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Abstract

This is an Liroductory survey of integer programming,

its theory, methodology and applications, for the Encvclooedia

of Statistical Sciences.



INTEGER PROGRAMZMIN

by

Egon Bales

A linear prograning* or nonlinear programing* prob-

lea whose variables are constrained to be integer, is

called a (linear or nonlinear) inteer nrozram. We will

consider here only the linear case, although there exist

extensions of the techniques to be discussed to nonlinear

integer programing.

The integer programing problem can be stated as

(p) minaczlAx Z b, x > 0, x integer, j Nr-N),

where A is a given mx matrix, c and b are given vectors of

conformable dimensions, N - tl,...,n), and x is a variable

n-vector. (P) is called a pure integer program if N1 - N,

a mixed integer roaram if 0 # N # I. Integer programing

is sometimes called discrete opntimization.

Scope and Applicability

Integer programing is the youngest branch of mathe-

matical programming: its development started in the second

half of the fifties. It is the most imedist and frequent-

ly needed extension of linear programing. Integrality

constraints arise naturally whenever fractional values for

the decision variables do not make sense. & case in point

is the fixed charge problem, in which a function of the

form C c(x ), with
t i

. ) fi + cizx if ix. > 0

c(xi) ia
'10 ifzi = 0
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is to be minimized subject to linear constraints. Such a

problem can be restated as an integer program whenever x is

bounded, by setting

c(xi) = clxi + f 7

Zi  uis, 7t 0 or I

where V is an upper bound on xi.

By far the most important special case of integer

programing is the 0-I Proiram-ing problem, in which the

integer-constrained variables are restricted to 0 or 1.

This is so because a host of frequently occurring non-

linearities, like logical alternatives, implications, pre-

cedeauce relations, etc., or combinations thereof, can be

formulated via 0-1 variables. For example, a condition like

Z >0- (f(x) _<a V f(x) b),

where a and b are positive scalars, x is a variable with a

known upper bound X, f(x) is a function whose value is

bounded from above by U > 0 and from below by L < 0, while

the symbol "v" means disjunction (logical "or"), can be

stated as

x < (l - 81)

f(z) <a + (U - a)6 1 + (U - a)62

f(x) >b + (L - b)6 + (L - b)(I - 62)

alp 62 - 0 or 1.

A linear program with "logical" conditions (conjunc-

tions, disjunctions and implications involving inequalities)

................................................................ ..... .. |



3

is called a distunctive program, since it is the presence

of disjunctions that makes these problems nonconvex. Dis-

junctive programing is coextensive with 0-1 programming.

Nonconvex optimization problems like bimatrix Sames,

separable programs involving piecewise linear nonconvex/

nonconcave functions, the general (nonconvex) quadratic

programmng problem, the linear complementarity problem

and any others can be stated as disjunctive or 0-I

programming problems.

A host of interesting combinatorial problems can be

fomulated as 0-1 programing problems defined on a graph.

The joint study of these problems by mathematical pro-

gramers and graph theorists has led to the recent develop-

met of a burgeoning area of research known as combinatorial

optimization. Some typical problems studied in this area

are: edlt matching and covering, vertex packing and

covering, clique co'ering, vertex coloring; set packing,

partitioning and covering; Euler tours; Hamiltonian cycles

(traveling salesman problem).

Applications of integer programing abound in all

spheres of decision making. Some typical real world prob-

lem areas where integer progrmin g is particularly useful

as a modeling tool, include: facility (plant, warehouse,

hospital, fire station) location; scheduling (of personnel,

production, other activities); roating (of trucks, tankers,

.5
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airplanes); design of comunication (road, pipeline, tele-

phone) networks; capital budgeting; project selection;

analysis of capital development alternatives. in statis-

tics, integer programing is useful, for instance, in ex-

perimencal design,* stratified sampling,* cluster analysis.*

Solution Methods: Overview

We denote by v(P), and call the value of (P), the op-

timal objective function value for (P). We denote by (L),

and call the linear progrming relaxation of (P), the

linear program obtained from (P) by removing the integral-

ity requirements.

Integer program are notoriously hard: in the language

of computational complexity theory, the general 0-1 pro-

gramIng problem, as well as most of its special cases, is

NP-complete. Polynomial time integer programming algor-

ithms do not exist. However, sometimes an integer program

can be solved as a linear program; i.e., solving the linear

progranga relaxation (L) of the integer program (P), one

obtains an integer solution. In particular, this is the

case when all basic solutions of (L) are integer. For an

arbitrary integer vector b, the constraint set Ax < b,

x > 0 is known (Roffman and Kruskal, 1958) to have only

integer basic solutions if and only if the matrix A is

totally unimodular (i.e., all nonsingular submatrices of A

have a determinant of I or -1).

• .. ... .... - - 1
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The bast known instances of total unimodularity are

the vertex-edge incidence matrices of directed graphs and

undirected bipartite graphs. As a consequence, shortest

path and network floc, problems on arbitrary directed

graphs, edge matching (or covering) and vertex packing (or

covering) problems on bipartite graphs, as well as other

integer programs whose constraint set is defined by the

incidence matrix of a directed graph or an undirected bi-

partite graph, with arbitrary integer right hand side, are

in fact linear programs.

Apart from this important but very spacial class of

problems, the difficulty in solving integer programs lies

in the nonconvexity of the feasible set, which makes it

impossible to establish global optimality from local condi-

tions. The two main approaches to solving integer programs

try to circumvent this difficulty in two different ways.

The first approach, which in the current state of the

art is the standard way of solving integer programs, is

enumerative (branch and bound, implicit enumeration). It

partitions the feasible set into successively smaller sub-

sets, calculates bounds on the objective function value over

each subset, and uses these bounds to discard certain sub-

sets from further consideration. The procedure ends when

each subset has either produced a feasible solution, or

was shown to contain no better solution than the one already

$ .' .

-- ~ *.~
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in hand. The best solution found during the procedure is a

global optimum. Two early prototypes of this approach are

due to Land and Doig (1960) and Bales (1963, English ver-

sion 1965).

The second approach, known as the cutting plane method,

is a convexification procedure: it approximates the convex

hull of the set F of feasible integer points, by a sequence

of inequalities Chat cut off (hence the term "cutting

planes") parts of the linear programming polyhedron, with-

out removing any point of F. When sufficient inequalities

have been generated to cut off every fractional point

better than the integer opti-a, then the latter is found

as an optimal solution to the linear program (L) amended

with the cutting planes. The first finitely convergent

procedure of this type is due to Gomory (1958).

Depending on the type of techniques used to describe

the convex hull of F and generate cutting planes, one can

distinguish three main directions in this area. The first

one uses algebraic methods, like modular arithmetic and

group theory. Its key concept is that of subadditive

functions. It is sometimes called the algebraic or group

theoretic approach. The second one uses convexity, polar-

ity, propositional calculus. Its main thrust comes from

looking at the 0-I programming problem as a disjunctive

program. It is known as the convex analysis/disjunctive

- - *
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programing approach. Finally, the third direction applies

to combinatorial programming problems, and it combines

graph theory and matroid theory with mathematical pro-

grm Ing. It is sometimes called polyhedral combinetorics.

Besides these two basic approaches to integer pro-

gramuing (enumerative and convexifying), two further pro-

cedures need to be mentioned, that do not belong to either

category, but can rather be viewed as complementary to one

or the other. Both procedures essentially decompose (P),

one of them by partitioning the variables, the other one by

partitioning the constraints. The first one, due to

Benders (1962), gets rid of the continuous variables of a

mixed integer program (P) by projecting the feasible set F

into the subspace of the inteSer-constrained variables.

The second one, known as Lagrangean relaxation, gets rid

of some of the constraints of (P) by assigning multipliers

to them and taking them into the objective function.

Each of the approaches outlined here aims at solving

(P) exactly. However, since finding an optimal solution

tends to be expensive beyond a certain problem size,

approximation methods or heuristics* play an increasingly

important role in this area.

Next we briefly review the approaches sketched above,

and give some references for each of them. As general

references on integer programming, see the book by Garfinkel



8

and Nemhauser (1971), and the recent volumes edited by

Chriscofides, Mingozzi, Toth and Sandi (1979), Hammer,

Johnson and Korte (1979a, b), Padberg (1980).

Branch and Bound/Implicit Enumeration

The following are the basic steps of a typical emmera-

tive algorithm. Start by putting (P) on the list of sub-

problems, and by setting v(P) = *, where v(P) is an upper

bound on v(P).

I. Choose, and remove from the list, a subproblem

(Pt). according to some criterion specified by the search

strategy. If the list is empty, stop: if no solution

was found, (P) is infeasible; otherwise the current best

solution is optimal.

2. If (Pi) has conscraincs involving only 0-1

variables, explore their implications via logical tests to

impose as many new constraints of the type x. = 0, or

x 1 (or of a more complex type), as possible. If as a

result (Pi) is shown infeasible, discard (Pi) and go to 1.

3. Generate a lower bound v(Pi) on v(Pi), by solving

some relaxation of (Pi) (like the linear programming

relaxation, or a Lagrangean relaxation, or either of these

two amended with cutting planeo). If v(P) > ;(P), discard

(P i) and go to 1.

4. Attempt to generate an improved upper bound on

v(P) by using some heuristic to find an improved feasible
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solution. If successful, update v(P) and remove from the

list all (PA) such that v(Pj) > v(P).

5. Split (Pi) into two or more subproblems by

partitioning its feasible set according to some specified

rule. Add the new subproblems to the list and go to 1.

The search strategies that can be used in step I range

between the two extremes known as "breadth first" (always

choose the most promising subproblem, i.e., the one with

smallest v(PL), and "depth first" (always choose one of the

new subproblems just created). The first approach carries

a high cost in terms of storage requirements, therefore the

second one is preferred in most codes. Flexible inter-

mediate rules seem to give the best results.

The branching, or partitioning, rule of step 5, is

usually a dichotomy of the form

xV

where xk is some integer-constrained variable whose value

xk in the current solution to (P ) is noninteger, while jai

and ral denote the largest integer < a and the smallest

integer > a, respectively. The choice of the variable is

important, but no reliable criterion is known for it.

"Penalties" and "pseudo-costs" try to assess the change in

v(P ) that will be produced by branching on xk, with a

view of providing a choice that will force the value of at

least one of the new subproblems as high as possible.

[ '-
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In problems with some structure, more efficient branch-

Ing rules are possible. In the presence of a "multiple

choice" cons traint

E x 1, z - 0 or 1, JQ,

jeGQ
for instance, one can brancn on the dichotomy

x j O, JQl V E xj a 1, zj ,a O, JCQ\Q1

for some Q1CQ, thus fixing several variables at a time.

Other, more sophisticated branching rules have been used

for set covering, set partitioning and traveling salesman

problems.

The logical tests of step 2, and/or associated in-

equalities, whenever applicable, were shown to substan-

tially speed up the procedure. However, by far the most

important ingredients of any enumerative procedure are the

bounding devices used in steps 3 and 4. Dramatic improve-

ments were registered in the case of such special struc-

tures like the traveling salesman problem, where the know-

ledge of deep cutting planes (usually facets of the convex

hull of F) has made it possible to replace the common lin-

ear programming relaxation (L) by a much "stronger" one,

either by amending (L) with cutting planes of the latter

type, or by taking those same cutting planes into the objec-

tive function in the Lagrangean manner. In either case,

the resulting vastly enhanced lower bounding capability has

drastically reduced computing times. Similarly, improve-

A
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meants in the upper bounding procedure, like the use of an

efficient heuristic to find feasible solutions, were found

to affect decisively the performance of branch and bound

methods. For surveys of this area see Balas (1975), Beale

(1979), Spielberg (1979).

Partitioning the Variables or Constraints

Benders' partitioning procedure is based on the

following result. Consider the problem

(PI) mn= + dyjBx + Dy - b, > O, y Q]

where B and D are mXp and mxq matrices, respectively, a, d

and b are vectors of conformable dimensions, while Q is an

arbitrary set (for instance, the set of integer q-vectors)

such that for every y cQ, there exists an x > 0 satisfying

Bx + Dy - b. Let U - uluB < €c, and let vert U be the

(finite) set of vertices of the polyhedron U. Then (P1)

is equivalent to

(P2 ) in(wov1wo > (d - uD)y + ub, ucvert U, ycQJ,

in the sense that if (x, 7) solves (P1), then y solves (P2 );

and if Y solves (P2 ), there exists an i such that (X, j)

solves (P .). Although the inequalities of (P2) usually out-

number those of (P 1 ) by far, they can be generated as needed

by solving a linear program in the continuous variables x,

or its dual (the latter having U as its constraint set).

This approach can be useful in particular when B has a

structure making it easy to solve the linear programs that

-t
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provide the constraints of (P2 ).

The second type of decomposiiion procedure, Lagrangean

relaxation, partitions the set of constraints Ax > b of (P)

into AIx > ba nd A2z > b 2 , and formlates the Lagrangean

problem

L(u) - min((c - uA2 )x + ub2 JA1 x > bi, x _ 0, xj integer,

For any u, L(u) is a lower bound on the objective

function value of (P). The problem in the variables u of

maximizing L(u) subject to u > 0 is sometimes called the

Lagrangean dual of (P). There are several methods for

maximizing L(u) as a function of u > 0, one of them being

subgradient optimization. Zf u > 0 maximizes L(u) and x

is a minimizing vector in L(u), then x Is an optimal solu-

tion to (P) if A2 z> b2 and u(A 2  - b2) 0. However, this

is usually not the case, since L(u) and the optimal objec-

tive function value of (P) tend to be separated by a so-

called duality gap. Nevertheless, since calculating the

value of L(u) for fixed u may be a lot easier than solving

(P), this is often a convenient way of generating good

lower bounds.

In particular, since A2x > b2 may consist partly (or

wholly) of cutting planes, this is one way of using the

latter without vastly increasing the number of inequalities

explicitly added to the constraint set. For surveys of

TAU- - *- ~ ~ ~ L
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these techniques see Geoffrion (1974), Shapiro (1979),

Fisher (1981).

Cuttins Plane Theory

A central problem of integer programming theory is to

characterize the convex hull of F, the net of integer

points satisfying the inequalities of (P). F is called the

feasible set, its convex hull (defined as the smallest

convex set containing F) is denoted cony F. From a

classical result of Weyl (1935), it is known that cony F

is the intersection of a finite number of linear in-

equalities. In other words, (P) is equivalent to a linear

program. Unfortunately, however, the constraint sat of

this linear program is in general hard to identify. Only

for a small number of highly structured combinatorial

optimization problems do we have at this time a linear

characterization of cony F, i.e., an explicit representa-

tion of conv F by a system of linear inequalities. In the

general case, all that we have are some procedures to

generate sequences of inequalities that can be shown to

converge to such a representation.

One way to solve the general integer program (P) is

thus to start by solving (L), the linear programming

relaxation of (P), and then to successively amend the

constraint sot of L) by additional inequalities (cutting

planes), until the whole region between the optmum of (L)
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and that of (P) is cut off. How much work is involved in

this, depends on the strength (depth) of the cuts, as Well

as on the size of the region that is to be cut off, i.e.,

the size of the gap between v(L) and v(P), the value of L

and P. This Sap can be very large indeed, as evidenced by

a recent result for the class of 0-1 programs called

(unveighted) set covering problems (where all entries of

A are 0 or I, and all entries of b and a are I). For a

set covering problem in n variables and an arbitrary number

of constraints, the ratio v(P)/v(L) is bounded by a + I

for n even, and by n + 16 + for n odd. Furthermore,
Z. 2 4a

this is a best possible bound.

As to the strength of various cutting planes, it is

useful to address the question from the following angle.

Let F c n, d *c n and d se. The set (x c cony Fldx - do )

is called a facet of cos vF, if dx Z d for all x c F and

dx - d0 for n affinely independent points x 6 F. In the

integer programIng literature the inequality dx > do

defining the facet is also called a facet. Facets are

important because among many possible representations of

cony F in terms of inequalities, the facets of cony F pro-

vide a minimal one. Obviously, they are the strongest

possible cutting planes.

SubaddiSive cuts

Consider the integer program (P), with N N.

l '"
t



Solving the linear programing relaxation (L) of (P) pro-

duces a simplex tableau of the form

() xi ai a E ai (-Z~ igI

whore I and J are the index sets of basic and nonbasic

variables respectively. If ain is noninteger and we denote

f a-a J, iP, J, one can show that (1) togetherii ij Lij,
with the integrality of the variables, implies for every

(2) E f x~ > f 0
jaJ U -

The inequality (2) is a cutting plane, since it is

satisfied by every Integer x that satisfies (1), but is

violated for instance by the optimal solution to CL.)

associated with (1), in which all nonbasic variables are

equal to 0. This cut was the basis of Gomory' s method of

integer forms, the first finitely convergent cutting plane

algorithm for pure integer programs. An analogous cut

provides a finitely convergent algorithm for mixed integer

programs (with integer-constrained objective function value).

The derivation of the cut (2) is based on simple

modular arithmetic. However, the integer program over the

polyhedral cone defined by (1). together with the condi-

tions

(3) zji integer, j eI UJ; x > Z0, J

(note that the conditions zj 1 0, j el are oiittee), is

equivalent to an opt~ization problem over a commtative
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abelian group, that can be solved as a shortest path prob-

lem (Gomory, 1969). Whenever the vector x corresponding to

the optimal solution found for the group problem satisfies

the conditions z > 0, J 4 1, it is an optimal solution to

(P). When this is not the case, ; provides a lover bound

on v(P).

The key concept in Gomory's characterization of the

"corner polyhedron", i.e., the convex hull of integer points

in the above mentioned cone, is subadditivity. This has

subsequently led to a subadditive characterization of the

convex hull of f Itself.

A function f defined on a monoid (smigroup) H is sub-

additive if f(a + b) < f() + f(b) for all a, b gM. Let A

be an m matrix with rational entries, let aj be the jth

column of A, and let X a xjlAx - b, x > 0 integer I # 0.

Then for any subadditive function f on the moncid

m - (yly " Ax for some integer x > 0}, such that f(O) - 0,

the inequality

n(4) E: f(- )xj f(AZ)
3-I

is satisfied by every x eX. Conversely, all valid in-

equalities for X are dominated by an inequality (4) for

some subadditive function f on M such that f(O) - 0. For

literature see Johnson (1974, 1980), Jerolo, (1979).

. .. . . . . .. / *
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Disi unctive cuts

A different, geometrically motivated approach derives

cutting planes from convexity considerations (intersection

or convexity cuts, disjunctive cuts). This approach is

directed primarily to the 0-1 programming problem. As

mentioned earlier, 0-1 programing is coextensive with dis-

junctive programing, and the best way of describing the

approach is by applying it to the disjunctive program

i Q
(D) min~exi V( (x > b , x > o)).

L Q Ai i
Here Q is an index set, A and b are m xn and mix1

matrices, and "V" means that at least one of the systems

iA x > bi, x > 0, must hold. This is the disjunctive nor-

mal form of a constraint set involving logical conditions

on inequalities, and any such constraint set can be brought

to this form.

The convex hull of a disjunctive set is characterized

by the following two results. Let the set be

F xl V (Ai > b >0)),
i.Q

where Ai, bi, i eQ are as above, and let Q* be the set of

those i c Q such that the system Aix > b1, x > 0 is consis-

tent. Let a a 3e and a 0t. Then the inequality r x> *o

is satisfied by every x e F if and only if there exists a
m L

set of vectors € CIR , a > 0, i eQ*, such that

(5) a> A and a o < eb 1.Q* .

Furthermore, if F is full dimensional, Q is finite,

iI,
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and Co 0 0, then x >%z is a facet of cony F if and only

if a # 0 is a vertex of the polyhedron

F#- Cla satisfies (5) for some > 0, 0 . c Q*1.

The first of these results can be used to generate

compucationally inexpensive cutting planes for a variety

of special cases of F, corresponding to logical conditions

inherent to the problem at hand; whereas the second result

can be used to strengthen any such cut, at an increasing

computational cost, up to the point where it becomes a

facet of cony F.

Often there is advantage in casting an integer program

into the form of a disjunctive program with integrality

constraints on some of the variables. For such problems, a

procedure called monoidal cut strenathenina that combines

the disjunctive and subadditive approaches can be used to

derive a family of cutting planes whose strength versus

computational cost ratio compares favorably with cutting

planes based on either approach taken separately.

A fundamntal question of integer programming theory

is whether the convex hull of feasible points can be

generated seqteentially, by imposing the integrality con-

ditions step by step. That is, by first producing all the

facets of the convex hull of points satisfying the linear

inequalities, plus the integrality condition on, say, xl;

then adding all these facet inequalities to the constraint

A-i
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set and generating the convex hull of points satisfying

this amended set of inequalities, plus the integrality con-

dition on x 2; etc. The question also has practical impor-

tance, since convex hull calculations for a mixed integer

program with a single integer variable are much easier than

for one with many integer variables.

To be more specific, suppose we wish to generate the

convex hull of the set

X - £zAx > b, x > 0, x i integer, j -I. ,]

Lot

X0 [nxJAx >b, x > 0

and for J 1 ,...,n, define recursively

I -convtx 6 Zjlixi integer).

Obviously, Xn a conv X; the question is, whether

X - conv X?n

The answer, obtained from disjunctive programming

considerations, is that for a general integer program the

statement X. coev X is false; but that for a 0-1 program

it is true. This is one of the main distinguishing proper-

ties of 0-1 program among integer programs.

For literature see Bales (1979), Glover (1974),

Jeroslow (1977).

Gombinatorial cuts

Given a graph G - (V, E) with vertex set V and edge

set E, a matching in G is a set of pairwise nonadjacent

r.
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edges of G. If A is the incidence matrix of vertices ver-

sus edges of G and a weight v is assigned to every edge J,

the problem of finding a maxim&u-weight matching Ln G is

the integer program

MAXvxIAX _e, xj - 0 or 1, J iE]

where a - (-,...,l) has IVj components, and x ", 1 if

edge j is in the matching, x, - 0 otherwise. Edmonds (1965)

has shown that this problem can be restated as a linear

program in the same variables, by adding an inequality of

the form

- x _< fftsI - 1)

for every SQV such that ISI is odd. Here E(S) is the set

of edges with both ends in S.

Unfortunately, the matching polytope is the exception

rather than the rule, and for most combinatorial problems

such a simple linear characterization of the convex hull

of feasible points does not exist. However, certain classes

of facets of the convex hull have been identified for

several problems.

The vertex packing problem in a graph G - (V, E) with

vertex-weights ci, i eV, consists in finding a maximum

weight independent (i.e., pairwise nonadjacent) set of

vertices. If A is the same incidence matrix as before

and T denotes transposition, the vertex packing problem is

the integer program

17 I ,i ... . , , .... C , L , ... . ' 
' "

. . . . .
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=M(cxA Tx < 6, xi a 0 or 1, j cv)

where a has JEJ components and x J 1 if vertex j is in

the packing, xj - 0 otherwise. Let 1(G) denote the packing

polytope of G, i.e., the convex hull of incidence vectors

of packings in G.

Several classes of facets of I(G) are known. For

instance, an inequality of the form

(6) E z <
JcK

is a facet of I(G) if and only if KCV is a clique, i.e.,

a maximal set of pairwise adjacent vertices of G. The

class of graphs whose packing polytope 1(G) is completely

described by this family of inequalities (i.e., I(G) has

no other nontrivial facets) is called perfect. A graph is

known to be perfect if and only if its complement is

perfect. The properties of perfect graphs and their packing

polyhedra have been intensely studied during the sixties

and seventies and have, among other things, served as a

starting point for a theory of blocking and antiblocking

polyhedra developed by Fulkerson (1971).

More generally, many classes of facets of 1(G) are

associated with certain induced subSraphs C' of G. When G'

is induced by a clique, the corresponding inequality (6) is,

as mentioned above, a facet of I(G). Other induced sub-

graphs G' yield inequalities that are facets of I(G')

rather than 1(G), but can be used to obtain corresponding
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facets for I(G) through a procedure called lifting. For

instance, if G' - (V', E') is (i) an odd hole (i.e., a

chordless cycle of odd length), or (ii) the complement of

an odd hole, then

Ej < k

j 6 v'
is a facet of I(G'), with k 1 (V'l - 1) in case (i), and

k a 2 in case (ii).

The above mentioned lifting procedure is based on the

following result. Let G' be any subgraph of G induced by

V'CV, and let

be a facet of I(G'). Then there exist integers Oi, 0 <

< ao such that
jay O j+ jXj < a

C6V I axjs V\V 0

is a facet of I(G). The coefficients can be calculated

sequentially, and their values depend ou the particular

sequence. These calculations involve the solution of an

integer program for each coefficient, but for certain

special structures they become manageable.

Other combinatorial problem for which several classes

of facets of the feasible set have been characterized, in-

elude the knapsack problem, the traveling salesman problem,

etc.

For literature see the books by Ford and Fulkerson

(1962) and Lawler (1976) and the surveys by Balas and

A
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Padberg (1976), Hoffman (1979), Lovast (1979), Klee (1980),

Padberg (1979).

Computer Implementation

At present all comercially available integer pro-

gramming codes are of the branch and bound type. While

they can sometimes solve problems with hundreds of integer

and thousands of continuous variables, they cannot be

guaranteed to find optimal solutions in a reasonable amount

of time to problems with more than 30-40 variables. On the

other hand, they usually find feasible solutions of accept-

able quality to much larger problems. These comercial

codes, while quite sophisticated in their linear programming

subroutines, do not incorporate any of the results obtained

in integer programming during the last decade.

A considerable number of specialized branch and

bound/implicit enumeration algorithms have been implemented

by operations research groups in universities or industrial

companies. They usually contain other features besides

enumeration, like cutting planes and/or Lagrangean

relaxation. Some of these codes can solve general (unstruc-

tured) 0-I programs with up to 80-100 integer variables,

and structured problems with up to several hundred (assembly

line balancing, multiple choice, facility location), a few

thousand (sparse set covering or set partitioning, general-

ized assisgrmAnt), or several thousand (knapsack traveling
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salesman) 0-1 variables.

Cutting plane procedures for general pure and mixed

integer programs are at present too erratic and slow to

compete with enumerative methods. However, for a number of

special structures (set covering, traveling salesman

problem) where information available about the convex hull

of feasible points has made it possible to generate strong

inequalities at acceptable computational cost, cutting

planes, either by themselves, or in combination with

enumerative and/or Lagrangean techniques, have been highly

successful.

At the current state of the art, while many real world

problems amenable to an integer programing formulation fit

within the stated limits and are solvable in useful time,

others substantially exceed those limits. Furthermore,

some important and frequently occurring real world prob-

lems, like job shop scheduling and others, lead to integer

programming models that are almost always beyond the limits

of what is currently solvable. Hence the great importance

of approximation methods for such problems.

For literature on computer codes see Land and Powell

(1979), Spielberg (1979).
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