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ABSTRACT

The objective is to obtain and compare interpolation

methods and contour plot techniques, based on data from !
sites whose locations are irregular or scattered. Data
from the 1980 Fugro report [Ref. 1] on MX valley soil
samples serves as a test bed.

Two groups of data, seismic p-wave velocities and sur-

face soil depth were studied using six different interpola- |
tion methods and three different contour plot techniques.
Comparison of the interpolation methods and of the contour i

plot techniques are madez
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I. INTRODUCTION

Detailed investigations of seismic p-wave velocities and

depth of the surface soil layer were performed in the Ralston

! Valley, Nevada, by Fugro, Inc.[Ref. 1], for the U.S. Army
Engineer Waterways Experiment Station (W.E.S.) as part of the

preliminary work on the MX missile system deployment. Six-

teen locations were chosen in the Ralston Valley by W.E.S.
for their study organized into four sets of sites (coded RA,
RB,RC,RD) located in each of the four predominant surficial
soil types (coded 5I,5Y,U,4U), and an additional site marked
RUZ2 identified in the Valley.

The data source for identified sites[ﬁef, 3] gives the
(X,Y) coordinates (one mile to the inch) of the boring
locations relative to the map's lower left grid mark, the
seismic p-wave velocities (MPS - meters per second) of the
surface layer, and the depth of that layer {(meters) for the
2B line; see Appendix A. The site identifiers and locations

for the Ralston Valley sampling plan can be found in Appendix

B. The immediate concern is to develop contours describing
the depth of the top layer, and of the compression wave speed
in the top layer, in the entire Valley.

Based on these limited data, the mathematical problem is
that of constructing a smooth bivariate function F(X,Y) which

takes on specified values F(xk,Yk) = Fk for K=1,...,N.

12
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Franke [Ref. 3,4,5,6J has made a rather extensive general

study of the modern interpolation methods. Most of the methods
require the user to specify a parameter (or several), but

these parameters can be determined by computational experi-
ment [Ref. 4]. The interpolation methods selected for
specific inclusion in the current work are a subset of these
methods, see Table 1. Furthermore, contour plotting, specific-
ally non-IMSL subroutine CONTUR, subroutine CONISD and sub-
routine PLT3Dl, were exercised for comparison. Basic FORTRAN
programs for the first five interpolation methods were obtained
from Professor R. Franke [Ref. 3,4,5,6) .

The various interpolation methods were used to supply
function values at a gridwork of reference points. In order
to compare the methods, the mean and standard deviation of
the values were produced at each grid point. Also it is
important to identify which methods generates sharply different
interpolation values compared to the other methods. For this
purpose, the same FORTRAN program generates the absolute dif-
ferences from the mean values for each method.

FORTRAN programs for all of the methods can be obtained
by writing the advisor.

In the next chapter we will describe a number of inter-
polation methods. Chapter 3 describes employment of the
Ralston Valley data as a way of comparing these methods.
Chapter 4 discusses contour plot techniques, and the con-

clusions from using these procedures are given in Chapter 5.

Graphical results are presented in a series of appendices.

13




I —— .

1)

2)

3)

4)

5)

6)

TABLE 1
INTERPOLATION METHODS

Inverse Distance Weighted Methods

A) Shepard's Method

B) Modified Shepard's Method

C) Modified Linear Shepard's Method

D) Modified Shepard's Method Boolean Sum Plane
E) Modified Mclain Method

F) Quadratic Shepard's Method
*G) Modified Quadratic Shepard's Method

H) McLain Method

Franke's Methods (Rectangle based blending methods)
A) Franke's Method (Mode One)

B) Franke's Method (Mode Three)
*C) Franke's Method (Thin plate local functions)
Triangle Based Blending Methods

A) Nielson-Franke Linear Triangle Method

*B) Nielson-Franke Quadratic Triangle Method
Finite Element Based Methods

A) Akima's Method

B) Akima's Method - Modification Two

C) Akima's Method - Modification One

D) Akima's Method - Modification Three
*E) Nielson's Minimum Norm Network

F) Lawson's Method

Foley's Method

A) Generalized Newton Interpolant

B) TF Delta Sum Berstein Interpolant

C) 1Iterated Delta Sums: TF Delta Sum Bicubic Spline
*D) Iterated Delta Sums: A Shepard's Method Delta Sum

Bigc. Sp.

Nodal Basis Function Type Methods

A) Rotated Gaussian

*B) Hardy's Multiquadric

C) Hardy's Reciprocal Multiquadric

D) Duchon's Radial Cubic Method

E) Duchon's Thin Plate Function

F) Rotated B-Spline

* Methods chosen for comparison study.

14




II. INTERPOLATION METHODS

The problem being addressed here is that of constructing
a smooth bivariate function, F(X,Y), which takes on specified
values F(Xk,Yk) = Fr. k=1,...,N based on point data from
scattered, irregular locations. The bivariate function,
F(X,Y) is smooth, (i.e., it has at least continuous first
partial derivatives), and the points (Xk,Yk) are 'scattered',
that is, not necessarily conforming to some regular pattern.

Some interpolation methods, called 'global', are sensitive
to all the data points: the addition or deletion of a data
point, or a change of one of the coordinates of a data point,
will propogate throughout the entire domain of definition.
Other interpolation methods are called 'local', that is, insen-
sitive to changes in the data points which are sufficiently
distant from the location at hand.

Franke, R. [ Ref. 3,4,5,6] has made an extensive general
study of new interpolation methods. He produced a classifi-
cation of the interpolation methods [Ref. 4), as shown in
Table 1. Under his six main types, there are a total of 29
different methods. All the methods appearing in the same
group are either local or global and use the same basic idea;
several are modifications of the previously described ones.

Six methods, one from each of the six main types, are

described below.




A. MODIFIED QUADRATIC SHEPARD'S METHOD

The modified gquadratic Shepard's method was derived
from the inverse distance weighted method. All methods of
this type which are considered may be viewed as generaliza~-

tions of Shepard's method. The basic Shepard's method is

N
Wk(X,Y).Qk(X,Y)/ T Wk(X,Y)

N
F(X,Y) =
=1 k=1

k

-u
where Wk(X,Y) = dk . Typically u = 2, although other values

2 _ _ 2 - 2
may be used Here dk = ((X Kk) + (Y Yk) ).

In the modified gquadratic Shepard's method the weights

for obtaining the nodal functions (quadratics) are taken as

( - )
Wk(X,Y) % and R = 1/2 {[N/NID
(Rq . dk) q

where D is thediameter of the point set, and a nominal value

for Nq, determined by computational experiment [ Ref. 4], is

Nq = 18, The diameter of the point set is defined

2 2 2
D = MAX X, - X, + (Y, - Y
s (X, J) (¥, j)

The nodal functions Qk(X,Y) are defined as

16
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—_— — - 2
X,Y) = F + X~X ) + Y-Y ) + -
Qk( ) K akz( k) ak3( k) ak4(x Xk)
2
+ 3 (X=X )+ (¥=Y ) + 3 (Y-Y .
aks( k) ( k) aks( k)

and for the coefficients one must solve the least squares

problem,

N
MIN 'il Wy [Fk ta, (X X)) +oa (Y -Y)

-Ij=2]--A'6 i#k 2
%3 + (X.=X. ) + a_ _(X.=X ).(Y;=Y )
s X% ks i kUK

2 2
o lyty ) - Fi]

Complete details are given in [Ref. 4,5).

B. LOCAL THIN PLATE SPLINES METHOD
This is known as Franke's method[Ref. 4]. The idea is

to represent the interpolation function as

,Y) = W..(X,Y) Q.. (X,
F(X,Y) ir:j ;J(X )Ql,J(x Y)

where the Wij(x,Y) are local weight functions [Ref. 6_]. Here
7.

we choose the W so that Wij = 1, and the local approximations
l,j .

Qi,j (X,Y) interpolate at points where the corresponding weight

function is non-zero. The weight functions are products of

piecewise hermite cubics [ Ref. 6_].

17




The local approximations for this method are taken to be

the thin plate splines and have the form

- .dzn d .
QLJ(X’Y) = I A K LOG ktart b*X + C-Y
k€I
2 2 2
where 4y = ((X-X,) + (Y=Y, ) )

And I is the set of indices k for which (xk,Yk,Fk) is a point

to be interpolated by Qij(X,Y), and is defined by
I = { K : Q is to take the value Fk at (Xk,Yk)-} .

The coefficients A, and a, b and ¢ are determined by a certain

linear system of equations, (see [Ref. 6]).

C. NIELSON=-FRANKE QUADRATIC TRIANGLE METHOD

All methods listed under triangle based blending methods
[Ref. 4] are conceptually similar to the inverse distance
weighted methods. The interpolation function for the gquad-
ratic triangle method is

F(X,Y) = Wi(X,Y)°Qi(X.Y) + Wj(X,Y)'Qj(X.Y) + Wy (X,Y) -Qp (X,Y)

The first step in the present method is to partition the plane
into triangles by connecting neighboring data points based
upon the min-max angle =riterion as described by Franke in
[Ref. 5]. The quadratic triangle method uses the inverse
distance weighted quadratic Qi(X,Y) which is also used in the

modi fied quadratic Shepard's method, see section 2.A.

18




A significant difference from the inverse distance weighted
method is that the weight functions for the triangle based
blending method are based on a triangulation of the convex
hull of the point set {;(Xk'yk)J' . The method is not sensi-
tive to the triangulation technique. If a triangulation is in
existence for other purposes, it can be used.

In short, the method is to define the nodal functions

Q ,k=1,...,N, as in the modified quadratic Shepard's method,

k
form a triangulation of the points, determine the weight

functions [Ref. S] and compute interpolant F(X,Y).

D. NIELSON'S MINIMUM NORM NETWORK METHOD

Nielson's minimum norm network method [Ref. 4,5], can
be found under the finite element based methods in Table 1.
Like the Nielson-~Franke guadratic triangle method, this global
method is based upon a triangulation.

The method consists of three separate steps; triangulation
curve network, and blending [Ref. 7]. The points
(xg'yk)'k=l""’N are used as the vertices of a triangulation
of the convex hull of these points. Alternatively, if a tri-
aggulation already exists, it can be used. The curve network
step involves the solution of a certain minimum norm problem
and requires first partial derivatives in its discretized
form. These are obtained by assuming a cubic variation along
each edge in the triangulation and minimizing the integral of

the second derivative squared [Ref. 7].

19
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This method does not provide extrapolation outside the con-
vex hull, but the triangular blending method can be used to
extend the curve network to the entire hull. In a triangular
exterior region, the function is taken to be the linear
function determined by the value and slopes at the vertex

[re£. 7]

E. GENERALIZED NEWTON DELTA SUM BICUBIC SPLINE METHOD

Foley's methods [Ref. 4] involve several ideas. The
interpolant is taken as either the generalized Newton inter-
polant, or a form of Shepard's method. The use of generalized
Newton type interpolant is involved in them prominently,
because the best performance for various test functions is
provided by the interated delta sum methods using the generalized
Newton interpolant with natural bicubic splines.

The generalized Newton interpolant takes the form

N
T (X,¥) = ¢ Wy (X,Y) ,
N k=1 ak k
£ - (x 'Y )
where a = k k-1 k %k
and W (X,Y) has the property Wk(Xi,Yi) =0 i=1,2,...,k=1 .

k
This function is dependent upon the order of the points, and

so Foley's scheme involves an ordering process [Ref. 4].
After constructing a bicubic spline interpolant for the grid
points, one adds a generalized Newton interpolant for the

difference between data and the bicubic splines, obtaining

20




an interpolant. This process is termed a 'delta sum' by

Foley [Ref. 4].

F. HARDY'S MULTIQUADRIC METHOD
Hardy's multigquadric method [Ref. 8,9] can be thought
of as being under the global basis function type. A multi-

quadric surface can be represented by

1/2
N 2 2
I C. (X,=X,) + (Y =Y ) + C =2., i=1,...,N .
= Jj 1 J i 1
The given problem data provide a set of cartesian coordinates
on the surface ranging from Xl,Yl,zl to xN,YN,ZN; the quad-
ratic term coefficients ¢y to CN are unknown. The coordinates
of the N data points can be substituted into the definition
of the surface and only the coefficients Cj are left as
unknown. A problem here is that of solving a system of N
linear equations with N unknowns. A nominal value for C was

determined by computational experiment and the value C = 0

was chosen.

c, |
)
If a vector of unknowns is to be [Cj] = .o
1
used, define
CN
[ J

then each known element becomes




2 2

X ~X, + (Y -Y, ..
(X=X + (¥,-Y) i

and the matrix [aij] = A, which is (NXN) coefficient matrix.

Upon r
1]

defining which [Zi] =

A multiquadric surface reduces to AxC = Z and, as usual, the
solution is C = A lz.

When the known constraints Cj are substituted into the
multiquadric surface formula, we have the required equation

of a surface, which fits the data points exactly and which

provides logical interpolation at intermediate points.
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III. COMPARISON OF INTERPOLATION METHODS USING
RALSTON VALLEY DATA

Contour construction for seismic p-wave velocities and
depth data can be seen in Appendix C and in Appendix F,
respectively, for the various interpolation methods and with
the three different contour plot techniques. Each method
appears in the order given in Table 1. Each method is dis-
played using first the subroutine CONTUR, then the subroutine
CONISD, and lastly the subroutine PLT3Dl. Subroutine CONTUR
cannot outline the Ralston Valley, but gives contour con-
structions in rectangular form with the x-axis ranging from
one to seventeen miles and the y-axis from one to twenty five
miles. The subroutine CONISD can outline the Ralston Valley
with boundary lines. All three dimensional pictures were
generated by subroutine PLT3Dl.

Appendix D shows the mean and standard deviation of the
various contour constructions for the seismic p-wave velo-
cities. Numerical values for the mean and standard deviation
at each grid point come from six different interpolation
methods. Appendix G is similar to Appendix D, but it is for
the depth of the surface soil layer. Convex contour lines
are formed for the standard deviations values as can be seen
in Appendices D and G. Small standard deviation values

appear in data point region, and become larger as one moves
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toward the edges. 1In other words, more accurate prediction
occurs in data point region and less accurate prediction out-
side this region.

Deviations from mean values for all interpolation methods
can be seen in Appendix E for seismic p-wave velocities and
in Appendix H for depth values. The 1, 10, 50 and 100 contours
show the absolute differences between the given method and
mean values for seismic p-wave velocities. The 0.1, 0.5, 1.0
contours for depth data display quite convex regions for all
methods. Clearly, it can be seen that; there are no signifi-
cant differences between methods in terms of deviations from
mean values for grid points especially in data region. This
result shows that in the data points region all methods work
with almost same accuracy and outside the region there are
too great differences. There is no way to compare them out-

side the region.
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IV. CONTOUR PLOT TECHNIQUES

The interpolation values provided by any of the methods
can be seen in the computer outputs, but their interpretation
1s highly difficult without contour construction. For inter-
pretation purposes, computer programs for arawing plots on
an off-line plotter are available at the Naval Postgraduate
School computer center.

The subprograms CONTUR, CONISD and PLT3D1 serve the com-
mon purpose but have different capabilities.

All the subprograms have the same limitation in that they
use a linear interpolation process to find the values of the
points along contour segments. Also, there is a limit in the
resolution of the off-line plotter, namely, .005 inch in both

the X and Y directions for the versatec plotter.

A. SUBROUTINE CONTUR

Given a matrix of numerical values of Z = (X,Y), the
program CONTUR generates a contour graph on which one or
more contour levels are drawn. This non-IMSL subroutine
uses a two-dimensional array and turns out a two-dimensional
off-line plot. Interior and exterior contour segments and
labels (if requested) for exterior contour segments can be
seen. Labeling of the interior segments represent local

maxima.
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Advantages:

1) The subrocutine has a minimum number of arguments (10)
compared with other plot techniques.

2) A rather big two-dimensional array can be used, up to
1797 data points.

3) It takes approximately one fiftieth of the CPU time that
would be required by subroutine CONISD.

Disadvantages:

1) Irregularly spaced data cannot be contoured.

2) Irregular boundary capability is not available, and there
is no option for a 'cut-out' area.

3) The width and the height of the contour graph must be
specified as integers, and are not adjustable scale
parameters.

4) The scale values (if requested) one inch apart on the
exterior frame of the contour graph increase from north
to south. This is not oriented properly for our use,
which is a lower left grid oriented system.

5) Limited labeling. The x-axis and y-axis cannot be
labeled.

6) There is no option for smoothing the contour lines.

B. SUBROUTINE CONISD

This non~IMSL subroutine produces a drawn contour map on
an off-line plotter for given irregularly spaced data points.
Each data point is a triad of X,Y and Z values Where
Z = (X,Y). There may be one or more 'cut-out areas' which

are not contour.
26
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Advantages:

1) TIrregularly spaced data can be drawn.

2) Irregular boundary capability is available for one or

- more 'cut-out areas'.

3) The scale for the x-axis and y-axis are defined as real
numbers, i.e., adjustable scale.

4) X-axis and y-axis can be labeled.

S) There is an option for smoothing the contour lines.
Disadvantages:

1) It takes much more CPU time than the other plot techniques.

C. SUBROUTINE PLT3Dl

A subroutine PLT3Dl produces three-dimensional perspec-
tive or isometric plots on an off-line plotter for given a
two-dimensional matrix of numerical values of Z = (X,Y).
Labeling and sczling are not available for this reason, it
can be used only for general purposes.

A memorandum about this subprogram [Ref. 12:] can be
requested from W.R. Church computer center. This memorandum
includes a listing of the computer program, the algorithm
that is used by the program, and the axes orientation, rota-
tion and projection are clarified by illustrations.

Advantages:

1) This routine gives a nice overview to given area by

Z = (X,Y).

2) The vantage point can be changed.

3) The scale is adjustable.
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Disadvantages:
1) There is no option for 'cut-out areas'.

2} There is no labeling.

28




V. CONCLUSIONS AND RECOMMENDATIONS

Seismic p-wave velocities or depth values for any grid
point in Ralston Valley can be found from computer outputs or
contour constructions for any particular interpolation method
or for the mean of the six different metnods. The standard
deviations for each grid point are also available. The means
and standard deviations may be useful for the comparison of
methods.

The computer outputs for standard deviations in Appendix
E and H show that accuracy is high in the data point region
and at some undecided distance from this region; but this
distance cannot be measured. In the data point region all
interpolation methods gives essentially the same result,
regardless of whether they are global or local.

Outside the data point region all methods generate rather
different values and there is no way to decide which one is
close to true values. If the point of interest is in the data
point region any of the interpolation methods can be used.

According to Appendix C and F; none of the methods can
find a maximum or minimum point outside the region. Table 2

gives approximate CPU times for all of the studied inter-

polation methods. If minimal computer time is required for a

given problem, the triangle based quadratic method is suitable.
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APPENDIX A

TABLE 3

DATA SELECTED FOR TEST BED

Side Designation Coordinates P-Wave Vel. Depth
X Y NPS M,
1. RASI 9.25 30.25 561 3.0
2. RBSI 5.69 25.5 366 1.0
! 3. RC5I 4,75 20.81 279 0.9
| 4. RDSI 5.75 14.75 347 1.5
5. RASY 5.59 26.25 341 1.5
6. RB5Y 11.75 24.19 366 0.8
7. RC5Y 7.06 20.0 323 1.2 !
8. RD5Y 7.31 10.31 329 0.8 '
9. RAU 7.31 28.19 363 1.2
10. RBU 9.25 19.31 335 1.6
11. RCU 8.75 11.25 317 1.4
12. RDU 17.44 10.94 378 1.5
13. RA4U 10.12 23.44 341 1.5
14. RB4U 12.25 18.56 372 1.5
15. RC4U 11.44 14.38 372 1.5
16. RD4U 15.44 12.50 381 0.5
17. RU2 6.00 27,19 357 1.2

31




e APPENDIX B _..._ _ . . ——

EXPLANATION
SURFICIAL GEDLOGIC UNITS

D A1, A2. A3 AND A8
ASi AND ASo
E!!!ISy

ﬂﬂllu

NN A4y

5w

ROCK UNITS

BB - oxeous

RAU
® WES STUDY SITES

1:250.000
_. 4 ]
— e e

STATUTE NILES

Site numbers and locations for Ralston Valley soil
sampling plan.
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