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SECTION 1. INTRODUCTION

The ost of developing large scale computer systems has increased

dramatically in the last few years. In spite of more sophisticated

design techniques, many systems fail to meet cost, schedule,

cost-benefit, and performance objectives; many systems, once ompleted,

do not perform as well as they are expected to; many systems never even

get completed!

Current software system development methodologies emphasize a

process in which development is ocnceived -s proceeding through a series

of phases. Each phase is organized to complete -a specific planned

process and produces output in terms of information or design documents

that are input to the next phase. Most attempts to improve the

effeciency of the development cycle have concentrated on improving the

processes which comprise some single phase. Structured programming

focuses on the programming stage of the development phase while composite

design applies to the design stage of the development phase.

There is a need, however, for design validation at less than

full-system cost, and for prototyping design alternatives. The use of

integrated scaled systems presents such a technique.

Scaled systems are operational systems implementing subsets of

capabilities and/or performance characteristics of the ultimate

full-scale system. The scaled system approach is intended to bridge the

gap between the definition and design stages of the development phase.

Using scaled system concepts for the design, development, and

evaluation of intelligence data handling computer systems is expected to

improve the uay these tasks are performed. By implementing a subset of

i-i



the capabilities of a full-scale system, a "scaled system", it is

anticipated that the initial expenditure on the scaled system, a fraction

of the cost of the full-scale one, will decrease the overall full-scale

system cost, schedule, and risk. Because scaled systems are operational

systems, users can iniediately obtain the benefits available from partial

automation of their requirements.

The use of scaled systems within a development effort can have

several benefits. However, only same of the benefits may be applicable

to any specific development effort. Which of the benefits are desirable

will determine the objectives for using scaled systems within the

development effort. Once these objectives are established, the precise

manner in which the scaled system should be defined from the full-scale

one can be determined. Knowledge of benefits realizable from the

application of scaled systems is therefore vital to understanding the

scaled system technique, so potential benefits are listed below.

a. Users can begin using a scaled system as soon as it is

implemented, since scaled systems are operational systems. Feedback fran

users can guide final design decisions for the full-scale system. This

benefit is particularly important in instances where users are unable to

clearly specify their requirements for automated support due to their

lack of experience with computers or to the unique naLure of the tasks

they desire to automate. The scaled system can be used to demonstrate

exactly what capabilities are available to the user as well as give the

user an idea of how he will interface with the system and what procedures

must be developed. Based on his experience with a scaled system, the

user will then be able to clearly specify his requirements for the

1-2
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full-scale system, Lhereby greatly increasing the probability of success

for the overall development effort.

b. Different techniques for performing unique or state-of-the-art

-operations can be tried with scaled systems, in order to establish

feasibility of complex designs or to determine the optimal Vy to provide

certain capabilities within different envirorments.

c. The team developing a scaled system obtains valuable experience

with the project that increases their productivity when developing the

full-scale system. Design lessons learned fram the scaled system also

decrease the number of false starts and blind alleys encountered during

full-scale development.

d. In many instances a scaled system can be incrementally expanded

to eventually implement the desired full-scale system. 'he incremental

development approach is usually more cost-effective than is an attempt to

implement an entire large-scale system at once in a turnkey fashion.

e. The cost and schedule for scaled system development, once that

development is complete, can be used as a predictor for the cost and

schedule of full-scale system development. This effort has examined how

reliable predictors can be established.

f. The performance of a scaled system can be used as a predictor

for the performance of the corresponding full-scale system. Full-scale

systems often fail to meet their performance objectives, and the use of a

scaled system may indicate that a redesign, increase of system resources,

and/or relaxation of performance cbjectives is required to achieve the

desired full-scale system performance. In cases where the scaled system

indicates that the desired performance is achievable, the performance

1-3
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predicted by the scaled systemr can be used in the evaluation of the

full-scale system ultimately implnented, thereby reducing the risk of

implementing systems with inadequate performance. This effort has

researched the development of reliable performance predictors for scaled

systems.

A scaled system is impldm*nte during ',Lfinition or design stages in

the life cycle of full-scale systt- L . Tthhu . scht, systen ivy

be developed based on the functiorkil i .srcipt ion for the full-scdle

system, or, in certain instances, bas: L h;t t syst'-ir Z, cification. It

is desirable to implement the scaled system as early in the developmrent

cycle as possible, as experience gained w-th the scaled system car,

provide valuable insight for later full-scale system design. Thus, the

preferred approach is that the scaled system be inplemented based on the

full-scale functional description, and that the full-scale systEn

specification be developed based on the scaled system. It should be

noted that the scaled system has its own development cycle similar to

that of the full-scale system, except with much shorter schedules.

The scaled system originally implemented as a design tool can then

be used again durinc the evaluation phase of the full-scale system

developent cycle. This research has investigated techniques for

predicting full-scale system performance based on scaled system

performance. Thus, measurements made on the scaled system can originally

be used to predict full-scale system performance, and can later be used

to evaluate how well the implemented full-scale system achieved those

performance predictions.
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Section 2 discusses the research methodology, including the

objectives of the effort and how they were achieved, in particular, in

terms of the simulator and cost model developed in this effort. Section

3 describes the specific results of the research, including the

definitions of scale factor metrics, system parameter interrelationships,

guidelines on scaling system scale factors, decision factors and

guidelines indicating when to use scaled systems as part of a design

effort, and anticipated cost benefits of employing scaling techniques.

Section 4 discusses research efforts that will be fruitful areas for

furthier investigation.

iA
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SECTrI ON 2. METHO[ L)OGY

The objective of this effort was to conduct research to define the

applications of scaled systems as design instruments for designing,

developing, and evaluating intelligence systems, in order to provide a

concrete means of investigating and ascertaining the various factors

that are pertinent to the application of scaled systems. Various

elements of software systems, "System Scale Factors," were evaluated with

the specific objective of identifying the elements most suitable to small

scaled applications. These items were then quantified to provide a

uniform and standardized terminology allowing objective categorization of

scaled systems, based on the corresponding full-scale sys'ten. In order to

determine the interrelationships among these scale factors, so that they

may be considered in the overall system methodology for using scaled

systems, a concept was evolved that uses a simulation model of a

generalized IDHS to predict performance and to predict changes in one

scale factor variable fran changes in another.

Scaled systems techniques were developed to provide better estimates

of total development cost, schedule, and performance, by defining

decision factors for using scaled systems, in order to indicate when

scaled systems should be used as part of a design effort. The decision

factors are to provide justification in terms of ultimate full-scale

system cost, schedule, risk, and performance, for using a scaled system.

A preliminary integrated cost model, synthesizing the best

characteristics of the models studied into a single model suitable for

scaled systems research, was implemented and calibrated with data derived

fron analysis of an actual intelligence system, the Defense Intelligence

2-1



Agency (DIA) Integrated Indications System (DIIS), in order to place the

decision factor guidelines on a firm quantitative footing.

The objective was then to identify specific benefits realizable fram

the scaled systems approach by analyzing past systems developed and

cutparing an actual scaled system to its full-scale counterpart, namely

the NMIC system and INCO's scaled version of the hIIC's User Support

Subsystem (USS) called the Indications and Warning Training System

(IWTS). These two systems (h*2IC and IWTS) were compared and contrasted

in terms of their relative size, cost, hardware configuration, software

implementation, complexity, difficulty, and effort expended to catnlete

them, as far as the data permitted such analysis.

Section 2.1 describes the design of the overall effort. Section 2.2

describes the operating system performance simulator and Section 2.3 the

cost models designed for evaluation of actual and proposed scaled

systems.

2.1 General

In order to define the scaled system methodology, two similar types

of relationships were considered in this effort: (1) how the

performance of a scaled system campares to that of a full-scale system

and (2) how the use of a scaled system affects the total cost, schedule,

and risk of a system development effort. The first type of relationship

is required to predict the performance of a full-scale system based on

that of a scaled system, while the second type of relationship is

required to judge the benefit of using a scaled system as part of a

development effort. Both types of relationship, taken together, are also

required to determine precisely which system parameters should be scaled,

2-2
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and by what ?Sount, to take maximal advantage of a scaled system within a

given development effort.

The wey in which the elements of the technical approach ccibine to

-satisfy the total research cbjectives can be summarized as follows:

o Identify system parameters that are suitable for
scaling.

o Define scale factors for each of these parameters.

o Examine the correlations and interrelationships among
scale factors.

o Use these correlations for developing guidelines of
which parameters to scale and bow much, based on
system objectives.

o Prepare a list of decision factors that are
indicative of whether or not scaled systems should be
used as part of a development effort.

o Develop guidelines for whether or not scaled systems
should be used based on these decision factors.

o Identify specific benefits realizable from the scaled
systems approach for past systems developed and
future systems to be developed.

o Quantify benefits for planned systems realizable

through the use of scaled systems.

2.2 The INCO System Performance Simulator

The INCO system performance simulator (ISPS) is an event-driven

simulator designed to execute on INCO's interactive microprocessor-based

maputer systems. The simulator models a neneralized, variable canputer

system configuration consisting of a CPU, a disk, a user-specified number

of on-line terminals, and the associated system queues necessary to

simulate the allocation of these resources. A detailed abstract

technical discussion of the simulator can be found in Appendix F and

discussions concerning its operation and method of aprlication to this

2-3
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research can be found in the earlier portions of this section. The

objective of this discussion is to highlight the simulator's functional

characteristics.

The simulator was designed in a programmer's design language (PDL)

and subsequently coded into FORTRAN. Its purpose, as previously stated,

was to model a variable computer system environment. This variable

environment is specified by the simulator's user by way of a description

of the system configuration's ocmponent characteristics. These input

parameters are specified by the user at run-time through an interactive

query. The input parameter set and its format is illustrated in Figure

2-01. This is the same query the user iterates through before simulator

execution.

During the simulation, the user may optionally observe the steps the

simulator makes through a video display that is updated by the simulator

at the occurrence of each new simulator eent. The execution speed of

the simulator is increased, however, if the user selects the "truncated"

terminal display format as opposed to this "extended" format which

requires the additional processing overhead of the terminal I/O in order

to periodically update the display. The screen display is illustrated in

Figure 2-02. A sample simulator performance output ir shown in Figure

2-03.

Using this simulator, an analyst can explore the rudimentary

performance characteristics of varying computer system hardware

onfigurations as well as the effects of generalized job-type mixes. Job

types are classified as either CPU- or disk-bound for purposes of the

simulation. For example, the simulator can help the analyst determine

2-4
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SPSIM INPUT PARAMETERS

(a) Number of terminals?
(b) % Percentage mix between CPU- & Disk- bound jobs?
(c) Mean CPU service time (CPU bound jobs)?
(d) Mean CPU service tim (Disk bound jobs)?
(e) Mean Disk service tine (CPU bound jobs)?
(f) mean Disk service time (Disk bound jobs)?
(g) Mean CPU/Disk iteration count (CPU bound jobs)?
(h) CPU/Disk iteratin count std. dev. (CPU bound jobs)?
(i) Man CPU/Disk iteration count (Disk bound jobs)?
(j) CPU/Disk iteration count std. dev. (Disk bound jobs)?
(k) Mean wait time for terminal # < 1-100>?
(1) Std. dev. about wait tire for terminal # <1-100r".
(n) Extended(F) or Truncated(T) Screen Display?

Figure 2-01 Sinulator Input Parameter Set

2-5
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I NCO SYSTEM P.R F0RM NN F S l'1lATOR

Jobl, Cla-ss Request SteOp
Now Serving : d 11/ii C /D 1 i #4'/It/ i Re m-,rk: 33V3

Next Fvent : #J It C D I I1V #a/U!!! Due I if Itit If;i l

Terminal Job# Activity Response * Resource Summary *

O ksi #I!!: 3k/k/# / lk/ /I///* -H. rdware: CPU - @01111 fi . .f i Ut iiizel
fl.k/I/k 3,/I li/t,' / 1!3/ ##3/!. Disk- @(3YE 1 /ki / , I. Ut i iz.
/i/ ik f 41i. ##/ ## ## ki 0/k :/ .

,I::ik! #okiis.' 1 I / a ## iti1t fi/ki -Qu oeu s: # in Q vuee Ave./I Ave. W ait
#li!! // 3I. / , #I $1/IS/k!!. CPU - 4/Uk/k k/I.//! a/i/./I.

# /f i i /t/it ! tlk/I / a Y/ t i lE:SS Disk- /:1/H /t t k/ /t J"' i 4./t
# it #:I #fi. ,! # :it it /1 t ,''::

#//I /l 0/k/ /k/kS/!/!* -Systom: // /! T r i ! ft Term n i /n"1 Totl Jobs
.t/AA:t #I.:'! 1#/t / /t i i,' /i/ki t: /.44 tI/I Av Response /1//S if Complete

0/k./k al//k/- Cl/ / :/ al: 'k. Stw: #13 i

CPU Qu-eue: - -- -- ---- >

Disk Queoue: --- -- -- -- -- -- -- -- -- -- -- -- --

Fiqure 2-02. Simulator Screen Display
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INCO SYSTEM PERFORWACE SIMUIIMVR FESULTS

Camment: MNU #69
Tine and date of run: 11:36-APRIL 27, 1981

INPUT PAPN4ETER SLH4UU

MEAN VALUE SrN. DEK.

Service tines: 1.25 0.00
CPU:

CPU - Bound jobs 1.25 0.00
Disk - Bound jobs 1.40 0.00

Disk:
CPU - Bound jobs 35.00 0.00
Disk - Bound jobs 40.00 0.00

Iteraticn colunts:
CPU - Bound 10.00 1.00
Disk - Bound jobs 30.00 3.00

Terminal Delay Times:
Terminal # 1 50.00 0.00
Terminal # 2 50.00 0.00
Terminal # 3 50.00 0.00
Terminal # 4 50.00 0.00
Terminal # 5 50.00 0.00
Terminal # 6 50.00 0.00
Terminal # 7 50.00 0.00
Terminal # 8 50.00 0.00
Terminal # 9 50.00 0.00
Terminal #10 50.00 0.00

Numter of On-line terminals: 10.
Job Mix (ratio of CPU/Disk bounds jobs): 50.00

Figure 2-03. Sarple Simulator Performance Output

2-7
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IN(f SYSTEM PERFORMANCE SIMULTOR RESULTS

Camment: 1JN #61
Time and date of run: 11:36-APRIL 27, 1981

SIJIATICN RESULTS

Terminal Responsiveness:

Terminal # Jobs Queued/Ccrnpleted Average Response

1 6/ 6 3571.81
2 7/ 7 3292.74
3 4/ 4 5699.30
4 5/ 5 4626.85
5 8/ 8 2878.71
6 7/ 7 3086.97
7 6/ 6 3879.37
8 5/ 5 4509.58
9 6/ 6 3505.37

10 7/ 7 2968.22

Systen Performance Summary:
Number of Terminals 10
Number of Jobs Submitted 61
Number of Jobs Completed 61
Elapsed Time 23276.
Average Responsiveness 3650.56
Hardware Utilization:
CPU- 3.48%
Disk - 99.93%

Queue Sumary Average # in Queue Average Wait Time
CPU - .00 1.08

Disk - 8.41 322.90

Figure 2-03. (Continued)

2-8
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the relative impacts of such system configuration changes as the addition

of on-line terminals, faster or slower terminals, faster or slower disks,

or a CPJ with different speed characteristics. Internally, the simulator

-considers only a single CR and a single disk; this does not present a

major problem, however, as multiple devices can be accounted for by

assumptions concerning their service time efficiencies. For example,

adding disk drives and/or controllers can be reflected through a decrease

in the disk service time parameter of the input mix, which has the effect

of speeding up the simulation of disk I/O. Additionally, many general

system performance characteristics can be observed or validated through

the use of this simulator. For example, use of the simulator has

reflected the hypothesis that the responsiveness of computer

configurations is limited by the slowest memory present in the

configuration, namely the auxiliary disk storage. Derause of this, it

can be witnessed that the disk resources are heavily utilized in terms of

the usage of their available time. Simulations consistently showed that

the disk resources were 90-100% utilized, whereas the CPU was only 3-25%

utilized. Through the use of this simulator, the interrelationships of

scaled system configuration items could be examined.

2.3 The INO0 Cost Estimation Model

The INCO life cycle cost model is the result of extensive research

performed in the areas of software engineering, life cycle software cost

estimating, and scaled system development by INCO, INC. The model is the

reflection of INCO's cmrmitment to develop a low-cost software life cycle

cost model for in-house use on low-cost microprocessor hardware.

2-9
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2.3.1 Genesis

INCO began research and development of its own software life cycle

costing model in May of 1979. The first step of this effort included

-training sessions with the PRICE S and SLIM software cost estimating

models and the start of what would beccrne an intensive literature search

and study. In this phase, INCO personnel absorbed as much as was

possible from available information on the subjects of software cost

estimation, camercial software cost models, and software life cycle cost

behavior and management. Published research which was found to be of

most value is summarized in Figure 2-04. A comparison of open-literature

moxels was performed, and an example is included in Figure 2-05.

Along that point in time, some of INCO's other contracted-for

research efforts realized the need for sane sort of cost estimation tool,

however rudimentary. One such effort was the Scaled Systems Project.

Under the Scaled Systems effort, INCO was providing research support

to the Fame Air Development Center (RADC) in the way of exploring cost

effective software development methodologies, particularly in the areas

of prototype and scaled/prototype developnental systems. As part of this

effort, critical cost relationships between scaled systems and their

full-scale counterparts were examined. Of specific interest were the

potential benefits which could be derived from the experience an

organization would gain frm the implementation of a scaled operational

version of a state-of-the-art system before actual development ccmmenced

on the full-scale system. Of additional interest was the sensitivity of

the forecasted cost benefits to overall scale factor. This was the first

application of INCO's cost model. lb explore the productivity and cost
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£OST MODEL DEVELOPMENT

STEP 1: SURVEY OF PUBLISHED RESEARCH

- DOTY & ASSOCIATES

- IBM's WALSTON & FELIX

- IEEE's TUTORIALS ON SOFTWARE COSTING

- MAURICE HALSTEAD'S "SOFTWARE SCIENCE"

- UNIVERSITY OF MARYLAND'S COMP. Sci. DEPT. (VIC BASILI)

- DACS's SURVEY OF SOFTWARE COST ESTIMATING MODELS

- LAWRENCE PUTNAM (SLIM)

- ISPA's NEWSLETTER AND PROCEEDINGS

- RCA's PRICE-S

Figure 2-04. Significant Cost Model Literature
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impacts of such factors as realizing personnel experience and firmness of

operational requirements, the Doty model was exercised about varying

system sizes in the context of developing full-scale systerns from

built-to-scale systems. A sample of the model's interactive display used

for such analysis is provided in Figure 2-06. This figure reveals the

cost factors accounted for by the Doty model. The generalized result

from the scale factor sensitivity analysis is portrayed in Figure 2-07.

Such exercise proved invaluable to the development of the cost

model. After initial survey and exercise of current cost modeling

methodologies, INCO adopted the approach of synthesizing the best

characteristics of each model it had scrutinized into the one model. The

theoretical basis, houever, remained close to the properties outlined by

Lawrence Putnam in his many research works. These remaining steps of

mcdel develorrk-nt are suinmarized in Figure 2-08.

2.3.2 Foundation.

The basic Putnam nodel (Figure 2-09) was attractive for a number of

reasons. First, it is the best of the "publicized" models - its internal

characteristics are defined, outlined, and validated in print. The

internals of a model such as PRICE S, in contrast, are very closely held

by its inventors and vendor, RCA. Second, the Putnam mnrel has the best

facilities for adaptability and changeability through its technological

constant and software equation. Third, the Putnam methodology sems to

be the best accepted, on a theoretical basis, and many other researchers

are actively exploring its properties, behavior, and possibilities.

Fourth, the possibilities the Putnam model holds as a tracking/managament

tool looked prconising. This uns especially important for an ancillary
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From the Doty & Associates (RADC) Studies:

Please Select an Application Category:

I - Utility (OS)
2 - Comvand & Control (c2)
3 - Scientific
4 - Business
5 - All (Cthers not listed above)

Selection (1-5)?
Estia ted Deliverable Source WC (1,000's)?
(S)cale, (U)pscale, or (O)ption? 0

Please input a yes/no (Y/N) response to each of these 14 questions:

Special display?
Detailed definition of operational rec'mts?
Change to operational req'irts?
Real time operation?
CPU memory constraint?
CPU time constraint?
First S/IN developed on CPU?
Concurrent development of ADP H/h?
Time share, vis-a-vis batch processing, in dev'went?
Off-site development corputer facilities?
Cn-site development ccoputer facilities?
Development caputer different than target ccmputer?
Multi-site development canputer facilities?
Unlimited prograrwer access to computer facilities?

9999.99 Man Pbnths req'd for analysis, design, code, debug, test and checkout.
Standard error on this approxiation - 99.9 %

Estimated schedule duration - 999.99 Months

Continue (Y or N)?

Figure 2-06. Example of NCO Model's Interactive Display
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STEP 1:

- Program Generalized Cost Fonmilas in BASIC

- Exercise & Compare Results

- Tech. Mo; "Scaled Systens Cost Effectiveness"

STEP 2:

- Putnam Methodology Selected As Most Suitable

For Our Purposes

- Began Detailed Implementaticn & Development

STEP 3:

- Began Calibratin of Model to Other models and

Past Experience

Figure 2-08. INOD Cost Model Development

2-16

A%

t.



o to

-UA

z Ir4Ki CA o

U.U
LL JJW

- .LL

UK o c
IL- u < Vc

I43- Ne~j

.- L

I.-~
mU U.

uZL 0L
col) Li w )

%*=

2-17



effort taking place at INCO that consisted of the design ard development

of a integrated set of individual models addressing the entire scope of

software development. This effort is highlighted by the autamated

implementation of INCO's tried and proven requirements Structured

Organization ard Analysis Procedure (SOAP) - namely, the Requirements

Analysis and Tracking System (RAm).

As mentioned, the po%,wer of the Putnam-based model is augmecnted by

other models, most notably those of Doty [ref. 73, Walston and Felix

[ref. 24], and Halstead's book, Software Science.

The Doty model of cost estimation is programmed into the INCO cost

model and is available through the option menu for use by the costing

analyst. Experience with the Doty equations has produced very favorable

results by way of convergence in calibration attempts with known cost

data and the estimates of other cost nxxlels, namely the PRICE S cost

estimation malt 1. Subsequently, the Doty model was the primary choice

for estimation purposes under the scaled systems research effort.

2.3.3 Current Staoe of Developrment.

The current capabilities of the mcDel are illustrated in Figure

2-IC. As in "Step 3" of Figure 2-08, the model is still in the

calibration and enhancement stages. This is perceived as an on-going

phase since d software cost model is never really "done". The INCO model

was designed with an eye for evolution and adaptability as more becomes

known about the science of software cost estimating and as cost estimates

can be traced through to their respective actual costs. Specifically,

INCO is exploring credible, verifiable methcxs in which the teclnology

constant can be irore accurately determined. This has evolved to a set of
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adjustments based upon environmental, product, technological, and

organizational factors. These adjusting factors have been aided by

research such as that performed under the Scaled System project already

nent oned. A brief enumeration of these factors is shown in Figure 2-11.

Kecping abreast of the current trends, the INCO model utilizes a

rrudifi& version of Putnam's "software equation" - the same as that used

by Si¢Os sm [ref. 91.

With the trend toward better dissemination of information,

particularly in the area of graphics, INCO has already begun the design

and developnent of general-purpose graphics capabilities for its

microprocessor-based hardware. With the ever-increasing advancements

bi-ing made in the low-cost end of this hard'*.re market, INCO has in sight

the reality of truly cost-effective generalized graphics capabilities and

hopes to enhance the cost model with such facilities.

Given the time and a few more advancements in the various

technologies, INCO is confident in its ability to produce a true software

life cycle cost and cost estimation model with a full complement of

grdphical capabilitiei and on low-cost hardware intended for in-house

operation and ownership.
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SBxTICN 3. SPECIFIC RESULTS

The scale factors and netrics that have been defined are described

in Section 3.1, with further details to be found in the reports "Software

-Scale Parameters" and "System Scale Factor Metrics" (Appendices B and C).

The interrelationships among scale factors derived as results of

experimentation with the operating sys+em performance simulator are

discussed in Section 3.2. The basic and generalized decision factors and

guidelines to be used by system architects in determining when scaled

systems should be used as a part of a design effort are discussed in

Section 3.3, and anticipated cost benefits of scaling are discussed in

Section 3.4.

3.1 Scale Factors

Software scale parameters are those aspects of autmated systems

that can be reduced in scope in order to implement a cost-effective

system scaled with respect to the full-scale system objectives. The

development of a list of software scale parameters was accomplished in

Task 1, Subtask 1, and described in the report "Software Scale

Parameters" (Appendix B). The categories of software elements determined

to be applicable to scaling were identified as data base, performance,

functionality, security, maintainability, reliability, language, and

hardware configuration. This section discusses aspects of system.

development that contribute to system cost and performance, and that are

amenable to scaling.

3.1.1 Data Base

Data base characteristics include data base complexity (of access

method and data structure) and data base size (number and length of
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files, number of access keys, number and length of fields). Data base

access complexity may be scaled by first employing the access method that

would be the simplest for that size date base and then developing the

scaling relationships involved in increasing the cnplexity, e.g., from

sequential to indexed sequential to random access.

Some data bases deal with a relatively snall set of different items.

For example, the data base for an inventory control system might include

only the following information: part number, description, quantity on

hand, reorder point, supplier, reorder quantity, and unit cost. Most

intelligence data bases, on the other hand, include a wide variety of

information, covering such diverse subjects as different orders of

battle, lines of xcmnunication, vessel movements, political and economic

data, biographical information, etc. Data bases containing many

different types of information are clearly more difficult to implement

than are those limited to a very narrow subject area. As the diversity

of a data base increases, developnent costs also increase due to the

necessity to define additional data formats and structures, to possibly

develop different data base load programs, and to probably implement new

application programs.

The number of different data types does not, per se, have a

significant impact on performance. As the number of different data types

increases, there may be some additional overhead to search directories

for control records for specific data types, but this overhead is usually

insignificant conpared to that required to locate a specific data item of

a given data types. Hence, the major performance impact is associated

with the volume of data, which might be expected to increase as the
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number of different data types increases. The main reason for scaling

the number of different data types relates to implementation cost.

Restricting a scaled system to a subset of the total number of required

data types may reduce the amount of data definition required, the variety

of data base load programs necessary, and the number and complexity of

application programs within the scaled system.

The amount of data resident within a data base, usually measured in

terms of characters or records, tangentially impacts cost and

significantly impacts performance. Neglecting all factors other than

data volume, it should theoretically be just as simple to implement a

large data base as a small one. A data base managenent systen and the

related application programs should be capable of handling any volume of

data required by a system. ik)o.ver, performance irpacts of data volume

dictate that additional sophistication be implemented for processing

large data bases than for small ones, in order to maintain an acceptable

level of performance. For a snall data base, therefore, a sequential

file organization may be adequate. To achieve acceptable performance

from a large data base system, hIz,&ever, a more complex data storage

technique, such as a hierarchical or network structure, is usually

required. The additional complexity required by additional data volume

obviously adds to the cost of large data bac systems.

While not direct software implementation costs, additional life

cycle management costs are incurred by large data bascs. The initial

process of loading a large data base will cost more than that for a small

one, due to additional data conversions, consistency corrections, an,!

possibly nknudl entry required. Maintaining a ]art data base is also
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more costly than maintaining a small one, due to the amount of checking

that must be continually performed to establish and maintain the

integrity of the data.

As mentioned above, the performance of a data base system can be

expected to decrease as the volume of data increases. The amount of

performance decrease is dependent on the sophistication of the data

access techniques Employed. For example, performance of sequential data

bases will degrade significantly as data volume increases. On the other

hand, performance of hierarchical data bases may not be perceptibly

influenced by wide variations in data volume, provided that the types of

requests made upon the data base follow the established hierarchy.

Performance on requests that require searching of the entire data base or

significant portions thereof, will degrade markedly with increases in

data volume regardless of the data base structure Employed. The major

objective in scaling data base volume is to simplify the implementation

of a data base system. Reducing the volume of data naturally simplifies

loading a scaled data base. In addition, less sophisticated data storage

techniques can be used with reduced amounts of data. In extrapolating

ultimate system performance fron scaled system performance, allowances

must be made for any additional data access sophistication to be

implemented, as well as for performance impacts of increased data volume.

With additional data access sophistication included in the ultimate

system, its performance may be equal to or better than that of a scaled

system, even though the volume of data is dramatically increased.

Data base conceptual complexity is used here to denote the degree to

which the data elements within a data base are mutually interdependent.
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Conceptually simple data bases contain data which dc not depend, to any

great degree, on other data within the data base. For example, a data

base used by a magazine publisher may include data on subscribers,

advertisers, contributors, and production mechanics (ink and paper

inventories, etc.). These four types of data bear no relation to each

other. On the other hand, an intelligence data base might contain data

on enemy weapon positions, technical weapon characteristics, friendly

installation locations, and intelligence sources. Enemy weapon positions

are correlated with technical weapon characteristics to determine their

threat to friendly installation locations. All data is also correlated

according to the intelligence sources. This is an example of a

conceptually ccaplex data base, with many types of information dependent

on othr types. A conceptually complex data base is far more expensive

to implement than is a conceptually sihnple one. Data structures must be

designed that permit rapid correlation of different types of information,

ar applications must be designed to maintain the integrity of all data

interrelationships. Conceptually complex data bases will typically not

perform as well as ccriparable conceptually simple ones. Extensive data

correlations require additional data base accesses, as well as data base

storage overhead to maintain efficiency.

Many data correlations can be unimplemented, implemented via manual

rr-ans, or implemented through a semi-autonatic technique such as multiple

queries with intermediate hit files for a scaled system. This can

significantly reduce the cost of implementing a scaled system. Relative

performance of the scaled and ultimate systems would depend on many

implementation factors. The cost of implementation complexity is
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generally dependent an the underlying conceptual complexity of the data.

For conceptually simple data bases, a complex implementation will

generally be more expensive than a simple implementation. The reason for

this is that a simple implementation would suffice to fit the data

definition, and adding complexity tends to increase cost. (A ccmplex

implementation may be required, howevtr, due to the performance

considerations noted above, based on data volume.) For conceptually

complex data bases, a simple implementation will generally be Mre

expensive than a ocnplex one. This is because all application programs,

with a simple data structure, must be aware of the complexities of the

data relationships. With a complex implenentation, a sophisticated data

base management system typically relieves the application progra''s frow

consideration of many of the conceptual complexities. Cost aspects are

clearly dependent on the number of application programs required, the

degree to which the data base management system can insulate tht-

application programs from the conceptual complexities, and whiether a data

base management system can be used intact or nLst be specially developedx

or modified. A complex implementation of a data base will genornrdly

yield better performance than will a simple implementation. This is

because direct access techniques (directories and hashing) improve data

access times, and pointers or links between records speed the processinc

of data interrelationships. There is, however, a point beyond fhich

additional implementation complexity becomes overkill for the undcrlying

conceptual complexity and data volume. Past that point, the overhead

required to maintain seldamly-used directories or links may begin to

degrade performance. In any event, any implementation complexity must be
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carefully designed to parallel the conceptual canplexity, thus improving

performance for the precise uses to which a data base will be put.

Since a scaled system need not support the conceptual cxplexity,

data volume, or performance of an ultimate system, data base

implementation coplexity is very amenable to scaling. Using a simple

implementation methodology will, in general, result in significant cost

savings, provided that conceptual conplexity is like, vise scaled. Thus, a

series of simple flat files, without conplex data dependencies, might bt

used in a scaled syster instead of a ccmplex hierarchical or network

structure. Estimating ultimate performance based on such a scaled system

requires detailed analysis of the advantages gained by going to a more

canplex implementation philosophy.

Sane forms of data lend thonselves very readily to proven data base

technology, whereas other, more exotic, data forms are still btingj

investigated for efficient exploitation within a data base. For example,

a data base of bank transactions contair[. well-defLneO data, constructed

in accordance with fairly rigid formats, ani subject to easily expressed

validity checks. Becmning slightly mor exotic, a data basc of

bibliographic information contains much English language text. Many such

data bases have been constructed, but research is still underway on

improving the effectiveness and efficiency of such data bases. At

perhaps the most exotic extreme, several research programs within the

intelligence ccruazity are currently examining ways of using data bases

of digitized imagery. Such data bases %ould contain enonous volumes of

data. and would require special algorithms to effectively distill

information fran the imagery data.
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The expense of implementing a data base increases as the data

within it deviates further and further from forms normally stored within

conventional data bases. This is primarily duc to two factors. First,

conventional data usually lends itself to easily-defined structures,

whereas efficient structures and even expected access criteria for

unconventional data are usually difficult to define. Second, the

algcrithms for manipulating conventional data have been implemented many

times and are well-understood, while the algorithmts for manipulating

unconventional data are often the subject of ongoing research and

developrient. The net result of these two factors is that implementation

of conventional data bases can proceed in a straightforward manner frCn

design with little risk, whereas implementation of exotic data bases

often inclu-ics many design changes and continual experimentation, with

the attendant high cost and risk.

The structuredness of conventional data forms lends itself to

efficient implementations of such data bases. As mentioned above,

efficient structures and ex[*cted access mrcdes are often not known for

the more exotic forms of data. This naturally leads to difficulties in

implementing good performance for data bases containing such data. Since

the use of unconventional data forms greatly increases cost and reduces

performance, onitting such data from a scaled system will certainly make

it much easier to implement. However, one of the reasons for building a

scaled version of a system requiring exotic data forms will usually be to

prove the feasibility of processing such data. Hence, the

conventionality of data forms would typically not be scaled, with

econories of scaled system implementation realized elsewhere.
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3.1.2 Performance Indices

The classes of quantitative performance indices identified for

scaling are productivity, interactive responsiveness, utilization and

operating system organization. Productivity is ccrxoosed of the amount of

work that can be physically acccmnxoated and the rate at which it is

ultimately acccmplished. The amount of work can be measured by deriving

the system capacity, the amount of information it can contain at any

given period of time, as well as the capacity of the hardware components.

The throughput, the average rate at which jobs are completed by the

system in a given interval of time, is a result of nearly every aspect of

a system configuration; fran the hardware itself to the functions the

system is required to perform to the typical set of jobs requiring system

resources, i.e., the job mix. The scaled system design would have a

scaled system capacity as well as a scaled job mix, structured for

optimum performance. These factors all contribute to interactive

responsiveness, the number of responses/unit time, the inverse of the

time between the presentation of an input to the system and the

appearance of the corresponding output. Because this parameter is

difficult to predict on the front-end of the implementation phase, it

will usually be quantified through observation. That is, a response time

may be set as a target. The scaled system might reveal that the chosen

design does not produce the required r..,,2Dnsiveness. The full-scale

system design specification could then be cost-effectively adjusted in

the front-end of the design cycle, where economic leverage is the

greatest.
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Utilization is defined as the ratio of the time a specified part of

the system is used to a given interval of time. Mcxlules may be linearly

scaled as the ratio between proposed and actual module utilization, where

scale factors are in terms normal for the module, e.g., memory

utilization is measured as a percentage of total memory available.

Operating system organization subelements were identified in

"Software Scale Parameters" (Appendix R) as processing mode, operating

system, and interrupt processing. These parameters represent a mcxle of

operation rather than a measurable ratio and thus are difficult to

quantify. However, the choice of one mode over another is a valid method

to scale performance. Scaling system aspects applicable under this

category would undoubtedly be highly case-dependent and quantifying the

factors largely subjective.

3.1.3 Functionality

The approach to scaling functionality consists of reducing the

variety of functions suppxrted or reducing the functional complexity.

The first method entails vertical functional scaling (eliminating

subsystems); the second, horizontal functional scaling.

3.1.4 Security

Consider next the scaling of security functions. The degree of

security provided for software and data is determined by the scope of

access control, those attributes of software that restrict access to and

manipulation of programs and data, and the canpleteness of access audit,

the procedure whereby an historical record is maintained of both

successful and unsuccessful attempts to access restricted data. Security

may be considered a valid parameter for scaling when the scaled system
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will be developmental in nature and when either adequate physical

safeguards may be substituted for the full-scale software security

procedures or the data to be protected is simulated or is non-sensitive

public test data.

The basic goal of data base security is to prevent information fron

falling into the hands of individuals not authorized to receive it. Iwo

major questions must be answered in designing a data base security

system: How shall it be decided who has access to information, and what

is the smallest unit of information to which access will be controlled?

The first question, that of determining individual access rights,

has predcninantly been answered through two different approaches, by user

or by classification. The two approaches are sometimes also used

together. The scheme controlling access by user effectively tags each

item to which access is controlled with a list of those users allowed

access to the item. Users requesting access to an item must be on the

list for that item in order to be permitted access. The scheme

controlling access by classification tags each item to which access is

controlled with the item's security classification, special handling

instructions, releasability, and so on. Each user, and perhaps terminal,

has permission to access data with only certain security classifications,

special handling instructions, and releasabilities. The system compares

user access privileges with the classification of a requested data item

before granting access.

The second question, that of the size of units of information to

which access is controlled, has also been answered in several ways.

Virtually all systems control access at the system level, with user
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sign-on password authentication. Most systems control access to

individual files in seine fashion, and many systems even control access to

individual records within files. Some systems go so far as controlling

access to individual fields within records.

Related to security is the requirement to maintain an audit trail of

all operations taken against the data. This audit trail normally

contains more information than the transaction log maintained by a data

base management system to support data integrity. Preserving data

integrity requires logging of only update transactions, whereas a

s curity audit trail also requires recoding of all data read from a data

base as well. The degree to which security audit trails are implemented

for typical intelligence systems varies. Virtually all systems record

user sign-on and sign-off. Many systems also record major function

invocation. Almost no systems record the actual data manipulated by

users. Other aspects of system security include accreditation for

operation with classified information and the problems of obtaining

cleared programmers and facilities.

A security system can be considered scaled if it encompasses a file

protection methodology less restrictive than the full-scale system. This

scaling can take the form of, for example, a less sophisticated level of

file protection, a smaller access matrix, elimination of codewords, audit

trails, encryption, and/or simplification of the authentication

mechanism.

3.1.5 Maintainability

Maintainability is defined as the probability that, when maintenance

action is initiated urder stated conditions, a failed system will be
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restored to an operable condition within a specified time. It also

refers to the effort required to locate and fix an error in an

operational program and -Ls a technically valid area for scaling, since

the implementation of maintainability involves increased software

develomnent cost and/or time. Maintainability is a function of the

capabilities included in the system, the skill level of the personnel,

and the support facilities (locally available tools and diagnostic test

equipment or aids, spare parts or alternative program versions or bac)k-up

files). Since scaling of this parameter would involve the elimination or

simplification of functional requironents of the system, the approach

would be similar to that for scaling functionality. }bwever, eliminating

Imodules whose purpose is to enhance maintainability may indeed prolong

rather than enhance the progress of the project. Such considerations

must be emiase -d when scaling is contemplated.

Among the maintenance moules which could be sca:ed are process

error handling (minimize the number of conditions to be checked),

restart/recovery procedures, data correction, fault detection/trap

software, monitors of system performance, and back-up procedures.

Developnent and diagnostic aids such as program tracers and interactive

debuggers might actually be added, tc reduce the development effort of

the full-scale system.

3.1.6 Reliability

Reliability can be defined as the probability of satisfacto-ry

performance for a given time when used under stated conditions, the

metric being defined as the number of failures/time. A software failure

is an occurrence of a sof[ware error, when the software does not do what
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the user reasonably expects it to do. In order to prevent failures fram

occurring in the first place, a certain amount of redundancy is built

into systems such that automatic diagnosis and recovery can be

accomplished by the software itself without operator attention or

inte-vention. This redundancy requires additional design, system

storage, prograrming, and effort; thus reliability may be scaled with

respect to these aspects.

Some reliability elements amenable to scaling would include

precision, error detection software (elimirite software geared to errors

which would occur infrequently in practice or not at all in the input to

the scaled system), approximation algorithms (use fast, easy, not as

accurate as possible approximation functions and algorithms), and coding

standards. Relaxation in enforcement of coding standards might only be

considered where recoding would be necessary to implement the full

system. If, however, the scaled system will forn the basic structure for

the full system, then strict coding standards should be maintained.

3.1.7 Programming Language

Two aspects of programming language suitable for scaling are

language selection and implementation. A language that is optimal for

the scaled system but different fran the one chosen for the full-scale

system might be selected if the target system is to be ccapletely

recoded. Such a language might be chosen based upon considerations of

top-down design, code readability, and modifiability, thereby

contributing to accelerated program development. Scaling language

implementation could be accamplished by successively enhancing a baseline

subset of the language being implemented.
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3.1.8 Hardware Configuration

The choice of individual hardware components and their configuration

is an important aspect of the scaled syst-ms methodology. Significant

savings in schedule, effort and cost may be achieved by reconfiguring the

target system hardware or by selecting an alternate operational

environment for the scaled systems effort.

In order to reduce complexity, either the number of component types

or the total number of components may be scaled, both approaches reducing

total system complexity. Factoring hardware configuration is simplified

by the nature of the entity itself, due to the numerically descriptive

nature of hardware. Some hardware elements that it might be possible to

scale are: number of CPU's (scale from multiprocessing to a single

processor), nunber and/or type of peripherals, size of the instruction

set of a CPU, input devices (simulate the data instead), number of

communications nodes, complexity of communications network or hierarchy

(lower the number of linkages among nodes), and level of service to

peripherals (eliminate prioritized service).

3.1.9 Sinulator Variable - Scale Factor Relationships

The scale factors introduced in the report "System Scale Factor

Metrics" (Appendix C) influence and interrelate with each other in

complex ways that can be quite different for different operating regimes

(e.g., disk-limited, CPU-limited) of the IDHS being modeled. In order to

scale a system, ways are needed of predicting changes in system

characteristics as the scaled parameters vary, even when the variations

are large enough to place the IDHS into a different operating region.

For example, if the scaled system has a factor of four fewer terminals
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than the envisioned full-scale system, it is necessary for the system

designer to know hw system throughput will degrade when the system is

scaled up and terminals are added. T*e report "Interrelationships kmrng

Scaling Factors" (Appendix D) addresses these considerations.

Figure 3-01 illustrates the throughput and CPU speed functional

relationship, demonstrating that scaling a given system parameter will

not necessarily affect another parameter in the same way in all operating

regions; i.e., increasing CP1 speed in a CPJ--limited regime will affect

throughput significantly, while in a disk-limited region, it will have

very little effect. It can be said then that the relationships between

parameters are complex and non-linear. It is not possible to write down

analytic expressions that will hold under all conditions.

In order to provide the system designer with the tools that will

enable him to predict performance under the wide-range of scaling

conditions that are encountered in practical situations, a concept was

evolved that uses a simulation model of a generalized IDHS to predict

performance and to predict changes in one variable fran changes in

another; i.e., the simulation substitutes for the nonexistence of precise

analytic functional relationships between various scaled parameters.

It has been found that a fairly small number of parameters is

adequate to specify each particular IDHS to the simulation. Each of the

input parameters, in turn, can be expressed as a fairly simple analytic

function of the scaling parameter factors. A series of formulae are used

in steps to relate the simulator variables to scale factors. A diagram

of the technique is shown in Figure 3-02.
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As shown in Figure 3-03, an example of a simulator input variatle

is CPU service time, i.e., time in CPU per CPU block, where a block is r-

set of instructions until a disk access is encountered. The following

formulae, as described in the report "Simulator Variable-Scale Factor

Equations" (Appendix D ), are one set that can be used to relate CPJ

service time to system scale factors.

CMEAN can be defined as follows:

CJ4EAN = instructions executed/block
instruction/time (Iwer)

Define the following terms:

ND = number of disk accesses

= NDB (number of data base accesses) + NDp (number of paging
disk accesses)

I = number of instructions

= IC (number of computational instructions) +

IDB (number of data base instructions) + Ip (number of paging
instructions)

Define the frequency of data base disk accesses per cnputationol

instruction,

FDB = NDB

TC
Then NDB = I C (NDBI] = IC FDB

Also NDP = Kp * IC * CVwhere Kp
CR,

is a system-dependent constant calculated as the number of pvoing

accesses/computational instruction, CV is th- virtual core for a

pdrticular job (the job size) and CR is the real core for the-job (th-
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actual core available for the job).

Then
ND = NDB + NDP

ND = IC [FDB + Kp CR

ND FDB + Kp CV

I C is the number of instructions per block so,

ND CMEAN = (FDB + Kp CV]-i
SR_

nstructions/time

To find a value for FDB, estimates and typical nunbers will be

sought. The value will depend on the furction being performed and the

probability of having to make a disk access. There are several factors

that affect the probability that a piece of information is in core vs. on

disk, such as the amount of the data base that is stored in core at any

time, the organization of data on the disk (the data base structure), and

the data manipulation algorithns. Also, since FDB was defined as NDB ,

it may be possible to calculate NDB for a giver, function and databse

organization, while IC would also be a function of scale factors, such as

the function being performed and the data base size and data base

camplexity. Thus FDB could be derived in this way.

A way to approach the problem of evaluation might be to start with

"reasonable" estimates for these parameters. When the scaled system is

operational, they can be measured by monitoring system behavior. Indeed,

the purpose of building the scaled system is to measure the parameters

which will be used in the full-scale system so that flexibility in the
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design of the full-scale syster1 can be retained. The snall scale system

together with the simulation will enable the designer to see what will

work in the full-scale system.

To find C V  for each job of type j, assume input values for

simulation parameters mean Cv(j), aC V (j). As the job begins, pick

the actual CV according to a probability di-tribution function.

For CR , the real available core for the job, the following

syste-dependent values can be input:

CT = total oore for the machine

COS = operating system core

Then

CR- =CT - CUS O -COS

number of jobs running number of terminals.

In the equations that have been discussed, the simulator parameters

have been defined as functions of maly of the scale factors, including

power (instructions/time), number of terminals, real core (system

capacity), nnrber of instructions (related to data base complexity and

structure), hardware, functionality, and security core (involved in the

calculation of CR, the real available core for a job). The use of the

simulation then permits analysis of scale factor interrelationships.

The simulation, as described in the report "Simulator Description"

(Appendix E), will be used by the system designer in an iterative manner

in the course of specifying the full-scale system. The scaling factors

will be specified and used as input to the simulation, the output will be

examined, and scaling will be respecified until the desired outputs,

i.e., full-scale system behavior, are achieved. A typical question would
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be: How much can the data base size be scaled up with present disk

hardware without going below the minimum required responsiveness

(responses per unit time)? Will it be necessary to have ore and/or

faster disks in order to achieve the desired full-scale system

responsiveness and incorporate the necessary data base size? If access

time is improved by so nuch, how much can the data base then be scaled

up? The system designer will look at the results of the simulation based

on a set of values for the scaling parameters and iteratively adjust

these values. Such respecifications of scaling may well result in design

changes for the full-scale system, e.g., by going to more and/or more

powerful hardware. Thus the tools to be used will be the simulator and

the set of input variables.

3.2 System Design Methodology for Using Scaled Systems

3.2.1 Interrelationships Among Scaling Factors

The cbjective of this task was to develop standard procedures for

applying the scaled system technique to new IDHS development projects and

to describe how measurements made on a scaled system can be extrapolated

into predictions for a full-scale system.

The result of Task 1 was a set of scale factors that describe an

IDHS, with appropriate metrics defined on them. The goal of Task 2 was

to determine the predictive value of each scaled parameter before

preparing guidelines for which parameters to scale. Toward this end, an

operating system performance simulator was designed, as discussed in the

report, "Simulator Description" (Appendix F).

A job enters the system at randam intervals chosen fran a Poisson

distribution, from one of n terminals (n<100). The exponent 1,i

3-23



probability distribution function is used to model the job arrivals

because, as noted in Beizer [ref. 6], assuming this distribution is

equivalent to saying that the arriving customers individually and

collectively behave as if they were not awarf of each other's existence,

because it is usually (but not always) pessimistic, and because it leads

to reasonable expressions for the queueing narameters. The usc of thf

exponential interarrival time distribution ,1-... to a Pcisson arrival

rate distribution.

The job is assigned a job class (CPU- or dis-hxxn., :nU CIV/Ois'

iteration count, based on probability distributIons. EMcl. te n1 al is

assigned a wait or "think" time. h jol- is pii,. x, ,!. ' :r is

queue if the required facility is busy; wher. i* . ',

it is assigned a CPU service time and, ,is.k s r.:, .

Experiments with sets of various pxr.1 , r :

order to address the issue of how su-t. f, ',

terminals, the job mix (the cormbinitior. of 1' -,, : - .

jobs), and average CPU service time aff,"ct tis5 -:

disk utilization, response time, ant. . : ' yster

performance. Tests were run with 8, 1i , It 2,', 1'C', ! Ii'

terminals, with the percentage of CPU-bound jobs r.nru:, fz r , tc 9.

Figure 3-04 summarizes the experimental recults for in\%Ivi r.r.

CPU/disk iteration count (the number of times th jo flips ,t'%,,r.

CPU and the disk) of frcrn 4 to 10 for CPU-toun jobs ani 12 to 3Y" for

disk-bound jobs.

It is necessary to examine the parameter interrelationships and

system behavior in different operating regions, i.e., CPU- or disk-boxund.
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No. of Terminals Response Time
CPU-Bound &_ All2

8
10
16

10% 2C 9896
50 2261
75 32851

100 46594

8
10 4731
16

15% 20 4046 6961 9878
50 950 17084 26511
75 33221

100 16039 34059 45173

8 1378 2692
10 1888 3525 4445
16 2986 6136

25% 2k 3849 6847 8592
50 7571 15119 1i943
75 28073

100 15483 30893 31654

8 1219 2324
16 2347 2764 3651
16 2041 409

50% 20 2786 4234 6680
50 6380 11286 14238
75 8802 1493C 17009

ILA 12296 19706 27399

90% 20 3739
75 13215

Figure 3-04 Summary of Simulator Experimental Results
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Figure 3-05 plots the number of terminals against the response time (the

inverse of the responsiveness scale factor) for a system that has

approximately 15% of its jcbs in the CPU-bound category. The graph shows

-that for a mean of 4 CPU/disk iterations for CPU-bound jcbs and a mean of

1-2 CPU/disk iterations for disk-bound jobs, the increase in response time

is close to being proportional to the increase in the number of

terminals, i.e., increasing the number of terminals by a factor of 2.5

(20 to 50) results in a 2.2 fold increase in the response time, while

doubling the number of terminals fran 50 to 100 results in a factor

increase of approximately 1.8 in the response time. As the mean number

of CPU/disk iterations increases, the increases in response time for the

higher number of terminals are sharper, as can be seen fran Figure 3-05.

Figure 3-06 shows the number of terminals plotted against the

response time in the operating region where 25% of the jobs are

CPU-bound. The curve for/4, =4,/A=12, follows the same pattern as the

15% CPU-bound curve in Figure 3-05; i.e., the sharp increases in response

time take place when the mean number of CPu/disk iterations is highest.

Similar phenomena are demonstrated in Figure 3-07 iP. the region

where 50% of the jobs are CPU-bound and in Figure 3-08 where 10% and 15%

of the jobs are CPU-bound. The general conclusion illustrated by the

results of these experiments is that response time increases as the

number of terminals increases, with proportionately larger increases

taking place at the higher range of number of terminals and in the

regions where more jobs are disk-bound; i.e., the curves tend to flatten

as the percentage of CPU-bound jobs increases. In addition, as might be

expected, response time increases as the mean number of CPU/disk
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Figure 3-08. Number of Terminals vs. Average Response Time
with 10% and 15% CPU-bound Jobs
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iterations increases. The rate of increase is not predictable hoVAver.

Figure 3-09 summarizes the changes in response times as the percentage of

CPU-bound jobs decreases, i.e., the system becanmes mre disk-bound. It

can be seen that doubling the number of CPU/disk iterations does not

consistently double the response time, and the increases in response time

vary within operating regions. Figure 3-10 summarizes the performance

curves in Figures 3-05, 3-06, and 3-07.

Figure 3-11 demonstrates the system's behavior in the region where

25% of the jobs are CPU-bound and the num)ber of CPU/disk iterations for

CPU-bound and disk-bound jobs is 16, 32, or 40. Again, sharper increases

are seen in the curves representing 5C and 100 terminals, as campr,:

with those curves for 8 to 20 terminals. Figure 3-12 illustrates simil r

behavior for an envirorunent where 50% of the jobs are CPU-bound. qhus,

in general, it can be said that adding CPU/disk cycles to the averagje job

results in increased response time. Similarly, as denonstrated in Fiurt

3-13, the increase in the average disk wait time is approxinc,tely

proportional to the increase in the nuiber of termivils in all op-eritincl

regions examined.

Figures 3-14 and 3-15 show what happens to the response time as the

percentage of CPU-bound jobs increases. Generally, the responst, tint

decreases, with the sharper changes taking place for the curve~s

representing the larger numler of terminals. Figure 3-14 illustrates thel

results of the experiments with mean CPU/disk iteration count of 4 for

the CPU-bound jobs and 12 for the disk-bound jobs (indicate(] as (4,12))

and thost with nan CP/disk iteration Counts of 8 and 24, ruesptctively.

Figure 3-15 plots the percentage CPU-bound jobs vs. resjonse time curve
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No. of (4,12) (8.24) (10,30) (4.12) (8.24) (10.30)
Terminals 50%:25% 50%:25% 50%:25% 50%:15% 50%:15% 50%: 15%

8 +13% +16%

IU -24% +28% +22% +30%

IC +44% +53%

2C +38% +62% +29% +45% +65% +48%

50 +19% +34% t33% +42% +51% +44%

75 +65% +95%

10 +26% +57% 16% +30% -73% +65%

Figure 3-09 Sunwary of Changes in Response Time
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Figure 3-11. CPU/Disk Iterations vs. Average Response Time
with 25% CPU-bound Jobs
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Figure 3-12. CPU/Disk Iterations vs. Average Response Time
with 50% CPU-bound Jobs
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for a mean CPU/disk iteration count for CPU-bound jobe of 10 and for

disk-bound jobs of 30.

Figure 3-16 and 3-17 illustrate tle results of increasing the

average CPU service time by a factor of 12. Looking only at an

operating region represented by 8 to 20 terminals, the average response

time is not affected greatly, either for a CPU/disk iteration count of

(4,12) or one of (8,24).

The wide range of parameter values for the simulator that would be

considered realistic makes it difficult to draw final and definitive

conclusions fran the experiments that have been conducted. It can be

said that having examined a set of cases with a limited set of parameter

values, it is clear that response time is proportional to the number of

terminals and the number of CPU/disk iterations, and inversely

proportional to the percentage of CPU-bound jobs. As far as how these

scale factors actually are mathematically interrelated, the curves show

that these relationships depend on the operating region, i.e., whether

the system is CPU-bound or disk-bound and whether there is a small (maybe

20 or less) or large (more than 50) nunber of terminals.

Further work to make the simulator more sensitive to the particular

requirements of IDHS and to run experiments with additional sets of

parameter values would permit more definitive analyses of the scale

factor interrelationships. Such results would also enable the scale

factor-simulation parameter equations: as described in the earlier

report, "Simulator Variable-Scale Factor Equations" (Appendix E), to be

ccrnpletely derived.
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Figure 3-17. Number of Terminals vs. Average Response Time
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3.2.2 Guidelines on Which Parameters to Scale

The objective of the research into the scaling of systems before

full implementation is attempted is to improve the way design,

development, and evaluation of IDIS are performed. The ultimate IDHS is

derived from the scaled system in a manner that decreases the final cost

and increases the final benefit over that achievable without the use of a

scaled system. Consider Figure 3-18, which illustrates the relationship

among IDHS, development of IDHS, and scaled systems. Characteristics of

intelligence data handling computer systems, when considered in light of

what is known today about conputer system development, dictate a certain

cost/benefit achievable with a given development effort. Suppose that a

scaled system is defined, based on the ultimate intelligence data

handling system objectives, but without some of the characteristics that

contribute to increased cost and reduced benefit. The scaled system

could then be implemented at a fraction of the cost of the complete

system, and could furthermore be used to change same of the undesirable

characteristics of the ultimate system. For example, one factor

increasing system cost is lack of personnel experience with the system.

After developing a scaled system, project personnel will have the

experience necessary to develop the complete system at reduced cost.

Thus, the ultimate intelligence data handling computer system is derived

from the scaled system in a manner that decreases the final cost and

increases the final benefit over that achievable without the use of a

scdled system.

The unique problems entailed in implementing an IIIS cnputer system

are based on a cilbination of its characteristics. Since understanding
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Figure 3-18. Scaled System Utilization for Development
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how these characteristics might be modified within a scaled system is

necessary to using scaled system techniques, major characteristics of

ICHS will be discussed.

a. System uniqueness

Most intelligence data handling camputer systems are unique.

Although most do shdre ccmrun functions, such as comunications, each

system developed must support spccific mission requirements and interface

with specific other in-place systems. Cost savings have been realized

through transfer of technology, such as implementing National Military

Intelligence Center (hNIC) Support Software (NSS) for the Preliminary

Operational Capability (POC) of the Pacific Corkarnd (PACCM) Data Services

Center (PDSC), but uniqueness is not removed through this process. Thus,

several man-years of development were still required for the PDSC POC due

to unique hArdware interfaces and different conputer configurations. In

addition, implementdtion of many new and unique capabilities for PDSC is

currently underway.

b. Security

All intelligence data handling cr-nputer systems operate within

secure environments due to the classified information they process. Many

of these systems are subject to the especially stringent security

constraints required for processing sensitive compartmented information

(SCI). Types of security required include physical (access restriction),

personnel (clearances required for access), TEMPEST (electronic

emanation), and 03NISEC (ccimmnications security between systems). In

addition, ccmpiter hardware/software security provides another line of

defense against unautborized access by preventing information retrieval
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without knowledge of correct passwords and codwords even if physical

security is breached. Techniques of hardware/software security are

expected to improve considerably in the near future, as extremely

reliable measures are required to process data of differing

classifications within the same system. Currs'nt requirements for such

multi-level secure processing have spurred research efforts such as

Kernelized Secure Operating System (KSOS). Parameters related to

security objectives such as file protection methods, granularity of datI

access control, encryption, and authentication mechanisms are potential

elements for scaling.

c. Interactive

Most intelligence data hand'ing computer systems are

interactive; that is, they interface with users at on-line terminals. In

order to be effective, these systems must provide rapid response to user

requests. Many of these requests may require cxraplex processing, and a

large number of user terminals is often supported. Thus, the thIC system

may be accessed fran over thirty terminals, and may process requests to

search an entire five-day message file for specific ittns. The number of

terminals and the required responsiveness can be objects of scaling

procedures.

d. Rea I-T ime

In addition to being , v. ive, most intelligence data

hundling ccz.ixuter systems also include cnMlonents that must operate in

real-time. This is particularly true for canponents handling direct

sensor input or, as is more crmnon, ccnponents handling cacmnunication

circuitry and protocols. Thus, the Intelligence ata Hlandling System -
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Ccmmmnications (IDHSC II) is capable of controlling several cmmmnication

channels with bandwidths of 9600 baud. Messages must be processed as they

are received, and must be transmitted with timeliness. IDHSC II

additionally performs sophisticated packet switching and other message

handling functions, and it is conceivable that bandwidths of up to 50KB

may eventually be required. Real-time operations can be scaled by

simulating real-time data with input data, and transmission and

dissemination functions can be eliminated for scaling purposes.

e. State-of-the-art

Most intelligence data handling computer systems include at

least some cnponents that are state-of-the-art. Some systems are based

entirely upon research into state-of-the-art techniques. For example,

the Advanced Indications System (AIS) includes aspects relating to

artificial intelligence and the emerging technology of decision support

systems. It would probably not be desirable to scale state-of-the-art

features.

f. Large data base

Increasing sophistication in intelligence collection techniques

and expanding computer storage and processing capabilities have provided

unptus tc'.rd developrnent of intelligence data handling canputer systems

with data bases of ever-increasing size and complexity. The Advanced

Imagery Requirements Exploitation System (AIRES) data base currently

consists of several billion characters of on-line information. Data base

size ard the number of intra-data base linkages are prime candidates for

scaling.
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g. Interoperability

The vast amount of intelligence data collected and the

decentralization of mission responsibility, particularly as is being

implemented under the Delegated Production Policy, dictate that many

different intelligence data handling caputer systems exist in diverse

geographic locations. However, the necessity for fusion of intelligence

frca different sources requires that caimunication and interoperability

be established among these various intelligence data handling computer

systems. Interoperability requirements are particularly wide-ranging for

national-level systems such as the Defense Intelligence Agency (DIA)

Integrated Indications Systems (DIIS) currently being designed, which

will interface with at least a dozen other systems. Different locations

can be scaled by simulating through input data.

h. Reliability/Availability

Many intelligence data handling ccmputer systems operate on an

around-the-clock schedule, and all are expected to be available during

virtually lo% of their scheduled up-time. With many of these systems

extremely critical for the national defense of the United States, serious

degradations of reliability and/or availability canrot be tolerated.

Also, the extensive amount of interoperability implemented causes

systems to depend on eich other and may cause one malfunctioning syston

to adversely impact others.

i. Changiiy Rquirements/Evolving Systems

Intelligence collector technology growth, coupled with the lone

lead times required to implement data handling computer systems, often

causes system requirements to change several times during a develo-kmnt
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effort. Furthermore, the overall national intelligence data hknling

capability is continually evolving, causing each individual intelligenct.

data handling ccnputer system to similarly evolve. The Ccrmnunity On-Lint,

-Intelligence System (COINS) provides a good example of national evolution

and requirements changes affecting several individual autamated systems.

COINS was initially implemented as a dedicated network directly

interconnecting various large-scale host mainframes. As additional

hosts were added to the network, it became apparent that host

prograrmming changes were beccxning prohibitively expensive, so a front-end

processor architecture was implemented. The architecture also included

communication processors similar to the Interface Message Processors

(IMPs) used on the Advanced Research Projects Agency Network (ARPAXE).

Some network sites did not have IMPs but did have IDHSC II processors,

however, so COINS protocols were implemented through IMISC II and

interfaced to other rnbers of the original COINS. Efforts currently

underway with respect to COINS include an experiment to eliminate

dedicated circuits by sending traffic, suitably encrypted, to distant

sites through the actual ARPANET.

The system parameters which apply to each IDS characteristic are

described more fully in "Software Scale Parameters" (Appendix B) ard

"System Scale Factor Metrics" (Appendix C). Which of these

characteristics to scale depends on the major objectives of thu

development effort, making it hard to quantify application-.r'ln t

parameters. In addition, quantifying software system attributcs is :I

young, expanding discipline in which dtfinitions and "npases tendi to

shift, contributing to the dynamic nature of the terminology and
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technical base. Actual metrics and relationships may therefore be

resculptured as research continues toward the goal of achieving an

understandable and workable methodology for scaled systems developnent.

The experiments performed with the simulator indicate that

guidelines for which parameters to scale will have to be narrowly

defined, depending on such factors as operating region and expected

system size, e.g., nunber of terminals. Although no drastic changes in

scale factor interrelationships occur in these different environments,

there is a significant amount of variance, e.g., doubling the nunber of

terminals does not always double the response time.

Figure 3-19 illustrates the considerations in deciding what to

scale. It is necessary and advantageous to first prepare the lists of

objectives for using both the full-scale system and the scaled system.

Full-scale system objectives fall into two categories, the general type

of system, such as real-time versus batrh, and any unique objectives

required for the system, such as 100% up-time, flexibility to interface

with other evolving systems, simple transportability, etc. For example,

a real-time data acquisition system could be scaled on the input data

rates or number of input lines, while an interactive system could be

scaled on the number of users. The objectives of the full-scale system

are related to the functions it performs, which will aid in determining

which parameters to scale. The objectives for using scaled systems

within a developyncnt effort will also be factors in determining which

parameters to scale, as scalinq certain parameters may clearly aid or

hinder accomplishrent of th,'.w oLij-tives. As has been discussed in

previous sections, the benefits include, obtaining Uscr feedback for final
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design decisions, testing unique or state-of-the-art concepts, providing

project experience for the development tem, implementing an initial

operational capability which will be later enhanced, and predicting

-full-scale system cost, schedule, risk, and performance. A scaled system

built to establish the feasibility for a unique system should riot have

complex or state-of-the-art features scaled, while a scaled system built

to elicit final user design feedback should have the number of users, but

not the user interface, scaled. The use of a scaled system must also be

cost-effective, while "too much" scaling rr'st be avoided or it will be

impossible to extrapolate performance results. Figure 3-20 presents a

surnary of guidelines in selecting which sample objectives to scale.

The value of using the simulator to aid in determining guidelines as

to which parameters to scale is that, for a given set of objectives for

the full-scale system, tests can be run with various scenarios

representing different sets of parameters scaled and the implications of

such scaling can be easily and inexpensively evaluated. The limits

beyond which some scale factors should not be scaled can also be

determined in this way. For example, it might be seen that given the set

of parameter values that define the proposed system, halving the number

of terminals from 100 to 50 doubles the interact,.e responsiveness.

However, halving the number of terminals from 50 to 25 triples the

interactive responsiveness. In this case, the simulator would indicate

that the number of terminals should not be scaled to less than half

without taking the change in the terminal responsiveness relationship

into account.
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SAMPLE OBJECTIVES PARAMETERS TO SCALE

System Uniqueness

Security File protection methods, granularity
of data access control, encryption,
authentication

Interactive Number of terminals, required
responsiveness

Real-Time Input data rates, number of input
lines, transmission and dissemination
functions

State-Of-The-Art

Large Data Base Data base size, number of intra-data
base linkages

Interoperability Transmission and dissemination functions

Reliability/Availability

Figure 3-20. Summary of Scaling Guidelines
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General guidelines can be derived, however, frcm this research.

The experiments have demonstrated that responsiveness is inversely

proportional to the number of terminals and the number of CPU/disk

iterations. It can also be seen that, as shown in Figures 3-15 and 3-16,

increasing the average CPU time does not increase the response time,

indicating that functions requiring extra CPU time, e.g., security

overhead, can be moderately scaled without affecting other Ecale factors.

The cost model can then be used to determine the degree of scaling that

is both advantageous and feasible.

3.3 Decision Factors and Guidelines

The purpose of this section is to establish the basic and

generalized guidelines which system architects can refer to in

determining the feasibility and cost-effectiveness of building a proposed

system to scale. Frcn that point, a more detailed discussion supported

by quantitative exhibits will be prcsented.

3.3.1 Overview

Decision guidelines for potential scaling of proposed system designs

will most often have as their focus, t o major questions:

(1) Can the system in question be built to scale?

(2) V.1ill the resultant scaled system prove worthwbile
both in its possible operational va.ue and in
benefits realized for application to the unscaling
effort?

3.3.1.1 Scaling Feasibility

Before answering the first question, a thorough analysis of the

proposed system's characteristics must be performed ir order to establish

a, reasoncble scaling methodology. Information of value would generally
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consist of such items as the system's requirements, performance criteria,

functionality, proposed architecture, estimated program and data base

size, and configuration, both in terms of its hardware and software. In

addition, level of technical staff experience and qualifications,

development schedule, resource allocation (staff-loading), as well as the

ultimate target delivery date for the full-scale system must be taken

into account. Once such data is gathered, the formulation of a scaled

system developnent methodology may conmence. Coupled with the "how" of

scaling, however, is the "why" of scaling, which raises the importance of

the second question stated.

It should be stated that the importance of a scaled system lies not

in the fact that the scaling can actually be accomplished, but in the

benefits that actually accrue to the ultimate full-scale system. It is

important then, that the objectives of the scaled system be established

early on. It is additionally important to maintain the distinction

between the concepts of scaling and prototyping. While a scaled system

is most certainly a prototype, a prototype may not necessarily have the

properties of a scaled system. While the potential value of prototype

systems is acknowledged, the discussion of such is considered beyond the

scope of this report.

In examining system attributes in terms of scaling feasibility, the

ones with the least risk should be considered first. The motivation here

is to scale attributes where there is much certainty about their

full-scale properties so that relatively 'higher-risk system camponents

may be implemented and thoroughly scrutinized in the scaled system.
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Important attributes to keep in mind during the design of a scaled

system include its degree of modularity and transportability. In most

cases, the unscaling effort would certainly benefit from any inventory of

-source code accumulated during the scaled effort. This, of course,

requires the extra effort in planning since little is known about the

actual workings of the full-scale system at the front-end of the

development cycle and, due to the development methodology selected

(scaling), it is most certainly a complex and technically challenging

system defying any such planning attempts. Nevertheless, attention to

designing modular, transportable code for the scaled system will

eliminate the need to produce similar cod.- for the ultimate full-scale

system and will result in cost savings for the full-scale system as well

as a reduction in total project costs.

3.3.1.2 Cost Modeling and Parametric Analysis

In the planning and design stages for a scaled system, the planners

inevitably find themselves deep in the realm of cost estimation mcxleling

and parametric analysis in the determination of the potential cost

effectiveness of the development methodology chosen. Such tools are

important in the exploration of the interrelationships that exist between

the scaled system and its full-scale counter-art in determining total

cost, schedule, and risk. While hardware cost estimation can be achieved

with an acceptable degree of accuracy, software cost estimation involves

many critical variables which aggravate formulation of accurate cost

projections. One such variable is time; major soft%.,are development

efforts nearly always span a considerable -rount of time. Software cost

estim Ates therefore bear a significant degree of uncertainty because they
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address future events heavily dependent upon the interaction of a group

of people. Consequently, a small deviation in the resulting delivery

schedule causes a major impact upon costs because in software

development, the burdened costs of maintaining a project staff, generally

at significant pay-scales, are large. Future projections thus bear a

degree of uncertainty proportional to the term under consideration;

long-term predictions are long on risk while shorter-term predictions

involve relatively less risk. System hardware cost estimation is

considered a contrast to software cost estimation because, in the

procurement of hardware, the cbjects are generally "off-the-shelf" items

where the major concerns deal mostly with the transportation,

interfacing, and check-out of the various urtxular hardware components and

a relatively shorter time frame is involved.

Due to the difficulty involved in dealing with critical variables,

such as time, in the planning of systems, parametric analysis has become

a useful tool in the making of projections. Parametric analysis can be

loosely defined, for the purposes of this discussion, as the posing of

"vAhat if" questions; the p&er of the technique lies in its assessment of

the sensitivities of the various crucial variables present in our

tstimate calculations, such as time.

3.3.1.3 Scaled Systems Decision Criteria

Thus, hile the feasibility and methodology of producing a system to

scale is the primary responsibility of the system's architects, the

resources of a parametric analyst and a cost estimation method are

crucial in determining, at the onset, any potential cost savings that

could occur through the adoption of a scaled system development
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methodology. Cost savings are perceived as the principal driver of the

scaled system design; however, it should be emphasized that situations

may arise where potential cost savings are subordinate to full-scale

product quality considerations such as reliability, efficiency,

integrity, and performance. Nevertheless, the objective of the following

sections is to provide the system planner %.ith appropriate guidelines by

wAich he may mentally determine the feasibility of applying the scale7

systems approach to a particular software effort.

3.3.2 Decision Factors Influencing System Developnent

There are a number of research papers appearing in the cpn

literature itemizing factors which influence software develolment cost

and schedule. Some authors have additionally been able to qu ntify thtL

effects of the presence or absence, to varying degrees, of these factors.

One of the first to do so was J.D. Aron in ".tiating Resources for

Large Progrdmming Systems" [ref. 1]. A result of this study is

illustrated in Figure 3-21. In this illustration, we find Aron's

productivity table which relates code production to factors such as

difficulty, schedule duration, and interface exinplexity. Of note to

planners of scaled systems are the facts that, generally, the longer the

dev4lopment schedule duration and the less interface ccuaplexity an&

difficulty, the greater the productivity and, hence, the less the cost.

Of especial interest is the counter-intuitive nature of praductivity

presented in terms of development schedule duration; the lo_ the

schedule, the greater the productivity. This anomaly has been notet, -y

other authors such as Brooks and Putnam and the phen(m2enon is" perhkp

best explained by Putrnam [ref. 17]. Yet even fran this simple table,
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6-12, Z-Z4 More Than
Months Uoeths 24 Months

Raw I Easy ZO 500 10.000 Very Few
(Zs/day) (43/day) Interactions

Raw Z Medium 10 .d(Z0dy)0 Soente

2.el 5 ay)(2

Raw 3 Dificult IzS 1.500 Many
,(6.25/day) (6/d-y) Interaction

Instruetions Instructions Instructions
per per p.r

Man-Day Man-Month Man-Year

Figure 3-21. Armn' s Productivity Table
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planners of scaled systems can be confident that through the limiting of

a project's size, scope, and ocmplexity - same of the attributes of a

scaled system - productivity performance can indeed be increased and

total resources and labor put to more efficient use.

Next to itemize software developmental factors was Doty (and

associates) under a research effort for the kzne Air Development Center

(RADC). In Software Cost Estimating Study - Guidelines for Improved

Software Cost Estimating Eref. 7), the authors identified forty-six

factors which contribute significant impacts upon software project costs

and schedules. These forty-six factors were divided into three

homogeneous groups and are listed in Figure 3-22. In addition to this

enumeration, Doty and his associates were able to formulate a set of

effort (cost) formulae characterized by separations based upon

application type and respective adjustment factors specifically

accounting for some of the environmental attributes. These formulae were

arrived at based upon the data RAWC had internalized concerning over four

hundred software development efforts. The Doty cost formulae and

adjustment factors appear in Figure 3-23. Individual environmental

factors quantified in Figure 3-23 are identified in Figure 3-22 by an

asterisk ("*") alongside the corresponding factor. It is readily

apparent that not all of the effects of the factors listed in Figure 3-22

were quantified. Presumably this is due to the inherent difficulty and

probable research constraints limiting the quantitative determination of

such effects.

Of wide interest to researchers of software engineering in general,

and cost and productivity modeling in particular, is an article-entitled
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REQUIREMENTS DOMAIN FACTORS

1. OPERATIONAL REQUIREMENTS DEFINITION

,I 2. OPERATIONAL REQUIREMENTS CHANGES

3. USER REQUIREMENTS CONSIDERED

4. OPERATIONAL REQUIREMENTS/DESIGN INTERFACE

5. SPECIFIED RESPONSE TIME

6. AVIONICS APPLICATION

,7. COMMAND AND CONTROL APPLICATION

448. MULTIPLE SOFTWARE UTILIZATION SITES

9. RELIABILITY REQUIREMENTS

10. MAINTAINABILITY REQUIREMENTS

11. QUALITY REQUIREMENTS

12. TRANSPORTABILITY REQUIREMENTS

)13. BUSINESS APPLICATION

%14. SCIENTIFIC APPLICATION

*15. UTILITY APPLICATION

SYSTEM ARCHITEC"URE/ENGINEERING (A/E) FACTORS

4cl. CPU TIME CONSTRAINED

* 2. PROGRAM MEMORY SIZE CONSTRAINED

"3. ON-LINE OPERATION

4. TIME AND MEMORY CONSTRAINED

5. TARGET CPU DESIGNATION

6. DESIGN STABILITY

7. DESIGN COMPLEXITY

Productivity inpacts quantified in study

Figure 3-22. RADC Environm-ental Factors
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MANAGEMENT DOMAIN FACTORS

1. SUPPORT SOFTWARE AVAILABILITY

2. WORK BREAKDOWN STRUCTURE

3. DEGREE OF INNOVATION

4. TESTING REQUIREMENTS INCLUDING VERIFICATION AND
VALIDATION

5. COST/SCHEDULE CONTROL SYSTEMS CRITERIA (C/SCSC)

6. DEVELOPMENT PERSONNEL MIX
7. PROGRAMMER TESTING

8. AMOUNT & METHOD OF COST DATA COLLECTION

9. COST OF SECONDARY RESOURCES

10. DEFINITION OF INSTRUCTION

11. SIZING ERROR

12. DATA MANAGEMENT TECHNIQUES

13. MODERN PROGRAMMING TECHNIQUES

14. PROGRAMMING FACILITIES (L.catim & Access)

• )K15. DIFFERENT DEVELOPMENT AND TARGET COMPUTERS

16. COMMUNICATIONS

17. LANGUAGE REQUIREMENTS

*18. DEVELOPMENT SITE

*19. DEVELOPER USING ANOTHER ACTIVITY'S COMPUTER

*20. NUMBER OF DEVELOPMENT LOCATIONS

121. CONCURRENT DEVELOPMENT OF HARDWARE

*22. DEVELOPER'S FIRST TIME ON SPECIFIED COMPUTER

'23. SPECIAL DISPLAY REQUIREMENTS

24. SOFTWARE DEVELOPMENT SCHEDULE

Productivity iipacts quantified in study

Figure 3-22 (Cont.)
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"A Method of Programming Measurement and Estimation," by Felix and

Walston of IBM [ref. 243. This article first appeared in the IBM Syster

Journal Volume 16, Number 1, in 1977. In this article, the authors

examined a group of sixty completed software development projects that

covered a wide range of application type, size, and camplexity. Frc

thi research, the authors cxmpiled a list of productivity rates itemized

by environmental or product factor. This list is summarized in Figure

3-24. Regrettably, the data, as presented, is nwt of iiuch use to system.

planners. The authors did allude to a methodology whereby the

productivity rates could be incorporated into an estination model but

unfortunately they did not elaborate upon the details necessary to apply

the methodology to practice. Hence, under this research effort the

attempt was made to incorporate this raw data into a general schane of

guidelines through which system planners might be able to assess thk2

potential benefits of applying the scaled systems developmnent

metlxxlology.

3.3.2. 1 Factor Quantification

The Talston and Felix article is one of the few available sources of

quantitative empirical data concerning the effects of many various

environmental factors influencing software development. 1n order to

obtain meaningful decision factors from the liston and Felix oata

identified in the previous section, it was first necessary to screc ,)

translate the raw productivity rates into some sort of predictive

coefficients indicating the respective impacts of the develolminnt factors

or. a project's cost, effort, or schedule. Wbile it was recognized tl-t

the re,-;ultant factors rijy not apply to any particular enirornt, th
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intent was rather to formulate a set of surrogate values based upon

actual "real-world" experience for the purpose of rough effort

approximating and scaled system trade-off analysis. Aain, the purpose

of such an exercise would be to provide the system planner with a tool to

facilitate his assessment of the feasibility of adopting the scaled

system develop, ital approach.

After rationalizing that the Doty coefficients must have been based

upon similar productivity data as that which Vblston and Felix provide

(except cbtained fron a different source - RADC), it was determined that

the Doty method would be an attractive model to base the determination of

the coefficients fran the Vblston and Felix data upon. In addition,

there would be benefits to representing both sets of data in the same

manner as they would compliment each other. In retrospect, the Doty

method to account for environmental factors consisted of coefficients

that, when multiplied together, produced a multiplicative factor that

could be used in an equation of the form:

Person nmths of Effort = Constant * SLOC T Exponent * ii

where: "ii" is the nultiplicative factor

Of particular value in the Doty method is the fact that while each

environmental factor value not only relates its marginal impact upon a

project's estimated cost, it is expressed in a form such that its implied

interrelationship with the other factors is autamatically accounted for.

Other organizations and researchers have used these same envirornental

factors and their corresponding coefficients for other, different

estimating purposes in their original form with acceptable degrees of

success. A prime example would be the Space and Missile Systems

3-65

.1st.



Organization's (SAMSO) Software Program Office (SPO) in Los Angeles,

California, where the Doty factors and Coefficients are used to adjust

the technology constant in Putnam's software equation Cref. 13J. The

Putnam equation relates system size to total project effort and chedule

through the technology constant and is totally different from the Doty

methodology. The problem, then, was to quantify the IBM data in a

similar manner to the Doty methodology. Traditional systems thinking

techniques were applied to the problem first - problem solution through

problem decomposition. Step one consisted of combining related

development factors into groups. The resulting groupings are shown in

Figure 3-25. Of concern to this research was the fact that the

aggregation of the effects of the individual development factors tended

to over-emphasize the resulting productivity estimates. It was

subsequently determined that the original data did not result from "pure"

laboratory research conditions and that the mere presence of scne

environmental factors implied other, related factors. For example, the

IBM data might be interpreted to suggest that the presence of both

structured programming techniques (303 Lines of Code per Month - LOC/M)

and top-down design (319 LOC/M) would result in productivity of 622

sowce lines per month, which, from the other data present, seems

questionable. Top-down development and structured programming

techniques, in all probability, occurred simultaneously in the Vblston

and Felix project data base: hence, additive-type analytical techniques

of the published data would tend to over-emphasize the effects of the

various development factors. This simplistic example illustrates the

problem of attempting to aggregate the resultant effects, in-terms of
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"Stuctured Techniques"
Structured Programming
Design and Code Inspections
Top-dcown Development
Chief Programmer Teams

"Caplexity"

Overall Code Complexity
Complexity of Application
Complexity of Program Control Flow

"Code Mix"
Proportion of Code classed as Non-Mathematical and I/O Formatting
Proportion R/T, Interactive, or Time-Critical Code
Proportion of Code Intended for Delivery

"Utilization"
Overall Program Design Constraints
Core Memory Design Constraints
Execution Time Design Constraints

"Platform"
Custcmer Interface Complexity
Degree of User Participation in Req'mts. Def.
Degree of Custamer-Originated Design Changes
Degree of Custcmer Experience in Application Area

"Resources"
Ave. Personnel Experience and Qualifications
% Dev'mt. Programmers who Participated in Func. Design Spec.
% Utilization of Currently-available Hardware
Degree of Previous Experience with Cper. Coqputer
Degree of Previous Experience with Programming Languages
Degree of Previous Experience with Appl. Size and Complexity

"Security"

Spcl. Req. for Access to Dev'mt. CPU
Amount of Cpen Access Time to Dev'mt. CPU
Classified Security Environment for CPU and 25% of Programs & Data

"Misc. Items"

Proportion of Data Base Class-Items to 1,00 LOC
Proportion of Doc. Pages to 1,000 ILC
Ratio of Staff Size to Project Duration (People/Month)

Figure 3-25. IBM/Valston and Felix Environmental and Product Factor Groupings
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productivity, of the various factors in determining guidelines based upon

such data. The real problem with the data, as we perceive it, is that it

does not result from purely controlled situations. Of course, it is not

expected to as it is recognized that the gathering of such data under

pure laboratory conditions is far too expensive and time consuming, even

if it were possible. The task to be performed then was perceived as

inferring, through same quantitative basis, the effects of the combined

environmental factors. This was first applied through quantifying the

aggregated effects of all the factors in each particular group of related

factors. 7b accomplish this, the extreme low- and high-end productivity

rates for each component of a group were totaled. A marginal group

productivity impact was then calculated based upon these totals through

the following equation:

Marginal

[3.2-a] High total - low total = Aggregate

Productivity

low total Impact for Group

The marginal productivity impacts of each group, and the data used in

arriving at them, are illustrated in Figure 3-26. From this illustration

we see that the components of the group "Structured Programming"

contribute positively to productivity by a factor of 1.7. The fact that

this translates to a 70% increase in productivity for all organizations

and envirounents is undeterminable; howmever, in the IBM developnent arena

for a similar set of projects as those which constitute the IBM data, it

would be reasonable to expect that these practices would orntribute to a
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Group Productivity Impact

Stuctured Techniques 1.70
Structure -Programinng
Design and Code Inspections
Top-down Development
Chief Programmer Teams

CgMplexity 1.69
Overall Code Complexity
Complexity of Application
Complexity of Program Control Flow

Code Mix 1.47
Proportion of Code classed as Non-Mathematical and I/O Formatting
Proportion R/T, Interactive, or Time-Critical Code
Proportion of Code Intended for Delivery

Utilization 1.86
Overall Program Design Constraints
Core femory Design Constraints
Execution Time Design Constraints

Platform 1.92
Customer Interface Complexity
Degree of User Participation in Req'mts. Def.
Degree of Customer-Originated Design Changes
Degree of Custione- Experience in Application Area

Resources 2.73
Ave. Personnel Experience and Qualifications
% Dev'mt. Programmers who Participated in Func. Design Spec.
% Utilization of Currently-available Hardware
Degree of Previous Experience with Oper. Computer
Degree of Previous Experience with Programming Languages
Degree of Previous Expezience with Appl. Size and Complexity

Security 1.72
Spcl. Req. for Access to Dev'mt. CPU
Amount of Cpen Access Time to Dev'mt. CPU
Classified Security Environment for CPU and 25% of Programs & Data

Misc. Items * Not Calculated *

Proportion of Data Base Class-Items to 1,000 IOC
Proportion of Doc. Pages to LOWO LC
Ratio of Staff Size to Project Duration (People/Month)

Figure 3-26. IBM/Wlston and Felix Marginal Group Productivity Impacts
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Group Productivity Impact

Resources 2.73
Ave. Personnel Experience and Qualifications
I Dev'mt. Programmers who Participated in Func. Design Spec.
% Utilization of Currently-available Hardware
Degree of Previous Experience with Oper. Ccquter
Degree of Previous Experience with Programming Languages
Degree of Previous Experience with Appl. Size and Complexity

Platform 1.92
Custcmer Interface Ccmplexity
Degree of User Participation in Peq'mts. Def.
Degree of Customer-Originated Design Changes
Degree of Customer Experience in Application Area

Utilization 1.86
Overall Program Design Constraints
Core Memory Design Constraints
Execution Time Design Constraints

Security 1 .72
Spcl. Req. for Access to Dev'mt. CPU
Amount of Cpen Access Time to Dev'mt. CPU
Classified Security Ehvirorment for CPU and 25% of Programs & Data

Stuctured Techniques 1.70
Structured Programming
Design and Code Inspections
Top-down Development
Chief Programmer Teams

Caplexity 1.69
Overall Code Ccmplexity
Complexity of Application
Ccmplexity of Program Control Flow

Code Mix 1.47
Proportion of Code classed as Non-Mathematical and I/O Formatting
Proportion R/T, Interactive, or Time-Critical Code
Proportion of Code Intended for Delivery

Misc. Items * Not Calculated *
Proportion of Data Base Class-Items to 1,000 LOC
Proportion of Doc. Pages to 1,000 lC
Ratio of Staff Size to Project Duration (People/Month)

Figure 3-26a. IBM/Valston and Felix Marginal Croup Productivity Impacts
- Listed in Order of Precedence
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productivity mc. ease on the order of 70%. Of subsequent interest is the

individual contribution fran each component osprising the group. 7b

arrive at these individual contribution factors, an equation of the

following form had to be solved for:

Marginal

Group (14Cl) x (14C2) x .... x (14Cn) [3.2-b3

Productivity

Impact where: Cl-n represent the marginal ontributions

of each group's component members

Obviously, this is no trivial task and it appears that the possible

component values could take on any one of a wide range of possible

values. Fortunately, the solution can be determined due to the implied

variable relationships that exist in the basic productivity data.

Through the data, the basic equation of the form 3.2-b could be

translated to a form described by only one of the variables where the

remaining variables are defined through the one variable and a ratio

calculated from the original data. This translation, coupled with the

facility of a digital conputer, greatly simplifies the solution

procedure. This basic solution procedure is illustrated mathematically

in Figure 3-27. In this example, it is shown how the component marginal

contribution rates of the components of the "Structured Techniques" group

were determined. The equation of the single variable, A, was solved for

on an interactive computer system through a program utilizing an

iterative solution technique. With this same procedure, the remaining

contribution factors of the groups could be solved for and the results

are provided in Figure 3-28. Figure 3-29 summarizes all of the group

productivity impacts as well as the component contributions of each
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Productivity (LSC/PM)

Structured Techniques No Yes % Increase

A) Structured Programming 169 301 78
B) Design and Code Inspections 220 339 54
C) Top-down Development 196 321 64
D) Chief Programmer Teams 219 408 86

Totals - 804 1369

These four factors affect productivity by 1369 - 804 = + 70%
804

70 % is this Group's Marginal Productivity IMpact.

]Relationships:

(1+A) x (I+B) x (1+C) x (1+D) = 1.7

A I=1 0.16
A/B = 78/54 B = 54*A/78 B /=/ 0.11
A/C = 78/64 C = 64*A/78 C = 0.13
A/D = 78/86 D = 86*A/78 D /=1 0.17

Solutions found by:

(l+A) x (1+(54*A/78)) x (l+(64*A/78)) x (1+(86*A/78)) I=/ 1.70

Notes: "LSC/PM" means "Lines of Source Code per Person Month"to x " symbolizes arithmetic multiplication
o /=/" means - "approximately equal to"

Figure 3-27. Sample Calculation of Group omponent Contributions
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Productivity (LSC/IPM)

Structured Techniques No Yes % Increase

A) Structured Programming 169 301 78
B) Design and Code Inspections 220 339 54
C) Top-down Development 196 321 64
D) Chief Programmer Teams 219 408 86

Totals - 804 1369

These four factors affect productivity by 1369 - 804 + 70%

- > 70 % is this Group's Marginal Productivity Impact.

Relationships:

(1+A) x (1+B) x (1+C) x (1+D) = 1.7

A 1! 0.16
A/B = 78/54 B = 54*A/78 B 1=1 0.11
AIC = 78/64 C = 64*A/78 C I=1 0.13
A/D = 78/86 D = 86*A/78 D 0=I 0.17

Solutions found by:

(I+A) x (1+(54*A/78)) x (l+(64*A/78)) x (1+(86*A/78)) /=/ 1.70

Notes: "LSC/PM" means "Lines of Source Code per Person Month"
x " symbolizes arithnetic multiplication
/=/ " means - "approximately equal to"

Figure 3-28. Calculation of Group QOxnmpnent Contributions
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Productivity (LSC/PM)

"Averagee"

Complexity >% Increase

A) Overall Code Complexity 185 314 69
B) Complexity of Application 168 349 108
C) Complexity of Program Control Flow 209 289 38

Totals - 562 952

These three factors affect productivity by 952 - 562 = + 69%
562

- > 69 % is this Group's Marginal Productivity Impact.

Relationships:

(I+A) x (1+B) x (1-C) = 1.69

A // 0.19
A/B = 69/108 B = 108*A/69 B 1=! 0.29
A/C = 69/ 38 C = 38*A/69 C = 0.10

Solutions found by:

(I+A) x (l+(108*A/69)) x (l+(38*A/69)) /=/ 1.69

Notes: "LSC/PM" means "Lines of Source Code per Person Month"
" x swymbolizes arithmetic multiplication
" /=/ " means - "approximately equa" to"

Figure 3-28 (Cont.). Calculation of Group Component Contributions
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Productivity (LSC/PM)

"Relatively:"
Code Mix Ltl Mch % Increase

A) Non-math; I/O Formatting 188 267 42

B) Non-Real-time, nor time-critical 203 279 37
C) % Intended for Delivery 159 265 67

Totals - 550 811

These three factors affect productivity by 811 - 550 = + 47%
550

> 47 % is this Group's Marginal Productivity Impact.

Relationships:

(1+A) x (1+B) x (14C) = 1.47

N I=1 0.12
A/B = 42/37 B = 37*A/42 B /=/ 0.10
A/C = 42/67 C = 67*A/42 C /=! 0.19

Solutions found by:

(I+A) x (I+(37*A/42)) x (1+(67*A/42)) /=/ 1.47

Notes: "LSC/Rl4" means "Lines of Source Code per Person Month"
x " symbolizes arithmetic multiplication

" /=/ " means - "approximately equal to"

Figure 3-28 (Cont.). Calculation of Group omponent Contributions
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Productivity (LSC/PI) j

Utilization Severe Minimal % Increase

A) Program Design Constraints 166 293 77
B) Core Memory Constraints 193 391 103
C) Execution Time Constraints 171 303 77

Totals - 530 987

These three factors affect productivity by 987 - 530 = + 86%
530

> 86 % is this Group's Marginal Productivity Inpact.

Relationships:

(1+A) x (1+B) x (14C) 1.86

A /=/ 0.21
A/B = 77/103 B = 103*A/77 B 1=1 0.27
A/C = 77/77 C = A C /=/ 0.21

Solutions found by:

(I+A) x (1+(103*A/77)) x (1+A) /:/ 1.86

Notes: "LSC/PM" means "Lines of Source Code per Person Month"
" x " symbolizes arithmetic multiplication
" /=/ " means - "approximately equal to"

Figure 3-28 (cont.). Calculation of Group OnTxonent Contributions
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Productivity (LSC/IM)

O"Nrmal"e

Platform > % Increase

A) Custamer Interface Ccmplexity 124 500 303
Degree of User -

B) Participation in Requirements Spec. 205 291 42
C) Originated Design Changes 196 297 52
D) Experience in Application Area 206 318 54

Totals - 731 1406

These four factors affect productivity by 1406 - 731 = + 92%

' 92 % is this Group's Marginal Productivity Impact.

Relationships:

(1+A) x (I+B) x (14C) x (I+D) = 1.92

A I=1 0.34
A/B = 303/42 B = 42*A/303 B 0=I 0.12
A/C = 303/52 C = 52*A/303 C /=/ 0.13
A/D = 303/54 D = 54*A/303 D /=/ 0.13

Solutions found by:

(1+A) x (1+(42*A/303)) x (1+(52*A/303)) x (1+(54*A/303)) /=/ 1.92

Notes: "LSC/PM" means "Lines of Source Code per Person Month"
" x symbolizes aritlmetic multiplication
" /=/ " means - "approximately equal to"

Figure 3-28 (Cont.). Calculation of Croup (lxoponent Contributions

3-77

qA

.



Productivity (LSC/PM)

Resources Low Hgh % Increase

Quality of Currently-available Resources:
A) Average Personnel Experience 132 410 211
B) % of Prgrmrs who did Design 153 391 156
C) % Utilization of Currently-

available Hardware 177 297 68
Degree of Previous Experience:

D) - with the Computer 146 312 114
E) - with the Programming Language 122 385 216
F) - with a Similar Application 146 410 181

Totals - 731 1406

These six factors affect productivity by 1406 - 731 = + 173%
731

)173 % is this Group's Marginal Productivity Inpact.

Relationships:

(1+A) x (1+B) x (I+C) x (I+D) x (1+E) x (I+F) - 2.73

A I=I 0.22
A/B = 211/156 B = 156*A/211 B /=/ 0.18
A/C = 211/ 68 C = 68*A/211 C /= 0.12
A/D = 211/114 D = 114*A/211 D /=/ 0.15
A/E = 211/216 E = 216"A/211 E /=/ 0.23
A/F = 211/181 F = 181*A/211 F I=/ 0.20

Solutions found by:

(I+A) x (I+(156"A/21 I)N x (I+(68*A/211)) x (I+(114"A/211))

x (I+(216*A/211d) x (1+(181*A/211)) /=/ 2.73

Notes: "LSC/PM" means "Lines of Source Code per Person Month"
x symbolizes arithmetic nultiplication

" /=/ " means - "approximately equal to"

Figure 3-28 (Cont.). Calculation of Group Component Contributions
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Productivity (LSC/R4)

Security Hgh % Increase

A) Access Limited to Computer 226 357 58
B) Amount of Cpen Access to Ccmputer 170 303 78
C) % of %brk which is Classified 156 289 85

Totals - 552 949

These three factors affect productivity by 949 - 552 = + 72%
552

> 72 % is this Group's Marginal Productivity Irmpact.

Relationships:

(14A) x (1+B) x (14C) = 1.72

A 1=! 0.18
A/B = 58/78 B = 78*A/58 B 1=/ 0.20
A/C = 58/85 C = 85*A/58 C /=/ 0.21

Solutions found by:

(14A) x (1+(216*A/211)) x (1+181*A/211)) /=/ 2.73

Notes: "LSC/RM" means "Lines of Source Code per Person Month"
" x I symbolizes arithmetic multiplication
" /=/ " means - "approximately equal to"

Figure 3-28 (Cont). Calculation of Group Component Contributions
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Marginal and Ccrponent
Contribution Impacts

Resources 2.73
Ave. Personnel Experience and Qualifications 1.22
% Dev'mt. Programmers who Participated in Func. Design Spec. 1.16
% Utilization of Currently-available Hardware 1.12
Degree of Previous Experience with Oper. Computer 1.15
Degree of Previous Experience with Programming Languages 1.23
Degree of Previous Experience with Appl. Size and Ccmplexity 1.20

Platform 1.92
Custcaner Interface Ccumplexity 1.34
Degree of User Participation in Req'mts. Def. 1.12
Degree of Custrmer-Originated Design Changes 1.13
Degree of Customer Experience in Application Area 1.13

Utilization 1.86
Overall Program Design Constraints 1.21
Core Memory Design Constraints 1.27
Execution Time Design Constraints 1.21

Security 1.72
Spcl. Req. for Access to Dev'mt. CPU 1.18
Amount of Cpen iccess Time to Dev'mt. CPU 1.20
Classified Security Environment for CPU and 25% of Programs & Data 1.21

Stuctured Techniques 1.70
Structured Proa,:anvming 1.16
Design and Code Inspections 1.11
Top-down Developrment 1.13
Chief Programmer Teams 1.17

Ccnplexity 1.69
Overall Code Conplexity 1.19
Complexity of Application 1.29
Ccoplexity of Program Control Flow 1.10

Code Mix 1.47
Proportion of Code classed as Non-Mathematical and I/O Formatting 1.12
Proportion R/T, Interactive, or Time-Critical Code 1.10
Proportion of Code Intended for Delivery 1.19

Misc. Items * Not Calculated *
Proportion of Data Base Class-Items to 1,000 LOC
Proportion of Doc. Pages to 1, 000 LOC
Ratio of Staff Size to Project Duration (People/Month)

Figure 3-29. Summary of IBM/Valston and Felix Group and Oxmponent
Contribution Impacts on Software Program Developnent
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envionmntal factor itemized. thth the data provided by Aran, Dty at.

al.. and %alston and Felix, general guidelines governing the a~plicatian

of scaled system techniques can be presented.

3.3.3 Generalized Guidelines for Scaling System

After determining the Walston and Felix marginal group roductivity

impacts listed in Figure 3-26 through the procedures already described,

the groups could then be ranked according to their potential iipact w

a software developnent effort. This has already been done, as may have

been noticed, in Figure 3-26a. Consequently, the summary format of

Figure 3-29 adheres to the same ranking. The significance of this

ranking to the system planner is the relative importance of each

environmental attribute to the construction of oost effective software

systems. The Doty factors were ranked in a similar manner and are

presented bil Figure 3-30. Of inportance to the potential practitioner of

the scaled system development methodology are the priorities that

personnel experience, use of available hardware, and establishment of

operational and functional requirements hold in the determination of an

average productivity estimate reflecting the software development effort.

From the data presented, quantitative guidelines such as those that

follow may be observed:

3.3.3.1 Personnel Experience

Scaled systems benefit environments characterized by inexperienced

technical staffs and/or technical staffs faced with the challenge of

developing state-of-the-art or otherwise unique systems. From the

Walston and Felix data, the experience an otherwise inexperienced

technical staff gains from a scaled system implementation can be-expected
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Factor Effort Increase
(Maxixmsn)

CPU Time Constraints 132%
Concurrent Software and Hardware Development 122%
Development CPU Different frcmn Target CPU 122%
Detailed Definition of Operational Requirements 100%
First Software Developed on CPU 92%
Development at More than One Site 75%
Real-Time Operation 67%
Limited Programmer Access to Canputer 50%
Developer Using Camputer at Another Facility 43%
CPU Memory Constraints 43%
Special Display 43%
Development at Operational Site 39%
Changing Operational Recuirements 5%
Time-Share, Interactive Development [decreases effort - J 21%

Note: Percentage figures come from maximum factors for the particular
envirormental attributes listed in Figure 3-23.

Figure 3-30. Doty Factors Ranked in Order of Adverse Impact on Software
Development

3-82



to increase productivity in the unscaling effort by a factor of

approximately 173%. This translates to approximately three times the

average productivity, or approximately one-third the effort, otherwise

expected of an inexperienced staff. In contrast, the Doty :factors

reflect that up to a 92% increase may be achieved based upon the staff

gaining familiarity with the computer equipment alone. Barry Boeh-n, in

Practical Strategies for Developing Large Scale Software Systems,

quantified the resulting benefits of an experienced staff to be on the

order of 150-200% [ref. 9]. Despite the various sources, all of this

data appears to be relatively consistent. This is reasonable since the

performance of people should not be expected to change much over time.

3.3.3.2 Customer Environment - The Platform

Software system implementors faced with customer environments

characterized by such factors as complex customer interface channels and

procedures, customer uncertainty and inexperience regarding operational

and functional requirements, and the potentially numerous

customer-originated design changes which subsequently result from

inadequate requirements specification can greatly benefit from the scaled

systems approach.

Dr. Daniel Teichroew, a professor of industrial and operations

research in charge of the ISCOS (Information Systems Design and

Organization System) project at the University of Michigan who is also

credited with the development of the Problem Statement Language/Problem

Statement Analyzer (PSL/PSA), points out that the front-end stage of an

implementation, where the requirements and high-level design are

siecified, is the pitfall of past failures. In his words, "this often
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overlooked lase is where most of the problems and potential payoffs lie

(in software developnent projects)" [ref. 203.

3.3.3.3 Firm Requirements Specifications

An appropriately scaled system can provide difficult customer

environments with the experience and knowledge necessary for the

determination of the precise customer needs.

The importance of establishing the user's needs, in any effort,

cannot be overstated. Two adverse situations may develop in the absence

of a firm specification of the user's needs: (a) the developer implements

a system based on an incomplete or incorrect specification, and the

system is rejected by the users, or (b) the developer continually changes

the system design based on conflicting direction fram the user. The

first situation results in a system that fails to meet performance and

functionality requirements, while the second situation greatly increases

system cost and development time, and also runs the risk of entering a

never-ending change cycle in which the system is never actually

completed.

In most cases, failure to have a firm user specification is not the

fault of the user, but is rather due to the user having incomplete

information as to exactly what is feasible and practical with an

automated system. A scaled system built at a fraction of full-scale

system cost can be used to demonstrate exactly what capabilities are

available to the user, as well as to give the user an idea of how he will

interface with the system and what procedures must be developed. Based

upon his experience with a scaled system, the user will then be able to

clearly specify his requirements for the full-scale system.
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The potential benefits resulting from such use of scaled systems are

large. Design changes as a result of requirements errors have been

documented [ref. 9,10] as being 50 to 400 times more expensive in

comparison to front-end design changes (before actual implenntation

commences). From the Walston and Felix data, the potential for benefits

in the unscaling effort are on the order of 92% - nearly twice the

productivity, or, conversely, half the effort. The Doty factor for

changing operational requirements seems a contradiction to other

research, as it assesses a mere 5% penalty for changing requirements.

While this low value cannot be explained, it also cannot be corroborated

with any other research examined under this effort.

3.3.3.4 Hardware Choice

In the event the scaled system can provide information facilitating

the choice of hardware such that ultimate full-scale system speed and

memory constraints may be more readily complied with, the Walston and

Felix data suggests a potential 86% increase in productivity applying to

the unscaling implementation effort.

3.3.3.5 Secure Environments

Planners of intelligence systems may additionally be interested in

the fourth most important cost driver identified in the Walston and Felix

data, that of secure, or classified, operating and/or development

environments. The potential for benefits resulting from implementing an

otherwise classified system in an unclassified environment through the

use of dummy test data and other techniques approaches 72%.

-Such examples are provided to illustrate to system planners the

general method of determining guidelines through analysis of factors
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pertinent to system costs. Consequently, they may utilize this data or

make use of new data as it beocmes available to determine the benefits

and potentials existing in the scaled system methodology as it may apply

to any particular software development endeavor. The potential benefits

realized through experience and general system information are paramount

considerations in the application of the scaled systems approach.

3.3.4 Use of the Individual Walston and Felix Group Cconent Rates

It is reasonable that the individual Iblston and Felix carponent

contribution rates can also be interpreted in an analogous manner to the

application of the generalized group productivity impacts. For example:

3.3.4.1 State-of-the-Art Hardware

In the event that a system requires state-of-the-art hardware not

yet available, the Walston and Felix data predicts the scaled system

implementation effort can benefit by a 12% increase in productivity

through the use of currently-available hardware. This could include

special, reusable hardware specifically progranmed and configured for

scaled system implementations. In contrast, the Doty factors quantify

the savings realized through the elimination of the environmental factor

of concurrent hardware development with the software effort to be on the

order of 112%. Such hardware substitution is greatly facilitated through

the increasing use of higher-order (HOL) programning languages and, with

the approaching standardization within the DoD environment to ADA , scaled

systems will be more readily transportable for later enhancement

regardless of what hardware is used to implement them.

3.3.5 Degrees of Scaling Freedam
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A major point made in "Scaled Systems Cost Effectiveness", a

technical memorandom submitted earlier under this research effort

(reprinted in Appendix A), was the application of coit/benefit, or

"break-even", analytical techniques to assessing the cost trade-offs of

using scaled systems. Such techniques are very useful to practitioners

of the scaled systems methodology in determining the cost/effort/schedule

feasibility of applying scaled systems techniques. The primary objective

of break-even analysis is to determine an cverall system scale factor, or

ratio, such that the total estimated development cost of both the scaled

system and its full-scale counterpart "breaks even" with the estimated

cost of a full-scale implementation effort without the benefit of a

scaled system. This break-even point is important because it reveals

that a scaled . ,stem built on a smaller scale relative to the break-even

scale factor should result in overall project savings; conversely, if the

break-even scale factor cannot be achieved, then total project costs may

well be expected to exceed the cost of a traditional implementation

approach. Of course, this additional estimated cost is subject to

justification based upon such factors as a reduction in total project

risk, the achievement of design or performance goals, the developnent of

a user-friendly interface, or sane other applicable success-oriented

criteria.

In "Scaled Systems Cost Effectiveness", break-even points were

determined through parametric analysis using an interactive software cost

estimation model. In that study, the break-even points were found to be

cost model dependent and displayed a static relationship with system size

across a wide range of system sizes. This static relationship is
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attributed to the cost estimation relationships (CERs) internal to the

model and may or ay not hold in actual practice.

Through subsequent researc-i, it was determined that break-even

points could be directly calculated from productivity coefficients like

the Doty and the Walston and Felix environmental factors. This

calculation consists of simply subtracting the inverse of the factor from

the value of one. The resulting value quantifies two things. First, it

maintains the relative measure of importance the environmental factor

originally quantified to its potential impact on a software development

effort. Secondly, and most important to scaled system cost/benefit

analysis, the resulting factor quantifies a break-even value for

determining potential scaled system cost effectiveness. his break-even

value represents the break-even scale factor for an implementation effort

characterized by a scaled system bearing the burden of the negative

impact of the environmental factor while the full-scale counterpart

realizes the benefits resulting from removal of the negative burden.

Because these factors rank environmental factors by overall system

break-even scale factors, they inform the scaled system practitioner of

the freedom of constraints he has in the construction of the scaled

system providing the benefits of the scaled system include removal of the

negative impacts arising through the particular environmental factor.

This freedom factor reflects the constraints placed upon the scaled

system in terms of size, effort, and cost. Subsequently, these freedan

factors have been termed "Degrees of Scaling Freedom". The WIston and

Felix-derived factors are listed in Figure 3-31 while the corresponding

Doty-derived factors appear in Figure 3-32.
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Break-Even Scale Factor

Resources 63%
Ave. Personnel Experience and Qualifications 18%
% Dev'mt. Programmers who Participated in Func. Design Spec. 15%
% Utilization of Currently-available Hardware 11%
Degree of Previous Experience with Oper. Computer 13%
Degree of Previous Experience with Programming Languages 19%
Degree of Previous Experience with Appl. Size and Complexity 17%

Platform 48%
Customer Interface Complexity 25%
Degree of User Participation in Req'mts. Def. 11%
Degree of Customer-riginated Design Changes 12%
Degree of Customer Experience in Application Area 12%

Utilization 46%
Overall Program Design Constraints 17%
Core Memory Design Constraints 21%
Execution Time Design Constraints 17%

Security 42%
Spcl. Feq. for Access to Dev'mt. CPU 15%
Amount of Cpen Access Time to Dev'mt. CPU 17%
Classified Security Envirorznent for CPU and 25% of Programs & Data 17%

Stuctured Techniques 41%
Structured Programming 14%
Design and Code Inspections 10%
Top-down Development 12%
Chief Programmer Teams 15%

Complexity 41%
Overall Code Complexity 16%
Complexity of Application 22%
Complexity of Program Control Flow 9%

Code Mix 32%
Proportion of Code classed as Non-Mathematical and I/O Formatting 11%
Proportion R/T, Interactive, or Time-Critical Code 9%
Proportion of Code Intended for Delivery 16%

Misc. Items * Not Calculated *

Proportion of Data Base Class-Items to 1,000 LOC
Proportion of Doc. Pages to 1,000 IOC
Ratio of Staff Size to Project Duration (People/M4onth)

Figure 3-31. Degrees of Scaling Freedom as Derived from the IBM/Walston
and Felix Data
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Factor Break-Even Scale
Factor

CPU Time Constraints 57%
Concurrent Software and Hardware Development 55%
Development CPU Different fram Target CPU 55%
Detailed Definition of Operational Requirements 50%
First Software Develojed an CPU 48%
Development at More than One Site 43%
Real-Time Operation 40%
Limited Programmer Access to Camputer 33%
Developer Using Computer at Another Facility 30%
CPU Memory Constraints 30%
Special Display 30%
Development at Operational Site 28%
Changing operational Requirements 5%
Time-Share, Interactive Development [decreases effort] N/A

Note: Break-even scale factors come fram maximum factors for the
particular envirornental attributes listed in Figure 3-23.

Figure 3-32. Degrees of Scaling Freedom as Derived fran the Doty and
Associates Data
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A scenario for general application of these degrees of scaling

freedom follows:

The system planners scan the lists of environneftal factors and

determine which ones characterize the particular development enviroit

under scrutiny. These factors normally cause adverse impacts upon a

development effort and, hence, will have much the same impact on the

scaled effort. However, since the scaled effort is not as great as the

full-scale attempt, the absolute value of the penalties imposed by the

adverse environmental factors are much less for the scaled effort.

Ostensively, these negative impacts will be removed and thus not affect

the up-scaling effort due to lessons learned through the scaled effort.

The overall savings resulting from this process contribute toward the

cost of the scaled effort and, possibly, to total project savings. The

question arises - how small must the scaled system be in order to achieve

cost savings? Obviously, it is hoped that the size of the scaled system

will not be so constrained that its operational value and predictive

ability are minimized. The answer to the question lies in the degree of

scaling freedom values like those listed in Figures 3-31 and 3-32. As a

gross surrogate, the system planner may initially simply use the maximumn

of the applicable values as the break-even system scale factor, relying

upon the others to "back-up" this estimate and to add to the measure of

confidence in its use. Adding the break-even scale factors together is

not recommended as such a technique would most probably tend to produce

an overly-optimistic break-even scale factor estimate. Rot mean square

analysis may be applicable to the situation. To determine the root mean

square, the analyst calculates the square root of the sum of the squares
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of all the degrees of freedom values which correspond to the

environmental attributes existing in the proposed effort.

Mathematically, the root mean square calculation looks like this:

2 of aplicable environmental factors

Break-even Scale = En vironmental factor.T 2

Factor

i=l1

The validation of such an analytical technique is beyor d the scope

of bhis research and must be left to future research of the application

of the scaled system methodology, as presented here, to actual systems.

At least these degree of scaling freedom factors are based upon actual,

credible empirical data. Again, a very conservative break-even scale

factor for a potential scaled system development effort can be obtained

from the maximum environmental factor degree of freedom value listed in

the tables.

The Scaled System Cost Effectiveness study determined the range of

the degree of scaling freedom values to vary from 10 to 50%. This means

that, based upon that study, scaled systems of 10-50% overall scale can

be expected to achieve cost savings. The variation can be attributed to

the application type and environmental factors present. These results

are not altogether inconsistent with the IBM/Ialston and Felix-derived

degrees of freedom, which range from 9-63%, nor the Doty-derived degrees

of freedom, which range from 5-57%.

Based upon this study of empirical data, a general rule of thumb can

be derived: In order to achieve cost effectiveness, a scaled system

would most probably have to be scaled by at least 50%; however,-in order
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for the scaled system to retain any predictive value, the scaled system

should not be scaled to less than 10%. Cbviously, the verification of

this general rule can be achieved Caly through actual practice of the

scaled system methodology in a very controlled and carefully documented

manner. The resulting analysis of the data thus provided will certainly

contribute toward bettering the methodology and enhancing these

predictive measures. It is encouraging that, at this point, the evidence

suggests scaled systems built to as large as 50% of the actual system can

indeed provide cost savings as well as ensuring the production of quality

software systems.

3.4 Cost Benefits

The estimation of implementation-dependent cost benefits resulting

from the use of scaled systems techniques relies heavily upon the

capabilities of current cost estimation models and methodologies as well

as the subjective analysis performed by the experienced system planner.

A general familiarity with the operation and capabilities of currently

available software cost estimation models is therefore required of the

potential scaled system practitioner. Accordingly, a general discussion

of current cost estimation model state-of-the-art is provided in this

section to familiaiLize the reader with these models and their use. As a

conclusion of this section and report, a case study of an actual

intelligence system is presented to serve as a model for subsequent

scaled system feasibility/cost benefit analysis.

3.4.1 Life-Cycle Cost Estimation Models

Estimation of the costs and schedule for software development is

c rucial to accacplishing effective planning, budgeting, and evaluation
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activities within an organization. These are the activities that in the

world of software project management have long been documented as

historical problem areas. Cptimistic cost projections along with gros

errors have contributed to severe budget and schedule overruns.

The importance of software project life-cycle cost models has long

been recognized in the process of making viable software cost estimates

and te efficient allocation of resources. This does not mean that total

reliance should be placed u the cost model to singly accaplish cost

estimating. It must be accepted in the context of a comprehensive cost

estimation strategy where the cost model is viewed as a tool for the

competent cost analyst. Its value is derived from the inosition of a

disciplined and structured framework that caqpels the analyst to consider

and take into account all significant factors influencing software

development costs. The software life-cycle cost model is a valuable tool

that can account for complex nonlinear relationships between seemingly

random data through use of automated mathematical and statistical

analytical techniques.

3.4.1.1 Cost Estimation Model Methodology

In general, cost model operation involves calibration to historical

experience, input parameter determination, model operation and cost

analysis/presentation, and risk assessment.

(1) Calibration

Representation of the developmental environment is the single

mest important factor determining the model's applicability to projecting

cost behavior. The cost model must be either carefully designed to model

cost behavior within that environment or have the capability-to adapt
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itself to reflect the cost characteristics of any specified environment.

Consequently, the commercially available cost models are supplied with

the facility to be calibrated to a specific environment. This

calibration process is crucial to the ability of the model to-project

cost behavior within a particular environment.

The objective of the calibration process is to tailor the model

through the use of an organization's historical cost data so that the

model's predictive ability, within the organization, is enhanced. Most

models have special functions to determine the variables for this purpose

and make them available to the user, in the form of an input parameter,

for subsequent use by the model. This input parameter is a global

descriptor, reflecting the professional quality and prcblem-solving

capabilities of the organization's technical and administrative staffs.

Two commercially available cost estimation models, PRICE S and

SLIM, each have these inputs. One reason such variables are made

available to the user is that past development conditions may no longer

hold. The user may subsequently find it necessary to adjust these

variables in order to achieve more realistic cost estimates. Examples of

such conditions include the adoption of newer, more up-to-date structured

development practices, the acquisition of more powerful development tools

and facilities, or an increase in the skill level of the organization's

personnel resulting from prior experience (the converse of this

ccndition, the decrease in skill level due to personnel turnover and new

hires, is also possible).

(2) Input Parameter Determination
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There are so many factors that can potentially effect progrmi

developwnt costs that it is virtually impossible (and imractical) for a

cost model to attempt to deal with them all on an individual basis. This

problem has been tackled by grouping related factors and representing

each category by a generalized model input parameter. This is where

structured systems thinking is required - resulting in the disaggregation

of a large, ambiguous task, into a structured decomposition of several

smaller, more manageable tasks for cost estimation. It is therefore

necessary for the cost analysis team to aggregrate the effects of all

related factors so that their cambined effects may be synthesized into

the appropriate mix of model input parameters.

The schema for input parameter estimation includes such

all-enccmpassing project considerations as staff capabilities, product

attributes, application requirements, environmental factors, development

practices, and management policies. Intelligence systems built to

military specifications would include, as an example, general provisions

for product attributes such as real-time operation, modularity, and

strict documentation standards for usability and maintainablilty;

application requirements for testability, quality assurance, and

reliability; environmental factors such as secure developmental and

operating facilities; development practices such as structured design

walk-throughs and close progress tracking; and management policies in

regards to staffing and the scheduling of project milestones.

(3) Model Operation - Output Analysis, Presentation

Once the cost analyst team has collected, analyzed, and

synthesized all of the pertinent cost data relevant to the proposed
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development effort into the appropriate model input parameters (and

calibrated the model, if sufficient historical data is available), they

are ready to use that data to exercise the model. The model's output

ccnsists of milestone schedules, staff-loading profile charts, and same

measure of cost expressed either in terms of personnel effort or dollars.

In addition, the model may break down the expenditure estimate by labor

category such as technical, managerial, coding, documentation, etc.

and/or functional category such as design, code, test and integration,

maintenance, etc. in the event that the model encounters a set of input

data which is inconsistent with the formulated guidelines, it will also

produce the appropriate warning or error messages.

(4) Estimate Risk Assessment

One aspect of the cost estimate which the particular model may

address is the measure of uncertainty, or risk, associated with the cost

estimate. This is usually either a standard statistically-derived

meas ire upon the estimate, such as a root mean square (standard

deviation) value, or the preparation of a sensitivity profile obtained

through parametric analysis of the input parameters. In order to realize

the full meaning and value of such risk measures the assumptions and

method by which they are derived must be understood by the cost analyst.

3.4.1.2 Cost Estimating Considerations

An important consideration often overlooked or misunderstood is that

cost estimation models, in and of themselves, are not a panacea to the

general problems inherent in software cost estimating. This has been

documented by user groups that have actual experience with cost

estimation and evaluation methodologies. These groups stress the value
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and importance of juxtaposing the results obtained from the automated

cost estimation models with the sound judgement and professional

experience of the available technical staff members to produce credible

and realistic cost estimates. This is necessary because the cost models

quantify past experience. Cost projections based upon such historical

data include a certain degree of risk because of the advances which are

occurring in the software industry.

Another source of error in the models is their extreme sensitivity

to relatively small adjustments in their input parameter mix. This is

because the underlying software cost relationships are characterized by

complex exponential functions determined by the intricate

interrelationships of the various input parameters themselves. This

problem is particularly acute when using input parameters that fall

outside the ranges for which the mrodel was calibrated.

Solutions to these problems include fine-tuning of the input

parameter mix to match preconceived cost targets as well as assessing the

already mentioned existence of wide variations (risk) in the estimates.

These variations raise an important philosophical point: that the

dynamics of software cost estimating are such that obtaining high

accuracy in the point estimates is neither possible nor desirable due to

the calculational variation which is present.

The utility of the costing model lies in the structure and

discipline imposed upon the costing process. The reliability of the

resulting estimate is dependent on the assumptions which produced it.

All estimates must be scutinized by experienced cost analysts to ensure

tat the results, along with the underlying assumptions, are reasonable.
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3.4.1.3 Assessment of Cost Model State-of-the-Art

Growing acceptance of life-cycle nodels arises not only because of

their potential to serve management in the planning, programnirng,

monitoring, and evaluation of software production efforts (through the

provision of schedules, manpower allocation profiles, and cost

estimates), but also because of their merits in creating a structured and

disciplined approach to the estimation and evaluation of cost estimates

to serve decision-makers' needs. Nevertheless, attention to the

capabilities, limitations, characteristics, and purpose of software

life-cycle cost models must be fixed in the minds of those who use, as

well as those who develop them.

Note the current state of development of the estimating technology.

Software life-cycle cost models are in an infant stage of their product

life-cycle. They are still growing in acceptance and popularity.

Advances are being made in their underlying theoretical formulation as

well as in refinement of their operational and functional

characteristics.

The skepticism of those who consider these nodels to be expensive

frills is not altogether unfounded. The cost of the commercially

available models is artificially inflated due to the profits required by

the vendors to recoup their large investment in research and development.

However, as in all newly marketed technologies, it is not unrealistic to

expect that, as economies of scale and competitive market forces come

into play, the prices should decline.

As for the life-cycle models themselves, we can, for convenience,

classify them into two gt ieral groups: commercial general purpose and
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academic special purpose.

(1) Cmmercial General Purpose Cost Models

Under the category of commercial general purpose models, we

find two popular models. One is RCA's PRICE S, which is actually a

member of a family of three related cost estimation models which also

includes PRICE, a hardware manufacturing cost estimation model, and PRICE

SL, a software life-cycle cost estimation model. The other is SLIM, a

product available for lease from Quantitative Software Management, Inc.,

headed by Lawrence Putnam. Mr. Putnam is credited with making, and

publicizing, significant advances in the area of the theory of software

costing and estimation.

Although not comnercially available, a new integrated approach

to cost estimating and evaluation occurs in the form of a system which

utilizes both the PRICE S and a modified version of the Putnam model to

evaluate cost proposals at the Space and Missile Systems Organization's

(SAMSO) Software Programs Office (SPO) at Los Angeles, California. The

system is implemented on a Hewlett-Packard Series 3000 and supports

generalized pre-processing interpretation of standardized input formats

for subsequent input to both models as well as graphics-oriented,

post-processing facilities for both of the model's outputs.

Additionally, the system has an integral data base management system and

a financially-oriented report generator.

(2) Academic/Special Purpose Models

Widely discussed in the research literature and at various

conference and workshop proceedings is a collection of software

estimation models which result principally from special purpose and
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academic pursuits. These models have a limited range of applicability

since they reflect specific environments, a limited scope of

applications, and/or products of similar sizes and attributes. Thus,

they are not considered general purpose cost estimation models.

Perhaps the most frequently referenced article on the subject

of quantifying software development productivity rates and estimation

ratios is that of IBM's Ilston and Felix, which first appeared in an IBM

technical journal in 1977 [ref. 243. In the literature we additionally

fintl many papers describing and comenting on the theories of cost

estimation set forth by Mr. Putnam, which is principally an extension of

the work performed by still another IBM researcher, Peter Norden [ref.

15]. From efforts expended by and under the direction of Victor Basili,

[refs. 3, 4, 5, & 6], of the Computer Sciences Department at the

University of Maryland, comes a rich proliferation of articles,

dissertations, and research findings encompassing a vast array of

software engineering topics, including cost and cost-relatec modeling.

The government itself is active in the areas of software

engineering and development of cost estimating techniques with research

grant activity through organizations such as the NASA/Goddard Space

Flight Center, [refs. 2, & 4], the kxme Air Development Center (RADC),

[ref. 7], and various educational institutions, including the University

of Maryland. This activity is highlighted by the published findings of

Putnam [ref. 17-21) and Doty Associates, Guidelines for Improved Software

Cost Estimating, [ref. 7], as well as through the personal and

professional-level contributions made by cost analysts such as William

Lasher [ref. 93 of the already mentioned SAMSO SPO.

3-101 jA



it is upon such research efforts and activity that IWO has

based the development of its own version of a software life-cycle cost

estimation model. This software life-cycle cost estimation model was

targeted for in-house operation on low-cost microprocessor hardware.

3.4.2 Estimation of Scaling Benefits

In the context of scaled system development, cost estimation mst

take into account the differences that exist betwen the scaling and

up-scaling environments. Certainly, there is a host of factors to take

into consideration. Generally, the scaling envirorunent will resemble

that of most other developments not using the scaled systems approach.

Potential differences in the scaling environment might include the

benefits of such scaled system facilities as special low-cost,

general-purpose hardware and software development tools specifically

tailored to scaled systems developnent and a greater degree of technical

user orientation. Aside from such advantageous environmental niceties,

however, the scaled system developnent environment will most generally be

subject to the same negative environmental impacts as most

start-from-scratch development efforts.

The positive impacts will be realized in the unscaling environment.

The unscaling environment will be much more conducive to system

development due to the lessons learned through the scaling effort

regardless of the degree of success obtained during the scaled effort.

Characteristics of unscaling environments include firm specifications of

user-oriented functional, operational, and design requirements. In

addition, the unscaling effort will probably benefit fram any inventory

of design docunentation and source code accumulated through the scaling
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effort. Also, there should be an optimal hardware configuration chosen

to precisely match'the needs of the particular application based upon the

experience of the scaled system development. By the time up-scaling

takes place, the task breakdowns and schedules will have been well

defined and laid out and all the parties involved will have a strong,

unified concept of the end result and will be in agreement as to what the

cmn goals of the system are. In short, an optimal environment will

have been developed complete with fully-detailed descriptions of the

tasks at hand and the product to develop -- all unencumbered by the

greatest proponents of development project risk and schedule slippage -

functional and technical uncertainty.

To quantify the impacts, benefits, and trade-offs inherent in these

environments, factors such as those supplied by the Doty and Walston and

Felix research efforts, as well as this effort, are available. Some cost

estimation models can specifically account for these factors, others will

have to be adjusted or modified to do so. At the highest level, these

factors can augment experienced technical manager's subjective

assessments and their resulting estimations of a project's cost,

schedule, and risk.

3.4.3 A Case Study for Scaled Systems

In terms of examining actual intelligence systems which could

benefit from application of the scaled systems development approach, this

research had the opportunity to explore the possibilities of one such

system. Fortunately, this system is somewhat unique in that a

corresponding scaled version exists and is operational. Although this

s'caled version was developed after the full-scale implenentation, its
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existence provides a "hands-on" feel for examining the application of

analytical techniques suitable to the scaled systems metho ogy. This

see ingly "reversed-scaling" approach to system develom4ent resulted from

different motivations for this particular scaled system and this:mst be

kept in mind so as not to introduce any bias in our case study. As

stated, this scaled system realized benefits from the full-scale

implementation which was operational, or at least semi-operational, at

the time the scaled implementation took place. This scaled system, the

Indications and Warning Training System (IWTS), %es motivated by the need

for a simulator to train intelligence analysts on how to operate an

interactive terminal-oriented ccimunications, cammand, and control

intelligence system - the NMIC.

3.4.3.1 Background

After the NMIC achieved an initial operating capability in 1978,

INCO, INC. responded to the need for user training with a low-cost,

stand-alone analyst training system amplete with its oun special-purpose

hardware. As stated, this system is referred to as the IWTS and it was

delivered in early 1979. Because this training system appears to the

user as the "real" NMIC system and it mcdels 100% of the full-scale

system's functional and operational characteristics, we take the view

that it is "the scaled system that could have been".

3.4.3.2 System Development Data Collection

As the implementor of the IWIS, INCO had sufficient data readily

accessable concerning its development environment, operational

characteristics, and required development effort and costs.

Lkfortunately, the same vas not entirely true of the actual NMIG system;
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however, due to INCO's past and present involvement with the design,

development, maintenance, and enhancement of the NMIC system as well the

ccmpletion of the NMIC Functional Analysis/Enhancement Study [ref. 143,

adequate data was available to prepare this case study.

3.4.3.3 The NMIC System

Upon initial familiarization with the NMIC system, it appeared to be

a nightmare for system implementors, having nearly all of the adverse

characteristics possible of a state-of-the-art intelligence system. Of

course, many of these characteristics incrementally camplicate the

development of such a system and drive developnent cost, schedule,

effort, and risk accordingly higher - a perfect candidate for application

of the scaled system development approach.

Through this research effort, many of these characteristics could be

identified and classified as either new hardware design and developrment,

new software system design concepts, or intelligence system dependent

factors.

As for new hardware, the NMIC boasted a wide assortment of

state-of-the-art hardware concepts. It was envisioned to be a clustered

network of multiple miniccmputers interconnected by a new bus technology

and system architectural concept. It was to cmmunicate with its users

through a totally new, concurrently developed and programmed, intelligent

dual-screen full function video/graphics terminal. There wre to be

fifty such terminals dispersed geographically. Being a message and

ccrmunications system, it was to process a number of real-time inputs and

outputs.
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As for new systems design oncepts, the NMIC inoorporated several

new ideas based upon motivations for system reliability, automatic systam

error and failure recovery, user flexibility, and high-level acess to a

number of other existing intelligence systems and networks. The basic

internal functions of the system were to be distributed throughout the

minicomputer network; hence, reliability and functionality were enhanced

through the provision of each minicoputer to perform its orresponding

function. If a minicomputer failed, only that function would be

incapacitated - but what about the recovery of that function? In

anticipation of such an event, the NWIC system originally incorporated a

system design concept of "fall-back and recovery", whereby another member

of the computer network would recover the function lost by the failed

camputer. Since real-time processing was an integral part of the system,

provisions for the design and coding of much time-critical (assembler

language) code had to be made.

Additionally, the NMIC system was confronted with a variety of

factors typical of an intelligence system. First, the development and

operational environments were characteristically security sensitive. The

members of the developmental and operational staffs were thus required to

have or obtain the appropriate security clearances in order to work on

and have access to the system. Such an environment increases development

costs because it requires additional controls to be imposed upon the

development facilities and personnel by way of locks, guards, logs, etc.

and because personnel may not be available, may have to be unproductively

employed while waiting for their clearances, or may have to be selected

on the basis of clearance rather than skills. Wile such an en'virornent
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is necessary in order for a system and its staff to handle classified

material, it creates the oprotunity for scaling of developmental cost by

developing technical concepts in a loser-cost, non-secure environment.

For example, the "fall-back and recovery" concepts and algorithmis for the

NMIC system have been developed outside the secured environment. Also,

due to its potential importance to the national security, the system

development required the most stringent of management, design,

documentation, and configuration control practices as well as a large

degree of operational functionality, reliability, and robustness.

The varying degrees of success the WMIC achieved in meeting all of

its functional and design goals are largely a matter of record and not of

great importance to this case study. Wat is of concern here is the

measurement of: (1) the negative productivity impacts the NMIC

developnent sustained in the face of its developmental, environmental,

and operational obstacles, and (2) the benefits a scaled prototype might

have contributed to the achievement of the NMIC's overall objectives in

terms of functionality, budget, and schedule.

3.4.3.4 The IWrS System

The NMIC did not have the luxury of a cost-effective scaled

prototype version to facilitate its specification, design, and

development. If it did, however, the resulting scaled system would most

probably have closely resembled the INCO IWTS trainer. A requirement of

the IWTS trainer was to fully provide and support all of the NMIC

system's functional and operational features at the user terminal level.

The IWTS was developed on low-cost, stand-alone, microprocessor based

hardware and, as such, provided very little in the way of the actual
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full-scale system's capabilities to receive, rout, and send "real"

messages. Such processes were emulated, however, through a pre-stored

set of messages reflecting general scenarios of comnunications that the

potential NMIC user would rrrmally encounter. The end result was that

the user operating the IWIS terminal has virtually no idea that he is

actually using the trainer; but rather has the impression that he is

logged--an to the full-scale NMIC system. A diagram of the IWTS design is

illustrated in Figure 3-33.

Of importance to this case study is the measurement of the degree of

scale the IWrS trainer achieved relative to the NMIC system, its relative

cost, and potential predictive ability. The amount of potential savings

the WMIC could have actually realized through the use of a system like

the IWTS to serve as a scaled prototype development testbed is however

basically a matter of conjecture as such an estimate could only be based

upon hindsight.

Hardware scale factor is perhaps least difficult to ccpute. Here,

dollar costs are used as the metric since they are most readily

available, tangible, and understandable in nature as opposed to same

ambiguous measure such as hardware system capacity or power. Belying on

a figure obtained from the results of INCO's DIIS FA/ES final study

report, the estimated hardware cost of the current NMIC configuration

approximates $3.5 million. This figure does not, however, reflect final,

enhanced configuration hardware costs of roughly $9 million. These costs

reflect the use of current state-of-the-art minicaputers and their

associated high-speed I/O peripherals, as well as the U-1652 dual-screen

terminal. In contrast, the IWrS, while using the same user terminal,
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makes use of relatively lower-cost microprocessor-based hardware. The

IWIS basic hardware configuration cost is in the neighborhood of $50K,

with most of the cost being attributed . the cost and availability of

the U-1652 dual-screen, "TEMPEST"-certified (electronic emanation)

terminal. Using the cost of the current NMIC configuration, the

resulting hardware cost scale factor is computed through:

$50, 00

~- 1 1/2 % Scale Factor for Hardware Cost

$3,500,000

Of course, a scaled development approach would have required the

purchase of both hardware configurations, increasing total project costs.

A consideration would be the security classification of the micro

hardware in order to implenent some of the classified features of the

final system; failure of the hardware to obtain the prerequisite

certifications would necessitate the use of software emulation techniques

to implement similar, non-classified versions of the functions.

Software sizing proves to be a much more difficult task. For one

thing, the word sizes and instruction lengths of minicarputers differ

from microcomputers. This situation presents a nunber of problems.

First, assembler source language statement counts and required core

memory sizes are not directly comparable. Secondly, the statement count

for the micro is, in all probability, inflated a.- compared to the mini

since more instructions are required to perform similar tasks because the

relative computational and logical power of the micro is not as great as

that of the mini. The microocnputer programmer finds himself generating

several primitive instructions on the micro where a single instruction
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might accomplish the same result on the more powerful mini.

The full-scale NMIC system's module sizes were used as the standard

basis on which to compare the different software sizes of the two

systems. In this way, it was hoped the problems of the two system's

differing language dialects could be resolved as well as maintaining same

degree of consistency in the software sizing analysis. Subsequently, it

was determined that much of the IWIS trainer's processing was performed

in the NMIC's "USS", or User Support Subsystem. Accordingly, the

estimated size of the USS served as a surrogate value and a consistency

check on the trainer's estimated size. Estimated sizes are used in lieu

of the prohibitively long process of actually counting source statements

from listings and because of the problems inherent in adding sizes of

differing computer language dialects, such as assembler and HOL. In the

case of the WMIC, the assembly language used in the bulk of the systam's

modules was PDP MACRO-11 and FORTRAN was used where an HOL was

applicable. Intel 8080 assembler was used for the IWTS with HOL

applications progratmed in BASIC.

The end result of the sizing analysis resulted in the sizes of the

two systems being set to 15,000 source lines of code (SLOC) for the IWTS

and 80,000 for the NMIC. These sizes resulted primarily from assessments

made by IWCO technical staff members who participated in the development

of the IWTS and NMIC systems as well as those who performed the DIIS

FA/ES study. The size for the IWTS was intentionally set pessimistically

high and the size for the NMIC optimistically low in order to avoid any

bias in the resulting analysis. The results of the computation for

software size scale factor follow:
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15,000

- 20 % Scale for Software Size

80,000

The tracking of actual development effort frequently escapes the

ability of most organizations as the means of data collection is usually

not present and the figures get absorbed in the aggregation of total

labor hours expended throughout the entity. For the analysis of

development effort scale, the Doty cost model was used to estimate the

amount of effort expended on the WMIC because the actual figure was

unobtainable. Data provided by managers of the IWTS project was used as

the effort measure for that system. To maintain consistency and

establish a camion means of measuring effort, the Doty model, as

progranmed into INCO's own cost model (described in section 2.3), was

used to cross-check the manager's measures. Hence, the model was used to

estimate effort measures for both the IWTS as well as the NMIC.

Surprisingly enough, the model's estimate for the IWTS was in very close

agreement with the actual figures. This result increased confidence in

the use and applicability of the Doty model to this particular analysis.

The Doty cost model estimated the IWTS development cost to be on

the order of $225,000 over ten months; in contrast, the IWrS management

supplied a figure of $200,000 over one year. The environmental factors

considered for this Doty run are listed in Figure 3-34. The NMIC

estimate came out to be roughly $10 million over 18 months and the

factors applicable to this estimate appear in Figure 3-35. In order to

estimate the cost benefits resulting from the use of the IWTS system as a

scaled prototype, the NMIC data was input to the cost model again, with
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From the Doty & Associates (RADC) Studies:

Please Select an Application Category:

1 - Utility (OS)
2 - Command & Control (c2)
3 - Scientific
4 - Business
5 - All (Others not listed above)
6 - EXIT (Return to master CM mnu)

Selection (1-5)? 2
Estimated Deliverable Source LOC (1,000's)? 15

Please input a yes/no (Y/N) response to each of these 14 questions:

Special display? Y
Detailed definition of operational req'mts? Y
Changing operational req'mts? N
Real time operation? N
CPU memory constraint? Y
CPU time constraint? N
First S/W developed on CRJ? N
Concurrent development of ADP H/W? N
Interactive development environment? Y
Off-site development amputer facilities? Y
On-site developrent computer facilities? N
Development computer different than target omputer? Y
Multi-site development computer facilities? N
Unlimited progr-zmer access to conputer facilities? Y

56.0 Person Months req'd for analysis, design, code, debug, test and checkout.
( Standard error on this approximation = 41.1% )

Estimated schedule duration = 9.9 Months

Continue (Y or N)?

Figure 3-34. IWTS Cost Estimate
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Fran the Doty & Associates (RADC) Studies:

Please Select an Application Category:

1 - Utility (Os)
2 - Cammand & Control (c2)
3 - Scientific
4 - Business
5 - All (Others not listed above)
6 - EXIT (Return to master CM me.u)

Selection (1-5)?2
Estimated Deliverable Source LOC (lP0's)?80

Please input a yes/no (Y/N) response to each of these 14 questions:

Special display? Y
Detailed definition of operational req'mts?N
Changing operational req'mts? Y
Real time operation? Y
CPU memory onnstraint? Y
CR] time caxnstraint? Y
First S/W developed on CPU? Y
Concurrent development of ADP H/W? Y
Interactive development environment? Y
Off-site development ocnputer facilities?N
On-site development conputer facilities? Y
Development computer different than target ocnyipter? N
Multi-site development cxmpTuer facilities? N
Unlimited programmer access to otnpu-.er facilities? N

2115.1 Person Months req'd for analysis, design, code, debug, test and checkout.
Standard error on this approximation = 41.1 % )

Estimated schedule duration = 18.1 Months

Continue (Y or N)?

Figure 3-35. 4IC Cost Estimate
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the adjustment of three of the environmental factors to account for the

positive impacts resulting fram the use of the scaled system. The three

factors adjusted were: firmness of system operational specifications,

absence of changing operational requirements, and the absence of parallel

hardware development. The factors input to the Doty Model are

illustrated in Figure 3-36. Amazingly enough, the Doty cost model

provided an estimate of approximately $3.5 million for the NMIC

development resulting frcn the benefit of a scaled system - an estimated

savings of approximately $6.5 million dollarsl With such estimated

savings, the NMIC could have cost-effectively afforded the equivalent of

twenty-six IWTS development efforts. A conservative figure of $250,000

was used as the development effort cost for the IWMS and the resulting

scale factor equation was:

$250K

S--- 2.5 % Scale Factor for Development Effort

$10 Million

The resulting scale factors for the IWTS versus the WMIC are

graphically illustrated in Figure 3-37.
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From the Doty & Associates (RADC) Studies:

Please Select an Application Category:

1 - Utility (OS)

2 - Canmand & Control (c2)
3 - Scientific
4 - Business
5 - All (Others not listed above)
6 - EXIT (Return to master CM1 menu)

Selection (1-5)? 2
Estimated Deliverable Source IsC (l,00's)? 80

Please input a yes/no (Y/N) response to eacn of these 14 questions:

Special display? Y
Detailed definition of operational req'mts? Y
Changing operational req'mts? N
Real time operation? Y
CRU memory constraint? Y
CPU time constraint? Y
First S/W developed on CR]? Y
Concurrent developrent of ADP H/W? N
Interactive development environment? Y
Off-site development computer facilities? N
On-site development ctmputer facilities? Y
Development craiputer different than target ccrzputer? N
MUlti-site development omrputer facilities? N
Unlimited programner access to computer facilities?N

733.2 Person Months req'd for analysis, design, code, debug, test and checkt.
( Standard error on this approximation = 41.1 % )

Estimated schedule duration - 18. 1 Months

Continue Iy or N)?

Figure 3-36. N4IC Cost Estimate with Benefit of a

Scaled Systa
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SEXTION 4. REMAINING RESEARCH

In this research effort, parameters of software systems that are

suitable for scaling have been identified and metrics have been defined

for them. 7hese scale factors have then been related to the parameters

of the operating system performance simulator. It would be worthwile and

advantageous to further develop the simulator to make its parameters more

sensitive to the particular requirements of IEHS, i.e., refine its design

to be less general purpose and more IEES-specific. These refinements

would aid significantly in analyzing the particular scaled system needs

of IDHS.

In addition, a camplete set of equations relating system parameters

to scale factors would be of great value. The philosophy of this

approach and initial delineation of a subset of the simulator

variable-scale factor equations are described in "Interrelationships

Among Scaling Factors" (Appendix D), and "Simulator Variable-Scale Factor

Equations" (Appendix E). Expressing all the input parameters as fairly

simple analytic functions of the scaling factors would permit more

extensive and definitive analysis of scale factor interrelationships, in

order to give the system designer a better tool for evaluating

full-system expectetions based on those of the scaled system. It would

also enable further investigation of how scale factors behave in

different operating regions to be performed in a manner which would help

in eliminating the uncertainties of the interplay of more than one

factor, i.e., the effects of combinations of parameters.

As illustrated in Figure 4-01, the enumeration of guidelines for

sealing factors, together with the derived performance relationships, and

4-1
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SCALED SYSTEMIS

PERFOWCE COST
IF1.ATIONSHIPS MDELING

"SCALING H!A4DBOOK

Figure 4-01. The Scaling Handbook
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cost modeling results would be used to produce a "scaling handbook",

which would be of great value in the design of IMS. Further work should

be done to codify the results of this research to produce the handbook,

as well as to verify the efficacy of the scaled systems methodology by

experimental means.

I4-
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Glossary

Full-Scale Effort - See "Scaled Effort".

Scaled Effort - the actual or projected manpower-related effort required to
construct a system to a certain scale. If the scale is 100% (or 1:1),
then the oorresponding effort required to construct the system is referred
to as the "full-scale effort"; conversely, if the scale is less than 100%
(or l:n, where n is greater than one), then the effort is "scaled" in the
sense that it is, in same measure, less than the corresponding full-scale
effort.

Scaled System - an operational system that differs from an ultimate
full-scale system in magnitude or degree of functional or operational
sophistication and that can be quantitatively related to that system by a
scale percentage rate, fraction, or ratio (ie. "50% scaled", "1/2 scale",
or "scaled 1:2").

Scaled System Development Effort - the process that results in an operational
system built to a relative scale with respect to a target system. The
purpose of a scaled system is to serve as a testbed for detecting design
deficiencies in the target system so the necessary changes can be made in
the front-end of the development cycle, where changes are less costly to
effect than in the tail-end of the development cycle.

Scaled System Development Methodology - the formalization of those processes
that comprise a scaled system development effort and provide the
theoretical foundation for such an effort. The methodology has two
principal phases: one to construct and evaluate a scaled system, and
another to construct the desired target system.

Un-Scale - See "Up-Scale".

Up-Scale - the process that incorporates evaluative and design factors of a
scaled system to the development of the desired full-scale (target)
system. The expended or projected manpower necessary to build a
full-scale system, given a scaled system, is referred to as the
"Up-scaling effort" or '"Un-scaling effort".

A-3
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Abstract showing costs of various scaled

development efforts versus unscaled

A study has been conducted efforts for projects of varying

to assess and quantify the cost magnitudes.

impacts of adopting scaled system From the study, a need was

software development techniques. identified to further investigate

First, various software cost the subject after the development

estimation relationships and models of cost estimation models more

appearing in the open literature specifically suited to the

were surveyed and evaluated. The evaluation of environmental and

results of the evaluation were productivity impacts arising

summarized in tables conparing each through the use of scaled system

model's output (in terms of total software development methodologies.

developmental effort) given inputs There is also a need to develop

(expressed in deliverable source quantitative models to account for

lines of code (DSLOC)) varying over the benefits of scaling additional

a range of system sizes. A model aspects of a software system, such

(by Doty) was subsequently chosen as complexity, reliability, and

(due to its consideration of data base.

environmental factors) to evaluate

cost impacts of scaled system Background

software development efforts versus

unscaled, or "full-scaled", This study is an outgrcwth of

development efforts. Preliminary current research investigating

results indicate that substantial software cost estimation

cost benefits can be achieved methodologies and scaled systems

though the use of scaled systems software development benefits.

developmental techniques. These Cost estimation is an integral

results are presented in tables factor in the research of scaled

A-4



systems because cost is a principal The potential benefits of

concern (along with quality applying scaled system technology

assurance and schedule/risk to a software development project

minimization) in the contemplation are many. First, customer

of scaled systems development functional and operational

techniques. requirements may be refined and/or

Scaled system methodology solidified through the benefit of a

partly consists of implementing and "hands-on" evaluation of the scaled

delivering an operational, or prototype system. Second, in

semi-operational, software system pursuit of performance or

"to scale". Such a system probably reliability increases or to verify

would not support all of the that full-scale system performance

operational and structural will be within specifications, the

characteristics of the desired target system design may be

system but would serve as a optimized. Evaluation of the

skeletal testbed for the system's scaled prototype may reveal

engineers and custoaer personnel to potential efficiencies or econcmies

evaluate the functional, in the system's architectural

operational, and performance structure and its real-time

characteristics targeted for the management of on-line resources.

ultimate product -- a "full-scale" Third, uncertainty about system

system. Conceptually, scaled technological feasibility,

systems are similar to the scaled architectural soundness, or

prototype models used by product reliability may be reduced or

designers and engineers in the eliminated through the experience

shipping, aircraft, and automobile provided by the scaled effort.

industries involved in the Rather than being a costly (and

development of competitive, wasted) by-product, experience

reliable, and quality products. gained in the scaled effort is

A-5
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economically realized through the in the bibliography. Major titles

increased productivity of system included "Workshop on Quantitative

designers and progranmers in the Software Models" published by the

effort expended to construct the IEEE, "Quantitative Software

ultimate target system -- the Models" by EACS, and "Elements of

"Unscaling" effort. In this way, Software Science" by Maurice

experience is capitalized upon Halstead. The models of Walston

through feed-back. Additionally, and Felix (IBM), Putnam, Doty, and

experience aids project managers in the System Development Corporation

their decision process by reducing were selected to be encoded into

the uncertainty concerning the BASIC for execution on a RP-800

formulation of the schedule for the microcomputer system. These were

unscaling effort. selected primarily for their

To some degree, the simplicity; they are all

attractiveness of scaled systems regression-derived equations of the

implementation techniques is form: effort = constant times

intuitive. The thrust of this number of instructions raised to an

study is to justify the scaled exponent (except for an alternate

sytems approach based upon form offered by Doty which computes

quantitative prediction of cost or an additional adjustment factor

schedule savings, based upon fourteen envirorinental

characteristics). Additionally,

Discussion two theoretical approaches derived

by Maurice Halstead to

At the onset, this research quantitatively estimate program

started with a survey of current effort were implemented. The first

literature in search of software appears in chapter eight of his

engineering predictive models. A book under the subtitle of "Timing

complete list of titles is included Equation Approximations" [3],

A-6
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while the other appears in a developnent schedule. This burden

reader's response to Walston and may be reduced or eliminated during

Felix's article "A Method of the unscaling effort as a result of

Programming Measurement and programmer experience gained

Estimation" [9J, submitted by through the scaled effort, yielding

Professor Halstead. considerable positive cost and

One cbjective of scaled system schedule impacts.

technology is to reduce the At this point, we can begin to

uncertainty of software formulate an approach to estimating

development. This uncertainty is scaled system savings. This

often accounted for in one way or approach examines the sensitivity

another by current models through of cost (effort) to envirornental

"environmental" factors or and productivity considerations.

constraints. Examples of these

factors include Doty's attention to Aproach

the existence of a detailed

operational definition or the As mentioned, six models for

presence of changing customer programming effort were selected

requirements and Price-S's \l for the study; four derived from

"Complexity" input parameter. regression analysis and two from an

Another objective of scaled interpretation of the natural laws

system technology is to take governing human preparation of

advantage of increased programmer computer programs (Halstead).

productivity during the unscaling Certainly, other models exist and

stage of the software development more are currently under

cycle. Programmer inexperience has development; these were, however,

been shown to represent a the most accessible for quick

considerable '-'rden on a software implementation. Although accuracy

development effort over the entire was not a primary consideration

1 Price-S is a proprietary parametric software developnent cost modeling
package invented by, and available for lease from, the RCA Corporation of
Cherry Hill, New Jersey.
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(the results were not explicitly used in these computations.

intended to be used for a cost Disparity factors for the various

proposal), representation of the model's outputs ranged frum 4% to

basic relationships existing 46%, varying directly with program

between program size and effort size. For program sizes less than

over a range of program sizes was 100k source lines, the disparity

seen to be crucial to a trade-off factor did not exceed 30%. These

analysis of scaled systems figures show that, for systems

technology; therefore, a ccnparison smaller than 100k, the models are

study was in order. in relatively close agreement.

Various program sizes ranging For this omparison study, the

from one thousand to one million models were to be run without

source lines of code were regard to application. This

systematically selected and input assumption particularly impacted

into the cost models and their the Doty model, which offers the

corresponding outputs were option of selecting one of several

recorded. The results appear in different application categories.

Table 1. The last column records For a description of the Doty

the mean values of the estimates, model's quantitative parametrics,

their standard deviations, and a see Exhibit 1. The figures for the

disparity factor which was ccxputed Doty model in Table 1 result frcr

by dividing the standard deviations the selection of the "All"

by the means. Because the Halstead application category. Table la is

model appeared to be quite unstable provided as additional information.

over such a wide range of system It shows the results when the Doty

sizes, its results were not model is run with the selection of

included in the correlation the "Command and Control"

computations; only the four application category, the proper

regression models' outputs were application selection for software
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projects in the DoD environment, estimated effort and, hence, no

Note, however, that the disparity cost savings would be reflected in

factors are greater in Table la due the analysis. Certain savings

to the use of this application factors would therefore have to be

category in the Doty model. assumed. The method chosen for

Through the facility of Table 2 was to reflect unscaling

straightforward input-output models effort savings through a reduction

such as those described which yield in projected deliverable source

estimated effort given projected lines of code. This assumption

system size, only a limited appears to be a va I id

approach to analyze scaled system representation of the anticipated

trade-offs may be formulated. Such increased programmer productivity

an approach is summarized in Table occurring during the unscaling

2, using the Doty model in the effort. Reducing the number of

"All" application category (Table instructions shortens schedule much

2a shows the results of the as if programmer productivity were

"Command and Control" application increased. If sought-after

category). Given an estimated technical design economies are

full-scale system and its achieved, they too could be

associated predicted effort reflected by a reductioli in

measure, the efforts required for delivered source code for the

implementing the systemf scaled from unscaling effort. Additionally,

10% to 90% were computed. The next with the existence of an iterative

step was to estimate the effort for enhancement development approach

the unscaling effort. In the [7], some of the design and co] e

absence of environmental and for the unscaling effort wou]d 1k

productivity computational factors, completed prior to the start of the

the estimated unscaling effort unscalinq effort again resultin~o in

wQuld equal the full-scale effort and schedule sav~incs.
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Assuming the validity of these other Doty models, this model

assumptions, Table 2 shows matrices offers five application categories:

cross-listing scaled effort with utility, command and control,

net unscaling savings expressed as scientific, business, axod "all".

a reduction in total deliverable In addition, fourteen envirormantal

source statements. As the table factors are accounted for in the

shows, scaled system savings for computation of projected total

any system size result when effort. These fourteen factors are

unscaled effort savings equal or listed in the literature

exceed the scaled system factor (reproduced in Exhibit 2) and also

used during the scaled effort. For in the Doty model's screen display

exatiple, given a scaled system of shown in Exhibit 3. Of these

factor 30 (30% of the total fourteen factors, two were deemed

anticipated system size), the table most relevant to an analysis of

predicts that total project savings scaled systems savings; these are

will result if the system is scaled termed "detailed defintion of

and at least 30% savings can be operational requirements" and

realized during the unscaling "changing operational

effort (this is only slightly requirements".

different in the "Command and In the development of nodern

Control" table, Table 2a). software systems, more often than

Fortunately, and for the sake not a detailed definition of the

of better estimates of scaled operational requirements is

system savings, models which lacking; therefore, the environent

incorporate environmental and is one of changing operational

productivity factors into their requirements. This phenomenon has

computations are available. One been attributed to many reasons,

such model is a variation supplied but the difficulties custoxmer and

by. Doty Associates. As with the systems personnel encounter when
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attempting to oCxzmunicate a system responses used to characterize the

operational specification are unscaling environment). This

probably paramount. one objective figure represents the additional

of the scaled system development effort necessary to construct the

approach is to aid these personnel full-scale system, having ompleted

in arriving at the system's the scaled system implementation

operational specification, and to and evaluation. The difference in

allow them to econamically modify the two figures is the amount of

or enhance it, through the benefit effort which is economically

of a scaled prototype system which available for the scaled

they may evalo.Ate, development effort. Estimated

Tables 3 and 3a illlustrate efforts based upon the various

the impact of these environmental scale factors are also listed. In

factors upon total estimated arriving at these figures for the

effort, given a discrete system scaled efforts, the constraints of

size. The number in the column no detailed operational

labeled "Estimated Full-Scale specifications and changing

Effort" gives the estimated requirements were included in the

development effort in the absence analysis (see Exhibit 3). Another

of a detailed operational constant relationship was found

specification and in the regardless of system size -- a

environment of changing scaled effort of factor 10 (40 for

requirements (see Exhibit 3 for the the "Command and Control"

environmental responses input to application category) was necessary

the model to arrive at these for any significant effort savings

figures). For the figure appearing to be realized. The saved effort,

in the column entitled "Unscaling however, was significant. For

Effort", these constraints were example, in the 100k case, the

removed (Exhibit 3a lists the model showed that savings of

A-11
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approximately 18 person months Conclusions

could be realized if a 1/10 scaled

system could be implemented and a The limited study done here

detailed operational specification with the aid of simplistic cost

developed as a result. Assuming a estimation models alludes to

cost of $5000 per person month, significant cost savings resulting

this savings translates to a total from the use of scaled system

of nearly $90,000. Exhibit 4 development methodologies. None of

graphically portrays the the analytical approaches presented

relationships expressed in Table 3. here, however, account for

Of significance is the fact that beneficial productivity changes

the data of Table 3 assumes no anticipated for unscaling efforts.

productivity changes between the Fran Exhibit 6, the data of Walston

full-scale and scaled approaches, and Felix of IBM project 50-180%

which, if present, could even more productivity increases based upon

dramatically increase developiental programmer experience. Future work

savings. The "Canvand and Control" in the areas of software

application category of the Doty engineering and cost modeling with

model predicted a higher break-even attention to cost and schedule

scale factor point than the "All" drivers and productivity factors

category (see Exhibit 4a). This will benefit system architects both

can be attributed to the greater in schedule estimation and scaled

exponent found in the effort system methodology analysis.

algorithm and the different weights Research with more accepted

offered for the environmental parametric models such as Price-S

factors. Exibit 5 offers a might lead to greater insight into

generalized portrayal of a scaled the potential cost benefits derived

system oreak-even cost/benefit from the use of scaled system

anj vis, technology. Attention should be
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paid, however, to possible

parametric in-pacts of such factors

as complexity, reliability, and

data base which may require the

development and use of additional

parametric relationships.
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TABLE 1: LEVELS OF EFFORT

FiQDFLrro~r m

Size IBM's SDC Putnam DoIt# Ho.Jste-MoJ;;,.:
___.ooo__.__ ____,,o _____.__.,, _,__.°_____, °d -er z ~~

kP S o 2 & Feli', A- ll /E s t.,,,n , f o 0 r .

5 A

.2S 4.9 S3 1.g5 .1

L_ 5 23.7 23.4 8. 4 7.7 .

1.0 42.3 443 46.0 60.0 194.3 24.4 6.9

230

'~IO~i5850 182.8 189.7 221.2 3286 E741.3 348-11 257.

000 343.6 3550 435.0 683.6 245oS 108Z. 1-3710-4. S 307o
117

2 50 730. 812.6 1063.9 1800.7 165,59994818. 9 o9
377.

500 1486.2 1520.2 2032.6 374G.G 703,11Z 14,804 -2s3
.300

750 214 9.4 2193.0 3108.3 5751.2 1.33, EO I850o G,,
447.

1000 2792.6 2844.2 4115.8 77351 Z,96940 45,327 2o7,37
46.

FIGURES EXPRESSED IN PERSON - MONTHS
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TABLE ': LEVELS OF EFFORT

Program Mvlo e I
SI=e IBM's -DC Pufna, Dote H.It,..J M.df;J I

\OSLOc/ Felix (C4 f.,1,2,&4

I(4. 9z "

S 5.2 55 1.9 4.11 jS. .57 o"-

3.9

5 22.5 23.1 2 3.4 3 1.2 44.9 7.7 47

0 42.3 4.3 46.0 74.9 194.3 24.4 1.$
IZ{7.

I 1

50 182.8 189.7 221.2 572.0 5741.3 3 48.1
6.27

1 00 343.6 35.0 4350 1372.8 245065 10 82.4

(1759

250 7909 812-C 1063.9 4367.3 165,999 4818.0 f 151
r 3895

500 1486.2 1520.Z 2032.6 10481.3 703,11214,804 3i.

75 0 Z149.4 2193.0 3108.3 17491.21,633,60 Z8,S00 6 0

1000 2792.G 28/44.2 4115.8 25154.I2,969, 4 45-,327

FIGURES EXPRESSED IN PERSON - MONTHS
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TABLE 2 "ALL"

APPLICATION
S tsted- Est,',..," scaled E-o r-t Tot.1 Ep;,,-

size .1I S.q (persn-...) spv; s-of:(1.o00s' Effor - Scale scla Bse4 e- ,e," -scml,'3 __,;_s_ of.
oc(p,,. M.A c-r EF. . 2 310 0i40 !5"0 6070 80i 9C

80o.1 4.7 .9.4 -.58Z7.76 7,23 , .7 6.17 5." .1?7

80 4.15 I.85! 8.3 !7.76 7.2I6.68 6. 1 5.6215.1111.61

'TO 3.61 18.31 7.76, 7.22 6 67 6.14 15 1 5".08:4 57 o7

S .2 6 3.06 j.I 76 I7 a21 6,67I6A 2 :s95 5 a 53 i4O 13 5 a• -O 2S3 :7 23 6.s 68 6 14S 59 . ' 4. !0 13 492 99
40 2.0 i6-7 6 I15.61 0 53 40 13.47T2.9612A6
30 1.47 16 17 5.62 ..o8I4.53 4.0 13.472.94j2.43i193

20 .96 £66 .11 4 .5"74.2i3492.9612.,431. 92!142
10 .4 _ _ _ 01614,61 .l0713.S2 2.99l2.461 1.93 11.42, .

I - - =

_30 53.64 z~!ii19 ~ sr; 82.51 76.141 70,4 64.'87
-80 47.36 101 194.7188.5B 8.317,.270.1I164 2JS8.3 52.6

70 41.12, . 481 88.582.2-I76.1 70.0o63.9 179!52.146 4
60 34-91 88.61 8?31 76.1' 699' 3.8 J7.7 :T1.7 1419 qo.z

10 5 . 50 28,8 1 821 f76.2 170.0163.8576 S1.611S6!.39,8 '34.10 40 22.76 176.4 70.1 1639 57.7 S1.61,1553.961337 22.0

- 30 116.80 70.4 64.2 ,Z9 -Q5.7 4S.6,39. 6 33 6127.7 12.1

2o 10-94 64.6 5&3 52.1 q-9 439.8 33.7.2771 213 1 .Z
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ENVIRONMENTAL RESPONSES FOR

FULL-SCALE AND SCALED EFFORTS
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EXHIBIT 3A
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ENVIRONMENTAL RESPONSES FOR
UP-SCALING EFFORTS
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Exhibit 4 "ALL"

Totc-l Effort

based uixzo adoptionI of scaled system

Total metology.

Cbst -- - --

Projected 
Cost Estimate

Savings/Loss is absence of
threshold point. scaling.

0 10 20 30 40 50 60 70 80 90 100

Scale Factor (%)

Estimates with considerations of quality
of functional requirements definition and
environrent of changing operational
requirements reveal significant cost
savings can result fran the use of
scaled system development techniques.
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Exhibit 4a C2

Total Effort based upon
adopticn of scaled system

Projected savings/
Loss threshold point

Total
Cost
(PMS) Cost Estimate in

absence of scaling
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Scale Factor (%)

EstiTates with considerations of quality of functional

requirennts definition and envizonment of changing
operational requirements reveal significant cost savings

can result fran the use of scaled system developement

techniques.
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FYhibit 5

Scaled
System System too
Ccrpression large; Maximxn
Req's too Duplicated Limit
nuch effoEfforts (theoretical)

TOML N\
EFFORT Break-even point

Estimted Savings

Opt0imal I
Scale

Factor

0 1 100
Scale Factors
which prcmote
savings

% Scale Factor

Notes:

1. "N" represents the expected effort to design and inplement
the full-scale version of a proposed system.

2. The curve represents the total cost of a scaled system effort;
that is, the cost of the ied system effort plus t-he cost of
the up-scaling system effort.
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EXHIBIT 6

Impact of Experience on

Programmer Productivity

source: Walston & Felix
(IBM)

Without With %

Experience Experience Increase

146 Some - 221 DSIvPM + 51%

DSL/PM Extensive - 410 DSL/PM +180%

DSL = Delivered Source Lines
PM = Person -Mths
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A. ABSTRACr

This paper summarizes the research leading to and involved in the

development of a list of software scale parameters. Software scale

-parameters are those aspects of automated systems that can be reduced in

scope in order to implement a cost-effective system scaled with respect

to the full-scale system objective.

The work of Yourdon, Tausworthe, Dijkstra, Knuth, Parnas, Mills,

Belady, Lehman, Basili, Tinker, Preiser, Halstead, House, Misa, Turner,

and others have been studied in an attempt to isolate various elements of

software systems most suitable to scaling. Each scale parameter is

defined in detail, with sufficient background to introduce the area.

Areas for consideration include functionality, data base characteristics,

maintainability, security, reliability, performance, language and

configuration. These areas will form the fuundation for later work under

the small scale system design effort.

B. CJECTIVE

The objective of this report is to identify parameters of software

systems subject to scaling and to begin a definition of scale factors

associated with each. These scale factors will be used to develop

appropriate metrics to standardize, quantify, and objectively describe a

scaled system in terms of the full-scaled system it represents.

C. DISCUSSION

An analysis of current software systems development methodologies

has been conducted to isolate the elements most suitable to scaling.

Considerable research has been performed to identify other work in the

software engineering field that would be applicable to the scaled systems

B-3
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project.

It is particularly important to identify the point in the system

development cycle at which it is appropriate to employ a scaled system.

A major constraint to this decision is the availability of sufficient

i-nformation on which to base scale factor decisions. A further

limitation is imposed by the need to define requirements to the total

system level before scaling to a whole system reference is possible.

Current software system developmenL methodologies emphasize a

process in which development is conceived as proceeding through a series

of phases. Each phase is organized to xcmplete a specific planned

process and produces output in terms of information or design documents

which, in turn, is input to the next phase. Referring to the DoD

lifecycle description, this process begins with the initiation phase and

progresses through the development, evaluation and operation phases.

Most attempts to improve the efficiency of the development cycle have

concentrated on improving the processes which ccmprise sne single phase.

Thus structured programming focuses on the programnming stage of the

development phase while ccnposite design applies to the design stage of

the development phase. The scaled system approach, as it is envisioned,

bridges the gap between the definition and design stages of the

development phase.

To further clarify this conclusion, consider the activities that

make up the definition stage. Robert Tausworthe in Standard zed

Development of Corputer Software calls this the program definition or

functional specification phase, which he divides into two activities;

that of creating the software requirement 'Figure 1) and the -oftware
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definition (Figure 2). As Tausworthe explains it, the creation of the

software requirement further consists of two parts, both largely

non-technical, to onceptually lay out the requirement. The first part,

-that of planning information, establishes the requirement for the

software. The second part, the user requirements, establishes the

requirements of the software.

Following the conceptual activity of software requirement creation

comes the functional definition of the software. This is a technical

activity Which, when cxxplete, defines both what the software is to do

(not how it is to do it) and the meaning of program correctness.

The requirements and definition activities are an iterative cycle.

Concurrent interaction between requirements, definition and approved

amendments is a necessary activity to achieve a final balance betwen

software requirements and feasible system definition before the detailed

design process begins. It is at this stage that the definition criteria

my be applied to the developnent of scale factors and the preliminary

requirements to scaling established. Attempts to define scale factors

earlier in the process will suffer from insufficient data. Factor

definition at a later point will be constrained by the progress in

detailed design. It should be reiterated that def it ition to the total

system level is necessary in order to provide the total system baseline

to wich one must scale.

D. TEC2HNICAL APPROACH

The technical approach to the process of deriving scaled parameters

from various elements of the software definition is addressed in the

remainder of this report. The software elements applicable to the

B-6
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scaling of data base, performance, functionality, security,

maintainability, reliability, language and configuration are described

and defined in detail with examples. It should be noted that there are

-two components of scaling to be considered. The first is the

identification of the scaling parameters themselves such as size,

modularity, etc., and the second component is the measured effect on

items such as the throughput and utilization of the total system itself.

1. Data Base Characteristics

A data base is a collection of data records between which

specific relationships exist. These relationships may be used to link

record types and records of the same type. A record is ar aggregate of

data transcribed, or in a form suitable for transcription, between a

canputer and an external medium. Each record ccmprises data (normally

called fields) that have an underlying relationship to one another. Data

elements in a record may be of similar or dissimilar types; bits,

numbers, character strings, etc. Records of the same type are usually

grouped into larger aggregates called files. In practice, a large file

may contain hundreds or thousands of blocks, each containing one or more

records.

Data base scale parameters derive fra two areas. The first

area concerns the complexity of the access system and the second concerns

the various size elements involved at each level of the data base

structure.

a. Data Base Ccmplexity

There are at present three major data base access methods

that must be examined for scaling purposes. They are, in increasing
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order of omnplexity:

1) Sequential Access

The term sequential access is used when the access to

xecords is through a key by which the file is physically sequenced.

Access is therefore serial, i.e., each item must be examined in sequence

until a key match is found.

2) Indexed Sequential

The indexed sequential access method (ISAM) refers to

a setup whereby an index table is established through which record access

is made. In ISAM, one or more items in each record is chosen as the

"key". The index then consists of an ordered sequence of the values of

the ISAM key which occur in the collection of records that canpose the

data base. Associated with each value is an address or pointer to the

record. The file is stored in some kind of direct access storage such as

disk or drum so that once an address is retrieved fran the table, the

associated record may be accessed directly. Note that although the record

may be accessed directly, the process oL finding the pointer to the

record still involves a sequential (or perhaps binary, if the table is

ordered) search of the index table. The advantage of ISAM is that once

the address is determined, all data may be accessed with equal ease.

ISAM is often used for very long files containing thousands of records.

Table search time is considerably less than the time required to search

through each record.

3) Randan Access

For this access method, no index table is maintained.

Instead, to decide where in storage a record may be accessed, the value
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of the key is used as input to acre hashing algorithm which is designed

to produce as output a storage address. This adress is not neessarily

a physical address in the sense of stipulating exactly which physical

-location in direct access storage will be used, but nay be a logical

address within some area.

In the case where the data base is organized in

hierarchical form, that is in applications where a natural hierarchy of

relationships exist between data items, and any data subset is contained

entirely within its superset, another form of access may be used. The

root, or parent, record may be located by either a hashing method or by

sequential search of a table. Subsequent records "lower" in the

hierarchy may then be accessed through direct access pointers. Direct

access pointers may also be used in the network model in which the data

structure sets serve as the logical links between records of different

types and reflect the data organization rather than an exact

representation of entities. The data structure may be quite cmplex in

that one record may be linked with any other and have any number of

superiors or subordinates.

Another form of direct access occurs with the

relational data base. In this model, largely experimental, data are

organized into tables (relations) each of which may be directly accessed

through the table name. Row and column ordering has no significance and

each olumn (or domain) may be directly accessed.

Data base complexity may be scaled by first employing

the simplest access method (sequential) to model a data base and then

developing the scaling relationship involved in increasing the cumplexity
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from sequential to indexed sequential to random access. At another

level, it is also possible to scale omplexity by restricting to single

access a systen which in full scale would allow multiple access to the

-data base.

The scaling step from a sequential data base to an

indexed sequential is straightforward. Quantitative measurement of

results of this scaling step is of course based on size factors as for

example, the number of records in the data base. An average access time

for a sequential search is directly related to the number of records.

For an indexed sequential access only a portion of the access time (the

table search) may be directly attributable to the nunber of records.

The next quantitative step, to a random data base, is

expected to be more difficult to scale, as the measurement parameters of

a randon data base configuration are highly dependent on data base usage

and organization requirements. However, given a constancy in data

structure, measurement is still possible. Considering a hashing approach

to address determination, access time difference between the indexed

sequential and random access methods is the difference between the

average table search time and the time necessary to execute the hashing

algorithm (including time to resolve duplicated references).

Another method for scaling acmplexity is the depth

and acmplexity of the data structure which describes the relationships

between data items. Any number of possibilities exist with this approach.

A hierarchical data base could be scaled, regardless of access method, by

limiting the number of inmmediate successors to a node or the branch

points at a given level. Alternatively, the nuTber of levels could be
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scaled. As yet another example, for a direct access network, the pointer

chain could be limited to only the forward direction.

b. Data Base Size

Aspects of data base size are relativeLy easy to

scale, requiring merely numerical quantification of appropriate elements.

The various size elements subject to scaling in a data base are:

1) Number of Files

The number of files way be scaled by applying a

straight percentage to the total number of files. (Unless all files are

of equal length, the total data base size will not necessarily be scaled

by this same percentage.)

2) Length of Files (numbers of records)

The number of records may be reduced and the

scale factor determined fron a ratio of the number of records rzmaining

(in all files) to the total number of records.

3) Number of Access Keys

Scaling could be applied by limiting access to

data base through a single prime key. The scale factor in this case is

of course, related to the number of secondary keys in the final system.

4) Number of Fields

The number of fields in all records of a given

type my be scaled as a ratio of the number of fields remaining to the

total number of fields.

5) Length of Record/Field

The length of a record may be scaled by

considering a ratio of the number of ch~aracters in the scaled record
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compared to the total number of characters. The same scaling could be

applied to each or selected fields.

It is possible of course, to scale access

-cinplexity, data structure complexity and size elements in oombination,

but measurement of scaling results then becomes increasingly difficult.

For example, how would one compare a sequential access, hierarchical,

single key data base to a multifile relational data base? As has

already been implied, there is mutual dependence between the scaling

factors of type and those of size. All of these relationships will be

examined at the point in the study where factor quantification is

addressed.

A final point on data bases and scaling.

Scaling of access type and to some degree, data structure complexity, may

be restricted if the system being developed is expected to use an

existing data base management system. Even the most sophisticated and

general purpose system is restricted in the organization of the data base

it can manipulate. Scaling of data base complexity could at some point,

involve a data base management system customized to the scaled system.

2. Performance

Performance or efficiency objectives such as response times and

throughput rates under a variety of workload and configurations are an

important part of most system designs. Efficiency can rarely be

specified as an absolute because it is influenced by such factors as the

hardware configuration, telecommunication line speeds, the efficiency of

all other concurrently executing programs and the number of active

terminal users, to name a few.
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Performance may be interpreted as the technical equivalent of

the economic notion of value. That is, performance is what makes a

system valuable to its user. Like value, the concept of performance is a

subjective one. This means that different people tend to use different

performance indices in assessing systems. However, it is often possible

to translate subjective definitions of performance into purely technical

terms, which can sometimes be quantified and therefore objectively

evaluated.

These elements may be considered to be scaling elements and

thus developed and measured for scaled system use; either to be scaled,

or to measure the effect of scaling.

The most ccmn classes of quantitative performance indices for

computer systems are:

a. Productivity

Productivity is generally defined as the volume of

information processed by the system in a unit time. One measure of

productivity is the throughput rate, which during a given interval of

time, is the average rate at which jobs are completed by the system in

that interval.

Throughput may be scaled. If, for example, the full scale

system is to process 2000 messages per day, the scaled system might be

required to process only 500. This system would be throughput scaled to

25% of the full-scale 3ystem.

Throughput is of course, a result of nearly every aspect

of a system configuration; from the hardware itself to the functions the

system is required to perform to the typical set of jobs requiring system
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resources. The system oonfiguration fran both a hardware and software

viewpoint will be discussed later. In general terms however, consider

h-*w throughput might be scaled:

1) System capacity. As the maximum rate which a system

can perfor, --ork, capacity has a direct result on throughput. The scaled

system might handle only jobs with primary memory requirements of l0k as

opposed to 100k for the full-scale system; or jobs using less than 30

seconds of processor time versus two minuces; or those using only one

printer and a card reader rather than the several I/O devices jobs on

the full-scale system might require.

') System job mix. Although the full-scale system might

be required to process some number of job types arriving at randan, the

scaled system job mix might be structured for cptimum performance.

Depending on the application, this might mean grouping all jobs of type A

together. Conversely, in a multiprocessing environment, since all jobs

of the same type might oompete for the same resources, types A and B

might be alternated in the job stream. As a final example, one could

scale by configuring for average expected work load rather than peak

load.

b. Responsiveness

The term responsiveness can be defined as the time between

the presentation of an input to the system and the appearance of the

corresponding output. A measure of responsiveness is the response time,

which is the time elapsed between entering a request and the cmputer's

acknowledgement of it. In general, the response time depends on the

request, on the system, and on the work load in the system at the time
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the request is entered. Nevertheless, response time is a valid parameter

to scale. We might require the target systen to support 20 analysts with

5 seconds response. For scaled system development, a response time of 15

-seconds for 5 users might be adequate. In such a case, the system would

be scaled 25% with respect to number of users and 33% with respect to

response time.

A better term would be interactive responsiveness (the

inverse of response time) or the number of responses per unit time. This

keeps a consistency in terminology whereby scaling refers to reducing the

value of a parameter. In terms of this example, by scaling interactive

responsiveness we are accepting 4 responses per user-minute as compared

to 12.

Below a certain threshold on the low end of the scale,

human users can no longer appreciate a reduction in response time (an

increase in interactive responsiveness). At the other extreme, at same

point response times get unacceptably long and the level of user

satisfaction drops to the point where longer response times make no

difference. Since even on a scaled system, user satisfaction may be of

same importance, the degree to which responsiveness is scaled should be

limited by the characteristics of the users.

c. Utilization

The term utilization is generally defined as the ratio

between the time a specified part of the system is used during a given

interval of time. Examples of utilization include hardware nodule (CPU,

memory, I/O channel, and I/O device) utilization, and the utility package

utilization.
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Modules may be linearly scaled as the ratio between

proposed and actual module utilization. The scale factors may be

measured in terms normal for the module, e.g., CPU utilization is

measured in instructions per time, memory utilization is measured as a

percentage of total memory available, I/O channels as either a data rate

or channel ratio, etc.

As an example, we might scale utilization by requiring

that the developmental system require utilization of only 50% of

available capacity. It has been generally shown that this scaling of

performance requirements will result in a developnent cost one-third that

of a system requiring 90% utilization of resources (Barry Boehm,

Practical Strategies for Developing Large Software Systems). In this

case, the system would be utilization-scaled to 55% of that of the target

system.

d. Operating System/Organization

Performance scaling may be accomplished on a more

fundamental (and probably less quantifiable) level by several other

methods. Although the parameters mentioned below represent a mode of

operation rather than a measurable ratio and are not always the cbject of

a design effort, they do affect the total system effort. Hence the

choice of one mode over another is a valid method to scale performance.

1) Processing mode. Several possibilities come to mind

here. Consider a system where batch, interactive and real time

requirements must all be supported. Advantages in terms of developmen'

time would certainly accrue tO a scaled system which considered merely a

single mode. Similarly, a real time system such as a tracking network
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could be scaled with a batch system which used simulated input data.

2) Operating system. Although the choice of processing

modes is certainly dependent on the operating system (or vice versa), the

-perating system presents other ways to scale. !Wrile the ultimate system

might require a custcm operating system, scaling could be accanplished by

choosing an off-the-shelf system or by modifying an existing one. Given

that an existing operating system is to be used, one could scale by

leaving unnecessary functions in the executive of the scaled system.

3) Interrupt processing. Closely related to other areas

such as choice of processing ode, number and type of peripherals, system

functions, etc., the mechanisms for interrupt handling may be considered

as a separate parameter. Several different aproaches are possible. Fbr

example, certain (or all) interrupts might be ignored until the CPU is

free. Alternately, a priority interrupt scheme could be scaled with a

simple system of queued interrupts.

There are a number of other performance affectors

such as the ease of use of a system, the 6tructuredness of a program or

of a language, and the power of an instruction set. However, they are

not considered in the scaling process because they are difficult or

impossible to quantify.

3. Functioality

Large programs are often decaposed into a set of interacting

functional ocmponents (e.g., modules, procedures, subroutines, etc.).

This principle by which program concepts evolve in a natural, structured

way emerged from Dijkstra's work in the "The Multiprogranmming System."

He conceived that a program could be organized into hierarchical levels

B-18

A



of support. The principle, known as levels of abstraction, formed the

basis for what has since becone known as structured programming. At each

level of abstraction, it is useful to study the needs of the problem,

-that is, to identify all the relevant elements of control and data and

the relationships between them.

System structure refers to the way in which complex functions

and interrelationships may be characterized in terms of successively

simpler components sometimes called modules. Structure primarily

manifests itself in terms of relationships such as cohesiveness and

coupling within and among the systems modules, the architecture of the

functions and data flows, and the information structures. Each component

forms a natural unit on which to focus attention when attempting to scale

the system. Independence of the nodules determines the modularity of a

system.

Usually, structured software is organized into a master nodule

which calls subordinate modules, which in turn link to modules which are

further subordinate and so on down the hierarchical or functional chain.

In principle then, the abstract description of a given component will

embody information about the entire chain of its subordinate components.

Functional scale factors will depend on the degree of

modIularity developed in a hierarchical system. The applicability of

mc~ular scaling would be dependent upon the type and degree of coupling

between modules and levels of modules. There are three types of coupling

to consider:

a. Data coupling - a form of coupling caused by an

intermodule connection that provides output from one module which serves
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as input to another module.

b. Control coupling - a form of coupling in Wbich there is a

connection between two modules that commnicates control.

c. Hybrid coupling - a strong form of coupling that occurs

when atie module nodifies the procedural conLents of another module.

The significance of coupling with respect to scaling is

determined by the direction and strength of the connection. If the

functional coupling between levels is weak, then the details in the

description of the lower level modules rapidly become insignificant with

respect to the higher levels. In this case a level in the calling

hierarchy may correspond fairly closely to a level of functional

description and scaling by nodular elimination of a horizontal moiule

chain, (function level) is feasible and is represented by the outline B

of Figure 3. This of course corresponds to the elimination of some

nunber of primitive functions across the entire system. The percentage

of functions retained could be considered the scale of the system.

In the opposite case, when the functional coupling between

levels is strong, scaling by eliminating bottom to top serial structures

would be the indicated method. This would be analogous to the

elimination of an entire subsystem and is represented by the outline A in

Figure 3. Since structured design carries a strong preference for

vertical coupling and requires the avoidance of complicated coupling

schemes, such as hybrid coupling, functional scaling appears to be a

practical method for top-down structured designs. Consider the following

examples of functional scaling:
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a. Eliminate performance nxxitors throughout the system.

b. Eliminate utilities which would provide the user with

transparency of data (format control, code translation, interfacing,

etc.).

c. ELiminate all non-standard 06 requirements.

d. Eliminate non-critical ancillary functions.

e. Implement select disjoint subsystems rather than the

integrated system.

4. Security

The term security can be defined as the extent to which

unauthorized access to software or data by unauthorized persons can be

controlled. A user should be able to create and manipulate various types

of resources and delegate the access rights to a resource to other users.

A legitimate user of a resource is one who has either created it, or

obtained permission to use it fran another legitimate user. A user

should not be able to disrupt the processing of another user in any

unauthorized way, as for example, causing him denial of service.

The degree of security provided for software and data is

determined by the scope of access control and the ompleteness of access

audit. Access control consists of those attributes of software that

restrict access tc and manipulation of programs and data. Access

auditing is the procedure whereby an historical record is maintained of

both successful and unsuccessful attempts to access restricted data.

Security may be considered a valid parameter for scaling when

the scaled system will be developmental in nature and when either

adequate physical safeguards may be substituted for the full-scale
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software security procedures or the data to be protected is simulated or

is non-sensitive public test data.

One approach to scaling security is to modify the file

-protection procedures implemented to control access. (Methods for

identifying the legitimate user will be discussed later.) A systen may

be considered scaled with respect to security if it encompasses a file

protection methodology less restrictive than the full-scale system. The

following list (by Randall Jensen in Software Engineering) summarizes six

levels of file protection starting with the least sophisticated:

a. No protection'- file access and all operations provided any

user.

b. Total protection - no file sharing at all.

c. All or nothing - if access granted, then all operations

peritted.

d. Controlled sharing - a user is granted access rights which

are the minimum necessary to accomplish the specified task.

e. Specified access - access to each cbject is restricted and

access rights are owner-definable in several different contexts:

1) User-dependent - access rights are tVsed on the

identity of the user requesting access.

2) Context-dependent - access is granted subject to the

environment (type of terminal, location, time of day, etc.).

3) Data-dependent - access to a record is controlled

depending cn the contents of the record.

f. Post-access control - users may be granted access, subject

to the purpose for which it is to be used after access is accoiplished.
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Aside from the types of operating system-provided protections described

above, the "size" of the access specification may be scaled. One method

of specifying access is with the access matrix, the dimensions of Which

-(which may be altered) are determined in one direction by the number of

users, processes, or procedures which have access restrictions and in the

other direction by the number of objects for wich access is restricted.

Changing either dimension necessarily scales the system with regard to

security.

In addition to the file protection schene provided by all

sophisticated executives, one must also consider the classification of

the data and the clearances needed by the users. Classified information

is commonly protected by a trusted subsystem which evaluates (beyond the

OS) the protection afforded and access granted to various classes of

sensitive data and programs. Implementation of this subsystem provides

several new methods for scaling.

a. To access data, both the user and the terminal must have

access ri.ghts. To scale, we might grant all terminals access to

everything and provide only physical security for access to the

terminals. Alternatively we could allow all users free rights to any

data.

b. The number of access types (by user, by classification

level, or by onpartment) could be reduced.

c. Different data sets (further scaled of any method

described under data bases) could be provided for each access clearance.

d. The granularity of the data base could be modified for

each level of access. In other words, one user class might be granted
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full access to all information while another might be restricted to

record level. An alternate method would be to restrict access only

beyond a certain file structure level across the entire class of users.

e. Codewords and special handling could be eliminated.

f. The audit trail that might be required of the full-scale

system could be ignored for the scaled implementation.

g. The authentication approach (to include passwords,

recording of access failures, log-oi procedures, and terminal

authentication) could be simplified or eliminated.

h. Through the use of simulated data or limited transmission,

a full-scale requirement for encryption of data (by software) could be

suspended.

5. Maintainability

The term maintainability can be defined as the effort required

to locate and fix an error in an operational program and is a technically

valid area for scaling, since the implementation of maintainability

incurs increased software development cost and/or time. The approaches

which might be employed to scale this parameter are closely allied to

those for scaling functionality in that functional requirements of the

system are eliminated or simplified. The difference is that the

functions included to enhance the maintainability of a system would not

normally be the target of a design effort but rather tools to make

subsequent enhancements of the final product a routine process. With

this in mind, one could argue that since the scaled system is merely a

step toward the final product, modules whose purpose is to enhance

maintainability ould be excluded from the scaled effort. Some examples
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ia)uld be:

a. Simplify process-error handlng.

b. Eliminate restart/recovery procedures.

c. Eliminate modules to reject and/or correct bad data.

d. Eliminate, reduce or modify fault location/trap software.

e. Exclude software to monitor system performance and gather

statistics.

f. Reduce back-up procedures to a minimum.

g. Include additional software diagnostic aids, program

tracers, and interactive debuggers. This is an unusual situation in that

additions made to the scaled system would reduce the development effort

by enhancing its effective implementation. The full-scale system would

probably contain built-in diagnostic aids as well, but to a lesser

degree.

Thus, the design of the scaled systen may eliminate documentation,

recovery, and reconfiguration programs at the specific risk that the lack

of these elements may in fact prolong the project rather than enhance it.

This risk may, in some cases, be sufficient to preclude the scaling of

maintenance functions in the scaling process.

6. Reliability

The term reliability refers to the extent to which a program can be

expected to perform its intended function with consistency and required

precision. Reliability is the product of the error tolerance,

simplicity, accuracy and of course, consistency of the software and data.

The scaling of reliability is a tricky business. %bile it is

certainly valid to state that the reliability standards in the scaled
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system may be relaxed (and therefore scaled), sane of the methods whereby

this could be achieved would be poor practice in any design effort,

scaled or not. Some of these would be inconsistency in calling sequence

-and I/O conventions, non-standard data declaration and non-standard

design structure. More feasible alternatives would include;

a. Reduction of precision.

b. Elimination of error detection software geared to errors

which would occur infrequently in practice or not at all in the input to

the scaled system.

c. Use of fast, easy (and not necessarily accurate)

approximation functions and algorithms.

d. Relaxation in enforcement of coding standards. This

approach might be considered in the case where the scaled design is a

skeleton of the final system and recoding would be necessary anyway.

When the scaled approach is to implement a complete subsystem, leaving

the door open for recoding the subsystem is not a good idea. Whether

this approach would indeed, scale reliability is probably a function of

the quality of the programmers. Allowing each prograrmer to "do his own

thing" would speed up the development effort but might, if the

programmers were good, not significantly affect the reliability of the

result. Whether a case can be made for reduced reliability regardless of

programmer quality is a question for further research.

7. Programming Language

Two aspects of programning language suitable for scaling are

language selection and implementation.
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Each individual programming language has its unique strengths

and weaknesses. Implementation of a system in a scaled manner affords

the freedom to select an optimal language for the scaled system even

.though that language may differ from the one chosen for the target

system. As an example, an assembly or machine-order language selected by

necessity for a real-time message handling system may be replaced by a

structured, higher-order language such as ALGOL or PL/I for the scaled

version of that system. Such a selection might be made based upon

considerations of top-down design, code readability, and modifiability,

thereby contributing to accelerated program development.

With regard to programming language implementation, the

language itself might be scaled. Consider a high-level, user-oriented

interactive query language designed to implement a data base management

system. Scaling might be accomplished by not implementing the query

language at all in the scaled system (the functions would be provided by

an experienced prograzmer), by implementing a subset of the language, or

by implementing a version with cruder seyAtax which still supports the

essential query requirements.

In the case of a compiled language implementation, an

adaptation of scaled system methodology is in common practice today.

When a compiler is developed, a compiler supporting a subset language is

generally implemented first. Iterative enhancements of the baseline

lanquage are subsequently achieved through the use of the compiler itself

to generate new ompiler code. In this way, increased productivity is

realized through the use of a higher-order language.
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Another possible approach to language scaling would be in the

case where firmware (PROM - programmable read-only memory) is to be

employed in the final design. Tb speed the development effort, some

-functions to be ultimately supported by firmware might be implemented by

software written in a high-level language.

Closely allied to functionality scaling, would be the choice to

implement the support of a single oxmpiler/language ((X)BOL, FORTRAN,

PL/I, etc.) for a system which must support general pirpose ocmputing or

to implement a single process-oriented language. An example of the

latter might be a case where the functions of message editor and text

editor would be supported by the system-standard editor for the scaled

system.

8. Hardware Configuration

The choice of individual hardware components and their

configuration is an important aspect of the scaled systems methodology.

Significant savings in schedule, effort and cost may be achieved by

reconfiguring the target systems hardware or by selecting an alternate

operational environment for the scaled systems effort. A hardware

configuration is the arrangement and number of physical system ocmponents

that collectively comprise a system's "hardware", e.g., central

processing units (CPU's), core memory, peripheral memory, input-output

(I/O) devices, ocm'unications devices and the wired connections between

them.

A hardware configuration may be scaled at the most elementary

level by reducing either the number of ocmponent types or the total

number of components. Either approach reduces total System ocmplexity.
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Sane devices hoever, serve to reduce total system cxmplexity by their

presence and do not lend themselves to elimination for purpose of

scaling. Examples would include intelligent terminals and peripheral

coxntrollers or I/O processors.

Consider the following list of feasible hardware modifications

for scaling:

a. Reduce number of CPU's. A system which is ultimately to

be multiprocessing could be scaled as a single processor.

b. The choice of CPJ might, in fact, be different frcm that

used for the full-scale system. (Conceivably, CPJ choice could be an

cpen question at the time the scaled system is developed.) The CPU used

for the scaled system might be one with which the design team is

familiar, one which is a substitute for a device under development or one

which is "lesser" in terms of cost, capacity, speed or wrd size.

c. Number and/or type of peripherals.

d. Front-end/back-end systems could be scaled by preliminary

work with only the front-end processor.

e. Increase the memory capacity of the scaled system. This

could speed up the development effort by eliminating or reducing page

faults and core siApping or reduce the need for overlays.

f. Reduce the omplexity of interrupt handling. For example,

use queued interrupts instead of prioritizing them. In the case of

real-time systems, eliminate real-time interrupts by eliminating the

input devices (simulate the data) cr by considering them normal polled

input devices.
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Hybrid device types, omplex devices, and in-development devices

tend to increase system complexity and stretch out the development

schedule. These could be avoided or replaced in the scaled effort.

-Problems with such devices can be reduced or eliminated by substituting

existing, simpler, plug-compatible devices for them. Scaled effort,

schedule, and cost can be reduced by replacing complex devices with

simpler ones, in-development devices with existing ones, real-time

devices by software simulation, and interrupt devices with

processor-controlled ones. As noted, in some cases, it may be desirable

to add hardware such as memory to reduce the degree of core utilization

required or monitoring hardware to aid system evaluation, validation and

verification.

Noteiorthy is the fact that in many cases ocmponents do not have to

be physically removed from a hardware configuration but merely logically

disconnected or bypassed. Finally, considering the operational

environment, it should be noted that multi-site and multi-national

development facilities could be scaled by physically limiting the

development to a single site, thus reducing complex comunications

requirements altogether.

With regard to communications between the processor and peripherals,

the cmmunications network itself may be scaled.

a. Reduce the number of nodes in the system.

b. Scale satellite communications with hard-wired, local

systems.

C. Reduce the number of levels or complexity of a

commnications network or hierarchy.
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d. Provide an equal level of service to each node rather

than prioritized service.

e. Provide one-way rather than two-way message switching or

acommunications.

f. Reduce the ccmplexity of the logical hardware paths

between the sender and receiver.

g. Provide a single oamnnications path rather than include

backup (alternate) links.

In the case of relatively small, firmware-based enbedded systems

such as on-board avionics systems, the facilities of a mainframe to

reduce the need for a high level of machine utilization, to emulate I/o,

and to support online, interactive program tracing and debugging would

serve as an aid to the development of software for such projects. Again,

in this case, "scaled" would not necessarily mean "smaller".

E. CCUJSION

In order to derive a scaled system, it is necessary to take the

functional specification of the full size system and apply some set of

scale factors. These factors must be applied toward the purpose of

simplifying the target system by a desired degree. The applications of

the scale factors should be in accordbace with a programmed set of

objectives (not necessarily original design cbjectives) so that the

scaling results in a useful product. The application of the scale

factors to the functional specification should result in a scaled

functional specification which becomes the master docunent for the design

phase of the scaled system.
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A summarized list of the possible scaling factors outlined in this

report follows:

1. Data base

a. Ocmplexity and type of access method

b. C mplexity of data structure

c. Size elements (number of files, length of files, etc.)

2. Performance

a. Productivity/Throughput (system capacity, job mix).

b. Responsiveness

c. Utilization

d. Cperation System/Organization (processing node, custom vs.

existing CS, interrupts).

3. FUnctionality

a. Vertical subsystem scaling (eliminate subsystem, utilities,

etc.)

b. Horizontal scaling (e.g., performance Monitors).

4. Security

a. File protection method.

b. Dimensions of access matrix.

c. Number of data sets.

d. Classification level of users and/or terminals.

e. Granularity of data access control.

f. Number and types of access classifications.

g. Codewords.

h. Audit trail.
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i. Authentication.

j. Encryption.

5. Maintainability

a. Process-error handling.

b. Restart/recovery.

c. Data correction.

d. Fault detection.

e. Monitors.

f. Backup.

g. Development aids.

h. Documentation.

6. Reliability

a. Precision.

b. Data error detection.

c. Approximation algorithms.

d. Coding standard enforcement.

7. Programming Language

a. HOL vs. assembly

b. Language subset

c. Single vs. multiple languages

d. Replacement of finriware

8. Hardware Onfiguration

a. Number and complexity of hardware

b. Number of CPJ's

c. Type of CPU
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d. Mmory capacity

e. Interrupts

f. Hardware monitors

g. Number of communications nodes

h. Complexity of commumnication nework

i. Level of service to peripherals

B-3 5



APPENDIX C

SYS-T4 SCAL FAC-MR METRJCS

24 December 19CO

Peter Grimes

Dr. Marcia D. Kerchner

c-I

C-1

-7[



SYSTEM SCALE FACTO0R METRICS

24 December 1980

Prepared by:

Peter Grimes
Dr. Marcia Kerchner

INCO, INC
7916 Westpark Drive

McLean, Virginia 22102

This report was prepared in support of contract F30602-80-0219 for the
Rome Air Development Center (RADC), Griffiss AFB, Rome, New York 13441.

C-2

MEMO



A. ABSTRACT

Scale factor metrics for each scale parameter are discussed and

defined as an extension of the results of subtask 1.1 of the Scaled Systems

research project. The research performed under subtask 1.2 of that project

is sumnarized.

Scale factors are measures of the degree to which system parameters

are scaled. Metrics are the unit measures chosen to express these system

parameters. Using appropriate metrics, scale factors are defined in objec-

tive, quantifiable terms and in such a manner as to be indicative of their

effects on cost, schedule, risk, and performi.-ce of scaled vs. full-scale

systems.
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B. OBJECTIVE

The objective of this research is to establish the basis through which

current software engineering principles may be applied to the measurement of

system attributes so that appropriate system scale factors may be systematical-

ly determined.

Scale factors relate a scaled system to its corresponding full-scale

version based upon the criteria of cost, performance, and development schedule.

Because this relationship is critical to forecasting and planning, it is impor-

tant that it is based upon a sound analytical methodology and that it is

accurately expressed.
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C. DISCUSSION

1. Software Parameters

Through the research of software scale parameters, various aspects of

software systems were identified as being relevant to scaling. 7hese aspects

include data base, performance, functionality, security, maintainability, relia-

bility, programming language, and hardware configuration. Each aspect was sub-

sequently broken down into its component parts. The list of software aspects

and their component parts - collectively referred to as 'software parameters" -

formed the basis of this phase of the research.

2. Metrics

For each parameter, an attempt was made to identify a corresponding

metric suitable for calculating scale factors. Very few parameters, however,

could be expressed by existing metrics. The science of software metrics

is still an infant discipline and there exist only a few software metrics

generally accepted as such. These would include "Lines of Oode" (LOC), "CR)

works per second" (from Capacity Management principles), and "Manmonth"

(or "manhour", "manday", "manweek", "manyear", or some equivalent).

3. Direct Metrics

This deficiency of currently available metrics, however, did not present

a major obstacle to this phase of the research. This is due, in part, to the

fact that many of the software scale parameters themselves imply a corresponding

metric.

Consider, as an example, the case of data base size. Components of data

base size include numbers of files, record types, and data field definitions,

lengths of files, records, and fields. Each of these components describes its
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own metric; the integral number of files is the metric for the "number of files"

component, etc. The applicable scale factor is merely the val ie for the scaled

system divided by the value for the full-scale system. This computation yields

a percentage ratio - just like a scale ratio - that is conceptually attractive

and easy to relate to and communicate.

4. Metric Indices

For software parameters that do not have a corresponding software metric

and do not themselves imply the metric (e.g. complexity of access method, file

protection method), the formulation of an appropriate scale factor is not as

straightforward. In such cases a choice must be made between alternative scale

factor formulation methodologies.

5. Interrelated Indices

One convenient alternative methodology involves the assignment of discrete

metric values to each member in a group of related software attributes. Such

metric values (or indices) could be assigned differently, depending on what

they are related to. One possible method which has been rather extensively

used involves interrelating the attributes with each other on a relative scale.

An application of this scheme could be the factoring of the degree of file

protection under the software aspect of security; "no file protection" would be

placed at one end of the scale while "total file protection" would be placed at

the other end, with the varying degrees of file protection falling in between.

"No file protection" might be assigned a value of one and "total file

protection" a value of three; thus, if no file protection were implemented on a

scaled system emulating a full-scale system with a requirement for total file

protection, the component scale factor would be computed as one divided by

three, or 33%.

C-6
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6. Global-Related Indices

A variation of this weighting scheme relates the component parameters to

one or more of the principal global software system aspects - cost, schedule,

risk, and performance. Consider these relationships:

Sequential file access methods would scale random access methods by

reducing the inherent programming and data structure complexity resulting from

the use of record dictionaries, links, and pointers. Substitution for

such access methods, however, would also scale search time responsiveness (an

element of performance) by a factor determined by the expected number of

records present. These interrelationships will be studied in Task 2 of this

project.

Another example arises in the enhancement of an operating system to

support a particular application. The enhancements primarily provide ancillary

functions - a basic scaled capability can be implemented without them. To ob-

tain the source code to the operating system, become familiar with it, and modi-

fy it is costly and time-consuming; to retain the vendor to perform the modifi-

cation is similarly expensive. The scale factor derived through the use of the

*off-the-shelf" operating system can therefore be computed based upon the cost

and schedule savings resulting from its use. Such a computation would probably

be easier to formulate, communicate, and understand than attempting to determine

a scale factor based upon the tecnnical differences between the operating system

and its modified version.

A point to keep in mind here is the motivation for scaling systems: ac-

hieving cost-effective system development with quality assurance. -It is with

this perspective that global-related scale factors are constructed.
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It must be noted that this report does not purport to provide an authori-

tative definition of system metrics nor even scale factor metrics. Its intent,

rather, is to assemble a preliminary set of metrics to provide a oommon discus-

sion framework for scale factoring and a basis for subsequent research into the

measurement and development of scaled systems.

Continuing research of software metrics will be beneficial to the scaled

system project as well as the software engineering community through the ability

to better quantify software system attributes. In an expanding discipline, def-

initions and emphasis tend to shift, contributing to the dynamic nature of the

terminology and technical base. Actual metrics and relationships may therefore

be re-sculptured as this project progresses toward the goal of achieving an un-

derstandable and workable methodology for scaled systems development.
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D. TECHNICAL APPROACH

In determining scale factors, software parameters will be examined in

the same order as they were reported in Software Scale Parameters, the

report delivered under subtask 1.1 of this research effort and herein referred

to as "Report 1.1".

For each aspect of software systems identified for scaling, a weight will

be assigned to each full-scale function within the range of that capability. It

will be determined what part of each function is implemented by the scaled

system. The full-scale weights and scaled values are each added up and then

divided to obtain the scale factor.

1. Data Base

a. Complexity and type of access method

There are three major data base access methods that are to be con-

sidered for scaling purposes: sequential acc.ess, indexed sequential, and

direct access. Consider the average access times for a file of records using

sequential and indexed sequential access.
A

n4 . K) - K n Where ' KI, Kare constants, Ws = averageKs " 2access time for sequential access, and WI = average
W I = KIlog n access time for indexed sequential access (includes

table search time).

ratio R = W s  Ks n K n

" log n

For some n=no, R=I. That is, for a data base of no records, the sequential

access and indexed sequential access methods yield the same search times.
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The nX could be determined by experimentation or experience.
For this R - 1, 1 K_a

log no
K- iOL2o

n
o

R n log no
no

Define R as the relative complexity.

For random access,

W r = ah + (1-a) K r n ,  where a = function a (n),

h = number of instructions and s = size of the hashing region
in the hashing algorithm

ah is the hashing ti.me and (1-a) Kra is the time to locate an empty

space.

n
as 0, a-l

as i, a -

That is, as the region to which keys are hashed becomes denser, i.e.,

n
9-4 1,the randcm access method approaches the sequential method because the

search for an empty spot will approach a sequential search.

The "cost" of a search can then be defined as

C = C, .WI + Cs .W., where CI = Cost of an instruction,
Cs = Cost of storage, and WI and Ws are the number of

instructions and storage for a given method.

The "cost" calculations can be used as the scale metrics and can, for

a given operating system, use the pricing algorithm of that particular system.

The above formula is just one example of a costing algorithm. Another might be

C - W, .W8

The complexity of a given hierarchically structured data-base will be

a function of the number of nodes, N, and the number of links between the
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nodes, L.

For a hierarchical structure,

N-11 L_ :2N - 3

For a network structure,

N-i :s L < N(N-I)
2

The complexity metric will be of the form:

Relative complexity = L links per node (record)
N

In the simplest case, with the only links being between parents and

children, C - N C -1 as N increases
N-i

In the most complex,

C - 2N-3 = 2 - 3 C- 2 as N increases
N N

In a network structure, the most complex case will be:
C = N(N-I) = N-I Z N

2 2 2
N

L/N can be viewed as an average number of links per node, where the

more links a given node can have, the more complex is the implied structure.

An absolute complexity might be defined as D= depth, the number of levels

on the tree, or N, the number of nod-.

How a hierarchical data base is stored will be related to complexity,

as well. Sequential listing of a tree structure is slow compared with linked

list storage but the lists require extra storage and more complex progranmning.

The choice of storage organization for a network structure will result

in the same variance. These interrelationships will be studied in a later phase

of the project.

The relational representation of a data base is so simple that the

measure of the complexity of any given relationally structured file would be a

C-11
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linear function of the number of tables and rows. It can be thought of as a

tree with each table representing a parent node at level 1 and the number of

links equal to the total number of rows, the rows being on level 2 of the tree.

b. Complexity of data structure

(1) Hierarchical

The parameters that form a basis for scaling are the number

of levels of the tree, the degree (number of successors to a given node),

and the total number of nodes (records).

(2) Network

In the network model, it is also necessary to consider the

linkage factor, where scaling would involve limiting the number of logical

links between the nodes.

c. Size Elements

The elements of data base size lend themselves well to scale factor-

ing. Because each is a quantum entity, the resultant scale factor may be

computed as a fraction in which the value for the scaled system is represented

in the numerator and the value for the full-scale system is found in the

denominator. For example, the scale factor for "number of files" is found by

dividing the number of files for the scaled system by the number of files for

the full-scale version. Scale factors for the size parameters listed in Report

1.1 are as follows:

Parameter Scale Factor

Number of Files (Scaled System)
Number of Files

Number of Files (Full-Scale System)
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Length of File (File - Scaled System)
Length of Files

(bytes) Length of File (File - Full-Scale System)

Length of Records (File - Scaled System)
Length of Records

(bytes) Length of Becords (File - Full-Scale! System)

Number of Field, (Records - Scaled System)
Number of Data Fields

Number of Fields (Records - Full-Scale System)

Length of Field (Record - Scaled System)
Length of Data Fields

(bytes) Length of Field (Record - Full-Scale System)

2. Performance

The elements of performance suitable for scaling were identified in

Report 1.1 as productivity, interactive responsiveness, utilization, and

operating system organization.

a. Productivity

Productivity is a common measure of system performance. It is

composed of two elements; the amount of work that can be physically

accomnodated and the rate at which it is ultimately accomplished. The

first element is described by the system's capacity - the principal factor

limiting workload. The second element is described by the systes throughput.

Relating throughput to capacity yields an efficiency or performance index.

Increasing system capacity implies acquiring additional hardware; increasing

throughput, on the other hand, entails obtaining a corresponding increase in the

operating system's efficiency, although this can also be accomplished through

new hardware.
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(1) Capacity

Borrowing from Capacity Management technology, a system's capac-

ity may be defined as the amount of information it can contain at any certain

period of time. The metric used to measure information is the byte (eight

Boolean bits or the equivalent of one alphanumeric character), and {hese are

aggregated for each external device type and for the total internal memory to

arrive at the system's "capacity", the total number of bytes in the system.

(2) System Power

System power can be derived if the rate at which it can

manipulate information (bits or bytes) between the various capacity components

can be determined. The number of bytes, or amount of information, systems can

manipulate internally and between peripherals in a given amount of time is

generally a known quantity, and thus can be used as the metric. By collecting

and correlating this type of information, one can begin to determine the

relative power of different systems by comparing their capacity and ability to

handle data. Cost is directly correlated with power. Scaling systems can thus

be achieved through scaling their power at the cost of not being able to store

and process as much data at a given time or at as fast a rate.

(3) Hardware Capacity

Hardware components provide metrics by which they may be measured

and compared. Memory size is a good example as is the speed of a communications

line. A one megabyte memory module scales four megabytes by 75% (the resultant

scale factor is 25%); a 300 baud modem scales a 3600 baud one by 92% with a

resulting scale factor of 8%.

(4) Software Capacity

Each element of the software Lan, again, provide its own metric,

e.g. table size can be scaled by reducing the number of bytes. The number
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of bytes metric would also apply to input and output fieic sizes.

Robustness of a system, the ability to handle a broad spectrum of data volumes

in excess of that originally anticipated, can be scaled by implementing a

minimum of error checking. The metric would be number of error conditions

to be checked in the system.

Throughput is a measure of the system s efficiency of using

resources. Throughput is usually a function of the operating system but is not

restricted to such and it is generally expressed as the amount of work processed

in a certain time frame. This can be best visualized by considering a batch-

type environment; the metric would be defined as: Number of user jobs completed/

unit time, the more user jobs completed in a given amount of time the greater

the throughput. Similarly, the more job-steps completed in a given amount of

time the greater the throughput. In addition, input data rates are a measure of

throughput. When throughput is related to capacity, a performance/efficiency

index is obtained. In general, throughput is a function of a large number of

factors including the percentage of time that a system is operable. They are all

intimately related to productivity and, when combined, yield a measure of

performance efficiency. Scaling performance has considerable potential for cost

savings because realizing high efficiency in EDP systems tends to drive costs

exponentially and schedules proportionally higher.

b. Interactive Responsiveness

Interactive responsiveness was defined in the proposal as the inverse

of response time, that is, the number of responses/unit time. This definition

maintains consistency in defining parameters so that their "down" direction

implied scaling and their "up" direction implied unscaling. Responsiveness is

dependent on many factors. In a message switching system, responsiveness is

dependent on such parameters as message control efficiency, communication line
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speeds, and the number of message transceivers present; in an information based

system, it is dependent upon keyed-search efficiency, storage unit access

times, retrieval speeds, frequency of queries, etc.

It should be mentioned that responsiveness is very difficult to predict

on the front-end of the implementation phase. This parameter is usually quanti-

fied through observation. In the past, response times were typically establish-

ed as a system requirement. If the resulting system did not meet the target,

much work was expended to modify the system and bring the response time within

specifications. Research has shown that this is consistently the most costly

way to effect what essentially are design changes - on the tail-end of the

development cycle. Scaled system development, on the other hand, provides a

scaled model of the ultimate system which would conspicuously reveal such design

deficiencies and the full-scale system design specification can be cost-effec-

tively adjusted in the front end of the design cycle - where economic leverage

is the greatest. Suppose it is anticipated that a system's responsiveness will

degrade in direct proportion to the number of terminals connected to it. If a

scaled system with one-tenth as many terminals does not respond in less than the

targeted response time, it should be clear that there exists a deficiency in the

design specification. Although simplified, this is probably a typical analysis

example for responsiveness.

c. Utilization

The effects of high processor utilization on costs and schedule are

fairly well documented; above approximately 50% utilization, costs begin to

rise exponentially and schedules grow proportionally - 90% utilization will

triple the costs of 50% utilization. Such figures have generally been derived

from studies concerned with core memory and processor time utilization.
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The computation of utilization is fairly straightforward, as the

differences can be attributed to the entity under scrutiny. Utilization can be

measured in terms of the percent capacity used; alternatively, it can be

measured according to the time used as compared to the time available. If

necessary, the utilization of each component of the system can be measured. For

example, CPU utilization would be measured in instructions per time, memory

utilization as proportion of total memory available, etc. As an example of the

calculation, an eighteen megabyte disk/drive containing nine megabytes of

information is described as being 9/18, or 50% utilized. Similarly, if a

Management Information System (MIS) package is on-line for a total of six hours

during an eight hour workday due to user demand, its utilization may be computed

as 6/8, or 75%.

d. Operating System/System Organization

Report 1.1 identified subelements of Operating System/System

Organization as processing mode, operating system, and interrupt processing. In

that report, the difficulty in quantifying these aspects was addressed. Scaling

system aspects applicable under this category would undoubtedly be highly

case-dependent and quantifying the factors largely subjective.

(1) Processing Mode

In a system where batch, interactive, and real-time processing

modes are supported, a scaled system could consider only a single mode of

operation. Also, a real-time system could be scaled with a batch system and

simulated input data. Measuring the resulting decrease in complexity (if

measuring could be done at all!) would appear to be not as valid as

investigating resultant changes in other, quantifiable system aspects which

interrelate with the processing mode.
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(2) Operating System

As noted in report 1.1, if the full-scale system requires a

custom operating system, the scaled system could use an off-the-shelf system

or modify an existing one. The resultant cost and schedule changes can be

used as the metric.

3. Functionality

H.D. Mills states that the basic functions (60-80% of the processing)

of a unit of software are usually a small fraction (20-40%) of the total soft-

ware finally built. This assertion is generally accepted and holds deep impli-

cations for Scaled Systems Technology. Since effort is strongly correlated with

produced code, an initial operating capability of a full-scale system (barring

ancillary functions, documentation, installation, maintenance, and user support)

could be achieved with only 20-40% of the total projected effort. This at-

tests to the viability of the scaled systems approach and identifies functional-

ity as a principal system aspect suitable foL scaling. Functionality can be

scaled by reducing the variety of functions supported (eliminating ancillary

or additional support functions), or by reducing functional complexity. The

first method entails vertical functional] scaling (eliminating sub-systems); the

second - horizontal functional scaling.

a. Modularity

When speaking in terms of functionality, modularity is probably the

system parameter that is being most directly dealt with. modularity describes

the number and composition of the various program modules comprising a system.

The complexity metric of a system can be defined in a manner analogous to that

used for defining the complexity of a hierarchical structure.
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Absolute complexity = number of modules

Relative complexity - number of module linkages

number of modules

b. Factoring Vertical Functional Scaling

In the case of vertical scaling, scale factors could be computed based

solely upon the number of fur-ctions eliminated as compared to the total number

of functions called for in the requirements or design specification (3 of 12

functions eliminated reduces functionality by 3/12, or 25%; the scale factor

would subsequently be computed as: (12-3)/12, or 75%).

Preferably, the amount of code necessary to support each function would

be a known quantity. Thus, if the three functions discussed in the previous

example required 40,000 lines of code (LAX) from a total system size of 100,060

LOC, the resultant scale factor would be 60% ((100,00-40,000)/100,000), as op-

posed to 75%.

The absolute complexity could be scaled by reducing the number of

modules. A more accurate metric for measuring the scale factor might be

number of lines of code.

c. Factoring Horizontal Functional Scaling

Deriving a scale factor for horizontal scaling may be more difficult.

In the case of eliminating a common shared functional module, such as a monitor

or security subsystem, the analysis could be analogous to that of vertical

scaling. If, however, horizontal scaling is achieved by reducing module sizes

due to decreased complexity, the analysis may have to be more subjective. As in

the case of operating system/system organization, computation of horizontal

scale factoring will be reserved for a case-by-case analysis and fwture

research.
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For a message handling system, the receipt/tranmuission can be acaled

by omitting some of the functions. For example, a full-scale system might have

message receipt, transmission, dissemination, storage, and retrieval capabil-

ities while the scaled system might receive messages from only one input

source, not transmit messages, etc. The scale factors for these functions

would be defined as the percentage of full-scale functionality implemented

by the scaled system.

For message-receiving systems, the number of networks with which the

system interfaces could determine the weight factor in the metric:

Scaling message receipt factor =

number of network interfaces in scaled system
number of network interfaces in full-scale system

The functions of message transmission, e.g. handling new messages and

retransmission, imply a weight assignment in this case of two to the full-

scale system.

{Transmission, disseminat ion)=

number of {transmission, dissemination) functions in scaled system
number of {transmission, dissemination) functions in full-scale system

The weights of the full-scale system and those of the scaled system

factors can be summed to produce a total functionality scale factor:

Functionality scale factor =-weiglUs in scaled system
-weights in full-scale system

As more detail about the full-scale system design is acquired, it

will be possible to further refine these metrics, by assigning weights to

the proposed subfunctions that reflect the complexity or resource requirements

for implementation. At this level of detail, typical metrics used previously

include source lines of code estimates, staff estimates, and number of pages
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devoted to each function within the functional description.

4. Security

Currently, system security is a topic of prime consideration and vigorous

research. As more information i" entrusted to computer systems, concern for se-

curity necessarily increases. 7his concern has been manifested in such areas as

automatic encryption technology and operating systems through the Kernelized Se-

cure Operating System. To date, many security strategies have been implemented

including the use of multiple processor networks to distribute varying levels of

classified material and to ensure that the determinancy of access privileges can

be maximized.

Barring automatic cyphering/decyphering hardware for communications, much

of computer security is achieved through overhead software. This may be accom-

plished at any one of the many system levels: kernel, executive, (operating)

system, sub-system, and application. Since few operating systems are built with

the goal of providing information processing with multiple security levels, most

security schemes are implemented at the sub-system level or below. Regardless

of system level, security processing primarily involves the validation of re-

source requests against tables cross-referencing valid requestors (users and

programs) and resources. Such tables require maintenance modules to keep them

up to date as well as access and search modules (which must also be secure!).

Depending on the degree of security provided, these tables grow increasingly

complex and their associated processing overhead grows; thus, comparing the mag-

nitudes of such tables provides an adequate means of quantifying security

metrics in addition to the obvious metrics of required design and coding

effort. Additionally, many systems identify the need for access audit modules

which track details concerning requests for resources and the security modules'

resulting actions.
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The security probability (Gilb) is defined as

P (a) a probability of successful attack rejection

This probability will vary depending on the level of protection in effect.

a. File protection

Six levels of file protection have been defined by Randall Jensen in

Software Engineering, as follows, with a scale value attached to each:

Scale Value Levels Of File Protection

1 norotection- File access and all
operations available to any user

2 all or nothing- If access granted,
tnen all operations permitted

3 controlled sharing- User is granted
access rights which are the minimum necessary
to accomplish the specified task

4 spcified access- Access to each object
is restrict-an-- access rights are owner-
definable; the rights could be based on the
user's identity, the environment (type of
terminal, time of day, etc.), or the contents
of a record

5 total protection- No file sharing at
all

6 post-access control- Users granted access
subjet the purpose for which it is to
be used after access accomplished

b. Dimensions of access matrix

The dimensions of the matrix are determined by the number of users,

processes, or procedures which have access restrictions and in the other

direction by the number of objects for which access is restricted. These two

factors to be scaled would have metrics as follows:

number of users with access restrictions
tai ~i hfiuse's

number of procedures with access restrictionst o t -ha -6 FL-7 a---4r s _
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c. Number of data sets

Different data sets could be provided for each access clearance.

d. Classification Level of users arnd/u terminals

To scale classification level, all terminals/users could be granted

access to everything and provide only physical security for access to the

terminals. Th'- estimated amount of effort necessary to implement a subsystem

(LOC) which would allow other than open access would be used as the metric.

e. Granularity of data access control

Access to different user classes could be modified.

f. Codewords

Codewords could be eliminated, with the metrics as follows:

0 = No Codewords
1 = Codewords

g. Audit Trail

A similar metric could be defined as follows:

0 = No audit trail
1 = Audit trail

h. Authentication approach

Each function, including the use of passwords, the recording of access

failures, log-on procedures, and terminal authentication, would be assigned a

weight determined by the amount of software (lines of code) needed to implement

it. The scaling resulting from the simplification or elimination of these

capabilities could be measured by the percentage of lines of code eliminated.

i. Encryption

Through the use of simulated data or limited transmission, a

full-scale requirement for software encryption of data could be suspended.

The metric would be:
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0 - No encryption

1 - Encryption

As more detail about the proposed system is acquired, the weights of {0,l1

could be adjusted to indicate in some way their complexity or resource require-

ments for implementation. However, for simplicity, the present metrics will

only indicate whether or not the function is implemented.

5. Maintainability

Building-in maintainability is generally done to minimize the time required

to locate and fix a bug in the software during the test, integration, and

maintenance phases of its life-cycle. This time will inevitably be directly

proportional to the amount and quality of supporting technical documentation

available. Of course, complementary aspects of maintainability are the

auto-correcting, recovery, or diagnostic facilities supplied with the final

software product. Scaling such aspects of maintainability as amount of

documentation and maintenance aids supplied may seem contrary to sound

developmental practices but it must be remembered that the anticipated

life-cycle of a scaled system is short (just long enough to get an effective

"handle" on the design and functionality of the full-scale system); the scaling

of these aspects can therefore be justified.

The appropriate metrics suitable for factoring maintainability are amount

of documentation produced and functionality of the ancillary maintenance modules

(the auto-correcting, recovery, and diagnostic software - See "Functionality").

In addition, the effort required for configuration management may be scaled in

the respect that the configuration management necessary for the scaled effort

need not be as extensive as that of a full-scale system. Again, consideration

of the expected life-cycle duration is paramount.

Maintainability is defined as the probability that, when maintenance
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action is initiated under stated conditions, a failed system will be restored

to operable condition within a specified time t.

Maintainability is a function of the capabilities included in the

system, the skill level of the personnel, and the support facilities

(locally available tools and diagnostic test equipment or aids, spare parts/

alternative program versions/back-up files). It is a measure of the cost

and time required to fix software errors in an operational system. Among

the maintenance modules which could be scaled are:

a. Process error handling

The scaling involved in minimizing the number of conditions to be

checked can be measured by the number of lines of code needed to implement the

error checking.

b. Restart/recovery procedures

The restart procedures can be eliminated as much as possible and

a set of values assigned as follows:

0 = no restart procedures
1 = minimal restart procedures
2 = complete restart procedures

c. Data correction

Modules to correct and/or reject bad data can be eliminated with

the scaling being measured by the reduction in the number of lines of code.

d. Fault detection

Fault location/trap software can be eliminated, reduced, or

modified, again using the number of lines of code as the metric.

e. Monitors

Software to monitor system performance and gather statistics can

be eliminated and te (estimated) number of lines of code needed tO implement

these functions can be used as the metric.
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f. Backup

Backup procedures can be minimized.

g. Development aids

Development aids such as program tracers and interactive

debuggers would actually be added, to reduce the development effort of the full-

scale system.

h. Documentation

Documentation objectives are concerned with the quality and

quantity of user publications. Scaling the amount of documentation may be

risky as pointed out in 1.1, because the lack of documentation, recovery, and

reconfiguration programs may actually hamper rather than enhance the program.

6. Reliability

Reliable software is software that does not fail. The metric commonly

used for reliability is the frequency of failures occurring over a specific per-

iod of time. Obviously "building-in" high reliability is costly and is only

justified in applications demanding infallible software, such as man-rated ap-

plications (i.e. applications where lives are at stake). One software aspect

reflecting upon reliability is robustness. Robustness describes the software's

ability to adequately accommodate erroneous input values; values which, if un-

detected, could cause the software to produce inappropriate output, fail, or

"crash". The pitfall of error detection is the ability to anticipate all input

combinations which could cause the software to fail. This requires rigorous

requirements formulation and design; reliability cannot be "tested" into soft-

ware. As such, reliability is a worthy area for scaling and again the scaled

system approach presents the opportunity to validate and refine th6 typically

heuristic systems formulated for error detection and correction.
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The concept of reliability is contrasted to that ot maintainability in

that maintainability is concerned with readily fixing or enhancing the software

whereas the trust of reliability is to prevent failures from occurring in the

first place. Accordingly, a certain amount of redundancy is built into systems

such that automatic diagnosis and recovery can be accomplished by the software

itself without operator attention or interver.cion. Such methodologies are a

principal component of data base management systems where the need for the abil-

ity to detect a degraded data structure and rebuild it are crucial to their re-

liable operation. This redundancy requires additional design, system storage,

progranming, and effort; and as such reliability may be scaled with respect to

these aspects.

Reliability can be defined as probability of satisfactory performance for a

given time when used under stated conditions, the metric being defined as the

number of failures/time. A software error is present when the software does not

do what the user reasonably expects it to do. A software failure is an

occurrence of a software error.

a. Precision

The precision metric is defined as the number of decimal places or

bitz, whichever is the most convenient unit to use for the particular appli-

cation.

Data error detection

Software geared to errors which would appear infrequently in practice

or not at all in the input to the scaled system can be eliminated.

The metric will be defined as the number of lines of code for error

detection.

c. Approximation Algorithms
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Scal ing can be accomplished through the use of fast, easy (not as

accurate as possible) atproximration functions and algorithms.

The motivation for scaling approximation algorithms is to minimize

lines of code or complex operations which are prone to error.

The lines of code required to implement algorithms could be the

metric. The logical complexity of a program, a measure of the degree of

decision-making within a system, could also be used. The absolute logical

complexity measure is defined as the number of non-normal exits from a decision

sLatement (IF,CN,AT END, etc). The relative logical complexity is defined as:

Absolute Logical Colexity

To tal number of Instructons

To minimize complexity, maximize the independence of each

component of a system.

d. Coding Standards

Relaxation in enforcement of coding standards would only be done in

cases where recoding would be necessary to implement the full system. If,

however, the scaled system will form the basic structure for the full system,

then strict coding standards should be maintained.

7. Programing Language

The important principles in language syntax and semantics are uniformity,

i.e. a language construct that appears in several contexts should have the same

syntax and semantics and simplicity, which implies clarity and integrity of

language concepts.

More often than not, the choice of a programming language is set or, at

best, limited at any one development installation. Selection of an alternate

language can be prompted by a number of reasoas. These include non-existence
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or limited support of the target machine or language and development complexity

of the target language.

Consider the case of "ADA", the proposed DOD standard programming lan-

guage which, at the time of this writing, has been specified but nwt yet fully

implemented. A software development installation could still begin work on a

project targeted for ADA-language implementation through the use of an existing

high-level language, designing and coding it with the anticipation and intention

of future conversion to ADA. While it may be difficult to visualize the "scal-

ing" in this example, it represents the use of software other than that targeted

so that a preliminary product can be readily assembled and evaluated for any de-

sign or operational deficiencies with the intent of minimizing the overall de-

velopment schedule, risk, and cost.

In contrast to no language, there may be no machine available for the de-

velopment of a software application. Tnis case is not infrequent, as software

projects are often started in anticipation of the delivery of hardware (which is

invariably delivered late), or the production of hardware which is not yet mar-

keted but whose characteristics have been fully specified. In these cases, the

software project need not be delayed, as the tools of cross-assemblers, compil-

ers, hardware simulators and emulators can be utilized so that the scaled pro-

,Jiction, evaluation, and design iteration can get underway.

The writing of software, much like any other creative process, is largely

an iterative process involving the refinement of working "drafts" toward the

goal of a product in final form. Some languages facilitate this type of pro-e3s

more readily than others even though they may not be the best choice for the ul-

timate implementation. A perfect example of this is that of the language inater-

preter. Typically (and necessarily) slow and inefficient in terms of execution

speed and run-time hardware requirements, language interpreters are interactive
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and promote and facilitate quick implementation of anything from an application

program to an operating system through built-in type checking, syntax

analyzers, statement editors, and break-pointing.

"Structured" languages are also well suited to subsequent modification and

semantical re-working while languages resembling assembler dialects are more

difficult to read and comprehend and thus harder to use in iterating towards a

software solution. This is one of the underlying aspects of structured, high-

level languages and part of the reason they contribute to shorter development

schedules and increased programmer productivity. An assembly language-based ap-

plication can be scaled with respect to programming language through the choice

of a high-level language to work out the basic logic of the application in a

structured manner. After design validation, the chore of language conversion to

assembler for code optimization is relatively straightforward. This is

analogous to arguments presented in favor of simulation languages, which have

been used quite successfully in many different instances. Such a methodology

would be ideal for the development of software intended for embedded

applications and is, in fact, a common practice in the development of such

software as avionics and hand-held devices such as programmable calcualators and

language translators.

Report 1.1 cited other instances for scaling language selection and im-

plementation. Scaling language implementation is accomplished by successively

enhancing a base-line subset of the language being implemented - an iterative

enhancement technique which is similar to the scaled approach.

Even though scaling programming language is feasible, the factoring of

thig aspect is difficult; much research, however, has been devoted to quanti-

fying the relative expressive powers of languages. Perhaps the best known work
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of this type is that of Halstead's Software Science. 7hrough the basic tools

of software science, Halstead was able to develop a methodology for factoring

the expressive power of languages on a scale. Further discussion of Halstead's

work here would be a digression, the point being that programming languages have

been analyzed and assigned ratings as to their relative "power". In the con-

text of scaled systems, such a rating could be used to imply a measured impact

on development effort of typical applications. Additional data is available

quantifying the expressive power of languages at the machine level, this being

the expansion ratio of machine instructions to high-level language statements.

Halstead, Knuth, and others have made contribations in this area.

8. Hardware Configuration

As in the case of data base, factoring hardware configuration is simpli-

fied by the nature of the entity itself, due to the numerically descriptive

nature of hardware. Hardware is basically described oy its capacity, transfer

rate, quantity, and cost, where the basic scale factor definition would be:

Scale factor (in %) = value (metric) for scaled version
value (metric) for full-scale version

Consider the following list of hardware elements possible for scaling and

their metrics:

a. Number of CP" S

Scale from multiprocessing to a single processor

Processing scale factor =

number of CPU's in scaled version
ni ----% f--Fs--n-T f -scale ves-on

b. Number of Peripherals

Peripheral scale factor =

number of jr ipherals in scaled version
number of peripherals in full-scale version
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c. Instruction set of a CPU

Instruction set scale factor =

number of elements in scaled instruction set
number of elements in fuUl-scale instruction set

It must be noted, however, that some devices serve to reduce system

complexity by their presence. Examples would include intelligent terminals and

peripheral controllers or I/0 processors.

d. For some factors, simulation could be used to reduce complexity in tne

scaled system. For example, eliminate real-time interrupts by eliminating the

input devices (simulate the data instead).

e. Regarding communications between the processor and peripherals, the

number of communications nodes could be easily factored by the standard

definition.

Communication node scale factor

number of communication nodes in scaled version
n-ber of --- n e- in ful-ZaTeoversion

f. Complexity of communications network or hierarchy

The complexity can be scaled by lowering the number of linkages

among nodes.

g. Level of service to peripherals

A scaled system could provide an equal level of service to each node

node rather than prioritizing service. The scaling would be based on the

complexity associated with prioritized service.
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Parameter Metric

1. Data Base
a. Complexity of access method cost metric
b. Complexity of data structure

(1) relative links/node

for relational, R*T, R-nLmber of rows,
T-number of tables

(2) absolute number of levels, number of nodes
c. Size elements number of files, length of files

(bytes), length of records, number of
fields, length of data fields,
(bytes)

2. Performance
a. Productivity/throughput

(1) System capacity total number of bytes in system
(2) System power number of bytes/time
(3) Hardware capacity I of capacities of individual

components
(4) Software capacity number of bytes in tables, etc;

number of error conditions to be
checked in the system

b. Interactive responsiveness number of responses/unit time
c. Utilization capacity used/capacity

available, time used/time
available

d. O.S./Organization
(1) Processing mode number of modes of operation
(2) Operating system cost and schedule changes

3. Functionality
a. Modularity absolute complexity = number of

modules
relative complexity = number of
module linkages

b. Vertical subsystem scaling number of lines of code
c. Horizontal functional scaling LOC, staff estimates, number of pages

of functional description

4. Security
a. File protection levels of file protection

{1-61
b. Dimensions of access matrix number of users with access

res rictions/total number of users
number of procedures with access
restrictions/total number of pro-
cedures

c. Number of data sets
d. Classification level of LOC for a classification.subsystem

users and/or terminals
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Parameters Metric

g. Granularity of data access Minimize for each level of access
control

f. Codewords 0 = no code words
1 = codewords

g. Audit trail 0 = no audit trail, 1 - audit trail

h. Authentication LOC

i. Encryption 0 = no encryption, 1 = encryption

5. Maintainability
a. Process-error handling number of conditions to be checked
b. Restart/recovery LOC
c. Data correction LOC
d. Fault detection LOC

e. Monitors L0C
f. Backup
g. Development aids
h. Documentation number of pages

6. Reliability
a. Precision number of decimal places or bits
b. Data error detection LOC for error detection
c. Approximation algorithms LOX required to implement

algorithms, absolute and
relative logical complexity

d. Coding standard enforcement

7. Programming Language "power"

8. Hardware Configuration
a. Number and complexity number of CPU's, number of

of hardware peripherals,
number of elements in instruction
set

b. Interrupts
c. Complexity of communications number of communications nodes

number of linkages among nodes
network

d. Level of service to complexity of prioritized
peripherals service
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INTERRELATIONSHIPS AMONG SCALING FACTORS

The scale factors proposed in Report 1.2, System Scale Factor

Metrics, influence and interrelate with each other in complex ways that

can be quite different for different operating regimes (e.g.,

disk-limited, CPU-limited) of the IDHS being modeled. In order to scale

a system, ways are needed of predicting changes in system characteristics

as the scaled parameters vary, even when the variations are large enough

to place the IDlHS into a different operating region. For exmple, if the

small scale system has a factor of four fewer terminals than the

envisioned full-scale system, it is necessary for the system designer to

know how system throughput will degrade when the system is scaled up anc

terminals are added.

In many engineering applications, the amount by which critical

parameters vary is in some sense "small", and it is possible to represent

the relationships as linearized expansions about some nominal operating

point . Unfortunately, the kind of scaling that is appropriate in the

present application is generally characterized by variations ranging from

a factor of 2 to 10. IDHS, when scaled by these magnitudes, will often

be operating in entirely different regimes, and no simple expressions

relating the performance characteristics in different regimes can

generally be constructed.

As an illustration, consider the functional relationship of system

throughput to a scaled parameter such as CPU power for an IDHS operat ing

in a disk-limited or a CPU-limited operating regime.
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Consider Q, the ratio of the length of time the CPU is occupied to

the length of time the disk is occupied:

Q - CPU instructions * seconds
disk access CPU instruction

- seconds CPU occupied
seconds seconds disk occuvied
disk access

Where CPU instructions is the CPU power.
second

When Q is less than one, the system is disk-limited. Figure I

demonstrates how such a disk-limited system might look with two jobs

running, with control of the CPU and disk alternating over time. The

jobs generally finish using the CPU quickly and must wait for the slower

disk.

When the system is disk-limited it tends to be rather insensitive to

CPU speed, but throughput varies greatly with changes in disk access time

and with those software changes, e.g., in data base organization, that

vary the CPU instructions executed per disk access. That is, the

behavior of a disk-limited system (most jobs are in the disk queue) is

sensitive to:

o Disk hardware characteristics (e.g., speed, size)
o Data base organization affecting disk accesses

per search

o Security features that require disk accesses
o Available main memory where this influences

paging and/or swapping rates

The behavior is insensitive to:

o CPU power
o Software changes that affect the number of

comput at ional inst ruct ions
o Data base organization that doesn't affect

disk accesses (e.g., file size in a random
access configurat ion)
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TIME JOB I STATUS JOB 2 STATUS

Job 1 gets CPU Job 2 in CPU queue

Job 1 gets disk Job 2 gets CPU

Job I continues using disk Job 2 in disk queue

Job 1 gets CPU Job 2 gets disk

Job 1 in disk queue Job 2 continues using disk

Figure 1. Job Behavior in a Disk-limited System
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On the other hand, if the quantity Q is larger than one, as

illustrated in Figure 2, most jobs end up waiting for CPU services and

the system is more sensitive to changes in CPU power and those parameters

that affect the nm)%er of instructions.

The behavior of a CPU-limited system (most jobs are in the CPU

queue) is sensitive to:

o Changes in CPU power
o Software changes that affect the number of

computat ional instructions.

The behavior is insensitive to:

o Speed, size of disk hardware
o Overhead features such as security,

that require extra disk accesses to
perform specific functions

o Data base organization affecting disk accesses/search
o Available main memory

The behavior described in these examples of CPU-limited and

disk-limited systems is summarized in Figure 3, which illustrates the

throughput and CPU speed functional relationship. It shows, for example,

that doubling CPU power does not necessarily double throughput.

The relationsh ps between parameters are complex and non-linear. It

is not possible t write down analytic expressions that will hold under

all conditions.

In order to provide the system designer with the tools that will

enable him to predict performance under the wide range of scaling

condit ions that are encountered in practical situations, a concept has

been evolved that uses a simulation model of a generalized inte.Jligence

data handling system to predict performance and to predict changes in one

variable from changes in another. In effect then, the simulation
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TIME JOB I STATUS JOB 2 STATUS

Job 1 gets CPU Job 2 in CPU queue

Job I continues using CPU Job 2 in CPU queue

Job I gets disk Job 2 gets CPU

Job I in CPU queue Job 2 continues using CPU

Job 1 gets CPU Job 2 gets disk

Job I continues using CPU Job 2 in CPU queue

Figure 2. Job Behavior in a CPU-limited System
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Q=1

CPU - limited
regime I Disk - limited

Throughput 11regio

CPU speed

Figure 3. - Throughput - CPU speed functional relationship
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substitutes for the nonexistence of precise analytic functional

rtlationships between various scaled param cers.

It has been found that a fairly small number of parameters is

adequate to specify each particular IDHS to the simulation. Each of the

input parameters, in turn, can be expressed as a fairly simple analytic

function of the scaling parameter factors. A series of formulae are used

in steps to relate the simulator variables to scale factors. A diagram

of the technique is shown in Figure 4. An example of a simulator input

variable is CPU service time, i.e., time in CPU per CPU block, where a

block is a set of instructions until a disk access is encountered. The

following formulae are one set that can be used to relate CPU service

time to system scale factors.

CPU service time - instruct ions executed per block
power (instructions per time)

Total instructions executed = number of computational. instructions
+ number of disk accesses *

security instructions other
+ overhead

access instruct ions

Number of disk accesses - number of data base accesses +
number of paging accesses

Number of paging accesses - K1* number of instructions executed*
virtual core per job

real core per job

Real core/job =

hardware core - operating system core - security core-maintenance core
number of terminals

The above step-by-step procedure to relate simulator variables to

scaling parameters, such as number of terminals and security and

maintenance core (as functions of the levels of protection and

maintainability required), is illustrated in Figure 5 for CPU and disk
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Figure 4. Relati-ng Scale FactorL to Siiulation Variables
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service time.

Other parameters of which throughput is a funct ion incidde disk

service time, job rate (number of jobs input per time), number CPU

requests per job, system power, and system capacity.

Several of the elements in these formulae, e.g., paging accesses,

can be measured by the system, and the constants such as K1 can be

derived through system measurements.

Unknown parameters, e.g., the number of computational instructions

for a typical job, must be evaluated in order to complete the formulae.

A way to approach the problem of evaluation might be to start with

"reasonable" estimates for these parameters. When the small scale system

is operational, they can be measured by monitoring system behavior.

Indeed, the purpose of building the small scale system is to measure the

parameters which will be used in the full-scale system so that

flexibility in the design of the full-scale system can be retained. The

small scale system together with the simulation will enable the designer

to see what will work in the full-scale system.

The simulation will be used by the system designer in an iterative

manner in the course of specifying the full-scale system. The scaling

factors will be specified and used as input to the simulation, the output

will be examined, and scaling will be respecified until the desired

outputs, i.e., full-scale system behavior are achieved. A typical

question would be: How much can the dat. base size be scaled up with

present disk hardware without going below the minimum required

responsiveness (responses per unit time)? Will it be necessary to have

more and/or faster disks in order to achieve the desired full-scale
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system responsiveness and incorporate the necessary data base size? If

access time is improved by so much, how much can the data base then be

scaled up? The system designer will look at the results of the

s imulat ion based on a set of values for the scaling parameters and

iteratively adjust these values. Such respecifications of scaling may

well result in design changes for the full-scale system, e.g. by going to

more and/or more powerful hardware. Thus the tools to be used will be

the simulator and the set of input variables.

The remaining research on this task will involve further definition

of the method's details and insuring that the simulation has sufficient

realism for the case of IDHS. In addition, it must be verified that the

functional relationships between the scale factor parameters, as measured

by the defined metrics, and the simulation input variables are valid

relations. If necessary, metrics will be redefined.

D-13

....... . i i H i i l l i I i l ... ... . .. . . . i . .. .. .



APPENDIX E

SIMULATOR VARIABLE - SCALE FA=I'OR EFJATIONS

27 February 1981

Dr. Marcia D. 1Kerchner



SIMULATOR VARIABLE - SCALE FACTOR EQUATIONS

27 February 1981

Prepared by:
Dr. Marcia D. Kerchner

INCO, INC.
8260 Greensboro Drive

McLean, Virginia 22102

This report was prepared in support of contract F30602-80-0219 for the
Rome Air Development Center (RADC), Griffiss AFB, Rome, New York 13441.

E-2



Simulator Variable - Scale Factor Equations

The report Interrelationships Among Scaling Factors described a

procedure to relate simulator variables to scaling parameters. The

definition and equations have been refined and will be described.

Consider the simulation parameter CMEAN, mean CPU service time.

It can be defined as follows:

instructions executed/block
instructions/time (power)

Consider also the following definitions:

ND m number of disk accesses

- NDB (number of data base disk accesses) +

NDP (number of paging disk accesses)

I - number of instructions

- IC (number of computational instructions) +

IDB (number of data base instructions) +

I (number of paging instructions)

Define the frequency of data base disk accesses per computational

instruction,

F N
DB I [DB

C

Then NDB IC N[DB- F

C

Also, NDp IC *C , wh-' Kp is a system-dependent constant
CR

cAlculated as the number of p: .ik accL£ses/computational instruction, Cv

is the virtual core for a particular Job (the job size), and CR is the real

core for the job (the actual core available for the Job).

Then

ND N DB + NDP
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ND - IC[FDB + Kp CV]

IC 1

ND FDB+KPCV
CR

IC- is the number of instructions per block so,
ND

CMEAN - [FDB + Kp CVI
CR

instructions/time

To find a value for FDB, estimates and typical numbers will be sought.

The value will depend on the fumction being performed and the probability

of having to make a disk access. There are several factors that affect

the probability that a piece of information is in core vs. on disk, such as

the amount of the data base that is stored in core at any time, the organi-

zation of data on the disk (the data base struciure), and the data manipula-

tion algorithms. Also, since FDB was defined as NDB it may be possible

IC
to calculate NDB for a given function and data base organization, while

IC would also be a function of scale factors, such as the function being

performed and the data base size and data base complexity. Thus FDB could

be derived in this way.

To find CV, for each job of type J, assume input values for simulation

parameters mean CVQ), CV(J). As the job begins, pick the actual CV

according to a probability distribution functior.

For CR, the reol available core for the job, the following system-

dependent values can be input:

CT - total core for the machine

COS - operating system core
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Then
CT Cos C - CosCR ,,
NRmber of jobs running Number of terminals

Now consider the simulation parameter, DHEA, the disk service time.

DMEAN - seek time + disk read speed*average amount read.

The seek time is a function of hardware, a scale factor, and usually

dominates DHEAN. Whether the other element, disk read speed*average amount

read, is negligible or not depends on how the system is handled.

Another simulation parameter IMEAN, is defined as follows:

-AN - CPU/disk iteration count

- number of disk accesses

w ND 0 N DB + NDP.

Then

IMEAN - Ic[FDB + Kp .-Y.
CR

f is difficult to calculate, the following equation can be

used instead:
1MEAN a NDB + 'c*Y-P CV

CR

In the equations that have been discussed, the simulator parameters

have been defined as functions of many of the scale factors, including

power (instructions/time), number of terminals, real core (system capacity),

number of instructions (related to data base complexity & structure), hard-

ware, functionality, and security core (involved in the calculation of CR,

the real available core for a Job). The use of the simulator with experi-

mental values will then permit analysis of scale factor interrelationships.
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Simulator Description

The operating system performance simulator operates as follows: a

job enters the system at random intervals from one of n terminals.- The

job is assigned a job class (disk or CPU bound) and a CPU/disk iteration

count based on a probability distribution.

The job is placed on the CPU or disk queue if the required facility

is busy; when it gains control of the CPU, it is assigned a CPU service

time based on a probability distribution function; similarly, a disk aervice

time is assigned when it gains control of the disk. When the job has been

completely serviced, the terminal that submitted the job waits a period

of time based on a user-submitted probability function until a new job is

submitted from that terminal.

Another method of describing the simulation is by enumeration of its

elements, i.e., its objects, terminals, jobs, CPU, and disk, as shown in

Figure 1, and its events as shown in Figure 2.

Events can be job creation, job start, CPU event, or disk event. The

description of each is shown in Figure 2.
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Objects:

n terminals

Jobs

CPU

Disk

Characteristics of objects:

Terminal:

wait time

number of terminals

active job

CPU:

queue

active job

service time slice

Disk:

queue

active Job

service time slice

Job:

status - CPU queue, CPU active, Disk queue,

Disk active, completed

Class

CPU/Disk iteration count

Figure 1. Simulation Characterization of Objects
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Job creation event

1. creates a job object

2. assigns a job class & iteration count randomly

3. schedules next job creation event based on user creation rate

Jb'b start event

1. activates Job by placing it in CPU queue

2. schedules CPU event if CPU queue is empty

CPU event

1. If job has CPU, determine if it is finished. If finished:

a. delete job object

b. remove job from terminal

c. schedule a job start event

If not finished:

a. add job to disk queue

b. if disk free, schedule disk event

2. Assign next job in CPU queue (if any) to CPU.

3. Determine time slice for this CPU slice.

4. Schedule CPU event for this time.

Disk event

1. If Job has disk:

a. add job to CPU queue

b. if CPU free, schedule CPU event

2. Assign next job in disk queue to disk.

3. Determine disk time slice for this disk access.

4. Schedule disk event.

Figure 2. Description of Simulator Events
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The operating system performance similator has been exercised with

various sets of test data for two purposes. First, to examine how scale

factors interrelate in a given environment, and second, to demonstrate

how the simulator would be used in an actual implementation situation.

As was pointed out in the report entitled "Interrelationships AmonIg

Scaling Factors", the relationships between system parameters, i.e.,

scale factors, are complex and non-linear. It is not possible to derive

analytic expressions that will hold under all conditions. The simulation

model of a generalized intelligence data handling system can be used to

predict performance and to predict changes in one variable from changes

in another. The simulation thus substitutes for the nonexistence of

precise analytic functional relationships between various scaled

parameters.

The test data set was designed to enable system performance to be

evaluated for different combinations of parameter values that permit

comparative analysis of system scale factor interrelationships. Same of

the issues addressed include how the number of terminals, the mix (the

combination of CPJ-bound and disk-bound jcbs) and average CPU service

time, affect disk waiting time, CPU and disk utilization, response time,

and other measures of system performance.

The simulator selects CPU and disk service times and terminal wmit

times using Poisson distributions. This distribution models arrivals in

a very satisfactory fashion.

The value of examining different values for a parameter such as CPU

service time is that it is a way of simulating added overhead that

features such as security operations may require. Extra disk accesses
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may also be required to perform specific security functions, so

individual implementations of security systems will affect system

performance in varying ways, as a function of these application-dependent

system parameters (CPU time and disk accesses).

The test runs indicate that the number of terminals appears to be a

prime factor in system performance, while adding CPU overhead, such as

security features, does not change response time significantly. As shown

in Figure 1, plotting the number of terminals against the average disk

wait demnstrates that the jdb mix and number of CPU/disk iterations play

very little role in the resultant average disk wait; regardless of

whether the system is CPU- or disk-bound, the average disk wait increases

almost proportionately with the number of terminals, e.g., the disk wait

with 16 terminals is approximately twice the disk wait with 8 terminals.

As shown in Table 1, in a syst m of 8 terminals, with 50% of the

jobs CPU-bound, the average disk wait is 235 time units. 14ien 67% of the

jbs are CPU-bound, the average disk wait is 217 time units. Even when

the system is made mere heavily CPJ-bound, with 67% of the jcbs in this

category, and an average CPU time slice approximately half of the disk

time slice, the average disk wait for 8 terminals is 27, ocmpared with

236 for a 67% CPU-bound system with CR1 time slices only 3.5% of the disk

time slice. No dramatic changes in disk wait time have taken place fran

changing the job mix values. Similarly, doubling the average number of

CPU/disk iterations does not have much impact on the average disk wait,

as derrnstrated in Table 2. However, the response time doubles as the

number of C1/disk iterations doubles, a consideration for those overhead

operations requiring disk accesses.
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No. of Average Average No. of Average Average
Ter- Disk Wait CPU Wait Ter- Disk Wait CPU Wait
minals minals

8 235 1.96 8 217 1.65

10 305 1.76 10 279 1.71

16 477 2.22 16 458 2.17

20 621 1.92 20 618 1.85

50% Job Mix 67% Job Mix

Table 1: Average Disk & CPU Waits
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Double CPU/Disk Iterations

No. of Average Average No. of Average Average
Ter- Disk Wait Response Ter- Disk Wait Response
minals Time minals Time

8 240 2323 8 223 1910

10 308 2763 10 297 2301

16 477 4009 16 447 3396

20 609 4930 20 623 4218

50% Job Mix 67% Job Mix
Base CPU/Disk
Interations

No. of Average Average No. of Average Average
Ter- Disk Wait Response Ter- Disk Wait Response
minals Time minals Time

8 226 1128 8 223 1194

10 303 1457 10 250 1064

16 477 2040 16 468 1812

20 632 2788 20 612

50% Job Mix 67% Job Mix

Table 2: Average Disk Waits & Response Times

for Base & Doubled CPU/Disk
Interations
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Disk utilization is consistently over 99% regardless of the

variations in the values for the parameters. This result is to be

expected due to the fact that most czputer systems will be limited by

the nature of the disk hardware, i.e., its speed.

CRU utilization remains at about 2% to 3% when the average CPU time

slice is approximately 3.5% of the average disk time slice and increases

to 15-25% when the CR1 time slice is increased to approximately half that

of the disk time slice. Thus, it is difficult to come anywhere near

loading the CPU.

Figure 2 shows bw the response time reacts to changes in the job

mix. As might be expected, response time is lowest when the largest

percentage of jobs is CPU-bound, i.e., the 67% curve. The rate of change

in response time as the number of terminals increases can be seen to be

fairly consistent. The three upper curves plot the response time

resulting when the numbej- of CPU/disk iterations is doubled.

It is valuable, too, to examine what happens when the terminal wait

time cr "think time" is approximately doubled. This factor relates to

jcb rate (the number of jcbs input per time). Table 3 summarizes the

results of test runs which indicate that there is very little change in

the response time when the wait time is doubled; sometimes, it increases

a bit, sometimes it decreases, and sometimes it does not change. Thus,

it would appear that terminal wait time can be changed within reasonable

limits without significantly affecting response time.

It must be kept in mind that the parameter values used in the

simulator for these experiments are just one attenpt at approximating a

real system and an example of bow the simulator would be used under real
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No. of Response Time for Response Time for
Terminals I Wait Time Double Wait Time

8 911 856
1691 1934

10 1025 1067
2485 2112

16 1728 1966
3559 3249

20 2327 2241
4784 4733

Comparison of Response Times When Wait Time
Doubles

Table 3

G-10



circumstances. That is, conclusions have been reached based on tests

involving, for example, 20 vs. 10 terminals. These conclusions might not

hold when one is considering scaling 100 terminals to 50 terminals.

Recent expansion of the simulator's capabilities has made possible

experiments with a larger number of terminals up to a maximum of 100,

permitting the examination of interrelationships in that operating

region. The results of these tests will be described in a later report.

The value of the present results, however, is in pinpointing those

scale factor interrelationships that should receive attention when

scaling is required.
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