

primitive. These parameters are used to determine the effect of the
- K _invoke call forced upon the child process. (See K invoke above for a

discusgion of this primitive.) The full semantics of K invoke are imple-
b mented. Hence, a child process may acquire more privilege than the
parent and may operate in a different discretionary access domain.

SEE ALSO
K_invoke(II)

L)
- K_special_function(II) KSOS 9/8/80 K_special function(II)
- NAME
K_special_function
DESCRIPTION
-

This Kernel call has been deleted.

., (R, 27 A it . TR

L)
K_unlink/II) KSos 9/8/80 K ud.ink(II)
L]
- NAME
K_unlink
|
- MODULA SYNOPSIS :
CONST fSeid: seid; 1
VAR stat: K err num; i
- gtat := NK unlink(£fSeid);
- C SYNOPSIS
' geid fSeid;
int stat;
- gtat = K unlink (fSeid);
_ DESCRIPTION
y - K unlink decrements the file reference count of the specified file. When
] the file reference count is zero and no process has the file open, the
4 file is deleted. When the count is decremented from one to zero, the
file becomes logically nonexistent. If & file is logically nonexistent,

but the file has not been deleted because some process still has it open,
it cannot be opened again, and the file does not exist for Kernel calls
which take file SEIDs as arguments, such as K link(II). When a file is
- created with K create(II) it has a reference count of zero, but does have
logical existence and thus K _link(II) can be used to increment its count.

The Security and integrity checking are as if the file 1is being opened

- for reading and writing, except that no discretionary access checking is
done by the Kernel, allowing processes privileged to use this primitive
to perform whatever checking they choose to.

The use of K unlink requires the privilege privlink. This privilege is
normally restricted to the UNIX directory manager.

PR

e ———

-

K_unmount (II) KS0S 9/10/80 K_unmount (11)

NAME
K_unmount

MODULA SYNOPSIS

CONST nsp: nsp type;
VAR stat: K err num;

stat := NK unmount(nsp);

C SYNOPSIS
nsp type nsp;
int stat;

stat = K unmount (nsp);

DESCRIPTION
The Kernel primitive K unmount logically unmounts the file system speci-
fied by the name space partition nsp. The following checks must be
satisfied before the Kernel will unmount a file system:

¢ the process must have the privilege to issue the call

¢ the device must have file system mounted on it

¢ the extent must be tranquil (no open files)

After normal completion of the Kernel call, the disk has been returned to
the ‘unmounted” condition and can be mounted again in the future without
performing file recovery.

Should a disk device fail and have to be shut down, it is still possible
to perform a K unmount to inform the Kernel that the file system is now
unmounted. Although the K unmount will return an I/0 error exception
(Xerror or Xfault) the Kernel’s internal database will still be purged of
information about the file system. This allows mounting the disk on
another drive and (after file system recovery, if required) remounting
the file system.

SEE ALSO
KSOS Operator / Administrator Reference Manual [reference to be sup-
plied]

K _walk_process_table (II) KSOs 9/10/80 K walk process_table(II)

NAME u
K _walk_process_table

MODULA SYNOPSIS
e -~ CONST index: cardinal;
‘ VAR p seid: seid;
VAR stat: K err num;

stat := NK walk process table(index, p seid);

® P FT MRS TR STV 3 A

.- C SYNOPSIS
cardinal index:
seid p seid;

- int stat;

stat = K walk process table (index, &p seid);

- DESCRIPTION
The K walk process table primitive is a means for privileged software to
obtain the SEIDs of active processes. The primitive returns the SEID of
~ the process which occupies slot index of the global process table. This
3 SEID can then be used in K get object level or K get process status
1 calls. The call fails if the process does not possess the privilege to
E issue it, or if index is not a valid index number for the process table.

- L ST S~

P
e K _write_block(II} Ksos 9/8/80 K write block(II)
[- !
b
: - NAME
2 K _write _block =~ perform write

N MODULA SYNOPSIS

. CONST od: openDescriptor;

s CONST blockNo: fBlockNumber;
» CONST outP: p block:

- . COMST id: asyncld;

] VAR errs: joStatus;

' VAR status: K err num;

status := NK write block(od, blockNo, outP, id, erzs):;

—t e Y Sl XY

C SYNOPSIS
openDescriptor od:
long blockNo;

- pblock outp;
int id;
ioStatus errs;
int status;

status = K write block(od, blockNo, &outp, id, &errs);

DESCRIPTION
K write block is used to request writing to files, terminals, extents,
and devices. The parameter block outP defines the memory area to be used
for output.

Writing to a file will cause file gpace to be allocated as required. A
- write which increases the highest block number of the file sets the byte
size of the file to (high block x 512). The user may later indicate, via
the SETFILESIZE function of K device function(II), that the size of the
file in bytes is up to 511 less. This will not prevent the entire last
block from being read.

Files may contain "holes", (unwritten blocks) but extremely sparse files
* : are inefficient.

ASYNCHRONOUS REQUESTS

- See K device function(II). To make a normal, synchronous, request, id
should be zero.

' SEE ALSO
C - K _device_function(II), K_read block(II)

———

Modula(Kernel_ Interface) KS0§ II Modula (Kernel Interface)

NAME

Modula_Kernel_Interface - Modula Interface to the Kernel Calls

DESCRIPTION

FILES

Modula interface routines for the Kernel calls are available in the file
NKcalls.mod. One interface routine exists per Rernel call. The inter-
face routines are used in conjunction with the types and-low level inter-
face procedures defined in NEWcalls.mod

The general procedure followed in the interface routines is to put the
arguments into one contiguous block of memory. Then through an assembly
language subroutine, a pointer to the block with the arguments is passed
to the appropriate kernel call. Upon completion, the kernel call places
any return values into the argument block and returns an exception. This
exception is then passed upward by the assembly language subroutine. The
interface routine unpacks the return values from the argument block and
returns the exception to the calling Modula program.

To use the Modula Kernel interface routines include the file NKcalls.mod
at the beginning of your Modula program. The file NEWcalls.mod is expli-
c¢itly included in NKcalls.mod.

NKcalls.mod, NEWcalls.mod

e

KSOS (ITII)

NAME

KS0S 10/16/80 KSOS (III)

acp_op ~ operator interface to the audit capture process

SYNOPSIS

acp op flag [file name]

DESCRIPTION

Acp op is an operator interface to the audit capture process. This
interface requires one of the following flags:

-C

-i

~p
~-r

DIRECTORIES

Changes the device to which the audit capture messages are writ-~
ten. If the messages are currently written to a file, the file
will be closed and the messages will be diverted to the comsole.
This function enables the operator to ¢lose all a¢p files and,
for example, unmount the root file system.

Identifies the file in which the acp messages are currently being
placed.

Prints out the acp file given in the file_name field.

Removes the acp file specified in the file name field.

Switches the file in which the acp messages are placed to a new

file. The name of the current file is printed out. The file is 1

then cloged and a new file is opened. The name of the new acp H
file is also printed.

/sys /sysAudit

AT g

= e

L]

KSOS (I11) KSos 1/13/81 KSOS (I11)
-
b NAME

btep -~ boot copy program

SYNOPSIS
btep packseid [-s] (-0 levOboot] (-1 levlboot] {-k kernelimage] ([-u ini~
. tialimage]

- DESCRIPTION

Btcp copies files required to boot a KSOS system to their correct place
on the specified initialized KSOS pack. Btep is spawned by the secure

e server at the request of a user running at OPERATOR or higher security
level.
3 copy the system security map to extent 4 of the pack.
0 copy the specified level 0 boot program to extent 1 of the pack.
- 1 copy the specified level 1 boot program to extent 2 of the pack.
k copy the specified kernel image to its proper place on the pack -

extent 5 beginning at block 0.
- u copy the specified initial process image to its proper place on
the pack - extent 5 beginning at block 314.

FILES
1 /sys/dataBases/security system Security map.

SEE ALSO
-~ exi, pki

L]
CAL(III) KSO0S 10/7/80 CAL(III)
-
- NAME
cal -~ change access level
— SYNOPSIS
cal [pathname]
DESCRIPTION
e

Change access level, cal, allows a user to ¢reate an environment at a new

security level, or to return to a previously interrupted environment. If
- the "pathname" argument is given, the level of the environment will be
that of the file specified by "pathname": otherwise cal will prompt for a
new access level. If an environment already exists at the requested
level, cal will revert to that environment; otherwise a new environment
will be created.

Like login, cal should create the new environment by spawning the
- user/supervisor domain programs given for the user’s login id in the
user access authéntication database. However, as an interim measure, cal
will prompt for the pathname of the supervisor domain program to be
spawned. This program will normally be a UNIX emulator.

Each ugser environment corresponds to a different terminal path. There are
a fixed number (currently 3) of paths on which user environments can be

bd created. One of these is used by login for the user’s initial eanviron~
ment; the remainder are available for allocation by cal.

A FILES
/sys/dataBases/user user access authentication database
/8ys/dataBases /group group access authentication database
/sys/dataBases/terminal terminal profile database

N -~ /8ys /dataBases/system system profile database

SEE ALSO
- SSP(III), login(III), user(IV), group(IV), terminal(IV), system(IV)
, DIAGNOSTICS
S "object not found" "pathname" does not exist

"no free paths"
"you can not change to that level”

g

DPE(III) KSos 10/7/80 DPE(III)

NAME
dpe - device profile database editor

SYNOPSIS
dpe

DESCRIPTION

Dpe interactively edits the device profile database and is invoked from
the secure server. The editor commands include add, change, delete, find,
next, print, view, and quit. A description of command action follows.

The character preceding the closing parenthesis, “)°, is the command
code. Any unrecognized character causes printing of the command list.

a)dd prompts the user for all information and appends the new record to
the end of the database. The following questions are asked:

Enter name (max 8 char):

Enter desired device name space:

Enter desired device type (high byte):

Enter desired device unit number (low word):

Enter user name of owner (max 8 char):

Enter login name of group (max 8 char):

Does this device allow Valid required ? (y or n) :

Can user assign with assign function ? (y or n) :

Enter desired discretionary access for owner:

Enter desired discretionary access for group:

Enter desired discretionary access for all:

ENTER ACCESS LEVEL DEFAULT

SECURITY CATEGORY

Enter desired SECURITY category:

INTEGRITY CATEGORY

Enter desired INTEGRITY category:

Enter numbers of desired suceurity compartments

separated by spaces (carriage return for NULL):

&)hange changes a specific field in the current record. Change accepts
the following commands:
ex)it
v)iew
n)ame
s)eid
g)roup id
d)iscret access
a)ccess level
r)valrequr
l)assignment allowed

d)elete the current record by asking "Do you want to delete [current
record name] (y or n) :"

plrint the current database records, including modifications, to the
lineprinter.

DPE(III) KS0s 10/7/80 DPE(III)

Vv)iew outputs the current record to the terminal

f)ind searches the database for the specified name and sets the curreat
pointer to the record. The user is prompted for the name; dpe responds
"Record is not found"”, if the name not in the database.

F e M

h)ext moves the current pointer is to the next record. If the pointer is
- currently pointing to the last record, it is moved to the first record.
r"

] q)uit ends execution of the editor. If modifications were made, the
- question "Do you want to save the updates?”" is asked and a y or n is
expected in response.

FILES
/8ys /dataBages /device device profile database

/8ys /dataBases/security system security map

SEE ALSO
SME(III), UCE(III), GAA(IV), device(IV), security(IV), user(1V),

group (IV)

B3 el ke

£l o

ERRORS
can’t open device database
can’t create tempfile
can’t open usar database
can’t open group database
can’t open security_map

B B 2 alY Al

- :
:’f“ RSOS(IIX) KSOS 12/01/80 KSOS (TII)
by NAME
. exi - initialize pack extents
. - SYNOPSIS
L exi deviceSEID [-rv]
|
DESCRIPTION
¥ >~ Exi is a pack initialization tool which enables the administrative user
* to interactively view, define and modify KSOS pack extent map slots. It
is a very powerful tool and should be used carefully. Exi is spawned by
* — the secure server at the request of a user running at OPERATOR or higher
i' security level. It is commonly used to initialize KSOS file systems.
The argument deviceSeid specifies the pack which is to be operated on
(e.g. d1/0). The -r option indicates a read only mode of operation in
3 - vhich extent map slots may be viewed but not modified. The ~v option
causes exi to interact with the user in a verbose manner.
3
' - Commands which operate on a particular extent map slot may be optionally
: preceded by the extent number. Specifying extent number 0 allows modifi-
3 cation of the pack master mount item. If no extent number is supplied
) - the current extent is assumed. Recognized commands include:
3 [nlv View the specified extent map slot. A formatted dump is pro-
X duced.
\. hadd
F [n]f Free L“e extent.
- 1 List extents. The extent label, first block number, last block
number and extent size for each extent on the pack are displayed.
[nla Add extent. The user is prompted for all the information neces-
a4 sary to create a new extent. If desired, exi will prompt the
user for information needed to initialize the extent as a KSOS
file system.
- e Exit exi.
3 (nlm Modify extent map slot. This command places the user in modifi-~
K had cation mode. Both the pack master mount item and extent items
may be modified. After receiving the prompt, the user types the
control character corresponding to the slot field to be modified
- and exi responds by asking for specific data. To return to nor-
, mal mode, type an empty line (<CR> only). Control characters for
T each type of slot are listed below.
ti - extent item:

v view extent item.

-

a modify access rights, security and integrity.
— 1 modify label field. ’
8 modify subtype field.

[

SEE

BUGS

<1 KSOs (I1I) KSOS 12/01/80 KSO0S (I11)

mount item:

v view mount item slot.

a modify access, security and integrity information.
1 modify label field.

pki, mce

Currently EXI opens the whole pack unexclusively. It opens the whole
pack because EXI contains the functionality to initialize file systems.
It does not open the pack for exclusive use because, at least initially,
EXI must be able to modify extents residing on a pack with a mounted file
gystem. EXI should be split into two progtams - one for extent modifica-
tion which exclusively accesses the extent map extent, and a separate
program for file system initialization.

-
KSOS (II1) KSOS 12/23/80 KSO0S (I11)
o
- NAME
fam - file access modifier
- SYNOPSIS
fam [-v]) [[key argument) ...] filename
DESCRIPTION
-~ Fam allows file access modifications of files owned by the user. The

argument -v puts fam into an interactive mode where the user will be

- prompted for commands, if no other arguments other than the filename are
- - given interactive mode is assumed, also the -v flag must always appear
before any key arguments. Key flags must always be followed by an

appropriate argument. i
The following are descriptions of the keys and their arguments.

-d modify the discretionary access. The argument following this
- flag must be an octal number.

-£ ¢hange the group id of the file. The argument following this
flag must be a legal group name.

-0 change the owner of the file. The argument following this flag
must be a legal user name.

-8 change the security level of the file. The argument following
the flag must be a legal security level name.

-i chang: the integrity level of the file. The argument following
the flag must be a legal integrity level name.

- -¢ delete a compartment from the compartment set. The argument fol-
lowing the flag must be a legal compartment name. mce.

+c add a compartment to the compartment set. The argument following
the flag must be a legal compartment name.

L P SO S

* Fam will never allow the user to modify files he does not own or

- can not access. Also the integrity level of a file can never be
raised above that cf the user. It should be noted that when a
user request that a file be given a lower security level (by

- either changing the security category to a lower one, or deleting

- a compartment) the entire file will be displayed before the

;1 change is allowed.

b BUGS

Fam does not check to see if the filesystem maximum level is
lower than a security request being made.

ey

i e

KSO0S (I11) KSOs 1/13/81 KSO0S (I1I1)

NAME
fsd - incremental file system dump

SYNOPSIS

fsd filesystem [-Ove¢] {~e extentseid] ({-b blocks] [-d days] [~f device]
{-h hours]

DESCRIPTION
Fsd makes an incremental dump of all files on the specified KSOS file
system which were changed after a certain date. Fsd is spawned by the
Secure server at the request of a user running at OPERATOR or higher
integrity level. The save medium may be either tape or an existing KSOS
extent. Fsd opens the file system for exclusive use, thus the file sys-
tem must be unmounted.

b The next argument is the maximum size of the save tape (or
extent) in blocks.

[If the dump tape overflows, increment the minor device number and
continue. Normally, you are asked to change tapes.

e Dump to the specified defined extent instead of to tape.

d The next argument specifies the dump date as some number of days
prior to the current date.

f Use the next argument as the save device instead of the default
(device_nsp, 11, 0).

v Print out the information in the dump header.

h The next argument specifies the dump date as some number of hours
prior to the current date.

0 Dump from the beginning of time.

DIAGNOSTICS

Generally errors are fatal. Files found in an unSAFE c¢ondition are not
dumped, but the jnode is dumped and the high block field is set to 0. A
message to this effect is printed for each bad file encountered.

FILES
/sys/dataBases/security system security map
SEE ALSO
fsr(l),dump(1IV)
BUGS

The d and h options are not implemented - all dumps are from the beginning of
time. When dumping to an extent, f8d ecould recover from most errors. Unfor=
tunately, fsd’s approach is to exit if anything is wrong.

KS0S (I11) KS0S 1/13/81 KSOS (III)

NAME
fsr - incremental file system restore

SYNOPSIS
fsr filesystem [-citr] [~e extentseid] [-f device]

DESCRIPTION
Fsr is used to restore files dumped using the fsd command. It is spawned
by the secure server at the request of a user running at OPERATOR or
higher level. The dump tape (or extent) is read and files are copied to
the file system specified. The jnode number of a restored file will be
equal to its number before it was dumped. The latest incremental dump
must be restored first onto a clear file system. At this time, jnodes
are created for all files on the filesystem and they are restore locked
to prevent their use for other purposes (such as indirect slots). As
previous dumps are restored, only files with a jnode in the restore
locked state are actually copied from the dump medium. Thus, to restore
a file system, the incremental dumps must be restored in reverse order of
that in which they were made. Optional arguments include:

¢ If the tape overflows, increment the minor device number aand con-~
tinue on the new drive.

e Restore from the specified extent and not from tape.

r Reconstruct the system space of the file system. The first

restore to a ¢lear extent must be done with this option. This
should not be done lightly since any existing information on the
extent will be lost.

f Read the dump from the tape drive specified by the next argument
instead of from the default drive d11/0.
t Print the numbers of all jnodes restored.
SEE ALSO
fsd(1),dump (1IV)
DIAGNOSTICS

If the security map on the dump tape and the system to which it is being
regstored do not agree fsr sends an audit capture message and aborts.

BUGS
The ¢ option is not yet implemented.
No audit capture messages are sent, ever.

L N

naad Lol oo o

0 4
. GAA (V) KSOS 10/7/80 GAA (V) |
A
: had NAME
1 gaa - group access authentication database editor
T - SYNOPSIS
gaa
: DESCRIPTION
A ”
Gaa interactively edits the group access authentication database and is
e invoked from the Secure server. The editor commands include add, change,
- delete, find, next, print, view, and quit. A description of command
action follows. The character preceding the closing parenthesis, “)°, is
the command code. Any unrecognized character causes printing of the com~
mand list.
R

a)dd prompts the user for all information and appends the new record to
the end of the database. The following questions are asked:

- Enter name (max 8 char):

Enter password (max 10 char):

Enter password again to verify :

Enter group identification number:

Enter user name of administrator (max 8 char):

5 ENTER MAXIMUM ACCESS LEVEL

; SECURITY CATEGORY

B as Enter desired SECURITY category:

INTEGRITY CATEGORY

Enter desired INTEGRITY category:

Enter numbers of desired security compartments

separated by spaces (ecarriage return for NULL):

¢)hange changes a specific field in the current record. Change accepts

2 - the following commands:

ex)it

v)iew

— p)assword

g)roup id
y a)dmin
g m)ax access level

d)elete the current record by asking "Do you want to delete [current
record name] (y or n) :"

) pl)rint the current database records, ine¢luding modifications, to the
- lineprinter.

(N e

'y . v)iew outputs the current record to the terminal

£)ind searches the database for the specified name and sets _he current
- pointer to the record. The user is prompted for the name; gaa responds
; "Record is not found", if the name not in the database.

GAA (V) KS0S 10/7/80 GAA (V)

; i
n)ext moves the current pointer is to the next record. If the pointer is ,
currently pointing to the last record, it is moved to the first record. - ;

|

> q)uit ends execution of the editor. If modifications were made, the i

A question "Do you want to save the updates?” is asked and a y or n is - ;

‘ expected in response.

l FILES

1 /sys/dataBases /user user access authentication database -

4 /sys/dataBases/group group access authentication database

; /sys/dataBases/security system security map

SEE ALSO h

4 UCE(IIL), SME(III)

ZRRORS h

can’t open gaadb

can’t create tempfile

can’t open uaa -
can’t open security_map

[


~~~~~ ——— T |

LOGIN(III) KS0s 10/7/80 TOGIN(IIX)
NAME
login - sign onto KSOS
A - DESCRIPTION
: The login command is used when a user initially signs onto KSOS. Wnen
& - the user hits the attention key at a terminal which is not logged in, the
{ gsecure server (SSP) invokes login at that terminal.
P

Login prompts for a user name and password. Echoing is turned off (if
- possible) during the typing of the password, so it will not appear on the
written record of the session.

"

After a successful login, the user and supervisor domain programs speci-
! fied in the user access authentication database (user) should be entered.
- This will normally be the UNIX emulator. However, as an interim measure,
login will prompt for the pathname of an emulator.

The user’s security level will normally be the default level specified in
3 the user access authentication database for the given login name. If
this level is higher than the maximum level of the terminal or the

3 -
] current maximum level of the system, the user’s level will be lowered
; accordingly and a diagnostic message will be issued.
] ~- FILES
1 /sys/dataBases /user user access authentication database
/sys/dataBases/group group access authentication database
: — /sys/dataBases/terminal terminal profile database
3 /sys /dataBases/system system profile database
SEE ALSO
- SIP(III), SSP(IIIl), user(IV), group(IV), terminal(IV), system{IV)
- DIAGNOSTICS
- "Login denied,” if user does not exist or wrong password is given.
"Your maximum level is too low to login."
- ]
-
1
i
. —




;-_; LOGOUT (I1I) KSOS 9/11/80 LOGOUT (I11)
;i

i

£

j b NAME

. logout - sign off from KSOS

i - DESCRIPTION

i

i

- The logout command is used to sign off from KSOS. If the user has any
N active processes, these are immediately killed.

r SEE ALSO

{ SSP(IXII), login(III)

N -

\

b

F

i —




AD~A111 577 FORD AZROSPACE AND COMMUNICATIONS CORP PALO ALTO CA W=-ETC F/8 9/2
g ucuu UNIX OPERATING SYSTEM USERS MANUALS, (xs::g}rx’m u-:rcw)
MOA -c-o

UNCLASSIFIED

2 ”z ...........

Fixeo




i £ i
e e
=

N

[y m

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU (0 STANUARDS 190 &

. A




-
- KSOS (I1I) KSOS 1/13/81 KSOS (III)
e -
}; - NAME
F mce - modify KSOS file system control entries
- SYNOPSIS
mce deviceseid extent [-rvp]
L DESCKIPTION

Mce is a file system maintenance tool which can be used to interactively
view and modify KRSOS file system control slots. The argument deviceseid
specifies the device on which the file system resides (e.g. d1/0).

- Extent is a decimal integer specifying the extent on which the file sys-
tem resides. By default mce is rather verbose and leads the user by the
hand; the -v option instruets mce to interact with the user in an even
more verboge mode. The -p option instructs mce to print out the direct

~ and indirect pointer table values when viewing a jnode. The ~-r option
indicates read only operation where slots may be viewed but not modified.
This option allows the user to view a mounted file system. Only an

hd unmounted file system may be modified.

Commands which operate on a particular slot may be optionally preceded by

- the slot number. 1If no slot number is supplied the current slot is

assumed. Mce considers all numbers to be decimal, except where expli-
citly stated otherwise. Recognized commands include:

et + Increment current slot by one.

- Decrement current slot by one.

- [n]v View slot. A formatted dump cf the contents of the specified
slot is produced. Slots of type jnode, indirect, reserved, free,
mount item, extent item, and allocation item are recognized.

(n]i(m] Set curreat slot to the slot number pointed to by indirect
A pointer number m of the jnode or indirect slot number n.
[n]lf Free the slot. Returns slot to free space.
e Exit mce.
* [nlm Modify slot. This command places the user in modification mode.
’ At this time jnodes, indirects and mount items may be modified.
- -~ A special prompt (*) indicates modification mode. After receiv-
;“ ing the prompt, the user types the control character correspond-
. ing to the slot field to be modified and mce responds by asking
. - for specific data. To return to normal mode, type an empty line
1 (<CR> only). Modifications are buffered until leaving modifica=-
& tion mode, at which time the user may elect to save the changes
i or throw them away. Control characters for each type of slot are
f - listed below.
jnode:
! - v  view jnode.
v
1
i
v -1 -




KSOS (III) KSO0S 1/13/81 KSOS (I11)

modify access rights, security and integrity.
modify condition field.

modify link count field.

modify high block field.

modify privileges. had
modify tail count field.
modify self field.

modify indirect pointer table.
modify direct pointer table.

AHO MY Do

indirect slot:

view indirect slot. w~
modify home jnode field.

modify parent field.

modify treeN field. -
modify indirect pointer table. :
modify direct pointer table.

Ap o o4

mount item: -
v view mount item.

a modify access, security and integrity information.
m modify mounted field.

PRIVILEGES
privMount (* temporary ¥*) ;
privViolStarSecurity e '
privViolStarIntegrity
privViolDiscrAccess
WARNINGS
Mce is a powerful tool. Because of its power, it is alsoc a very
dangerous tool. A malicious user, or even a well-intentiomned user who -
mistypes a character could potentially iuvalidate an entire file system
Or wWorse.
BUGS -
MCE sends no audit capture messages.
g/
!
; -
i
!

= NRRPUT I TIY. UV I URURR -




KSOS(II1) KS0S 10/16/80 KSOS (I11)

NAME

mnt - mounts a file system

SINOPSIS

mt (filesystem name drive_no mount_on_entry)] [-r]

DESCRIPTION

Mnt logically mounts the given file system on the mount_on_entry. To be
able to mount a particular file system, that file system must be listed
in the immigration data base.

The first argument, filesystem name, contains the name of the file system
to be mounted: The drive_no argument gives the drive where the filesys-
tem is located. The mount on_entry argument is the complete pathname to
the entry on which the file system is to be mounted. This entry must
already exist. The -r flag, if present, indicates that the file system
is to be mounted read only. Finally, if no arguments are given, a list
of the currently mounted file systems is given.

The user must be at OPERATOR level or above to actually mount a file sys-
tem.

FILES

SEE

/sys/dataBases/mountTable
/sys/dataBases/immigration

umt (I1I)




R SRR Dy

e i

P

NKcopy (I11) KSOS 12/2/80 NKeopy (I11)

NAME

NKcopy - copy program

SYNOPSIS

nkcopy

DESCRIPTION

BUGS

SEE

NKcopy copies information from a given input seid to a given output seid.
It is used primarily to copy from tape to a file; however it can be used
to copy between any two objects. This program is provided for develop-
ment purposes only.

NKcopy excepts a single or multi-file tape. Each file should be written
to tape in 512 byte blocks terminated by a tape mark (end of file).
Under UNIX the fiies can just be cat’ed or cp’ed to tape. Once the tape
is made it should be mounted on a TUl6 tape drive.

NRcopy can be invoked by the secure server to copy the files on the tape
to the desired files. When invoked NKcopy prompts for input and output
seids and block lengths. Seids should be given in the following format.

name space/ unique id 0/ uniq id 1

Well known namespaces:
r - root name space.
d - device name space. The seid of the TU16
drive is d/11/unit number (0, 1)
n - null name space.

If a null output seid is given then a file is created and the seid of the
newly created file is printed.

NKcopy also has the ability to mount another file system and copy the
file to that file system.

NKcopy does not use the directory manager. Presently it is necessary to
create a file with the directory manager test frame (udm _tf), then
remembering the seid, copy the input file to the newly created file file.

UDM_TF - UDM Test Frame

-1 =




208 " | T ' '“"""""""""'""""""""""!!’l

-
1; PBB(III) KS0S 10/7/80 PBB(III)
!
: - NAME
S PBB - Process Bootstrapper
3 - DESCRIPTION
The Progcess Bootstrapper may only be used by a progess executing in
! supervisor space. It is an intermediary that is brought into execution
via the K_invoke and K_spawn Kernel calls. The function of the PBB is to
- replace the segments of its process with segments filled from the image
files specified in the argument segment passed to the Bootstrapper.
After this replacement has been accomplished, the PBB sets the
- privileges, sets the effective user and group id’s, and transfers control
5 to the supervisor domain at a well-defined location.
The steps performed when an invoke or spawn is executed, using PBB as the ;
he intermediary, are given below. ;
3 a. The calling process (via the spawn/invoke interfaces used by the :
- NKSR) will construet the argument segment for the process ) :
bootstrapper. The argument bloek is built in location 0, user !
domain, d-space.
= b. It will then map the argument segment out of its’ address space.
Ce. K_invoke or K _spawn will be called. ( K_invoke will release all
- of the calling segments except the argument segment. K_spawn
will only instantiate the argument segmeat. ) '
- d. K_invoke/K_spawn will then rendezvous with a copy of the
intermediary segment and put it at supervisor domain, i-space,
address 0. The current pc/ps will be set to address 0 in the
. supervisor domain. This set up is required for the process
-~ bootstrapper to run non-separate I1&D.
) e. The process bootstrapper will map the argument segment into its
- supervisor i-space, thus maintaining non-separate I&D.
£. The process bootstrapper will then build the invoked supervisor
domain image in the user domain and then map it out, and use
- K_set_segment_status to make the vitual address be supervisor
domain instead of user domain.
1 i .. g The process bootstrapper will then build the invoked user domair
. image in the user domain.
-
; h. The process bootstrapper will release the argument segment.
‘ -
b i. The process bootstrapper will then issue a K_boot call with the
t segment descriptor of the intermediary segment. The K _boot Ker-
- nel call will release the intermediary segment and then map in

the supervisor domain segments to where they belong. The pec/ps
w will be set to address 0 in the supervisor domain.

0y

1

N PN PR b ~
_




. N o - - e " . - ; r——-ﬁ

PBB(1III) Ksos 10/7/80 PBB(III)
The invoked process image now exists and is executing.

The initial process builds two bootstrapper segments: a user process

bootstrapper and a secure server bootstrapper segment. -
" The user process boostrapper segment is available to all users. The new

process runs at the same level as the parent process, and is given the

privileges of its’ a.out file. -

The secure server process bootstrapper segment is only used by the NKSR

and exists at system high level. It takes a tii structure as part of the -

argument block. The child process runs with a tii equal to that which

was passed in the argument block.

Once the process bootstrapper Segments are built, the secure initiator
process (SIP) makes directory entries "/sys/sysbin/userPBB" and
"/sys/sysbin/serverPBB".

— e




PBB(III)

KSOs 10/7/80

PBB(III)

The user process bootstrapper argument segment has the following format:

1600148
+ aupv_size

args_addr =
1600148

1600128

1600108

1600048

1600008

I
I
I
|
|
|
!
!
!
!
I
|
I
[
I
[
!
!
!
I
I
|
I
I
|
I
I

User Domain

Arguments

Supervisor Domain

Arguments

Ugser arguments size

Supervisor arguments size

User Domain f_seid

Supervisor Domain f_seid

= grgseg addr

e e e S SAn —— T — — T —— . — — o —— ——— Tnm e — e, ——

user_size

supv_size

uger_seid

supv_seid




PBB (I11) KSOS 10/7/80

The secure server process bootstrapper argument segment has the following

format:

User Domain

Arguments

160014B
+ supv_size

Supervisor Domain

I [

| |

] I

| ]

| I

| I

| I

! !

I I

I |

| |

] Arguments ]

| !
args_addr = | |
1600348 | I
] TII ]
160014B | I
| User arguments size ]

1600128 | I
| Supervisor arguments size |

1600108 | |
I |

| User Domain f_seid |

| |
1600048 | |
| |

| Supervisor Domain f_seid |

| I
1600008 | |

= argseg addr

SEE ALSO
SIP(III)

|
1

tii
user_ size

supv_size

user_seid

supv_seid

N

PBB(III)




KSOS (I11) KSOS 12/1/80 KSOS (III)

NAME
pki - pack initialization program

SYNOPSIS
pki packseid [-a)

DESCRIPTION
Pki initializes the pack reserved extents on an uninitialized pack. Pki
ig gpawned by the secure server at the request of a user running at
OPERATOR or higher security level. The pack master slot is initialized
and the pack is given the proper access level. The pack reserved extents
(extents l-4) are created and given the system subtype and an access

' level of SYSTEMTII. The -a option indicates that the user should be

y - prompted for the pack’s access level. The default level is: syshi secu-

rity, syslow integrity, all compartments, NKSR owner and group, and a

discretionary access of rwx—---.

SEE ALSO
exi(I), btecp(l)

t

M L VU

B S W

— e

DOPNLANGTE T S ORI I




v el
P .

——

- e e

KSOS (1I1) KSOS 10/2/80 KSO0S (I11)

TRTRvo

NAME
rkget - Get files from RKOS5 pack.

SYNOPSIS
tkget

DESCRIPTION
Rkget copies files from a specially formatted rk05 pack to the specified
KSOS filenames. The user is prompted for an rk file number and a KSOS
destination file name. If the KSOS destination file already exists it is
written over; otherwise a new file is created. Rkget is normally used to i
retrieve files written to the rk pack using the UNIX cprk program. |




. U s g e e
—— . JU P ST - -if‘

‘ wheag
g KSOS(I1I) KSOS 11/10/80 KSO0S (II1)
- NAME
setvv - set volume valid
- — SYNOPSIS
: setvv deviceseid
DESCRIPTION
- Setvv is a utility used to set the volume-valid condition on the device
specified by deviceseid (e.g. setvv d4/0). This marks a removable medium
as usable. The volume valid operation is accomplished using the
-~ K_device_function kernel call. Setvv is spawned by the secure server at
the request of a user running at operator or higher security level.
: PRIVILEGES
! - privimmigrate
!
§
l -
]: -
.
1 -
i




L
SME(III) KSOS 12/1/80 SME(IIL)
~ NAME
gaa - security map editor
- SYNOPSIS
sme
- DESCRIPTION
e Sme interactively edits the security map database and is invoked from the
| secure server. The editor commands include add, change, delete, level,
* - print, view, and quit. A description of command action follows. The

character preceding the closing parenthesis, “)’, is the command code.
Any unrecognized character causes printing of the command list.

a)dd prompts the user for all information and appends the new record to
the end of the database. The following questions are asked:
Enter entry number where addition is to be placed:
- Enter short name (max 12 char):
Enter long name (max 50 char):
Is this entry to be active (yes or no):

c)hange asks for the enctry number to be changed. Change accepts the fol-
lowing commands:
ex)it
- v)iew
s)hort name
l)ong name
a)ctive

d)elete asks for the entry number to be deleted.

- p)rint the current database regords, including modifications, to the
lineprinter.

v)iew outputs the current level records to the terminal

q)uit ends execution of the editor. If modifications were made, the
question "Do you want to save the updates?” is asked and a "y" or "n" is
expected in response.

FILES
— /sys/dataBases/security system security map

SEE ALSO
A - Security(IV)

ERRORS
can’t open security map database




Rl Rl i, bt i

Lafbdie koo

SPE(III) KSOS 12/1/80 SPE(III)

NAME
spe - system profile editor

SYNOPSIS
spe

DESCRIPTION

Spe interactively edits the system profile database and is invoked from
the secure server. The editor commands include quit, view, print, and
change of various fields. A description of command action follows. The
character preceding the closing parenthesis, ‘), is the command code.
Any unrecognized character causes printing of the command list.

q)uit ends execution of the editor. If modifications were made, the
question "Do you want to save the updates?" is asked and a "y" or "n" is
expected in response.

v)iew outputs the record to the terminal

p)rint has not been implemented.

Change accepts the following commands:
8)ys name
i)nst name
8ys n)um
ve(r)sion num
gen d)ate
m)ax acc lev
S)urr max ace lev
min l)ogin ace lev

The three access level fields have the following dialog with the user:

SECURITY CATEGORY

Enter desired SECURITY category:

INTEGRITY CATEGORY

Enter desired INTEGRITY category:

Enter numbers of desired security compartments
gseparated by spaces (carriage return for NULL):
ENTER MAXIMUM ACCESS LEVEL

SECURITY CATEGORY

Enter desired SECURITY category:

INTEGRITY CATEGORY

Enter desired INTEGRITY gategory:

Enter numbers of desired security compartments
sepurated by spaces (carriage return for NULL):

FILES
/sys/dataBuses/system system profile database
/8ys /dataBases/security system security map




SPE(III) KSos 12/1/80

SEE ALSO
SME(IIL), system(IV), security(IV)

ERRORS
can’t open sysdb
can’t create tempfile
can’t open Security_map

SPE(III)




L]
SSP(ILI) KSOS 9/11/80 SSP(III)
!‘ L]
: - NAME
. SSP =~ secure Server process
- DESCRIPTION

‘ The secure server is essentially a rudimentary command interpreter which

! allows a user to execute programs (''services"). One secure server is

! spawned for each configured terminal on the system. When the secure

{ attention key is struck, the secure Server responds by either invoking
login or by prompting for a command if someone is already logged in. The

i — gerver prompt is "> ". The environment active when the secure attention

! key is struck is suspended. Typing a carriage return in response to the

] server prompt will resume the interrupted environment.

j Server commands are just a gsingle line of input, the first word specify-
ing the particular service to be performed. The remainder of the line is

passed, uninterpreted by the server, as an\argument to the requested ser-

; -~ vice. The server provides limited editing capabilities on terminal

input: backspacing will erase single characters, and an “@° will erase

' the whole line.

Some commands such as change access level ( cal ) and logout are inter-
preted directly by the server. The remainder are the file names of rro-
gramg which are in the server’s program directories.

' The server only permits one service to be executing at any one time, and
an attempt to execute more than one concurrently will produce a diagnos-
‘ -— tic message. An interim feature of the server is the kill command, which
perenptorily kills any service the user is currently executing.
; FILES
‘ - /sys/dataBases /user user accesg authentication database
/8ys /dataBases /group group access authentication database
/sys/dataBases /terminal terminal profile database
- /sys/dataBases/system system profile database
/sys/server/admin a server program directory
/8ys /server/operator a gerver program directory
D /sys /server /user a server program directory
SEE ALSO
SIP(II1), login(III), cal(III), logout(III), user(IV), group(IV),
- terminal(IV), system(IV)
DIAGNOSTICS

K "service still executing"




STC(11I1) KSos 12/1/80 STC(III)

;
»
; e NAME
stc - storage consistency check
'5'. i - SYNOPSIS
E ste deviceseid extent
: DESCRIPTION
?_’ - Stc examines the KSOS file system residing on the specified extent and
A reports any inconsistencies.
£
it - Diagnostic messages report on the following inconsistencies:
§ - Blocks claimed by more than one jnode or the free list.
E ~ Blocks or slots outside the range of the file system.
i - - Lost blocks and slots.

- Bad file condition.

- Incorrect file size.
3
; - Upon completion stg outputs the following summary information:

Total files on the system.
Total blocks on the system.
_ # blocks allocated.
# of free blocks.
# of lost blocks.
# of duplicated blocks.
- Total slots defined.
# slots allocated.
# free slots.
- # lost slots.
# duplicate slots.

AR - SEE ALSO
: mce
- BUGS

No scratch file is used, so the size of s system which can be checked is
limited.
No audit capture messages are ever sent.




TPE(III) KSOS 12/1/80 TPE(III)
- NAME
tpe -~ terminal profile database editor
, - SYNOPSIS :
' tpe
DESCRIPTION

Tpe interactively edits the group access authentication database and is
invoked from the secure server. The editor commands include add, change,
2 - delete, find, next, print, view, and quit. A description of command
b action follows. The character preceding the closing parenthesis, 7)’, is
the command code. Any unrecognized character causes printing of the com-
mand list.

8)dd prompts the user for all information and appends the new record to
the end of the database. The following questions are asked:
~ Enter tty id:
Is the terminal configured ? (y or n) :
Is the terminal to be treated as a console ? (y or n) :
Enter default transmission baud rate:
Enter default receiveing baud rate:
Enter default parity (even, odd, or none) :
Enter clear screen sequence (max 8 chars) :
-~ ENTER MAXIMUM ACCESS LEVEL
SECURITY CATEGORY
Enter desired SECURITY category: :
INTEGRITY CATEGORY
Enter desired INTEGRITY category:
Enter numbers of desired security compartments
separated by spaces (carriage return for NULL):

S)hange changes a specific field in the current record. Change accepts

the following commands:
- ex)it
v)iew
i)d
f)configured
c)onsole
t)ransmit rate
r)eceive rate

- plarity

- s)creen clear
m)ax access level

2 d)elete the current record by asking "Do you want to delete [current
b ! record name] (y or n) :"

- p)rint the current database records, including modifications, to the
; lineprinter.




TPE(III) KSOS 12/1/80 TPE(III)

v)iew outputs the current record to the terminal J

f)ind searches the database for the specified id and sets the current
pointer to the record. The user is prompted for the id; tpe responds
"Record is not found”, if the id is not in the database.

n)ext moves the current pointer is to the next record. If the pointer is
currently pointing to the last record, it is moved to the first record.

qluit ends execution of the editor. If modifications were made, the
question "Do you want to save the updates?" is asked and a y or n is
expected in response. -

FILES
/sys/dataBases /terminal terminal profile database
/sys/dataBases /security system security map

SEE ALSO
SME(III), terminal(IV), security(IV) -

ERRORS
can’t open tpdb
can’t create tempfile
can’t open security_map

PR LR 1)




PN

UCE(V) KSOS 12/1/80 UCE (V)
- NAME
‘ uce - user access authentication database editor
- SYNOPSIS
uce
DESCRIPTION

Uce interactively edits the user access authentication database and is
invoked from the secure server. The editor commands include add, change,

- delete, find, next, print, view, and quit. A description of command
action follows. The character preceding the closing parenthesis, °)’, is
the command code. Any unrecognized character causes printing of the com-
mand list.

a)dd prompts the user for all information and appends the new record to
the end of the database. The following questions are asked:

- Enter name (max 8 char):

Enter password (max 10 char):

Enter password again to verify @
- Can this owner login ? (y or mn) :

Enter owners id number

Enter owners group name @

ENTER ACCESS LEVEL FOR LOGIN
- SECURITY CATEGORY
Enter desired SECURITY category:
INTEGRITY CATEGORY
Enter desired INTEGRITY category:
Enter numbers of desired security compartments
separated by spaces (carriage return for NULL):
ENTER MAXIMOM ACCESS LEVEL
- SECURITY CATEGORY

Enter desired SECURITY category:

INTEGRITY CATEGORY
- Enter desired INTEGRITY category:
Enter numbers of desired security compartments
separated by spaces (carriage return for NULL):
Enter directory pathname (max 63 char) :
Enter shell pathname (max 63 char) :
Enter emulator pathname (max 63 ¢har) :

- e)hange changes a specific field in the current record. Change accepts
- the following commands:
ex)it
v)iew
p)assword
1)ogin ok

| o)wner id

; - g)roup name
) m)ax access level
4 eurr a)ccess level
d)ir path




, - i
, UCE(V) KSOS 12/1/80 UCE(V)
- - |l
! s)hell path }
; e)mul path - j
!
e d)elete the current record by asking "Do you want to delete [current |
record name] (y or n) :" - j
p)rint the current database records, including modifications, to the
lineprinter.
b
v)iew outputs the current record to the terminal
£)ind searches the database for the specified name and sets the current -
pointer to the record. Receives search string from "Enter name :". '
Responds "Record not found"”, if name not in database.
3 n)ext moves the current pointer to the next record. Pointer moved to the b ]
E - first record if currently pointing to the last record.
{
9)uit ends execution of the editor. If modificaticns were made, the -
question "Do you want to save the updates?" is asked and a y or n is
expected in response.
FILES -
/sys/dataBases/user user access authentication database
/sys/dataBases/group group access authentication database
/sys/dataBases/security system seeurity map -
SEE ALSO
GAA(III), SME(IIX), user(IV) -
ERRORS
can’t open uaadb
. can’t create tempfile -
can’t open gaa :
can’t Open security_map ’
-l
i
1 -
4
|
": i
|
-
[ !
4
-t




) -
i
— UDM(III) KSOS 10/7/80 UDM(III)

?,

.

-

: NAME

. UDM -~ UNIX Direcgtory Manager.

- DESCRIPTION

- UDM maintains a UNIX-like directory structure on top of a KSOS file sys-

. tem. All directory operations, creating entries, removing entries and

- searching directories is supported by the directory manager and directory
manager interface procedures.

. - Diregtories are of a distinguished subtype known as the directory sub-
type. The directory subtype is used to insure that the UDM is the only
progcess that is allowed to write directories. However, other processes

- may open directories for reading by presenting a read directory subtype
open descriptor to K open.
Access to the directory manager is provided by the directory manager

- interfcae, which must be compiled with the program which plans to use it. n

The directory manager interface provides a procedure call interface to
the UDM. The interface handles the packing of a UDM argument block, the
building an argument segment, the spawning of the UDM and the waiting for
IPC status return.

DEFINITIONS
— Path Name - A path name is a character array of directory names, where
the character "/" is used to separate directory names.

— Leaf Name -~ The leaf component of a path name is the last name in a path
name.

Starting Directory = Directory operations take a path name and a starting
directory (seid) as arguments. If a rooted path name (a path name
that begins with "/") is given to a directory manager interface
procedure, the directory operation assumes the root directory as

- the starting directory regardless of the starting directory given.

Directory Subtype - The directory subtype is a well knowm seid.
seid (subtype_nsp, char(100) cardinal (0))
All directories are of directory subtype.

. Root Directory ~ The seid of the first mounted file system, which is know
; - as the root file system, is:

ff seid (root_nsp, char(0) cardinal (5))

{

d

UDM Event Type - The directory manager process communicates status infor-
mation to its parent, the directory mamnager interface procedure,

* via an IPC. The first byte of the message portion of the IPC con-

tains the event type of the IPC. The IPC returned from the direc-

' - tory manager shall always have event type 26 decimal.

-

» UDM_error - UDM error is an enumerated type that is declared in UDM
| - interface. Its MODULA definition is:




;;1' UDM(III)

T S

e

Ksos 10/7/80

UDM_error = (UDM_no_error,

UDM_cannot_do,

UDM _cannot_link,
UDM_cannot_unlink,
UDM_entry_exists,
UDM_entry_does_not_exist,
UDM_cannot_open_ directory,
UDM_seid_rafers to _a directory,
UDM_cannot_create_ directory,
UDM_cannot_remove_directory,
UD¥_directory_not_empty,
UDM_not_directory,
UDM_directory_not_writable,
UDM_not_executable,

UDM _no_path,

UDM_not_found,

UDM_cannot_link across_file systens,
UDM_cannot_mount,

UDM_cannot unmount);

Note that an enumerated type in MODULA begins at zero.




f
[

r.-—v

R g R o4 '/i"r'"_*""!" L

v

UDM{III) KSOS 10/7/80 UDM(IIY)

INTERFACE PROCEDURE )
UOM_mkentry - make a direetory emtry

MODULA SYNOPSIS

CONST SEID_of_dir ¢ seid;

CONST SEID_of_entry : seid:

CONST path_name : ARRAY integer OF char;
CONST wait_flag : boolean;

CONST UDM_st.at : UDM_error;

UDM_stat := UDM_mkentry ( SEID_of_dir,
SEID of_entry,
path_pame,
wait_flag);

DESCRIPTION
The UDM mkentry procedure causes a directory entry tc be made. Starting
at the directory gpecified by SEID of dir, the components of the path
name path name are used to find subordinate directories until only a leaf
component of the path name remains. A directory entry is then made in
the parent directory of the leaf name. This directory entry is composed
of the SEID of entry and the leaf component of path name. Seids with any
name Space may be used as a SEID of entry. However seids with a file
name space shall be linked.

The wait flag specifies if the directory operation is to be synchronous
or asynchronous. If the wait flag is true then the procedure shall not
return until a IPC status blogk is received from the UDM.

Note that files are ereated with a4 zero link count and remain in
existence so long as they are open or have a non-zero link count. There-
fore, the proper way to make a directory entry for a newly created file
is to create the file, call UDM mkentry, and then close the file.

DIAGNOSTICS
UDM pkentry returns the following error codes:

UDM_no_error
UDM_cannot_link
UDM_entry_exists
UDM_cannot_open_directory
UDM_seid refers_to_a_directory
UDM_cannot_link across_file systems

P T IrRw, I

j
!




b:-: UDM(IIY) KS0S 10/7/80 UDM(III) -
. |
. !
3 INTERFACE PROCEDURE
i ‘ UDM_mkdir - create a directory
MODULA SYNOPSIS =
1 CONST SEID_of_dir : seid;
CONST dir name : ARRAY integer OF char;
CONST wait_flag ¢ boolean; -
' VAR UDM_stat : UDM_error; :
UDM_stat := UDM_mkdir ( SEID_of_dir,
dir_name,
wait_flag); -
DESCRIPTION . ’
UDM mkdir creates a directory. Starting at the directory specified by - |
. SEID of dir the components of the path name dir name are used to find '
) subordinate directories until the lagt parent directory component is
" found. A directory is then created in the parent directory with the nane
r of the leaf name. This newly created directory shall have access modes -
A of read, write, execute by owner and read, execute by group and others.
E Also, this directory shall contain two distinguished directory entries,
"." and "..". The "." directory entry shall refer to the newly created -
directory and the ".." directory entry shall refer to the parent direc-
tory.
The wait flag specifies if the directory operation is to be synchronous -
or asynchronous. If the wait flag is true then the interface procedure
shall not return gontrol to the caller until an IPC status block is
received from the UDM. -
DIAGNOSTICS
UDM_mkdir returns the following error codes:
UDM_no_error -

UDM_entry_exists
UDM_cannot_open_directory .
UDM_ecannot_create_directory —




UDM(I1I) KSOS 10/7/80 UDM(LII)

INTERFACE PROCEDURE
UDM_rm ~ remove a4 directory entcy

MODULA SYNOPSIS

CONST SEID of dir : seid;
CONST path_name : ARRAY irnteger OF char;
CONST wait_flag : boolean;
VAR UDM_stat : UDM_errcor;
L UDM_stat := UDM_rm ( SELD_of Dix,
- - path_name,

wait_flag);

3 - DESCRIPTION
The UDM rm procedure causes a directory satry, which may be a file or
directory, to be removed. Starting at the directory specified by
- SEID of Dir the compoments of the path name path name are used to find
subordinate directories until only a lzaf component of the path name
remains. The leaf name directory entry is then removed. If the direc~
tory entry to be removed is a file, K unlink is called. 1If the directory
entry to be removed is an empty directory, consisting of oanly "." and
".." entries, the directory is removed.

-

— The wait flag specifies if the directory operation is o te syrnchromous
or asynchronous. If the wait flag is true then the procedure shall not
return until a IPC status block is received from the UDM.

DIAGNGSTICS
UDM rm returns the following error <odes:
UDM_no_error
- UDM_not_found
UDM_cannot__unlink
UDM_directory not_empty
UDM_cannot_open_directcry :
UDM_cannot_remove dicectory i




UDM(TLL) K305 1u///80 UDM(ILII) -

-
INTERF~CZ PRUCEDURE
VDA L1nd = Path tulof relallin.
MODULA SYNOPSIS
CONST gtarting Jir seid Uoseld;
CONST path_name t ARKRAY iuteger GF Cher -
CONST operation : pathOyp,
VAR parent_dir_seid : seid;
VAR entry_seild ¢ veld;
VAR eGLrY_ Lame POAKRAL L logel Ur o whal s =
VAR UDM___SLa“. M 'J—Dl\i__\::h‘LC/f','
UDM_srac - UDHM rind (starting dir s.ia,
path rame,
» [ETELIRIRVE S P -
E FRTERISE N S ST
euuly Eeld,
eIy natie) ; -
{
) DESCRIPT.CH
3 -
UDM fiad perfcris Sotn Interpreluiios wpvoaildaos  Startiag gt the direcs
tory specified by Svai ing i@ Seid, the OkpLLedts of the path name
path ndle afe use=d o find subordinave a..ocavories aavi oy
ponent of the path e Jetaias. Thoe pai Upelalldo -
tion 15 then periorwed.
x For all dirveqtory operations, if the path raue to Lhe pa recLory of
P ; -
the leaf name 15 legal, then the pacenl dir Seid 3 } seid
of the pareant directory and the wnuirv name iz filled naxe.
N If the entry came directory entry exists then entry sel with
the seid of that diregtory eatry. -~
> The following patd operations 4re Jetihed:
po_@mkentry - chedws if ¢ difectdrly eal v of the specilfied nalie cah
be gade. A status oo UDM rOr is ret. ey o if the process
Ras write o Ms IR rectery «nd 1f “he entry
ot the desifed ndate does oG’ mxlgt. -
- Do reusve o dete Ui lova G O ALEY Sy e spelllted nane
i can be emovad. 1tumned 1f the -
process hag write ni direcrtory and the
leaf vame direciory watyy seists. 15 sl tesaf name 18 « direc-
vy “hat directory must onl Loefoia e 0 cna MooV directory
: “ntried, -
ot oo locat e detornines L0 0oy aroy D. tre spucified name.

exXx1gta. A status or MDocc L or G 18 retnThed 1Zthe entry is -
.y found.

PRI L W W TP O WY N




M B A

[

UBM(IIY) KSOS 107/7/46 UDM(ILL)

po_chdir - checks :I the spueciited directiocy esatry 1s a directory
and that the process has searcn/exegute permissions for that
diregtory. LIf the dbove chegks are satistied a status ot
UDM no ervo¢ 18 returned.

po_exec - checks it the specified directory entry exists and is an
executable fila. A status of UDM no error is returned if the
process has execute permissions for that file and if the file
contains the magic numbers of 407, 410 or 411 (octal).

DIAGNOSTICS
UDM_find returns the rollowing erru: «udes:

UDM_no_error
UDM _no_path
UDM_cannot_do
UDM_not_found
UDM_entry_exists
UDM_not_directory
UDM _cannot open dicfeccory
UDM_ _directory not _writable




UDM(IIL)

KS0S 10/,/7/40 UDMAIII)

USING THE UDM INTERFACE
Two UDM interfaces exist, oOne [Or supetvlsur Mullia programws and One I[OT
supervisor C programs.

To use the UDM interface tor MODULA one must:

a)

b)

©)

d)

&)

FILES

Define the trollowing cpp conscants: &_bldseg, k_invoke, k_spawn,
k_getps, k relseg, k getss, k_setvss, k_setps, and k setda.
Defining these constants aliows the related Kernel calls to be
conditionally compiled with the source.

Include KERcalls.mad.

Define the «pp coastent 1pe oh. This cpp consrant allows the
IPC handling procedure to be cowpirled.

Declare the proceduse 1PC vesid. This procedure 1y iaported
1nto the pscudo-inter.dpt cuicililog aidoie and il 16 Use Lo
check the valldiiy o0& an ipe berdsre 1t 1s put on the IPC queus.
This procedure 2llows a process to wuafantee that its IPC queue
wiil not get filled witin uawanted LPC 5. The procedure,

IPC valid should take an ipe block a8 & parameter and should
return a boclesn result. True if the I2C 15 to be placed on the
queue and falsge i1f the IPC 1s vo be discazded.

Include the the pseudo-intervapt hetdiing woduse npi.nod. f)
Include the UDM dicectory macage: Lateridce for MODULA.

KERgalls.mod ~ Weovnel wnteriacs

udm_1lib.mod - U0k interface for MODULA

EDI.h - UBM interface for C

npi.mod - Pgeudo-interrupt handling acoule

SEE ALSO

ipc block (i
seid (I)




udmtf (II1) KSOS 10/2/80 udatf (II1I)
- NAME
udmtf ~ UDM Test Frame
A - SYNOPSIS
- udmtf
? DESCRIPTION
1 The udmtf allows one to exercise the direqtory manageér. It is often used
8 to create files, which can be overwritten by NKcopy. Udmtf prompts with
- a ">" and accepts the following commands:
1s [(-1rT] {directory name] provides a similar functicnality to the

. UNIX ls.

- 1 signifies that a long listing is to be performed.
3 T slguifiles that a the subdirectories are to be regur-~
1 — s1vely Listed.
F T signlties that the security informdation is to be
; — printed.
3
i mkentry ¢redates a file.

— rm removes 4 file or a diregtory.

mkdir Creates a directory.
= quit causes the udatt progess to exit.
- BUGS
Erase and kill progessing is not pecformed on input.

= TR

- , S it . ‘J
; PO TR SUPRILET 1 J0 e L PO PR 4




——p

A i 2ot ety ¢

KSOS (III) K305 1G/16/80 KSOS (III)

NAME
umt - unmounts a file 8ystem

SYNOPSIS
umt filesystem_name

DESCRIPTION
Umt logically unmounts the file system given in the filesystem name argu-
ment. The name must consist of a full pathpame to the file system.

The user must be at OPERATOR level or above to actually unmount a file
gystem.

FILES
/sys/dataBases/mountTable
/sys/dataBases/immigration

SEE
mn% (II1)




DEVICE(IV) K505 9/29/80 DEVICE(IV)

NAME
device ~ device profile dataoase

e ——

~— DESCKIPTION

¥ rF e 1%

The device profile data base contains the owner and maximm access level
for each device on the system.

T
t

The modula definition of a device profile database record is:

T

m——

— RECORD SIZE

deviceName : ARRAY 0:7 CF char; 8 bytes

F deviceSeid : seid; §:EXtes

) - device tii : tif gtruct; 16 bytes
valid required : boolean; 1 byte

4 assign required : boolean; 1 byte

‘ END; ————————

k — -

30 bytes

; deviceName Name of tre device.

; deviceSeid Seid of the device.

E device tii Includes device owner, group and maxiuum access level of

the device.

valid required This device 1s a disk. A VOLUME VALID K device function
- is required on this device before the disk can be
accessed.

assign required This device can ounly be accessed atter it has been

assigned.
The device profile database can be moditied with the device protrile edi-
- tor (DPE). All fields of the device profile record can be modified with
X this editor.
This data base 1g read by tne secure inftiator (SIP), assign (ASG) and
deasgian (DSG).
P FILES
» - /sys /dataBases/device
,; SEE ALSO
- DPE{IILl), ASG(III), DSG(IILI), til_;truct(l), sel1d(I)




KSOS (IV) KSGS 1/18/86: KSOS (LV)

NAME
dump ~ incremental dump fcrmat

DESCRIPTION
The f£sd and fsr programs are used to incrementally duamp and resctcere KSOS §
file systems. The dump format consists of four sections, each of which ;
is an integral number of 512~byte blocks long: a one block dump master,

- the file system’s security map, a dump map and, finally, the jnodes and

data blocks for each file dumped. The complete dump is written cut as i

one long record composed of logical 512-byte blocks. The first block has :

|

i - the following structure:

E ? dump_master = RECORD

o mount : mountlItem (* £f3s mount item - 102 bytes *)
U from date : timeStamp; (* incremental dump date *)

v dump_date : timeStamp; (* date this dump was taken *)
=t size : cardinal32; {(* blocks used on save device *)
é - seCmap_size : cardinal: (* security wap s1ze (blocks) #*)
: J filler : ARRAY 1:DM FILLSZ OF char; (* filler *)
B checksum : cardinal; {(* block checksum *)

] END;

? i The security map is a copy of the security map database for the RSOS sys-
B

i tem on which the file system resides. 1Its size is gpecified by
[ e secmap_size and is normally 8 biocks long. The dump map contains one
boolean element for each slot in the gystem space of the file system. It
indicates which file system slots contain jnodes. IL is essentially a
copy of the file system allocation map minus references to indirect
items. Its size (in blocks) is equal to (total syszem slots)/(512%8 bits
per block) rounded up. The rest of the tape is made up of the data

'1 blocks for each dumped file. Each set of data blocks is immediately pre-
k., - ceded by a block containing the jnode for the file. These jnode blocks
) each contain a dump block number and a checksum. The final block on the
tape has a dump block number of 0.

e

A




GROUP(1IV) KS0S 9/29/80 GROUP(IV)

NAME i
group ~ group access autnentication database

DESCRIPTION

The group access authentication database contains group 1dentification,
administrator and maximum access level information.

The modula definition of a group access authentication database record

is:
X RECORD SIZE
. . groupName 1 ARRAY 0:7 Of char; 8 bytes
o groupPassword : ARRAY 0:10 OF char; 12 bytes
T e groupid : cardinal; 2 bytes
! maxlLevel : access level type; 6 bytes
3 groupAdmin : Integer; 2 bytes
. END; —-m-—=
- 30 bytes
groupName name of the group

groupPassword encoded password of the group

- groupid unique group identification number
maxLevel maximum access level of the group
- groupAdmin a user that serves as the group administrator

The group access authentication database can be modified with the user
- control editor (UCE). All fields of the group access authentification
record can be modiffed with this editor.

The data base 1s read by the secure server (SSP), and file access modifi-

~ cation (FAM).
) FILES
- /sys/dataBases/group
» , SEE ALSO
- UCE(III), SSP(III), FAM(III), access_level type(I)
:
E

— A ————

g




B SECURITY(IV) KS0S 9/29/80 SECURITY(IV)

— NAME
security - security map datahase

DESCRIPTION

The security map database specifies t"he defined security levels,
integrity levels and security compartments of the system.

The security map database is divided into three sections. There are l6
security level entries, 16 integrity level entries, and 32 security com—
partment entries.
The modula definition of a security map database record 1s:
- RECORD SIZE
shortName : ARRAY 0:1ll OF char; 12 bytes
longName 1 ARRAY 0:49 OF char; 50 bytes
- f1llmull : char; 1 byte
a active : char; 1 byte
END; e
64 bytes
shortName is in uppercase and does not need to end with mull.
- longName is uppercase, may include blanks, and must end with
mull.
active i ‘A’ active or ‘I’ inactive.
The map has 64 entries: 0 - 13 are security level categorfes, 16 - 31 are
integrity level categories, and 32 - 63 are security compartments.
The security map database can be modified with the security map editor
(SME). All fields of the security map record can be modified with this
editor.
FILES
/sys/dataBases/security
SEE ALSO
. SME(III)

[Ny PR

.~ .

e e e d A~ - Y

»




ST I EE PN Y
.

e Al AN I Gl o B
-

By B O i

-4

SYSTEM(IV) K505 9/29/80 SYSTEM(1IV)

NAME
3ystem ~ system profile database

DESCRIPTION

The system profile database contains system identification and access
level information.

The modula definition of a system profile database record is:

RECORD SIZE
$ys name :ARRAY 0:59 OF char; 60 bytes
inst name :ARRAY 0:59 OF char; 60 bytes
Sys no :cardinal; 2 bytes
version :versionType; 4 bytes
gen date :cardinall2; 4 bytes
systemMax :access level type; 6 bytes
currentMax :access level type; 6 bytes
currentMinMax :access level type; 6 bytes
END; ——————
T 148 bytes
Sys name system name for this system
inst name name of Installation where this system is located
sys no uaique KSOS system number
version KSOS 0S version number (ma jor/minor)
gen date KSGS 0OS system generation date (ticks since January 1,
1980)
systemMax max level ever Lermitted for this system
currentMax max level currently permitted on this system
currentMinMax defines the lowest maximum level needed to login in

(1.e. if a user’s max level 1s less than this level he
can not login)

The system profile database can be modified with the system profile edi-

tor (SPE). All fields of the system profile record can be modified with
this editor.

The data base i1s read by file access modification (FAM) and secure server
(ssp).

FILES
/8ys/dataBases/systen

SEE ALSO
SPE(TIIL), FAM(III), SSP(IIL), access level type(I)




B -

"'---—---============:===EEiEEiiEIiiiiiiii------.________A R

L4
= TERMINAL(IV) KSOS 9/29/80 TERMINAL(IV) !
y - % i
—— NAME
terminal -~ terminal profile database
- DESCRIPTION
The terminal profile database contains terminal configuration and access
level information.
The modula definition of a terminal profile database record is:
- RECORD SIZE
ttyid :char; 1 byte
. config :boolean; 1 byte
! console :boolean; 2 bytes
- xmi tBaud :cardinal; 2 bytes
: recBaud :cardinal; 2 bytes
: parity :cardinal; 2 bytes
- clrScreen :ARRAY 1:8 OF char; 8 bytes
maxLevel :access level type; 6 bytes
END; U
! 24 bytes
teyid unique terminal id
config terminal is configured
console terminal I{s to be treated as a console
xmi t Baud default transmit baud rate
recBaud default recieve baud rate
parity default parity
clrScreen sequence required to clear the screen
maxLevel muximum access level for this terminal

The terminal profile database can be modified with the terminal profile
editor (TPE). All fields of the terminal profile record can be modified
with this editor.

The data base is read by the secure server (SSP) and file access modifi-
cation (FAM).

FILES
/sys/dataBases/terminal

SEE ALSO
TPE(III), SSP(III), FAM(LII)




!' 1
L ]
Y USER(IV) KS0S 9/29/80 USER(LV}
» [
e NAME
user - user access authentication database
—~ DESCRIPTION
{
The user access authentication database contains user identification and
—er access level information.
The modula definition of a user access authentication database record is:
haed RECORD SIZE
userName : ARRAY 0:7 OF char; 8 bytes
ugerPassword : ARRAY 0:10 OF char; 12 bytes
— loginOk : boolean; 2 bytes
maxLevel : access level type; 6 bytes
tii : til struct; 16 bytes
loginDir : ARRAY 0:63 OF char; 64 bytes
he loginShell : ARRAY 0:63 OF char; 64 bytes
loginEmul : ARRAY 0:63 OF char; 64 bytes
filler : ARRAY 0:19 OF char; 20 bytes
o END; TEmmmeme-
256 bytes
- userName name of the user
userPassword password of the user
- loginOk true if user can login
i maxLevel maximim access lavel
k
o ~ tid login access leavel
k' loginpir login directory pathnawme
! loginSheil login shell pathnaze
b
' - loginEmul login emulator pathname
. The user access authentication database can be modified with the user
i control editor (UCE). All fields of the user access authentication
- record can be modified with this editor.
4 The data base is read by the secure server (SSP) and file access modifi-
\ i - cation (FAM).
FILES
/sys/dataBases /user
3 SEE ALSO

UCE(III), SSP(II1), FAM(III), tii struct(l), access_level type(I)




BREAK(VI) KS0S 12/9/80 BREAK(VI)

NAME '
break, brk, sbrk - change core allocation '
SYNOPSIS

(break = 17.)
sys break; addr :

char *brk(addr)
char *gbrk(incr)

DESCRIPTION
Break sets the system’s idea of the lowest location aot used by the pro~

gram (called the break) to addr (rounded up to the next multiple of 5i2
bytes). Locations not less than addr and below the stack pointer are not
in the addres. space and will thus cause a memory violation if accessed.

From C, brk will set the break to addr. The old bresk is returned.

In the alternate entry sbrk, incr more bytes are added to the program’s
data space and a pointer to the start of the new area is returned.

When a program begins execution via exec the break is set at the highest
location defined by the program and data storage areas. Ordinarily,
therefore, only programs with growing data areas need to use break.

SEE ALSO
exec (II), alloc (IYI), end (ILII)

DIAGNOSTICS
The c-bit is set if the program requests more memory than the system
limit or if more than 8 segmentation registers would be required tc
implewent the break. From C, -1 is returned for these errors.

BUGS
Setting the break ia the range 0177700 to 0177777 1s the same as setting
it to zero.

KS0s
Note that in KSOS, the system’s memory grain size is 512 bytes as opposed

to the 64 bytes of UNIX.




= Ty

K3

s

CHDIR(VI) KSOS 12/9/80 CHDIR(VL)

NAME
chdir ~ change working direccory

SYNOPSIS
(chdir = 12.)
sys chdir; dirname

chdir(dirname)
char *dirname;

DESCRIPTION
Dirname {s the address of the pathname of a directory, terminated by a
mull byte. Chdir causes this directory to become the current working
directory.

SEE ALSO
chdir (1)

DIAGNOSTICS
The error bit (c-bit) is set if the given name is not that of a directory
or 1s not readable. From C, a ~1 returned value indicates an error, 0O
indicates success.

KS0s

g




CHMOD(VY) KSOS 12/9/8C CHMOD(VI)

t
NAME
chmod ~ change mode of file

SYNOPSIS
(chmod = 15.)
8ys chmod; name; mode

chmod(name, mode)
char #*name;

DESCRIPTION

The file whose name 1s given as the muil-terminated string pointed to by

name has 1ts mode changed to mode. Modes are constructed by ORing
together some combination of the following:

4000 set user ID on execution

2000 set group ID on execution

0400 read by owner

0200 write by owner

0100 execute (searcl on directory) by cwnec
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

Only the owner of a file may change its mode.

SEE ALSO
chmod (1)

DIAGNOSTIC

Error bit (c=bit) set if name cannot be found or if current user is not

the owner of the file. From C, a ~1 returned value indicatcs an error, 0
indicates success.

KS0S

Note that uid and gid do not work as in UNIX. In particular, frow the

Emulator it is not possible to change the setting of the set user or set
group ID bits.




CHOWN(VI) KS0S 12/9/80 CHOWN(VI)

i
- NAME
chown - change owner and group of a file
- SYNOPSIS
i (chmod = 16.)
sys chown; name; owner 3
- chown(name, owner) )

char *name;

8 DESCRIPTION ‘
The file whose name is given by the mull-terwinated string pointed to by

name has its owner and group changed to the low and high bytes of owner

respectively.

§
e+

SEE ALSO
“hown (VIII), chgrp (VIII), passwd (V)

DIAGNOSTICS
The error bit (c~bit) 1s set on illegal cwner changes. Frow C a -1
returned value indicates error, 0 indicates success.

{
e e AR

KS0s
This system call {s subsumed by the NKSR: attempted use under the UNIX
Emulator will result in an error.

-1 -

FAT Yo L Y ek




Given a file descriptor such as returned from an open, creat, or pipe
i call, close closes the associated file. A close of all files is
5 - automatic on exit, but since processes are limited to 15 simultaneously
. open files, clogse is necessary for programs which deal with many files.

' CLOSE(VI) KSOS 9/29/80 CLOSE(VI)
— NAME
close =~ c¢lose a file
! SYNOPSIS
- (close = 6.)
(file descriptor in r0)
’ sys close i
! ‘ - ]
t close(fildes) |
; é
E | - DESCRIPTION |
i

- SEE ALSO
creat (1I), open (I1), pipe (iI)
DIAGNOSTICS
— The error bit (c-bit) {s set for an unknown file descriptor. From C a -l

indicates an error, 0 indicates success.

KS0S

™y

"y SOPL TR I




-

CREAT(VI) KS0S 12/9/30 CREAT(VI)

NAME

creat - create a new file

SYNOPSIS

(creatr = §.)
8ys creat; name; mode
(file descriptor in r0)

creat(name, mode)
char *name;

DESCRIPTION

Creat creates a new file or prepares to rewrite an existing file called
name, given as the address of a null-terminated string. If the file did

not exisc, it is given mode mode. See chmod (II) for the construction of
the mode argument.

If the file did exist, its mode and owner remaln unchanged but it is
truncated to 0 length.

Tne file i3 also opened for writing, and its file descriptor is returned
(in x0).

The mods given is arbitrary; it need not allow writing. This feature is
used by programs which deal with temporary files of fixed names. The
creation 1s done with a mode that forbids writing. Then if a second
instance of the program atteuwpts a creat, an error is returned and the
program knows that the name 18 unusable for the moment.

SEE ALSO

write (II), close (II), stat (II)

DIAGNGSTICS

KSOS

The error bit (c-bit) may be set i1f: a needed directory is not search-
able; the file does not exist and the directory in which it 1s to be

created is not writable; the file does exist and is unwritable; the file
is a directory; there are already too many files open.

From C, & ~]1 return indicates an error.

PPreR lenaa ' |




s L get SUve Rts S LB

g T

s i

i

CSW(VY) KSOS 12/9/80 CSW(VI)

NAME
csw -~ read console switches
SYNOPSIS
(csw = 38.; not in assembler)
sys csw
getcsw( )
DESCRIPTION
The setting of the console switches is returned (in r0j.
KSOS

This call 1s not supported by KSOS.
error.

Attempted use will result in an




T
. é -
‘ f DUP(VI) KSOS 12/9/50 DUP(VI
_‘ ,i —
A . NAME
‘ dup - duplicate an open file descriptor
_ - SYNOPSIS
A (dup = 4}.; not in assembler)
4 (file descriptor in r0Q)
- sys dup
. dup(fildes)
3 int fildes;
: e DESCRIPTION
3 , Given a file descriptor returned from 4n cpen, pipe, <ieat, or port call,
! dup will allocate another file descriptor synonymous with the original.
. e The new file descriptor is returned in r0.
: Dup i3 used wore to reassign the value of file descriptors than to
5 - genuinely duplicate a file descriptor. Since the algorithm to allocate
i file descriptors recuras the lowest available value, comblnations of dup
) and close can be used to manipulate file descriptors Iin a general way.
' This 1s handy for manipulating standard input and/or standard output.
SEE ALSO
creat (II), open (II), close (II), pipe {(II)
DIAGNOSTICS
The error bit (c~bit) is set 1f: the given file descriptor is invalid;
there are already too many open files. From C, a -1 returned value indi~
- cates an error.
KS0Ss
a L
i
1.
4
4
-
! ~—




i

!
- EXEC(VI) KSOS (2/9/85 EXEC(VI) }

1

- ,

. . NAME

! exed, uxecl, exedv - cxecute a file

- - SYNOPULS

L, {exez = 114)

2 8ys e€Xac; name; args

r-A . o ~

s s namz: <..-\0>

. args: argl; argl; ...; O

- - arg0: <...\0>

argl: <...\0>

- execl{name, atgl, «ogl, ..., acga, O

&

char *nawe, *argl, *acg., ..., ¥argn;

,
A - crecvrsoe G gv)
Cids Foane:

ctar *srgvy |,

L =~ DESCRLPTIUN

k ¥xec overlays the .allling piocess witn the named flle, then transfers to

A the veginning of (he corz fmige of the file. There can be no return fron
— the file; the cailiag core image 1is lost.

s Files vewaln open across egec calls. Ignored signals remain ignored

across exec, but signals that are caught are reset to thelr default

values.

Each user has a real user [0 and group 1L and an effective usar ID and
-~ group 1D. The real ID identifies the person using the system; the o’fec=-
tive ID determines his access privileges. Ixec changes tne effec:
user and group ID to the owner of the executed file {f the file aa
‘‘set~user-ID’’ or ‘‘set-group~ID’’ mode:. The real user ID is ao
affected.

[g]

The form of this call differs somewhar depending ou whether it 1s called
- from assembly language or C; see below for the C version.

’ The first acgumeant to exec {s a pointer to the name of the file to be

- executed. The seccnd 1s the address of a null-terminated 1list of

b pointers to arguments tc be puassed to tne file. Conventionaily, the

AR first argument s the name of the file. Each pointer adarrsses a string
f terminated by a2 mull byte.

Once the calied file starts execation, the arguments are available as
rollows. The stack pointer points to a word contaiaing the number of

- argumeats. Just above thls number is a ilst of polaters to the argument
gtrings. The arguments are placed as high a3 possible in core.




v
EXEC(VI) XS$0S 12/9/80 EXZC(VI)
Sp=> qargs -
argl
argn
NL .
A arg0: <argO\0>

L]

argn: <arga\0>

i

. From C, two interfaces are available. execl {s useful when a known file

s with knowa arguments is being called; the arguments to execl are the =
sharacter striags coastituting the file and the argumeats; as in the
basic call, the first argument is conventionally the sawe as the file )

3 name {(or its last component)., A 0 argument msi end the asrgument list. -

The exeav version {s useful when the number of arguments is unknewn in
3 advance; the argunents to execv ace tie name of the File to be executed

and a vector of srrings coaraining the <rguments. Thoe iast argunent
atlin. must ce followed by a O pointer.
b !
When a C program is executed, it 1s called as follows: -
3 main(arge, argv)
i in¢ arge; -

char **argv;

where arge {s the argument count and argv is an array of character

pointers to the arguments themseives. A4s indicated, arsc 1s conventlon- -
ally at least oae and the first member of the array poiats to a string

containing the name of the file.

. Argv is not directly usable in another execv, since argv[argc} is ~% and
: not 0.
SEE ALSO -
fork (II)
DIAGNOSTICS -
3 If the file cannot be found, if it is not executable, if it does not have
a valid header (407, 410, or 411 octal as first word), 1f maximum memory
1 is exceeded, or if the arguments require more than 312 bytes a return
: from exec constitutes the diagnostic; the error bit (e-bit) is set. Frow -
4 C the returned value is =-l. :
] 1
z “ i
¥ BUGS - |
' Jaly 512 characters of argumencs avre allowcd. !
* 308 _ 8
! SeT aser fooand e growr 1 s on muiows o4 s Dae Tmisobor. At ’
‘ Tmsent  sncred and sesarate Tegt Tilus o vvn e Sun-
! sedtad v Lhe atL o H




g EXIT(VI) KSOS 9/29/80 EXIT(VI)

NAME
exit - terminate process

P- SYNOPSIS
(exit = 1.)
(status in r0)
- sys exit
‘ exit(status)

int status;

DESCRIPTION i
: Exit is the normal means of terminating a process. Exit closes all the
* -~ process ‘s files and notifies the parent process if it is executing a
S wait. The low byte of r0 (resp. the argument to exit) is available as
, status to the pareant process. £
- This call can never return.
SEE ALSO
- wait (II)
DIAGNOSTICS
- None.
KS0S
i
|
; -
4
i
!
)‘ —
k!
|
| o1-
]




a4 i B

T R sy W

FORK(VI) KS0S 12/9/80 FORK(VI)

NAME

fork = spawn new process
SYNOPSIS

(fork = 2.)

sys fork

(new process return)
(old process return)

fork( )

DESCRIPTION
Fork is the only way new processes are created. The new process’s core
image 138 a copy of that of the caller of fork. The only distinction is
the return location and the fact that r0 in the old (parent) process con-
tains the process ID of the new (child) process. This process ID is used
by wait.

The two returning processes share all open files that existed before the
call. In particular, this is the way that standard input and output
files are passed and also how pipes are set up.

From C, the child process receives a 0 return, and the parent receives a
non-zero number which is the process ID of the child; a return of -1
indicates inability to create a new process.

SEE ALSO
walt (II), exec (II), sfork (II)

DIAGNOSTICS
The error bit (c-bit) is set in the old process if a new process could
not be created because of lack of process space. From C, a return of -1
(not just negative) indicates an error.

KS0Ss




FSTAT(VI) KS0S 12/9/80 FSTAT(VI)

LS

- NAME
fstat - get status of open file

SYNOPSIS
(fstat = 28.)
(file descriptor in r0)
sys fatat; buf

fstat(fildes, buf)
- struct inode *buf;

DESCRIPTION
This call is identical to stat, except that it operates on open files

instead of files given by name. It is most often used to get the status -
of the standard input and output files, whose names are unknown.

- SEE ALSO
stat (II)

DIAGNOSTICS

The error bit (c~bit) is set if the file descriptor is unknown; from C, a
-1 return indicates an error, 0 indicates success.

- KS0s

Not all fields of the status structure are meaningful in KSOS. The fstat
call supplies zeroes in such fields.

”

-ty i ‘Twr'.wr'; - -

—_— B I
U SR G GRS U




-‘;
.
» GETGID(VI) KSos 9/29/80 GETGID(VI)
- NAME
getgld - get group identificationg
; -~ SYNOPSIS
(getgld = 47.; not in assembler) 1
sys getgid
- getgid( )
DESCRIPTION
- Getgid returns a word (in r0), the low byte of which contains the real
group ID of the current process. The high byte contains the effective
group ID of the current process. The real group ID identifies the group
of the person who is logged in, in contradistinction to the effective
- group ID, which determines his access permission at the moment. It is
thus useful to programs which operate using the ‘‘set group ID’’ mode, to
find out who invoked them.
SEE ALSO
setgid (II)
- DIAGNOSTICS
- KSO0S
KSOS group IDs are 16 bits each, but are mapped into 8 bits by using only
the low order byte.
- —
3
b
.
q -
b
Y

Rty




-
-
.4
-
9 -
—
-
—
-
i
—-.
'
.
—
EE' —
-

Mt i B

.- o

F

GETPID(VI) KSO0S 12/9/8C GETPID(VI)

NAME
getpld - get process identification

SYNOPSIS

(getpid = 20.; not in assembler)
sys getpid
(pid in r0)

getpid( )

DESCRIPTION
Getpid returns the process ID of the current process. Most often it is
used to generate uniquely~named temporary files.

SEE ALSO

DIAGNOSTICS

KSo0S
Process i1ds are unique only within an Emulator family.

PN




GETUID(VI) KS0S 9/29/80 GETUID(VI)

NAME
getuid - get user {dentifications

SYNOPSIS
(getuid = 24.)
sys getuid

getuid( )

DESCRIPTION

Getuid returns a word (in r0), the low byte of which contains the real
uger ID of the current process. The high byte contains the effective
user ID of the current process. The real user ID identifies the person
who 1s logged in, in contradistinction to the effective user ID, which
determines his access permission at the moment. It is thus useful to

programs which operate using the ‘‘set user ID’’ mode, to find out who
invoked them.

SEE ALSO
setuid (II)

DIAGNOSTICS

KS0S

KSOS user IDs are 16 bits each, but are mapped into 8 bits by using only
the low order byte.




S

GTTY(VI) KS0S 9/29/80 GTTY(VI)

NAME
gtty - get terminal status

SYNOPSIS
(gtty = 32.)
(file descriptor in r0)
8ys gtty; arg

arg: .=.+6

gtty(fildes, arg)
int arg[3];

DESCRIPTION

Gtty stores in the three words addressed by arg the status of the type-
writer whose file descriptor is given in rO (resp. given as the first
argument). The format {s the same as that passed by stty.

SEE ALSO
stty (II)

DIAGNOSTICS

Error bit (c-bit) 1s set if the file descriptor does not refer to a type-

writer. From C, 8 -1 value is returned for an error, 0, for a successful
call.

KSO0s

As the manipulation of terminal speeds (and parity) is an NKSR function

under KSOS, the terminal speed information returned by this call is mean-
ingless.




f
INDIR(VI) KS0S 9/29/80 '

INDIR(VI)
NAME
indir - indirect system call
SYNOPSIS
(indir = 0.; not in assembler)
sys 1indir; syscall
DESCRIPTION
The system call at the location syscall is executed. Execution resumes
after the indir call.
b The main purpose of indir is to allow a program to store arguments in
system calls and execute them out of line in the data segment. This
i preserves the purity of the text segment.
: If indir is executed indirectly, it is a no-op. If the instruction at
; the indirect location 1s not a system call, the executing process will
1 - get a fault.
SEE ALSO
DIAGNOSTICS

KS0S




INTRO(VI) KS0S 12/9/80 INTRO(VI)

INTRODUCTION TO SYSTEM CALLS

Section 1I of this manual lists all the entries into the KSOS Unix emulator.
In most cases two calling sequences are specified, one of which is usable from
assembly language, and the other from C. Most of these calls have an error
return. From assembly language an erroneous call is always indicated by turn-
ing on the c-bit of the condition codes. The presence of an error is most
eas{ly tested by the instructions bes and bec (**branch on error set (or
clear)’”}. These are synonyms for the becs and bee instructions.

From C, an error coandition 1s indicated by an otherwise impossible returned
value. Almost always this is ~]; the individual sections specify the details.

In both cases an error number is also available.
nunber is returned in rO on erroneous calls. From C, the external variable
errno is set to the error number. Errno is not cleared on successful calls,
so 1t should be tested only after an error has occurred. There is a table of

messages associated with each error, and a routine for printing the message.
See perror (III).

In asgsembly language, this

The possible error numbers are not recited with each writeup in section 11,
since many errors are possible for most of the calls. Here is a list of the
error numbers, thelr names inside the system (for the benefit of system

readers), and the messages available using perror. A short explanation is
also provided.

o] - (umused)

1 EPERM Not owner and not super-user

Typically this error indi{cates an attempt to modify a file i{n some way for-
bidden except to its owner. It 138 also returned for attempts by ordinary
users to do things allowed only to the super-user.

2 ENOENT No such file or directory

This error occurs when a file name is specified and the file should exist
but doesn’t, or when one of the directories in a path namwe does not exist.

3 ESRCH No such process
The process whose number was given to signal does not exist, or is already
dead.

4 EINTR Interrupted system call

An asynchronous signal (such as ifnterrupt or quit), which the user has
elected to catch, occurred during a system call. If execution is resumed

after processing the signal, it will appear as if the interrupted system
call returned this error condition.

S EIO 1/0 error

Some physical I/0 error occurred during a read or write. This error may in

some cases occur on a call following the one to which it actually applies.




INTRO(VI) KSO0S 12/9/80 INTRO(VI)

10

11

12

13

14

15

16

17

18

19

ENXIO No such device or address
I1/0 on a special file refers to a subdevice which does not exist, or beyond
the limits of the device. It may also occur when, for example, a tape
drive {3 not dialled in or no disk pack 1s loaded on a drive.

E2BIG Arg list too long

An argument list longer, than 512 bytes (counting the null at the end of
each argument) is presented to exec.

ENOEXEC Exec format error

A request is made to execute a file which, although it has the appropriate
permissions, does not start with one of the magic numbers 407 or 410.

EBADF Bad file number
Either a file descriptor refers to no open file, or a read (resp. write)
request is made to a file which 1s open only for writing (resp. reading).

ECHILD No children
Wait and the process has no living or unwaited-for children.

EAGAIN No more processes

In a fork, the system’s process table i{s full and no more processes can for
the moment be created.

ENOMEM Not enough core
During an exec or break, a program asks for more core than the system is
able to supply. This i{s not a temporary condition; the maximum core size
is a system parameter. The error may also occur if the arrangement of

text, data, and stack segments is such as to require more than the existing
8 segmentation registers.

EACCES Permission denied

An attempt was made to access a file in a way forbidden by the protection
system.

- (unused)

ENOTBLK Block device required

A plain file was mentioned where a block device was required, e.g. in
mount.

EBUSY Mount device busy

An attempt to mount a device that was already mounted or an attempt was

made to dismount a device on which there is an open file or some process’s
current directory.

EEXIST File exists *
An existing file was mentioned in an inappropriate context, e.g. 1link.

EXDEV  Cross~device link
A 1link to a file on another device was attempted.

ENODEV No such device

o it “. VIR P {ahinchelbeaomee.




INTRO{VI) KS0S 12/9/80 INTRO(VI)

20

21

22

23

24

25

26

27

28

29

30

i1

32

An attempt was made to apply an inappropriate system call to a device; e.g.
read a write~only device.

ENOTDIR Not a directory

A non-directory was specified where a directory is required, for example in
a path name or as an argument to chdir.

EISDIR Is a directory
An attempt to write on a directory.

EINVAL 1Invalid argument
Some invalid argument: currently, dismounting a non-mounted device, men-

tioning an unknown signal in signal, and giving an unknown request in stty
to the TIU special file.

ENFILE File table overflow

The system’s table of open files 1s full, and temporarily no more opens can
be accepted.

EMFILE Too many open files
Oaly 15 files can be open per process.

ENOTTY Not a typewriter

The file mentioned in stty or gtty is not a typewriter or one of the other
devices to which these calls apply.

ETXTBSY Text file busy

An attempt to execute a pure-procedure program which 1s currently open for
writing (or reading!). Also an attempt to open for writing a pure-
procedure program that is being executed.

EFBIG File too large
An attempt to make a file larger than the maximum ¢ 32768 blocks.

ENOSPC No space left on device

During a write to an ordinary file, there is no free space left on the dev-
ice.

ESPIPE Seek on pipe

A seek was issued to a pipe. This error should also be issued for other
non-seekable devices.

EROFS Read-only file system

An attempt to modify a file or directory was made on a device mounted
read-only.

EMLINK Too many links
An attempt to make more than 127 links to a file.

EPIPE Write on broken pipe
A write on a pipe for which there is no process to read the data. This

condition normally generates a signal; the error {s returned if the signal
is ignored.




INTRO(VI) KS0S 12/9/80 INTRO(VI)

33 EMITY Too many open TTYs in the family
An attempt to open too many terminals within the same emulator process fam-
{ly. This error is a KSOS UNIX Emulator additionm.

100 ENOSYS Nonexistent system call
This error indicates an attempt tc make a nonexistent system call.

KSo0S
Due to the differing internals of UNIX and the KSOS UNIX Emulator, the
error codes returned from failed Emulator calls are frequently only approx-
imations to the corresponding UNIX error codes.




T

KILL(VI) KSOS 12/9/80 KILL(VI)
= NAME
kill - send signal to a process
- SYNOPSIS
. (kill = 37.; not in assembler)
(process number in r0)
- sys kill; sig
kill(pid, sig);
- DESCRIPTION

Kill sends the signal sig to the process specified by the process number

in r0. See signal (II) for a list of signals.
The sending and receiving processes must have the same effective user ID.

If the process number is 0, the signal i{s sent to all other processes
which have the same controlling typewriter and user ID.

In no case 1s it possible for a process to kill itself.

-

SEE ALSO
signal (II), kill (I)

DIAGNOSTICSE

The error bit (c-bit) is set if the process does not have the same effec-
tive user ID, or if the process does not exist. From C, -1 is returned.

KS0S
Signals have effect only within the Emulator family of the sender.




LINK(VI) KS0S 12/9/80 LINK(VI)
NAME
- link - link to a file
SYNOPSIS
- (link = 9.)
8ys link; namel; name2
link(namel, name2)
- char *namel, *name?;
DESCRIPTION
-— A link to namel is created; the link has the name name2. Either name may
be an arbitrary path name.
- SEE ALSO
link (I), unlink (II)
DIAGNOSTICS
- The error bit (c-~bit) is set when name] cannot be found; when name2 :
already exists; when the directory of name2 cannot be written; when an il
attempt is made to link to a directory; when an attempt is made to link i
— to a file on another file system; when more than 127 links are made.
From C, a ~1 return indicates an error, a 0 return indicates success.
KS0S




40 MKNOD(VI) KSOSs 12/9/80 MKNOD(VI)
NAME
- mknod - make a directory or a special file
SYNOPSIS ’
! - (mknod = 14.; not in assembler)
sys umknod; name; mode; addr
» mknod(name, mode, addr)
3 - char #*name;
A
. DESCRIPTION
: - Mknod creates a new file whose name is the null-terminated string pointed 1

to by name. The mode of the new file (including directory and special
file bits) is initialized from mode. The first physical address of the

- file 1s inftialized from addr. Note that in the case of a directory,

3 addr should be zero. In the case of a special file, addr specifies which
A special file.

-~ SEE ALSO
mkdir (I), mknod (VII1), fs (V)

DIAGNOSTICS
Error bit (c-bit) is set if the file already exists. From C, a -1 value
3 indicates an error.

— KS0S
Manipulation of special files is an NKSR function; hence, in the UNIX
Emilator, this call can only be used to make directories.




MOUNT(VI) KSO0S 12/9/80 MOUNT(VI)

NAME
mount - mount file system

SYNOPSIS
(mount = 21.)
sys mount; special; name; rwflag

mount (special, name, rwflag)
char #*gpecial, *name;

DESCRIPTION
Mount announces to the system that a removable file system has been
mounted on the block-structured special file special; from now on, refer-
ences to file name will refer to the root file on the newly mounted file
system. Special and name are pointers to null-terminated strings con-
taining the appropriate path names.

Name must exist already. Its old contents are inaccessible while the file
system is mounted.

The rwflag argument determines whether the file system can be written on;
if {t 18 O writing is allowed, 1f non-zero no writing is done. Physi-
cally write-protected and magnetic tape file systems must be mounted
read-only or errors will occur when access times are updated, whether or
not any explicit write is attempted.

SEE ALSO
mount (VIII), umount (II)

DIAGNOSTICS
Error bit (c-bit) set if: special is inaccessible or not an appropriate
file; name does not exist; special i{s already mounted; name is in use;
there are already too many file systems mounted.

BUGS

KS0S
this call is subsumed by the NKSR. Attempted use under the UNIX Emulator
will result in an error.

i




: NICE(VI) KS0S 9/29/80 NICE(VI)
. |
' NAME
l . nice - set advisory program priority

SYNOPSIS

: . (nice = 34.)

i (priority in rQ)
, sys nice
. . nice(priority)
. DESCRIPTION

. The scheduling priority of the process is changed to the argument. Posi-

tive priorities get less service than normal; 0 is default. The valid
range of priority is 20 to -220. The value of 4 is recommended to users
who wish to execute long~running programs without flak from the adminis-
tration.

The effect of this call is passed to a child process by the fork system
- call. The effect can be cancelled by another call to nice with a prior-

ity of 0.
The actual running priority of a process is the priority argument plus &

number that ranges from 100 to 119 depending on the cpu usage of the pro-
cess. N

- SEE ALSO
nice (I)

DIAGNOSTICS
The error bit (c-bit) is set if the user requests a priority outside the
range of 0 to 20 and is not the super-user.

- KSo0S
This call is not yet implemented. The description of priorities given
above is not accurate for KSOS.

By’ AR dr A IS s . S an b

[

-
L]




e R e e g SO A - =

OPEN(VI) KSOS 12/9/80 OPEN(VI)

NAME
open - open for reading or writing

: SYNOPSIS

. - (open = 5.)

P sys open; name; mode !
: (file descriptur in r0) :

b open(name, mode)
char *name;

: - DESCRIPTION

- Open opens the file name for reading (if mode is 0), writing (if mode is
1) or for both reading and writing (if mode 1s 2). Name is the address
of a string of ASCII characters representing a path name, terminated by a
mull character.

The returned file descriptor should be saved for subsequent calls to

; - read, write, and close.
' SEE ALSO
- creat (II), read (II), write (II), close (II)
DIAGNOSTICS
The error bit (c-bit) is set 1f the file does not exist, if one of the
- necessary directories does not exist or is unreadable, {f the file {s not

readable (resp. writable), or if too many files are open. From C, a =1
value is returned on an error.

KSos




PIPE(VI) KSO0S 9/29/80 PIPE(VI)

NAME
pipe - create an interprocess channel

SYNOPSIS j
a - (pipe = 42.)
’ sys pipe
¥ (read file descriptor in r0)
3 - (write file descriptor in rl)
L
F pipe(fildes)
int fildes([2];
: DESCRIPTION
i The pipe system call creates an I/0 mechanism called a pipe. The file
. - descriptors returned can be used in read and write operations. When the
pipe 1s written using the descriptor returned in rl (resp. fildes[1]), up
4 to 4096 bytes of data are buffered before the writing process is
3 suspended. A read using the descriptor returned in r0 (resp. fildes[0])

will pick up the data.

It is assumed that after the pipe has been set up, two (or more)
- cooperating processes (created by subsequent fork calls) will pass data
through the pipe with read and write calls.

The Shell has a syntax to set up a linear array of processes connected by
plpes.

Read calls on an empty pipe (no buffered data) with only one end (all

- write file descriptors closed) return an end-of-file. Write calls under
similar conditions generate a fatal signal (signal (II)); if the signal
i3 ignored, an error is returned on the write.

SEE ALSO
sh (I), read (I1), write (II), fork (II)

- DIAGNOSTICS
The error bit (c~bit) is set if too many files are already open. From C,
a -1 returned value indicates an error. A signal is generated if a write
- on a pipe with only one end is attempted.

| 7 BUGS

- KS0S
1 This call 1s not yet availlable.




ol

PROFIL(VI) KS0s 9/29/80 PROFIL(VI)

NAME
profil - execution time profile
.. SYNOPSIS
S (profil = 44.; not In assembler)
sys profil; buff; bufsiz; offset; scale

profil(buff, bufsiz, offset, scale)
char buff| ];
A int bufsiz, offset, scale;

DESCRIPTION
Buff points to an area of core whose length (in bytes) is given by buf-
siz. After this call, the user’s program counter (pc) is examined each
clock tick (60th second); offset is subtracted from it, and the result
miltiplied by scale. If the resulting number corresponds to a word
inside buff, that word is incremented.

i ‘ The scale {s interpreted as an unsigned, fixed-point fraction with binary

i point at the left: 177777(8) gives a 1-1 mapping of pc’s to words in
buff; 77777(8) maps each pair of instruction words together. 2(8) maps
all instructions onto the beginning of buff (producing a non-interrupting
core clock).

Profiling {s turmed off by giving a scale of 0 or 1. It is rendered
ineffective by giving a bufsiz of 0. Profiling is also turned off when
an exec is executed but remains on in child and parent both after a fork.

SEE ALSO
monitor (IIL), prof (I)

DIAGNOSTICS

KSO0S

This call is not yet implemented.

e ———— 1 a




.- PTRACE(VI) K305 9/29/80 PTRACE(VI)

_ NAME
ptrace - process trace
SYNOPSIS
- (ptrace = 26.; noct in assembler)
(data in r0)
sys ptrace; pid; addr; request
- (value in r0)

ptrace(request, pid, addr, data);

~ DESCRIPTION
Ptrace provides a means by which a parent process may coatrol the execu-
tion of a child process, and examine and change its core image. Its pri-

- mary use is for the implementation of breakpoint debugging, but it should
be adaptable for simulation of non-UNIX environments. There are four

arguments whose Interpretation depends on a request argument. Generally,

‘ . pld 1s the process ID of the traced process, which mst be a child (no
more distant descendant) of the tracing process. A process being traced
behaves normally until it encounters some signal whether internally gen-
erated like ‘“illegal instruction’’ or externally generated like '‘inter-

- rupt. '’ See signal (II) for the list. Then the traced process enters a
stopped state and {ts parent 1s notified via wait (II). When the child
is in the stopped state, its core image can be examined and modified

_ using ptrace. 1If desired, another ptrace request can then cause the
child efther to terminate or to continue, possibly ignoring the signal.

The value of the request a gsument determines the precise action of the
- call:

0 This request 1s the only one ngsed by the child process; it declares
- that the process is to be trac:d by its parent. All the other argu-
ments are ignored. Peculiar results will ensue if the parent does
not expect to trace the child.

- 1,2 The word in the child process’s address space at addr 1s returned (in
r0). Request 1 indicates the data space (normally used); 2 indicates

. the {nstructlion space (when I and D space are separated). addr must
- be even. The child mst be stopped. The fnput data 1s ignored.

3 The word of the system’s per-process data area corresponding to addr
is returned. Addr must be eveu and less than 512. This space con-
tains the registers and other information about the process; its lav-
out corresponds to the user structure in the system.

; - 4,5 The given data fs written at the word in the process’s address space
corresponding to addr, which must be even. No useful value is
returned. Request 4 specifies data space (normally used), S5 speci-
fies instructicn space. Attempts to write Iin pure procedure result
in termination of the child, instead of going through or causing an
error for the parent.

TR gy




ool R N

o

A

e ——

PTRACE(VI) KS0S 9/29/80 PTRACE(VI)

SEE ALSO

8

The process’s system data 18 written, as it is read with request 3.
Only a few locations can be written in this way: the general regis-
ters, the floating point status and registers, and certain bits of

the processor status word.

The data argument is taken as a signal number and the child’s execu-
tion contimues as if it had incurred that signal. Normally the sig-
nal number will be either O to Indicate that the signal which caused
the stop should be ignored, or that value fetched out of the
process’s image indicating which signal caused the stop.

The traced process terminates.

As indicated, these calls (except for request 0) can be used only when
the subject process has stopped. The wait call is used to determine when
a process stops; in such a case the '‘termination’’ status returned by

wait has the value 0177 to indicate stoppage rather than genuine termina-
tion.

To forestall possible fraud, ptrace inhibits the set-user-id facility on

subsequent exec (II)
calls.

walt (II), signal (II), cdb (I)

DIAGNOSTICS
From assembler, the c~bit (errcr bit; is sct on errors; from C, -1 is
returned and errno has the error rode.

BUGS

KSO0S

The request 0 call should be able co specify signals which are to be
treated normally and not cause a stop. In this way, for example, pro-
grams with similated floating point (which use ‘‘illegal instruction’’
signals at a very high rate) could be efficiently debugged.

Also, it should be possible to stop a process on osccurrence of a system
call; in this way a completely controlled environment could be provided.

This call is not yet implemented.




READ(VI) KSO0S 12/9/80 READ(VI)

NAME
read ~ read from file

SYNOPSIS
(read = 3.)
(file descriptor in rQ)
sys read; buffer; nbytes

read(fildes, buffer, nbytes)
char *buffer;

DESCRIPTION
A file descriptor is a word returned from a successful open, creat, dup,
pipe, or port call. Buffer is the location of nbytes contiguous bytes
into which the input will be placed. It is not guaranteed that all
nbytes bytes will be read; for example if the file refers to a typewriter
at most one line will be returned. In any event the number of characters
read is returned (in r0).

If the returned value is 0, then end-of-file has been reached.

SEE ALSO
open (II), creat (II), dup (II), pipe (II)

DIAGNOSTICS
As mentioned, 0 is returned when the end of the file has been reached.
If the read was otherwise unsuccessful the error bit (e-bit) is set,
Many conditions can generate an error: physical I/0 errors, bad buffer
address, preposterous nbytes, file descriptor not that of an input file.
From C, a =1 return indicates the error.

KSOS




SEEK(VI) KSO0S 9/29/80 SEEK(VI)

NAME
seek - move read/write pointer

SYNOPSIS
(seek = 19.)
(file descriptor in r0)
sys seek; offset; ptrname

. seek(f{ldes, offset, ptrname)
E DESCRIPTION

ﬁ - The file descriptor refers to a file open for reading or writing. The
read (resp. write) pointer for the file is set as follows:

- if ptrname is 0, the pointer is set to offset.

if ptrname is 1, the pointer is set to its current location plus
offset.

o 2 s

if ptrname is 2, the pointer 1s set to the size of the file plus
offset.

if ptrname is 3, 4 or 5, the meaning is as above for 0, 1 and 2 except
that the offset is multiplied by 512.

- If ptrname is 0 or 3, offset is unsigned, otherwise it is signed.

SEE ALSO
open (II), creat (II)

DIAGNOSTICS
The error bit (c-bit) is set for an undefined file descriptor. From C, a

-1 return indicates an error.

KS0S




SETGID(VI) KS0S 9/29/80 SETGID(VI)

F . NAME
: setgld -~ set process group ID
E SYNOPSIS
- - (setgid = 46.; not in assembler)
5 (group ID in ro0)
X sys setgid
# -

setgid(gid)
2
ial
1 DESCRIPTION

The group ID of the current process is set to the argument. Both the
effective and the real group ID are set. This call 1s only permitted if
the argument is the real group ID.

A il Lk s by

SEE ALSO
getgid (II)

DIAGNOSTICS
Exrror bit (c-bit) 1s set as indicated; from C, a -1 value is returned.

- KS0s
This call is not yet implemented.

e o

>
e

—— e ———a . ea




T e St At WAL AR AT it . LB o e g =i s

' SETUID(VI) KS0S 9/29/80 SETUID(VI)

; NAME
p? - setuid - set process user ID

SYNOPSIS
(setuid = 23.)
| (user ID in r0)

sys setuid
= setuid(uid)
2 DESCRIPTION
- The user ID of the current process is set to the argument. Both the

effective and the real user ID are set. This call is only permitted {f
the argument is the real user ID.

SEE ALSO
getuid (II)

- DIAGNOSTICS
Error bit (c-bit) is set as indicated; from C, a -1 value is returned.

KS0S
This call is not yet implemented.

.~




SIGNAL(VI) KS0S 12/9/80 SIGNAL(VI)

- - NAME

- signal - catch or ignore signals
. SYNOPSIS

. ' - (signal = 48.)

- sys signal; sig; label
- (old value in r0)

‘l ‘ signal(sig, func)
int (*#func)( );

DESCRIPTION

A signal 1s generated by some abnormal event, initiated either by user at

a typewriter (quit, interrupt), by a program error (bus error, etc.), or
- by request of another program (ki{l1l). Normally all signals cause termi-
nation of the recefving process, but this call allows them either to be
ignored or to cause an interrupt to a specified location. Here 1is the
list of signals:

E 1 hangup
2 interrupt
- 3*  quit

4% jllegal instruction (not reset when caught)
5% trace trap (not reset when caught)
- 6* IOT instruction
7*  EMT instruction
8% floating point exception
9 ki1l (cannot be cauglit or ignored)
- 10* bus ¢rror
11* segreatation violation
12* bad argument to system call
- 13 write on a pipe with no one to read it

In the assembler call, if label is 0, the process {s terminated when the
signal occurs; this is the default action. If label is odd, the signal
is ignored. Any other even label specifies an address in the process
where an interrupt is simulated. An RTI or RTIT instruction will return
from the interrupt. Except as indicated, a signal is reset to O after
being caught. Thus if it i{s desired to catch every such signal, the
catching routine must issue another signal call.

In C, 1f func is 0, the default action for signal sig (termination) is
reinstated. If func is 1, the signal 1s ignored. If func is non-zero
and even, it is assumed to be the address of a function entry point.
When the signal occurs, the function will be called. A return from the
function will continue the process at the point it was interrupted. As
in the assembler call, signal must in general be called again to catch
subsequent signals.

When a caught signal occurs during certain system calls, the call ter-
minates prematurely. In particular this can occur during a read or write
on a slow device (like a typewriter; but not a file); and during sleep or




‘

i

it St i £7 s el i ey

SIGNAL(VI) KSOS 12/9/80 SIGNAL(VI)

wait. When such a signal occurs, the saved user status is arranged In

such a way that when return from the signal-catching takes place, it will

appear that the system call returned a characteristic error status. The =
user’s program may then, if {t wishes, re-execute the call.

The starred signals in the list above cause a core image if not caught or —
ignored.
The value of the call {s the old action defined for the signal. ~— ;
After a fork (II) the child inherits all signals. Exec (II) resets all
caught signals to default action.
“~y
SEE ALSO
kill (1), kill (II), ptrace (II), reset (III)
DIAGNOSTICS -
The error bit (c=-bit) 1s set if the given signal 1s out of range. 1In C,
a -1 indicates an ecror; 0O indicates success.
BUGS
KSO0S -
-




SLEEP(VI) KS0S 9/29/80 : SLEEP(VI)

NAME
sleep - stop execution for interval

SYNOPSIS
(sleep = 35.; not in assembler)
(seconds in rQ)
sys sleep

sleep(seconds)

DESCRIPTION
The current process is suspended from execution for the number of seconds
specified by the argument.

SEE ALSO
sleep 1)

DIAGNOSTICS

KS0s

APNE ade R ATE s st



R e B e

' STAT(VI) KS0S 12/9/80 STAT(VI)

NAME
stat ~ get file status

SYNOPSIS
. (stat = 18.)
sys stat; name; buf

stat(name, buf)
char *name;
struct inode *buf;

- DESCRIPTION
Name points to a null-terminated string naming a file; buf 1s the address
of a 36(10) byte buffer into which information is placed concerning the

. file. It is unnecessary to have any permissions at all with respect to
the file, but all directories leading to the file must be readable.
After stat, buf has the following structure (starting offset given in

bytes):
struct inode {
char wminor; /* 40: minor device of i-node */
- char major; /* +1: major device */
int  inumber; /* +2 %/
int flags; /% +4: see below */
char nlinks; /* +6: number of links to file */
- char uid; /* +7: user ID of owner */
char gid; /* +8: group ID of owner */
J char sizeO; /* +9: high byte of 24-bit size */
‘ - int sizel; /* +10: low word of 24-bit size */
iu addr(8]; /* +12: block mumbers or device number */
3 int actime(2]; /* +28: time of last access */
e~ int modtime{2]; /* #32: time of last modification */

};

The flags are as follows:

100000 {i~node is allocated |
060000 2~bit file type:
000000 plain file
040000 directory
.v? : 020000 character-type special file
2 060000 block-type special file.
: - 010000 1large file

‘} 004000 set user-ID on execution
002000 set group~ID on execution
{ . 001000 save text image after execution
i

000400 read (owner)
- 000200 write (owner)
g 000100 execute (owner)
- 000070 read, write, execute (group)
000007 read, write, execute (others)




-
- STAT(VI) KSOs 12/9/80 STAT(VI)
SEE ALSO
1s (1), fstat (II), fs (V)
DIAGNOSTICS
Error bit (c-bit) is set if the file cannot be found. From c, a ~1
| return indicates an error. -
KSOS
Not all fields are meaningful under KSOS. The stat call supplies zeroes -
in such fields, which are: nlinks, addr, and, actime.
P
r -
. A
3
]
]
-
|
k1 e
4
- -
!
|




| o _‘ Sy L .
e e TR Pl G DR

STIME(VI) KS0Ss 12/9/80 STIME(VI)

NAME
stime ~ set time

SYNOPSIS
(stime = 25.)
(time 1n r0-rl)
sys stime

stime(tbuf)
int tbuf(2];

DESCRIPTION
Stime sets the system’s {dea of the time and date. Time is measured in
seconds from 0000 GMT Jan 1 1970. Only the super-user may use this call.

SEE ALSO
date (1), time (II), ctime (III)

DIAGNOSTICS
Error bit (c~bit) set if user is not the super-user.

KS0s
This call has been subsumed by the NKSR. Attempted use under the UNIX
Emulator will result in an error.




STTY(VI) KSoS 12/9/80 STTY(VI)

NAME
- stty - set mode of typewriter

SYNOPSI1S
(stty = 31.)
(file descriptor in r0)
sys stty; arg

N - arg: .byte lspeed, ospeed; .byte erase, kill; mode

stty(fildes, arg)

. - struct {
- char ispeed, ospeed;
: char erase, kill;
int mode ;
- } *arg;
- DESCRIPTION

Stty sets mode tits and character speeds for the typewriter whose file
descriptor is passed in r0 (resp. is the first argument to the call).
First, the system delays until the typewriter is quiescent. The input
and output speeds are set from the first two bytes of the argument struc-
ture as indicated by the following table, which corresponds to the speeds
supported by the DH-1l interface. If DC-11, DL~11 or KL-11 interfaces

— are used, impossible speed changes are ignored.
0 (hang up dataphone)
- 1 50 baud
2 75 baud
3 110 baud
4 134.5 baud
- 5 150 baud
6 200 baud
7 300 baud
- 8 600 baud
9 1200 baud

10 1800 baud
11 2400 baud

- 12 4800 baud
. 13 9600 baud
14 External A
- 15 External B

In the current configuration, only 110, 150 and 300 baud are really sup~
ported on dial-up lines, in that the code conversion and line control
required for IBM 2741°‘s (134.5 baud) must be implemented by the user’s
program, and the half-duplex line discipline required for the 202 dataset
‘ (1200 baud) is not supplied.

! The next two characters of the argument structure specify the erase and
ki1l characters respectively. (Defaults are # and @.)




STTY(VI) KS0S 12/9/80 STTY(VI)

The mode contains several bits which determine the system’s treatment of
the typewriter: .

160000 Select one of two algorithms for backspace delays

040000 Select one of two algorithms for form-feed and vertical-tabd
delays

037000 Select one of four algorithms for carriage-~return delays

006000 Select one of four algorithms for tab delays

001400 Select one of four algorithms for new~line delays

000200 even parity allowed on input (e. g. for M37s)

000100 odd parity allowed on input —

000040 raw mode: wake up on all characters

000020 map CR into LF; echo LF or CR as CR-LF

000010 echo (full duplex) .

000004 map upper case to lower on input (e. g. M33)

000002 echo and print tabs as spaces

000001 hang up (remove ‘data terminal ready,’ lead CD) after last
close

Tne delay bits specify how long transmission stops to allow for mechani-
cal or other movement when certain characters are sent to the teraminal.
In all cases a value of 0 indicates no delay.

Backspace delays are currently ignored but will be used for Terminet
300°s. -~

If a formfeed/vertical tab delay is specified, it lasts for about 2
seconds. ~

Carriage—-return delay type 1 lasts about .08 secounds and is suitable for
the Terminet 300. Delay type 2 lasts about .16 seconds and is suitable
for the VT05 and the TI 700. Delay type 3 is unfmplemented and {s O.

New-1line delay type 1 is dependent on the current column and is tuned for
Teletype model 37°s. Type 2 is useful for the VT05 and is about .10
seconds. Type 3 is unimplemented and is O. -

Tab delay type 1 is dependent on the amount of movement and is tuned to
the Teletype model 37. Other types are unimplemented and are 0.

Characters with the wrong parity, as determined by bifs 200 and 100, are
ignored.

In raw mode, every character is passed immediately to the program without
waiting until a full line has been typed. No erase or kill processing 1s
done; the end-of-file character (EOT), the interrupt-~character (DEL) and
the quit character (FS) are not treated speciglly.

Mode 020 causes input carriage returns to be turned into new~lines: input
of either CR or LF causes LF~CR both to be echoed (used for GE TermiNet
300’s and other terminals without the newline function).




STTY(VI) KsSo0s 12/9/80 STTY(VI)

The hangup mode 0l causes the line to be disconnected when the last pro-
cess with the line open closes it or terminates. It is useful when a
port is to be used for some special purpose; for example, if it is asso-
ciated with an ACU used to place outgoing calls.

This system call is also used with certain special files other than type-
writers, but since none of them are part of the standard system the
specifications will not be given.

SEE ALSO
stty (I), gtty (II)

DIAGNOSTICS
The error bit (c-bit) is set if the file descriptor does not refer to a
typewriter. From C, a negative value indicates an error.

KSoSs
It is not possible to set speeds or parity from the UNIX Emulator. In no
case are more than two delay algorithms available. Hangup mode is not
supported.

J . . §




e

w4

SYNC(VI)

NAME

KS0S 9/29/80

sync - update super-block

SYNOPSIS

(sync = 36.; not in assembler)

8ys sync

DESCRIPTION

Sync causes all information in core memory that should be on disk to be
written out. This includes modified super blocks, modified i-nodes, and

delayed block 1/0.

It should be used by programs which examine a file system, for example

icheck, df, etc.

SEE ALSO

It 13 mandatory before a boot.

sync (VIII), update (VIII)

DIAGNOSTICS

KS0S

This call causes the Emulator Family buffer cache to be flushed.

—

SYNC(VI)




§ TIME(VI) KS0S 9/29/80 TIME(VI)

NAME J
- time - get date and time

SYNOPSIS
— (time = 13.)
8ys tipe

' time(tvec)
hae int tvec[2];

b DESCRIPTION
- Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in
seconds. From as, the high order word is in the r0 register and the low
order is in rl. From C, the user-supplied vector {s filled in.

SEE ALSO
: date (1), stime (II), ctime (III)
3 - DIAGNOSTICS
5 KSOS
? -




TR TR

TIMES(VI) K30S 9/29/80 TIMES(VI)

NAME
times -~ get process times

SYNOPSIS
(times = 43.; not in assembler)
sys tiwmwes; buffer

times (pbuffer)
struct tbuffer *buffer;

DESCRIPTION
Times recurns time-accounting information for the current process and for

the terminated child processes of the current process. All times are in
1/60 seconds.

After the call, the buffer will appear as follows:

struct tbuffer {

int proc_user_time;

int proc_system time;

int child user_time(2];
iat child_system time(2];

s

The children timas are the sum of the children’s process times and their
childven’s times.

SEE ALSO
time (1)

DIAGNOSTICS

BUGS
The process times should be 32 bits as well.

KS0S




UMOUNT(VI) K05 12/9/80 UMOUNT(VI)
NAME i
- umount - dismount file system
SYNOPSIS
- ) (unount = 22.)

8ys umount; speclal

DESCRIPTION
2 - Umount announces to the system that special file special is no longer to
X contain a removable file system. The file assoclated with the special

file reverts to 1ts ordinary interpretation; see mount (II).

SEE ALSO
umount (VII{i), mount (II)
DIAGNOSTICS
Error bit (c-bit) set if no file system was mounted on the special file
- or 1f there are still scrive files on the mounted file system.
KS0S

This call has been subsumed by the NKSR. Attempted use from the UNIX
Emulator will result in an error.

i —emiaaaa




e §

PRI

Pl et

-

UNLINK(VI) KSOS 12/9/80 UNLINK(VI)

NAME
unlink - remove directory entry

SYNOPSIS
(unliok = 10.)
sys unlink; name

unlink(name)
char *name;

DESCRIPTION
Name points to a null-terminated string. Unlink removes the entry for
the file pointed to by name from fts directory. If this entry was the
last link to the file, the contents of the file are freed and the file is
destroyed. 1f, however, the file was open in any process, the actual
destruction is delayed until it is closed, even though the directory
entry has disappeared.

SEE ALSO
rm (1), rmdir (I), link (II)

DIAGNOSTICS
The error bit (c~bit) is set to indicate that the file does not exist or
that its directory cannot be written. Write permission 1s not required
on the file itself. From C, 3 -1 return indicates an error.

Ksos




WAIT(VI) KSo0S 12/9/80 WAIT(VI)
NAME

wait -~ wait for process to terminate
SYNOPSIS

(wait = 7.)

8ys wait

(process ID in rQ)
(status in rl)

wait(status)
int *status;

DESCRIPTION
Wait causes its caller to delay until one of its child processes ter-
minates. If any child has died since the last wait, return is immediate;
if there are no children, return is immediate with the error bit set
(resp. with a value of -1 returned). The normal return yields the pro-
cess ID of the terminated child (in r0). In the case of several children
several wait calls are needed to learn of all the deaths. i

If no error is indicated on return, the rl high byte (resp. the high byte
- stored into status ) contains the low byte of the child process r0 (resp.
the argument of exit ) when it terminated. The rl (resp. status ) low
byte contains the termination status of the process. See signal (II) for
a list of termination statuses (signals); O status indicates normal ter-

-~ mination. A special status (0177) is returned for a stopped process
which has not terminated and can be restarted. See ptrace (II). If the
0200 bit of the termination status Is set, a core image of the process
-~ was produced by the system.
SEE ALSO
exit (II), fork (II), signal (II)
DIAGNOSTICS
The error bit (c-bit) is set if there are no children not previously
- waited for. From C, a returned value of -] indicates an error.
1 4

KS0S




WRITE(VI) KSOS 12/9/80 WRITZ(VI)

NAME
- write - write on a file

SYNOPSIS
- (write = 4.)
| (file descriptor in r0)
‘ sys write; buffer; nbytes

write(fildes, buffer, nbytes)
char *buffer;

AL R Aiaan 2 20 & A danks v s e A

- DESCRIPTION

A file descriptor is a word returaned from a successful open, creat, dap,
plpe, or port call.

. Buffer is the address of nbytes contiguous bytes which are written on the
. output file. The number of characters actually written is returned (in

r0). It should be regarded as an error if this is not the same as
§ - requested.

Writes which are multiples of 512 characters long and begin on a 512-byte
boundary in the file are more efficient than any others.

SEE ALSO
3 creat (I1), open (IL), pipe (II), eofp (II)

DIAGNOSTICS

The error bit (c-bit) is set on an error: bad descriptor, buffer address,
- or count; physical I/0 errors. From C, a returned value of -1 indicates
an error.

KS0S$







