
AD-AlS 906 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/S 13/2
0COMPARISON OF INTERPOLATION AND CONTOUR CONSTRUCTION METHODS AP--ETC(U)

IIIIIIIIIIIII I
NCASSIII II 

IEEEIIEEEIIEEEE
EIhEEEEIhhEEII
*IIumIIIIuIuu
EEIhE//h/EEE



NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
COMPARISON OF INTERPOLATION AND
CONTOUR CONSTRUCTION METHODS
APPLICABLE TO THE MX VALLEY

SOIL SAMPLING PROJECT

by

Haluk Unaldi

September 1981

Thesis Advisor: R.R. Read

Approved for public release: distribution unlimited

..... ~~~~~~~~~~~~~~............ .. lIIIIIll " ................... . . . .



UNCLASS IFIED
S9CU~eTV CLASSIFICATOR OF1 THIS 1-AGE (WhO DOOR. EMOO-)d

RIAD MNT*077 14"NSREPOR DOCUMENTATION PAGE 337031E CONPLETIN.. FORM
I REPORT NUM66ER jG6VT ACCESSUON S RECCIPIEOT-S CATALOG "uMeRf

4. TITL.E (an 'IN1"''Comparison of Interpolation S TYP of, REPORT a PERIOD COVERED

and Contour Construction Methods AplcbeMseter 1981i
to the %LX Valley Soil Sampling Project September 1981 g

7. AUTHOW41j S. CkAC 'OR GRANT mngfME(a,

Haluk Unaldi

9. 11ER1FORMING Oft~mIZATl0N NAME ANO A00111195 'a EMA IE-- -0101C1 TAT UME .

Naval Postgraduate School
Monterey, California 93940

11 CONTROLLING OFFICE NAMIE AND ADDRESS 12. REPORT DATE

Naval Postgraduate School Sentember 1981

Monterey, California 93940 13 111190 rPAE

14 NMITORING08 AGENCY WAVE 6 ADORIESS01 9111101 10 J11 C41fff.*ili 01119,11 IS- SECURITY CLASS. (0 t o l o wni

UNCLASS IFIlED

IS.. DECLASSIFICAT1,0011OOWGAOIMG
SCH EDULE

IS. DISTRIOUTION STATEMENIT (of hi le.lpeij

Approved for public release, distribution unlimited

17. OISTROIBUTI8N STATEMENT (of the absteat anteced OR. 8516.1 20. it 114- #lseg lAei 11pGOOM)

Is. SUPPLEMENTARY NOTES

it. Key WORDS (Ce..Ionm an fwmea. side Rs s II sewF i Iinetg bhe*& num8t)

Interpolation methods
Contour construction methods

20. ASSTRACT eCoolimM 0111 wn~ POR OP1401111 if mO*10.IF md IdainfP AW NO". MMM.,)

The objective is to obtain and compare interpolation methods and
contour plot techniques, based on data from sites whose locations
are irrefular or scattered. Data from the 1980 Fugro report
(Ref. 13 on MX valley soil samples serves as a test bed. Two
groups of data, seismic p-wave velocities and surface soil depth
were studied using six different interpolation methods and three
different contour plot techniques. Comparison of the interpolatio
methods and of the contour Dlot techniaues are made,

DD ,;, 173 og~gwo~u~ve ISOBSOETEUNCLASS IFIED
3/11 012-01-661SECUMITY CLASSIFICATION OF THIS PAGE (VRAM 010 AlatE



Approved for public release; distribution unlimited

Comparison of Interpolation and Contour
Construction Methods Applicable to the MX Valley

Soil Sampling Project

by

Haluk Onaldi
Lieutenant, Turkish Navy

B.S., United States Naval Postgraduate School, 1981

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL r
September 1981

Author:

Approved by: ___________________

Thesis Advisor

Chairman, Department ag-Qoerations Research

Dean of Information and Policy Sciences

2



ABSTRACT

The objective is to obtain and compare interpolation

methods and contour plot techniques, based on data from

sites whose locations are irregular or scattered. Data

from the 1980 Fugro report [Ref. 1] on MX valley soil

samples serves as a test bed.

Two groups of data, seismic p-wave velocities and sur-

face soil depth were studied using six different interpola-

tion methods and three different contour plot techniques.

Comparison of the interpolation methods and of the contour

plot techniques are made.
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I. INTRODUCTION

Detailed investigations of seismic p-wave velocities and

depth of the surface soil layer were performed in the Ralston

Valley, Nevada, by Fugro, Inc.[Ref. 1] , for the U.S. Army

Engineer Waterways Experiment Station (W.E.S.) as part of the

preliminary work on the MX missile system deployment. Six-

teen locations were chosen in the Ralston Valley by W.E.S.

for their study organized into four sets of sites (coded RA,

RB,RC,RD) located in each of the four predominant surficial

soil types (coded 5I,5Y,U,4U), and an additional site marked

RU2 identified in the Valley.

The data source for identified sites [Ref. 2] gives the

(X,Y) coordinates (one mile to the inch) of the boring

locations relative to the map's lower left grid mark, the

seismic p-wave velocities (MPS - meters per second) of the

surface layer, and the depth of that layer (meters) for the

2B line; see Appendix A. The site identifiers and locations

for the Ralston Valley sampling plan can be found in Appendix

B. The immediate concern is to develop contours describing

the depth of the top layer, and of the compression wave speed

in the top layer, in the entire Valley.

Based on these limited data, the mathematical problem is

that of constructing a smooth bivariate function F(X,Y) which

takes on specified values F(XkYk) = Fk for K = 1,...,N.

12



Franke [Ref. 3,4,5,6j has made a rather extensive general

study of the modern interpolation methods. Most of the methods

require the user to specify a parameter (or several), but

these parameters can be determined by computational experi-

ment [Ref. 4]. The interpolation methods selected for

specific inclusion in the current work are a subset of these

methods, see Table 1. Furthermore, contour plotting, specific-

ally non-IMSL subroutine CONTUR, subroutine CONISD and sub-

routine PLT3D1, were exercised for comparison. Basic FORTRAN

programs for the first five interpolation methods were obtained

from Professor R. Franke [Ref. 3,4,5,6] .

The various interpolation methods were used to supply

function values at a gridwork of reference points. In order

to compare the methods, the mean and standard deviation of

the values were produced at each grid point. Also it is

important to identify which methods generates sharply different

interpolation values compared to the other methods. For this

purpose, the same FORTRAN program generates the absolute dif-

ferences from the mean values for each method.

FORTRAN programs for all of the methods can be obtained

by writing the advisor.

In the next chapter we will describe a number of inter-

polation methods. Chapter 3 describes employment of the

Ralston Valley data as a way of comparing these methods.

Chapter 4 discusses contour plot techniques, and the con-

clusions from using these procedures are given in Chapter 5.

Graphical results are presented in a series of appendices.

13



TABLE 1

INTERPOLATION METHODS

1) Inverse Distance Weighted Methods
A) Shepard's Method
B) Modified Shepard's Method
C) Modified Linear Shepard's Method
D) Modified Shepard's Method Boolean Sum Plane
E) Modified McLain Method
F) Quadratic Shepard's Method
*G) Modified Quadratic Shepard's Method
H) McLain Method

2) Franke's Methods (Rectangle based blending methods)
A) Franke's Method (Mode One)
B) Franke's Method (Mode Three)
*C) Franke's Method (Thin plate local functions)

3) Triangle Based Blending Methods
A) Nielson-Franke Linear Triangle Method
*B) Nielson-Franke Quadratic Triangle Method

4) Finite Element Based Methods
A) Akima's Method
B) Akima's Method - Modification Two
C) Akima's Method - Modification One
D) Akima's Method - Modification Three
*E) Nielson's Minimum Norm Network
F) Lawson's Method

5) Foley's Method
A) Generalized Newton Interpolant
B) TF Delta Sum Berstein Interpolant
C) Iterated Delta Sums: TF Delta Sum Bicubic Spline
*D) Iterated Delta Sums: A Shepard's Method Delta Sum

Bic. Sp.
6) Nodal Basis Function Type Methods

A) Rotated Gaussian
*B) Hardy's Multiquadric

C) Hardy's Reciprocal Multiquadric
D) Duchon's Radial Cubic Method
E) Duchon's Thin Plate Function
F) Rotated B-Spline

* Methods chosen for comparison study.

14
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II. INTERPOLATION METHODS

The problem being addressed here is that of constructing

a smooth bivariate function, F(X,Y) , which takes on specified

values F(XkYk) = Fk, k=l,...,N based on point data from

scattered, irregular locations. The bivariate function,

F(X,Y) is smooth, (i.e., it has at least continuous first

partial derivatives), and the points (,XkYk) are 'scattered',

that is, not necessarily conforming to some regular pattern.

Someinterpolation methods, called 'global', are sensitive

to all the data points: the addition or deletion of a data

point, or a change of one of the coordinates of a data point,

will propogate throughout the entire domain of definition.

Other interpolation methods are called 'local', that is, insen-

sitive to changes in the data points which are sufficiently

distant from the location at hand.

Franke, R. [Ref. 3,4,5,6J has made an extensive general

study of new interpolation methods. He produced a classifi-

cation of the interpolation methods [Ref. 4), as shown in

Table 1. Under his six main types, there are a total of 29

different methods. All the methods appearing in the same

group are either local or global and use the same basic idea;

several are modifications of the previously described ones.

Six methods, one from each of the six main types, are

described below.

15
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A. MODIFIED QUADRATIC SHEPARD'S METHOD

The modified quadratic Shepard's method was derived

from the inverse distance weighted method. All methods of

this type which are considered may be viewed as generaliza-

tions of Shepard's method. The basic Shepard's method is

N N
F(X,Y) = Z Wk(X,Y).Qk(XY)/ t W k(XY)

k=1 k=l

where Wk(X,Y) = d . Typically p = 2, although other values

2 2 2)
may be used. Here dk = ((X-Kk) + (Y-Y ) .

k k k
In the modified quadratic Shepard's method the weights

for obtaining the nodal functions (quadratics) are taken as

w kx,Y and R = 1/2 VN/ND

where D is the diameter of the point set, and a nominal value

for Nq, determined by computational experiment [Ref. 41, is

N = 18. The diameter of the point set is defined
q

D-= MAX (Xi - X] + (Yi - Y 2

The nodal functions Q k(X,Y) are defined as

16



- - 2
Qk(XY) = Fk + a (X-X k ) + a k3(Y-Y k + a--(X-X kk k k k3k 4  k

2
+ ak5 (X-X k)•(Y-Y k) + 7k6(Y-Y k )

and for the coefficients one must solve the least squares

problem,

N r
MIN Z W k F + (x + (Y-Y

i LI k 'k 2 (_Xk) +ak 3(YYk)

a Kj,I., itk 2 (.X-
j+ ak4 (Xi-Xk) + ak (Xi-Xk) (Yi-Yk)

+ ak6 (Yi-Y 2 Fi "

Complete details are given in [Ref. 4,5j.

B. LOCAL THIN PLATE SPLINES METHOD

This is known as Franke's method rRef. 43. The idea is

to represent the interpolation function as

F(X,Y) = W (X,Y)*Q (X,Y)
i,j 2j "i

where the Wi (X,Y) are local weight functions [Ref. 6]. Here

we choose the Wij so that W j = 1, and the local approximations

Q. (X,Y) interpolate at points where the corresponding weight

function is non-zero. The weight functions are products of

piecewise hermite cubics IRef. 6].

17



The local approximations for this method are taken to be

the thin plate splines and have the form

2
Q. (X,Y) Z = dk'LOG dk + a + b'X + C-Y

where d2  2 2
k = ((X-Xk) + k)

And I is the set of indices k for which (,XkYkFk) is a point

to be interpolated by Qij (X,Y), and is defined by

I ={K : Q is to take the value Fk at ( Xkyk) .

The coefficients Ak, and a, b and c are determined by a certain

linear system of equations, (see [Ref. 6j).

C. NIELSON-FRANKE QUADRATIC TRIANGLE METHOD

All methods listed under triangle based blending methods

[IRef. 4j are conceptually similar to the inverse distance

weighted methods. The interpolation function for the quad-

ratic triangle method is

F(X,Y) = Wi(X,Y) -Q (X,Y) + Wj(X,Y)-Qj (X,Y) + Wk(X,Y) Qk(X,Y)

The first step in the present method is to partition the plane

into triangles by connecting neighboring data points based

upon the min-max angle criterion as described by Franke in

[1Ref. 5J. The quadratic triangle method uses the inverse

distance weighted quadratic Qi (X,Y) which is also used in the

modified quadratic Shepard's method, see section 2.A.

18
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A significant difference from the inverse distance weighted

method is that the weight functions for the triangle based

blending method are based on a triangulation of the convex

hull of the point set t (Xk,Yk)J} . The method is not sensi-

tive to the triangulation technique. If a triangulation is in

existence for other purposes, it can be used.

In short, the method is to define the nodal functions

Q kk=l,...,N, as in the modified quadratic Shepard's method,

form a triangulation of the points, determine the weight

functions [Ref. 5 ] and compute interpolant F(X,Y).

D. NIELSON'S MINIMUM NORM NETWORK METHOD

Nielson's minimum norm network method LRef. 4,5], can

be found under the finite element based methods in Table 1.

Like the Nielson-Franke quadratic triangle method, this global

method is based upon a triangulation.

The method consists of three separate steps; triangulation

curve network, and blending [Ref. 7]. The points

(XkYk) ,k=l,...,N are used as the vertices of a triangulation

of the convex hull of these points. Alternatively, if a tri-

aggulation already exists, it can be used. The curve network

step involves the solution of a certain minimum norm problem

and requires first partial derivatives in its discretized

form. These are obtained by assuming a cubic variation along

each edge in the triangulation and minimizing the integral of

the second derivative squared [Ref. 7].

19
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This method does not provide extrapolation outside the con-

vex hull, but the triangular blending method can be used to

extend the curve network to the entire hull. In a triangular

exterior region, the function is taken to be the linear

function determined by the value and slopes at the vertex

[Ref. 71.

E. GENERALIZED NEWTON DELTA SUM BICUBIC SPLINE METHOD

Foley's methods [Ref. 4] involve several ideas. The

interpolant is taken as either the generalized Newton inter-

polant, or a form of Shepard's method. The use of generalized

Newton type interpolant is involved in them prominently,

because the best performance for various test functions is

provided by the interated delta sum methods using the generalized

Newton interpolant with natural bicubic splines.

The generalized Newton interpolant takes the form

N
T (X,Y) = z ak.Wk(XY)
N k=l

f -T (x ,y )
-k k-l k k

where ak = k(ktlk k
W k(XkY k )

and W (X,Y) has the property W k(Xi,Y i ) = 0 i=l,2,...,k-l

This function is dependent upon the order of the points, and

so Foley's scheme involves an ordering process [Ref. 4].

After constructing a bicubic spline interpolant for the grid

points, one adds a generalized Newton interpolant for the

difference between data and the bicubic splines, obtaining

20
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an interpolant. This process is termed a 'delta sum' by

Foley [Ref. 4].

F. HARDY'S MULTIQUADRIC METHOD

Hardy's multiquadric method [Ref. 8,9] can be thought

of as being under the global basis function type. A multi-

quadric surface can be represented by

1x1/2
N 2 2
rC . + (Y -Y) +C = Zi , i=l,...,N.

j=1 i

The given problem data provide a set of cartesian coordinates

on the surface ranging from X1 ,Y1 Z1 to XNYN ,ZN; the quad-

ratic term coefficients C1 to CN are unknown. The coordinates

of the N data points can be substituted into the definition

of the surface and only the coefficients C. are left as
j

unknown. A problem here is that of solving a system of N

linear equations with N unknowns. A nominal value for C was

determined by computational experiment and the value C = 0

was chosen.

C1

C 2

If a vector of unknowns is to be [Cj

used, define1LNj

then each known element becomes

21
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2 .2
LX jX + (Yl-Y= aj

and the matrix aij ]  A, which is (NXN) coefficient matrix.

Upon F i

2'

defining which [z i J .

LZ

A multiquadric surface reduces to AxC = Z and, as usual, the

solution is C = A- Z.

When the known constraints C. are substituted into theJ
multiquadric surface formula, we have the required equation

of a surface, which fits the data points exactly and which

provides logical interpolation at intermediate points.

22
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III. COMPARISON OF INTERPOLATION METHODS USING
RALSTON VALLEY DATA

Contour construction for seismic p-wave velocities and

depth data can be seen in Appendix C and in Appendix F,

respectively, for the various interpolation methods and with

the three different contour plot techniques. Each method

appears in the order given in Table 1. Each method is dis-

played using first the subroutine CONTUR, then the subroutine

CONISD, and lastly the subroutine PLT3Dl. Subroutine CONTUR

cannot outline the Ralston Valley, but gives contour con-

structions in rectangular form with the x-axis ranging from

one to seventeen miles and the y-axis from one to twenty five

miles. The subroutine CONISD can outline the Ralston Valley

with boundary lines. All three dimensional pictures were

generated by subroutine PLT3D1.

Appendix D shows the mean mnd standard deviation of the

various contour constructions for the seismic p-wave ve2o-

cities. Numerical values for the mean and standard deviation

at each grid point come from six different interpolation

methods. Appendix G is similar to Appendix D, but it is for

the depth of the surface soil layer. Convex contour lines

are formed for the standard deviations values as can be seen

in Appendices D and G. Small standard deviation values

appear in data point region, and become larger as one moves

23
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toward the edges. In other words, more accurate prediction

occurs in data point region and less accurate prediction out-

side this region.

Deviations from mean values for all interpolation methods

can be seen in Appendix E for seismic p-wave velocities and

in Appendix H for depth values. The 1, 10, 50 and 100 contours

show the absolute differences between the given method and

mean values for seismic p-wave velocities. The 0.1, 0.5, 1.0

contours for depth data display quite convex regions for all

methods. Clearly, it can be seen that; there are no signifi-

cant differences between methods in terms of deviations from

mean values for grid points especially in data region. This

result shows that in the data points region all methods work

with almost same accuracy and outside the region there are

too great differences. There is no way to compare them out-

side the region.
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IV. CONTOUR PLOT TECHNIQUES

The interpolation values provided by any of the methods

can be seen in the computer outputs, but their interpretation

is highly difficult without contour construction. For inter-

pretation purposes, computer programs for arawing plots on

an off-line plotter are available at the Naval Postgraduate

School computer center.

The subprograms CONTUR, CONISD and PLT3DI serve the com-

mon purpose but have different capabilities.

All the subprograms have the same limitation in that they

use a linear interpolation process to find the values of the

points along contour segments. Also, there is a limit in the

resolution of the off-line plotter, namely, .005 inch in both

the X and Y directions for the versatec plotter.

A. SUBROUTINE CONTUR

Given a matrix of numerical values of Z = (X,Y), the

program CONTUR generates a contour graph on which one or

more contour levels are drawn. This non-IMSL subroutine

uses a two-dimensional array and turns out a two-dimensional

off-line plot. Interior and exterior contour segments and

labels (if requested) for exterior contour segments can be

seen. Labeling of the interior segments represent local

maxima.

25
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Advantages:

1) The subroutine has a minimum number of arguments (10)

compared with other plot techniques.

2) A rather big two-dimensional array can be used, ip to

1797 data points.

3) It takes approximately one fiftieth of the CPU time that

would be required by subroutine CONISD.

Disadvantages:

1) Irregularly spaced data cannot be contoured.

2) Irregular boundary capability is not available, and there

is no option for a 'cut-out' area.

3) The width and the height of the contour graph must be

specified as integers, and are not adjustable scale

parameters.

4) The scale values (if requested) one inch apart on the

exterior frame of the contour graph increase from north

to south. This is not oriented properly for our use,

which is a lower left grid oriented system.

5) Limited labeling. The x-axis and y-axis cannot be

labeled.

6) There is no option for smoothing the contour lines.

B. SUBROUTINE CONISD

This non-IMSL subroutine produces a drawn contour map on

an off-line plotter for given irregularly spaced data points.

Each data point is a triad of X,Y and Z values where

Z = (X,Y). There may be one or more 'cut-out areas' which

are not contour. 26
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Advantages:

1) Irregularly spaced data can be drawn.

2) Irregular boundary capability is available for one or

more 'cut-out areas '.

3) The scale for the x-axis and y-axis are defined as real

numbers, i.e., adjustable scale.

4) X-axis and y-axis can be labeled.

5) There is an option for smoothing the contour lines.

Disadvantages:

1) It takes much more CPU time than the other plot techniques.

C. SUBROUTINE PLT3Dl

A subroutine PLT3D1 produces three-dimensional perspec-

tive or isometric plots on an off-line plotter for given a

two-dimensional matrix of numerical values of Z = (X,Y).

Labeling and scaling are not available for this reason, it

can be used only for general purposes.

A memorandum about this Subprogram [Ref. 12 ] can be

requested from W.R. Church computer center. This memorandum

includes a listing of the computer program, the algorithm

that is used by the program, and the axes orientation, rota-

tion and projection are clarified by illustrations.

Advantages:

1) This routine gives a nice overview to given area by

Z W (X,Y).

2) The vantage point can be changed.

3) The scale is adjustable.
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Disadvantages:

1) There is no option for 'cut-out areas'.

2) There is no labeling.

28
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V. CONCLUSIONS AND RECOMMENDATIONS

Seismic p-wave velocities or depth values for any grid

point in Ralston Valley can be found from computer outputs or

contour constructions for any particular interpolation method

or for the mean of the six different metnods. The standard

deviations for each grid point are also available. The means

and standard deviations may be useful for the comparison of

methods.

The computer outputs for standard deviations in Appendix

E and H show that accuracy is high in the data point region

and at some undecided distance from this region; but this

distance cannot be measured. In the data point region all

interpolation methods gives essentially the same result,

regardless of whether they are global or local.

Outside the data point region all methods generate rather

different values and there is no way to decide which one is

close to true values. If the point of interest is in the data

point region any of the interpolation methods can be used.

According to Appendix C and F; none of the methods can

find a maximum or minimum point outside the region. Table 2

gives approximate CPU times for all of the studied inter-

polation methods. If minimal computer time is required for a

given problem, the triangle based quadratic method is suitable.

29



- ---- - -~ 4-

,-4C-4 -44 -4- u c~
(13.0 (o 10u Q .0 0
0 0 0 0 0 0 0 0
0- 0 4 Q - -4 4

cfl'
W

E 0

-4 -4--44 -4 -

0

E-44
z

E-4
F-3

0

E-4

0'0

0 di '0 0 '0

4.4 0 0

,a0 4i 30

E-4 u) 41 Q)

0. i -4 a) r.

0. ~" 4 1 rq a4 1
S,- 4-( 0 0

0 04
'0 4.) a) Cl Cu -4

0 Cu 41 0 .0 E

to ca,

di E-1 -4 V)
.4 tr 0
.14 4J -4C U

10Cu ' -4 -

'0 0 W4 4. .4 d

0 0 E4 Cu

30



APPENDIX A

TABLE 3

DATA SELECTED FOR TEST BED

Side Designation Coordinates P-Wave Vel. Depth
X Y NPS M.

1. RASI 9.25 30.25 561 3.0

2. RBSI 5.69 25.5 366 1.0

3. RC5I 4.75 20.81 279 0.9

4. RDSI 5.75 14.75 347 1.5

5. RA5Y 5.59 26.25 341 1.5

6. RB5Y 11.75 24.19 366 0.8

7. RC5Y 7.06 20.0 323 1.2

8. RD5Y 7.31 10.31 329 0.8

9. RAU 7.31 28.19 363 1.2

10. RBU 9.25 19.31 335 1.6

11. RCU 8.75 11.25 317 1.4

12. RDU 17.44 10.94 378 1.5

13. RA4U 10.12 23.44 341 1.5

14. RB4U 12.25 18.56 372 1.5

15. RC4U 11.44 14.38 372 1.5

16. RD4U 15.44 12.50 381 0.5

17. RU2 6.00 27.19 357 1.2
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APPENDIX C
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APPENDIX E
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APPENDIX F
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APPENDIX G
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