AD-A110 913 CARNEGIE INST OF TECH PITTSBURGH PA MANAGEMENT SCIEN==ETC F/6 12/1
INTEGER PROGRAMMING. (U)
NOV 81 E BALAS NOQO14=75=C-0621
UNCLASSIFIED

NL
Vo |
an




ADA110913

Carnegie-Mellon University -~
PITTSBURGH, PENNSYLVANIA 15213 | FEB 11

i

GRADUATE SCHOOL OF INDUSTRIAL ADMINISTRATION

WILLIAM LARIMER MELLON, FOUNDER

T documei Ui, 4 pioved]
for public ralecs .nd sale; ite 2 1
| distribution is unlimited, . 82 0 2 1

1982

G e, ”
LD

U RGEART L e L A Y - LRI 23 Rl® AN

PR G e R .
e A e Seibai AR L . L eemea aio e ek




e

1l f
BebBa ¥ il W.P.#16-81-82

Management Sciences Research Report No. 479

INTEGER PROGRAMMING
by

Egon Balas

November 1981

The research underlying this report was supported by Grant ECS-7902506 of the
National Science Foundation and Contract N00Q14-75-C-0621 NR 047-048 with the
U.S. Office of Naval Research. Reproduction in whole or fn part is permitted
for any purpose of the U,S, Government,

Management Science Research Group
Graduate School of Industrial Administration
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Yk dere, vodl
Jlor pulilcoiil L L
I datribution 1o wolicutoud,

.




Abstract

 This is an introductory survey of integer programming,
its theory, methodology and applications, for the Encyclopedia

of Statistical Sciences. _




INTEGER PROGRAMMING

by

Egon Balas

A linear programming* or nonlinesr programming* prob-
lem whose variables are constrasined to be {nteger, is
called a (linear or nounlinear) integer program. We will
consider here only the linear case, although there exist

extensions of the techniques to be discussed to nonlinear

iateger programming.
The {ateger programming problem can be stated as

(P) min{cx|Ax > b, x > 0, x, integer, ] CNIGN},

3
vhere A 15 a given mxn matrix, ¢ and b are given vectors of
conformable dimensions, N = {1,...,n}, and x {s a variable

nevector. (P) {s called a pure integer program {f N, = N,

1
a mixed {nteger program if f ¢ NI ¢ N. Iateger programming

is somatimes called discrets optimization.

Scope and Applicability
Integer programming is the youngest branch of mathe-

oatical programming: {ts development started in the second
half of the fifties. It Ls the most immediate snd frequent-
ly needed extension of linear programming. Integrality
constrsints arise naturally vhenever fractiocnal values for
the decision varisbles do not make sense. A case in poiat
is the fixed charge problem, in which a function of the
form E e(xi), vith

£, +e,x . t£x£>0

i 11
c(xi) -

0 1.‘.:’_-0




i{s to be minimized subject to linear constraints. Such a

problem can be restated as an integer program whenever x is
bounded, by setting
c(xi) =cyx + fﬂ.yt

x 501’1’ yi-OOrl

1
vhere Ui is an upper bound on x, -

By far the most important special case of integer
programuing is the O-1 programming problem, in which the
integer-constrained varisbles are restricted to 0 or 1.

This is so because a host of frequently occurring non-
linearities, like lpgiéal slternatives, implications, pre-
cedence relations, etc., or combinations thereof, can be
formulated via 0-1 variables. For example, a condition like

x>0= (f(x) <a VvV £(x) >0),
where a and b are positive scalars, x is a variable with a
known upper bound M, £(x) is a function whose value is
bounded from above by U > 0 and from below by L < 0, while
the symbol "V mesns disjunction (logical "or"), can be
stated as

x < M(1 - 61)

f(x) Sa+ (U - 0)61 + (U - a)&z

£(x) 2b + (L - b)61 + (L -5)(1 - &)

61, 62 =0 or l.

A linear program with "logical" conditions (conjunc-

tions, disjunctions and implications {nvolving inequalities)




is called a disjunctive program, since it is the presence
of disjuactions that makes these problems nonconvex. Dis-
junctive programming is coexteansive with 0-1 programming.

Noncoavex optimization problems like bimatrix games,
separable progrims involving piecewise linear noncoavex/
nonconcave functions, the general (nonconvex) quadratic
programming problem, the linear complementarity problem
and 2aany others can be stated as disjunctive or 0-1
programming problems.

A host of interesting combinatorial problems can be
formulated as 0-l1 programming problems defined oan a graph.
The joint study of these problems by mathematical pro-
grammers and graph theorists has led to the receat develop-
ment of 8 burgeoning ares of research known as combinatorial
optimization. Some typical problems studied in this area
ara: edgz netching and covering, vertex packing and
covering, clique coveriang, vertex coloring; set packing,
partitioning and covering; Euler tours; Hamiltonian cycles
(traveling salesman problem).

Applications of intager programming abound in all
spheras of decision making. Some typical real world prob-
lem areas where integer programming {s particularly useful
as & modeling tool, {nclude: facility (plant, warehouse,
hospital, fire station) location; scheduling (of persoannel,

production, other activities); routing (of trucks, tankers,




sirplanes); design of communication (road, pipeline, tele-

phone) networks; cspital budgeting; project selection;

analysis of capital development alternatives. In stacis-

tics, integer programming is useful, for instance, in ex-

perimantal design,* stratified sampling,* cluster analysis.*
Solution Methods: Overview

We denote by v(P), and call the value of (P), the c;p-
timal objective function value for (P). We denote by (L),'_
and call the linesr programming relaxation of (P), the
linear program obtzined from (P) by removing the integral-
ity requirements.

Integer programs are aotoriously hard: in the language
of computational complexity theory, the general 0-1 pro-
gramuing problam, as well ss most of its special cases, is
NP-complete, Polynomial time integer programming algor-
{thms do not exist. However, sometimes an integer program
can be solved as a linear program; i.e., solving the linear
programming relaxation (L) of the integer program (P), one
obtains an integer solution. In particular, this is the
case when all basic solutions of (L) are fnteger. For an
arbitrary integer vector b, the constraint set Ax <b,

x > 0 is known (Hoffman and Kruskal, 19358) to have only
i{nteger basic solutions if and only {f the matrix A {is
totally unimedular (i.e., all nonsingular submatrices of A

have a decerminaat of 1 or -1).




The best known instances of total unimodularity are
the vertax-edge incidence matrices of directed graphs and
undirected bipartite graphs. As a consequence, shortest
path and network flov problems on arbitrary directed
graphs, edge matching (or covering) and vertex packing (or
covaring) problems on bipartite graphs, as well as other
integer programs whose constraint set is defined by the
incidence matrix of a directed graph or an undirected bi-
partite graph, with arbitrary integer right hand side, are
in fact linear programs.

Apart from this important but very special class of
problems, the difficulty in solving integer progrsms lies
in the nonconvexity of the feasible set, which makes it
impossible to establish global optimality from local coadi-
tions, The two main approaches to solving integer programs
try to circumvent this difficulty in two different ways,

The first approach, which in the current state of the
art is the standard way of solving integer programs, is
enumerative (branch and bound, implicit enumeration). It
partitions the feasible set into successively smaller sub-
sets, calculates bounds on the objective fuaction value over
each subset, and uses these bounds to discard certain sub-
sets from further consideration. The procedure ends when
each subset has either produced a feasible solution, or

was shown to contain no better solution than the one already




in hand. The best sclution found during the procedure is a
global optimum. Two early prototypes of this approach are
due to Land and Doig (1960) and Balas (1963, English ver-
sion 1965).

The second approach, known as the cutting plane method,
is a convexification procedure: it approximates the convex
hull of the set F of feasible integer points, by a sequence
of inequalities that cut off (hence the term '"cutting
planes”) parts of the linear programming polyhedron, with-
out removing any point of F. When sufficient inequalities
have been generated to cut off every fractional point
better than the integer optimun, then the latter is found
as an optimal solution to the linear program (L) smended
with the cutting planes. The first finitely convergent
procedure of this type is due to Gomory (1958).

Depending on the type of techniques used to describe
the convex hull of F and generate cutting planes, one can
discinguish three main directions in this area, The first
one uses algebraic methods, like modular arithmetic and
group theory. 1Its key concept i{s that of subadditive
functions. It is sometimes called the algebraic or group
theorstic approach. The second one uses convexity, polar-
ity, propositional calculus. Its main thrust comes from

looking at the 0-1 programming problem as a disjunctive

program. It is known as the convex analysis/disjunctive




programming approach. Finally, the third direction applies

to combinatorial programming problems, and it combines
graph theory and matroid theory with mathematical pro-
gramming. ' It i{s somatimes called polyhedral combinscorics.

Besides these two basic approaches to integer pro-
gramuing (enumerative and coavexifying), two further pro-
cedures need to be mentioned, that do not belong to either
category, but can rather be viewed as complementary to one
or the other. Both procedures essentially decompose (P),
one of them by partitioning the varisbles, the other one by
partitioning the counstraincs, The first one, due to
Benders (1962), gets rid of the coatinuous variables of a
mixed integer program (P) by projecting the feasible set F
iato the subspace of the integer-constrained variables.
The second one, known as Lagrangean relaxation, gets rid
of some of the constraints of (P) by assigning multipliers
to them and taking them into the objective function.

Each of the approaches outlined here aims at solving
(P) exactly. However, since finding an optimal solution
tends to be expensive beyond a certain problem size,
approximation methods or heuristics* play an {ncreasingly
importaant role in this ares.

Next we briefly review the approaches sketched above,

and give some references for each of them. As general

references on integer programming, see the book by Garfinkel




and Nemhauser (1971), snd the recent volumes edited by

Christofides, Mingozzi, Toth and Sandi (1979), Hammer,
Johnson and Korte (1979a, b), Padberg (1980).
Branch and Bound/Implicit Enumeration

The following are the basic steps of a typical enumers-
tive algorithm, Start by putting (P) on the 1ist of sub-
problems, and by setting ;(P) = », where ;(P) is an upper
bound on v(P).

1. Choose, and remove from the list, a subproblem
(Pi)’ sccording to some criterion specified by the search
strategi. If the list {s empty, stop: L1f ao solution
was found, (P) is i{nfessible; otherwise the current best
solution is optimal.

2. If (Pi) has constraints iavolving oanly 0-1
variables, explore their implications via logical tests to
impose as many new coanstraints of the type x, = 0, or
x, = 1 (or of a more complex type), as possible. If as a
result (Pi) is showm infeasible, discard (Pi) and go to 1.

3. Generate a lower bound !(Pi) on v(Pi), by solving
some relaxation of (Pi) (like the linear programming
relaxation, or a Lagrangean relaxation, or either of these
two amended with cutting planes). If w(P,) 2 ¥(P), discard
(Pt) and go to 1.

4., Actempt to generate an improved upper bound on

v(P) by using some heuristic to find an improved feasible
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solution. If successful, update v(P) and remove from the

list all (Pj) such thac 3(1’j

5. Split (Pi) into two or more subproblems by

) > v(P).

partitioning its feasible set according to some specified
rule. Add the new subproblems to the list and go to 1.

The search strategies that can be used i{n step 1 range
between the two extremes known as "breadth first" (always
choose the most promising subproblem, i.e., the one with
smallest z(Pi), and "depth first" (always choose one of the
new subproblems just created). The first approach carries
a high cost in terms of storage requirements, therafore the
second one is preferred in most codes. Flexible fiater-
mediate rules seem to give the best results,

The branching, or partitioning, rule of step 5, is
usually a dichotomy of the form

x <1 vV ox 2Ix],
where x, is some integer-coastrained variable whose value
;L in the curreat solution to (Pi) is noninteger, while (a]
and [a] denote the largest {nteger < a and the smallest
integer > a, respectively. The choice of the variable is
important, but no relisble criterion is known for {it.
"Penalties”" and "pseudo-costs" try to assess the change in
V(Pi) that will be produced by branching on X with a

view of providing a choice that will force the value of at

least one of the new subproblems as high as possible.




In problems wich some structure, more efficient braach-
ing rules are possible. In the presence of a "multiple

choice" constraint

L x, =1, x, =0orl, jeQ,
1 I !

for instance, one can branch on the dichotomy
xj-O. j@, vV I =1, xJ-O, 1eQ\Q,

1%, g
for some QICQ, thus fixing several variables at a time.
Other, more sophisticated branching rules have been used
for set covering, set partitioning and traveling salesman
problems.

The logical tests of step 2, and/or associated in-
equalities, whenever applicable, were shown to substan-
tially speed up the procedure. However, by far the most
important ingredieants of any enumerative procedure are the
bounding devices used in steps 3 and 4. Dramatic improve-
ments were registered in the case of such special struc-
tures like the traveling salesman problem, where the know-
ledge of deep cutting planes (usually facets of the convex
hull of F) has made it possible to replace the common lin-
esr programaing relaxation (L) by a much "stronger” one,
either by amending (L) with cutting planes of the latter
type, or by taking those same cutting planes into the objec-
tive function in the Lagrangean manner. In either case,
the resulting vastly enhanced lower bounding capability has

drastically reduced computing times. Similarly, improve-




ments in the upper bounding procedure, like the use of an

efficient heuristic to find feasible solutions, were found
to affect decisi{vely the performance of branch and bound
mathods. For surveys of this area see Balas (1975), Beale
(1979), Spielberg (1979).
Partitioning the Variables or Constraints

Benders' partitioning procedure is based on the
following result. Consider the problem
(Pl) min{ex + dy|Bx + Dy = b, x > 0, y¢Q}
where B and D are mXxp and mxq matrices, respectively, c, ‘d
and b are vectors of conformable dimensions, while Q is an
arbitrary set (for instance, the set of integer q-vectors)
such that for every y ¢Q, there exists an x > 0 satisfying t
Bx + Dy = b. Let U = {uluB < c}, and let vert U be the
(finite) set of vertices of the polyhedron U. Then (Pl)
is equivalent to
(Pz) min{wohro > (d -~ udD)y + ub, ucvert U, ycQ},
in the sense that if (;, ;) solves (Pl), then ; solves (Pz);
and {f ¥ solves (Pz), there exists an X such that (X, ¥)
solves (Pl)' Although the inequalities of (Pz) usually out-
numbar those of (Pl) by far, they can be generated as needed
by solving a linear program in the continuous variables x,
or its dual (the latter having U as its constraint set).
This approach can be useful in particular when B has a

structure making it easy to solve the linear programs that
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provide the constraints of (Pz).

The second type of decomposigion procedure, Lagrangean
relaxation, partitions the set of constraints Ax > b of (P)
into Alx 2 b1 and Azx 2 bz, and formulates the Lagrangean
problen

L(u) = min{(c - uA,))x + ubz]Alx 2b;, x 20, x, integer,

3

chlcu}. :
For aay u, L(u) i3 & lower bound on the objective

function value of (P). The problem in the variables u of
maximizing L(u) subject to u > 0 is sometimes called the
Lagrangean dual of (P). There are several methods for
maximizing L(u) as a function of u > 0, one of them being
subgradient optimization. If u > 0 caximizes L(u) and z
is a minimizing vector ia L(E), then x is an optimal solu-
tion to (P) 1if Az; > b2 and ;(Az; - bz) = 0., However, this
is usually not the case, since L(T;) and the optimal objec-
tive function value of (P) tend to be separated by a so-
called duality gap. Nevertheless, since calculating the
value of L(u) for fixed u may be a lot easier than solving
(P), this is often a convenient way of generating good
lower bounds.

In particular, since Azx 2 b, may coansist partly (or

2
wholly) of cutting planes, this {s one way of using the

latter without vastly increasing the number of inequalities

explicitly added to the constraint set. For surveys of
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these techniques see Geoffrioan (1974), Shapiro (1979),
Fisher (1981).
Cutting Plane Theory
A central problem of integer programming theory is to

characterize the convex hull of F, the set of integer

points satisfying the inequalities of (P). F is called the
feasible set, {its convex hull (defined as the smallest
convex set containing F) is denoted conv F., From a
classical result of Weyl (1935), it i{s known that coanv F
is the {intersection of a finite number of linear in-
equalities. In other words, (P) {s equivalent to s linesr
program. Unfortunately, however, the coastraint set of
this linear program is in general hard to ideatify. Oaly
for a small number of highly structured combinatorial
optimization problems do we have at this time & linear
charactarization of conv F, {.e., an explicit representa-
tion of coav F by & system of linear inequalities. 1In the
general case, all that we have are some procedures to
generate sequeances of inequalities that can be showan to
counverge to such a representation.

One way to solve the geaeral {nteger program (P) is
thus to start by solving (L), the linear programming
relaxation of (P), and then to successively amend the

constraint set of (L) by additional {nequalities (cutting

planes), until the whole region between the optimum of (L)
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and that of (P) is cut off. How much work is involved in

this, depends on the strength (depth) of the cuts, ss well
as on the size of the region that is to be cut off, i.e.,
the size of the gap between v(L)'and v(P), the value of L
and P, This gap can be very large indeed, as evidenced by
& recent result for the class of 0-1 programs called
(uaweighted) Qot covering problems (where all entries of

A are 0 or 1, and all entries of b aund c are 1). For a

set covering problem in n variables and an arbitrary number

of constraints, the ratio v(P)/v(L) is bounded by % +-;—

for n even, and by % + -21- + 7):-:; for n odd. .Furthcmote,
this 1is & best possible bound. )
As to the strength of various cutting planes, it is
useful to sddress the question from the following angle.
Lec F CR", d ¢R" and d,¢R. The sat {x ¢ conv Fldx = d_}
1s called a facet of conv F, if dx > d for all x ¢ F and
dx = do for n affinely independent points x ¢ F. In the
integer programming literature the inequality dx > do
defining the facet is also called a facet. Facets are
important because smong wmany possible represeantations of
coav F in terms of inequalities, the facets of conv F pro-
vide s minimal one. Obviocusly, they are the strongest

possible cutting planes.

Subadditive cuts
Cousider the integer program (P), with Nl = N.
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Solving the linear programming relaxation (L) of (P) pro-

duces a simplex tableau of the form

(1) x =+ j:u n“(-xj) tel

vhere 1 and J are the index sets of basic and nonbasic
variables respectively. If LT is noninteger and we denote
f“ - .1.1 - l.ijl' # 1, j, one can show that (1) together
with the integrality of the variables, implies for every
1e¢el,

(2) jir fij’j 2f -

The inequality (2) is e cutting plane, since it {is
satisfied by every integer x that satisfies (1), but is
violated for i{nstance by the optimal solution to (L)
associated with (1), in which all nonbasic variables are y
equal to 0. This cut was the basis of Gomory's method of
{nteger forus, the first finitely convergent cutting plane
algorithm for pure integer programs. An analogous cut
provides & finitely convergent aslgorithm for mixed integer
programs (with integer-constrained objective function value).

The derivation of the cut (2) {s based on simple
modular arithmetic. However, the integer program over the
polyhedral coce defined by (1), together with the condi-
tions
(3) x, integer, j ¢eIUJ; x, >0, jeJ

b b
(note that the conditions x; 20, JeI are omitted), is

squivalent to an optimization problem over a commutative




abelian group, that can be solved as a shortast path prob-

lem (Gomory, 1969). Whenever the vector x corresponding to
the optimal solution found for the group problem satisfies
the coaditions ‘j 20, Jel, it is an optimal solution to
(P). Whea this is oot the case, x provides a lower bound
on v(P).

The key concapt ia Gomory's characterization of the
“corner polyhedron"”, {.e., the coavex hull of integer points
in the above meationed cone, {s subiddtcivicy. This has
subsequently led to a subadditive characterization of the
convex hull of F itself.

A function f defined on & monoid (semigroup) M is sub-
sdditive if f(a + b) < f(s) + £(b) for all 8, beM. let A
be an mXa matrix with rationsl entries, let aj be the jth
column of A, and let X = {x|Ax = b, x > O integer } # P.
Then for any subsdditive function f oa the monoid
M = {yly = Ax for some Lnteger x > O}, such that £(0) = O,
the inequality

6) 351 f(lj)xj

2 £(Ax)
is satisfied by every x ¢X. Conversely, all valid {a-
equalities for X are domtnated by sn inequality (4) for

some subadditive funccfon £ oa M such that £(0) = 0. For

literature see Johnson (1974, 1980), Jeroslow (1979).
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Disjunctive cuts

A different, geometrically motiveted approach derives ~
cutting planes from coavexity considerations (intersection
or coanvexity cuts, disjunctive cuts). This approach is
directed primarily to the 0-1 programming problem. As
mentioned esrlier, 0-1 programming is coexteansive with dis-
junctive programming, and the best way of describing the
approach is by applying it to the disjunctive program

(D) minf{cx| Vv '(Aix > bi, x> 01}

1
Here Q 1is an index set, A" and bt are m Xn and mixl

i
matrices, snd "V" mesns that at least one of the systems
alx > bi, x 2 0, must hold. This is the disjunctive nor-
mal form of a constraint set {nvolving logical conditions ’ [
on inequalities, and any such coastraint set can be brought
to this form.
The convex hull of & disjunctive set i{s characterized

by the following two results., Let the set be

F=(xlv a2l x>0},

1 1 i« :
where A", b", { ¢Q are as above, and let Q* be the set of
those 1 ¢Q such that the system ale > bi, x >0 is consis-
teat. Let @ ¢R" and a,¢ R. Then the inequality ax> a,

is satisfied by every x ¢ F if and only if thers exists a
m
set of vectors Qicn ", 6" 20, 1 ¢Q¥*, such that

(9 “azofatada gotvt  , teqr.

Furthermore, 1f F {3 full dimensional, Q is finice,
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and a, # 0, then ¢x> a, 6 is a facet of conv F if and only
1if o # 0 {3 a vertex of the polyhedron
Fif = {ala satisfies (5) for some 9" >0, 1 Q).

The first of these results can be used to generate
computationally inexpeansive cutting planes for a variety
of special cases of F, corresponding to logical conditions
inherent to the problem at hand; whereas the second result
can be used to strengthen any such cut, at an increasing
computational cost, up to the point where it be;omes a
facat of conv F.

Ofcen there is sdvantage in casting an integer progran‘:
into the form of a disjunctive program with integrality
constraints on some of the variables. For such problems, a
procedure called monoidal cut strengthening that combines
the disjunctive and subadditive approaches can be used to
derive a family of cutting planes whose strength versus
computational cost ratio compares favorably with cutting
planes based on either approach taken saparately.

A fundamental question of integer programming theory
{s whether the convex hull of feasible points can be
generatesd seqtentially, by imposing the integrality com-
ditions step by step. That {s, by first producing all the
facets of the coavex hull of points satisfying the linear
inequalities, plus the integrality condition on, say, Xy

then adding all these facet inequalities to the constraint
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set and generating the convex hull of points satisfying
this amended set of inequalities, plus the integrality con-
dition on Xy etc. The question also has practical impor-
tance, since coavex hull calculatioas for & mixed integer
program with a single integer variable are much easier than
for one with many integer variables.

To be more specific, suppose we wish to generate the
convex hull of the set

X={xlAx>b, x>0, x, integer, j = 1,...,n}.

x, = (xlax 25, x 20}
and for j = 1,...,n, define recursively
X, = convix ¢ xj-l"j integer].

Obviously, xns:conv X; the question is, whether
xn = conv X ?

The answer, obtained from disjunctive programming
considerations, is that for a general integer program the
statement X = couv X is false; but that for a 0-1 program
it {s true. This is one of the main distianguishing proper-
ties of O-1 programs among integer programs.

For literature see Balas (1979), Glover (1974),
Jaroslow (1977). '
Combinatorisl cuts

Given 3 graph G = (V, E) with vertex set V and edge

set £, a matching in G is & set of pairwise nonadjacent
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edges of G. If A ias the incidence matrix of vertices ver-

sus edges of G and & weight w2 {s assigned to every edge j,

]
the problem of finding & maximmm-weight matching in G is

the integer program

max{wx|Ax < e, x, = 0 or 1, j ¢E}

3

vhere ¢ = (1,...,1) has |V| components, and xy = 1 1f

edge § {8 {in the matching, xj = 0 otherwise. Edmonds (1965 |

has shown that this problem can be restated as a linear i
program in the same variables, by adding an inequality of
the form

<sdis) - v

3
JE(S)
for every SV such that |S| is odd. Here E(S) is the set

of edges with both eands {n S.

Unfortunsately, the matching polytope is the exception
rather than the rule, and for most combinatorial problems
such a simple linear characterization of the convex hull
of feasible poiats does not exist. However, certain classes
of facets of the convex hull have been identified for
several problems,

The vertex packing problem in & graph G = (V, E) with
vertex-weights s 1 ¢V, consists in finding & maximum
weight independent (i.e., pairwise nonadjacent) set of
vertices. If A i3 the same incidence matrix as before

and T denotes trausposition, the vertex packing problem is

the integer program




——-—————————.—-——————«1

u:x{c:lATx <e x, =0orl, jeV}

]

where ¢ has |E| components and x, = 1 1f vertex j is in

the packing, x, = 0 otherwise. Let I(G) denote the packing

b
polytope of G, i.e., the convex hull of incidence vectors
of packings {n G.

Several classes of facets of I(G) are known, For
instance, an inequality of the form ]
(6) £ x <1

je ,
is a facet of I(G) if and only 1f KSV is a clique, i.a.,
s maximal set of pairwise adjacent vertices of G. The
class of graphs whose packing polytope I(G) {s completely
described by this family of inequalities ({.a., I(G) has
no other nontrivial facets) {s called perfect. A graph is '

known to be perfect if and only L{f its complement is

perfect. The properties of perfect graphs and their packing
polyhedra have been intensely studied during the sixties

and seventies and have, among other things, served as a
starting point for a theory of blocking and antiblocking
polyhedra developed by Fulkerson (1971).

More generally, many classes of facets of I(G) are
associated with certain induced subgraphs G’ of G. When G’
is i{nduced by a clique, the corresponding inequality (6) is,
as mentioned above, a facet of I(G). Other {nduced sub-
graphs G’ yleld {nequalities that are facets of I(G’)

rather than I(G), but can be used to obtaian corresponding
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facets for I(G) through & procedure called lifting. For
instance, 1£ G’ = (V', E’) is (1) an odd hole (i.e., a
chordless cycle of odd length), or (ii) the complement of
au odd hole, then

L =x <k

qev’ 37
1s a facet of I(G’), with k = —(\v'\ - 1) in case (i), and
k = 2 in case (ii).

The above mentioned lifting procedure is based on the

following result. Let G’ be any subgraph of G induced by

v'cvV, and let

<
i
be & facc: of I(G'). Then there exist integers ﬁj, < Bj
< ey such that
4%y + IE:::::'B x, Sa
jen\v’
is a facet of 1(G). The coefficien:s B. can be calculated

J
sequentially, and their values depend on the particular

sequence. These calculations involve the solution of an
integer program for each coefficient, but for certain
special structures they become manageable,

Other combinatorial problems for which seversl classes
of facets of the feasible set have been characterized, in-
clude the knapsack problem, the traveling ssalesman problem,
ate.

For licerature see the books by Ford and Fulkerson

(1962) and Lawler (1976) and the surveys by Balas and
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Padberg (1976), Hoffmsn (1979), Lovdsz (1979), Klee (1980),
Padberg (1979).
Computer Implementation

At present all compercially available integer pro-
gramming codes are of the branch and bound type, While
they can Sometimes solve problems with hundreds of integer
and thousands of continuous variables, they cannot be
guaranoteed to find optimal solutions in a reasonable amount
of time to problems with more than 30-40 variables. On the
other hand, they usually find feasible solutions of accept-
able quality to much larger problems. These commercial
codes, while quite sophisticated in their linear programming
subroutines, do not incorporate any of the results obtained
in integer programming during the lasc decade.

A considerable number of specialized branch and
bound/implicit eaumeration algorithms have been implemented
by operations research groups in universities or industrial
companias. They usually contain other features besides

enumeration, like cutting planes and/or Lagrangean

relaxation., Some of these codes can solve generai (unstruc-

tured) O-1 programs with up to 80-100 integer variables,

and structured problems with up to several hundred (assembly
line balancing, multiple choice, facility location), a few

thousand (sparse set covering or set partitioning, general-

ized assigmment), or several thousand (knapsack traveling
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salesman) O-1 variables.

Cutting plane procedures for genersl pure and mixed

o L% e ot b0 e e Gl X e 4

integer programs are at present too erratic and slow to
" compete with epumerative methods. However, for s number of

special structures (set covering, traveling salesman

problem) where informetion available about the convex hull

! of feasible points has made it possible to generate strong
g inequalities at acceptable computational cost, cutting

' planes, either by themselves, or in combination with
enumerative and/or Lagrangean techniques, have been highly

successful.

At the current state of the art, while many real world

problems smenable to an integer programming formulation fit
within the stated limits and are solvable in useful timae,
others substantially exceed thosa limits. Furthermore,

some important and frequently occurring real world prob-

lems, like job shop scheduling and others, lead to integer

programming models that are almost always beyond the limits

of what is currently solvable. Hence the great importance

of approximation methods for such problems.
For literature on computer codes see Land and Powell
(1979), Spielberg (1979).
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