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3.

Summary.

A method to calculate the electromagnetic scat-

tering properties of a cluster of spheres of arbitrary

radia and (possibly complex) refractive indexes is pro-

posed. The approach takes proper account of multiple

scattering eff'ects through an appropriate addition the-

orem for Vector Helmholt7 Harmonics which is preliminar-

ly formulated. No approximation is required but for the

truncation of the .multipolar expansion of the scattered

field. Group theory is also used to factorize the resul-

ting system of linear nonhomogeneous equations.

': e
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1. Introduction..

As is well known, the problem of the electromag-

netic scattering from irrcgularly shaped objects has not

been soved in general but from a conceptual point of view 2

For this reason this paper dels only with the scattering

from spherical objects or from objects composed of sphe-

rical, though not necessarily homogeneous scatterers. We

shall, in fact, introduce a model scatterer composed by

a cluster of spheres whose relative positions, rad ia and

(possibly complex) refractive indexes are assumed to be

known. We are able to describe the field scattered by such

an object in a rather simple way and to take account of

multiple scattering among the spheres in the cluster. It

will become apparent that such a model scatterer should

be suitable to approximate the scattering properties of

molecules, even the most asymmetrical ones.

In the course of our description we will make

large use of the vector salutions of Helmholtz equation

in spherical coor.jinates. Although these functions are

thoroughly described in the literature, the material is

rather scattered. Therefore, in the first few paragraphs,

we summarize the main properties of these Functions. Of

course our description does not pretend to be complete,

for it will be restricte'd to the topics of interest for

our purposes. Further, we shall give a detailed descrip-

tion of our model scatterer and discuss the techni'.-Cto

calculate the scattered field and reloted quantities.

I!



5.

2. The field equations.

Any theory of thi. ! lctromagnetic scattering

should start from Maxwell equations for stationary media,

which we shall rewrite here in gaussian units
3 ,4 )

C C 9

together with the constituti've equations of the medium

3 E , (I-Lc

In the following we shall deal with nonmagnetic 1)

and isotropic media and assume an harmonic time dependen-

ce of all fields so that, .9.

With these assumptions, equations (2-1a) and (2-ib) read

(LO

where k=WO/c is the magnitude of the propagation 'vector

and S

+I• -'-t

I!



6.

is the complex refractive index. Furthermore, eq. (2-ic)

becomes

Although we did not assume that the medium be homogeneous,

so that both V and A can depend on the coordinates, we

need not bother with thir frequency-dependence thanks to

the assumption of harmonic time-dependence, eq.(2-3), pro-

vided that the values of F and@ be those appropriate to

the frequency at hand.

It is now a simple matter to show that E and B

are the solutions of the equations
Vxgx E - I., -0 =(o {-1o

VX X

which are not decoupled on account of the assumed non-ho-

mogeneity of the medium.

3. The vector Helmholtz equation and its

solutions.

In order to discuss the structure of the solu-

tions of equations (2-7) let us consider first a homoge-

neous medi um. The above "bquations then become

(V' + K) -(3- 4,

(v + K") -o

A'
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with K =kn, i.e. both E and B should satisfy a vector

Helmholt: equation. This statement means that each of the

components of E and B is the solution of a corresponding

scalar Helmholtz equation. However this is in no way true

in any other system of coordinates: even in orthogonal

coordinates it is impossible to separate eqs. (3-1) into

three scalar equations each involving only one component

of the field ). It si therefore convenient to search for

general vector solutions of the Helmholtz equation

a. Hansen's vectors.

Let us consider the scalar Helmholtz equation

(v + K ) = o

and let 8 be a vector operator capable of acting on its

solutions,i'. Then w'e have

A A

i.e. for any vector operator such that s, (

a vector solution of Helmholtz equation 6 ) . Now two opera-

tors with this property are the gradient operatoriv ,

which is proportional to the linear momentum operator,?"--.V V

and the" angular momentum operator, _ . We have

then to search for, a third operator for, on general math'e-

matical grounds, lelmholtz equation shoui ld have three

linearly independent vector solutions for each value of

K. lo thi,. end let us recall that if A is a vector solu-

tion, also VXA is. Thus the only other independent solu-

II
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tion is 7Vx7JA . Ultimately, given any scalar solution of

Helmholtz equation, the three vector functions 
57

A 6-i ,t4 (3-4)

known in the literature as Hansen's vectors form a comple-

te set of vector solutions. The factor 1/K in the defini-

tion of N has been introduced so that

X M = N a- 5)

b. Irreducible spherical tensors.

Hansen's vectors are defined in any system of

coordinates and are therefore quite general. They do not

form, however, an ortogonal set for

L'M=0O M =0

but

and this may be trublesome in several applications. We

shall therefore introduce a new independent set of solu-

tions which, although defined only in spherical coordina-

tes, form a complete orthogonel set and have very useful

mathematical properties. To this end let us search for

the transformation properties of a vector field, F(x,y,z),

under infinitesimal rotations of the coordinate axes. As

is well known, the infinitesimal rotation operator is 8

where J is the angular momentum operator, so that %-'r

AZ

4
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Now, by rk'rking the transformation of the rectangular com-

ponents of F and comparing with eq. (3-6), one easily sees

that

= L +S - Y'x - +S

where S is a set of three 3x 3 matrices which represent

the intrinsic spin of the vector field 9 ). The simultane-
%2 A

ous eigenvectors of S and S can be shown to be
z

= (e, X '-±~+(±Z~ / (3 -7)

where e e and e are unit vectors along the x, y and
-hre _x , -Y--

z axes, respectively. It is apparent from the above equa-

tions that the intrinsic spin of any vector field is 1.

2
As the simultaneous eigenvectors of L and L in spheri-

cal coordinates are the well known spherical harmonics, YLM'

we can couple the Y's and the 's by means of the vector

coupling coefficients and get the simultaneous eigenvectors
2 2 2

of J, J, L and Sz

The vectors T'LLir) are the components of an irreducible

spherical tensor pf rank 21+1 and, under rotation of the

coordinate axes transform according tol1)

I" A(3) , H A
T T (IL (

"'J ti

while their parity is (-) . The triangular condition on

the Clebsch-Gordan coefficients, ,(1,L, J) i mposes that
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for each value of J there- exist only three mutually ortho-

gonal tensors, T TM  Now it is of immediate verifi-
-LL , -LLt"

cation that the vector functiuos

where fL is a spherical Bessel, Neumann or Hankel func-

tion, are solutions of the Helmholtz equation in spheri-

cal coordinates. They will be referred to in the follo-

wing as Vector Helmholtz Harmonics (VHH).

c. Vector Spherical Harmonics (VSH).

When one has to impose to the electromagnetic

field the customary boundary conditions at the surface

of a sphere, the VHH's are not the most useful set of

basis functions for T are neither tangent nor ortho-

gonal to the surface, whereas T LLis. We can, however,

take linear combinations of TL .1 which do are orthogo-

nal and tangent to the surface of the unit sphere. There-

forewe define

L, M
-~.+1 L~ TLL (-1)

A L TM ~ L4.TM b)AI

Li

The above funct ions, known in the I iterature as Vee'- C -

Spherical Harmonics, are orthogonal to each other andy

4t1
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when multiplied by FL(kr), Form a complete set of solu-

tiorns of the vector Helmholtz equation. Thir relation

to Hansen's M and N vectors in spherical coordinates is

given by the equations

We notice that the solenoidal character of M and of
LM

NLM , which is quite evident from the above equations,

allows to expand any solenoidal field, such as n 2 E and

B, in their terms only. In this case MLM , of parity
(_)L is said to represent a magnetic multipole of order

2 L , while N LM , of parity (-) L+, represents an electric

multipole of the same order. The relation between Hansen's

L vector and the VSH's is rather complicated and will,

however, never be used in our work.

4. An addition theorem for VHH's.

a. The addition theorem.

In the course of our work we shall need to re-

late to each other the VHH's centered at the eigin of two

mutually translated systems of spherical coordinates. To

do this we start from the addition theorem for scalar Helm-

holtz harmonics wchich we rewrite here in a form slightly

12)different from that reported by Nozavva

I

. . . . .I . . ."" "l~ L : L -- . iir -- -, . . . .. .. .: -'" . .. I I II I1| II .. . . . . ... . I , - .. . - ,



12.

where the quantities
A

with r' = r - R, are the matrix elements, in the angular

momentum representation of the free space propagator for

spherical waves. In eq. (4-1) and (4-2) when f L=  L 't-jl

and 9L'= jL' ' but when fl= h L

and the quantities

13)
are the well known Gaunt integrals . Now we recall that

a VHH is defined as
hAVAL Lk1T

C, L,; f/) r) L r

so that we can substitute eq. (4-1)into eq. (4-4) to get

APA () ZC (4 L,T -/'1-)Z . ~L ML+/ (-R

which can be written as

j .4
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through the use of the inverse to eq. (3-8). If we now

put M'= M"-/L and

we get

which is the required addition theorem 14).

Equation (4-5) can be specialized to Hansen's

M and N vectors through the use of the relations11)

-.L M ,rrF7D-7 P1L

Indeed we have for MLM:

3ef
TI.U44 LL e D"4 I

(4-6)
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whence, on account of tho divergenceless character of MLM

the recursion relation follows

which can also be proved by direct calculation making use

of the recursion properties of the Clebsch-Gordan coeffi-

cients. With the help of equation (4-7), eq. (4-6) can be

put into the form15)

~ ~i[L4.iL,,krl'') + oe'L t4L,.I(f (h-8)

where we put

(:L5 D ,. " OL'-'+4, I L

The functions M and N are identical to M and N, respecti-

vely, but for th' substitution of gL to fL" In the follo-

wing the quantit,'es --d and 6 will be indicated by le,,

and CJLL ,respectively, when contains hX and by

and Cem ,respectively when contains j, .

b. Matrix elements of the dyadic Green

funct i on.

In this section we will show that the quantities

are the matri w elements of the dyadic Green function

for free space propagation of spherical vector waves. To

this end we recall that *this fu~ction is the solution of

the inhomrogeneous vector HIelmholtz equation

( "+ k')G(r,r,) . d S(.-r'), . .

*!
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and has the Form

where j is the unit dyadic. If for greater generality we

consider two points in space at Rw and Rp and put rrt

Irp'-_ r ,eq. (4-10) can be rewritten as

G I r l C- r -tR l

with 'R,, ='R Neuman expansion of eq. (4-11) is

LLM

on the a-sumption thft ~- I, By assuming further

that .t<'R the addition theorem of eq.(4-1) can be ap-

p lied to 1L (k I-'l)YLQ.(r1 -S .A)

G QCA~rp - 4-01.1 '1 7- (Y,),.

where we expanded the unit dyadic in a spherical basis:

Now we recall that the spherical harmonics and the irredu-

cible spherical tensors are related through the equation U

so that eq. (4-12) can be rwritten as 9

L"~~~~_t/ enJ ^r)Ci J A 1
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which, through the position M m, M'-/ =m', takes the

final form

Eq. (4-13) shows that the quantities

are just the matrix elements of G with respect to VHH's

centered at different sites of space.

We want to remark that the same result would be obtained

if we assumed |f,-R )<Tl and/or ,'&>R A, but for that

the VHH's centered at R% would contain hL instead of jL

and G would contain j instead of h • Finally we
L'M'LM I

notice that the quantitiesdefined in eq. (4-14) are the

off diagonal(in the site indexes) elements of G, whereas

the quantities defined in eq. (4-5) are the corresponding

on diagonal elements.

5. Scattering from a radially symmetric

sphere.

The theory of electrowignetic scatterinj from

a homogeneous sphere is wel I known since the work 'of:'

Mic . In this section we will study the sc.tterinci

- - *1
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from a rad iolIy symmetrico sphere, i.e. with n-n(r), of

radius b, with the twofold purpose of finding the general

expression of E and B within an inhomogeneous medium and

of defining several quantities which will be useful for

subsequent work.

a. The electromagnetic field within a
18)

radially symmetric sphere

As shown in section 2 the E and B fields within

a nonhomogeneous medium should satisfy eqs. (2-7) "However

in such a medium V. # so that eq. (2-7a) cannot be

cast in Helmholtz form. It is therefore more convenient

to search for solutions of the Maxwell equations. To this

end we expand E and B in a series of VSH's

.[1 ,, ()XL r~) + -DL11 - VX (-d
Lh

S=Ls + 54)

which satisfy eqs. (2-6) and (2-1d) , respectively, for

any choice of the radial functions RL and S These latter

are determined by substitution of eqs. (5-1) into the Max-

well CquaItions (2-4). Indeed, it is easily seen that the

radial functions should be the solutions, regular at r-O,

of the equation.

Jj' L(L+() ~ }f 1 () 0( O)

r tna r 4A

I. :"t



18.

respectively. The expansion coefficients CLM and DLM are

then determined by the requirement that E and B undergo

the appropriate boundary conditions at the surface of the

medium.

b. The incident plane wave.

We assume that the field inciding on the sphe-

re has the form of a circularly polarized plane wave of

wavevector k:

where eI and e2 are unit vectors orthogonal to k and to

each other and i:ti according to the polarization. The

direction of the propagation vector, k, is assumed to

be quite general. Now, if we assume for E Iand BI the

expansions in VSH's

2 ~ ~ ~ ~ Y x.h 17~~ Lk~ L()+% Kj(k') Kh

a straightforward but lenghty calculation shows that
3 )

Thus the expansion of the incident wave in VSti's is

g LL ~ I l L L l
LH-
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where

contains the dependence on the direction of k.

c. The scattered field.

The only ingredient we need to solve our scat-

tering problem is the scattered field which we assume in

the form

(,% V~(~L ,,(, '~f

z.) +' AIbkrLL 14 ViL (1') X &M (I-

where the Hankef functions of the first kind, h L(kr), en-

sure the correct behavior of the field at infinity: eqs.

(5-6), indeed, contain only outgoing spherical waves.

Now we recall that, at the surface of the sphere, the

tangenti al components of E and B should be continuous

as well as the radial component of B, while the radial

component of E should satisfy

EA A

where the index I refers to the interior of the sphere.

'1,"
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By imposing "the above boundary conditions we get, fcr

each L,M, six equations among which CLM and D , the

coefficients of the internal field, are easily elimina-

ted. The remaining equations then yield for A LM and

B the equations

J LM tJ L (kr) r 'ZLL. (rj .(J r))1
ALPI =W LM er - = -w7 s-Lf)

IL T r RA rljr) r. ,

LLkr) (r ~ -S(LMt -Okr))J

I- r (WLr4L S(5-rS A rAb)) 'r

Equations (5-7) solve completely our problem since all

the quantities of interest can be expressed in terms of

the A and B coefficients. In particular the scattering,

absorption and total cross sections are given by

LI zA~L it+ I jIL1 
Z(_) [ t I-1 I) I ]  (-a)

where 04 de'notes the real part 3 ) . Note that for a sphere

the dependenec of the A's, B's and 6d'A on the polariza-

A

........ ~~~~- .* I i"ll-l 1,,11'
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tion index,, . However, we wilt see in the next section

that the cross section of a cluster of spheres can still

be cast in the form of eqs. (5-8), but with an actual de-

pendence on the polarization of the incident wave.

6. Scattering from a cluster of spheres.

As is well known, the scatterers in the most

common aerosols are far from spherical and their proper-

ties cannot be described by Mie theory but to low appro-

ximation. We shall, therefore, introduce a model scatte-

rer whose features allow to fit the properties even of

highly asymmetric objects, although their scattered field

can be calculated without too much computational effort.

We define, in fact, our model scatterer as a cluster of

N nonmagnetic spheres whose centres lie at Rt and whose

radia and (possibly complex and radially symmetric) re-

fractive indexes are be( and n. , respectively. The field

inciding on the cluster is assumed to be the plane wave

described by eqs. (5-4), while the scattered field will

be written as

V4IL
~~L~LM 1 L ...L11(" + At L -'

with rAr-,Rg, i.e. as a supe,,position or the fields

scatter-ed frm the siriglc spheres. The coefficients A~ LM

and , however, are not merely 9iven by eqs. (5-7)

IL14

A
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but are calculated so as to account for multiple scatte-

rings among the spheres. In other words, the field inci-

dent on the oi-th sphere is assumed to be that or the in-

coming plane wave ptis that previously scattered by all

other spheres. This effect is achieved by rewriting both

the incident and the scattered fields in terms of VSH's

centered at R through the addition theorem of sect. 4.

We get

' '(r) L )" +(x ( ) M r -,,

. , W + 4i. ) ' 5<L,, '),H
ALM Lfj.(r)LfW~j(krA iI~

and analogous equations for }j'an h fedwti

and ~ y. e f el wi hi

the o-th sphere is essumed in the form of eqs. (5-6)

with rL substituted to r.

Now, we, take the dot product of eqs. (6-2), (6-3) and

(-5-6) in turn with e(m),X( and x () and

get the radial and tangential components of the fields

at the surface of the -th sphere. I rpos i t i on of the

boundary condition.- and i ntegrat ion over the angies yieId

as

bo nd r co d ti n an n e r t o ove t an le yi l
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for each a,l,m, uix equations among which C st and D 01

the. coefficients of the internal field are easily elimi-

nated. This possibility allows to get, for, each ol,lm,

two equations involving only the A's and B's as unknowns

LM~ &Le~[] J LlL M AAL. +4 LDz ~iLk1}

=- - , .((.- t )

W
AA

In eqs. (6-4) we define

while o and are still defined as in eqs. (5-7)

with obvious change of the arguments. The system compo-

sed of equations (6-4) for all values oi 0),m, allows

a complete and unioue determination of the scattered

field and thus of all the quantities of interest. As

an example, to calculate the crogs sections of the cIus-

ter we rewrite the scattered field in terms of VSH's

centered at a single site,say Ro, through apliCation of

the addition theorem of sect. 4. We get for, the electric

field
ot 0L01

A
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with r,= - , and an analogous expression for

Now, by defining

h LI e

the scattered field can be written in the form of that

scattered by a single sphere, so that the cross sections

of the cluster are still given by eqs. (5-8) with A's

and B's substituted for A's and S's, respectively.

It is to be noted that, since the cluster lecks the sphe-

rical symmetry, the cross sections are actual ly dependent

on the polarization index,1 . Furthermore we notice that

the choice of the point Ro is quite arbitrary but that

according to sect. 4, eq. (6-6) is valid forrfo>

for any ( , i.e. in the region external to a sphere cen-

tered at R. and including the whole cluster. The radius

of this sphere can be minimized by choosing Eo at the

centre of mass of the cluster, but the choice is not cry-

tical for the scattered field is always observed at dis-

tonces larger than the size of the cluster.

I• p.

a.I

4 ..

,l..



25.

7. Convergency.

The method described in the preceding sections

does not require any approximation but for the multipo-

lar expansion of the scattered field, eqs. (6-1). It is

therefore of fundamental importance for, the feasibility

of the method itself to discuss the rate of convergence

of these expansions. To this end let us rewrite the sys-

tem of eqs. (6-4) matrixwise as

Equation (7-1) allows to identify the matrix on its left

hand side as the inverse of the electromagnetic T-matrix

2)
of the whole cluster . Of course it is not diagonal on

account of the lack of spherical symmetry of the cluster

as a whole. However, the matrices 9,1, . and 2K

have an interesting physical meaning of thir own and their

analical behavior determines the rate of convergency of

the scattered field, as we are going to discuss.

The diagonal metrices( and/ are the direct sum of the

rnat~r ices Wtand f" defined according to eqs. (5-7),

which account for the scattering power of the a -th sphe-

re in the absence of any other scatterer. Thu-sthe presen-

cc in the cluster of more than one scatterer is accounted

for not -only by the dL andjO/ withpi, but also by the

matr ices and S< wh i ch coup Iv to each other a I I the

A
* -
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spheres in the cluster. Indeed, as shown in sect. 4,qj,.

and,,L are the matrix elements of the free space dy-

adic Green function and thus describe the propagation to

sitect of the waves scattered by siteP . This remark ful-

ly justifies our previous statement that all multiple

scattering processes are accounted for in the present

theory.

As regards the rate of convergenncy, we remark

that it is expected to be fairly good even when the clus-

ter is not small in comparison with the incident wave-

lenght, provided kb,<<, l for any o. Under this condition,

A and4" decrease rapidly with increasing I so that

Sand are quite sufficient to describe the field

scattered by the 0(-th sphere in the absence of any other

scatterer, even when n. is not close to unity17,19).

The rate of convergence thus depends on the behaviour

oT ad Now, one easily sees from their de-

finition, that thir order of magnitude is determined by

the Gaunt integrals, 1) , and on the spherical Hankel

functions hX(kRi ). The 1 -integrals do not vanish only

for IL-eI.X L+t and decrease very rapidly with in-

creasing 20). Thus, although the imaginary part of

n .(kR A), tends to increase when )>Ilz , the even-

tual effect is to decrease the magnitude of both z- ,-

and , with increasing t,L and .This behaviou

is to be expected for, when the i ntersphere distanoe jrs

very large, the present theory should redutce to that, of

].'
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the scattering from N spherical scatterers without any

multiple scattering effect. As a consequence it is rea-

sonable to expect that our approach converge well by

truncating theexpansion, eqs. (6-1), of the scattered

field at L=LM= 3 . However, the order of the system (7-1)

is dM= 2N(LM+1) 2-2N, so that we have d3=30N, a very high

number even for small clusters. Nevertheless, if the

cluster posses symmetry properties, as is the case for

actual molecules, we shall use group theory to put the

system (7-1) in factorized form, as will be shown in the

next sections.

8. Symmetrization.

We assume that he cluster is left invariant

by the transformations of a groups of order 9. The ef-

fect of these transformations is to permute among them-

selves the spheres in the cluster but, in general, not

all the spheres are linked to each other by an operation

of 21). Therefore we partition the cluster into sets

of spheres which are transformed to each other by the

operations of the group. Of course this does not imply

a renumbering of the spheres but only that we associate

to each site index,01, the appropriate set index,-.

In order to get the system of eqs. (6-4) in

factor i zed form we have to expand both the inc ident and

the scattered field in terms of combinations of VSH's

transforming according to the rows of the irreducible

I.

.~. ~t.
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representation of . To this end we recall that, as

shown in sect. 3, the VSH's transform according to the
(L)

representation D Lof the Full rotation group. There-

fore, if S is in operation of such that

SR( - RP

with *( and in the some set, of course, and 0 is the

associated operator, thenf22)

provided S is a proper operation. When S is an improper

operation we must take account that f LX and Vx f LXM

have opposite parity, so that eq. (8 -1a) must be multi-

plied by (-)L and eq. (8-1b) by (-) L+ and the argument

of D(L) must be understood as the proper rotational part

of S. As a consequence, to get the symmetrized combina-

tions of VSH's we must apply the projection operators

.4
both to the magnetic and to the electric 2 -p oles. There-

fore we write

-NA NL M

-NL C V A
for the comb i n. d i ons of magnet i c and vI ect' i c mu It i po I s

centered at sites of th, d-th set. The superscri i t s P,p

indicate thit the combinotion belon- to the p-th row

: " - o I
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of the 0-th irreducible representation and the index N

recalls, when appropriate, that one can get more than

one set of basis functions for a given L. Now the field

scattered by the cluster can be written as

E~4 L 1 4 -. N L N o 1~ I - tIL -h

with a simi lar expression for 19"'. We notice that we

work with unitary irreducible representations, as shown

by the structure of the projection operators, eq. (8-2),

and the coefficients oLj and h1,5 have the property

We have now to decompose the incident field into parts

belonging to the rows of the irreducible representations

of . To do this we use the completeness property23)

and write

W ( j1' (r) LA,( ) 4" 
.AE = W r)~XL(E)-~ V~jL(kr) )-LN&M)J

I~.H. I.. -kVJ(.) .()(-

to LH

where
(0)

j~A,

'CL 1404 
-- L I
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The analogous equation f'ril6i is easily obtained through

the relation
i (L4) = (I

The field within the spheres need not be symmetrized for

reasons that will become apparent later. The internal

field is therefore still given by

E [" ' A A j(,.tb)
[D's w-LSL(r)XLM(td) + C 'R I LHk 4

At this stage we can write the system for the coeffici-

ents d"L and A""r through the same procedure we used

in sect. 6. We rewrite eq. (8-4) and (8-6) in terms of

VSH's centered at the site of belonging to the .r-th set

by means of the addition theorem of sect. 4. Then we dot

multiply the resulting equations, as well as equations

(8-8)in turn by ^ and and

get the radial and the tangential components of the fields.

Imposition of the boundary conditions and integration

over the angle yield, for each V',po , six equations

anong which C and DL , the coefficients of the in-

ternal field can be easily eliminated. This circumstance

on one hand clarifies the inessentiality of the symmetri-

zation of the internal F;c d, on the other hand yieldo,

for each 'Ipd , two equations involving only the J16 and

the as unknowns:
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-r~~~~I h hi14I1LMJY

Rerl N'N' LA'

L r Per No a N =

It may see.n that the system of equations (8-9) solve our

problem, but, apart from its rather asymmetrical form,

it is still not completely factorized. However we remark

that the spheres within a given set are identical to each

other so that andto do not actually depend on the

site index, cbut rather by the set indexr. Therefore we

can multiply eq. (8-9a) by(&?) and eq. (8-9b) by(J,)\

and sum over the c's belonging to o- and over m. The or-

thogonality relations, eqs. (8-5), then yield for each

9, pT , the equations

II

-a
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where, for the sake of semplicity, we put rz(T,l,n),

s1 (",L,N), r'(ToI,n'), s' (,L,N') and define

CISV

~~pn ~ IL." NAIL (4b

with an obvious meaning of the parameters e,m. The quan-

tities and are identical to

and 14(v-,e),respectivelybut for the mutual exchange of

the a's with the b's. Moreover

MH I H H4e

LN,4 La H - H

We remark that on the left hand side of eqs. (8-10) and

(8-11) the superscript p on and is missing.

As will be shown later, these quantities are actually

independent of the row index, p, which has accordingly

been dropped. Anyway the systems of equations (8-10)

solve completely our scattering problem. Indeed, direct

comparison of eqs. (6-1) with eqs. (--4) yields

Ot of4 ~ ?00 3r

Threfore o I I the propert i es of interest can be expr'ssed

in terms of I and Pr , the coefficients of

the symmetrized expansion of the scattered field.

• _ .. . ' ..2 - . .." " : - -
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9. Discussion.

The consequences of the factorization effected

by group theory can be better discussed if we write the

system with a given V,p in matrix form:

~ JL goo

As equation (9-1) has the same overall structure of eq.

(7-1), the matrix on its left is still the inverse of the

electromagnetic T-matrix for the whole cluster, or better

that part of the inverse T-matrix which belongs to the

V-th irreducible representation ofi. This means that,

although the lack of spherical symmetry does not allow

to get a diagonal T-matrix, nevertheless group theory

effects the decomposition of the whole scattering pro-

cess into modes of scattering belonging to the irreduci-

ble representations of . The dependence on the row index

of the inhomogeneity of eq. (9-1) forces us to solve al l

the systems arising from the factorization procedure, in

contrast to the case of secular determinants in which

one need solve only one system per representation.

However, as explicitly indicated by the om1vsion of the

superscript p, the T-matr~jx for the O-th mode of scat-

tering does not depend on p, as we shall show presently.

The p- i ndependence of R and jf fol lows front the '(

nition of their matrix elements, eq. (5-7). In turn tile
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elments of the matrices and

are the symmetrized counterparts of the quantities

and , which, as shown in sect. 4b, are the matrix

elements of the free space dyadic Green function in the

site and angular momentum representation. The p-indepen-

dence of andc'(f ) is then a direct

consequence of the inveriance of the Green function under

the symmetry operations. Therefore the whole T-matrix for

the V-th mode of scattering turns out to be independent

of the row index p. This circumstance greatly reduces

the computational work in the case of multidimensional

representations. However, we remark that the extent of

the factorization cannot be stated in general. In fact

it depends not only on the number of L-values included

in the multipolar expansion of the fields and on the

number of spheres in the cluster, but also on the struc-

ture of the symmetry group. The effect of the factori-

zation can thus be illustrated only through examles.

Table I reports the order of the systems to be solved

for a cluster of 5 spheres with point group Td (the CH 4

molecule and the SO + ion have just this structure).
4

Although tab le I con-, iders the case in which terms up

to [-z4 are included in the expansion of the scattered

field, front the disctussion of sect. 7 we expect that

terms tip to L 3 irv sufficient to qet fairly converged

valtIs of th FiCIld. The usefulnCS of group theroy re-

quires rio 'turthor conmt,nit.

• , . + +
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TABLE I

LM  1 2 3 4
M

A 1 2 6 10
I

A 1 2 6 10

E 2 8 12 20

F 4 10 19 30

F2  4 10 19 30

u 30 80 150 240

Table caption

Dimension of the symmetrized and of the un-

symmetrized systems for LM up to 4 for a cluster of 5

spheres with point group T The entry U means unsym-

metrized while the other entries indicate the irredu-

cible representations in the notation of ref. 25.

-- Mau.
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Appendi\ A

The program SCVSFI: a user's gide.

This appendiN is meant to be a user's guide to

SCVSH, a program designed to generate symmetry adapted

combinations oF Vector Spherical Harmonics and to decom-

pose a given VSH into parts belonging to the rows of the

irreducible representations of a point group . The re-

levant formuias are reported in sect. 8 of the main text.

Here we describe the input quantities and the line of

operation of the soubroutines.

Al. Input data.

All the input data are read in the main program.

Their sequence and FORMATS are as Follows.

CARD I (3A4,8X,315)

IDSTR, IDG,NOPS,NIUV,NREP

IDSTR The name identifying the structure of the

cluster.

IDG The name of the symmetry group,.

NOPS Number of operations in u

NINV Number of pure rotations in

NREP Number of the irreducible representations.

CARD 2 (1615)

IDREP(NP),NDII.1(NP)

IDREP Norme of the NP-th irreducible renresentA i~m.

NDIM Diincision of 1he NP-th i1',reduc i b l repre1en--

, - -------- '
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tation of .

CARD 3 (SFIO.7)

DDN (NP,NR,NCOL)

DON Matrix elements of the first row of the NP-th

irreducible representation. The index NR indi-

cates the group operation and NCOL the column.

CARD 4 (IX,A4,5X,F3.O,3X, F4.3,3FI0.7)

I D, OM, EGA,X,Y, Z

ID Name of the operation.

OMEGA Angle of rotation in the form X:kOM/EGA

X,Y,Z Direction cosines of the axis of rotation. The

program checks the relation
x2 +y 2+Z2 =

CARD 5 (1615)

LMlIN, LMAX,NATOM,NFST,NLST

LMINLMAX Minimun and maximum value of L of the

VSH's to be projected.

NATM Number of sites in the set

NFST,NLST First and last site at which are centered

the VSH's to be projected

CARD 6 (2(3FI0.7,15,5X))

R(I ,NS),NSITE(NS)

R x,y, and z coordinates of the site NS

NSITE Number of the site in the cluster. In the main

text this is indicated by 4.

CARD 7 (1615)

NGO

,A
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If NGO=O the program proceeds to the projec-

tion of the VSH's included in the multipolar

expansion of the plane wave. If NGO#O the

program assumes that it is equal to the num-

ber of sites in the next set. In this latter

case the program reads a new set of cards 5

and 6.

A2. Description of the subroutines.

In this section we describe the subroutines

and functions called by the program and give a brief

outline of their mode of operation.

SUBROUTINE PRMUTE

This subroutine performs the permutations in-

duced on the sites of a given set by the operations of

According to the ma;n text, indeed,

S R = R= H

where S is an operation of which for the present pur-

poses is represented by a 3x3 matrix. In the preser.t

prograi the elements of S are expressed directly in

terms of the angle of rotation, 1 , and of the direc-

tion cosines of the axis, according to the for-

mu I as

4, X + (i-), 1  641=--,,. ,

"U V L-C-
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These ForMulas can be proved by expressing the matrix

elements of S by means of the Caylcy-Kleir; parameters

as discussed below

SUBROUTINE PRJECT

This subroutine uses the projection operator-s

of eq. (8-2), to compute the coefficients of the symme-

trized combinations of magnetic and electric multipoles

included in the expansion of the scattered field. Its

main ingredient is the function DL described below.

The coefficients of each combination are stored in the

(complex) vector COF.

FUNCTION DL

This complex function computes the elements,
(L) e ix of the operation S. Instead of

using the usual Form of these elements in terms of Eu-

ler angles we preferred an expression in terms of w

Indeed, according to Hammermesh one has25)

, J IL -M)! (L+ H,)! (.-
+ (L-

where a. and b are the Gay I ey-Klein parametcrs of the

rotation, i.e. the elements of D(2)

I'D1 A 6

C'A
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D(L)

To compute these quantiti,'-es we recal I that D W are

the matrix elements of the rotation operator

with respect to the eigenfunctions of the angular mo-

mentum, L

,bl (L "S) < LM'I ' t oUW L) IL,M> L joi(Ll'lC " I LN>

26)
.Now, it is well known that for L=1 one has

where , and Z are the Pauli spin matrices. Thus

whence

x I k!j - k

k

Now

so that

.

).czk. ,+(i....... -4 /01

A
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whence

The 3x3 matrix S can also be expressed in terms of a and

b according to the equation

; 4b-&c i(a.~e /~ ,.!S

where c=-b*, d-a*.

SUBROUTINE PRJPW

This subroutine projects all the vector sphe-

rical harmonics included in the multipolar expansion of
V

the incident plane wave. The relevant formulas are eq.

(8-2) and (8-.6) and the ma in ingredi ent is sti II the

function DL described above. I,

• I.
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SUBROUTINE ORTHOG

This subroutine uses the Grahm-Schmidt pro-

cedure 2 7 ) to outhogonalize to each other the combina-

tions generated by PRJCT. A control is built in to re-

tain only the linearly independent combinations which

are also normalized to unity.

A3. Output quantities.

The output of the program CSVSH consists of

three parts. The First part reproduces the names of the

operations of and the corresponding parameters 43, /,

described above. Furthermore, the permutations induced

on the sites of a given set by the operations of

are also printed.

The second part of the output gives the coefficients

of the independent combinations of magnetic and elec-

tric multipoles cenctered at the sites of the given set.

The third part gives the projection of the magnetic and

of the electric multipoles included in the expansion of

the incident plane wave.

In the following pages, after the references, a list

of the pro qam is included to lhether with the input data.

for a set of six sites at the vertices of on hexag9on

of Coil) with point qroup

(stru titi e oF 6 6
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