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Summary. .

A method to calculate the electromagnetic scat-
tering properties of a cluster of spheres of arbitrary
radia and (possibly conplex) refractive indexes is pro-
posed. The approach takes proper account of multiple
scattering effects through an appropriate addition the-
orem for Vector Helmholtz Harmonics which is preliminar-
ly formulated. No approximation is required but for the
truncation of the multipolar expansion of the scattered

field. Group theory is also used to factorize the resul-

ting system of linear nonhomogeneous equations.




1. intro&uctionu

As is well known, the problem of the electromag-
netic scattering from irrcgularly shaped objects has not
been soved in general but from a conceptual point of view
For this reason this paper dels only wifh the scattering
from spherical objects or from objects composed of sphe-
rical, though not necessarily homogeneous scatterers. We

shall, in fact, introduce a mode! scatterer composed by

a cluster of spheres whose relative positions, radia and
(possibly complex) refractive indexes are assumed to be
known. We are able to describe the field scattered by such
an object in a rather simple way and to take account of
multiple scattering among the spheres in the cluster. It
will become apparent that such a model! scatterer shoufd
be suitable to approximate the scattering properties of
molecules, even the most asymmetrical ones.

In the course of our description we wil! make
large use of the vector salutions of Helmholtz equation
in spherical coorainates. Although these functions are
thoroughly described in the literature, the material is
rather scattered. Therefore, in the first few paragraphs,
we summarize the main properties of these functions. Of
course our description does not pretend to be complete,
for it will be réstrictdd to the topics of interest for
our purposes. Further, we shall give a detailed déscrip-
tion of our modc¢l scatterer and discuss the techni%“gwﬁo

calculate the scattecred ficld and related quantities.

1,2)




2. The field equations.
Any theory of the c¢loctromagnetic scattering

should start from Maxwell equations for stationary media,

which we shall rewrite here in gaussian unit53'4)
UxH = AT ¢ L4 D -4
£ cite 5 (L-4a)
UxE =-4 9B (1-4b)
=TT At
VOP;‘_ 4!17? (’-°4C)
VQ'E‘_' (¢) - (2’4&)
together with the constitutive equations of the medium
gg-z F 3 g (1-24a)
g :/‘.!-:l’ (4-2b)
j = o E " (f-2c¢)
~

In the following we shall deal with nonmagnetic (/l% 1)
and isotropic media and assume an harmonic time dependen-

ce of all fields so that, ¢.g.

E(L,t)= E(x) exp(-iwt) (2-3)
With these assumptions, equations (2-1a) and (2-1b) read
UxB=-ikWE (2- 4 a)
Txg=iks | (+-46)
where k=W/c is the magnitude of the propagation vector
and : "i“_,.‘
wtane v 4TAC] - 5) "
m -.-.-/u € + o ( )
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is the complex refractive index. Furthermore, cq. (2-1¢)

becomes

V.m'E = 0 . (2-6)

Although we did not assumec that the medium be homogeneous,
so that both g and & can depend on the coordinates, we
need not bother with thir frequency-dependence thanks to
the assumption of harmonic time-dependence, eq.(2-3), pro-
vided that the values of § and& be those appropriate to
the frequency at hand.

It is now a simple matter to show that E and B

are the solutions of the equations

VxVx E - Km*E=0 (2-7a)
Vxvx B - KW B=-ikValxE  (2-7))

which are not decoupled on account of the assumed non-ho-

mogeneity of the medium.

3. The vector Helmholtz equation and its
solutions.
In order to discuss the structure of the solu-
tions bf'equations (2-7) tet us consider first a homoge-

neous medium. The abave tquations then become

(v + kY E =0 (3-4a)

L)
[

(7 +KM 3 =0 A




with K = kn, i.e. both E and B should satisfy a vector
Helmholtz cquation. This statement means that each of the
components of E and B is the solution of a corresponding
scalar Helmholtz equation. However this is in no way true
in any other system of coordinates: even in orthogonal
coordinates it is impossible to separate eqs. (3-1) into
three scalar cquations each involving only one component
of the FieldS). It si therefore convenient to search for
general vector solutions of the Helmhqlt: equation

a. Hansen’s vectors.

Let us consider the scalar Helmholtz equation
(@' + kM b =0 (3-2) ,

and let § be a vector operator capable of acting on its :

solutions,'+. Then we have

@(vh KDY P = (7 K")g@ 3& + [é, v (3-3)

A
i.e. for any vector operator such that [,@, V’]:O, (.O\b is
a vector solution of Helmholt:z equation6 . Now two opera-
tors with this property are the gradient Opel*ator"v ’
which is proportional to the linear momentum opcr‘ator‘"'i)?--.iv,
and the: angular momentum operator :l:_:--(:_r:xv . We have
then to search for a third operator for, on general mathe-
matical grounds, Helmholtz cquation should have threce
lincarly indcpendent vector solutions for cach value of
K. To this end let us recall that if A is a vector solu-

tion, also ¥YxA is. Thus the only other independent solu-
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tion is UxvxA . Ultimately, given any scaldr solution of

Helmholtz equation, the threce vector functionss'7)
' s A Iy -
L=vy , M=LY , g=.R.ng_,~]b (3-4)
known in the literature as Hansen’s vectors form a comple-

te set of vector solutions. The factor 1/K in the defini-

tion of N has been introduced so that

th’l:ﬁ (3-5)

b. Irreducible spherical tensors.

Hansen’s vectors are defined in any system of
coordinates and are therefore quite general. They do not
form, however, an ortogonal! set for

L'M=o , M n=o

but

L-ndo
and this may be trublesome in several applications. We
shall therefore introduce a new independent set of solu-
tions which, although defined only in spherical coordina-
tes, form a complete orthogone¢!l set and have very useful
mathematical properties. To this end let us search for
tHe transformation propecrties of a vector ficld, £(x,y,z),
under infinitesimal rotations of the coordinate axes. As

8)

is well known, the infinitesimal rotation operator is

R(dw) = (4 + £ dz-])

where J is the angular momentum operator, so that "yt

El(x"a"u):.(d. *ids-i)f(x,‘a,z) (3-6) ;
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Now, by working the transformation of the rectangular com-
ponents of F and comparing with eq. (3-6), onec casily sees

that

e
N>
{Uad s

+ = —.i!:X'V +

j:

where S is a set of three 3x 3 matrices which represent

9)

the intrinsic spin of the vector field”’'. The simultane-
r2 A
ous eigenvectors of S~ and Sz can be shown to be

-— “ N °
fﬂ =+ ﬁ(ﬁxi‘ ‘Ey) $.=e, (3-7)

k4
where e gy and e, are unit vectors alona the x, y and

z axes, respectively. It is apparent from the above equa-
tions that the intrinsic spin of any vector field is 1.

As the simultaneous eigenvectors of L2 and L_ in spheri-

cal coordinates are the well known spherical harmonics, YLM'
we can couple the Y’s and the % ‘s by means of the vector

coupling coefficients and get the simultancous eigenvectors

of J2, Jz' L2 and 52 : '

T = ;_cu.z..J;-/,m/«)wi.(,‘c@w (2-8)

The vectors IJL(E) are the components of an irreducible
spherical tensor pf rank 2J+1 and, under rotation of the
coordinate axes transform according to 0)
4
M A, (T .M A
— r -
IIL (S) - ZH.; :DM'M v‘l']l_(ﬂ)) (3 9)
. . . . L . .
while their parity is (=) . The triangular condition on

the Clebsch-Gordan coefficients, A(I,L,J),imposcs that

-~ e e e s 8t bl
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for each value of J there exist only three mutually ortho-

M M

gonal tensors, T T . Now it is of

—LL * =-LLzl
cation that the vector functiuns

AT (0 = £ (k) TR

(3-40)

where FL is a spherical Bessel, Neumann or Hankel func-

tion, are solutions of the Helmholtz equation in spheri-

cal coordinates. They will be referred to in the follo-

wing as Vector Helmholtz Harmonics (VHH).

c. Vector Spherical Harmonics
When one has to impose to the
field the customary boundary conditions

of a sphere, the VHH’s are not the most

(VSH).
electromagnetic
at the surface

useful set of

basis functions for ITL*I are neither tangent nor ortho-

gonal to the surface, whereas T

take linear combinations of T which

LL is. We can, however,

do are orthogo-

immedi ate verifi-

—-LLt1l
nal and tangent to the surface of the unit sphere. There-

forg we define

A M. A
éLH () = - ILL(!:) (3,,“@)
v A L+l M L M _
xYI-N(S)= = yL+1 r!«l-l.u + v;,u.i I‘_L_( (3-44}%)

>

11

A ’_L ™ JT;I' M '
r/’(z,(m(f) SLet ~Liet ATt ILL-4 (3-MC) |

A

. o
The above functions, known in the literature as Veeton

Spherical Harmonics, arc orthogonal to cach other and,
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when multiplied by fL(kr), form a complete set of solu~
tions of the vector Helmholtz equation. Thir relation
to Hansen’s M and N vectors in spherical coordinates is

given by the equations
ﬁ"m(f)=‘ﬁ_(l“')?‘<l_n(f'} ) ELH(S);: “var“(lﬂ')%“ﬂ(i).

We notice that the solenoidal character of MLM and of

ELM « which is quite evident from the above equa;ions,

allows to expand any solenocidal field, such as n"E and

B, in their terms only. In this case ﬁLM , of parity

(-)L, is said to represent a magnetic multipole of order

ZL, while HLM , of parity (-)L+1, represents an electric '
multipole of the same order. The relation between Hansen'’s .

L vector and the VSH’s is rather complicated and will,

however, never be used in our work.

4. An addition theorem for VHH'’s.

a. The addition theorem.

In the course of our work we shall need to re-
late to each other the VHH’s centered at the eigin of two
mutually translated systems of spherical coordinates. To
do this we start from the addition theorem for scalar Helm- .

holtz harmonics wchich we rewrite here in a form slightly

different from that reported by NOzawa12

EUY.(D)=2 GyppR) 3L.(Lm Yol NE-)
U




where the quantities
G BV = lﬂTZ_ it )‘IX(LM ;LH) %(k’R) o (R) (4-2)

with r’/ = pr - R, are the matrix elements, in the angular
momentum represcntation of the free space propagator for
spherical waves. In eq. (4-1) and (4-2) when F JL 43 J}

and QL,= JL' , but when FL = L

"P)."’ﬁl; ’ %L':jl.' 0 <R
'%" §x o ‘j:."'t‘d V>R

and the quantities
I (CH;Ln) =JYL',‘H, Yon Tynon dfl (4-3)

are the well known Gaunt integralsls). Now we recall that

a VHH is defined as

A = f O Tr (8 =
=%C(4.L.J;-/,H+f~)fl_(“)ﬁn?u(f)E’_/, (4 -4

so that we can substitute eq. (4-1)into eq. (4-4) to get

MoA _ ‘o . - .
Ap (o) -‘;-C“:L'I ) /“'”*/ )Lz,.-w,(’l.'n"w*_-/‘( R)

?L,U\T')YL'MM (£ g_/‘

which can be written as




L"tﬂ(-qg).

) .
AJL(I)Z;C(LL!J['/‘ l"*/u)%}"(}v”l

Ty opom) gy (be) Tid (&)

through the use of the inverse to eq. (3-8). If we now
put M’= M”-/u and
nM'H ‘ol :
I’UJL =; C(L'LI;-/"H,V)GCH'Q/ILH'*/“(—'B’) C(llLl];‘/‘lH.“/‘)

we get

IS 2:3-_" %J‘LJL g T G (4-3)
14)

which is the required addition thcorem
Equation (4-5) can be specialized to Hansen'’s

11)

M and N vectors through the use of the relations

W = R X (8 =- £k T

o Jeed M Lt —H }
AN I iv"ﬁw = "Huﬂ {-4-1:1.1.-4 "sz ‘€.+4 '!'“-ﬂ :

lindced we have for M,y

M, (L)= - {
~Ln ) L‘Z'_" guLLL?L Lr' ) +

MM WH o
%L'U-“L gt ‘(Lf LL' * )+ gL‘L’MLL 3L’+.1(Lr’) E.'L'u(s,)}
(4-¢)
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whence, on account of the divergenceless character of MLM

the recursion relation follows

@[’E’ 9“.“_ LL [z-:_ qm.-l. L (4-7)

which can also be proved by direct calculation making use
of the recursion properties of the Clebsch-Gordan coeffi-

cients. With the help of equation (4-7), eq. (4-6) can be
15)

[(’JL'H'LM EL’N'(-I,) + 651.'"'4.“ &L'n'(rI;} (4-8)

put into the form

M, )= 5

u e
where we put o
1
VlL« g (4-9)
L‘u'Ln UYL ' Ln'c.n Uled, Lt
The functions E and N are identical to M and N, respecti-

vely, but for th: substitution of 9L to FL In the follo-

wing the quantit es hl and 63 will be indicated by 3{Unwn
and ﬂkﬁwtn ,respectively, when % contains h) and by jbn%u
and d&hun respectively when % contains j% .

b. Matrix elements of the dyadic Green

function.
In this section we will show that the quantities
arc the matriw clements of the dyadic Green function

for free space propagation of spherical vector waves. To

this end we recall that this fupction is the solution of

the inhomogencous vector Helmholtz cquation

(V"+ k‘)g(r,r’) = - 4w4ﬂ$(£-_’f') ) Yy

e Nt wl T

-~
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and has the form
eikl.’.‘*!,l

(4- 40)
X -1

Gr,xh=4

where {l is the unit dyadic. lF,for greater generality we
consider two points in space at Ra( and RP and put fd"«‘f"Bu

"5 IRP,cq (4-10) can be rewritten as
;Llrd-v' -’R“/;\

- T -Bepl

with Ry =Rp-Ry- Neuman expansion of eq. (4-11)

Gla,rh) = imik A 5 £ (ks =R gD, (e~ Rap) (kWYL ()

on the assumption that l_!’g-'B,‘/;l} rA. By assuming further

that .f¢.<'g the addition theorem of eq.(4-1) can be ap-
plied to u(Llfa-'Bxgl)Y‘_"(r&-’Bc;;):

G(&,,P) 47LLZ.ZZ J U\Y‘p)Y "("‘ E GL’ PLH(Rdﬂ)J (krd)Y'ho(v\()

(4-'11)

Gra,rp)= 1 e

/EL 13)

where we expanded the unit dyadic in a spherical basis:
s *
=2 (- =

Now we recall that the spherical harmonics and the irredu-

ciblc spherical tensors arc related through the equation

EpNd1=Z cquripmTE :

so that eq. (4-12) can be rwritten as '5.\:..{
Glxe,vd) = /.mLZ_Y%%JLLrp (r(&)c LT ;=ph)
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' Gcn'un(gﬁ%) C (l,ﬁ,J'; Vel H') ju(l‘fd).l—;::fffa)

which, through the position M i/l= m, M’7#==m', takes the
final form
M'M [}
i - ] [} M‘*A' o'/ h A
Glraxp)=2 2 % (ke T G, | Reg)jolkn) Ty Ga.
JwJ (4- 43)
Eq. (4-13) shows that the quantities
a2y =T CULT - wn)G (Rag) C L4, L T oo, )
g]'l!]l.(h‘%)zla @ ’ II,./‘I /' tl'h‘V'LNf/h __ﬁa C(; AI;:'/""/ “'/(: 44)

are just the matrix elements of G with respect to VHH's
centered at different sites of space.

We want to remark that the same result wouid be obtained
if we assumed 1!}-8,({,)$Y{', and/or “">,RW‘6' but for that
the VHH's centered at R would contain hL

and G,y y y
notice that the quantitiesdefined in eq. (4-14) are the

instead of jL
would contain j) instead of h Finally we

of f diagonal(in the site indexes) elements of G, whereas
the quantities defined in eq. (4-5) are the corresponding

on diagonal elements.

5. Scattering from a radially symmetric '
sphere. “

The theory of electromagnetic scattering from

a homogencous sphere is well known since the work ﬁﬂ_q
. 17 . . . L.
Mie ). In this section we will study the scattering
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from a radially syﬁmetrio sphere, i.e. with n=n(r), of
radius b, yith the twofold purposc of finding the general
expression of E and B within an inhomogencous medium and
of defining scveral quantities which will be useful for
subsequent work.

a. The electromagnetic field within a

radially symmetric sphere18).

As shown in section 2 the E and B fields within
a nonhomogeneous medium should satisfy eqs. (2-7). However
in such a medium V~§#—0 so that eq. (2-7a) cannot be
cast in Helmholtz form. It is therefore more convenient

to search for solutions of the Maxwell equations. To this

end we expand £ and B in a series of VSH's

E =§1[cw ‘R,_(r)i(,_“(?,) + 7%.3‘“ 4{ VX SL(')?SLn(f)] (5-4a)

B= I [P SO @)« S d v RUNXWEY]  (5-1B)
~ LM

which satisfy eqs. (2-6) and (2-1d) , respectively, for

any choice of the radial functions RL and SL. These latter

are determined by substitution of eqs. (5-1) into the Max-

well equations (2-4). Indced, it is casily scen that the

radial functions should be the solutions, regular at r=0,

of the cquations "

[ dz - _l.'_(..t;_t"_).. + L.zA\t](TRL(ﬂ) =0 - (S-Za)

dr? vi o
AP L) L dm A | o
[Avi viorm %l.r av - M](rs'-(')) o, (5-2b)
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respectively. The expansion coefficients CLM and DLM are
then determined by the requirement that E and B undergo
the appropriate boundary conditions at the surface of the
medium.

b. The incident plane wave.

We assume that the field inciding on the sphe-
re has the form of a circularly polarized plane wave of

wavevector k:

iky | (5-3a)

= M (& +ing,) et 'l-‘ (5-3b)
where & and e, are unit vectors orthogonal to k and to
each other and n::ti according to the polarization. The
direction of the propagation vector, k, is assumed to

be quite general. Now, if we assume for _E_Az and 542 the

expansions in YSH’s
£ -2 Lo+ by 910 K]
l: '§1 = %;1 [ L\}\.M jL(l‘V) %Lh(ﬁ) + &-“LH %VXJL(L‘) th(f)]
3)

a straightforward but lenghty calculation shows that

a,,l"_” = 7 &.L(EL""‘.”]Q!.)'?ST"(E)

‘ LﬂL" = A‘ G'h)LH
Thus the expansion of the incident wave in VQH s is

=7 W (h) k00X iy 9, (keiX, L] (s-ka)

(]
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‘,B A'l W\)Ln(k)[‘],_ lw XLH(T)-HQ VXJL(I“')XL,,(U] (5-4%)

where

Wﬂm(g):4viL(g4+iqg,)-')‘(t"(£) (5-5)

contains the dependence on the direction of k.

c. The scattered field.

The only ingredient we need to solve our scat-
tering problem is the scattered field which we assume in

the form

(A) Z_[ nLM /& U( )X 2in (¥) +’B,Im_ Vx A, (kr)XM(r)] (5-¢a)
"@(\‘;) = Z [,B-qtn'g‘t(l“)z.(w(f) ‘*’Am]u« ‘t V;J«L(l«) _Z(m([)] (5-6b)
L

where the Hankel functions of the first kind, hL(kr), en-
sure the corrcct behavior of the field at infinity: eqs.
(5-6), indecd, contain only outgoing spherical! waves.

Now we recall that, at thc surface of the sphere, the
tangential components of E and B should be continuous

as well as the radial component of B, while the radial

component of E should satisfy
:’ [ ~ - | . ?‘
mEyer = Eg X

where the index 1 refers to the interior of the spherc.




(]
[&]

By imposing the above boundary conditions we get, fer

each L,M, six equations among which CLM and DLM , the
coefficients of the internal ficeld, are easily elimina-
ted. The remaining equations then yield for AQLM and

Br'lLM the equations
' (k) d (rR.) - R F (kr))
Ay = ko) gy (7) - R, g7 (10 =
g = Vmem LR (R, )- R~i‘?(v1u“«)) r=b

W\ILH ML
(5-7a)

k) (v S ) - ms, 2 (ke
'B"l-n -_-A]w LM JL(L)dL( ) s M(TJL )) =
Aty & (e - misy s (e o)) vy

=y W nd. (5-7b)

Equations (5-7) solve completely our problem since all
the quantities of interest can be expressed in terms of
the A and B coefficients. In particular the scattering,

absorption and total cross sections are given by

(ae)_ _ymt ! ) -
o -T-%‘[mwl + 18ynl’] (5-3a)
b %
o’,f{ A;)-. 2’{_{ Z_ [ 2 - lA,'L“-MI"- ‘Bx,m +'{|"] (5-8b)
LM
7w 2 e (Agen *+ By (5-8¢)
whcrcé&, denotes the real pavt3). Note that for a spherc

the dependence of the A’s, B’s and 64 on the polariza-




{
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tion index,n . However, we will scec in the next section
that the cross section of a cluster of spheres can still
be cast in the form of e¢qs. (5-8), but with an actual de-

pendence on the polarization of the incident wave.

6. Scattering from a cluster of spheres.

As is well known, the scatterers in the most
common ac<rosols are far from spherical and their proper-
ties cannot be described by Mie theory but to low appro-
ximation. We shall, therefore, introduce a model scatte-
rer whose features allow to fit the properties even of
highly asymmetric objects, although their scattered field
can be calculated without too much computational effort.
We define, in fact, our model scatterer as a cluster of
N nonmagnetic spheres whose centres lie at R« and whose
radia and (possibly complex and radially symmetric) re-
fractive indexes are by and n, , respectively. The field
inciding on the cluster is assumed to be the plane wave
described by eqs. (5-4), while the scattered field will

be written

(M Z— Z. [A?LM !\L(kro‘),’ Lﬂ(“") + B -— VX/& Lfa)x“‘(\"‘\-‘ (6-4&,)

; glo) [/B A (Lm))(w(fd)‘p A

,1.—. LT vx/aL““”.SLMYu)] .((»‘“9)

with £u= =Ry, i.c. as a superposition of the ficlds

~

[
scattered fem the single spheres. The coefficients AQLH

and BHL"' however, arc not merely given by cqs. (5-7)




but are calculated so as to account for multiple scatte-

rings among the spheres. In other words, the field inci-
dent on the d-th sphere is assumed to be that of the in-
coming planc wave plus that previously scattered by all
other spheres. This effect is achicved by rewriting both
the incident and the scattered fields in terms of VSH'’s
centered at R, through the addition theorem of sect. 4.

We get

g‘,;"aéw L,,(i){%ﬂ[jfm Jo (Rra)XM,(raHo{,LHIVxJL(kQ)XLH,(r,ﬂ
““IL.Z..M»«'M [elh) X Fa)+ T £ 9o lbod Kl E)])] (622
£ 2'_{ Ay b (hr) X )+ B 4 T (b X ) +
%Z o (3, o) X G ¢ 3<L,,L,,..vXJL(kr,>xL,,,<x,,))

+ B (Kol Xow (B) + H 0 otk K Ga1)] (679

and analogous cquations For;§:2ndi§:[ The field within
the «-th sphere is essumed in the form of cqs. (5-6)
with r g, substituted to r.

Now, we: take the dot product of eqs. (6-2), (6-3) and
(5-6) in turn with f‘\(}:(g,‘)'ézu(fd) and gdx 52‘“(?‘,) and
get the radial and tangential components of the ficlds

at the surface of the d=th sphere. Imposition of the

boundary conditions and integration over the angles yiceld
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} for ecach a,l,m, six equations among which C;L” and Dth; j
the coefficients of the internal field arce casily elimi- ;

nated. This possibility allows to get, for each A,

two equations involving only fhc A’s and B’s as unknowns

5T (e tu S [T 30,0 M + I B -
=—%1_W L"(g)?:;,zﬂm (6-4a)

i %Z{ S.([ggugm.. [cf ] *j‘lhw)%{jm + 3<ZLH A‘:LHE =
== W, ”‘)Q‘)»M~ R

In eqs. (6-4) we define
ot «® o -
,P'Mv- th = SALM *1 il-.u« (¢-5b)

o o o
Q'q,l«.w = xl...uu 'H') gt«.u« (¢-6b)
while (R: and ao; are still defined as in eqs. (5-7)

with obvious change of the arguments. The system compo-

sed of equations (6-4) for all values of al,m, allows

a complete and uniocue determination of the scattered
field and thus of all the quantities of interest. As
an example, to calculate the crogs sections of the clus-
ter we rewrite the scattered field in terms of VSH'g
centered at a single site,say R,, through application of

the addition theorem of sect. 4. We get for the clectric

field ‘.
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+3§m§‘[a{f:m2(lu. m,(r,)+3 VxJ. 2U.))(M.(r,)]} (6-¢)

L"Lnk

with r,=r - R, , and an analogous expression for J:B(,:)

Now, by defining

“\LM' = Z—Z— [ Lm men E"Ln ”{umu]

Z I.A’uc ‘;(L'n'u' ¥ B“]L" Ium.n]

the scattered field can be written in the form of that
scattered by a single sphere, so that the cross sections
of the cluster are still given by eqs. (5-8) with s

and E’s substituted for A’s and B’s, respectively.

It is to be noted that, since the cluster lecks the sphe-
rical symmetry, the cross sections are actually dependent
on the polarization index,ﬁ . Furthermore we notice that
the choice of the point R, is quite arbitrary but that
according to sect. 4, eq. (6-6) is valid for I,;lg‘-'go)
for any ol , i.e. in the region external to a sphere cen-
tered at R, and including the whole cluster. The radius
of this sphere can be minimized by choosing R, at the
centre of mass of the cluster, but the choice is not cry-
tical for the scattered field is always observed at dis-

tances larger than the size of the cluster.

LY




7. Convergency.

The method described in the preceding sections
does not require any approximation but for the multipo-
lar expansion of the scattered field, eqs. (6-1). It is

therefore of fundamental importancce for the feasibility

of the mecthod itself to discuss the rate of convergence
of these expansions. To this end let us rewrite the sys-

tem of eqs. (6-4) matrixwise as

R+ H K |4
K g‘f"-o-s-{ B

~

(7-1)

i
1
O

Equation (7-1) allows to identify the matrix on its left
hand side as the inverse of the electromagnetic T-matrix

2)

of the whole cluster™’. Of course it is not diagonal on

account of the lack of spherical symmetry of the cluster

as a whole. However, the matrices &,J’,S-( and j{
. N T o~ "~

have an interesting physical meaning of thir own and their

analical bechavior determines the rate of convergency of
the scattered ficld, as we are going to discuss.

The diagonal motriccs@ andg’{ are the dircct sum of the
matrices Q.“ and 2’{“ defined according to egs. (5-7).,
which account for the scattering power of the & -th sphe-
re in the absence of any other scatterer. Thusthe prescen-
ce in the cluster of more than one scatterer is accounted
for not .only by the g}ﬁ ands"{‘6 withﬂ;‘d but also by the

matrices H and K which couple to cach other all the
P ~
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spheres in the cluster. Indeed, as shown in sect. 4,3{2“1
; andS(Zi" are the matrix elements of the free space dy-

; adic Green function and thus describe the propagation to

sitea of the waves scattered by site‘B . This remark ful-

ly justifiecs our previous statement that all multiple

o

scattering processes are accounted for in the present
theory.

As regards the rate of convergenncy, we remark
that it is expected to be fairly good even when the clus-
ter is not small in comparison with the incident wave-
lenght, provided kbd(<1 for any & . Under this condition,
(R: and ;f; decrease rapidly with increasing £ so that
R: and J: are quite sufficient to describe the field

¢ on e - v — ok A Ea s

scattered by the o -th sphere in the absence of any other
17,19)

scatterer, even when n_ is not close to unity

The rate of convergence thus depends on the behaviour

o « . .
°F$‘lfln and %&fm . Now, one easily sees from their de-
finition, that thir order of magnitude is determined by

the Gaunt integrals, I‘x , and on the spherical Hankel

functions h)(kR“(ﬂ)' The I) ~integrals do not vanish only

for IL-Lig¢X g L+28 and decrease very rapidly with in-

creasing '\ 20)

« Thus, although the imaginary part of

h') R n)\(kR"ﬁ)' tends to increase when k)LR,(/&, the even-

tual effect is to decrease the magnitude of both Hxln

and Skfw with increasing £,L and Ro\',B' This behaviour :

is to be expected for, when the intersphere distunﬁp‘jrq

very large, the present theory should reduce to that of
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the scattcri;g from N spherical scattcerers without any
multiple scattering cffect. As a consequence it is rea-
sonable to expect that our approach converge well by
truncating theexpansion, eqs. (6-1), of the scattered
field at L=LM=3. However, the order of the system (7-1)
is dM= 2N(LM+1)2-2N, so that we have d3=30N, a very high
number even for small clusters. Nevertheless, if the
cluster posses symmetry properties, as is the case for
actual molecules, we shall use group theory to put the

system (7-1) in factorized form, as will be shown in the

next sections.

8. Symmetrization.

We assume that he cluster is left invariant
by the transformations of a groupg of order g. The ef-
fect of these transformations is to permute among them-
selves the spheres in the cluster but, in general, not
all the spheres are linked to each other by an operation
of 21). Therefore we partition the cluster into sets
of spheres which are transformed to ecach other by the
operations of the group. Of course this docs not imply
a renumbering of the spheres but only that we associate
to each site index,®, the appropriate set index, 6 .

In order to get the system of cqs. (6-4) in
factorized Torm we have to expand both the incident and
the scattered ficld in terms of combinations of VSH’s

transforming according to the rows of the irreducible
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representation oF% . To this end we recall that, os
shown in scct. 3, the VSH’s transform according to the
representation D(L) of the Full rotation group. There-
fore, if S is an operation of such that

SR« = B.p
with & and[% in the same set, of course, and 0. is the

) S
associated operator, thenzz)

(9$r|.(k"')),5l.n(id\= Z_ ‘:_(l" D( ,(S)XL,,. -IA) (8-1a)
QVxﬁ(LQ)),SLn(Ee) fo(Lf‘b)'D( ,(S\X ,,:( (5) (8 4b)

provided S is a proper operation. When S is an improper

operation we must take account that FL‘(LM and VX foLM

have opposite parity, so that eq. (8-1a) must be multi-
+

plied by (-)L and eq. (8-1b) by (-)L 1 and the argument

of D(L) must be understood as the proper rotational part

of S. As a consequence, to get thec symmetrized combina-

tions of YSH’s we must apply the projection operators

Bry = /)L Dy ©) 0, (e-2)

both to the magnetic and to the electric Cl-polos. There-

fore we write

Al a"m A (ke) X, (2 (8- 3a)

oo HeN
and P"
9
K25 5 b 4 Ixh k)X, n00 (530
dev Hew
forr the (,umuu\nl ions of nmgnvtlc and clectric multipoles

centered at sites of the €-th set. The superseripts p,p

indicate that the combination belongs to the p-th row
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of the y-th irreducible representation and the index N

recalls, when appropriate, that one can get more than

one set of basis functions for a given L. Now the field
scattered by the cluster can be written as
a) b v)nr - 9}96' 9}-«'
E‘ [ ]
with a similar expression for L§(:’ . We notice that we

work with unitary irreducible representations, as shown

by the structure of the projection operators, eq. (8-2),
and the coefficients A’y and B'o have the property ;

Zf_(o.m, ) =S IR )8 5-5)

We ha\.e now to decompose the incident field into parts ‘
belonging to the rows of the irreducible representations

of% . To do this we use the completeness pr'Oper'ty23)
v
Py =4
2. By
and write

= 2, Wy T R [k, 9 0 ko Yoo ]

= Z. Z. W‘ILH(E) [ I:r + 1% LM] (8-¢6)

p LM

¢
whcrL L)

i "( 9/3)2_ D() (s)z_D( ‘ (s)J (L\)xw(r)_ .
Z’ Lnn' JL(L')ZSLM‘(!‘) 't(‘s.-,la]

pa dur § TRk X ) (3-7b)
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The analogous equation Fm»i@? is easily obtained through

the relation
«atd) )
L'B = E
oM =M 2y
The field within the spheres need not be symmetrized for
reasons that will become apparent later. The internal

field is therefore still given by

E:”g gz.[c;u. ’R:(Vd) %Lﬂ(id) ¥ %\."{D:;“‘!l: Ix s"(r“‘)‘(""(fdﬂ (e-8a)

()d _ - N
[ % [Din S0 Xenlte) + Chond VxR ()% W (Ea)] (s-2b)

At thls stage we can write the system for the coeffici-
ents A N’bL through the same procedure we used
in sect. 6. We rewrite eq. (8-4) and (8-6) in terms of
VSH’s centered at the site « belonging to the r-th set
by means of the addition theorem of sect. 4. Then we dot
multiply the resulting equations, as well as equations
(8-8), in turn by E*Yk(gd)'zh(g‘) and de%ﬁw(f‘l) and
get the radial and the tangential components of the fields.
Imposition of the boundary conditions and integration
over the angle yield, for each V,p,ot , six equations
among which Cﬂtn and D‘L“ , the coefficients of the in-
ternal fiold’can be ecasily eliminated. This circumstance
on one hand clarifies the inessentiality of the symmctri-
zation of the internal Ficld, on the other hand yiclds,

for cach V,p,d , two cquations involving only thL‘JO and

the Bé as unknowns: urE
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ZL;Z. {z"-“z-( Lt%ﬂk «F[(Ro] S'qug) NLn (A”ff
. Php  APT
%: AL“ bnu.u ﬁs'W'l- =

= - Zz W, LH(L) U\N'j&.l.h' -b"l d‘_"“a JLU‘I] (8-9a)

P 9br
EIZIET (ubabglAT% st B
JH e
*%ne,@(t.ui NLM “‘qm. =
= é% W m(g)[ﬂ..«i}.‘.w +7 dftu’-j{i;_w} (8-9b)

It may seen that the system of equations (8-9) solve our
probAIem, but, apart from its rather asynlmefrical form,

it is still not completely factorized. However we remark
that the spheres within a given set are identical to each
other so that @0:_ and J: do not actually depend on the
site index,® but rather by the sct index,;r. Therefore we
can multiply eq. (8-9a) by (O.\‘lm) and eq. (8-9b) by(b:','z:)*
and sum over the da’s belonging to o and over m. The or-

thogonality reclations, eqs. (8-5), then yield for cach

v,p, T . the equations

Z. [8\'5 [62'/51 + 3‘(‘-'5““)] (A?t 5 3(,.40(\ C) 'v\a’ :-? (8"00.)

Z_[S LT Hoted] 6374. A K ylen ‘JV - - ‘;’;, (2-4ob)




where, for the sake of semplicity, we put rz(e,l,n),
sg(‘t’,L,N), r's(s,1,n’"), s’z (,L,N’) and define

I, (m = Z,.Z' @ L, (8-41a)

Qun

5{“(’“‘ e)= A_Z( 9)") «L.‘LH "\’/5 (8-Mb)

NLHM

with an obvious meaning of the parameters e,m. The quan-

ey s v v
tltlesvj-(m(c) and g(m(e’m) are identical to 3-( (M)
and g'(m(\ﬂ.e),r-espectively, but for the mutual exchange of

the a’s with the b’s. Moreover
? é%‘%& W, LH(E) (a,"“’"z.. Luh'jla-.z.n' + A:tm "{A.Lu] (2- 124} |
73
% Al Z.Z.z. W LMU‘)( ) wa &“L":-t- Jl.uu 3&‘ n (8-42L) ‘
} LMt g M

We remark that on the left hand side of eqs. (8-10) and
) » v ..

(8-11) the superscript p on 3'{”5 and Kys is missing.
As will be shown later, these quantities are actually
independent of the row index, p, which has accordingly
been dropped. Anyway the systems of equations (8-10)
solve completely our scattering problem. Indeed, direct
comparison of eqs. (6-1) with cqs. (8-4) yields

M= L3 Al all, | Bn=2 2 LT R

Threfore all the propertices of intercest can be expressed

. ke vpT
in terms of 1\]"" and 65»,),“_ , the coefficients of

the symmetrized expansion of the scatterced ficld.




9. Discussion.

The consequences of the factorization effected
by group tHeory can be better discussed if we write the
system with a given p,p in matrix form:

R4 Hiwy Kiwo) A Pk
h ~ 2] op (9-4)
K I+ Hiw B a l

As equation (9-1) has the same overall structure of eq.
(7-1), the matrix on its left is still the inverse of the
electromagnetic T-matrix for the whole cluster, or better
that part of the inverse T-matrix which belongs to the
V-th irreducible representation cﬂ’%. This means that,
although the lack of spherical symmetry does not allow

to get a diagonal T-matrix, nevertheless group theory
effects the decomposition of the whole scattering pro-

cess into modes of scattering belonging to the irreduci-

ble representations ofg. The dependence on the row index

of the inhomogencity of eq. (9-1) forces us to solve all

the systems arising from the factorization procedure, in

contrast to the case of secular determinants in which

one nced solve only one system per representation.

However, as explicitly indicated by the omission of the ¢
superscript p, the T-matrjx for the V-th mode of scat-

tering does not depend on p, as we shall show presently.

The p-independence of’g@ and ,S,f follows from the vc'r")‘p\qu:l‘i—

nition of thcir matrix elements, cq. (5-7). In turn the
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elments of the matrices iﬁ'(“),gi.o(q,q(ik,e) and 3(9(2'\-.)
are the symmetrized counterparts of the quantitices 5{2‘;‘”
and 3(sz~ . which, as shown in sect. 4b, are the matrix
elements of the free space dyadic Green function in the
site and angular momentum representation. The p-indepen-
dence of 3‘('(\-),5‘('(5),3(%@!,&) and J('Zc,\u) is then a direct
consequence of the inveriance of the Green function under
the symmetry operations. Therefore the whole T-matrix for
the V-th mode of scattering turns out to be independent
of the row index p. This circumstance.gr‘eatly reduces
the computational work in the case of multidimensional
representations. However, we remark that the extent of
the factorization cannot be stated in general. In fact

it depends not only on the number of L-values included

in the multipolar expansion of the fields and on the
number of spheres in the cluster, but also on the struc-
turc of the symmetry group. The effect of the factori-
zation can thus be illustrated only through examles.
Table | reports the order of the systems to be solved

for a cluster of 5 spheres with point group Td (the CH

4

molecule and the SOZ+ ion have just this structure).
Although table | considers the case in which terms up
to L=4 are included in the expansion of the scattered
ficld, from the discussion of sect. 7 we expect that
terms up to L=3 arc sufficient to get fairly converged

valucs of the Ficld. The uscfulnes of group theroy re-

quires no further comment.
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TABLE |

LM 1 2 3 4

A1 1 2 6 10 i
A2 1 2 6 10 !
3 2 8 12 20

Fl' 4 10 19 30

F2 4 10 19 30

u 30 80 150 240

Table caption
Dimension of the symmetrized and of the un- 1
symmectrized systems for LM up to 4 for a cluster of §
spheres with point group Td. The entry U means unsym-

metrized while the other entries indicate the irredu-

cible representations in the notation of ref. 25.
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Appendix A

The program SCVSH: a4 user’s gide,

fhis appendin is meant to be a user’s guide to
SCVSH, a program designed to generate symmetry adapted
combinations of Vector Spherical Harmonics and to decom-
pose a given VSH into parts belonging to the rows of the
irreducible representations of a point group . The re-
levant formuias are reported in sect. & of the main text.
Here we describe the input quantities and the line of

operation of the soubroutines.

Al. Input data.
All the input data are read in the main program.
Their sequence and FORMATS are as follows.
CARD 1 (3A4,8X,319)
IDSTR, IDG,NOPS,NINV,NREP
IDSTR The name identifying the structure of the
cluster.
1DG The namc of the symmetry group,% .
NOPS Number of operations in % .
“NiINV  Number of pure rotations in % .

NREP Number of the irreducible representations,

CARD 2 (1615) \
TOREP(NP)  NDIM(NDP)
IDREP  Nuamce of the NP=th irreducible r‘(‘pr*vsvnta?),i\(_mr.

NDIM Dimension of the NP-th irpeducible repreven-

¢
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tation of
CARD 3 (8F10.7)
DDN (NP, NR,NCOL)

OON Matrix elements of the first row of the NP-th
irreducible representation. The index NR indi-
cates the group operation and NCOL the column,

CARD 4 (1X,A4,5X,F3.0,3X,F4.3,3F10.7)
1D0,0M,EGA,X,Y,Z

{0 Name of the operation.

OM,EGA Angle of rotation in the form A9*OM/EGA

X,Y,Z Direction cosines of the axis of rotation. The
program checks the relation

X2+Y2+7.2=1
CARD 5 (1615)
LMIN, LMAX ,NATOM,NFST,NLST

LMIN,LMAX Minimun and maximum value of L of the
VSH’s to be projected.

NATM Number of sites in the set

NFST,NLST First and last site at which are centered
the VSH’s to be projected

CARD 6  (2(3F10.7,15,5X))
R(1,NS),NSITE(NS)

R x,y, and z coordinates of the site NS

NSITE Number of the site in the cluster. In the main
text this is indicated by .

CARD 7 (1615)
NGO

L)
LA_—.‘Q-A‘ o w..f.i..-&.- o g dewm T e . et e e e
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I £ NGO=0 the program procceds to the projec-
tion of the VSH’s included in the multipolar
expansion of the planc wave. |f NGO#0 the

program assumes that it is equal to the num-
ber of sites in the next set. In this latter
case the program reads a new set of cards 5

and 6.

A2. Description of the subroutines.

In this section we describe the subroutines
and functions called by the program and give a brief
outline of their mode of operation.

SUBROUTINE PRMUTE

This subroutine performs the permutations in-
duced on the sites of a given set by the operations of

« According to the main text, indeed,
SRy = B./a
where S is an operation of'% which for the present pur-
poses is represented by a 3x3 matrix. In the presert
program the elements of S are expressed directly in
terms of the angle of rotation, &, and of the direc-

tion cosinces of the axis,xbﬁ,p , according to the for-

mulas
Suzl""' (1)) rw |, Sy X/A(i-mw)-v,s\kw ) Saa= v (4- Mu).../u/un(o

Sy )\/a(l..-mwhwn'«w, Sis :-./«" *({-/u‘) AW, 59,574)’(1‘ AW )= AAm W

Su=oAL- cuw)./. A ) Syy2mP (L ea0) + Ammid | Sqy= Ple (L- pY) G
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These Formulas can be proved by expressing the matrix
elements of S by mecans of the Cayicy-Klein parumutcr524)
as discussed below

SUBROUTINE PRJECT

This subroutine uses the projection operators
of eq. (8-2), to compute the coefficicnts of the symme-
trized combinations of magnetic and electric multipoles
included in the expansion of the scattered field. Its
main ingredient is the function DL described below.
The coefficients of each combination are stored in the
(complex) vector COF.

FUNCTION DL

This complex function computes the elements,
D&E&(S), of the matrix of the operation S. Instead of
using the usual form of these elements in terms of Eu-
ler angles we preferred an expression in terms OFLJ,&’

25)

/*,0. Indeed, according to Hammermesh one has

- N (L-my 1Y
Dlonca, b F Ll el
A 7 b (L= Wy L n- )

L+ M

vy -/‘(a*)L-M'../u L/«. (- b*)u'..nva.

where a.and b are the ayley-Klein parameters of the

1
rotation, i.c. the elements of 0(2) :

A, a b
D z: (‘b‘ (xﬁ)
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(L)

To compute these quantities we recall that DM M Ore

the matrix elements of the rotation operator

OS(D) = .txio(Ag_O-!_-)

with rcspect to the cigenfunctions of the angular mo-
mentum, L :

(u L (8)= (LM erpliw-LYIL,n> = expid L iw-L1Lh

26)

Now, it is well known that for L= one has
(%,H'IQ-J__I{-,">= %()0’,‘ +/u0"= +96’z)

where G’l' 6"3 and 0"2 are the Pauli spin matrices. Thus

Now

@zl‘:ﬂ , ﬁ%k+4=?

so that

Lok szlu
-5 (6 e (%) wai®l -
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whence
a-
b

!
g
1>
+
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e 7
el
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g
3
s
-

The 3x3 matrix S can also be expressed in terms of a and

b according to the equation
Ll cted-1') §(-a*+d-¥)  cd-ab
S = %(o.‘«-c"- B - dY) %(a"u"f di+b') -ilab+cd)
bd-ac iloc+ bd ad+be

where c=-b¥*, d=a¥*.

SUBROUTINE PRJPW

This subroutine projects all the vector sphe-
rical harmonics included in the multipolar expansion of
the incident plane wave. The relevant formulas are eq.
(8-2) and (8-6) and the main ingredient is still the

function DL described above.
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SUBROUT INE ORTHOG
This subroutine uses the Grahm-Schmidt pro-

27)

cedurc to octhogonalize to each other the combina-
tions generated by PRICT. A control is built in to re-
tain only the linecarly independent combinations which

are also normalized to unity.

A3. Qutput quantities.

The output of the program CSVSH consists of
three parts. The first part reproduces the names of the
operations of and the corresponding parametersdo,)bﬁ,v
described above. Furthermore, the permutations induced
on the sites of a given set by the operations of g
are also printed.

The second part of the output gives the coefficients

of the independent combinations of magnetic and elec-
tric multipoles cenctered at the sites of the given set.
The third part gives the projection of the magnetic and
of the electric multipoles included in the expansion of
the incident plane wave.

In the following pages, after the references, a list

of the progam is included toghether with the input data -

for a sct of six sites at the vertices of an hexagon

(structurce of COHG) with point group 06h'
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