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ABSTRACT

The evolution of long, two-dimensional, internal waves of small

amplitude is studied for a density stratification that excludes KdV solitary

waves. Experimental data are compared with theoretical solutions of

inviscid and viscous models of evolution. The inviscid model is the modified

Kd%* equation for which dispersion and (cubic) nonlinear effects occur on a

time scale even slower than that of the KdV equatton. The viscous model

is linear and only accounts for damping of wave amplitudes. It is demonstrated

that viscosity dominates early wave evolution in the measured data. Even in

these experiments, the major source of viscous effects is the interfacial

shear layer; hence, the early dominance of viscosity is probable even for

geophysical scale flows with one of these special stratifications. We

also show that the finite thickness of the ,ycnocline in the experiments

causes a significantly smaller phase speed than predicted by the theoretical

models which utilize a two-layer approximation. A simple calculation based on

a model with two homogeneous layers separated by a layer with a linear strati-

fication accurately predicts the observed phase speeds.
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1.0 Introduction and Major Conclusions

It is well known that long internal solitary waves may oucur as

either waves of elevation or depression depending on the background distri-

bution of density. (For example, see the discussion of the Korte,eg-de Vries

(KdJ) equation in Part I of this series and references cited there.) For

a density stratification separating these two wave regimes, the weak

quadratic (nonlinear) interactions cancel exactly and no KdV solitary

waves are possible. The purpose of this paper is to study the evolution

of long, two-dimensional, internal gravity waves of small amplitude in a fluid

with one of these special density distributiors. Theoretical and experimental

results are presented for a two-layer stratification with a small change in

density across the layers. Here the quadratic interactions arising in the

upper and lower layers cancel exactly when the layer depths are equal. We also

note that there is a corresponding stratification for two-layers witt a large

change in density (Djordjevic and Redekopp, 1978) and with a continuously'

stratified fluid (Long, 1965 and Benjamin, 1967). To our knowledge, this

is the first experimental study of wave evolutior in one of these speciai

stratifications.

Whenever quadratic interactions cancel exactly, one expects weak non-

linear effects to be dominated by cubic interactions. This is indeed the

,7ase for the two-layer system and we show that the modified Kortewec-de Vries

(mKdV) equation governs inviscid evolution on a time scale that is evei

slower than that for the KdV equation. However, since the inviscid effects

of dispersion and nonlinearity are now so weak, questions arise as to whether

viscous effects still can be treated as a small perturbation on the

inviscid dynamics, as they are in Parts I and II of this series. In fact,
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the experimental data to be presented here indicate that the damping effect

of viscosity actually dominates inviscid effects.

Motivated by experimental data, we first develop in §2 a linear model

for the slow evolution of long internal waves that accounts for viscous damping

but neglects both dispersion and nonlinearity. This viscous evolution model

is solved for arbitrary initial data. Importantly, results here demonstrate

that the unusual (dominant) role of viscosity in the experimental data is

not necessarily a consequence of laboratory scale effects. The major contri-

bution to viscous damping arises at the interfacial boundary layer rather

than at the side walls of the wave tank. Hence, this effect persists even

in a geophysical setting where confining side walls are absent. In §3 the

mKdV equation is shown to be appropriate inviscid model for nonlinear evolution

of long internal waves when layer depths are equal. Long-time solutions of

the mKdV equation arnd its linear counterpart are presented. Finally, experimental

data are presented in §4 and compared to solutions of both the viscous and

inviscid models. We demonstrate that viscous effects dominate the early

evolution of the measured data and that the viscous model of §2 provides

a good estimate of these effects. However, both the viscous and inviscid

(two-layer) models fail to predict the observed phase speed of these waves

accurately. The leading order predictions of these models, which are identi-

cal, exceed measured speeds by 18%. It appears that the primary reason for

the slower observed speeds is the finite thickness of the pycnocline region

in the experiments. A simple calculation of phase speed based on a three-layer

model with a linear stratification in the intermediate layer agrees to within

5% of the observed speed.
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2.0 The Viscous Model

As already noted in Part II, the effects of viscosity on the evolution

of long internal waves in a two-layer system are similar to those for long

surface waves. Primary viscous effects still arise at the fluid boundaries;

however, now we must include the shear layer at the fluid-fluid interface.

Fortunately, the interfacial contribution is simple to include when the upper

layer depth h and the lower layer depth h2 are equal, i e. hI = h2  h.

(The notation used here conforms to that in Parts I and II.) To see this first

consider a simple oscillatory wave at the interface with wave number k and

frequency w = ck where

c = (gth/2) (1)

is the linear phase speed for a two-layer model, g is the gravitational force

per unit mass and A=(p 2 -p 1 )/p2 where .. is the mass density. (We note that

the effect of any finite pycnocline thickness is to reduce the phase speed

below that given by (1). The two-layer model is adopted first because of

its simplicity and will be modified later to account in part for the finite

pycnocline thickness in the experiments.) We assume that the wave Reynolds

2
number satisfies Re = w/vk >> I so that viscous effects are weak and boundary

layers are thin. Also, we take the kinematic viscosities v of both the

upper and lower fluid to be equal which is valid for the experiments. A

parameter which characterizes the magnitude of viscous effects is

Ei = 6/h < 1 6 = (2v/w) (2a, b)

where 6 represents the boundary layer thickness.

The leading order effect of small viscosity is an exponential damping in

time (or distance) of the inviscid wave amplitude with a damping coefficient

7(k) and e-folding time (or distance) y -(k). For long surface waves in

a channel of breadth b, the damping coefficient, say v, due to boundary

1
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layer dissipation at the two sidewalls and bottom is (e.g., see Landau anc.

Lifshitz, 1959, page 100)

[b+ 2h ]v,.j

Long internal waves experience similar viscous dissipation from the channel

bottom and the portion of the sidewalls in the lower fluid layer. The added

contributions due to the presence of the upper fluid layer are found by

recalling from Part II that the horizontal (inviscid) fluid velocities will

be equal in each layer (and oppositely directed) when the layer depths are

the same. Hence, the sidewall contribution in the upper layer is identical

to the sidewall effect of the lower layer. In addition, since the inviscid

velocities are equal and oppositely directed above and below the interface,

the actual velocity at the (quiescent) interface position is zero. The zero

velocity there is equivalent to a "no slip" boundary condition, and we can

imagine a (thin) solid boundary at the interface with identical boundary

layers above and below. Each of these interfacial boundary layers is

identical to the bottom boundary layer; hence, the total viscous effect

for the internal wave is found by sunning these different contributions which

leads to a damping coefficient

F3b+4h l [vw] 3b+4hj ] [1 l
= L-h 2 2bh J L - (4)

(We have assumed a free surface that is fully extensible, i.e,. uncontami-

nated, so that no significant contribution to viscous damping arises there.

This assumption appears reasonable for the experimental data presented here.)

We note here that the interfacial contribution to viFcous damping will

generally dominate accounting for 67% of the tCLal when b > h and exceeds

50% for b > 4h. In the laboratory experimentb to follow the interfacial

., ' ..,
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contribution is 57% of the total based on the above analysis.

Now consider an arbitrarily-shaped one-dimensional initial wave

n(x,t=O) where x is the direction of propagation and t is time. Introducing

the nondimensional variables

f = -T n/h, X = (x-ct)/h, 't = ct/6h (5)

(for reasons that will become apparent in section 3) the initial wave

becomes f(x,O) E f (X) and can be represented by its Fourier transform

F(K) = fo (X) e-iKXdx (6)

where K = kh. Assuming linear propagation of the initial wave and

neglecting dispersion so that only viscous damping occurs, each

Fourier component will decay with a damping coefficient (4) which can be

written in nondimensional form as

Y(K) = SKI, = 3(3+4h/b) L2-ci (7a,b)

If F(K,T) represents the Fourier transform of the wave system at any time T,

then the evolution equation for F(KT) under the above assumptions is

a F = y
T-yF (6)

which is easily solved.

The wave form f(X,T) is recovered using the inversion integral. For

initial data with F (-K) = F (K), as in the experiments the final result is

f(x,T) 1 c F(K) exp(-aK T) cos KX dK. (9)
0

We note that even though the above analysis is presented in a heuristic

manner, a confirming perturbation expansion is possible following Chester

(1968) and Miles (1976) who consider weak viscosity, inviscid dispersion,

and nonlinearity for long surface waves.

;.4
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For large times (-), the asymptotic behavior of the solution may be

found by defining

X/(BT) C= (T) K (10)

and expanding F(K) in a Taylor series about K = 0. The dominant behavior is

given by the first term in this series.

0) (K.. 1 Co KF dKF(, (0 ex (Kcj CS)11

where we emphasize that F (0) = i is the nondimensional volume of the

initial data taken to be finite and nonzero. If the expansion of F (K) is
0

taken to three terms and the magnitude of the leading term is required

to exceed that of the third term, a necessary condition for the validity

of (11) is found:

I "F O)I
> - - (12)

where F"(0) = J 2 fo(x)dx is the second moment of the initial data.
(We note that the second term in the expansion always can be made zero by

suitable location of the coordinate system; the criterion in (12) should be

evaluated for this choice.) The viscous solution of (11) indicates that

the wave form becomes self-similar for large times so that all data should

collapse to a single functional form which can be represented as

C2 t2 [ F~x1t (13)
h 3 L = C c2 t

where we have reverted to dimensional quantities.

3.0 The Inviscid Model--Modified KdV Equation

For completeness we outline here how the derivation of the KdV equa-

2.
tion in Part I may be extended to the next slow time scale t2 = £ t in order

to obtain significant nonlinear effects for the case of equal-layer depths.

'I
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The necessary assumptions are:

i) hi h h
1 2

ii) £2 kh -I

iii £ = j/h <-1

iv) £ E £3 = O(E2)

v) C << £2

vi) the wave is strictly one-dimensional

where ) is a characteristic wave amplitude. With these assumptions and

invoking the Boussinesq approximation (A - 0, g - - so that Lg is finite)

the leading order equations are the same linear hyperbolic system discussed

in §2.1 of Part I. Secular terms do not occur at the next order 0(s) but

do arise at O( 2), corresponding to evolution on the slow time scale

t2 = E 2t. The dimensional equation for the rightward-running wave on this

time scale is

1 an an 2 3 n = 0

c a [ x 3x + 6 3x3  (14)

To reduce (14) to standard form we introduce the nondimensional variables

in (5), so that (14) becomes

2
f - 6f f + f = 0
T X XXX (15)

Djordjevic and Redekopp (1978) noted that there are no soliton solutions

of (15) that decay for IxI - - since the cubic nonlinear term and the

dispersion term have opposite signs. The long-time solution of (15) was

given by Ablowitz, Kruskal, and Segur (1979). For time T sufficiently

large the solution near the wave frontis approximated by

f(X,T) (3T) W X/(3T) + 01(31)- (16)



-8-

where W(z) is the second Painleve function defined by ordinary differential

equation

d W zW + 2W3  (17)

dz
2

the boundary condition for (17) is

W(z) % rAi(z) as z -+

where

r = tanh V. (18)

In dimensional terms (16) becomes

rl(x, t)- h (2tl1 WI  -ct0 (19)

(h(ct/2h)d

If the dimensionless wave volume, V, is sufficiently small, then r

in (18) may be expanded in terms of its argument. In addition, W(z) reduces I
t Ai(z) so that (19) is approximated by

n(xt) = [ (t]} Ai Xcctih (20)

We note that (20) is also the long-time solution of the KdV model, which

reduces to alinear equation for this special stratification. Even if the

wave volume is not small, both (19) and (20) predict that the wave front

becomes self-similar with the same similari.ty variable; i.e.,

t)3 n = X-ct] (21)
~h (ct/2h) 3 21

as T - with only the function N differing between solutions.

4.0 Comparison with Experiments

In order to test the theoretical results of sections 2 and 3, a series

of experiments was conducted following the procedures discussed Part I with

h = 5 cm and A = 0.052. The measured density stratifications at the

beginning and end of the experimental series are shown in figure 1. Note

• 3
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that the pycnocline thickness initially is about lcbut increases to

approximately 4 cm before the end of the experimental series. (The increase

in pycnocline thickness results primarily from molecular diffusion as shown

by Hammack, 1980.) The initial wave for this series of experiments is

rectangular in shape with altuncth of 122 cm and an amplitude of 0.25 cm.

Temporal records of the interface elevation were measured at five positions

downstream of the generation region at 3 m intervals.

We now estimate time scales, based on a dominant length scale of

ko - 122 cm, and an amplitude scale of o - 0.25 cm. A characteristic

(fast) time scale is = (k c )- 11 secs. The three parameterso 0

characterizing viscous damping, inviscid dispersion, and nonlinearity,

for the initial wave become, respectively,

E = o/h - 0.094 = k h = 0.041 n0 /h = 0.050. (22)

Hence, representative measures of the slow time scale for significant viscous

-i
darping may be taken as the e-folding time y (k ) = 130 secs (using (4)

with b = 39.4 cm and j= 0.01 cm 2/sec) or the unit slow time scale

-i
U lo) 120 secs. This slow time corresponds to a propagation distance

of about 10 m which is within the 15 m range of experimental measurements.

Alternatively, a unit of the slow time scale for nonlinearity (and dispersion)

2 -i
to become important is (c3 W0) 1 hour! Clearly then, viscous effects

should dominate wave evolution over the range of experimental measurements.

In figure 2, the waves measured at the last three downstream positions

(x = 9m, 12m, and 15m) are compared with theoretical predictions based on

the viscous model (9), which is evaluated numerically. The theoretical

results agree fairly well with the measured data in terms of the amplitude

and length scale of the dorminant portion of the evolving wave. The major

discrepancy between theory and experiment occurs in the arrival times

.. .. . . . .. . . I . . . m I
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of the wave at the downstream positions. Measured arrival times at each

location correspond to an average phase speca that is 18t smaller than

that of the theoretical model; we will return to this diszrepancy shortly.

We have also plotted the measured wave data in figure 3 in terms of the

similarity variables (13) for asymptotic viscous decay. Obviously, th,

data have not achieved asymptotic behavior even though they do appear

to be merging into a single functional for=.

To reinforce our hypothesis that viscous decay dominates both nonlinearity

and dispersion for this experiment, we show in figure 4 the measured data

at the last three stations in terms of the inviscid similarity variables (21).

The data exhibit similar trends but clearly have not collapsed into a single

functional form. Figure 4 also shows the theoretical solutions (19) and (2C)

for the asymptotic structure of the wave front. The differences between

the measured data and the (similar) theoretical solution±s are strikinc.

Predicted amplitudes exceed measurements by 500% while the predicted length

scales are about 50% smaller than those measured. (As in the viscous nocei,

the predicted phase speed is 18% greater than that measured.)

Both the viscous and inviscid models discussed above predict a lea4in

order phase speed given by (1) which exceeds the observed spe ed by 18%. The

disagreement between data and theory seems to be primarily a consequence

the two-layer approximation, which ignores the finite thickness of the

actual pycnocline region. In fact, the experimental data presented here

were obtained within one and one-half hours of the final density stratification

shown in figure 1, where the pycnocline thickness is approximately 4 cm or

40% of the total fluid depth, As a first approximation, the effect of the

- . . . .. .-. - - . 2: l



- 1i -

pycnocline thickness can be estimated by using a three-layer model in which

two homogeneous layers of depths (h-A) are separated by ari intermediate

layer of thickness 2 in which the Brunt-V~Iisci frequeny N is constant, with

2 d (23)

In the Boussinesq limit, N = constant corresponds to a linear change ir.

density in the intermediate layer. The dispersion relaticv. for this three-

layer model is easily found (e.g., see Keller and Murk,1970). For the lowest

internal wave mode, the phase speed C is given by the largest root of

tan(2 N/C) = 2N-h) (24)
C 2_N2(hA)2

With X = 2 cm and N = 4.8 rads/sec, which corresponds to the measured maximum

N of the final stratification shown in figure i, we find a predicted phase

speed of 9.8 cm/sec compared to 11.3 cm/sec for the two-layer model and the

measured speed of 9.3 cm/sec. Now the predicted and observed wave speeds

differ by less than 5%. The remaining small discrepancy may be attributed to

higher order effects of nonlinearity and viscosity.

h!
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LIST OF FIGURES

Figure 1. Measured density stratification. 0 initial profile;
* final profile after 5.75 hours.

Figure 2. Experimental data ( 0 ) and viscous theoretical
solution ( ). (a) x=9m (b) x=12m (c) x=15m.

Figure 3. Experimental data in terms of asymptotic viscous similarity
variables: 0 x=9m, * x=12m, 9 x=15m.

Figures 4. Experimental and theoretical internal wave profiles for h=5cm,
t=0.055; 0 x=9m, 0 x=12m, 0 x=15m,

linear dispersive asymptotic solution.
nonlinear dispersive asymptotic solution.



-t-

0
0

0

0

0
0

0 0 0

00

00
o0

00
000

0 0
0 0

00
• 00

0
0
0

0

I II

f igure 1



.

. 0 /
S

" S

• Oi/

0 0

p I I. S I

[ SSe
Sq

Se

* "|



I I I I I I I I I I -

ci

ci

ci

ci

ci

ci

ci

ci 0ci 0
ci 0ci 0

0ci S
ci 0 0ci 0ci. 0

0 ci
* ci 0

0
0 00

0* 0
0

0 0 0
0 @0 * 0

o 0
0

0

0

0
0

0
0
0

0
0

0
0

0
0

figure 3

*1



A

0
0
0

0
0

0
S

S

0
0

00

0

o *

o

0@

o *~

0

00
0

gO
0

S

0
0
*0
0

*0

0* 0

*0

* 0

S
0

S

OS

S

0

0

0

0

figure 4

I.


