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SECTION 1. INTRODUCTION

The cost of developing large scale ocomputer systems has increased
dramatdically in the last few years. 1In spite of more sophisticated
‘design techniques, many systems fail to meet cost, schedule,
cost-benefit, and performance cbjectives; many systems, once campleted,
do not perform as well as they are expected to; many systems never even
get canpleted!

Current software system development methodologies emphasize a
process in which development is conceived as proceeding through a series
of phases. Each phase is organized to camplete ‘a specific planned
process and produces output in terms of information or design documents
that are input to the next phase. Most attempts to improve the
effeciency of the development cycle have concentrated on improving the
processes which comprise some single phase. Structured programming
focuses on the programming stage of the development phase while camposite
design applies to the design stage of the development phase.

There is a need, however, for design validation at less than
full-system cost, and for prototyping design alternatives. The use of
integrated scaled systems presents such a technique.

Scaled systems are operational systems implementing subsets of
capabilities and/or performance characteristics of the ultimate
full-scale system. The scaled system approach is intended to bridge the
gap between the definition and design stages of the development phase.

Using scaled system concepts for the design, development, and
evaluation of intelligence data handling camputer systems is expected to

improve the way these tasks are performed. By implementing a subset of
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the capabilities of a full-scale system, a "“scaled system”, it is

anticipated that the initial expenditure on the scaled system, a fraction
of the ocost of the full-scale one, will decrease the overall full-scale
system cost, schedule, and risk. Because scaled systems are operational
systems, users can immediately obtain the benefits available from partial
autamation of their requirements.

The use of scaled systems within a development effort can have
scveral benefits. However, only same of the benefits may be applicable
to any specific development effort. Which of the benefits are desirable
will determine the objectives for using scaled systems within the
development effort. Once these objectives are established, the precise
manner in which the scaled system should be defined fram the full-scale
one can be determined. Knowledge of benefits realizable fram the
application of scaled systems is therefore vital to understanding the
scaled system technique, so potential benefits are listed below.

a. Users can begin using a scaled system as soon as it is
implemented, since scaled systems are operational systems. Feedback fram
users can quide final design decisions for the full-scale system. This
benefit is particularly important in instances where users are unable to
clearly specify their requirements for automated support duve to their
lack of experience with camputers or to the wnique nawure of the tasks
they desire to autamate. The scaled system can be used to demonstrate
exactly what capsbilities are available to the user as well as give the
user an idea of how he will interface with the system and what procedures
must be developed. Based an his experience with a scaled system, the

user will then be able to clearly specify his requirements for the
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full-scale system, thereby greatly increasing the probability of success
for the overall development effort.

b. Different techniques for performing unique or state—-of-the-art
-Operations can be tried with scaled systems, in order to establish
feasibility of camplex designs or to determine the optimal way to provide
certain capabilities within different envirorments.

c. The team developing a scaled system obtains valuable experience
with the project that increases their productivity when developing the
full-scale system. Design lessons learned fram the scaled system also
decrease the number of false starts and blind alleys encountered during
full-scale development.

d. In many instances a scaled system can be incrementally expanded
to eventually implement the desired full-scale system. The incremental
development approach is usually more cost-effective than is an attempt tc
implement an entire large-scale system at once in a turnkey fashion.

e. The cost and schedule for scaled system development, once that
development is camplete, can be used as a predictor for the cost and
schedule of full-scale system development. This effort has examined how
reliable predictors can be established.

f. The performance of a scaled system can be used as a predictor
for the performance of the corresponding full-scale system. Full-scale
systems often fail to meet their performance cbjectives, and the use of a
scaled system may indicate that a redesign, increase of system resources,
and/or relaxation of performance cbjectives is required to achieve the
desired full-scale system performance. In cases where the scaled system

indicates that the desired performance is achievable, the performance




predicted by the scaled system can be used in the evaluation of the

full-scale systam ultimately implemented, thereby reducing the risk of
implementing systems with inadequate performance. This effort has
researched the develomment of reliable performance predictors for scaled
systems,

A scaled system 1s implancnted during definition or design stages in
the life cycle of full~scale systuan develorent.  The scaled system may
be developed based on the functional desciiption for the full-scale
system, Or, in certain instances, basad o the syster y;ecification. It
is desirable to implement the scaled system as early 1in the develomment
cycle as possible, as experience gaired with the scaled system can
provide valuable insight for later full-scale system design. Thus, the
preferred approach is that the scaled system be implemented based on the
full-scale functional description, and that the full-scale system
specification be developed based on the scaled system. It should be
noted that the scaled system has its own development cycle similar to
that of the full-scale system, except with much shorter schedules.

The scaled system originally implemented as a design tool can then
be used again during the evaluation phase of the full-scale system
developent cycle. This research has investigated techniques for
predicting full-scale system performance based on scaled system
performance. Thus, measurements made on the scaled system can originally
be used to predict full-scale system performance, and can later be used
to evaluate how well the implemented full-scale system achieved those

per formance predictions.




Section 2 discusses the research methodology, including the
objectives of the effort and how they were achieved, in particular, in
terms of the simulator and cost model developed in this effort. Section
3 de‘scribes the specific results of the research, including the
‘ A definitions of scale factor metrics, system parameter interrelationships,
guidelines on scaling system scale factors, decision factors anc

guidelines indicating when to use scaled systems as part of a design

effort, and anticipated cost benefits of employing scaling techniques.

Section 4 discusses research efforts that will be fruitful areas for

further investigation.




SECTION 2. METHODOLOGY

The objective of this effort was to conduct research to define the

applications of scaled systems as design instruments for designing,

-developing, and evaluating intelligence systems, in order to provide a

concrete means of investigating and ascertaining the various factors
that are pertinent to the application »f scaled systems. Various
elements of software systems, "System Scale Factors," were evaluated with
the specific objective of identifying the elements most suitable to small
scaled applications. These items were then quantified to provide a
uniform and standardized terminology allowing objective categorization of
scaled systems, based on the corresponding full-scale system. In order to
determine the interrelationships among these scale factors, so that they
may be considered in the overall system methodology for using scaled
systems, a concept was evolved that uses a simulation model of a
generalized IDHS to predict performance and to predict changes in one
scale factor variable fram changes in another.

Scaled systems techniques were developed to provide better estimates
of total development cost, schedule, and performance, by defining
decision factors for using scaled systems, in order to indicate when
scaled systems should be used as part of a design effort. The decision
factors are to provide justification in terms of ultimate full-scale
system cost, schedule, risk, and performance, for using a scaled system.
A preliminary integrated cost model, synthesizing the best
characteristics of the models studied into a single model suitable for

scaled systems research, was implemented and calibrated with data derived

fram analysis of an actual intelligence system, the Defense Intelligence
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Agency {(DIA) Integrated Indications System (DIIS), in order to place the
decision factor guidelines on a fimm gquantitative footing.

The objective was then to identify specific benefits realizable fram
‘the scaled systems approach by analyzing past systems developed and
canparing an actual scaled systan to its full-scale counterpart, namely
the NMIC system and INCO's scaled version of the NMIC's User Support
Subsystem (USS) called the Indications and Warning Training System
(IWTS). These two systems (NMIC and IWTS) were oompared and contrasted
in termms of their relative size, cost, hardware configuration, software
implementation, camplexity, difficulty, and effort expended to camplete
them, as far as the data permitted such analysis.

Section 2.1 describes the design of the overall effort. Section 2.2
describes the operating system performance simulator and Section 2.3 the
cost models designed for evaluation of actual and proposed scaled
systems.

2.1 General

In order to define the scaled system methodology, two similar types
of relationships were considered in this effort: (1) how the
performance of a scaled system compares to that of a full-scale system
and (2) how the use of a scaled system affects the total cost, schedule,
and risk of a system development effort. The first type of relationship
is required to predict the performance of a full-scale system based on
that of a scaled system, while the second type of relationship is
required to judge the benefit of using a scaled system as part of a
developrment effort. Both types of relationship, taken together, are also

required to detemmine precisely which system parameters should be scaled,
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and by what amount, to take maximal advantage of a scaled system within a
given develogment effort.

The way in which the elaments of the technical approach cambine to
‘'satisfy the total research cbjectives can be summarized as follows:

o] Identify system parameters that are suitable for
scaling.

o] Define scale factors for each of these parameters.

o Examine the correlations and interrelationships among
scale factors.

o Use these correlations for developing guidelines of
which parameters to scale and how much, based on
system objectives.

o Prepare a list of decision factors that are
indicative of whether or not scaled systems should be
used as part of a development effort.

o Develop quidelines for whether or not scaled systems
should be used based on these decision factors.

le] Identify specific benefits realizable fram the scaled
systems approach for past systems developed and
future systems to be developed.

o Quantify benefits for planned systems realizable
through the use of scaled systems.

2.2 The INCO System Performance Simulator

The INCO system performance simulator (ISPS) is an event-driven
simulator designed to execute on INCO's interactive microprocessor-based
ocamputer systems. The simulator models a reneralized, variable camputer
system configuration consisting of a CPU, a disk, a user-specified number
of on~line terminals, and the associated system queues necessary to
simulate the allocation of these resources. A detailed abstract

technical discussion of the simulator can be found in Appendix F and

discussions concerning its operation and method of aprlication to this




NE SIS W

research can be found in the earlier portions of this section. The

objective of this discussion is to highlight the simulator's functional
characteristics.

The simulator was designed in a programmer's design language (PDL)
and subsequently coded into FORTRAN. Its purpose, as previously stated,
was to model a variable camputer system enviromment. This variable
enviroment is specified by the simulator's user by way of a description
of the system configuration's ocamponent characteristics. These input
parameters are specified by the user at run-time through an interactive
query. The input parameter set and its format is illustrated in Figure
2-¢l. This is the same query the user iterates through before simulator
execution.

During the simulation, the user may optionally cbserve the steps the
simulator makes through a video display that is updated by the simulator
at the occurrence of each new simulator event. The execution speed of
the simulator is increased, however, if the user selects the "truncated"
terminal display format as opposed to this "extended" format which
requires the additional processing overhead of the terminal I/O in order
to periodically update the display. The screen display is illustrated in
Figure 2-32. A sample simulator performance output i& shown in Figure
2-03.

Using this simulator, an analyst can explore the rudimentary
performance characteristics of varying computer system hardware
configurations as well as the effects of generalized job-type mixes. Job
types are classified as either CPU- or disk-bound for purposes of the

simulation. For example, the simulator can help the analyst determine
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(a)
(b)
(c)
(d)
(e)
(£)
(9)
(h)
(1)
(1
(k)
(1)
(m)

SPSIM INPUT PARAMETERS

Nunber of terminals?

% Percentage mix between CPU- & Disk- bound jobs?
Mean CPU service time (CPU bound jobs)?

M=an CPU service time (Disk bound jobs)?

Mean Disk service time (CPU bound jobs)?

Mean Disk service time (Disk bound jobs)?

Mean CPU/Disk iteration count (CPU bound jobs)?
CPU/Disk iteration count std. dev. (CPU bound jobs)?
Mean CPU/Disk iteration count (Disk bound jobs)?
CPU/Disk iteration count std. dev. (Disk bound jobs)?
Mean wait time for terminal # ¢ 1-100>?

Sstd. dev. about wait time for temminal § {1-100)?
Extended (F) or Truncated(T) Screen Display?

Figure 2-01 Simulator Input Parameter Set
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Figure 2-02. Simulator Screen Display
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INCO SYSTEM PERFORMANCE SIMULATOR RESULTS

Camnent: RUN #69
Time and date of run: 11:36-APRIL 27, 1981

INPUT PARAMETER SUMMARY

MEAN VALUE STAND. DEM.
Service times: 1.25 0.00
CPU:
CPU - Bound jobs 1.25 0.00
Disk - Bound jaobs 1.40 0.00
Disk:

CPU - Bound jabs 35.00 0.00

Disk - Bound jabs 40.00 0.00
Iteration counts:

CPU - Bouwrd 10.00 1.00 '

Disk - Bound jobs 30.00 3.00 ‘
Terminal Delay Times:

Terminal # 1 50.00 0.00

Terminal # 2 50.00 0.00

Terminal # 3 50.00 0.00

Terminal # 4 50.00 0.00

Terminal # 5 50.00 0.00

Terminal # 6 50.00 0.00

Terminal # 7 50.00 0.00

Terminal # 8 50.00 0.00

Texrminal # 9 50.00 0.00

Terminal #10 50.00 0.00
Nurnber of On-line terminals: 10.

Job Mix (ratio of CPU/Disk bounds jobs): 50.00

Figure 2-03. Sample Simulator Performance Output

S U POV U U VORI




Camment: RUN #61

Terminal Responsiveness:

Terminal #

QWO WUdWN

=

System Performance Summary:
Number of Terminals
Number of Jobs Submitted
Nurber of Jobs Campleted
Elapsed Time
Average Responsiveness
Hardware Utilization:

CPU -~
Disk -

Queue Summary
CPU -~
Disk -

Figure 2-03.

INCO SYSTEM PERFORMANCE SIMULATOR RESULTS

Time and date of run: 11:36-APRIL 27, 1981

SIMULATION RESULTS

Jaobs Queued/Campleted

6/ 6
7 7
4 4
5/ 5
8/ 8
7 1
6/ 6
5/ S

6

7

Average # in Queue
.00
8.41

(Continued)

Average Response

3571.81
3292,74
5699, 30
4626,85
2878,71
3086.97
3879.37
4509, 58
3505. 37
2968,22

23276,
3650,56

3.48%
99.93%

Average Wait Time
1.08
322,90




the relative impacts of such system configuration changes as the addition
of on-line terminals, faster or slower terminals, faster or slower disks,
or a CPU with different speed characteristics. Internally, the simulator
‘considers only a single CPU and a single disk; this does not present a
major problem, however, as multiple devices can be acocounted for by
assumptions concerning their service time efficiencies. For example,
adding disk drives and/or controllers can be reflected through a decrease
in the disk service time parameter of the input mix, which has the effect
of speeding up the simulation of disk I1/0. Additionally, many general
system performance characteristics can be cbserved or validated throuch
the use of this simulator. For example, use of the simulator has
reflected the hypothesis that the responsiveness of computer
configurations is limited by the slowest memory present in the
configuration, namely the auxiliary disk storage. DBecause of this, it
can be witnessed that the disk resources are heavily utilized in terms of
the usage of their available time. Simulations consistently showed that
the disk resources were 90-100% utilized, whereas the CPU was only 3-25%
utilized. Through the use of this simulator, the interrelationships of
scaled system configuration items could be examined.

2.3 'The INOO Cost Estimation Model

The INCO life cycle cost model is the result of extensive research
performed in the areas of software engineering, life cycle software cost
estimating, and scaled system development by INCO, INC. The model is the
reflection of INCO's commitment to develop a low-cost software life cycle

ocost model for in-house use on low-cost microprocessor hardware.




g

2.3.1 Genesis

INCC began research and development of its own software life cycle
costing maxdel in May of 1979. The first step of this effort included
-training sessions with the PRICE § and SLIM software cost estimating
models and the start of what would became an intensive literature search
and study. In this phase, INCO personnel absorbed as much as was
possible from available information on the subjects of software cost
estimation, cawnercial software ocost models, and software life cycle cost
behavior and management. Published research which was found to be of
most value is summarized in Figure 2-04. A camparison of open-literature
mxlels was performed, and an example is included in Figure 2-05.

Along that point in time, some of INCO's other oontracted-for

research efforts realized the need for scme sort of cost estimation tool,

however rudimentary. One such effort was the Scaled Systems Project.
Under the Scaled Systems effort, INCO was providing research support
to the Rome Air Development Center (RADC) in the way of exploring cost
effective software development methodologies, particularly in the areas
of prototype and scaled/prototype develommental systems. As part of this
effort, critical cost relationships between scaled systems and their
full~scale counterparts were examined. Of specific interest were the
potential benefits which could be derived from the experience an
organization would gain fram the implementation of a scaled operational
version of a state-of-the~art system before actual development cammenced
on the full-scale system. Of additional interest was the sensitivity of
the forecasted cost benefits to overall scale factor. This was the first

application of INCO's cost model. To explore the productivity and cost
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COST MODEL DEVELOPMENT

STEP 1: Survey OF PuBLISHED RESEARCH

Doty & AssoCIATES

- IBM's WaLsTON & FELIX

- ICEE's TuTorIALS ON SOFTWARE COoSTING

- MaurRICE HALSTEAD'S "SOFTWARE SCIENCE”

- UNiversity oF MArRYLAND's Comp., Sci. Dept. (Vic BasiLi)
- DACS's Survey oF SoFTwARE CosT EsTIMATING MoDELS

- Lawrence Putnam (SLIM)

- ISPA’s NEWSLETTER AND PROCEEDINGS

- RCA’s Price-S

Figure 2-04. Significant Cost Model Literature
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impacts of such factors as realizing personnel experience and firmness of
operational requirements, the Doty model was exercised about varying
system sizes in the context of developing full-scale systems fram
built-to-scale systems. A sample of the model's interactive display used
for such analysis is provided in Figure 2-06. This figure reveals the
cost factors accounted for by the Doty model. The generalized result
fran the scale factor sensitivity analysis is portrayed in Figure 2-97.

Such exercise proved invaluable to the development of the cost
model. After initial survey and exercise of current ocost modeling
methodologies, INCO adopted the épproach of synthesizing the best
characteristics of each model it had scrutinized into the one model. The
theoretical basis, however, remained close to the properties outlined by
Lawrence Putnam in his many research works. These remaining steps of
model development are summarized in Figure 2-08,

2.3.2 Poundation.

The basic Putnam nodel (Figure 2-09) was attractive for a number of
reasons. First, it is the best of the "publicized" models - its internal
characteristics are defined, outlined, and validated in print. The
internals of a mxdel such as PRICE S, in contrast, are very closely held
by its inventors and vendor, RCA. Second, the Putnam model has the best
facilities for adaptability and changeability through its technological
constant and software equation. Third, the Putnam methodology seems to
be the best accepted, on a theoretical basis, and many other researchers
are actively exploring its properties, behavior, and possibilities.
Fourth, the possibilities the Putnam model holds as a tracking/managament

tool looked pramising. This was especially important for an ancillary
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Fram the Doty & Associates (RADC) Studies:

o Please Select an 2pplication Category:

| 1 - Utility (09)

! 2 - Command & Control (c2) :
3 - CEcientific '
4; - Business

~ All (Cthers not listed above)

Selecticen (1-5)?
Estima ted Deliverable Source IOC (1,000's)?
(S)cale, (U)pscale, or (O)ption? O

Please input a yes/noc (Y/N) response to each of these 14 questions:

Special cdisplay?
Detailed definition of operatioral req'mts?
Change to operatiorml reg'mts?
Real time operation?
CPC memory constraint?
CPU time corstraint?
First $/W developed on CPU?
Concurrent develorment of ACP H/W?
Tire share, visa-vis batch processing, in dev'ment?
‘ Cff-site development computer facilities?
' Cn-site development camputer facilities?
Development carputer éifferent then target camputer?
Multi-site development computer facilities?
. Unliritec programmer access to computer facilities?

f 9999.99 Man Months reqg’'c for amlysis, design, code, debug, test and checkout.
( Stand&ré error on this approximetion = 9.9 ¢ )

Estimated schecdule duration = 999,99 Months

Continue (Y or N)?

Fiqure 2-06. Example of INOO Model's Interactive Display
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STEP 1:

STEP 2:

STEP 3:

- Program Generalized Cost Formulas in BASIC
- Exercise & Campare Results

= Tech. Memo; "Scaled Systems Cost Effectiveness”

- Putnam Methodology Selected As Most Suitable
For Our Purposes

- Began Detailed Implementation & Development

- Began Calibration of Model to Other Models and
Past Experience

Figure 2-08, INCO Cost Model Development
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effort taking place at INCO that consisted of the design and development
of a integrated set of imlividual models addressing the entire scope of
software development. This effort is highlighted by the automated
implementation of INCO's tried and proven requirements Structured
Organization and Analysis Procedure (SOsP) — namely, the Requirements
Analysis and Tracking System (RATS).

As mentioned, the power of the Putnam-based model is augmented by
other models, most notably those of Doty {ref. 7], Walston and Felix

[ref. 24], and Halstead's book, Software Science.

The Doty model of cost estimation is programmed into the INCO cost
model and is available through the option menu for use by the costing
analyst. Experience with the Doty equations has produced very favorable
results by way of convergence in calibration attempts with known cost
data and the estimates of other cost models, namely the PRICE S cost
estimation moxiel.  Subsequently, the Doty maxiel was the primary choice
for estimation purposes under the scaled systams research effort.

2.3.3 Current Stage of Development.

The current capabilities of the molel are illustrated in Figure
2-1€. As in "Step 3" of Figure 2-08, the model is still in the
calibration and enhancement stages. This is perceived as an on—-going
phase since a software cost model is never really “"done". The INCO model
was designed with an eye for evolution and adaptability as more becomes
known about the science of software cost estimating and as cost estimates
can be traced through to their respective actual costs. Specifically,
INCO is exploring credible, verifiable methads in which the technology

constant can be mwore accurately determined. This has evolved to a sct of
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adjustments based upon environmental, product, technological, and

organizational factors. These adjusting factors have been alded by
rescarch such as that performed under the Scaled System project already
ment ioned. A brief emumeration of these factors is shown in Figure 2-11.

Keeping abreast of the current trends, the INCO model utilizes a

mxiifiei version of Putnam's "software equation" - the same as that used

by SAf0's SPO [ref. 9].

With the trend toward better dissemination of information,
particularly in the area of graphics, INCO has already begun the design

and development of general-purpose graphics capabilities for its

microprocessor-based hardware. With the ever-increasing advancements
being made 1n the low-cost end of this hardvare market, INCO has in sight
the reality of truly cost-effective generalized graphics capabilities and
hopes to enhance the cost model with such facilities.

Given the time and a few more advancements in the various
technologies, INCO is confident in its ability to produce a true software
life cycle cost and cost estimation model with a full complement of

graphical capabilities and on low-cost hardvare intended for in-house

operation and ownership.
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SECTION 3. SPECIFIC RESULTS
The scale factors and metrics that have been defined are described
in Section 3.1, with further details to be found in the reports "Software
Scale Parameters" and “System Scale Factor Metrics" (Appendices B and c).
The interrelationships among scale factors derived as results of
experimentation with the operating sys*+em performance simulator are
discussed in Section 3.2. The basic and generalized decision factors and
guidelines to be used by system architects in determining when scaled
systems should be used as a part of a design effort are discussed in

Section 3.3, and anticipated cost benefits of scaling are discussed in

Section 3.4.

3.1 Scale Factors

Software scale parameters are those aspects of autamated systems
that can be reduced in scope in order to implement a cost-effective
system scaled with respect to the full-scale system objectives. The
development of a list of software scale parameters was accomplished in
Task 1, Subtask 1, and described in the report "Software Scale
Parameters” (Appendix B). The categories of software elements determined
to be applicable to scaling were identified as data base, per formance,
functionality, security, maintainability, reliability, language, and '
hardware configuration. This section discusses aspects of system
development that contribute to system cost and performance, and that are
amenable to scaling.

3.1.1 Data Base

Data base characteristics include data base oamplexity (of access

method and data structure) and data base size (number and length of




files, number of access keys, number and length of fields). Data base
access oamplexity may be scaled by first employing the access method that
would be the simplest for that size date base and then developing the
scaling relationships involved in increasing the camplexity, e.g., fram
sequential to indexed sequential to randam access.

Same data bases deal with a relatively small set of different items.
For example, the data base for an inventory control system might include
only the following information: part nuamber, description, quantity on
hand, reorder point, supplier, reorder quantity, and unit cost. Most
intelligence data bases, on the other hand, include a wide variety of
information, covering such diverse subjects as different orders of
battle, lines of cammmication, vessel movements, political and econcmic
data, biographical information, etc. Data bases containing many
different types of information are clearly more difficult to implement
than are those limited to a very narrow subject area. As the diversity
of a data base increases, development costs also increase due to the
necessity to define additional data formats and structures, to possibly
develop different data base load programs, and to probably implement new
application programs.

The number of different data types does not, per se, have a
significant impact on performance. As the number of different data types
increases, there may be same additional overhead to search directories
for control records for specific data types, but this overhead is usually
insignificant campared to that required to locate a specific data item of
a given data types. Hence, the major performance impact is associated

with the volume of data, which might be expected to increase as the

3-2




number of different data types increases. The main reason for scaling
the number of different data types relates to implementation cost.
Restricting a scaled system to a subset of the total number of required
data types may reduce the amount of data definition required, the: variety
of data base load programs necessary, and the number and camplexity of
application programs within the scaled system.

The amount of data resident within a data base, usually measured ir
terms of characters or records, tangentially impacts cost and
significantly impacts performance. Neglecting all factors other than
data volume, it should theoretically be just as simple to implement a
large data base as a small one. A data base management system and the
related application programs should be capable of handling any volume of
data required by a system. lowever, performance impacts of data volume
dictate that additional sophistication be implemented¢ for processing
large data bases than for small ones, in order to maintain an acceptable
level of performance. For a small data base, therefore, a sequential
file organization may be adeqguate. To achieve acceptable performance
from a large data basc system, however, a more camplex data storage
technique, such as a hierarchical or network structure, is usually
required. The additional camplexity required by additional data volume
obviously adds to the cost of large data bacc systems.

While not direct software implementation costs, additional life
cycle management costs are incurred by large data bases. The initial
process of loading a large data base will cost more than that for a small
one, due to additional data oonversions, consistency corrections, and

possibly munual entry required. Maintaining a laryc data base is also
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more costly than maintaining a small one, due to the amount of checking
that must be continually performed to establish and maintain the
integrity of the data.

As mentioned above, the performance of a data base system can be
expected to decrease as the volume of data increases. The amount of
performance decrease is dependent on the sophistication of the data
access techniques employed. For example, performance of sequential data
bases will degrade significantly as data volume increases. On the other
hand, performance of hierarchical data bases may not be perceptibly
influenced by wide variations in data volume, provided that the types of
requests made upon the data base follow the established hierarchy.
Performance on requests that require searching of the entire data base or
significant portions thereof, will degrade markedly with increases in
data volume regardless of the data base structure employed. The major
objective in scaling data base volume is tn simplify the implementation

of a data base system. Reducing the volume of data naturally simplifies

loading a scaled data base. In addition, less sophisticated data storage
techniques can be used with reduced amounts of data. In extrapolating
ultimate system performance fram scaled system performance, allowances
must be made for any additional data access sophistication to be q
implemented, as well as for performance impacts of increased data volume.

With additional data access sophistication included in the ultimate
system, its performance may be equal to or better than that of a scaled

system, even though the volume of data is dramatically increased.

Data base conceptual camplexity is used here to denote the degree to

which the data elements within a data base are mutually interdependent.




Conceptually simple data bases contain data which dc not depend, to any
great degree, on other data within the data base. For example, a data
base used by a magazine publisher may include data on subscribers,
advertisers, contributors, and production mechanics (ink and paper
inventories, etc.). These four types of data bear no relation to each
other. On the other hand, an intelligence data base might contain data
on enemy weapon positions, technical weapbn characteristics, friendly
installation locations, and intelligence sources. Enemy weapon positions
are oorrelated with technical weapon charanteristics to determine their
threat to friendly installation locations. All data is also correlated
according to the intelligence sources. This is an example of a
conceptually caaplex data base, with many types of information dependent
on other types. A conceptually canplex data base is far more expensive
to implement than is a conceptually simple one. Data structures must be
designed that permit rapid correlation of different types of information,
and applications must be designed to maintain the integrity of all data
interrelationships. Conceptually canplex data bases will typically not
perform as well as camparable conceptually simple ones. Extensive data
correlations require additional data base accesses, as well as data base
storage overhead to maintain efficiency.

Many data correlations can be unimplemented, implemented via manual
means, or implemented through a semi-autamatic technique such as multiple
queries with intermeuiate hit files for a scaled system. This can
significantly reduce the cost of implementing a scaled system. Relative
performance of the scaled and ultimeate systems would depend on many

implementation factors. The cost of implementation complexity is
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generally dependent on the underlying conceptual camplexity of the data.
For conceptually simple data bases, a complex implementation will
generally be more expensive than a simple implementation. The reason for
this is that a simple implementation would suffice to fit the data
definition, and adding complexity tends to increase cost. (A oamplex
implementation may be required, however, due to the performance
considerations noted above, based on data volume.) For conceptually
complex data bases, a simple implementation will generally be rore
expensive than a camplex one. This is because all application programs,
with a simple data structure, must be aware of the camplexities of the
data relationships. With a camplex implementation, a sophisticated data
base management system typically relieves the application programs fram
consideration of many of the conceptual complexities. Cost aspects are
clearly dependent on the number of application programs required, the
degree to which the data base management system can insulate the
application programs fram the conceptual camplexities, and whether a data
base management system can be used intact or must be specially developed
or modified. A camplex implementation of a data base will generally
yield better performance than will a simple implementation. This 1is
because direct access techniques (directories and hashing) improve data
access times, and pointers oOr links between records speed the processing
of data interrelationships. There is, however, 2 point beyond which
additional implementation oamplexity becames overkill for the underlying
conceptual camplexity and data volume. Past that point, the overhead
required to maintain seldamly~used directories or links may begin to

degrade performance. In any event, any implementation complexity must be
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carefully designed to parallel the conceptual camplexity, thus improving
performance for the precise uses to which a data basc will be put.

Since a scaled system need not support the conceptual camplexity,
data volume, or performance of an ultimate system, data base
implementation ocamplexity is very amenable to scaling. Using a simple
implementation methodology will, in general, result in significant cost
savings, provided that oconceptual camplexity is likewise scaled. Thus, a
series of simple flat files, without camplex data dependencies, might be
used in a scaled system instead of a complex hierarchical or network
structure. Estimating ultimate performance based on such a scaled system
requires detailed analysis of the advantages galned by golng tO a more
canplex implementation philosophy.

Scme forms of data lend themsclves very readily to proven data base
technology, whereas other, more exotic, data forms are still being
investigated for efficient exploitation within a data base. For example,
a data hase of bank transactions contains well-defined data, constructed
in accordance with fairly rigid formats, and subject to easily expressed
validity checks. Becaning slightly more exotic, a data basc of
bibliographic information contains much English language text. Many such
data bases have been constructed, but research is still underway on
improving the effectiveness and efficiency of such data bases. At
perhaps the most exotic extreme, several research programs within the
intelligence ocommmity are currently examining ways of using data bases
of digitized imagery. Such data bases wou)d contain enormous volumes of
data. and would require special algorithms to effectively distill

information fram the imagery data.
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The expense of implementing a data base increases as the data
[ within it deviates further and further fram forms normally stored within
‘ conventional data bases. This is primarily duc to two factors.. First,
‘conventional data usually lends itself to easily-defined structures,
whereas efficient structures and even expected access criteria for
unconventional data are usually difficult to define. Second, the
algcrithms for manipulating conventional data have been implemented many
times and are well-understood, while the algorithms for manipulating

unconventional data are often the subject of ongoing research anc

development. The net result of these two factors is that implementation

of conventional data bases can proceed in a straightforward manner fram

design with 1little risk, whereas implementation of exotic data bases

often includcs many design changes and continual experimentation, with '
the attendant high cost and risk.

The structuredness of conventional data forms lends itself to
efficient implementations of such data bases. As mentioned above,
efficient structures and expected access modes are often not known for
the rore exotic forms of data. This naturally leads to difficulties in
implementing good performance for data bases containing such data. Since
the use of unconventional data forms greatly increases cost arkd reduces
performance, cmitting such data fram a scaled system will certainly make

it much easier to implement. lowever, one of the reasons for building &

scaled version of a system requiring exotic data forms will usually be to

prove the feasibility of processing such data. Hence, the
conventionality of data forms would typically not be scaled, with

econamies of scaled system implementation realized elsewhere.
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3.1.2 Performance Irdices

The classes of quantitative performance indices identified for
scaling are productivity, interactive responsiveness, utilization and
operating system organization. Productivity is canposed of the amount of
work that can be physically accammodated and the rate at which it is

ultimately accamplished. The amount of work can be measured by deriving

the system capacity, the amount of information it can contain at any
given period of time, as well as the capacity of the hardware camponents.
The throughput, the average rate at which Jjobs are ocampleted by the
system in a given interval of time, is a result of nearly every aspect of
a system configuration; fram the hardware itself to the functions the
system is required to perform to the typical set of jobs requiring system
resources, i.e., the job mix. The scaled system design would have a
scaled system capacity as well as a scaled job mix, structured for
optimum performance. These factors all contribute to interactive
responsiveness, the number of responses/unit time, the inverse of the
time between the presentation of an input to the system and the
appearance of the corresponding output. Because this parameter is

difficult to predict on the front-end of the implementation phase, it

i will uvsually be quantified through observation. That is, a response time
may be set as a target. The scaled system might reveal that the chosen
design does not produce the required ressuponsiveness. The full-scale

system design specification could then be cost-effectively adjusted in

the front-end of the design cycle, where economic leverage is the

i greatest.
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Utilization is defined as the ratio of the time a specified part of
the system is used to a given interval of time. Modules may be linearly
scaled as the ratio between proposed and actual module utilization, where
scale factors are in terms normal for the module, e.g., memory
utilization is measured as a percentage of total memory available.

Operating system organization subelements were identified in
"Software Scale Parameters" (Appendix B) as processing mode, operating
system, and interrupt processing. These parameters represent a mode of
operation rather than a measurable ratio and thus are difficult to
quantify. However, the choice of one mode over another is a valid method
to scale performance. Scaling system aspects applicable under this

category would undoubtedly be highly case-dependent and quantifying the

factors largely subjective.

3.1.3 Functionality

The approach to scaling functionality consists of reducing the
variety of functions supported or reducing the functional camplexity.
The first method entails vertical functional scaling (eliminating
subsystems); the second, horizontal functional scaling.

3.1.4 Security

Consider next the scaling of security functions. The degree of
security provided for software and data is determined by the scope of
access control, those attributes of software that restrict access to and
manipulation of programs and data, and the canpleteness of access audit,
the procedure whereby an historical record is maintained of both
successful and unsuccessful attempts to access restricted data. Security

may be considered a valid parameter for scaling when the scaled system
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will be developmental in nature and when either adequate physical
safeguards may be substituted for the full-scale software security
procedures or the data to be protected is simulated or is non-sensitive
public test data.

The basic goal of data base security is to prevent information fram
falling into the hands of individuals not authorized to receive it. Two
major questions must be answered in designing a data base security
system: How shall it be decided who has access to information, and what
is the smallest unit of information to which access will be controlled?

The first question, that of determining individual access rights,
has predaminantly been answered through two different approaches, by user
or by classification. The two approaches are sometimes also used
together. The scheme oontrolling access by user effectively tags each
item to which access is controlled with a list of those users allowed
access to the item. Users requesting access to an item must be on the
list for that item in order to be permitted access. The scheme
controlling access by classification tags each item to which access is
controlled with the item's security classification, special handling
instructions, releasability, and so on. Each user, and perhaps terminal,
has permission to access data with only certain security classifications,
special handling instructions, and releasabilities. The system campares
user access privileges with the classification of a requested data item
before granting access.

The second question, that of the size of units of information to
which access is controlled, has also been answered in several ways.

Virtually all systems control access at the system level, with user
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sign-on password authentication. Most systems control access to
individual files in same fashion, and many systems even control access to
individual records within files. Same systems go so far as controlling
access to individual fields within records.

Related to security is the requirement to maintain an audit trail of
all operations taken against the data. This audit trail normally
contains more information than the transaction log maintained by a data
base management system to support data integrity. Preserving data
integrity requires logging of only update transactions, whereas a
security audit trail also requires recoding of all data read fram a data
base as well. The degree to which security audit trails are implemented
for typical intelligence systems varies. Virtually all systems record
user sign-on and sign-off. Many systems also record major function
invocation. Almost no systems record the actual data manipulated by

users. Other aspects of system security include accreditation for
operation with classified information and the problems of obtaining
Ccleared programmers and facilities.

A security system can be considered scaled if it encampasses a file
protection methodology less restrictive than the full-scale system. This
scaling can take the fom of, for example, a less sophisticated level of
file protection, a smaller access matrix, elimination of codewords, audit
trails, encryption, and/or simplification of the authentication
mechanism.

3.1.5 Maintainability

Maintainability is defined as the probability that, when maintenance

action is initiated under stated conditions, a failed system will be
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restored to an operable condition within a specified time. It also
refers to the effort required to locate and fix an error in an
operational program and is a technically valid area for scaling, since
the implementation of maintainability involves increased software
development cost and,or time. Maintainability is a function of the
capabilities included in the system, the skill level of the personnel,
and the support facilities {locally available tools and diagnostic test
equipment or aids, spare parts or alternative program versions or back-up
files). Since scaling of this parameter would involve the elimination or
simplification of functional requirements of the system, the approach
would be similar to that for scaling functionality. However, eliminating
modules whose purpose is to enhance maintainability may indeed prolong
rather than enhance the progress of the project. Such considerations
must be emphas®._2d when scaling is contemplated.

Among the maintenance mcdules which could be scaed are process
error handiing (minimize the number of conditions to be checked),
restart/recovery procedures, data correction, fault detection/trap
software, monitors of system performance, and back-up procedures.
Development and diagnostic aids such as program tracers and interactive
debuggers might actually be added, tc reduce the development effort of
the full-scale system,

3.1.6 Kkeliability

Reliability can be defined as the probability of satisfactory
performance for a given time when used under stated conditions, the
metric being defined as the mumber of failures/time. A scftware failure

is an occurrence of a soliware error, when the software does not do what
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the user reasonably expects it to do. In order to prevent failures fram

occurring in the first place, a certain amount of redundancy is built
into systems such that automatic diagnosis and recovery can be
‘accomplished by the software itself without operator attention or
intervention. This redundancy requires additional design, system
storage, programuing, and effort; thus reliability may be scaled with
respect to these aspects.

Some reliability elements amenable to scaling would include
precision, error detection software {elimirate software geared to errors
vhich would occur infrequently in practice or not at all in the input to
the scaled system), approximation algorithms (use fast, easy, not as
accurate as possible approximation functions and algorithms), and coding
standards. Relaxation in enforcement of coding standards might only be
considered where recoding would be necessary to implement the full
system. If, however, the scaled system will forn the basic structure for
the full system, then strict coding standards should be maintained.

3.1.7 Programming Language

Two aspects of programming language suitable for scaling are
language selection and implementation. A language that is optimal for
the scaled system but different fram the one chosen for the full-scale
system might be sclected if the target system is to be cawpletely
recoded. Such a language might be chosen based upon considerations of
top-down design, code readability, and modifiability, thereby
contributing to accelerated program development. Scaling language
implementation could be accamplished by successively enhancing a baseline

subset of the language being implemented.
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3.1.8 Hardware Configuration

The choice of individual hardware camponents and their confiquration
is an important aspect of the scaled systems methodology. Significant

savings in schedule, effort and cost may be achieved by reconfiguring the

R U

target system hardware or by selecting an alternate operational
enviroment for the scaled systems effort.

B In order to reduce camplexity, either the number of camponent types
or the total number of camponents may be scaled, both approaches reducing
total system ocamplexity. Factoring hardware configuration is simplified
by the nature of the entity itself, due to the numerically descriptive
nature of hardware. Same hardware elaments that it might be possible to

scale are: number of CPU's (scale fram nultiprocessing to a single

processor), number and/or type of peripherals, size of the instruction

set of a CPU, input devices (simulate the data instead), number of

communications nodes, camplexity of cammnications network or hierarchy
(lower the number of linkages among nodes), and level of service to
peripherals (eliminate prioritized service).

3.1.9 Simulator Variable ~ Scale Factor Relationships

The scale factors introduced in the report “System Scale Factor

Metrics" (Appendix C) influence and interrelate with each other in

camplex ways that can be quite different for different operating regimes
(e.g., disk-limited, CPU-limited) of the IDHS being modeled. In order to
scale a system, ways are needed of predicting changes in system

characteristics as the scaled parameters vary, even when the variations

are large enough to place the IDHS into a different operating region.

For example, if the scaled system has a factor of four fewer terminals
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than the envisioned full-scale system, it is necessary for the system
designer to know how system throughput will degrade when the system is
scaled up and terminals are added. Tre report "Interrelationshipe Among
Scaling Factors" (Appendix D) addresses these considerations.

Figure 3-01 illustrates the throughput and CPU speed functional
relationship, demonstrating that scaling a given system parameter will
not necessarily affect another parameter in the same way in all operating
regions; i.e., increasing CPU speed in a CPU-limited regime will affect
throughput significantly, while in a disk~limited region, it will have
very little effect. It can be said then that the relationships between
parameters are camplex and non-linear. It is not possible to write down
analytic expressions that will hold under all conditions.

In order to provide the system designer with the tools that will
enable him to predict performance under the wide-range of scaling
conditions that are encountered in practical situations, a concept was
evolved that uses a simulation model of a generalized IDHS to predict
performance and to predict changes in one variable fras changes in
another; i.e., the sumlation substitutes for the nonexistence of precise
analytic functional relationships between various scaled parameters.

It has been found that a fairly small nunber of parameters is
adequate to specify each particular IDHS to the simulation. Each of the
input parameters, in turn, can be expressed as a fairly simple analytic
function of the scaling parameter factors. A series of formulae are used
in steps to relate the simulator variables to scale factors. A diagram

of the technique is shown in Figure 3-02.
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As shown in Figure 3-03, an example of a simulator input variatle
is CPU service time, i.e., time in CPU per CPU block, where a block is =
set of instructions until a disk access is encountered. The followinc
‘formulae, as described in the report "Simulator Varilable-Scale Factor
Equations" (Appendix D), are one set that can be uscd to relate CPU
service time to system scale factors.

MEAN can be defined as follows:

MEAN = instructions executed/block
instruction/time (power)

Define the following terms:

Np

nuber of disk accesses

Nop (nutber of data base accesses) + Npp (number of paging
D disk accesses)

I = number of instructions

Ic (number of computational instructions) +

Ipg (number of data base instructions) + Ip (number of paging
instructions)

Define the frequency of data base disk accesses per canputational

instruction,

Fog = Npe
=

C
Then Npg = I- [NpBl = Ic Fpy
AlsoNDp=Kp*IC*QLwherer
CR,
is a system—dependent constant calculated as the number of paGing

accesses/computational instruction, Gy 1s the virtual core for 2

particular job (the job size) and Cr is the real core for the job (the
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actual core available for the job).

Then

Z
)
|

—NDB+NDP
14

Ic [Fpg + Kp Cr |

1

Np Fpgt+ Kp &

Cr

Ic is the number of instructions per block so,
Np Cuvean = (Fpg + Kp Cv) -1

'—_——vLC .
Instructions/time

1

To find a value for Fpp, estimates and typical numbers will be
sought. The value will depend on the fur~<tion being performed and the
probability of having to make a disk access. There are several factors
that affect the probability that a piece of information is in core vs. on
disk, such as the amount of the data base that is stored in core at any
time, the organization of data on the disk (the data base structure), and
the data manipulation algorithms. Also, since Fpp was defined as Npg
it may be possible to calculate Npg for a giver function and datgase
organization, while Io would alsc be a function of scale factors, such as
the function being performed and the data base size and data base
camplexity. Thus Fpp could be derived in this way.

A way to approach the problem of evaluation might be to start with
"reasonable” estimates for these parameters. Wwhen the scaled system is
operational, they can be measured by nonitoring system behavior. Indeed,
the purpose of building the scaled system is to measure the parameters

which will be used in the full-scale system so that flexibility in the

3-21 4




design of the full-scale system can be retained. The small scale system
together with the simulation will enable the designer to see what will
work in the full-scale system.

To find Cy for each job of type 3j, assume input values for
simulation parameters mean Cy(3), Ocv 3). As the job begins, pick
the actuial C, according to a probability disiribution function.

For Cr, the real available core for the job, the following
system-dependent values can be input:

Cr = total core for the machine

Cog = operating system core

Then
CR = CT - cw = OI‘ - C(E
nunber of jobs running nunber of terminals.

In the equations that have been discussed, the simulator parameters
have been defined as functions of many of the scale factors, including
power (instructicns/time), number of terminals, real core (system
capacity), number of instructions (related to data base camplexity and
structure), hardware, functionality, and security core (involved in the
calculation of Cgr, the real available core for a job). The use of the
simulation then permits analysis of scale factor interrelationships.

The simulation, as described in the report "Simulator Description”
(Appendix E), will be used by the system designer in an iterative manner
in the course of specifying the full-scale system. The scaling factors
will be specified and used as input to the simulation, the output will be

examined, and scaling will be respecified until the desired outputs,

i.e., full~scale system behavior, are achieved. A typical question would




r'_—_——“—_m-!

be: How much can the data base size be scaled up with present disk

hardware without going below the minimum required responsiveness

(responses per unit time)? Will it be necessary to have more and/or
faster disks in order to achieve the desired full-scale system
responsiveness and incorporate the necessary data base size? If access
time is improved by so much, how much can the Fata base then be scaled
up? The system designer will look at the results of the simulation based
on a set of values for the scaling parameters and iteratively adjust
these values. Such respecifications of scaling may well result in design
changes for the full-scale system, e.g., by going to more and/or more
powerful hardware. Thus the tools to be used will be the simulator and
the set of input variables.

3.2 System Design Methodology for Using Scaled Systems

3.2.1 Interrelationships Among Scaling Factors

The objective of this task was to develop standard procedures for
applying the scaled system technique to new IDHS develomment projects and
to describe how measurements made on a scaled system can be extrapolated
into predictions for a full-scale system.

The result of Task 1 was a set of scale factors that describe an
IDHS, with appropriate metrics defined on them. The goal of Task 2 was
to determine the predictive value of each scaled parameter before
preparing guidelines for which parameters to scale. Toward this end, an
operating system performance simulator was designed, as discussed in the
report, “Simulator Description" (Appendix F).

A job enters the system at random intervals chosen fran a Poisson

distribution, from one of n terminals (nf£lG0). The exponential
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probability distribution function is used to model the job arrivals

because, as noted in Beizer [ref. 6], assuming this distribution is

equivalent to saying that the arriving custamers individually anc

.oollectively behave as if they were not aware of each other's existence,

because it is usually (but not always) pessimistic, and because it leads
to reasonable expressions for the queueing marameters. The use of the
exponential interarrival time distribution leads to a Poisson arrival
rate distribution.

The Jjob is assigned a job class (CPU~ or disy-bound! and  CPU/dask
iteration count, based on probability distribut:ons. Each terminal is
assigned a wait or "think" time. The job 15 placess ox tie PP or dgsé
queve if the required facility is busy; wher 1t geirs L e T,

it is assigned a CPU service time and o disk seroioe * .

Experiments with sets Of various poraetir vl i st
order to address the issue of how suvh fa v 1w v - . oprer of
terminals, the job mix (the combination of “T¥ -treag: us i =trond
jobs), and average CPU service time affect iise wiitire come, CIF ot
disk utilization, response time, and Gtner meas res Cf syster
performance. Tests were run with &, 1¢, le, 20, 70, 790 and 100

terminals, with the percentage of CPU-bound jobs ranuiic: f1 o VY to 90U,
Figure 304 summarizes the experimental recults for tes:s involving meos,
CPU/disk iteration ocount (the number of times the jot flips betwoer the
CPU and the disk) of fram 4 to 10 for CPU-bound jobs and 12 to 3 for
disk-bound jobs.

It is necessary to examine the parameter interrelationships and

system behavior in different operating regions, 1i.e., CPU- or disk-bound.
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Figure 3-04 Summary of Simulator Experimental Results
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Figure 3-05 plots the number of terminals against the response time (the
inverse of the responsiveness scale factor) for a system that has

approximately 15% of its jobs in the CPU-bound category. The graph shows

-that for a mean of 4 CPU/disk iterations for CPU-bound jobs and a mean of

12 CPU/disk iterations for disk-bound jobs, the increase in response time
is c¢lose to being proportional to the increase in the number of
terminals, i.e., increasing the number of terminals by a factor of 2.5
(20 to 50) results in a 2.2 fold increase in the response time, while
doubling the number of terminals fram 50 to 180 results in a factor
increase of approximately 1.8 in the response time. As the mean number
of CPU/disk iterations increases, the increases in response time for the
higher number of termminals are sharper, as can be scen fram Figure 3-05.
Figure 3-06 shows the number of terminals plotted against the
response time in the operating region where 25% of the jobs are
CPU-bound. The curve for/u,c=4%&fl2, follows the same pattern as the
15% CPU-bound curve in Figure 3-05; i.e., the sharp increases in response
time take place when the mean number of CPU/disk iterations is highest.
Similar phenomena are demonstrated in Figure 3-07 ir. the region
where 58% of the jobs are CPU-bound and in Figure 3-08 where 10% and 15%
of the jobs are CPU-bound. The general conclusion illustrated by the
results of these experiments is that response time increases as the
number of terminals increases, with proportionately larger increases
taking place at the higher range of nunber of terminals and in the
regions where more jobs are disk-bound; i.e., the curves tend to flatten

as the percentage of CPU-bound jobs increases. In addition, as might be

expected, response time increases as the mean number of CPU/disk
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Figure 3-08, Number of Terminals vs. Average Response Time
with 10% and 15% CPU-bound Jobs
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iterations increases. The rate of increase is mot predictable however.
Figure 3-09 summarizes the changes in response times as the percentage of
CPU-bound jobs decreases, i.e., the system beocames more disk-bound. It
can be seen that doubling the number of CPU/disk iterations does not
consistently double the response time, and the increases in response time
vary within operating regions. Figure 3-10 summarizes the performance
curves in Figures 3-05, 3-06, and 3-C7.

Figure 3-11 demonstrates the system's behavior in the region where
25% of the jobs are CPU-bound and the numher of CPU/disk iterations for
CPU-btound and disk-bound jobs is 16, 32, or 40. Again, sharper increases
are seen in the curves representing 5C and 102 terminals, as campurad
with those curves for 8 to 20 terminals. Figure 3-12 illustrates similar
behavior for an environment where 5C% of the jobs are CPU-bound. Thus,
in general, it can be said that adding CPU/disk cycles to the average job
results in increased responsc time. Similarly, as demonstrated in Figure
3-13, the increase in the average disk wait time is approxirmately
proportional to the increase in the nunber of terminals in all operating
regions examined.

Figures 3-14 and 3-15 show what happens to the response time as the
percentage of CPU-bound jobs increases. Generally, the response time
decreases, with the sharper changes taking place for the curves
representing the larger nunber of terminals. Figure 3-14 illustrates the
results of the experiments with mean CPU/disk iteration count of 4 for
the CPU-bound jobs and 12 for the disk-bound jobs (indicated as (4,12))
and those with mean CPU/disk iteration counts of 8 and 24, respectively.

Figure 3-15 plots the percentage CPU-bourxd jobs vs. response time curve
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Figure 3-14. Percent CPU-bound Jobs vs. Average Response Time
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for a mean CPU/disk iteration count for CPU-bound jobe of 10 and for
disk-bound jobs of 30.

Figure 3-16 and 3-17 illustrate the results of increasing the
average CPU service time by a factor of 12. Looking oniy at an
operating region represented by 8 to 20 teminals, the average regponse
time is not affected greatly, either for a CPU/disk iteration ocount of
(4,12) or one of (8,24).

The wide range of parameter values for the simulator that would be
considered realistic makes it difficult to cdraw final and definitive
conclusions from the experiments that have been conducted. It can be
said that having examined a set of cases with a limited set of parameter
values, it is clear that response time is proportional to the number of
terminals and the number of CPU/disk iterations, and inversely
proportional to the percentage of CPU-bound jobs. As far as how these
scale factors actually are mathematically interrelated, the curves show
that these relationships depend on the operating region, i.e., whether
the system is CPU-bound or disk-bound and whether there is a small (maybe
20 or less) or large (more than 5@) nunber of terminals.

Further work to make the simulator more sensitive to the particular
requirements of IDHS and to run experiments with additional sets of
parameter values would permit more definitive analyses of the scale
factor interrelationships. Such results would also enable the scale
factor-simulation parameter equations, as described in the earlier

report, "Simulator Variable-Scale Factor Equations" (Appendix E), to be

canpletely derived.
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3.2.2 Guidelines on Which Parameters to Scale

The objective of the research into the scaling of systems before
full implementation is attempted is to improve the way design,

developnent, and evaluation of IDIS are performed. The ultimate IDHS is

derived fram the scaled system in a manner that decreases the final cost
and increases the final benefit over that achievable without the use of a
scaled system. Consider Figure 3-18, which illustrates the relationship
among IDHS, development of IDHS, and scaled systems. Characteristics of
intelligence data handling camputer systems, when considered in light of
what is known today about oamputer system development, dictate a certain
cost/benefit achievable with a given development effort. Suppose that a
scaled system is defined, based on the ultimate intelligence data
handling system objectives, but without some of the characteristics that
contribute to increased cost and reduced benefit. The scaled system
could then be implemented at a fraction of the cost of the camplete
system, and ocould furthermore be used to change some of the undesirable
characteristics of the ultimate system. For example, one factor
increasing system cost is lack of personnel experience with the system.
After developing a scaled system, project personnel will have the
experience necessary to develop the camplete system at reduced cost.
Thus, the ultimcte intelligence data handling camputer system is derived
from the scaled system in a manner that decreases the final cost and
increases the final benefit over that achievable without the use of a
scaled systeam.

The unique problems entailed in implementing an IDHS computér system

are based on a cambination of its characteristics. Since understanding
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how these characteristics might be modified within a scaled system is
necessary to using scaled system techniques, major characteristics of
IDHS will be discussed.
a. System uniqueness

Most intelligence data handling computer systems are unique.
Although most do share camon functions, such as camunications, each
system developed must support specific mission requirements and interface
with specific other in-place systems. Cost savings have been realized
through transfer of technology, such as implementing National Military
Intelligence Center (NMIC) Support Software (NSS) for the Preliminary
Operational Capability (POC) of the Pacific Comand (PACOM) Data Services
Center (PDSC), but uniqueness is not removed through this process. Thus,
several man-years of development were still required for the PDSC POC due
to unique hardware interfaces and different ocamputer configurations. 1In
addition, implementation of many new and unique capabilities for PDSC is
currently underway.

b. Security

All intelligence data handling ormputer systems operate within
secure environments due to the classified information they process. Many
of these systems are subject to the especially stringent security
constraints required for processing sensitive campartmented information
(SCI). Types of security required include physical (access restriction),
personnel (clearances required for access), TEMPEST (electronic
emanation), and OOMSEC (cammnications security between systems). 1In
addition, caunputer hardware/software security provides another line of

defense against unauthorized access by preventing information retrieval
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without knowledge of correct passwords and ocodewords even if physical
security is breached. Techniques of hardware/software security are

expected to improve considerably in the near future, as extremely

reliable measures are required to process data of differing

classifications within the same system. Curr¢nt requirements for such
multi-level secure processing have spurred research efforts such as
Kernelized Secure Operating System (KSOS). Paramcters related to
security objectives such as file protection methods, granularity of data
access ocontrol, encryption, and authentication mechanisms are potential
elements for scaling.
C. Interactive

Most intelligence data handling computer systems are
interactive; that is, they interface with users at on-line terminals. In
order to be effective, these systems must provide rapid response to user
requests. Many of these requests may require camplex processing, and a
large number of user terminals is often supported. Thus, the NMIC system
may be accessed fraan over thirty terminals, and may process requests to
scarch an entire five-day message file for specific items. The nunber of
terminals and the required responsiveness can be objects of scaling
procedures.

d. Real-Time

In addition to being te. - ive, most intelligence data
handling caiputer systems also include camponents that nust operate in
real-time. This is particularly true for coamponents handling direct
sensor input or, as is more camon, canponents handling cammnication

circuitry and protoools. Thus, the Intelligence Data Handling System -
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Camumnications (IDHSC I1) is capable of controlling several cawmmication

channels with bandwidths of 9680 baud. Messages must be processed as they

are received, and must be transmitted with timeliness. IDHSC 11

-additionally performs sophisticated packet switching and other message

handling functions, and it is conceivable that bandwidths of up to 5CKB
may eventually be required. Real-time operations can be scaled by
simulating real-time data with input data, and transmission and
dissemination functions can be eliminated for scaling purposes.
e. State-of-the-art

Most intelligence data handling cauputer systems include at
least some canponents that are state-of-the—art. Same systems are based
entirely upon research into state~of-the-art techniques. For example,
the Advanced Indications System (AIS) includes aspects relating to
artificial intelligence and the emerging technology of decision support
systems. It would probably not be desirable to scale state-of-the-art
features.

f. Large data base

Increasing sophistication in intelligence collection techniques
and expanding canputer storage and processing capabilities have provided
unpetus toward development of intelligence data handling canputer systems
with data bhases of ever-increasing size and camplexity. The Advanced
Imagery Requirements Exploitation System (AIRES) data base currently
consists of several billion characters of on-line information. Data base
size and the number of intra-data base linkages are prime candidates for

scaling.
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g. Interoperability

The vast amount of intelligence data collected and the

decentralization of mission responsibility, particularly as is being

‘implemented under the Delegated Production Policy, dictate that many

different intelligence data handling camputer systems exist in diverse
geographic locations. However, the necessity for fusion of intelligence
fran different sources requires that comunication and interoperability
be established among these various intellicence data handling camputer
systems. Interoperability requirements are particularly wide-ranging for
national-level systems such as the Defense Intelligence Agency (DIA)
Integrated Indications Systems (DIIS) currently being designed, which
will interface with at least a dozen other systems. Different locations
can be scaled by simulating through input data.
h. Reliability/availability

Many intelligence data handling camputer systems operate on an
around-the—clock schedule, and all are expected to be available during
virtually 1003 of their scheduled up-time. With many of these systems
extremely critical for the national defense of the United States, serious
degradations of reliability and/or availability cannot be tolerated.
Also, the extensive amount of interoperability implemented causcs
systems to depend on each other and may cause one malfunctioning system
to adverscly impact others.

i. Changing Requirements/Evolving Systoms

Intelligence collector technology growth, coupled with the long

lead times required to implement data handling camputer systems, often

causes system requirements to change several times during a development
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effort. Furthermore, the overall national intelligence data handling

capability is continually evolving, causing each individual intelligence

| data handling canputer system to similarly evolve. The Cammunity On-Line
-Intelligence System (ODINS) provides a good example of national e;/olution
and requirements changes affecting several individual autamated systems.
COINS was initially implemented as a dedicated network directly
interconnecting various large-scale host mainframes. As  adcitional
hosts were added to the network, it became apparent that hest
programming changes were becaming prohibitively expensive, so a front-end
processor architecture was implemented. The architecture alsc included

communication processors similar to the Interface Message Processors

(IMPs) used on the advanced Research Projects Agency Network (ARPANET).
Sane network sites did not have IMPs but did have IDHSC II processcrs,
however, sc COINS protocols were implemented through IDHSC II and
interfaced to other members of the original COINS. Efforts currently
underway with respect to COINS include an experiment to eliminate
dedicated circuits by sending traffic, suitably encrypted, to distant
sites throuagh the actual ARPANET.

The system parameters which apply to each IDHS characteristic are i
described more fully in "Software Scale Parameters” (Appendix B) and ’
"System Scale Factor Metrics” (Appendix C). Which of these !
characteristics to scale depends on the major objectives of the |
development effort, making it hard to quantify epplication-dependent
parameters. In addition, qk-zantifying software system attributcs 135 =

young, expanding discipline in which definitions and amphases tend to

shift, contributing to the dynamic nature of the terminology and
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technical base. Actual metrics and relationships may therefore be

resculptured as research continues toward the goal of achieving an
understandable and workable methodology for scaled systems development.

The experiments performed with the simulator indicate that
guidelines for which parameters to scale will have to be narrowly
defined, depending on such factors as operating region and expected
system size, e.g., number of terminals. Although no drastic changes in
scale factor interrelationships occur in these different enviromments,
there is a significant amount of variance, e.g., doubling the number of
terminals does not always double the response time.

Figure 3-19 jllustrates the considerations in deciding what to
scale. It is necessary and advantageous to first prepare the lists of
objectives for using both the full-scale system and the scaled system.
Full~scale system objectives fall into two categories, the general type
of system, such as real-time versus batch, and any unique objectives
required for the system, such as 1023 up—time, flexibility to interface
with other evolving systems, simple transportability, etc. For example,
a real-time data acquisition system could be scaled on the input data
rates or number of input lines, while an interactive system could be
scaled on the number of users. The objectives of the full-scale system
are related to the functions it performs, which will aid in determining
which parameters tc scale. The objectives for using scaled systems
within a development effort will also be factors in determining which
parameters to scale, as scalinag certain parameters may clearly aid or
hinder accomplishment of these objectives.  As has been discussed In

previous sections, the benefits include obtaining user feedback for final
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design decisions, testing unique or state-of-the-art concepts, providing
project experience for the development tecm, implementing an initial

operational capability which will be later enhanced, and predicting

full-scale system cost, schedule, risk, and performance. A scaled system

built to establish the feasibility for a unique system should not have
camplex or state-of-the—art features scaled, while a scaled system built
to elicit final user design feedback should have the number of users, but
not the user interface, scaled. The use of a scaled system must also be
cost-effective, while "too much" scaling mist be avoided or it will be
impossible to extrapolate performance results. Figure 3-20 presents a
summary of guidelines in selecting which sample objectives to scale.

The value of using the simulator to aid in determining guidelines as
to which parameters to scale is that, for a given set of objectives for
the full-scale system, tests can be run with various scenarios
representing different sets of parameters scaled and the implications of
such scaling can be easily and inexpensively evaluated. The limits
beyond which some scale factors should not be scaled can also be
determined in this way. For example, it might be seen that given the set
of parameter values that define the proposed system, halving the number
of terminals from 10@ to 50 doubles the interact..e responsiveness.
However, halving the number of terminals fram 5C to 25 triples the
interactive responsiveness. In this case, the simulator would indicate
that the number of terminals should not be scaled to less than half
without taking the change in the terminal responsiveness relationship

into account.
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SAMPLE OBJECTIVES PARAMETERS TO SCALE

System Uniqueness ?

Security File protection methods, granularity
of data access control, encryption,
authentication

Interactive Number of terminals, required
responsiveness

Real~-Time Input data rates, number of input
lines, transmission and dissemination
functions

State-0f~-The-Art ?

Large Data Base Data base size, number of intra-data

base linkages
Interoperability Transmission and dissemination functions

Reliability/Availability ?

Figure 3-20. Summary of Scaling Guidelines
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General guidelines can be derived, however, fram this research.
The experiments have demonstrated that responsiveness is inversely
proportional to the number of terminals and the number of CPU/disk
Jjterations. It can also be seen that, as shown in Figures 3-15 a}xd 3-1¢,
increasing the average CPU time does not increase the response time,
indicating that functions requiring extra CPU time, e.g., security
overhead, can be moderately scaled without affecting other wcale factors.
The cost model can then be used to determine the degree of scaling that
is both advantageous and feasible.

3.3 Decision Factors and Guidelines

The purpose of this section is to establish the basic and
generalized guidelines which system architects can refer to in
determining the feasibility and cost-effectiveness of building a proposed
system to scale. Fram that point, a more detailed discussion supported
by quantitative exhibits will be presented.

3.3.1 Overview

Decision guidelines for potential scaling of proposed system designs

will most often have as their focus, two najor questions:

(1) Can the system in question be built to scale?

(2) Will the resultant scaled systom prove worthwhile
both in its possible operational value and in
bencfits realized for application to the unscaling
effort?

3.3.1.1 Scaling Feasibility

Before answering the first cquestion, a thorough analysis of the
proposed system's characteristics must be performed ir order to establish

a reasonable scaling methodology. Information of value would generally
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consist of such items as the system's requirements, performance criteria,
functionality, proposed architecture, estimated program and data base
size, and configuration, both in terms of its hardware and software. In
addition, level of technical staff expsrience and qualifiéations,
development schedule, resource allocation (staff-loading), as well as the
ultimate target delivery date for the full-scale system must be taken
into acoount. Once such data is gathered, the formulation of a scaled
system development methodology may commence. Coupled with the "how" of
scaling, however, is the "why" of scaling, which raises the importance of
the second question stated.

It should be stated that the importance of a scaled system lies not
in the fact that the scaling can actually be accamplished, but in the
benefits that actually accrue to the ultimate full-scale system. It is
important then, that the objectives of the scaled system be established
early on. It is additionally important to maintain the distinction
between the concepts of scaling and prototyping. While a scaled system
is most certainly a prototype, a prototype may not necessarily have the
properties of a scaled system. Wwhile the potential value of prototype
systems is acknowledged, the discussion of such is considered beyond the
scope of this report.

In examining system attributes in terms of scaling feasibility, the
ones with the least risk should be considered first. The motivation here
is to scale attributes where there is much certainty about their

full-scale properties so that relatively higher-risk system camponents

may be implemented and thoroughly scrutinized in the scaled system.
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Important attributes to keep in mind during the design of a scaled

f
{ system include its degree of modularity and transportability. In most

cases, the unscaling effort would certainly benefit fram any inventory of

-source code accumulated during the scaled effort. This, of course,

requires the extra effort in planning since little is known about the

actual workings of the full-scale system at the front-end of the

development cycle and, due to the development methodology selected

{scaling), it is most certainly a camplex and technically challenging

system defying any such planning attempts. Nevertheless, attention to
i designing modular, transportable code for the scaled system will
i eliminate the need to produce similar cod: for the ultimate full-scale
system and will result in cost savings for the full-scale system as well
as a reduction in total project costs.

! 3.3.1.2 Cost Modeling and Parametric Analysis

In the planning and design stages for a scaled system, the planners
inevitably find themselves decp in the recalm of cost estimation modeling
and parametric analysis in the determination of the potential cost
‘f effectiveness of the development methodelogy chosen.  Such tools are
important in the exploration of the interrelationships that exist between
the scaled system and its full-scale counterpart in determining total
cost, schedule, and risk. While hardware cost estimation can be achieved
with an acceptable degree of accuracy, software cost estimation involves
many critical variables which aggravate formulation of accurate cost
projections. One such variable is time; major softiare development
j efforts nearly always span a considerable ~rount of time. Software cost

estimates therefore bear a significant degree of uncertainty because they




address future events heavily dependent upon the interaction of a group
of people. Consequently, a small deviation in the resulting delivery
schedule causes a major impact upon costs because in software
develomment, the burdened costs of maintaining a project staff, generally
at significant pay-scales, are large. Future projections thus bear a
degree of uncertainty proportional to the term under consideration;
long-term predictions are long on risk while shorter-term predictions
involve relatively less risk. System hardware cost estimation is
considered a contrast to software cost estimation because, in the
procurement of hardware, the cbjects are generally “off-the-shelf” items
where the major concerns deal mostly with the transportation,
interfacing, and check-~out of the various m~dular hardware camponents and
a relatively shorter time frame is involved.

Due to the difficulty involved in dealing with critical variables,
such as time, in the planning of systems, parametric analysis has became
a useful tool in the making of projections. Parametric analysis can be
loosely defined, for the purposes of this discussion, as the posing of
"what if" questions; the power of the technique lies in its assessment of
the sensitivities of the various crucial variables present in our
estimate calculations, such as time.

3.3.1.3 &caled Systems Decision Criteria

Thus, while the feasibility and methodology of producing a system to
scale is the primary responsibility of the system's architects, the
resources of a parametric analyst and a cost estimation method are

crucial in detemining, at the onset, any potential cost savings that

could occur through the adoption of a scaled system devélopment
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i methodology. Cost savings are perceived as the principal driver of the

scaled system design; however, it should be emphasized that situations

may arise where potential cost savings are subordinate to full-scale

product gquality considerations such as reliability, efficiency,
integrity, and performance. Nevertheless, the objective of the following
sections is to provide the system planner vith appropriate guidelines by
which he may mentally determine the feasibility of applying the scale?
systems approach to a particular software effort.

3.3.2 Decision Factors Influencing System Development

There are a number of research papers appearing in thc opcen
literature itemizing factors which influence software development cost
and schedule. Same authors have additionally been able to quantify the
effects of the presence or absence, to varying degrees, of thesec factors. '
Cne of the first to do so was J.C. Aron in “istimating Resources for
Large Programming Systems” [ref. 1]. A result of this study is

illustrated in Figqure 3-21. In this illustration, we find Aron's

productivity table which relates code production to factors such as

difficulty, schedule duration, and interface camplexity. Of note to

planners of scaled systems are the facts that, generally, the longer the ;
development schedule duration and the less interface cawplexity and
difficulty, the greater the productivity and, hence, the less the cost.
Of especial interest is the counter-intuitive nature of praxiuctivity
presented in terms of development schedule duration; the lonacr the

schedule, the greater the productivity. This anamaly has been noted by

other authors such as Brooks and Putnam and the phenamenon is perhaps

best explained by Putnam [ref. 17]. Yet even fran this simple table,
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Row 1

Row 2

Row 3

3-58

Duration
6-12 12-24 More Than
Monthe Months 24 Months
Difficulty
Easy 20 500 10, 000
{25/day) (19/day)
Medium 10 2%0 5, 000
Q2. Sidny) (Zélodly)
Difficult S 125 1, 500
(6.25/day) (6/day)
Inetructions Instructions Instructions
per per peor
Man-Day Man-Month Man-Year
Unite
Figure 3-21, Aron's Productivity Table

Very Few
Interactions

Some
Interactions

Many
Interactions
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planners of scaled systems can be confident that through the limiting of
a project's size, scope, and camwplexity -~ same of the attributes of a
scaled system - productivity performance can indeed be increased armd
total resources and labor put to more efficient use.

Next to itemize software developmental factors was Doty (and
associates) under a research effort for the Rome Air Development Center

(RADC). 1In Software Cost Estimating Study - Guidelines for Improved

Software Cost Estimating [ref. 7], the authors identified forty-six

factors which contribute significant impacts upon software project costs
and schedules. These forty-six -factors were divided into three
homogeneous groups and are listed in Figure 3-22. In addition to this
enumeration, Doty and his associates were able to formulate a set of
effort (cost) formulae characterized by separations based upon
application type and respective adjustment factors specifically
accounting for same of the envirommental attributes. These formulae were
arrived at based upon the data RADC had internalized concerning over four
hundred software development efforts. The Doty cost formulae and
adjustment factors appear in Figure 3-23. Individual environmental
factors quantified in Figure 3-23 are identified in Figure 3-22 by an
asterisk ("*") alongside the corresponding factor. It is readily
apparent that not all of the effects of the factors listed in Figure 3-22
were quantified. Presumably this is due to the inherent difficulty and
probable research constraints limiting the quantitative determination of
such effects.

Of wide interest to researchers of software engineering in general,

and cost and productivity modeling in particular, is an article-entitled
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REQUIREMENTS DOMAIN FACTORS

X 1.  OPERATIONAL REQUIREMENTS DEFINITION
# 2.  OPERATIONAL REQUIREMENTS CHANGES
3.  USER REQUIREMENTS CONSIDERED
4.  OPERATIONAL REQUIREMENTS/DESIGN INTERFACE
5.  SPECIFIED RESPONSE TIME
, 6.  AVIONICS APPLICATION
X 7.  COMMAND AND CONTROL APPLICATION
A8.  MULTIPLE SOFTWARE UTILIZATION SITES
9.  RELIABILITY REQUIREMENTS
10.  MAINTAINABILITY REQUIREMENTS
11.  QUALITY REQUIREMENTS
12.  TRANSPORTABILITY REQUIREMENTS
X 13.  BUSINESS APPLICATION
X 14.  SCIENTIFIC APPLICATION
X15.  UTILITY APPLICATION *

SYSTEM ARCHITECTURE/ENGINEERING (A/E) FACTORS

X 1.  CPU TIME CONSTRAINED
X 2.  PROGRAM MEMORY SIZE CONSTRAINED
X 3.  ON-LINE OPERATION

4.  TIME AND MEMORY CONSTRAINED
TARGET CPU DESIGNATION
DESIGN STABILITY
DESIGN COMPLEXITY

N oo

X Productivity impacts quantified in study

Figure 3~22. RADC Environmental Factors
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10.

1.

12.

13.
XX14.
X15.
16.

17.
X18.

¥19.
X% 20.
X21.
X22.
X 23.

24.

MANAGEMENT DOMAIN FACTORS

SUPPORT SOFTWARE AVAILABILITY
WORK BREAKDOWN STRUCTURE
DEGREE OF INNOVATION

TESTING REQUIREMENTS INCLUDING VERIFICATION AND
VALIDATION

COST/SCHEDULE CONTROL SYSTEMS CRITERIA (C/SCSC)
DEVELOPMENT PERSONNEL MIX

PROGRAMMER TESTING

AMOUNT & METHOD OF COST DATA COLLECTION

COST OF SECONDARY RESOURCES

DEFINITION OF INSTRUCTION

SIZING ERROR

DATA MANAGEMENT TECHNIQUES

MODERN PROGRAMMING TECHNIQUES

PROGRAMMING FACILITIES (Location & Access)
DIFFERENT DEVELOPMENT AND TARGET COMPUTERS
COMMUNICATIONS

LANGUAGE REQUIREMENTS

DEVELOPMENT SITE

DEVELOPER USING ANOTHER ACTIVITY'S COMPUTER
NUMBER OF DEVELOPMENT LOCATIONS

CONCURRENT DEVELOPMENT OF HAROWARE
DEVELOPER'S FIRST TIME ON SPECIFIED COMPUTER
SPECIAL DISPLAY REQUIREMENTS

SOFTWARE DEVELOPMENT SCHEDULE

X pProductivity impacts quantified in study

Figure 3-22 (Cont.)
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"A Method of Programming Measurement and Estimation," by Felix and
Walston of IBM [ref. 24]. This article first appeared in the IBM System
Journal Volume 16, Number 1, in 1977. 1In this article, the authors
examined a group of sixty campleted software develomment projects that
covered a wide range of application type, size, and camplexity. Fram
this research, the authors campiled a list of productivity rates itemized
by envirommental or product factor. This list is summarized in Figure
3-24. Regrettably, the data, as presented, is not of ruch use to system
planners. The authors did allude to a methodclogy whereby the
productivity rates could be incorporated into an estimation model but
unfortunately they did not elaborate upon the details necessary to apply
the methodology to practice. Hence, under this research effort the
attempt was made to incorporate this raw data into a general scheme cf
guidelines through which system planners might be able to assess the
potential benefits of applying the scaled systems development
methodology .

3.3.2. 1 Factor Quantification

The Walston and Felix article is one of the few available sources of
quantitative empirical data concerning the effects of many various
environmental factors influencing software development. In order to
obtain meaningful decision factors from the walston and Felix aata
identified in the previous section, it was first necessary to sanchow
translate the raw productivity rates into some sort of predictive
coefficients indicating the respective impacts of the development factors
or. a project's cost, effort, or schedule. While it was recognized that

the resultant factors may not apply to any particular envirommiont, the
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intent was rather to formulate a set of surrogate values based upon
actual “real-world" experience for the purpose of rough effort
approximating and scaled system trade—off analysis. Again, the purpose
of such an exercise would be to provide the system planner with a tool to
facilitate his assessment of the feasibility of adopting the scaled
system developw ntal approach.

After rationalizing that the Doty coefficients must have been based
upon similar productivity data as that which Walston and Felix provide
(except cbtained from a different source - RAIC), it was determined that
the Doty method would be an attractive model to base the determination of
the coefficients fram the Walston and Felix data upon. In addition,
there would be benefits to representing both sets of data in the same
manner as they would campliment each other. In retrospect, the Doty
method to account for envirommental factors consisted of coefficients
that, when multiplied together, produced a multiplicative factor that
could be used in an equation of the form:

Person months of Effort = Constant * SLOC T Exponent * ii

where: "ii" is the multiplicative factor
Of particular value in the Doty method is the fact that while each
envirommental factor value not only relates its marginal impact upon a
project's estimated cost, it is expressed in a form such that its implied
interrelationship with the other factors is automatically accounted for.
Other organizations and researchers have used these same envirormental
factors and their corresponding coefficients for other, different
estimating purposes in their original form with acceptable degrees of

success. A prime example would be the Space and Missile Systems

3-65




Organization's (SAMSO) Software Programs Office (SPO) in Los Angeles,
California, where the Doty factors and Coefficients are used to adjust
the technology omnstant in Putnam's software equation [ref. 13]. The
Putnam equation relates system size to total project effort and schedule
through the technology constant and is totally different fram the Doty
methodology. The problem, then, was to quantify the IBM data in a
similar manner to the Doty methodology. Traditional systems thinking
techniques were applied to the problem first - problem solution through
problem decomposition. Step one consisted of cambining related
develomment factors into groups. The resulting groupings are shown in
Figure 3-25. Of concern to this research was the fact that the
aggregation of the effects of the individual development factors tended
to over-emphasize the resulting productivity estimates. It was
subsequently determined that the original data did not result fram “pure"
laboratory research conditions and that the mere presence of same
envirormental factors implied other, related factors. For example, the
IBM data might be interpreted to suggest that the presence of both
structured programming techniques (303 Lines of Code per Month - LOC/M)
and top-down design (319 LOC/M) would result in productivity of 622
source lines per month, which, from the other data present, seems
questionable. Top-down development and structured programming
techniques, in all probability, occurred simultaneously in the Walston
and Felix project data base; hence, additive-type analytical techniques
of the published data would tend to over-emphasize the effects of the
various development factors. This simplistic example illustrates the

ﬁroblem of attempting to aggregate the resultant effects, in “terms of

3-66




T ———————————

"Stuctured Techniques"
Structured Programming
Design and Code Inspections
Top-down Development
Chief Programmer Teams

"Cgr_glexitx" ‘
Overall Code Camplexity ',
Camplexity of Application '
Camplexity of Program Control Flow

"Code Mix"
Proportion of Code classed as Non-Mathematical and 1/0 Formatting
Proportion R/T, Interactive, or Time-Critical Code
Proportion of Code Interded for Delivery

“"Utilization"
Overall Program Design Constraints
Core Memory Design Constraints
Execution Time Design Constraints

“plat form"
Customer Interface Camplexity
Degree of User Participation in Req'mts. Def. ]
Degree of Custamer-Originated Design Changes
Degree of Qustomer Experience in Application Area

"Resources"
Ave. Personnel Experience and Qualifications
% Dev'mt. Programmers who Participated in Func. Design Spec.
% Utilization of Currently-available Hardware
Degree of Previous Experience with Oper. Camputer
Degree of Previous Experience with Programming Languages
Degree of Previous Experience with Appl. Size and Complexity

"Security"
Spcl. Req. for Access to Dev'mt. CPU
Amount of Open Access Time to Dev'mt. CPU
Classified Security Enviromment for CPU and 25% of Programs & Data

"Misc. Items”
Proportion of Data Base Class-Items to 1,000 LOC
Proportion of Doc. Pages to 1,000 LOC
Ratio of Staff Size to Project Duration (People/Month)

Figure 3-25. 1BM/Walston and Felix Envirommental and Product Factor Groupings
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productivity, of the various factors in detemining guidelines based upon
such data. The real problem with the data, as we perceive it, is that it
does not result fram purely controlled situations. Of course, it is not
expected to as it is recognized that the gathering of such data under
pure laboratory conditions is far too expensive and time consuming, even
if it were possible. The task to be performed then was perceived as
inferring, through same quantitative basis, the effects of the cambined

envirommental factors. This was first applied through quantifying the

aggregated effects of all the factors in each particular group of related
factors. To accanplish this, the extreme low- and high-end productivity
rates for each component of a group were totaled. A marginal group

productivity impact was then calculated based upon these totals through

the following equation:

Marginal
[3.2-a] High total - low total = Aggregate
Productivity
low total Impact for Group

The marginal productivity impacts of each group, and the data used in
arriving at them, are illustrated in Figure 3-26. Fram this illustration
we see that the components of the group "Structured Programming”
contribute positively to productivity by a factor of 1.7. The fact that
this translates to a 70% increase in productivity for all organizations
and enviromments is undeterminable; however, in the IBM development arena
for a similar set of projects as those which constitute the IBM data, it

would be reasonable to expect that these practices would contribute to a
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Group Productivity Impact

Stuctured Techniques 1.79
“Structured Programming
Design and Code Inspections
Top~down Development
Chief Programwer Teams

Camplexity 1.69
Overall Code Camplexity
Camplexity of Application
Complexity of Program Control Flow

Code Mix 1.47
Proportion of Code classed as Non-Mathematical and 1/0 Formatting
Proportion R/T, Interactive, or Time-Critical Code
Proportion of Code Intended for Delivery

Utilization 1.86
Overall Program Design Constraints
Core Memory Design Constraints
Execution Time Design Constraints

Plat form 1.92
Customer Interface Complexity
Degree of User Participation in Req'mts. Def.
Degree of Customer-~Originated Design Charges
Degree of Customer Experience in Application Area

Resources 2.73
Ave. Personnel Experience and Qualifications
% Dev'mt. Programmers who Participated in Func. Design Spec.
$ Utilization of Currently-available Hardware
Degree of Previous Experience with Oper. Computer
Degree of Previous Experience with Programming Languages
Degree of Previous Expecience with Appl. Size and Camplexity

Security 1.72
Spcl. Req. for Access to Dev'mt. CPU
Amount of Open Access Time to Dev'mt. CPU
Classified Security Enviromment for CPU and 25% of Programs & Data

Misc. Items * Yot Calculated *
Prorortion of Data Base Class-Items to 1,000 LOC

Proportion of Doc. Pages to 1,00¢ 1LOC
Ratio of Staff Size to Project Duration (People/Month)

Figure 3-26. IBM/Walston and Felix Marginal Group Productivity Impacts
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CGroup Productivity Impact

Resources 2.73
Ave. Personnel Experience and Qualifications
% Dev'mt. Programmers who Participated in Func. Design Spec.
% Utilization of Currently-available Hardware
Degree of Previous Experience with Oper. Camputer
Degree of Previous Experience with Programming Languages
Degree of Previous Experience with Appl. Size and Camplexity

Platform 1.92
Customer Interface Camplexity
Degree of User Participation in Req'mts. Def.
Degree of Custamer-Originated Design Changes
Degree of Customer Experience in Application Area

Utilization 1.86
Overall Program Design Constraints
Core Memory Design Constraints
Execution Time Design Constraints

Security 1.72
Spcl. Req. for Access to Dev'mt. CPU
Amount of Open Access Time to Dev'mt. CPU
Classified Security Inviromment for CPU and 25% of Programs & Data

Stuctured Techniques 1.7¢
Structured Programming
Design and Code Inspections

Top~-down Development
Chief Programmer Teams

Camplexity 1.69
Overall Code Complexity

Carnplexity of Application
Camplexity of Program Control Flow

Code Mix 1.47
Proportion of Code classed as Non-Mathematical and 1/0 Formatting
Proportion R/T, Interactive, or Time-Critical Code
Proportion of Code Intended for Delivery

Misc. Items * Not Calculated *
Proportion of Data Base Class-Items to 1,000 LOC
Proportion of Doc. Pages to 1,000 LOC
Ratio of Staff Size to Project Duration (People/Month)

Figure 3-26a. IBM/Walston and Felix Marginal Group Productivity Impacts
- Listed in Order of Precedence
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productivity inciease on the order of 70%. Of subsequent interest is the
individual contribution fram each camponent camprising the group. To
arrive at these individual contribution factors, an equation of the

following form had to be solved for:

Marginal

Group = (14C1) x (14C2) x .... x (14Cn) [3.2-p]
Productivity

Impact where: Cl-n represent the marginal contributions

of each group's camponent members
Obviously, this is no trivial task and it appears that the possible
component values could take on any one of a wide range of possible
values. Fortunately, the solution can be determined due to the implied
variable relationships that exist in the basic productivity data.
Through the data, the basic equation of the form 3.2-b could be
translated to a form described by only one of the variables where the
remaining variables are defined through the one variable and a ratio
calculated fram the original data. This translation, coupled with the
facility of a digital computer, greatly simplifies the solution
procedure. This basic solution procedure is illustrated mathematically
in Figure 3-27. 1In this example, it is shown how the camponent marginal
contribution rates of the camponents of the "Structured Techniques" group
were determined. The equation of the single variable, A, was solved for
on an interactive camputer system through a program utilizing an
iterative solution technique. With this same procedure, the remaining
contribution factors of the groups could be solved for and the results
are provided in Figure 3-28. Figure 3-29 sumnarizes all of the group

productivity impacts as well as the camponent contributions of each
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Productivity (LSC/PM)

Structured Techniques No Yes % Increase
A) Structured Programming 169 301 8
B) Design and Code Inspections 220 339 54
C) Top-down Development 196 321 64
D) Chief Programmer Teams 219 408 86
Totals - 804 1369
These four factors affect productivity by 1369 -84 = + 70%
804
> 78 ¢ is this Group's Marginal Productivity Impact.

Relationships:
(14A) x (14B) x (1) x (14D) = 1.7
A /=/ ©.16
A/B = 78/54 B = 54*A/78 B /=/ 0.11
A/C = 78/64 C = 64*p/78 c /=/ .13
A/D = 78/86 D = B86*A/78 D /=/ ©.17

Solutions found by:

(1+3)

x (1+(54*a/78)) x (1+(64*A/78)) x (1+(86*a/78)) /[=/ 1.70

Notes: “LSC/PM" means "Lines of Source Code per Person Month"
"x" symbolizes arithmetic multiplication
" /=/ "  means - “"approximately equal to"

Figure 3-27. Sample Calculation of Group Camponent Contributions
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Productivity (LSC/PM)

Structured Techniques No Yes % Increase

A) Structured Programming 169 301 78

B) Design and Code Inspections 220 339 54

C) Top—down Development 196 321 64

D) Chief Programmer Teams 219 408 86
Totals - 804 1369

These four factors affect productivity by 1369 - 8234 = + 70%
R :

|

7¢ ¢ 1is this Group's Marginal Productivity Impact.

Relationships:
(1+A) x (1+B) x (14C) x (14D) = 1.7
A /=/ B.16
a/B = 78/54 B = 54*7/78 B /=/ ©.11
A/C = 78/64 C = 64*p/78 c J/=/ .13
A/D = 78/86 D = 86*n/78 D /=/ ©.17

Solutions found by:

(1+4A) x  (1+(54*A/78)) x (1+(64*A/78)) x (1+(86*a/78)) /=/ 1.7

Notes: “ILSC/PM" means "Lines of Source Code per Person Month”
" x " symbolizes arithmetic multiplication
v =/ means - “approximately equal to"

Figure 3-28. Calculation of Group Component Contributions
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Productivity (LSC/PM)

"AVerqe“
Camplexity > < % Increase
A) Overall Code Complexity 185 314 69
B) Complexity of Application 168 349 108
C) Complexity of Program Control Flow 209 289 38
Totals - 562 952
These three factors affect productivity by 952 ~ 562 = + 69%
562

> 69 % is this Group's Marginal Productivity Impact.

Relationships:
(1+4A) x (148) x (1+C) = l.69
A /=/ 8.19
A/B = 69/108 B = 1£8*A/69 B /=/ 0.29
A/C = 69/ 38 C = 38*A/69 c /=/ ©.10

Solutions found by:

(14A) x (1+(198*A/69)) x (1+(38*A/69)) /=/ 1.69

Notes: "LSC/PM" means "Lines of Source Code per Person Month"
"x" symbolizes arithmetic multiplication
"=/ means - "approximately equa' to"

Figure 3-28 (Cont.). Calculation of Group Component Contributions
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Productivity (LSC/PM)

“Relatively:"
Code Mix Ltl Mch % Increase

A} Non-math; I/O Formatting 188 267 42

B) Non-Real-time, nor time-critical 203 279 37

C) ¢ Intended for Delivery 159 265 67
Totals - 55C 811

These three factors affect productivity by 8l1 - 550 =+ 47%

550

> 47 % 1is this Group's Marginal Productivity Impact.

Relationships:
(1+A) x (1+B) x (14C) = 1.47
an /=/  ©0.12
A/B = 42/37 B = 37*A/42 B /=/ eg.1¢
A/C = 42/67 C = 67*a/42 c /=/ .19

Solutions found by:

(1+A) x  (1+(37*A/42)) x (1+(67*A/42)) /=/ 1.47

Notes: "LSC/PM4"  means “Lines of Source Code per Person Month"
"x " symbclizes arithmetic multiplication
"=l means - “approximately equal to"

Figure 3-28 (Cont.). Calculation of Group Qoamponent Contributions
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Productivity (LSC/PM)

Utilization Severe Minimal § Increase
A) Program Design Constraints 166 293 77
B) Core Memory Constraints 193 391 103
C) Execution Time Constraints 171 33 77
Totals - 530 ag7

These three factors affect productivity by 987 - 538 = + 86%
83

> B6 % is this Group's Marginal Productivity Impact.

Relationships:
(1+a) x (14B) x (14C) = 1.86
A /=/ 8.21
A/B = 77/183 B = 1¢3*n/77 B /=/ ©.27
aA/C = 77/ 77 C = A c /=/ ©.21

Solutions found by:

(14A) x (1+(193*a/77)) x (1L+A) /=/ 1.86

Notes: "LSC/PM" means "Lines of Source Code per Person Month"
"x" symbolizes arithmetic multiplication
" /=/ " means - "approximately equal to"

Figure 3-28 (cont.). Calculation of Group Component Contributions
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Froductivity (LSC/PM)

“Normal”
Platform > < % Increase
) Customer Interface Camplexity 124 500 383
“ Degree of User -
i B) Participation in Requirements Spec. 205 291 42
C) Originated Design Changes 196 297 52
D) Experience in Application Area 206 318 54
Totals - 731 1406
These four factors affect productivity by 1466 - 731 = + 92%
731

===> 92 § is this Group's Marginal Productivity Impact.

Relationships: P
1
(1+4a) x (148) x (l4c) x (14D) =  1.92 *

A [=/ 6.34

A/B = 303/42 B = 42*a/303 B /=/ g.12

A/C = 3@3/52 C = 52*2/303 C /=/ 2.13

A/D = 303/54 D = 54*p/3@3 D /=/ .13

Solutions found by:

(148) x  (1+(42*A/3@3)) x (1+(52*A/3@3)) x (1+(54*a/3@3)) /=/ 1.92

Notes: "LSC/PM" means “"Lines of Source Code per Person Month"
" x" symbolizes arithmetic multiplication
"=/ means - "approximately equal to"

Figure 3-28 (Cont.). Calculation of Group Component Contributions
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Productivity (LSC/PM)
Resources Low Hgh % Increase
Quality of CQurrently-available Resources:
A) Average Personnel Experience 132 410 211
B) % of Prgnmrs who did Design 153 391 156
C) & Utilization of Currently-
available Hardware 177 297 68
Degree of Previous Experience:
D) - with the Camputer 14¢ 312 114
E) - with the Programming Language 122 385 216
F) - with a Similar Application 146 410 181
Totals - 731 1406
These six factors affect productivity by 1406 - 731 =+ 173%
- 13T
> 173 ¥ is this Group's Marginal Productivity Impact.
t
Relationships:
(14A) x {(14B) x (1+C) x {(14D) x (14E) x (1+4F) = 2.73
A [/=/ B.22
A/B = 211/156 B = 156*a/211 B /=/ B.18
A/C = 211/ 68 C = 68%/211 c /=/ .12
A/D = 211/114 D = 114*A/211 D /=/ 0.15
A/E = 211/216 E = 216*A/211 E /=/ .23
A/F = 211/181 F = 181*a/211 F /=/ 0.20
Solutions found by:
(14A) x  (1+(156*A/211)\ x (1+(68*A/211)) x (1+(114*A/211))
x  (1+4(216*Aa/211,) x (1+(181*A/211)) /=/ 2.73
Notes: "LSC/PM" means "Lines of Source Code per Person Month"
*x" symbolizes arithmetic multiplication
v /=" means - "approximately equal to"
Figure 3-28 (Cont.). Calculation of Group Component Contributions
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Productivity (LSC/PM)

Security Low Hgh $ Increase
A) Access Limited to Camputer 226 357 58
B) Amount of Open Access to Computer 170 303 78
C) % of Work which is Classified 156 289 85
Totals - 552 949

These three factors affect productivity by 949 - 552 =+ 72%
552

> 72 % is this Group's Marginal Productivity Impact.

Relationships:
(I+A) x (148) x (1+C) = 1.72
A /=/ 0.18
a/B = 58/78 B = 78*n/58 B [/=/ 0.20
A/C = 58/85 C = 85*A/58 c [=/ @o.21

Solutions found by:

(14A)  x  (14(216*a/211)) x (1+181*a/211)) /=/ 2.73

Notes: "LSC/PM" means “Lines of Source Code per Person Month"
" x" symbolizes arithmetic multiplication
" f=/" means - "approximately equal to"

Figure 3-28 (Cont). Calculation of Group Component Contributions
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Marginal and Component
Contribution Impacts

Resources 2.73
Ave. Personnel Experience and Qualifications 1.22
% Dev'mt. Programmers who Participated in Func. Design Spec. 1.18
% Utilization of Currently-available Hardware 1.12
Degree of Previous Experience with Oper. Coamputer 1.15
Degree of Previous Experience with Programming Languages 1.23
Degree of Previous Experience with Appl. Size and Complexity 1.20
Platform 1.92
Custamer Interface Complexity 1.34
Degree of User Participation in Req'mts. Def. 1.12
Degree of Custamer-Originated Design Changes 1.13
Degree of Customer Experience in Application Area 1.13
Utilization 1.86
era ogram Design Constraints 1.21
Core Memory Design Constraints 1.27
Execution Time Design Constraints 1.21
Security 1.72
Spcl. Req. for Access to Dev'mt. CPU 1.18
Amount of Open fccess Time to Dev'mt. CPU 1.20
Classified Security Enviromment for CPU and 25% of Programs & Data 1.21
Stuctured Techniques 1.70
Structured Prog:-amming 1.16
Design and Code Inspections 1.11
Top~-down Development 1.13
Chief Programmer Teams 1.17
Camplexity 1.69
Overall Code Complexity 1.19
Camplexity of Application 1.29
Camplexity of Program Control Flow 1.10
Code Mix 1.47
Proportion of Code classed as Non-Mathematical and 1/0 Formatting 1.12
Proportion R/T, Interactive, or Time—Critical Code 1.10
Proportion of Code Intended for Delivery 1.19

Misc. Items * Not Calculated *
Proportion of Data Base Class-Items to 1,000 LOC
Proportion of Doc. Pages to 1,000 LOC
Ratio of Staff Size to Project Duration (People/Month)

Figure 3-29. Sumnary of IBM/walston and Felix Group and Camponent
Contribution Impacts on Software Program Development
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envirommental factor itemized. With the data provided by Aron, Doty et.
al., and Walston and Felix, general guidelines governing the application
of scaled system techniques can be presented.

3.3.3 Generalized Guidelines for Scaling Systems

After detemmining the Walston and Felix marginal group productivity
impacts listed in Figure 3~26 through the procedures already described,
the groups could then be ranked according to their potential impact upon
a software develomment effort. This has already been done, as may have
been noticed, in Figure 3-26a. Consequently, the summnary format of
Figure 3-29 adheres to the same ranking. The significance of this
ranking to the system planner is the relative importance of each
envirommental attribute to the construction of cost effective software
systems. The Doty factors were ranked in a similar manner and are
presented in Figure 3-30. Of importance to the potential practitioner of
the scaled system development methodology are the priorities that
personnel experience, use of available hardware, and establishment of
operational and functional requirements hold in the determination of an
average productivity estimate reflecting the software development effort.

From the data presented, quantitative guidelines such as those that
follow may be observed:

3.3.3.1 Personnel Experience

Scaled systems benefit enviromments characterized by inexperienced
technical staffs and/or technical staffs faced with the challenge of
developing state-of-the-art or otherwise unique systems. Fram the
Walston and Felix data, the experience an otherwise inexperienced

technical staff gains from a scaled system implementation can be" expected
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Figure 3-30.

Factor

CPU Time Constraints

Concurrent Software and Hardware Development
Development CPU Different fram Target CPU
Detailed Definition of Operational Requirements
First Software Developed on CPU

Development at More than One Site

Real-Time Operation

Limited Programmer Access to Camputer
Developer Using Camputer at Another Facility
CPU Memory Constraints

Special Display

Development at Operational Site

Changing Operational Requirements

Time-Share, Interactive Develogment [decreases effort - ] 21%

Effort Increase
{(Maximum)

132%
122%
122%
100%
92¢%
75%
67%
50%
43%
43% i
433
39% i
5%

Note: Percentage figures came fram maximum factors for the particular
environmental attributes listed in Figure 3-23.

Development
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to increase productivity in the unscaling effort by a factor of
approximately 173%. This translates to approximately three times the
average productivity, or approximately one-third the effort, otherwise
expected of an inexperienced staff. 1In contrast, the Doty -factors
reflect that up to a 92% increase may be achieved based upon the staff
gaining familiarity with the camwputer equipment alone. Barry Boehm, in

Practical Strategies for Developing Large Scale Software Systems,

quantified the resulting benefits of an experienced staff to be on the
order of 150-200% [ref. 9]. Despite the various sources, all of this
data appears to be relatively consistent. This is reasonable since the
performance of people should not be expected to change much over time.

3.3.3.2 Custamer Envirorment - The Platform

Software system implementors faced with customer envirorments
characterized by such factors as ocamplex custamer interface channels and
procedures, custamer uncertainty and inexperience regarding operational
and functional requirements, and the potentially numerous
customer-originated design changes which subsequently result fram
inadequate requirements specification can greatly benefit fram the scaled
systems approach.

Dr. Daniel Teichroew, a professor of industrial and operations
research in charge of the 1S00S (Information Systems Design and
Organization System) project at the University of Michigan who is also
credited with the development of the Problem Statement Language/Problem
Statement Analyzer (PSL/PSA), points out that the front-end stage of an
implementation, where the requirements and high-level design are

specified, is the pitfall of past failures. In his words, "this often
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overlooked phase is where most of the problems and potential payoffs lie
(in software development projects)" [ref. 20].

3.3.3.3 Fimm Requirements Specifications

An appropriately scaled system can provide difficult eustomer
environments with the experience and knowledge necessary for the
determination of the precise custamer needs.

The importance of establishing the user's needs, in any effort,
cannot be overstated. Two adverse situations may develop in the absence
of a firm specification of the user's needs: (a) the developer implements
a system based on an incomplete or incorrect specification, and the
system is rejected by the users, or (b) the developer continually changes
the system design based on conflicting direction fram the user. The
first situation results in a system that fails to meet performance and 1
functionality requirements, while the second situation greatly increases
system cost and development time, and also runs the risk of entering a
never-ending change cycle in which the system is never actually

canpleted.

In most cases, failure to have a firm user specification is not the
fault of the user, but is rather due to the user having incamwplete

information as to exactly what is feasible and practical with an

automated system. A scaled system built at a fraction of full-scale
system cost can be used to demonstrate exactly what capabilities are
available to the user, as well as to give the user an idea of how he will
interface with the system and what procedures must be developed. Based
upon his experience with a scaled system, the user will then be able to

clearly specify his requirements for the full-scale system.




atlian et Mundi

The potential benefits resulting fram such use of scaled systems are

large. Design changes as a result of requirements errors have been
documented [ref. 9,10] as being 50 to 40¢ times more expensive in
comparison to front-end design changes (before actual implementation
cammences). Fram the Walston and Felix data, the potential for benefits
in the unscaling effort are on the order of 92% - nearly twice the
productivity, or, conversely, half the effort. The Doty factor for
changing operational requirements seems a contradiction to other
research, as it assesses a mere 5% penalty for changing requirements.
while this low value cannot be explained, it also cannot be corroborated
with any other research examined under this effort.

3.3.3.4 Hardware Choice

In the event the scaled system can provide information facilitating
the choice of hardware such that ultimate full-scale system speed and
memory constraints may be more readily camplied with, the Walston and
Felix data suggests a potential 86% increase in productivity applying to
the unscaling implementation effort.

3.3.3.5 Secure Environments

Planners of intelligence systems may additionally be interested in
the fourth most important cost driver identified in the Walston and Felix
data, that of secure, or classified, operating and/or development
environments. The potential for benefits resulting fram implementing an
otherwise classified system in an unclassified enviromment through the
use of dummy test data and other techniques approaches 72%.

-Such examples are provided to illustrate to system planners the

g'eneral method of determining guidelines through analysis of factors
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pertinent to system costs. Consequently, they may utilize this data or
make use of new data as it becames available to determine the benefits
and potentials existing in the scaled system methodology as it may apply
to any particular software development endeavor. The potential benefits
realized through experience and general system information are paramount
considerations in the application of the scaled systems approach.

3.3.4 Use of the Individual Walston and Felix Group Camponent Rates

It is reasonable that the individual Walston and Felix camponent
contribution rates can also be interpreted in an analogous manner to the
application of the generalized group productivity impacts. For example:

3.3.4.1 State-of-the-Art Hardware

In the event that a system requires state-of-the-art hardware not
yet available, the Walston and Felix data predicts the scaled system
implementation effort can benefit by a 12% increase in productivity
through the use of currently-available hardware. This could include
special, reusable hardware specifically programmed and confiqured for

scaled system implementations. In contrast, the Doty factors quantify

the savings realized through the elimination of the envirommental factor
of concurrent hardware develomment with the software effort to be on the
order of 112%. Such hardware substitution is greatly facilitated through
the increasing use of higher-order (HOL) programming languages and, with
the approaching standardization within the DoD enviromment to ADA, scaled
systems will be more readily transportable for later enhancement
regardless of what hardware is used to implement them.

3.3.5 Degrees of Scaling Freedam
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A major point made in "Scaled Systems Cost Effectiveness", a
technical memorandom submitted earlier under this research effort
(reprinted in Appendix A), was the application of cost/benefit, or
"break-even", analytical techniques to assessing the cost trade-offs of
using scaled systems. Such techniques are very useful to practitioners
of the scaled systems methodology in determining the cost/effort/schedule
feasibility of applying scaled systems techniques. The primary cbjective
of break-even analysis is to determine an owerall system scale factor, or
ratio, such that the total estimated development cost of both the scaled
system and its full-scale counterpart "“breaks even"” with the estimated
cost of a full~scale implementation effort without the benefit of a
scaled system. This break-even point is important because 1t reveals
that a scaled : /stem built on a smaller scale relative to the break-even
scale factor should result in overall project savings; conversely, if the
break-even scale factor cannot be achieved, then total project costs may
well be expected to exceed the cost of a traditional implementation
approach. Of course, this additional estimated cost is subject to
justification based upon such factors as a reduction in total project
risk, the achievement of design or performance goals, the development of
a user-friendly interface, or some other applicable success-oriented
criteria.

In "Scaled Systems Cost Effectiveness", break-even points were
determined through parametric analysis using an interactive software cost
estimation model. In that study, the break-even points were found to be

cost model dependent and displayed a static relationship with system size

across a wide range of system sizes. This static relationship is




attributed to the cost estimation relationships (CERs) internal to the

model and may or may not hold in actual practice.

Through subsequent researci, it was determined that break-even
points could be directly calculated fram productivity coefficierits like
the Doty and the Walston and Felix environmental factors. This
calculation consists of simply subtracting the inverse of the factor fram
the value of ane. The resulting value quantifies two things. First, it
maintains the relative measure of importance the envirommental factor
originally quantified to its potential impact on a software development
effort. Secondly, and most important to scaled system cost/benefit
analysis, the resulting factor quantifies a break-even value for
determining potential scaled system cost effectiveness. This break-even
value represents the break-even scale factor for an implementation effort
characterized by a scaled system bearing the burden of the negative
impact of the environmental factor while the full-scale counterpart
realizes the benefits resulting fram removal of the negative burden.
Because these factors rank environmental factors by overall system
break-even scale factors, they inform the scaled system practitioner of
the freedom of constraints he has in the construction of the scaled
system providing the benefits of the scaled system include removal of the
negative impacts arising through the particular envirommental factor.
This freedom factor reflects the constraints placed upon the scaled
system in terms of size, effort, and cost. Subsequently, these freedam
factors have been termed "Degrees of Scaling Freedam”". fThe Walston and
Felix-derived factors are listed in Figure 3-31 while the corresponding

Dbty-derived factors appear in Figure 3-32.
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Break-Even Scale Factor

Resources 63%

Ave. Personnel Experience and Qualifications

% Dev'mt. Programmers who Participated in Func. Design Spec.
% Utilization of Currently-available Hardware
Degree of Previous Experience with Oper. Camputer

Degree of Previous Experience with Programming Languages
Degree of Previous Experience with Appl. Size and Camplexity

Platform 48%

Customer Interface Camplexity

Degree of User Participation in Req'mts. Cef.
Degree of Custamer-Originated Design Changes
Degree of Customer Experience in Application Area

gtilization 46%
Overall Program Design Constraints
Core Memory Design Constraints
Execution Time Design Constraints

Security 42%
Spcl. Reg. for Access to Dev'mt. CPU
Amount of Open Access Time to Dev'mt. CPU
Classified Security Enviromment for CPU and 25% of Programs & Data

Stuctured Techniques 41%
Structured Programming
Design and Code Inspections

Top—down Development
Chief Programmer Teams

Camplexity 41%
Overall Code Complexity
Complexity of Application
Camplexity of Program Control Flow

Code Mix 32%
Proportion of Code classed as Non-Mathematical and I/0 Formatting
Proportion R/T, Interactive, or Time~Critical Code
Proportion of Code Intended for Delivery

Misc. Items * Not Calculated *
Proportion of Data Base Class-Items to 1,000 LOC
Proportion of Doc. Pages to 1,000 LOC
Ratio of staff Size to Project Duration (People/Month)

18%
15%
11%
13%
19%
17%

25%
11%
12%
12%

17%
21%
17%

15%
17%
173

14%
10%
12%
15¢%

leg
22%
%%

11%
9%
16g

Figure 3-31. Degrees of Scaling Freedam as Derived fram the IBM/Walston

and Felix Inta
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p Factor Break-Even Scale

} Factor
CPU Time Constraints 57%
Concurrent Software and Hardware Development 55%

: Development CPU Different fram Target CPU 55%

g Detailed Definition of Operational Requirements 52¢

' First Software Developed on CPU 48%
Develomment at More than One Site 43%
Real-Time Operation 40%
Limited Programmer Access to Canputer 33%
Developer Using Camputer at Another Facility 3et
CPU Memory Constraints 30%
Special Display 308
Development at Operational Site 28%
Changing Operational Requirements 5%
Time-Share, Interactive Develorment [decreases effort] N/A

Note: Break-even scale factors came fram maximum factors for the
particular environmental attributes listed in Figure 3-23,°

I Figure 3-32. Degrees of Scaling Freedam as Derived fram the Doty and
Associates Data
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A scenario for general application of these degrees of scaling
freedam follows:

The system planners scan the lists of envirommental factors and
determine which ones characterize the particular development enviromment
under scrutiny. These factors normally cause adverse impacts upon a
development effort and, hence, will have much the same impact on the
scaled effort. However, since the scaled effort is not as great as the
full-scale attempt, the absolute value of the penalties imposed by the
adverse environmental factors are much less for the scaled effort.
Ostensively, these negative impacts will be removed and thus not affect
the up-scaling effort due to lessons learned through the scaled effort.
The overall savings resulting fram this process contribute toward the
cost of the scaled effort and, possibly, to total project savings. The
question arises - how small must the scaled system be in order to achieve
cost savings? Obviously, it is hoped that the size of the scaled system
will not be so constrained that its operational value and predictive
ability are minimized. The answer to the question lies in the degree of
scaling freedam values like those listed in Figures 3-31 and 3~32. As a
gross surrogate, the system planner may initially simply use the maximum
of the applicable values as the break-even system scale factor, relying
upon the others to "back-up” this estimate and to add to the measure of
confidence in its use. Adding the break-even scale factors together is
not recammended as such a technique would most probably tend to produce
an overly-optimistic break-even scale factor estimate. Root mean square
analysis may be applicable to the situation. To determine the root mean

square, the analyst calculates the square root of the sum of the squares
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of all the degrees of freedom values which correspond to the
environmental attributes existing in the proposed effort.

Mathematically, the root mean square calculation looks like this:

of applicable envirommental factors

Break-even Scale = Envirormental fact.or'f 2

Factor

The validation of such an analytical technique is beyond the scope
of this research and must be left to future research of the application
of the scaled system methodology, as presented here, to actual systems.
At least these degree of scaling freedam factors are based upon actual,
credible empirical data. Again, a very conservative break-even scale
factor for a potential scaled system development effort can be obtained
fram the maximum envirommental factor degree of freedam value listed in
the tables.

The Scaled System Cost Effectiveness study determined the range of
the degree of scaling freedam values to vary fram 1@ to 50%. This means
that, based upon that study, scaled systems of 10-50% overall scale can
be expected to achieve cost savings. The variation can be attributed to
the application type and envirormental factors present. These results
are not altogether inconsistent with the IBM/Walston and Felix-derived
degrees of freedam, which range fram 9-63%, nor the Doty-derived degrees
of freedam, which range fram 5-57%.

Based ypon this study of enmpirical data, a general rule of thumb can
be derived: In order to achieve cost effectiveness, a scaled system

would most probably have to be scaled by at least 50%; however,” in order
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for the scaled system to retain any predictive value, the scaled system
should not be scaled to less than 10%. (bviously, the verification of
this general rule can be achieved only through actual practice of the
scaled system methodology in a very controlled and carefully documented
manner. The resulting analysis of the data thus provided will certainly
contribute toward bettering the methodology and enhancing these
predictive measures. It is encouraging that, at this point, the evidence
suggests scaled systems built to as large as 50% of the actual system can
indeed provide cost savings as well as ensuring the production of quality
software systems.

3.4 Cost Benefits

The estimation of implementation-dependent cost benefits resulting
from the use of scaled systems techniques relies heavily upon the
capabilities of current cost estimation models and methodologies as well
as the subjective analysis performed by the experienced system planner.
A general familiarity with the operation and capabilities of currently
available software cost estimation models is therefore required of the
potential scaled system practitioner. Accordingly, a general discussion
of current cost estimation model state-of-the-art is provided in this
section to familiarize the reader with these models and their use. As a
conclusion of this section and report, a case study of an actual
intelligence system is presented to serve as a model for subsequent
scaled system feasibility/cost benefit analysis.

3.4.1 Life-Cycle Cost Estimation Models

Estimation of the costs and schedule for software development is

crucial to accamwplishing effective planning, budgeting, and evaluation
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activities within an organization. These are the activities that in the

world of software project management have long been documented as
historical problem areas. Optimistic cost projections along with gross
errors have contributed to severe budget and schedule overnumns.

The importance of software project life-cycle cost models has long
been recognized in the process of making viable software cost estimates
arnd the efficient allocation of resources. This does not mean that total
reliance should be placed upon the cost model to singly accamplish cost
estimating. It must be accepted in the context of a camprehensive coet
estimation strategy where the cost model is viewed as a tool for the
campetent cost analyst. Its value is derived fram the imposition of a
disciplined and structured framework that compels the analyst to consider
and take into account all significant factors influencing software
development costs. The software life-cycle cost model is a valuable tool
that can account for camplex nonlinear relationships between seemingly
random data through use of automated mathematical and statistical
analytical techniques.

3.4.1.1 Cost Estimation Model Methodology

In general, cost model operation involves calibration to historical
experience, input parameter determination, model operation amd ocost
analysis/presentation, and risk assessment.

(1) cCalibration

Representation of the develogmental envirorment is the single
most important factor detemmining the model's applicability to projecting
cost behavior. The cost model must be either carefully designed to model

cost behavior within that environment or have the capability “t¢ adapt
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itself to reflect the cost characteristics of any specified enviromment.
Consequently, the cammercially available cost models are supplied with -
the facility to be calibrated to a specific environment. This
calibration process is crucial to the ability of the model to:project

cost behavior within a particular enviromment.

The cbjective of the calibration process is to tailor the model
through the use of an organization's historical cost data so that the
model 's predictive ability, within the organization, is enhanced. Most
models have special functions to determine the variables for this purpose
and make them available to the user, in the form of an input parameter,
for subsequent use by the model. This input parameter is a global
descriptor, reflecting the professional quality and problemsolving
capabilities of the organization's technical and administrative staffs.

Two cammercially availakle cost estimation models, PRICE S and
SLIM, each have these inputs. One reason such variables are made
available to the user is that past development conditions may no longer
hold. The user may subsequentiy find it necessary to adjust these
variables in order to achieve more realistic cost estimates. Examples of
such conditions include the adoption of newer, more up-to—date structured
development practices, the acquisition of more powerful develogment tools
and facilities, or an increase in the skill level of the organization's
personnel resulting from prior experience (the converse of this
condition, the decrease in skill level due to personnel turnover and new
hires, is also possible).

(2) Input Parameter Determination
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There are so many factors that can potentially effect program
development costs that it is virtually impossible (and impractical) for a
cost model to attempt to deal with them all on an individual basis. This
problem has been tackled by grouping related factors and representing
each category by a generalized model input parameter. This is where
structured systems thinking is required - resulting in the disaggregation
of a large, ambiguous task, into a structured decamposition of several
smaller, more manageable tasks for cost estimation. It is therefore
necessary for the cost analysis team to aggregrate the effects of all
related factors so that their cambined effects may be synthesized into
the appropriate mix of model input parameters.

The schema for input parameter estimation includes such
all-encampassing project considerations as staff capabilities, product
attributes, application requirements, envirommental factors, development
practices, and management policies. Intelligence systems built to
military specifications would include, as an example, general provisions
for product attributes such as real-time operation, modularity, and
strict documentation standards for usability and maintainablilty;
application requirements for testability, quality assurance, and
reliability; environmental factors such as secure develommental and
operating facilities; development practices such as structured design
walk-throughs and <lose progress tracking; and management policies in
regards to staffing and the scheduling of project milestones.

(3) Model Operation - Output Analysis, Presentation

Once the cost analyst team has collected, analyzed, and

synthesized all of the pertinent cost data relevant to the proposed
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development effort into the appropriate model input parameters (and
calibrated the model, if sufficient historical data is available), they
are ready to use that data to exercise the model. The model's output
consists of milestone schedules, staff-loading profile charts, and some
measure of cost expressed either in terms of personnel effort or dollars.
In addition, the model may break down the expenditure estimate by labor
category such as technical, managerial, coding, documentation, etc.
and/or functional category such as design, code, test and integration,
maintenance, etc. In the event that the model encounters a set of input
data which is inconsistent with the formulated guidelines, it will also
produce the appropriate warning or error messages.

(4) Estimate Risk Assessment

One aspect of the cost estimate which the particular model may
address is the measure of uncertainty, or risk, associated with the cost
estimate. This is usually either a standard statistically-derived
measire upon the estimate, such as a root mean square (standard
deviation) value, or the preparation of a sensitivity profile obtained
through parametric analysis of the input parameters. In order to realize
the full meaning and value of such risk measures the assumptions and
method by which they are derived must be understood by the cost analyst.

3.4.1.2 Cost Estimating Considerations

An important consideration often overlooked or misunderstood is that
cost estimation models, in and of themselves, are not a panacea to the
general problems inherent in software cost estimating. This has been
documented by user groups that have actual experience with cost

estimation and evaluation methodologies. These groups stress the value
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and importance of juxtaposing the results cbtained fram the autamated
cost estimation models with the sound judgement and professional

experience of the available technical staff members to produce credible

ard realistic cost estimates. This is necessary because the cost models
quantify past experience. Cost projections based upon such historical
data include a certain degree of risk because of the advances which are
occurring in the software industry.

Another source of error in the models is their extreme sensitivity
to relatively small adjustments in their input parameter mix. This is
because the underlying software cost relationships are characterized by
complex exponential functions determined by the intricate
interrelationships of the wvarious input parameters themselves. This
problem is particularly acute when using input parameters that fall
outside the ranges for which the mcdel was calibrated.

Solutions to these problems include fine-tuning of the input
parameter mix to match preconceived cost targets as well as assessing the
already mentioned existence of wide variations (risk) in the estimates.
These variations raise an important philosophical point: that the
dynamics of software cost estimating are such that obtaining high
accuracy in the point estimates is neither possible nor desirable due to
the calculational variation which is present.

The utility of the costing model lies in the structure and
discipline imposed upon the ocosting process. The reliability of the
resulting estimate is dependent on the assumptions which produced it.
All estimates must be scutinized by experienced cost analysts to ensure

that the results, along with the underlying assumptions, are reasonable.
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3.4.1.3 Assessment of Cost Model State~of-the-Art

CGrowing acceptance of life-cycle models arises not only because of
their potential to serve management in the planning, programming,
monitoring, and evaluation of software production efforts (through the
provision of schedules, manpower allocation profiles, and cost
estimates), but also because of their merits in creating a structured and
disciplined approach to the estimation and evaluation of cost estimates
to serve decision-makers' needs. Nevertheless, attention to the
capabilities, limitations, characteristics, and purpose of software
life-cycle cost models must be fixed in the minds of those who use, as
well as those who develop them.

Note the current state of development of the estimating technology.
Software life-cycle cost models are in an infant stage of their product
life-cycle. They are still growing in acceptance and popularity.
Advances are being made in their underlying theoretical formulation as
well as in refinement of their operational and functional
characteristics.

The skepticism of those who consider these models to be expensive
frills is not altogether unfounded. The cost of the camrercially
available models is artificially inflated due to the profits required by
the vendors to recoup their large investment in research and development.
However, as in all newly marketed technologies, it is not unrealistic to
expect that, as economies of scale and campetitive market forces came
into play, the prices should decline.

As for the life-cycle models themselves, we can, for convenience,

classify them into two ge¢ieral groups: camnercial general purpose and
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academic special purpose.

(1) Cammercial General Purpose Cost Models

Under the category of camnercial general purpose models, we
find two popular models. One is RCA's PRICE S, which is actaally a
member of a family of three related cost estimation models which also
includes PRICE, a hardware manufacturing cost estimation model, and PRICE
SL, a software life-cycle cost estimation model. The other is SLIM, a
product available for lease fram Quantitative Software Management, Inc.,
headed by lawrence Putnam. Mr. Putnam is credited with making, and
publicizing, significant advances in the area of the theory of software
costing and estimation.

Although not camercially available, a new integrated approach
to cost estimating and evaluation occurs in the form of a system which
utilizes both the PRICE S and a modified version of the Putnam model to
evaluate cost proposals at the Space and Missile Systems Organization's
(SAMSO) Software Programs Office (SPO) at Los Angeles, California. The
system is implemented on a Hewlett-Packard Series 3200 and supports
generalized pre-processing interpretation of standardized input formats
for subsequent input to both models as well as graphics-oriented,
post-processing facilities for both of the model's outputs.
Additionally, the system has an integral data base management system and
a financially-oriented report generator.

(2) Academic/Special Purpose Models

Widely discussed in the research literature and at various
conference and workshop proceedings is a collection of software

estimation models which result principally fram special purpose and
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academic pursuits. These models have a limited range of applicability
since they reflect specific environments, a limited scope of
applications, and/or products of similar sizes and attributes. Thus,
they are not considered general purpose cost estimation models.

Perhaps the most frequently referenced article on the subject
of quantifying software development productivity rates and estimation
ratios is that of IBM's Walston and Felix, which first appeared in an IBM
technical journal in 1977 [ref. 24]. In the literature we additionally
find many papers describing and cammenting an the theories of cost
estimation set forth by Mr. Putnam, which is principally an extension of
the work performed by still another IBM researcher, Peter Norden [ref.
15]). Fram efforts expended by and under the direction of Victor Basili,
(refs. 3, 4, 5, & 6], of the Computer Sciences Department at the
University of Maryland, cames a rich proliferation of articles,
dissertations, and research findings encompassing a vast array of

software engineering topics, including cost and cost-relatec modeling.

The government itself is active in the areas of software
engineering and development of cost estimating techniques with research
grant activity through organizations such as the NASA/Goddard Space
Flight Center, [refs. 2, & 4], the Rame Air Develomment Center (RAIC),
[ref. 7], and various educational institutions, including the University
of Maryland. This activity is highlighted by the published findings of

Putnam [ref. 17-21] and Doty Associates, Guidelines for Improved Software

Cost Estimating, [ref. 7], as well as through the personal and

professional-level contributions made by cost analysts such as William

Lasher [ref. 9] of the already mentioned SAMSO SFO.
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It 1s upon such research efforts and activity that INCC has
based the development of its own version of a software life-cycle cost
estimation model. This software life-cycle cost estimation model was
targeted for in-house operation on low-cost microprocessor hardware.

3.4.2 Estimation of Scaling Benefits

In the context of scaled system development, cost estimation must
take into account the differences that exist between the scaling and
up~scaling enviromments. Certainly, there is a host of factors to take
into consideration. Generally, the scaling enviromment will resemble
that of most other develompments not using the scaled systems approach.
Potential differences in the scaling environment might include the
benefits of such scaled system facilities as special low-cost,
general-purpose hardware and software development tools specifically
tailored to scaled systems development and a greater degree of technical
user orientation. Aside fram such advantageous envirommental niceties,
however, the scaled system develomment envirorment will most generally be
subject to the same negative environmental impacts as most
start-from-scratch develomment efforts.

The positive impacts will be realized in the unscaling enviromment.
The unscaling environment will be much more conducive to system
development due to the lessons learned through the scaling effort
regardless of the degree of success obtained during the scaled effort.
Characteristics of unscaling enviromments include firm specifications of
user~oriented functional, operational, and design requirements. In
addition, the unscaling effort will probably benefit fram any inventory

of design documentation and source code accumulated through the scaling
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effort. Also, there should be an optimal hardware configuration chosen

to precisely match the needs of the particular application based upon the
experience of the scaled system development. By the time up-scaling
takes place, the task breakdowns and schedules will have been well
defined and laid out and all the parties involved will have a strong,
unified concept of the end result and will be in agreement as to what the
camon goals of the system are. 1n short, an optimal enviromment will
have been developed complete with fully-detailed descriptions of the
tasks at hand and the product to develop -- all unencumbered by the
greatest proponents of development project risk and schedule slippage -
functional and technical uncertainty.

To quantify the impacts, benefits, and trade-offs inherent in these
environments, factors such as those supplied by the Doty and Walston and
Felix research efforts, as well as this effort, are available. Same cost
estimation mcdels can specifically account for these factors, others will
have to be adjusted or modified to do so. At the highest level, these
factors can augment experienced technical manager's subjective
assessments and their resulting estimations of a project's cost,
schedule, and risk.

3.4.3 A Case Study for Scaled Systems

In terms of examining actual intelligence systems which could
benefit fram application of the scaled systems development approach, this
research had the opportunity to explore the possibilities of one such
system. Fortunately, this system is somewhat unigue in that a
correspording scaled version exists and is operational. Although this

scaled version was developed after the full-scale implementation, its
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existence provides a "hands-on" feel for examining the application of

analytical techniques suitable to the scaled systems methodology. This

seemingly "“reversed-scaling" approach to system development resulted fram

different motivations for this particular scaled system and this:must be
kept in mind so as not to introduce any bias in our case study. 2As
stated, this scaled system realized benefits from the full-scale
implementation which was operational, or at least semi-operational, at
the time the scaled implementation took place. This scaled system, the
Indications and Warning Training System (IWTIS), was motivated by the need

for a simulator to train intelligence analysts on how to operate an

interactive terminal-oriented communications, command, amd control
intelligence system - the NMIC.
3.4.3.1 Background

After the NMIC achieved an initial operating capabi.ity in 1978,
INCO, INC. responded to the need for user training with a low-cost,

stand-alone analyst training system canmplete with its own special-purpose

hardware. As stated, this system is referred to as the IWIS and it was

delivered in early 1979. Because this training system appears to the |
user as the "real" NMIC system and it models 100% of the full-scale
system's functional and operational characteristics, we take the view

that it is "the scaled system that could have been".

3.4.3.2 System Development Data Collection

As the implementcr of the IWTS, INCO had sufficient data readily
accessable concerning its development environment, operational
characteristics, and reguired development effort and costs.

{ Unfortunately, the same was not entirely true of the actual NMIE system;
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however, due to INCO's past and present involvement with the design,
development, maintenance, ard enhancement of the NMIC system as well the
campletion of the NMIC Functional Analysis/Enhancement Study [ref. 14],
adequate data was available to prepare this case study.

3.4.3.3 The NMIC System

Upon initial familiarization with the NMIC system, it appeared to be
a nightmare for system implementors, having nearly all of the adverse
characteristics possible of a state-of-the~art intelligence system. Of
course, many of these characteristics incrementally camplicate the
development of such a system and drive development cost, schedule,
effort, and risk accordingly higher - a perfect candidate for application
of the scaled system development approach.

Through this research effort, many of these characteristics could be
identified and classified as either new hardware design and development,
new software system design concepts, or intelligence system deperdent
factors.

As for new hardware, the NMIC boasted a wide assortment of
state-of-the—-art hardware concepts. It was envisioned to be a clustered
network of multiple minicamputers interconnected by a new bus technology
and system architectural concept. It was to cammnicate with its users
throuwgh a totally new, concurrently developed and programmed, intelligent
dual-screen full function video/graphics terminal. There were to be
fifty such terminals dispersed geographically. Being a message and
camunications system, it was to process a number of real-time inputs and

outputs.

3-105




As for new systems design concepts, the NMIC incorporated several
new ideas based upon motivations for system reliability, autamatic system
error and failure recovery, user flexibility, and high-level access to a
number of other existing intelligence systems and networks. The basic
internal functions of the system were to be distributed throughout the
minicamputer network; hence, reliability and functionality were enhanced
through the provision of each minicamputer to perform its corresponding
function. If a minicomputer failed, only that function would be
incapacitated - but what about the recovery of that function? 1In
anticipation of such an event, the NMIC system originally incorporated a
system design concept of "fall-back and recovery"”, whereby another member
of the camputer network would recover the function lost by the failed
canputer. Since real-time processing was an integral part of the system,
provisions for the design and coding of much time-critical (assembler
language) code had to be made.

Additionally, the NMIC system was confronted with a variety of
factors typical of an intelligence system. First, the develogment and
operational enviromments were characteristically security sensitive. The
menmbers of the developmental and operational staffs were thus required to
have or obtain the appropriate security clearances in order to work on
and have access to the system. Such an enviromment increases develogment
costs because it requires additional controls to be imposed upon the
development facilities and personnel by way of locks, guards, logs, etc.
and because personnel may not be available, may have to be unproductively

employed while waiting for their clearances, or may have to be selected

on the basis of clearance rather than skills. While such an enviromment




is necessary in order for a system and its staff to handle classified
material, it creates the opprotunity for scaling of develommental cost by
developing technical concepts in a lower-cost, non-secure envirorment.
For example, the "fall-back and recovery" concepts and algorithms for the
NMIC system have been developed outside the secured enviromment. Also,
due to its potential importance to the national security, the system
development required the most stringent of management, design,
documentation, and configuration control practices as well as a large
degree of operational functionality, reliability, and robustness.

The varying degrees of success the NMIC achieved in meeting all of
its functional and design goals are largely a metter of record and not of
great importance to this case study. What is of concern here is the
measurement of: (1) the negative productivity impacts the NMIC
develomment sustained in the face of its developmental, envirommental,
and operational obstacles, and (2) the benefits a scaled prototype might
have contributed to the achievement of the NMIC's overall objectives in
terms of functionality, budget, and schedule.

3.4.3.4 The IWIS System

The NMIC did not have the luxury of a cost-effective scaled
prototype version to facilitate its specification, design, and
development. If it did, however, the resulting scaled system would most
probably have closely resembled the INCO IWIS trainer. A requirement of
the IWTS trainer was to fully provide and support all of the NMIC
system's functional and operational features at the user terminal level.
The IWTS was developed on low-cost, stand~alone, microprocessor based

hardware and, as such, provided very little in the way of the actual
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full-scale system's capabilities to receive, rout, and send "real"
messages. Such processes were emulated, however, through a pre-stored
set of messages reflecting general scenarios of cammmications that the
potential NMIC user would normally encounter. The end result was that
the user operating the IWTS terminal has virtually no idea that he is
actually using the trainer; but rather has the impression that he is
logged-on to the full-scale NMIC system. A diagram of the IWTS design is
illustrated in Figure 3-33.

Of importance to this case study is the measurement of the degree of
scale the IWIS trainer achieved relative to the NMIC system, its relative
cost, and potential predictive ability. The amount of potential savings
the NMIC could have actually realized through the use of a system like
the IWTS to serve as a scaled prototype development testbed is however
basically a matter of conjecture as such an estimate could only be based
upon hindsight.

Hardware scale factor is perhaps least difficult to campute. Here,
dollar costs are used as the metric since they are most readily
available, tangible, and understandable in nature as opposed to scme
ambiguous measure such as hardware system capacity or power. Relying on
a figure obtained from the results of INCO's DIIS FA/ES final study
report, the estimated hardware cost of the current NMIC configuration
approximates $3.5 million. This figure does not, however, reflect final,
enhanced configuration hardware costs of roughly $9 million. These costs
reflect the use of current state-of-the-art minicamputers and their
associated high-speed 1/0 peripherals, as well as the U-1652 dual-screen

terminal. In contrast, the IWTS, while using the same user terminal,
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makes use of relatively lower-cost microprocessor-based hardware. The
IWTS basic hardware configuration cost is in the neighborhood of $50K,
with most: of the cost being attributed > the ocost and availability of
the U-1652 dual-screen, "TEMPEST"-certified (electronic emanation)
terminal. Using the cost of the current NMIC configuration, the
resulting hardware cost scale factor is camputed through:

$50, Vo0

—————— T 1 1/2 8 Scale Factor for Hardware Cost

$3, 500, 6o

Of course, a scaled development approach would have required the
purchase of both hardware configurations, increasing total project costs.
A consideration would be the security classification of the micro
hardware in order to implement scme of the classified features of the
final system; failure of the hardware to obtain the prerequisite
certifications would necessitate the use of software emulation techniques
to implement similar, non-classified versions of the functions.

Software sizing proves to be a much more difficult task. For one
thing, the word sizes and instruction lengths of minicamputers differ
from microcomputers. This situation presents a number of problenms.
First, assembler source language statement counts and required core
memory sizes are not directly camparable. Secondly, the statement count
for the micro is, in all probability, inflated &3 campared to the mini
since more instructions are required to perform similar tasks because the
relative camputational and logical power of the micro is not as great as

that of the mini. The microcamputer programmer finds himself generatirng

several primitive instructions on the micro where a single instruction

1
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might accamplish the same result on the more powerful mini.

The full-scale NMIC system's module sizes were used as the standard
[ basis on which to compare the different software sizes of the two

ﬁ.‘ systems. In this way, it was hoped the problems of the two system's

i differing language dialects could be resolved as well as maintaining same
; degree of consistency in the software sizing analysis. Subsequently, it
:{ was determined that much of the IWTS trainer's processing was performed
! in the NMIC's "USS", or User Support Subsystem. Accordingly, the
) estimated size of the USS served as a surrogate value and a oonsistency
check on the trainer's estimated size. Estimated sizes are used in lieu

of the prohibitively long process of actually counting source statements

from listings and because of the problems inherent in adding sizes of
differing camputer language dialects, such as assembler and HOL. In the
case of the NMIC, the assembly language used in the bulk of the system's
modules was PDP MACRO-11 and FORTRAN was used where an HOL was
applicable. Intel 808¢ assembler was used for the IWTS with HOL

applications programmed in BASIC.

The end result of the sizing analysis resulted in the sizes of the
two systems being set to 15,000 source lines of code (SLOC) for the IWTS
and 82,00¢ for the NMIC. These sizes resulted primarily fram assessments
made by INCO technical staff members who participated in the development
of the IWTS and MMIC systems as well as those who performed the DIIS
FA/ES study. The size for the IWTS was intentionally set pessimistically

high and the size for the NMIC optimistically low in order to avoid any

bias in the resulting analysis. The results of the camputation for

software size scale factor follow:
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15,000

- 20 % Scale for Software Size

80, 000

The tracking of actual development effort frequently escapes the
ability of most organizations as the means of data collection is usually
not present and the figures get absorbed in the aggregation of total
labor hours expended throughout the entity. For the analysis of
development effort scale, the Doty ocost model was used to estimate the

amount of effort expended on the NMIC because the actual figure was

uncbtainable. Data provided by managers of the IWTS project was used as
the effort measure for that system. To maintain consistency and
establish a cammon means of measuring effort, the Doty model, as
programmed into INCO's own cost model (described in section 2.3), was

used to cross-check the manager'’'s measures. Hence, the model was used to

I estimate effort measures for both the IWTS as well as the NMIC.

Surprisingly enough, the model's estimate for the IWTS was in very close

agreement with the actual figures. This result increased confidence in
the use and applicability of the Doty model to this particular analysis.
The Doty cost model estimated the IWTS development cost to be on

the order of $225,000 over ten months; in contrast, the IWTS management

supplied a figure of $200,000 over one year. The envirommental factors
considered for this Doty run are listed in Figure 3-34. The NMIC
estimate came out to be roughly $10 million over 18 months and the
factors applicable to this estimate appear in Figure 3-35. In order to
estimate the cost benefits resulting fram the use of the IWTS system as a

staled prototype, the NMIC data was input to the cost model again, with
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Fram the Doty & Associates (RADC) Studies:

Please Select an Application Category:

- Utility (0s)

- Camand & Control (c2)

- Scientific

Business

- All (Others not listed above)
- EXIT (Return tO master (M menu)

AN bdWN -~
|

Selection (1-5)? 2
Estimated Deliverable Source LOC (1,000's)? 15

Please input a yes/no (Y/N) response to each of these 14 questions:

Special display? Y

Detailed definition of operational req'mts? v
Changing operational req'mts? N

Real time operation? N

CPU memory constraint? Y

CPU time constraint? N

First S/W developed on CPU? N

Concurrent development of ADP H/W? N

Interactive development enviromnment? Y

Of f-site development camputer facilities? Y

On-site development camputer facilities? N
Development computer different than target camputer? Y
Multi-site development camputer facilities? N
Unlimited programmer access to camputer facilities? Y

56.0 Person Months req'd for analysis, design, code, debug, test ard checkout.
{ Standard error on this approximation =41.1% )

Estimated schedule duration = 9.9 Months

Continue (Y or N)?

Figure 3-34. IWTS Cost Estimate
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From the Doty & Associates (RADC) Studies:

Please Select an Application Category:

- Utility (0s)

- Camand & Control (c2)

- Scientific

Business

- All (Others not listed above)
- EXT (Return to master (M meru)

N d WN -
i

Selection (1-5)?2
Estimated Deliverable Source LOC (1,¢208's)? 80

Please input a yes/no (Y/N) response to each of these 14 questions:

Special display? Y

Detailed definition of operational req'mts? N

Changing operational req'mts? Y

Real time operation? Y

CPU memory constraint? y

CPU time constraint? Y

First S/W developed on CRU? Y

Concurrent development of ADP H/W? Y

Interactive development environment? Y

Off-site development camputer facilities? N

On-site development computer facilities? vy
Development camputer different than target computer? N
Multi-site development computer facilities? N
Unlimited programmer access to campu-er facilities? N

2115.1 Person Months req'd for analysic, design, code, debug, test and checkout.
( Standard error an this approximation = 41.1 § )

Estimated schedule duration = 18.1 Months

Continue (Y or N)?

Figure 3-35. "MIC Cost Estimate




the adjustment of three of the envirommental factors to account for the
positive impacts resulting fram the use of the scaled system. The three
factors adjusted were: firmness of system operational specifications,
absence of changing operational requirements, and the absence of parallel
hardware development. The factors input to the Doty Model are
illustrated in Figure 3-36. Amazingly enough, the Doty cost model
provided an estimate of approximately $3.5 million for the NMIC
development resulting fram the benefit of a scaled system - an estimated
savings of approximately $6.5 million dollars! With such estimated
savings, the NMIC could have cost-effectively afforded the equivalent of
twenty-six IWTS development efforts. A conservative figure of $250, 000
was used as the development effort cost for the IWIS and the resulting

scale factor equation was:

—————————— 2.5 ¥ Scale Factor for Development Effort
$10 Million
The resulting scale factors for the IWTS versus the NMIC are

graphically illustrated in Figure 3-37.
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Fram the Doty & Associates (RADC) Studies:

Please Select an Application Category:

- Utility (0S)

- Camand & Control (c2)

- Scientific

Business

- All (Others not listed above)
EXIT (Returm to master (M menu)

AUV b W -
}

Selection (1-5)2 2
Estimated Deliverable Source 1LOC (1,000's)? 80

Please input a yes/no (Y/N) response to each of these 14 questions:

Special display? Y

Detailed definition of operational req'mts? v
Changing operational req'mts? N

Real time operation? Y

CPU mamory constraint? Y

CPU time constraint? Y

First S/W developed on CPU? Y

Concurrent development of ADP H/W? N

Interactive development environment? Y

Off-site development computer facilities? N

On-site development computer facilities? Y
Development camputer different than target ocamputer? N
Multi-site development camputer facilitieg? N
Unlimited programmer access to computer facilities? N

733.2 Person Months req'd for analysis, design, code, debug, test and checkout.

( standard error on this approximation = 41.1 &
Estimated schedule duration = 18.1 Months

Continue LY or N)?

Figure 3-36. NMIC Cost Estimate with Benefit of a
Scaled System
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! SECTION 4. REMAINING RESEARCH

; In this research effort, parameters of software systems that are
' suitable for scaling have been identified and metrics have been defined
L' for them. These scale factors have then been related to the parameters
of the operating system performance simulator. It would be worthwile and

advantageous to further develop the simulator to make its parameters more

sensitive to the particular requirements of IDHS, i.e., refine its design
to be less general purpose and more IDHS-specific. These refinements
would aid significantly in analyzing the particular scaled system neecds
of IDHS.

In addition, a camplete set of equations relating system parameters
to scale factors would be of great value. The philosophy of this
approach and initial delineation of a subset of the simulator
variable-scale factor equations are described in "Interrelationships
Among Scaling Factors" (Appendix D), and "Simulator Variable-Scale Factor
Equations" (Appendix E). Expressing all the input parameters as fairly
f simple analytic functions of the scaling factors would permit more
extensive and definitive analysis of scale factor interrelationships, in
order to give the system designer a better tool for evaluating
full-system expectations based on those of the scaled system. It would
also enable further investigation of how scale factors behave in

? different operating regions to be performed in a manner which would help

in eliminating the uncertainties of the interplay of more than one
factor, i.e., the effects of cambinations of parameters.
As illustrated in Figure 4-81, the enumeration of quidelines for

’ staling factors, together with the derived performance relationships, and !




SCALED SYSTEMS

PERFORMANCE COST
RELATIONSHIPS MODELING

"SCALING HANDBOOK"

Figqure 4-01. The Scaling Handbook




cost modeling results would be used to produce a “scaling handbook”,
L which would be of great value in the design of IDHS. Further work should
be done to codify the results of this research to produce the handbook,
as well as to verify the efficacy of the scaled systems methodology by

experimental means.
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Glossary

Full-Scale Effort - See "Scaled Effort".

Scaled Effort - the actual or projected manpower-related effort required to
construct a system to a certain scale. If the scale is 180% (or 1:1),
then the corresponding effort required to construct the system is referred
to as the "full-scale effort"; conversely, if the scale is less than 100%
(or 1:n, where n is greater than one), then the effort is "scaled" in the
sense that it is, in same measure, less than the corresponding full-scale
effort.

Scaled System - an operational system that differs from an ultimate
full-scale system in magnitude or degree of functional or operational
sophistication and that can be quantitatively related to that system by a
scale percentage rate, fraction, or ratio (ie. "50% scaled", "1/2 scale",
or "scaled 1:2").

Scaled System Development Effort - the process that results in an operational
system built to a relative scale with respect to a target system. The
purpose of a scaled system is to serve as a testbed for detecting design
deficiencies in the target system so the necessary changes can be made in
the front-end of the development cycle, where changes are less costly to
effect than in the tail-end of the development cycle.

Scaled System Development Methodology -~ the formalization of those processes
that comprise a scaled system development effort and provide <the
theoretical foundation for such an effort. The methodology has two
principal phases: one to construct and evaluate a scaled system, and
another to construct the desired target system.

Un-Scale -~ See "Up-Scale”.

Up-Scale - the process that incorporates evaluative and design factors of a
scaled system to the development of the desired full-scale (target)
system. The expended or projected manpower necessary to build a
full-scale system, given a scaled system, is referred to as the
"Up-scaling effort” or "Un-scaling effort”.




Abstract

A study has been conducted
to assess and quantify the cost
impacts of adopting scaled system
software development techniques.
First, various software cost
estimation relationships and models
appearing in the open literature
were surveyed and evaluated. The
results of the evaluation were
sutmarized in tables ocamparing each
model's output (in terms of total
developmental effort) given inputs
{expressed in deliverable source
lines of ococde (DSLOC)) varying over
a range of system sizes. A model
(by Doty) was subsequently chosen
{due to its consideration of
environmental factors) to evaluate
cost impacts of scaled system
software development efforts versus
unscaled, or "full-scaled",
development efforts. Preliminary
results indicate that substantial
cost benefits can be achieved
though the use of scaled systems
developmental techniques. These

results are presented in tables

showing costs of various scaled
development efforts versus unscaled
efforts for projects of varying
magnitudes. :

From the study, a need was
identified to further investigate
the subject after the development
of cost estimation models more
specifically suited to the
evaluation of environmental and
productivity impacts arising
through the use of scaled system
software development methodologies.
There is also a need to develop
qguantitative models to account for
the benefits of scaling additional
aspects of a software system, such
as complexity, reliability, and

data base.

Background

This study is an outgrowth of
current research investigating
software cost estimation
methodologies and scaled systems
software development benefits.
Cost estimation is an integral

factor in the research of scaled
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systems because cost is a principal
concern {along with quality
assurance and schedule/risk
minimization) in the contemplation
of scaled systems development
techniques.

Scaled system methodology
partly oonsists of implementing and
delivering an operational, or
semi~operational, software system
"to scale". Such a system probably
would not support all of the
operational and structural
characteristics of the desired
system but would serve as a
skeletal testbed for the system's
engineers and custamer personnel to
the

evaluate functional,

operational, and performance
characteristics targeted for the
ultimate product -- a "full-scale"
system. Conceptually, scaled
systems are similar to the scaled
prototype models used by product
designers and engineers in the
shipping, aircraft, and autamobile
industries involved in the
development of competitive,

reliable, and quality products.

The potential benefits of
applying scaled system technology
to a software development project
are many. First, customer
functional and operational
requirements may be refined and/or
solidified through the benefit of a
"hands-on" evaluation of the scaled
prototype system. Second, 1in
pursuit of performance or
reliability increases or to verify
that full-scale system performance
will be within specifications, the
target system design may be
optimized. Evaluation of the
scaled prototype may reveal
potential efficiencies or econamies
in the system's architectural
structure and its real-time
management of on-line resources.
Third, uncertainty about system
technological feasibility,
architectural soundness, or
reliability may be reduced or
eliminated through the experience
provided by the scaled effort.
Rather than being a costly {(and
wasted) by-product,

experience

gained in the scaled effort is




economically realized through the
increased productivity of system
designers and programmers in the
effort expended to construct the
ultimate target system -- the
*unscaling" effort. 1In this way,
experience is capitalized upon
through feed-back. Additionally,
experience aids project managers in
their decision process by reducing
the uncertainty concerning the
formulation of the schedule for the
unscaling effort.

To some degree, the
attractiveness of scaled systems
implementation techniques is
intuitive. The thrust of this
study is to justify the scaled
sytems approach based upon
quantitative prediction of cost or
schedule savings.

Discussion

At the onset, this research
started with a survey of current
literature in search of software
engineering predictive models. A
camplete list of titles is included

"'—-——h,__j

in the bibliography. Major titles
included “"Workshop on Quantitative
Software Models" published by the
IEEE, "Quantitative Software
Models" by DACS, and "Elements of
Software Science" by Maurice
Halstead. The models of Walston
and Felix (IBM), Putnam, Doty, and
the System Development Corporation

were selected to be encoded into

' BASIC for execution on a RP-8000

microcomputer system. These were
selected primarily for their
simplicity; they are all
regression-derived equations of the
form: effort = constant times
number of instructions raised to an
exponent (except for an alternate
form offered by Doty which camputes
an additional adjustment factor
based upon fourteen environmental
characteristics). Additionally,
two theoretical approaches derived
by Maurice Halstead to
quantitatively estimate program
effort were implemented. The first
appears in chapter eight of his
book under the subtitle of "Timing

Equation Approximations" (3],
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while the other appears in a
reader's response to Walston and
Felix's article "A Method of
Programming Measurement and
Estimation" [9], submitted by
Professor Halstead.

One cdbjective of scaled system
technology 1is to reduce the
uncertainty of software
development. This uncertainty is
often accounted for in ane way or
another by current models through
"environmental" factors or
constraints. Examples of these
factors include Doty's attention to
the existence of a detailed
operational definition or the
presence of changing customer
requirements and Price-S's \1
"Camplexity" input parameter.

Another objective of scaled
system technology 1is to take
advantage of increased programmer
productivity during the unscaling
stage of the software development
cycle. Programmer inexperience has
been shown to represent a
considerable vwrden on a software

development effort over the entire

ey

development schedule. This bwurden
may be reduced or eliminated during
the unscaling effort as a result of
programmer experience gained
through the scaled effort, yielding
considerable positive cost and
schedule impacts.

At this point, we can begin to
formulate an approach to estimating
scaled system savings. This
approach examines the sensitivity
of cost (effort) to environmental

and productivity considerations.

Approach

As mentioned, six models for
programming effort were selected
for the study; four derived fram
regression analysis and two fram an
interpretation of the natural laws
governing human preparation of
computer programs (Halstead).
Certainly, other models exist and
more

are currently under

development; these were, however,

the most accessible for quick

Although accuracy

was not a primary consideration

implementation.

1 Price-S is a proprietary parametric software development cost modeling
package invented by, and available for lease from, the RCA Corporation of

Cherry Hill, New Jersey.
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{(the results were not explicitly
intended to be used for a cost
proposal), representation of the
basic relationships existing
between program size and effort
over a range of program sizes was
seen to be crucial to a trade-~off
analysis of scaled systems
technology; therefore, a comparison
study was in corder.

Various program sizes ranging
from one thousand to one million
source lines of code were
systematically selected and input
into the cost models and their
corresponding outputs were
recorded. The results appear in
Table 1. The last column records
the mean values of the estimates,
their standard deviations, ard a
disparity factor which was computed
by dividing the standard deviations
by the means. Because the Halstead
model appeared to be quite unstable
over such a wide range of system
sizes, its results were not
included in the correlation
computations; only the four

regression models' outputs were

used in these computations.
Disparity factors for the various
model's outputs ranged fram 4% to
46%, varying directly with program
size. For program sizes less than
160k source lines, the disparity
factor did not exceed 30%. These
figures show that, for systems
smaller than 100k, the models are
in relatively close agreement.

For this camparison study, the
models were to be run without
regard to application. This
assumption particularly impacted
the Doty model, which offers the
option of selecting one of several
different application categories.
For a description of the Doty
model's quantitative parametrics,
see Exhibit 1. The figures for the
Doty model in Table 1 result fram
the selection of the "All"
application category. Table la is
provided as additional information.
It shows the results when the Doty
model is run with the selection of
the "Command and Control"
application category, the proper

application selection for software




projects in the DoD environment.
Note, however, that the disparity
factors are greater in Table la due
to the use of this application
category in the Doty model.
Through the facility of
straight forward input-output models
such as those described which yield
estimated effort given projected
system size, only a limited
approach to analyze scaled system
trade-offs may be formulated. Such
an approach is summarized in Table
2, using the Doty model in the
"All" application category (Table
2a shows the results of the
"Command and Control" application
category). Given an estimated

full~scale system and 1its
associated predicted effort
measure, the efforts required for
implementing the system scaled fram
10% to 90% were camputed. The next
step was to estimate the effort for
the unscaling effort. In the
absence of environmental and
productivity ocamputational factors,
the estimated unscaling effort

would equal the full-scale

A=Y

estimated effort and, hence, no
cost savings would be reflected in
the analysis. Certain savings
factors would therefore have to be
assumed. The method chosen for
Table 2 was to reflect unscaling
effort savings through a reduction
in projected deliverable source
lines of code. This assumption

appears to be a valid
representation of the anticipated
increased programmer productivity
occurring during the unscaling
effort. Reducing the number of
instructions shortens schedule much
as if programmer productivity were
increased. If sought-after
technical design economies are
achieved, they too could be
reflected by a reduction 1in
delivered source code for the
unscaling effort. Additionally,
with the existence of an iterative
enhancement development approach

(73,

for the unscaling effort would e

some of the design and cade

canpleted prior to the start of the
unscaling effort again resultina in
and schedule

effort savinas.
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Assuming the validity of these
assumptions, Table 2 shows matrices
cross—-listing scaled effort with
net unscaling savings expressed as
a reduction in total deliverable
source statements. As the table
shows, scaled system savings for
any system size result when
unscaled effort savings equal or
exceed the scaled system factor
used during the scaled effort. For
exanpla, given a scaled system of
factor 30 (30% of the total
anticipated system size), the table
predicts that total project savings
will result if the system is scaled
and at least 3@0% savings can be
realized during the unscaling
effort (this 1is only slightly
different in the "Command and
Control" table, Table 2a).
Fortunately, and for the sake
of better estimates of scaled
system savings, models which
incorporate environmental and
productivity factors into their
camputations are available. One
such model is a variation supplied

by. Doty Associates. As with the

other Doty models, this model
offers five application categories:
utility, command and control,
scientific, business, apd "all".
In addition, fourteen envirommental
factors are accounted for in the
computation of projected total
effort. These fourteen factors are

listed in the literature
(reproduced in Exhibit 2) and also
in the Doty model's screen display
shown in Exhibit 3. Of these
fourteen factors, two were deemed
most relevant to an analysis of
scaled systems savings; these are
termed "detailed defintion of
operational requirements" and

changing operational
requirements".

In the development of nodern
software systems, more often than
not a detailed definition of the
operational requirements is
lacking; therefore, the enviromment
is one of changing operational
requirements. This phenamenon has
been attributed to many reasons,

but the difficulties custamer and

systems personnel encounter when
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attempting to cammunicate a system
operational specification are
probably paramount. One objective
of the scaled system development
approach is to aid these personnel
in arriving at the system's
operational specification, and to
allow them to econamically modify
or enhance it, through the benefit
of a scaled prototype system which
they may evaluate.

Tables 3 and 3a illlustrate
the impact of these environmer.tal
factors upon total estimated
effort, given a discrete system
size. The number in the column
labeled "Estimated Full-Scale
Effort"” gives the estimated
development effort in the absence
of a detailed operational
specification and in the
environment of changing
requirements (see Exhibit 3 for the
environmental responses input to
the model to arrive at these
figures). For the figure appearing
in the column entitled "Unscaling
Effort", these constraints were

removed (Exhibit 3a lists the

responses used to characterize the
unscaling environment). This
figure represents the additional
effort necessary to construct the
full-scale system, having ocampleted
the scaled system implementation
and evaluation. The difference in
the two figures is the amount of
effort which is economically
available for the scaled
development effort. Estimated
efforts based upon the various
scale factors are also listed. 1In
arriving at these figures for the
scaled efforts, the constraints of
no detailed operational
specifications and changing
requirements were included in the
analysis (see Exhibit 3). Another
constant relationship was found
regardless of system size -- a
scaled effort of factor 1@ (40 for
the "Command and Control"
application category) was necessary
for any significant effort savings
to be realized. The saved effort,
however, was significant. For
example, in the 180k case, the

model showed that savings of

A-11




approximately 18 person months

oould be realized if a 1/19 scaled
system could be implemented and a
detailed operational specification
developed as a result. Assuming a
cost of $500P per person month,
this savings translates to a total
of nearly $9¢,900. Exhibit 4
graphically portrays the
relationships expressed in Table 3.
Of significance is the fact that
the data of Table 3 assumes no
productivity changes between the
full-scale and scaled apprcaches,
which, if present, ocould even more
dramatically increase developmental
savings. The "Command and Control"
application category of the Doty
mdel predicted a higher break-even
scale factor point than the "All"
category (see Exhibit 4a). This
can be attributed to the greater
exponent found in the effort
algorithm and the different weights
offered for the environmental
factors. Exibit 5 offers a

generalized portrayal of a scaled

system oreak-even cost/benefit

analwvsis.

Conclusions

The limited study done here
with the aid of simplistic cost
estimation models alludes to
significant ocost savings resulting
from the use oOf scaled system
development methodologies. None of
the analytical approaches presented
here, however, account for
beneficial productivity changes
anticipated for unscaling efforts.
Fram Exhibit 6, the data of Walston
and Felix of IBM project 58-1803%
productivity increases based upon
programmer experience. Future work
in the areas of software
engineering and cost modeling with
attention to cost and schedule
drivers and productivity factors
will benefit system architects both
in schedule estimation and scaled
system methodology analysis.
Research with more accepted
parametric models such as Price-S
might lead to greater insight into
the potential cost benefits derived

from the use of scaled system

Attention should be

technology.




paid, however, to possible

parametric impacts of such factors

as complexity, reliability, and

s daghtial

data base which may require the
development and use of additional

parametric relationships.
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. TABLE 1: LEVELS OF EFFORT
T Prosram L'QDEL

Sone J'BM; SDC | Putnam| Doty | Halstesd MJf.ﬁ%
IDSLOC) &?::;10: kj?%‘l‘{"") Estimator I:_:tls:::o et

(52

1 | 52| 55| 49| 53| 15| 5 {5.;

24

5 225 237| 234| 288| 449| 7.7 !{ 2a.

10 | 42.3]| 443| 460| 60.0[1943| 244 {%‘?

2

50 1828 189.7| 2212| 3286(5741.3 34!81'{257

454

100 |343.6| 3550 435.0| 6836 245065 10824{33077
1,117

250 |7909]| 8126|10639|1800.7|165,999 48180{;;97

2,211

500 |1486.2|15202|209263746.6|703.112|14,804 { sio
3.300
750 |2149.4(21930|31083]5751.2 1633630/ 28 500{14:;,
1000 |27926|28442|4115.8| 7795.1{296950|45,327 {%Z

F1GURES EXPRESSED IN PERSON - MONTHS
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TABLE 1a: LEVELS OF EFFORT

prosram MoJe, P
Size‘ IBMs)| SDC | Pitnam D?ty_ H.‘:te.JWMoJ.'ﬁ'ch:'/ﬁ7
fbecee) |Eier SO it RO
4925
;| 52| 55| 49| a1| 15| 5 |f=e
25.2
2251 237 234|312 | 449) 7.7 {3-:’7,
51.9
10 423 | 443| 460| w9 [1943] 244 {122,
| (291
50 1828 | 1897| 2212 572.0 |5713| 3481 {12
627
100 [343.6| 355.0| 4350|1372 81245065 10 824 {1239{-7.
1759
-0 |7909]| 812:6|10639|4367.3[165,999|4818.0 {18551;
3895
500 11486.211520.2{20926|10481.3 703112114,804 {39881;

750 |2149.4]21930|31083|1749121,63363028,500 {esw

g7z7
1000 |27926|28442|0115.8(2515462.96954045,327 {94 >

FIGURES EXPRESSED IN PERSON - MONTHS
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TABLE 2

A-18

; ”ALL"
| - APPLICATION
‘ s:,sten Estc'nmch Scn/eJ EfFart To-ta‘ Epfort
! Size | Full Scale | (Persen-mesche Cperson- menvhs)
1.000; Effort Scale | Scalad Based upss net uascaling 3aviags of:
DSL0C) |(Persos Meths)| Facrer | Effrt 107120730140 750 16070 80/9C
goz | 47 9.4 1885/831/776]723[67 [6.17]566[516
o 4.15 18.85!83 '7.7617.2116.6816.15/562[5.111461
zZo 361 1831|776 722/6676.14,5611508:457(407
1 5 26 |se 3.06 [7.7617.21:6.67/6 1215535061453 402352
. 0 253 :723[6.68/614/559[5.06 4.53/ 4.0 13431299
4o 20 167 |615 561|506 4.53] 4o 13,47 296246
30 147 16175 6215.08/4.53| 4.0 13.4712.5412.4311.93
20 96 1566)5111457/4.02/3491296{2.43/1.92!142
10 46 [4.16/461[/40713521299(2.4611.93(142,.92
Q0% | 53.64 (10721101 (9481886 825! 764i70.4 1 646[589
o 47.36 101 | 94718851823]762:70.1 1642 [56.3 526
79 41.12 1948/885/822/761(70.0{639]57.9:521 464
&0 34.94 18861823761 655/638(52.7 .51.7 1459 402
]0 5_9 95 |so 28.82 [825/762[700638]576516|456|398 341
’ 40 22.76 |764170.11639|57.7"'516|455!39.6{337 290
30 16.80 | 704]64.2[579 517 |456396| 33612771221
20 10.94 |64.6[583 7521 459398 337/277] 219162
10 526 15891826 464 (402 |3u.1 123012211 162!/05
90% | 611.58 11223 B 736.3[6715
=] 539 99 73156647
70 468 91 728.5)6604 !
60 398.41 72706580
100 683.63 50 328.57 722006571 !
40 259.54 728.5]653.0 ) j |
30 191.49 7315[¢s04 I i |
20 124.74 |73¢.3}64¢4.7 ' |
10 59.35 [6715 ! 1220
90% | 6973.57 13947 ! 18396 [%57
go |e157.25 ! 834117580
70 5346.74 18306{7530. !
60 |4542.83 i §289[7502] 0
10007795 [so [374s55 [ 8289[7es3. | )
40 |2959.36 1830¢ [7502 |
30 (2183 42 8341|7530 i 1
20 [1422.36 [83%6]7580 - | ]
10 683.¢3 %57 1 i I I 1367
T R 1 ) f




TABLE 2 (conT’D) “ALL”
APPLICATION
S_&,stea Est/mated | Scaled E;Fort Tota.l EFFert
Siae Fu“ S‘Q‘Q (Person -menths) _(persen - meaths)
L,ooo; Effore Scele | Scaled Based upes net wascalisg :qn'-gs of:
05L0C/ (Perses Maisd| Focrer | EFRet 1071 20130/40 5016070 80,3C
| 907z | 381.6 |783 | | | | 455 413
o 336.9 | |46 Jaie
7o 292.6 T lessfezai
64 Yrg5 89 248.6 1454 Va7
' 50 205.0 454 {420 |
40 161.9 455 14111 | _ |
30 119.5 456 {412 | ' | |
20 77.8 1455 {415 | i
10 37.4 419 | i 75
o7% 11651.8 [3304] | | 11989 (:814
o |1458.¢ 1_ |1976 [1795
o |1266 .5 | 119681784 | I
6o 11076 .1 | Tssaanw |
25@ (846 o | 887.5 (9641775 }
40 701 .0 T.ssJu-;z | 1
0 517.2 | 19% [1784] | | T
o 336.9 11989 {1795 | | ! | i |
10 161.9 [1814 ] \ I | | 1324
90% |3436.8 (6874 ) L1 Tv2glw
go 13034.5 | 1 | Tu111]3736
70 2635 0 | ! | §o94|3711 1
60 |2238.9 | ] Tyoes 2697 . \
512 | 3842 50 1846 .4 | gogs|3gss | 1
q0 (1458 5 4094|3697 a l | ;
o [l1076 .1 gr1]371 | { l ! :
0 701.0 l4138[5736] i | : !
10 336.9 3774 i L . : f
90% 5275 .7 lossi1| | | [ | 6352 [s7ez
o _l4658.2 1 1 1 T 62105734
70 4045 0 | | | l l 16284 (563~
60 13436.8 | | | (627L]s¢-s
768 5857 50 12834 4 ! | 1627115669
g0 |2238.9 | 16284 [c6761 ‘
30 [1651.8] §310{5637 ‘
20 1076 .1 1€352]5734. i |-
10 517 .2 [§792 | i | 1o
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TABLE 2a ne2n
APPLICATION
53sf¢n E;tir-a.fnf Scafeal Efﬁort Tota.{ fPPorf
Siae | Full Scale | (Persen=menths) (farien “mon¢hs)
1.000; Effort Scale | Scalad Based upsa ner wascalieg savings of:
OSL0C/ ((Persos Mudsd{ Facter | EFfrt [ToRT20 30140150160/ 70180/9C
907 122020 (44040l | 27518125315]23393
80 118977 [ 2688u{2 w75 [22272]
70 16032 2651%23939121530| i
| 60 113135 263%(23476(21102
}_OOO 725155 [Cso l10as1 3450230 20se2]
g {e) 7907 26883123939 21102
30 5498 [21518{20475]| 215301
[ 20 3295 (253151222
10 1373 (2339 2T4e
SoZ%Z | 1202 (2404 150211382{1277
=) 1036 1468{1336(1216
70 875 14471130711175| |
60 720 1440012921 1152 1 |
IOO 1373 50 572 14471129211144 | [ z
40 432 1268)1307)1152| | L
30 300 |1502|133¢| 1175 [
20 180 |1382l1216 1 l
10 75 277) { {150
90% 66 (132] g2 | 76 {70
8o 57 g1[73 67
70 48 79172164 | E
| 60 39 7el70i63] | T
IO 75 5o 31 7970 62 P i
40 24 8172 63 L 4 |
30 16 g2 |73 /¢4 l k | 1
20 98 |vele7 b ‘. 1
10 4.1 70 | : 18.2
|_go% 266 |732 | 456 4 Je{ass
80 3.1 (441 4 36,
70 2.6 43135 35 |
60 2.1 82138341 : |
1 Z[ l 50 1.7 43138341 1+ 1
’ 40 1.3 y¢l3s134] T \ _
30 .9 |45¢) 4 135 i
20 5 l4ge]36! 1 ] 1 1
10 .22 [3.88 | | [ 3 4
o | i 1
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TABLE 2a  (conT’D) APPLIEATIOT‘
s:,ste-’ Estimated | Scaled Erfore To=zal E:::w;
Siae Full Secale | (Pemsen-menchs) Cpercsen s menths;
l.ooo; Effore Seale Sea/ad :4:46/ upea Aer uscn/fm :auf-sz aft:
05L0C/ |(Persan Muds)i Facter | E7% 107720 30 4O 50 EO 70 B 27
oz 115778 3156 : | 1 t 19717 812905z
go 113597 | l | | | 192¢7{1~53615553
Zo 11487 ! | | ! 18997{17:52 iSv26
| 60 9434 | | i 118988 170041 5159
768 28023 g0 | 7510 | { 118997 {{ 7604 115020
30 5665 | 119262017152 115159 | |
30 33939 i19717075%i153261 | |
20 23G1 |1813sf153s8! I | i |
10 984 &7 | | | ! ! 1948
SOo% ! 9454 118988 j i i | 11855 10509 (12093
go | 8148 | | l ! ! 115u3{ze509 9563
70 | 6883 | | | ! 11393 {0278 9234
so | 5685 | f ( 7113304/0165 060 ‘
51 2 ZOSOO 50 | 4500 | | | 1{383]]o%e5 9000
40 | 3395 | | 115%3{10278! 9060 1
30 | 236l lnsss|iosesi 9244 ! ! 1
20 | 1415 |i0909{3563 ! | | | ‘
I0 | 589 |hoess| i ! 1 ! ! 278
S0%Z | 39335 7878l l | | ' 14923 <8294 ¢s
80 3395 | | ! l 1 481C (Y375 39 5
70 2868 | r l ! 14743 (4283 3852
| 50 236 | x , 1472242363776
' 256 ZZS'OO 50 | 1875 | wd3ldieiiro
40 1415 1 lugto 1428313776 :
30 984 1u923{437913852 ! ' !
' 20 | 589 u528|3984I : 1 . »
10 | 246 fulgs ‘ 492
9o | 684 1368 s ' 55 78¢e(72;
go | 589 | l 3351750 53¢
70 | 4356 : 815 | 735 €69
64 60 | 410 | | ‘ 820 [736 656
78]_ se | 326 1 | 945[-3., 652
a0 | 246 | 1§35 [ 735 ¢
30 | 171 855|760 662
20 | 102 :796|69:
10 | 43 [727 76




e % 9) By

™1 o1 |
Y TR X sen ] oo s
00y o ow my | o IR
o TREX sl | my s
o1 o | o | oo v
™ o | m wo | wt "o
Y sty [ o i | om @
oy 1 | o ) e %1
w1 e | om e | ot TR
™1 s | o ot | oo 2
oy o1 | om o1 | o X
oo ¢ w1 | ma w01 | M 01
o0y mi | m w1 | me 01
) wi | o wa | oo n
] 31 - 7 o s

] -l t __; f 10

1 toea |5 RURIMR] 1102
TR Rl LA

AN ssmisna | T

— .. - -

SHOLLY ) WY

2g

on 1

ol

(A0

o\
™

[}
q_ "

oy 921

s2 1
L2481
s
wi
wo
L]

EL]

sz

[N

"
SiA

11050

NMIM) T M)

- -

v o cwwny f
m ‘Wi ) LARIINT (X}
01 SSVIW NI Ritd
o0\ %2\ na. WIS I
ML et 1Y IR IR0
00 { [T | :~ ninna)
1yl NVIEL ENINY E iy
WITRHNI Y W Ts My LA b
00 st 8 anes vmnvatn v oo
00 1 o | ANV BN 1y
NIAAD) WISH BLNIIAN
(L) ("o a. AN IO TIA BE NE WIS e
HIIVE SIA ¥ SIA * P L
"1 AR AN Jav
[LAUSORATRUNRLELL I} iR}
o1 wy | 0y
WO 1LI0 AW RSS 1SHD )
w0t we | Y IHIVRISHOY HEE o)
0t w9 INIVNISND) AMMIN 14D
0\ wr | Y WOLIVMIS0 UL W
o S0t Y ST (3L
WVROTIVELNT 01 '
" o {9 SINTMINt IO IVIRH Lv8 10
30 MOV LINL L 1MV I
00t wel Y AYAISIN WIIMS
o s
e b
Ty __... 1 0% ¢ /// LUR ]
e (00 ~.
~
- —— - —_— /I/
"w -
111111111 — w1 WIWILS) | -
-

juomasiaul juamiolasag hujyoagyay swmprylobyy
Gujjewy3s) adanosay ajdoag juamdogaaag ademysos 7 JTATUE

ey ga spussiengy gy

.

SIIVIIOSSY AL0A/I0vH

A-22




EXHiBIT 3

Fram the Coty & Associates (RADC) Studies:

Please Select an Mppl:m@tion Categery:

- grilicy (€S

- Canmnd & Control (c2)
Scientific

- Business

- All (Cthers not listed above!

P S WE NN
]

Selection (1-9)?
Estimateqd Celiveranle Source LX 11,000'5)2 € from tables >
(Siaale, (Giesale, or (O)gtion? C

Please input a yes/nc (Y/N) response to aach of chese .4 cSuestions:

Resrcnses .

Special disglay? No
Cem:led cdefirmiticn cf creratioral rec'mes? No }
Cramge o cperati:cral rec'mts? Yas
Real tume ogerat:ion? No
CPC ramory censtraint? No
CPU zupe cernstmaint? No
First S/W cevelired on 22U2 No
Concurrent cevelcrrent of ALP H/W? No
Tiure wace, vis~a-vls DAtch Srocessing, in cev'ment? Yes
Cff-site develcpment camputer fac:ilities? No
Cr-si1te Zeveloprent canpguter facilities? Yes
Ceveloprent carputer cifferent Tan @rget carputer? No
Mulri-site cevelcrment camputer faciliries? No
Cnlurited crogrammer access =0 camputer f2cilities? Yes

§999.99 van ¥onwhs ceg'd for amlysis, design, code, Jepud, nest and Inecxou:l.
( Standarc error on 1S asproxwraticn = 9.9 & !
Estimted schecdule duraticn = 996,99 vonths

Continue (Y or \M)?

ENVIRONMENTAL RESPONSES FOR
FuLL~-SCALE AND ScALED EFFORTS
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ExHIBIT 3A

Fran the Coty & Associates (PALC) Studies:

Please Select an *prlication Catsgory:

1 « Jriliey (OS)

i - Cammnd & Contrzl (€2)
] - Scientific

: ~ B2usiness

All (Cthers not listed atove)

Selecticn (1-9)7
Estimaced Celiveracle ce LT (1,000's)2? < fro- tanles >
(Siale, (Uipscaie, or (Q)ption? C

Plemse ingut a yes/no (YN} restonse o aach of ttese !4 cuestions:

ResPonSES:

Spec:zal dismlay? No

Cerailed cefinicion cf opesaticrml ceg'wes? YGSE
Camge o cparaticral reg’Tes? No
Rezl time operaticn? No
C2C remory <onstoaint? No
CFU zime constmaint? No
First S/W ceveloped on &PC? No
Concurrent develcpzent of ALP 3/W? No
Tinpe srare, vis<2-vlis Datch gTocessirg, in dev'ment? Yes
Cfi-sita develcpment canputer 3cilities? No
Cn—site cevelopment camputer Qacilizies? Y es
Ceveloprent canguter diffsrent than @rgec cancutec? No
Mylci-site develccTent cancunsr facilizies? No
Cnlirited frogrammer actess o computer facilizzes? Yes

9999.99 van ¥ontns rag'd for armlysis, design, ccde, demuc, “est and Chmecxcout.
( Stancacd erreor on Wls agproximacicn » 33.3 & )

Estimted schedule durazicn = 999.99 Months

Continue (Y or NV ?

ENVIRONMENTAL RESPONSES FOR
Up-scaLING EFFORTS
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TABLE 3
Sgsfe- Estfn-afu/ chleo’_EfFort Unsca./(a_" Tcta/ I So.\/inﬁs
Size Fu“ Scale (porsonsmenths) Etfore Effart X
l.0005 Effors Scale | Scaled with % 500 o/ oM
DSLOC/ |(Person-Masks)i|[Factor | EFfort (Pcr:o«'M«flu)‘ se{:ﬂ!}tg
907 | 2.48 4 .86 |
80 2.15 4 .57
7o 1.91 4 .29 i
%] 1.62 4 .00
1 277 50 1.34 2'38 3.72
40 1.06 3 .44
30 ;? 3218;
20 : .
10 25 2 .48 $ 1450
S0% 27.64 54 12
Bo 24.43 50 .91
] 70 |21.25 ﬁzgj |
80 {g.08 56 }
]O 30.87 50 |14.94 [ 26.48 | 41 42 |
W |48 3234
30 8.7 .
20 5.72 32. 20 | 4
10 2.77 29 25 || ® 8100
50% [ 308.01 §03.10 ‘
go |27z.28 567.37 |
| 70 236.22 531'§§-i
] €0 |201. 09| 496 1
]OO 343'93 zo 166-45 295 3 4E1-54
40 {131.77 426.86 |
30 | 2;?’;’ 392 55 i
20 . 358.87 |
10 30.87 225 56 839,850
507 |3432.13 6720 35
80 3033.94 6322. 16
70 |2638.09 ?ﬁ?fé’
6 2244.890 533. {
]000 3832 41 52 (854,79 32882215143 01 ¢
40 |1468.35 4756_5;
3¢ 108647 4374.6
20 710.64 3598.86 ']
10| 343.93 3632 15 |8 /,001,30¢
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TABLE 3 (conT'D)
53sfen} Estfn-af«{ 5cn/eJ E.fr':ort{ Unsea./«'n:,.' To ta/ 1 \_%VInjf
Siae | Full Scale (P'I"-.--n-:;%f - Effort Ea;.hrf ¢
« ©00; Effor Scale | Scala ! wee 8o P
55200¢) (Parca )| Foarer | Eere (B sorMonde) scalpg 35000 /PmM
907 1193 03] ; 377_97[
go | 170.64) 355 53
7o 148.38i } 333.3%1
60 126.26 / o 311-??v,
64 21555 50 |1o4.32)184.5+  Zzes.ze.
40 82.58 ‘ 267-:‘2.‘
30 61.12 1} 245.561,, 3
39.97 | 224 | ‘
fg 19 34 204 28 356350 |
502 |g24.12 1161368,
go |728.51 i 1578.07
; 70 633.46 l-’ézggg
60 !539.04 1328.
256 320.23|| 50 415.37| 78956 3525.293
o] , i [,
TR
' 960.20
0.64 1 d 4
?g Tlgz.ssn B2, 14 || 8 240,450
80% |1702.82| ‘3334’.?_41
80 |]1505.27 3136.63]
70 [1308.87 f 294028
] &0 1113.75] k/uf;.ax
5]2 190142) 5o s520.24] [63] 42 2551.66
40 | 728.51 235993
30 539.04 Zésjéeo
52.58 1 .
ig g?o.sa “go2.c6lF 49¢,800
90% |2603.38 [5097 53]
80 (22301 34 4795,:51
70 12001.07 4&95,&9,
60 |1702.82 4197,03}
768 29070\ so |1dos.91| 249421 3502 12
40 1111375 3609,00\
30 g2d-12 23%_3%
20 539.04 033. ,
10 | 260 88 27550418 759,552
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TABLE 3A

Systenm| Estimated | Scaled Effore Unscaling] Tetal
Size | Full Scale | (Permen-Meothd | Fpfo.y Effart
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A.  ABSTRACT

This paper summarizes the research leading to and involved in the

development of a list of software scale parameters. Software scale

‘parameters are those aspects of autamated systems that can be reduced in

scope in order to implement a cost-effective systan scaled with respect
to the full-scale system objective.

The work of Yourdon, Tausworthe, Dijkstra, Knuth, Parnas, Mills,
Belady, Lehman, Basili, Tinker, Preiser, Halstead, House, Musa, Turner,
and others have been studied in an attempt to isolate various elements of
software systems most suitable to scaling. Each scale parameter is
defined in detail, with sufficient background to introduce the area.
Areas for oonsideration include functionality, data base characteristics,
maintainability, security, reliability, performance, language and
configuration. These areas will form the fuundation for later work under
the small scale system design effort.

B. OBJECTIVE

The objective of this report is to identify parameters of software
systems subject to scaling and to begin a definition of scale factors
associated with each. These scale factors will be used to develop
appropriate metrics to standardize, quantify, and cbjectively describe a
scaled system in terms of the full-scaled system it represents.

C. DISCUSSION

An analysis of current software systems develognent methodologies
has been conducted to isolate the elaments most suitable to scaling.
Considerable research has been performed to identify other work in the

software engineering field that would be applicable to the scaled systams
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It is particularly important to identify the point in the system
development cycle at which it is appropriate to employ a scaled system.
-A major constraint to this decision is the availability of sufficient
information on which to base scale factor decisions. A further
limitation is imposed by the need to define requirements to the total
system level before scaling to a whole system reference is possible.

Current software system development. methodologies emphasize a
process in which development is conceived as proceeding through a series
of phases. Each phase is organized to camplete a specific planned
process and produces output in terms of information or design documents
which, in turn, is input to the next phase. Referring to the DoD
lifecycle description, this process begins with the initiation phase and
progresses through the develomment, evaluation and operation phases.
Most attempts to improve the efficiency of the development cycle have
concentrated on improving the processes which camprise same single phase.
Thus structured programming focuses on the programming stage of the
development phase while camposite design applies to the design stage of
the development phase. The scaled system approach, as it is envisioned,
bridges the gap between the definition and design stages of the
development ptase.

To further clarify this conclusion, consider the activities that
make up the definition stage. Robert Tausworthe in Standarc zed

Development of Camputer Software calls this the program definition or

functional specification phase, which he divides into two activities;

that of creating the software requirement ‘Figure 1) and the software
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definition (Figure 2). As Tausworthe explains it, the creation of the
software requirement further consists of two parts, both largely
non-technical, to conceptually lay out the requirement. The first part,
-that of planning information, establishes the requirement for the
software. The second part, the user requirements, establishes the
requirements of the software.

Following  the conceptual activity of software requirement creation
carzs the functional definition of the software. This is a technical
activity which, when camplete, defines both what the software is to do
(not how it is to do it) and the meaning of program correctness.

The requirements and definition activities are an iterative cycle.
Concurrent interaction between requirements, definition and approved
amendments 1s a necessary activity to achieve a final balance betwen
software requirements and feasible system definition before the detailed
design process begins. It is at this stage that the definition criteria
may be applied to the develomnent of scale factors and the preliminary
requirements to scaling established. Attempts to define scale factors
earlier in the process will suffer from insufficient data. Factor
definition at a later point will be constrained by the progress in
detailed design. It should be reiterated that defirition to the total
system level is necessary in order to provide the total system baseline
to which one must scale.

D. TECHNICAL APPROACH

The technical approach to the process of deriving scaled parameters

from various elements of the software definition is addressed in the

remainder of this report. The software elements applicable to the
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scaling of data base, performance, functionality, security,
maintainability, reliability, language and configuration are described
and defined in detail with examples. It should be noted that there are
two components of scaling to be considered. The first is the
ic_ientification of the scaling parameters themselves such as sié,
modularity, etc., and the second camponent is the measured effect on
items such as the throughput and utilization of the total sgystem itself.

1. Data Base Characteristics

A data base is a collection of data records between which
specific relationships exist. These relationships may be used to link
record types and records of the same type. A record is ar aggregate of
data transcribed, or in a form suitable for transcription, between a
canputer and an external medium. Each record comprises data (normally
called fields) that have an underlying relationship to one another. Data
elements in a record may be of similar or dissimilar types; bits,
numbers, character strings, etc. Records of the same type are usually
grouped into larger aggregates called files. In practice, a large file
may contain hundreds or thousands of blocks, each containing one or more
records.

Data base scale parameters derive fram two areas. The first
area concerns the camplexity of the access system and the second concerns
the various size elements involved at each level of the data base
structure.

a. Data Base Camplexity

There are at present three major data base access methods

that must be examined for scaling purposes. They are, in increasing
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order of camplexity:

1) Sequential Access

The term sequential access is used when the access to

records is through a key by which the file is physically sequenced.
Access is therefore serial, i.e., each item must be examined in sequence
ux;xtil a key match is found.

2) Indexed Sequential

The indexed sequential access method (I1SAM) refers to

a setup whereby an index table is established through which record access
is made. In ISAM, one or more items in each record is chosen as the
"key". The index then consists of an ordered sequence of the values of
the ISAM key which occur in the collection of records that campose the
data base. Associated with each value is an address or pointer to the
record. The file is stored in same kind of direct access storage such as
disk or drum so that once an address is retrieved fram the table, the
associated record may be accessed directly. Note that although the record
may be accessed directly, the process of finding the pointer to the
record still involves a sequential (or perhaps binary, if the table is
ordered) search of the index table. The advantage of ISAM is that once
the address is determined, all data may be accessed with equal ease.
1SAM is often used for very long files ocontaining thousands of records.
Table search time is considerably less than the time required to search
through each record.

3) Randam Access

For this access method, no index table is maintained.

Instead, to decide where in storage a record may be accessed, the value




of the key is used as input to same hashing algoritim which is designed
to produce as ocutput a storage address. This address is not necessarily
a physical address in the sense of stipulating exactly which physical
-location in direct access storage will be used, but may be a logical
address within same area.

' In the case where the data base is organized in
hierarchical form, that is in applications where a natural hierarchy of
relationships exist between data items, and any data subset is contained
entirely within its superset, another form of access may be used. The
root, or parent, record may be located by either a hashing method or by
sequential search of a table. Subsequent records “lower” in the
hierarchy may then be accessed through direct access pointers. Direct
access pointers may also be used in the network model in which the data
structure sets serve as the logical links between records of different
types and reflect the data organization rather than an exact
representation of entities. The data structure may be quite camplex in
that one record may be linked with any other and have any nuwber of
superiors or subordinates.

Another form of direct access occurs with the
relational data base. In this model, largely experimental, data are
organized into tables (relations) each of which may be directly accessed
through the table name. Row and column ordering has no significance and
each colum (or damain) may be directly accessed.

Data base camplexity may be scaled by first employing
the simplest access method (sequential) to model a data base and then

developing the scaling relationship involved in increasing the camplexity
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from sequential to indexed sequential to randam access. At another
level, it is also possible to scale complexity by restricting to single
access a system which in full scale would allow multiple access to the

data base.

The scaling step fram a sequential data base to an

indexed sequential is straightforward. Quantitative measurement of
results of this scaling step is of course based on size factors as for
example, the number of records in the data base. An average access time
for a sequential search is directly related to the number of records.
For an indexed sequential access only a portion of the access time (the
table search) may be directly attributable to the number of records.

The next quantitative step, to a randam data base, is
expected to be more difficult to scale, as the measurement parameters of
a randan data base configuration are highly deperdent on data base usage ]
and organization requirements. However, given a constancy in data
structure, measurement is still possible. OConsidering a hashing approach
to address determination, access time difference between the indexed
sequential and random access methods is the difference between the
average table search time and the time necessary to execute the hashing
algorithm (including time to resolve duplicated references).

Another method for scaling complexity is the depth

and ocamplexity of the data structure which describes the relationships

between data items. Any number of possibilities exist with this approach.

A hierarchical data base could be scaled, regardless of access method, by

limiting the number of immediate successors to a node or the branch

points at a given level. Alternatively, the number of levels oould be




r

scaled. As yet another example, for a direct access network, the pointer
chain could be limited to only the forward direction.

b. Data Base Size

Aspects of data base size are relativeiy easy to
scale, requiring merely numerical quantification of appropriate elements.
The various size elenents subject to scaling in a data base are:

1) Number of Files

The number of files may be scaled by applying a
straight percentage to the total nuwber of files. (Unless all files are
of equal length, the total data base size will not necessarily be scaled
by this same percentage.)

2) Length of Files (numbers of records)

The number of records may be reduced and the
scale factor determined fram a ratio of the number of records remaining
(in all files) to the total number of records.

3) Number of Access Keys

Scaling could be applied by limiting access to
data base through a single prime key. The scale factor in this case is
of ocourse, related to the number of secondary keys in the final system.

4) Number of Fields

The number of fields in all records of a given
type may be scaled as a ratio of the number of fields remaining to the
total numnber of fields.

5) Length of Record/Field
The length of a record may be scaled by

considering a ratio of the number of characters in the scaled record
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canpared to the total number of characters. The same scaling could be
applied to each or selected fields.

It is possible of course, to scale access
.caomplexity, data structure camplexity and size elements in cambination,
but measurement of scaling results then becomes increasingly difficult.
For example, how would one campare a sequential access, hierarchical,
single key data base to a multifile relacional data base? As has
already been implied, there is mutual dependence between the scaling
factors of type and those of size. All of these relationships will be
examined at the point in the study where factor quantification is

addressed.

A final point on data bases and scaling.

Scaling of access type and to same degree, data structure complexity, may
be restricted if the system being developed is expected to use an
existing data base management system. Even the most sophisticated and
general purpose system is restricted in the organization of the data base
it can manipulate. Scaling of data base camplexity could at some point,
involve a data base management system customized to the scaled system.
2. Performance

Performance or efficiency cbjectives such as response times and
throughput rates under a variety of workload and configurations are an
important part of most system designs. Efficiency can rarely be
specified as an absolute because it is influenced by such factors as the
hardware oconfiguration, telecammmication line speeds, the efficiency of
all other concurrently executing programs and the number of active

teminal users, to name a few.
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Performance may be interpreted as the technical equivalent of
the economic notion of value. That is, perfomance is what makes a
system valuable to its user. Like value, the concept of performance is a
subjective one. This means that different people tend to use cfiffergnt
performance indices in assessing systems. However, it is often possible
to translate subjective definitions of performance into purely technical
terms, which can sometimes be quantified and therefore objectively
evaluated.

These elements may be considered to be scaling elements and
thus developed and measured for scaléd system use; either to be scaled,
or to measure the effect of scaling.

The most cammon classes of quantitative performance indices for

oaguputer systems are:
a. Productivity

Productivity is generally defined as the volume of
information processed by the system in a unit time. One measure of
productivity is the throughput rate, which during a given interval of
time, is the average rate at which jobs are ocompleted by the system in
that interval.

Throughput may be scaled. 1f, for example, the full scale
system is to process 2000 messages per day, the scaled system might be
required to process only 500. This system would be throughput scaled to
25% of the full-scale system.

Throughput is of course, a result of nearly every aspect
of a system configuration; fram the hardware itself to the functions the

system is required to perform to the typical set of jobs requiring system
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resources. The system configquration fram both a hardware and software

viewpoint will be discussed later. In general terms however, consider
hoew throughput might be scaled:

1) System capacity. As the maximun rate which a system
can perfor- wovk, capacity has a direct result on throughput. The scaled
system might handle only jobs with primary memory requirements of 10k as
opposed to 100k for the full-scale system; or jobs using less than 30
seconds of processor time versus two minuces; or those using only cne
printer and a card reader rather than the several 1/0 devices jobs an
the full-scale system might require.

2?) System job mix. Although the full-scale system might
be required to process same number of job types arriving at randam, the
scaled system job mix might be structured for optimum performance.
Depending on the application, this might mean grouping all jobs of type A
together. Oonversely, in a multiprocessing enviromment, since all jobs
of the same type might compete for the same resources, types A and B
might be alternated in the job stream. As a final example, one ocould
scale by configuring for average expected work load rather than peak

load.

b. Responsiveness

The term responsiveness can be defined as the time between
the presentation of an input to the system and the appearance of the
corresponding output. A measure of responsiveness is the response time,
which is the time elapsed between entering a request and the camputer's
acknowledgement of it. In general, the response time depends on the

request, on the system, and on the work load in the system at the time

B-15




the request is entered. Nevertheless, response time is a valid parameter
to scale. We might require the target systum to support 20 analysts with
5 seconds response. For scaled system development, a response time of 15
-seconds for 5 users might be adequate. In such a case, the system would
be scaled 25% with respect to number of users and 33% with respect to
response time.

A better term would be interactive responsiveness (the
inverse of response time) or the number of responses per unit time. This
keeps a consistency in terminology whereby scaling refers to reducing the
value of a parameter. In terms of this example, by scaling interactive
responsiveness we are accepting 4 responses per user-minute as campared
to 12.

Below a certain threshold on the low end of the scale,
human users can no longer appreciate a reduction in response time (an
increase in interactive responsiveness). At the other extreme, at same
point response times get unacceptably long and the level of user
satisfaction drops to the point where longer response times make no
difference. Since even an a scaled system, user satisfaction may be of
same importance, the degree to which responsiveness is scaled should be
limited by the characteristics of the users.

c. Utilization

The term utilization is generally defined as the ratio
between the time a specified part of the system is used during a given
interval of time. Examples of utilization include hardware module (CPU,
memory, I/0 channel, and I/0 device) utilization, and the utility package

utilization.
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Modules may be linearly scaled as the ratio between
proposed and actual module utilization. The scale factors may be
measured in terms normal for the module, e.g., CPU utilization is
measured in instructions per time, memory utilization is measured as a
percentage of total memory available, 1/0 channels as either a data rate
or channel ratio, etc.

As an example, we might scale utilization by requiring
that the developmental system require utilization of only 58% of
available capacity. It has been generally shown that this scaling of
performance requirements will result in a development cost one-third that
of a system requiring 99% utilization of resources (Barry Boehm,

Practical Strategies for Developing Large Software Systems). In this

case, the system would be utilization-scaled to 55% of that of the target

system.

d. Operating System/Organization

Performance scaling may be accomplished on a more
fundamental (and probably less quantifiable) level by several other
methods. Although the parameters mentioned below represent a mode of
operation rather than a measurable ratio and are not always the cbject of
a design effort, they do affect the total system effort. Hence the
choice of one mode over another is a valid method to scale performance.

1) Processing mode. Several possibilities come to mind
here. Consider a system where batch, interactive and real time
requirements must all be supported. BAdvantages in terms of developmen:
time would certainly accrue to a scaled system which considered merely a

single mode. Similarly, a real time system such as a tracking network

B-17




LT - e o e e —

could be scaled with a batch system which used simulated input data.

2) Operating system. Although the choice of processing
modes is certainly dependent on the operating system (or vice versa), the
Ooperating system presents other ways to scale. Wwhile the ultimate system
might require a custam operating system, scaling could be accamplished by
choosing an off-the-shelf system or by modifying an existing one. Given
that an existing operating system is to be used, one could scale by
leaving unnecessary functions in the executive of the scaled system.

3) Interrupt processing. Closely related to other areas
such as choice of processing mode, number and type of peripherals, system
functions, etc., the mechanisms for interrupt handling may be considered
as a separate parameter. Several different approaches are possible. For
example, certain (or all) interrupts might be ignored until the CPU is
free. Alternately, a priority interrupt scheme oould be scaled with a
simple system of queued interrupts.

There are a number of other performance affectors
such as the ease of use of a system, the structuredness of a program or
of a language, and the power of an instruction set. However, they are
not considered in the scaling process because they are difficult or
impossible to quantify.

3. Functionality
Large programs are often decamposed into a set of interacting
functional oomponents (e.g., modules, procedures, subroutines, etc.).
This principle by which program concepts evolve in a natural, structured
way eamerged fram Dijkstra's work in the "The Multiprogramming System."

He conceived that a program could be organized into hierarchical levels
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of support. The principle, known as levels of abstraction, formed the
basis for what has since became known as structured programming. At each

level of abstraction, it is useful to study the needs of the problem,

that is, to identify all the relevant elements of control and data and

the relationships between them.

System structure refers to the way in which camplex functions
and interrelationships may be characterized in terms of successively
simpler components sometimes called modules. Structure primarily
manifests itself in terms of relationships such as oochesiveness and
ooupling within and among the systems modules, the architecture of the
functions and data flows, and the information structures. Each camponent
forms a natural wnit on which to focus attention when attempting to scale
the system. Independence of the modules determines the modularity of a
system.

Usually, structured software is organized into a master module
which calls subordinate modules, which in turn link to mcdules which are
further subordinate and so on down the hierarchical or functional chain.
In principle then, the abstract description of a given camponent will
embody infonnation about the entire chain of its subordinate components.

Functional scale factors will depend on the degree of
modularity developed in a hierarchical system. The applicability of
mxiular scaling would be dependent upon the type and degree of coupling
between modules and levels of modules. There are three types of coupling
to oconsider:

a. Data coupling - a form of coupling caused by an

intermodule connection that provides output fram one module which serves
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as input to another module.

b. Control coupling - a form of coupling in which there is a
connection between two modules that cammumicates control.

c. Hybrid ocoupling - a strong form of coupling that ooccurs
when ane module modifies the procedural concents of another module.

The significance of coupling with respect to scaling is
determined by the direction and strength of the connection. If the
functional coupling between levels is weak, then the details in the
description of the lower level modules rapidly became insignificant with
respect to the higher levels. In this case a level in the calling
hierarchy may correspond fairly closely to a level of functional
description and scaling by modular elimination of a horizontal m>dule
chain, (function level) is feasible and is represented by the outline B
of Figure 3. This of course corresponds to the elimination of same
number of primitive functions across the entire system. The percentage
of functions retained oould be considered the scale of the system.

In the opposite case, when the functional ooupling between
levels is strong, scaling by eliminating bottom to top serial structures
would be the indicated method. This would be analogous to the
elimination of an entire subsystem and is represented by the outline A in
Figure 3. Since structured design carries a strong preference for
vertical coupling and requires the avoidance of camplicated coupling
schemes, such as hybrid ocoupling, functional scaling appears to be a
practical method for top~down structured designs. Consider the following

examples of functional scaling:
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a. FEliminate performance monitors throughout the system.

b. Eliminate utilities which would provide the user with
transparency of data (format control, ocode translation, interfacing,
etc.).

c. Eliminate all non-standard OS requirements.

d. Eliminate non-critical ancillary functions.

e. Implement select disjoint subsystems rather than the
integrated system.

4. Security

The term security can be defined as the extent to which
unauthorized access to software or data by unauthorized persons can be
controlled. A user should be able to create and manipulate various types
of resources and delegate the access rights to a resource to other users.
A legitimate user of a resource is one who has either created it, or
obtained permission to use it fram another legitimate user. A user
should not be able to disrupt the processing of another user in any
unauthorized way, as for example, causing him denial of service.

The degree of security provided for software and data is
determined by the scope of access control and the ocampleteness of access
audit. Access control consists of those attributes of software that
restrict access tc and manipulation of programs and data. Access
auditing is the procedure whereby an historical record is maintained of
both successful and unsuccessful attempts to access restricted data.

Security may be considered a valid parameter for scaling when
the scaled system will be developmental in nature and when either

adequate physical safeguards may be suvstituted for the full-scale
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software security procedures ar the data to be protected is simulated or

is non-sensitive public test data.

One approach to scaling security is to modify the file
.protection procedures implemented to control access. (Methods for
identifying the legitimate user will be discussed later.) A system may
be considered scaled with respect to security if it encampasses a file
protection methodology less restrictive than the full-scale system. The

following list (by Randall Jensen in Software Engineering) summarizes six

levels of file protection starting with the least sophisticated:
a. No protection - file access and all operations provided any
user.
b. Total protection - no file sharing at all.
c. All or nothing - if access granted, then all operations
permitted.
d. COontrolled sharing - a user is granted access rights which
are the minimum necessary to accamplish the specified task.
e. Specified access ~ access to each object is restricted and
access rights are owner-definable in several different contexts:
1) User-dependent - access rights are iwsed on the
identity of the user requesting access.
2) Context-dependent - access is granted subject to the
enviromment (type of terminal, location, time of day, etc.).
3) Data-dependent - access to a record is ocontrolled
depending on the contents of the record.
f. Post-access control - users may be granted access, subject

to the purpose for which it is to be used after access is accamplished.
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Aside fram the types of operating systemprovided protections described
above, the "size" of the access specification may be scaled. One method
of specifying access is with the access matrix, the dimensions of which
-(which may be altered) are determined in cne direction by the number of
users, processes, or procedures which have access restrictions and in the
other direction by the number of objects for which access is restricted.
Changing either dimension necessarily scales the system with regard to
security.

In addition to the file protection schame provided by all
sophisticated executives, one must also consider the classification of
the data and the clearances needed by the users. Classified information
is camwmonly protected by a trusted subsystem which evaluates (beyond the
0S) the protection afforded and access granted to various classes of
sensitive data and programs. Implementation of this subsystem provides
several new methods for scaling.

a. To access data, both the user and the terminal must have
access rights. To scale, we might grant all terminals access to
everything and provide only physical security for access to the
terminals. Alternatively we could allow all users free rights to any
data.

b. The number of access types (by user, by classification
level, or by campartment) could be reduced.

c. Different data sets (further scaled of any method
described under data bases) oould be provided for each access clearance.

d. The granularity of the data base could be modified for

each level of access. In other words, one user class might be granted




full access to all information while another might be restricted to
% record level. An alternate method would be to restrict access only
beyond a certain file structure level across the entire class of users.
e. Oodewords ard special handling ocould be eliminated.
f. The audit trail that might be required of the full-scale
system could be ignored for the scaled implementation.

g. The authentication approach {to include passwords,
recording of access failures, log-ou procedures, and terminal
authentication) oould be simplified or eliminated.

h. Through the use of simulated data or limited transmission,

a full-scale requirement for encryption of data (by software) could be
‘ susperded.

5. Maintainability

The term maintainability can be defined as the effort required
i to locate and fix an error in an operational program and is a technically
ji valid area for scaling, since the implementation of maintainability
incurs increased software development cost and/or time. The approaches
which might be employed to scale this parameter are closely allied to
those for scaling functionality in that functional requirements of the
system are eliminated or simplified. The difference is that the
functions included to enhance the maintainability of a system would not
normally be the target of a design effort but rather tools to make
subsequent enhancements of the final product a routine process. With
this in mind, one could argue that since the scaled system is merely a
step toward the final product, modules whose purpose is to enhance

maintainability could be excluded fram the scaled effort. Same examples
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statistics.
f.

g.

tracers, ard interactive debuggers. This is an unusual situation in that
additions made to the scaled system would reduce the development effort
by enhancing its effective implementation. The full-scale system would

probably contain built-in diagnostic aids as well, but to a lesser '

degree.

Thus, the design of the scaled system may eliminate documentation,
recovery, and reconfiguration programs at the specific risk that the lack
of these elements may in fact prolong the project rather than enhance it.

This risk may, in same cases, be sufficient to preclude the scaling of
maintenance functions in the scaling process.

6. Reliability

The teum reliability refers to the extent to which a program can be

expected to perform its intended function with consistency and required

precision.

simplicity, accuracy and of course, consistency of the software and data.
The scaling of reliability is a tricky business. While it is

certainly valid to state that the reliability standards in the scaled

Simplify process—error handling.

Eliminate restart/recovery procedures.
Eliminate modules to reject and/or correct bad data.
Eliminate, reduce or modify fault location/trap software.

Exclude software to monitor system performance and gather

Reduce back-up procedures to a minimum.

Include additional software diagnostic aids, program

Reliability is the product of the error tolerance,
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system may be relaxed (and therefore scaled), some of the methods whereby

this could be achieved would be poor practice in any design effort,

scaled or not. Same of these would be inconsistency in calling sequence
-and I/0 conventions, non-standard data declaration and non-_starxiard
design structure. More feasible alternatives would include:

a. Reduction of precision.
! b. Elimination of error detection software geared to errors

which would occur infrequently in practice or mot at all in the input to

the scaled system.

c. Use of fast, easy (and not necessarily accurate)

approximation functions and algoritlms.

d. Relaxation in enforcement of coding standards. This
approach might be considered in the case where the scaled design is a
skeleton of the final system and recoding would be necessary anyway.
When the scaled approach is to implement a camplete subsystem, leaving
the door open for recoding the subsystem is not a good idea. Whether
this approach would indeed, scale reliability is probably a function of
the quality of the programmers. Allowing each programmer to "do his own
thing” would speed up the development effort but might, if the
programers were good, not significantly affect the reliability of the
result. Whether a case can be made for reduced reliability regardless of

programmer quality is a question for further research.

7. Programming Language

Two aspects of programming language suitable for scaling are

language selection and implementation.
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Each individual programming language has its unique strengths
and weaknesses. Implementation of a system in a scaled manner affords
the freedom to select an optimal language for the scaled system even
though that language may differ from the one chosen for t:he target
system. As an example, an assembly or machine-order language selected by
necessity for a real-time message handling system may be replaced by a
structured, higher-order language such as ALGOL or PL/I for the scaled
version of that system. Such a selection might be made based upon
considerations of top-down design, code readability, and modifiability,
thereby contributing to accelerated program development.

With regard to programming language implementation, the
language itself might be scaled. Consider a high-level, user-oriented
interactive query language designed to implement a data base management
system. Scaling might be accamplished by not implementing the query
language at all in the scaled system (the functions would be provided by
an experienced programmer), by implementing a subset of the language, or

by implementing a version with cruder syntax which still supports the

essential query requirements.

In the case of a compiled language implementation, an
adaptation of scaled system methodology is in cammon practice today. -
When a campiler is developed, a compiler supporting a subset language is
generally implemented first. Iterative enhancements of the baseline
lanquage are subsequently achieved through the use of the campiler itself
to generate new campiler code. In this way, increased productivity is
realized through the use of a higher-order language.
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Another possible approach to language scaling would be in the

case where firmware (PROM - programmable read-only memory) is to be
employed in the final design. To speed the development effort, same
-functions to be ultimately supported by firmware might be implemented by
software written in a high-level language.

Closely allied to functionality scaling, would be the choice to
implement the support of a single ocampiler/language (COBOL, FORTRAN,
PL/1, etc.) for a system which must support general purpose camputing or
to implement a single process-oriented language. An example of the
latter might be a case where the functions of message editor and text
editor would be supported by the system-siandard editor for the scaled
system.

8. Hardware Configuration

The choice of individual hardware components and their
configuration is an important aspect of the scaled systems methodology.
Significant savings in schedule, =ffort and cost may be achieved by
reconfiguring the target systems hardware or by selecting an alternate
operational environment for the scaled systems effort. A hardware
configuration is the arrangement and number of physical system camponents
that collectively comprise a system's "hardware", e.g., central
processing units (CPU's), core memory, peripheral memory, input-output
(1/0) devices, communications devices and the wired connections between
them.

A hardware oconfiguration may be scaled at the most elementary
level by reducing either the number of camponent types or the total

number of camponents. Either approach reduces total system camplexity.
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Sane devices however, serve to reduce total system cawplexity by their

presence and do not lend themselves to elimination for purpose of
scaling. Examples would include intelligent terminals and peripheral

-controllers or I1/0 processors.

Consider the following list of feasible hardware modifications
for scaling:

a. Reduce number of CPU's. A system which is ultimately to
be multiprocessing could be scaled as a single processor.

b. The choice of CPU might, in fact, be different fram that
used for the full-scale system. (Conceivably, CPU choice could be an
open question at the time the scaled system is developed.) The CPU used
for the scaled system might be one with which the design team is
familiar, one which is a substitute for a device under development or cne
which is "lesser" in terms of cost, capacity, speed or word size.

c. Number and/or type of peripherals.

d. Front-end/back-end systems could be scaled by preliminary
work with only the front-end processor.

e. Increase the memory capacity of the scaled system. This
could speed up the development effort by eliminating or reducing page
faults and core swapping or reduce the need for overlays.

£. Reduce the complexity of interrupt handling. For example,
use queued interrupts instead of prioritizing them. In the case of
real-time systems, eliminate real-time interrupts by eliminating the
input devices (simulate the data) or by considering them normal polled

input devices.
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Hybrid device types, camplex devices, and in—development devices
tend to increase system complexity and stretch out the development
schedule. These could be avoided or replaced in the scaled effort.
-Problems with such devices can be reduced or eliminated by substituting
existing, simpler, plug-compatible devices for them. Scaled effort,
séhedule, and cost can be reduced by replacing camplex devices with
simpler ones, in~development devices with existing ones, real-time
devices by software simulation, and interrupt devices with
processor-controlled ones. As moted, in same cases, it may be desirable
to add hardware such as memory to reduce the degree of core utilization
required or monitoring hardware to aid system evaluation, validation and
verification.

Noteworthy is the fact that in many cases camponents do not have to '
be physically removed fram a hardware oonfiguration but merely logically

disconnected or bypassed. Finally, considering the operational

environment, it should be noted that multi-site and multi-national

development facilities could be scaled by physically limiting the

development to a single site, thus reducing complex cammnications
requirements altogether.
With regard to commmications between the processor and peripherals,
the canmmications network itself may be scaled.
a. Reduce the number of nodes in the system.
b. Scale satellite communications with hard-wired, local
systems.

c. Reduce the number of levels or complexity of a

comunications network or hierarchy.
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d. Provide an equal level of service to each node rather
than prioritized service.
e. Provide one—way rather than two-way message switching or

.cammunications.

f. Reduce the camplexity of the logical hardware paths

between the sender and receiver.

g. Provide a single communications path rather than include
backup (alternmate) links.

In the case of relatively small, firmware-based embedded systems
such as on-board avionics systems, the facilities of a mainframe to
reduce the need for a high level of machine utilization, to emulate 1/0,
and to support online, interactive program tracing and debugging would ]
serve as an aid to the development of software for such projects. Again,
in this case, "scaled" would not necessarily mean “smaller”.

E. QONCLUSION

In order to derive a scaled system, it is necessary to take the

functional specification of the full size system and apply some set of

scale factors. These factors must be applied toward the purpose of

simplifying the target system by a desired degree. The applications of
the scale factors should be in accordance with a programmed set of
objectives (not necessarily original design objectives) so that the
scaling results in a useful product. The application of the scale
factors to the functional specification should result in a scaled
functional specification which becames the master docunent for the design

phase of the scaled system.
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A summarized list of the possible scaling factors outlined in this

report follows:

1.

Data base

a. Oomplexity and type of access method

b. Cumnplexity of data structure

c. Size elements (number of files, length of files, etc.)

Per formance

a. Productivity/Throughput (system capacity, job mix).
b. Responsiveness
c. Utilization

d. Operation System/Organization (processing mode, custom vs.

existing 0S, interrupts).

etc.)

3.

Functionality

a. Vertical subsystem scaling (eiiminate subsystem, utilities,

b. Horizontal scaling (e.g., performance monitors).
Security

a. File protection method.

b. Dimensions of access matrix.

c. Number of data sets.

d. Classification level of users and/or terminals.
e. Granularity of data access control.

£. Number and types of access classifications.

g. Codewords.

h. Audit trail.




i. Authentication.
j. Encryption.

5. Maintainability

1 a. Process-error handling.
b. Restart/recovery.
c. Data ocorrection.
f d. Fault detection.
e. Monitors.

f. Backup.

i g. Develomment aids.
h. Documentation.
i 6. Reliability
a. Precision.
| b. Data error detection.
i c. Approximation algorithms.
| d. Coding standard enforcement.
i 7. Programming Language
a. HOL vs. assembly

t
!
‘. b. Language subset

|
i
1
|

‘»

l c. Single vs. multiple languages
| d. Replacement of firmware
8. Hardware Configuration

a. Number and camplexity of hardware
b. Nuwber of CPU's

c. Type of CPU
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d. Memory capacity

a e. Interrupts

£. Hardware monitors
' g. Number of cammmications nodes
h. Camplexity of cammmnication nework

i. Level of service to peripherals
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A.  ABSTRACT

Scale factor metrics for each scale parameter are discussed and
defined as an extension of the results of subtask 1.1 of the Scaled Systems
research project. The research performed under subtask 1.2 of that project

is summarized.

Scale factors are measures of the degree to which system parameters
are scaled. Metrics are the unit measures chosen to express these system
parameters. Using appropriate metrics, scale factors are defined in objec-
tive, quantifiable terms and in such a manner as to be indicative of their

effects on cost, schedule, risk, and performwice of scaled vs. full-scale

systems.




B. OBJECTIVE

The objective of this research is to establish the basis through which
current software engineering principles may be applied to the measurement of
system attributes so that appropriate system scale factors may be systexnétical-

iy determined.

Scale factors relate a scaled system to its corresponding full-scale
version based upon the criteria of cost, performance, and development schedule.
Because this relationship is critical to forecasting and planning, it is impor-
tant that it is based upon a sound analytical methodology and that it is

accurately expressed.
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C. DISCUSSION

1. Software Parameters

Through the research of software scale parameters, various aspects of
software systems were identified as being relevant to scaling. 'nmeée aspects
include data base, performance, functionality, security, maintainability, relia-
bility, programming language, and hardware configuration. Each aspect was sub-
sequently broken down into its component parts. The list of software aspects
and their component parts - collectively referred to as "software parameters® -

formed the basis of this phase of the research.

2. Metrics

For each parameter, an attempt was made to identify a corresponding
metric suitable for calculating scale factors. Very few parameters, however,
could be expressed by existing metrics. The science of software metrics
is still an infant discipline and there exist only a few software metrics
generally accepted as such. These would include "Lines of Code" (LOC), “CPU
works per second” (from Capacity Management principles), and "Manmonth"

(or "manhour”, "manday”, "manweek”, "manyear", or some equivalent).

3. Direct Metrics

This deficiency of currently available metrics, however, did not present
a major obstacle to this phase of the research. This is due, in part, to the
fact that many of the software scale parameters themselves imply a corresponding

metric.

Consider, as an example, the case of data base size. Components of data
base size include numbers of files, record types, and data field définitions,

lengths of files, records, and fields. Each of these components describes its
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own metric; the integral number of files is the metric for the "number of files"
camponent, etc. The applicable scale factor is merely the vale for the scaled
system divided by the value for the full-scale system. This computation yields
a percentage ratio - just like a scale ratio - that is conceptually attractive

arnd easy to relate to and communicate.

4. Metric Indices

For software parameters that do not have a corresponding software metric
and do not themselves imply the metric (e.g. complexity of access method, file
protection method), the formulation of an appropriate scale factor is not as
straightforward. 1In such cases a choice must be made between alternative scale

factor formulation methodologies.

5. Interrelated Indices

One convenient alternative methodology involves the assignment of discrete '
metric values to each member in a group of related software attributes. Such
metric values (or indices) could be assigned differently, depending on what
they are related to. One possible method which has been rather extensively
used involves interrelating the attributes with each other on a relative scale.
An application of this scheme could be the factoring of the degree of file
protection under the software aspect of security; "no file protection" would be
placed at one end of the scale while "total {ile protection™ would be placed at
the other end, with the varying degrees of file protection falling in between.
"No file protection” might be assigned a value of one and "total file
protection” a value of three; thus, if no file protection were implemented on a
scaled system emulating a full-scale system with a requirement for total file
protection, the component scale factor would be computed as one divided by

three, or 33%.




6. Global-Related Indices
A variation of this weighting scheme relates the component parameters to
one or more of the principal global software system aspects - cost, schedule,

risk, and performance. Consider these relationships:

Sequential file access methods would scale random access methods by
reducing the inherent programming and data structure complexity resulting from
the use of record dictionaries, links, and pointers. Substitution for
such access methods, however, would also scale search time responsiveness (an
element of performance) by a factor determined by the expected number of
records present. These interrelationships will be studied in Task 2 of this

project.

Another example arises in the enhancement of an operating system to

support a particular application. The enhancements primarily provide ancillary
functions - a basic scaled capability can be implemented without them. To ob-
tain the source code to the operating system, become familiar with it, and modi-
fy it is costly and time-consuming; to retain the vendor to perform the modifi-
cation is similarly expensive. The scale factor derived through the use of the
*off-the-shelf” operating system can therefore be computed based upon the cost
and schedule savings resulting from its use. Such a computation would probably
be easier to formulate, communicate, and understand than attempting to determine
a scale factor based upon the tecnnical differences between the operating system

and its modified version.

A point to keep in mind here is the motivation for scaling systems: ac-

hieving cost-effective system development with quality assurance. -It is with

this perspective that global-related scale factors are constructed.




It must be noted that this report does not purport to provide an authori-

tative definition of system metrics nor even scale factor metrics. Its intent,
rather, is to assemble a preliminary set or metrics to provide a common discus-
sion framework for scale factoring and a basis for subsequent research into the

measurement and development of scaled systems.

Continuing research of software metrics will be beneficial to the scaled
system project as well as the software engineering community through the ability
to better quantify software system attributes. In an expanding discipline, def-
initions and emphasis tend to shift, contributing to the dynamic nature of the
terminology and technical base., Actual metrics and relationships may therefore
be re-sculptured as this project progresses toward the goal of achieving an un-
derstandable and workable methodology for scaled systems development.




D.  TECHNICAL APPROACH

In determining scale factors, software parameters will be examined in

the same order as they were reported in Software Scale Parameters, the

report delivered under subtask 1.1 of this research effort and herein referred

to as "Report 1.1".

For each aspect of software systems identified for scaling, a weight will
be assigned to each full-scale function within the range of that capability. It
will be determined what part of each function is implemented by the scaled
system. The full-scale weights and scaled values are each added up and then

divided to obtain the scale factor.

1. Data Base
a. Complexity and type of access method
There are three major data base access methods that are to be con-
sidered for scaling purposes: sequential accass, indexed sequential, and
direct access. Consider the average access times for a file of records using

sequential and indexed sequential access.
4
Wg = Kg' - %—= Kgn  Where K;', Kg, K1, Kare constants, Wg = average
access time %or sequential access, and Wy = average
Wi = Kylogn access time for indexed sequential access (includes
table search time).

ratio R = 35 - K n

n
— = " Kogn
Wi Ky logn &

For some n=ny,, R=1l. That is, for a data base of n, records, the sequential

access and indexed sequential access methods yield the same search times.




The n,, could be determined by experimentation or exper ience.

i = = K_._nn
For this R= 1], 1 Tog Mo
K= log ng

Ro
R= n log ne

ny ‘

“Define R as the relative complexity.

For random access,

W
h

r

ah + (1-a) K. n, where a = function a (),
number of instructions and s = size of the hashing region
in the hashing algorithm

ah is the hashing time and (1-a) Kpa is the time to locate an empty
space. J

as
as

That is, as the region to which keys are hashed becomes denser, i.e.,
%-b 1, the randam access method approaches the sequential method because the
search for an empty spot will approach a sequential search.

The "cost" of a search can then be defined as

C =Cy .Wg +Cg .Wg, where C; = Cost of an instruction,

Cg = Cost of storage, and Wy and Ws are the number of

instructions and storage for a given method.

The "cost™ calculations can be used as the scale metrics and can, for
a given operating system, use the pricing algorithm of that particular system.
The above formula is just one example of a costing algorithm. Another might be

C =W .W; .
The complexity of a given hierarchically structured data:base will be

a function of the number of nodes, N, and the number of links between the
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nodes, L.

For a hierarchical structure,
N-1s L<2N - 3
For a network structure,

N-1 <L g N(N-1)
2
The complexity metric will be of the form:

Relative complexity = % links per node (record)

In the simplest case, with the only links being between parents and

children, C=X C+1 as N increases
N-1

In the most complex,

C=2N-3=2-3 C—+2 as N increases
N N
In a network structure, the most complex case will be:

C=N(N-1) =N-1 I N

2 2 2
N

L/N can be viewed as an average number of links per node, where the
more links a given node can have, the more complex is the implied structure.
An absolute complexity might be defined as D= depth, the number of levels

on the tree, or N, the number of node:.,

How a hierarchical data base is stored will be related to complexity,
as well. Sequential listing of a tree structure is slow compared with linked

list storage but the lists require extra storage and more complex programming.

The choice of storage organization for a network structure will result
in the same variance. These interrelationships will be studied in a later phase

of the project.
The relational representation of a data base is so simple that the

measure of the complexity of any given relationally structured file would be a
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linear function of the number of tables and rows. It can be thought of as a

tree with each table representing a parent node at level 1 and the number of

links equal to the total number of rows, the rows being on level 2 of the tree.

b. Complexity of data structure
(1) Hierarchical
The parameters that form a basis for scaling are the number
of levels of the tree, the degree (number of successors to a given node),

and the total number of nodes (records).

(2) Network
In the network model, it is also necessary to consider the
linkage factor, where scaling would involve limiting the number of logical

links between the nodes.

c. Size Elements

The elements of data base size lend themselves well to scale factor-
ing. Because each is a quantum entity, the resultant scale factor may be
computed as a fraction in which the value for the scaled system is represented
in the numerator and the value for the full-scale system is found in the
denominator. For example, the scale factor for "number of files" is found by
dividing the number of files for the scaled system by the number of files for
the full-scale version. Scale factors for the size parameters listed in Report

1.1 are as follows:

Parameter Scale Factor

Number of Files (Scaled System)

Number of Files

Number of Files (Full-Scale System)




Length of Files
(bytes)

Length of Records
(bytes)

Number of Data Fields

Length of Data Fields
(bytes)

2. Per formance

Length of File (File - Scaled System)

Length of File (File - Full-Scale System)

Length of Records (File - Scaled System)

Length of Records (File - Full-Scale System)

Number of Fields (Records - Scaled System)

Number of Fields (Records - Full-Scale System)

Length of Field (Record =~ Scaled System)

Length of Field (Record - Full-Scale System)

The elements of performance suitable for scaling were identified in

Report 1.1 as productivity, interactive responsiveness, utilization, and

operating system organization.

a. Productivity

Productivity is a common measure of system performance. It is

composed of two elements; the amount of work that can be physically

accommodated and the rate at which it is ultimately accomplished. The

first element is described by the system's capacity - the principal factor

limiting workload. The second element is described by the systems throughput.

Relating throughput to capacity yields an efficiency or performance index.

Increasing system capacity implies acquiring additional hardware; increasing
throughput, on the other hand, entails obtaining a corresponding increase in the

operating system's efficiency, although this can also be accomplished through

new hardware.
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(1) Capacity
Borrowing from Capacity Management technology, a system's capac-

! ity may be defined as the amount of information it can contain at any certain

period of time. The metric used to measure information is the byte (eight
Boolean bits or the equivalent of one alphanumeric character), and these are
aggregated for each external device type and for the total internal memory to

arrive at the system's "capacity”, the total number of bytes in the system.

(2) System Power
System power can be derived if the rate at which it can

manipulate information (bits or bytes) between the various capacity components
can be determined. The number of bytes, or amount of information, systems can
manipulate internally and between peripherals in a given amount of time is
generally a known quantity, and thus can be used as the metric. By collecting
and correlating this type of information, one can begin to determine the
relative power of different systems by comparing their capacity and ability to
handle data. Cost is directly correlated with power. Scaling systems can thus
be achieved through scaling their power at the cost of not being able to store

and process as much data at a given time or at as fast a rate.

(3) Hardware Capacity
Hardware components provide metrics by which they may be measured
and compared. Memory size is a good example as is the speed of a communications
line. A one megabyte memory module scales four megabytes by 75% (the resultant
scale factor is 25%); a 300 baud modem scales a 3600 baud one by 92% with a

resulting scale factor of 8%.

(4) Software Capacity
Each element of the software can, again, provide its own metric,

e.g. table size can be scaled by reducing the number of bytes. The number
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of bytes metric would also apply to input and output fleid sizes.

Robustness of a system, the ability to handle a broad spectrum of data volumes
in excess of that originally anticipated, can be scaled by implementing a
minimum of error checking. The metric would be number of error conditions

to be checked in the system.

Throughput is a measure of the system s efficiency of using
resources. Throughput is usually a function of the operating system but is not
restricted to such and it is generally expressed as the amount of work processed
in a certain time frame. This can be best visualized by considering a batch-
type environment; the metric would be defined as: Number of user jobs completed/
unit time, the more user jobs completed in a given amount of time the greater
the throughput. Similarly, the more job-steps completed in a given amount of
time the greater the throughput. In addition, input data rates are a measure of
throughput. When throughput is related to capacity, a performance/efficiency
index is obtained. In general, throughput is a function of a large number of
factors including the percentage of time that a system is operable. They are all
intimately related to productivity and, when combined, yield a measure of
performance efficiency. Scaling performance has considerable potential for cost
savings because realizing high efficiency in EDP systems tends to drive costs

exponentially and schedules proportionally higher.

b. Interactive Responsiveness
Interactive responsiveness was defined in the proposal as the inverse
of response time, that is, the number of responses/unit time. This definition
maintains consistency in defining parameters so that their “down" direction
implied scaling and their "up” direction implied unscaling. Responsiveness is
dependent on many factors. In a message switching system, responsiveness is

dependent on such parameters as message control efficiency, communication line
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speeds, and the number of message transceivers present; in an information based
system, it is dependent upon keyed-search efficiency, storage unit access

times, retrieval speeds, frequency of queries, etc.

It should be mentioned that responsiveness is very difficult to predict

on the front-end of the implementation phase. This parameter is usually quanti-
fied through observation. In the past, response times were typically establish-
ed as a system requirement. If the resulting system did not meet the target,
much work was expended to modify the system and bring the response time within
specifications. Research has shown that this is consistently the most costly
way to effect what essentially are design changes -~ on the tail-end of the

development cycle. Scaled system development, on the other hand, provides a

scaled model of the ultimate system which would conspicuously reveal such design

deficiencies and the full-scale system design specification can be cost-effec-

tively adjusted in the front end of the design cycle - where economic leverage '
is the greatest. Suppose it is anticipated that a system's responsiveness will

degrade in direct proportion to the number of terminals connected to it. If a

scaled system with one~tenth as many terminals does not respond in less than the

targeted response time, it should be clear that there exists a deficiency in the

design specification. Although simplified, this is probably a typical analysis

example for responsiveness.
i c. Utilization

The effects of high processor utilization on costs and schedule are
fairly well documented; above approximately 58% utilization, costs begin to

rise exponentially and schedules grow proportionally - 96% utilization will

triple the costs of 58% utilization. Such figures have generally been derived

from studies concerned with core memory and processor time utilization.
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The computation of utilization is fairly straightforward, as the

differences can be attributed to the entity under scrutiny. Utilization can be

measured in terms of the percent capacity used; alternatively, it can be
measured according to the time used as compared to the time available. If
necessary, the utilization of each component of the system can be measured. For
example, CPU utilization would be measured in instructions per time, memory
utilization as proportion of total memory available, etc. As an example of the
calculation, an eighteen megabyte disk/drive containing nine megabytes of
information is described as being 9/18, or 58% utilized. Similarly, if a
Management Information System (MIS) package is on-line for a total of six hours
during an eight hour workday due to user demand, its utilization may be camputed

as 6/8, or 75%.
d. Operating System/System Organization '

Report 1.1 identified subelements of Operating System/System
Organization as processing mode, operating system, and interrupt processing. In
that report, the difficulty in quantifying these aspects was addressed. Scaling
system aspects applicable under this category would undoubtedly be highly

case—-dependent and quantifying the factors largely subjective.

(1) Processing Mode
In a system where batch, interactive, and real-time processing
modes are supported, a scaled system could consider only a single mode of
operation. Also, a real-time system could be scaled with a batch system and
simulated input data. Measuring the resulting decrease in complexity (if
measuring ocould be done at all!) would appear to be not as valid as

investigating resultant changes in other, quantifiable system aspects which

interrelate with the processing mode.
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(2) Operating System
As noted in report 1.1, if the full-scale system requires a

custom operating system, the scaled system could use an off-the-shelf system
or modify an existing one. The resultant cost and schedule changes can be

used as the metric.

3. Functionality

H.D. Mills states that the basic functions (60-80% of the processing)
of a unit of software are usually a small fraction (28-48%) of the total soft-
ware finally built. This assertion is generally accepted and holds deep impli-
cations for Scaled Systems Technology. Since effort is strongly correlated with
produced code, an initial operating capability of a full-scale system (barring
ancillary functions, documentation, installation, maintenance, and user support)
could be achieved with only 20-49% of the total projected effort, This at-
tests to the viability of the scaled systems approach and identifies functional-
ity as a principal system aspect suitable for scaling. Function2lity can be
scaled by reducing the variety of functions supported (eliminating ancillary
or additional support functions), or by reducing functional complexity. The
first method entails vertical functional scaling (eliminating sub-systems); the

second - horizontal functional scaling.

a. Modularity
When speaking in terms of functionality, modularity is probably the
system parameter that is being most directly dealt with. Modularity describes
the number and composition of the various program modules comprising a system.

The complexity metric of a system can be defined in a manner analogous to that

used for defining the complexity of a hierarchical structure.
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Absolute complexity = number of modules

Relative complexity = number of module linkages

number of modules

b. Factoring Vertical Functional Scaling
In the case of vertical scaling, scale factors could be computed based
solely upon the number of furctions eliminated as compared to the total number
of functions called for in the requirements or design specification (3 of 12
functions eliminated reduces functionality by 3/12, or 25%; the scale factor

would subsequently be computed as: (12-3)/12, or 75%).

Preferably, the amount of code necessary to support each function would
be a known quantity. Thus, if the tiiree functions discussed in the previous
example required 40,0800 lines of code (LOC) from a total system size of 108,000
LOC, the resultant scale factor would be 60% ((100,000-40,000¢)/190,000), as op-

posed to 75%.

The absolute complexity could be scaled by reducing the number of
modules. A more accurate metric for measuring the scale factor might be

number of lines of code.

c. Factoring Horizontal Functional Scaling

Deriving a scale factor for horizontal scaling may be more difficult.
In the case of eliminating a common shared functional module, such as a monitor
or security subsystem, the analysis could be analogous to that of vertical
scaling. If, however, horizontal scaling is achieved by reducing module sizes
due to decreased complexity, the analysis may have to be more subjective. As in
the case of operating system/system organization, computation of horizontal
scale factoring will be reserved for a case-by-case analysis and future

research.
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For a message handling system, the receipt/transmission can be scaled

by amitting some of the functions. For example, a full-scale system might have
message receipt, transmission, dissemination, storage, and retrieval capabil-
ities while the scaled system might receive messages from only one input
source, not transmit messages, etc. The scale factors for these functions
would be defined as the percentage of full-scale functionality implemented

by the scaled system.

For message-receiving systems, the number of networks with which the
system interfaces could determine the weight factor in the metric:
Scaling message receipt factor =

number of network interfaces in scaled system
number of network interfaces in full-scale system

The functions of message transmission, e.g. handling new messages and
retransmission, imply a weight assignment in this case of two to the full-
scale system.

{Transmission, dissemination}=

number of {transmission, dissemination} functions in scaled system
number of {transmission, dissemination} functions in full-scale system

The weights of the full-scale system and those of the scaled system
factors can be summed to produce a total functionality scale factor:

Functionality scale factor =Zweigl.ts in scaled system
ZFweights in full-scale system

As more detail about the full-scale system design is acquired, it
will be possible to further refine these metrics, by assigning weights to
the proposed subfunctions that reflect the complexity or resource requirements

for implementation. At this level of detail, typical metrics used previously

include source lines of code estimates, staff estimates, and number of pages




devoted to each function within the functional description.
4. Security

Currently, system security is a topic of prime consideration and vigorous
research. As more information i entrusted to computer systems, concern for se-
curity necessarily increases. This concern has been manifested in such areas as
automatic encryption technology and operating systems through the Kernelized Se-
cure Operating System. To date, many security strategies have been implemented
including the use of multiple processor networks to distribute varying levels of
classified material and to ensure that the determinancy of access privileges can

be maximized.

Barring automatic cyphering/decyphering aardware for communications, much
of computer security is achieved through overhead software. This may be accom-
plished at any one of the many system levels: kernel, executive, (operating)
system, sub-system, and application. Since few operating systems are built with
the goal of providing information processing with multiple security levels, most
security schemes are implemented at the sub-system level or below. Regardless
of system level, security processing primarily involves the validation of re-
source requests against tables cross-referencing valid requestors (users and
programs) and resources. Such tables require maintenance modules to keep them
up to date as well as access and search modules (which must also be secure!).
Depending on the degree of security provided, these tables grow increasingly
complex and their associated processing overhead grows; thus, comparing the mag-
nitudes of such tables provides an adequate means of quantifying security
metrics in addition to the obvious metrics of required design and coding
effort. Additionally, many systems identify the need for access audit modules
which track details concerning requests for resources and the security modules'

resulting actions.
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The security probability (Gilb) is defined as

P (a) = probability of successful attack rejection
This probability will vary depending on the level of protection in effect.
a. File protection

Six levels of file protection have been defined by Randall Jensen in

Software Engineering, as follows, with a scale value attached to each:

Scale Value Levels Of File Protection

1 no protection- File access and all
operations available to any user

2 all or nothing- If access granted,
then all operations permitted

3 controlled sharing- User is granted
access rights which are the minimum necessary i
to accomplish the specified task

is restricted and access rights are owner-
definable; the rights could be based on the
user 's identity, the environment (type of
terminal, time of day, etc.), or the contents
of a record

4 specified access- Access to each object

5 total protection- No file sharing at
all
6 post-access control- Users granted access

subject to the purpose for which it is to
be used after access accomplished

b. Dimensions of access matrix
The dimensions of the matrix are determined by the number of users,
processes, or procedures which have access restrictions and in the other
direction by the number of objects for which access is restricted. These two
factors to be scaled would have metrics as follows:

number of users with access restrictions
total number of users

number of procedures with access restrictions
total number of procedures

=22




C. Number of data sets

Different data sets could be provided for each access clearance.

d. Classification Level of users and/uc terminals
To scale classification level, all terminals/users could be granted
access to everything and provide only physical security for access to the
terminals. The estimated amount of effort necessary to implement a subsystem

(LOC) which would allow other than open access would be used as the metric.

e. Granularity of data access control

Access to different user classes could be modified.
f. Codewords

Codewords could be eliminated, with the metrics as follows:

= No Codewords
1 = Codewords

g. Audit Trail

A similar metric could be defined as follows:

= No audit trail
= Audit trail

)
1
h. Authentication approach
Each function, including the use of passwords, the recording of access
failures, log-on procedures, and terminal authentication, would be assigned a
weight determined by the amount of software (lines of code) needed to implement

it. The scaling resulting from the simplification or elimination of these

capabilities could be measured by the percentage of lines of code eliminated.

i. Encryption
Through the use of simulated data or limited transmission, a
full-scale requirement for software encryption of data could be suspended.

The metric would be:
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® = No encryption
1 = Encryption

As more detail about the proposed system is acquired, the weights of {@,1}
could be adjusted to indicate in some way their complexity or resource require-
ments for implementation. However, for simplicity, the present metrics will

only indicate whether or not the function is implemented.
5. Maintainability

Building-in maintainability is generally done to minimize the time reguired
to locate and fix a bug in the software during the test, integration, and
maintenance phases of its life-cycle. This time will inevitably be directly
proportional to the amount and quality of supporting technical documentation
available. Of course, complementary aspects of maintainability are the
auto-correcting, recovery, or diagnostic facilities supplied with the final
software product. Scaling such aspects of maintainability as amount of
documentation and maintenance aids supplied may seem contrary to sound
developmental practices but it must be remembered that the anticipated
life-cycle of a scaled system is short (just long enough to get an effective

*handle® on the design and functionality of the full-scale system); the scaling

of these aspects can therefore be justified.

The appropriate metrics suitable for factoring maintainability are amount
of documentation produced and functionality of the ancillary maintenance modules
(the auto-correcting, recovery, and diagnostic software -~ See "Functionality").
In addition, the effort required for configuration management may be scaled in
the respect that the configuration management necessary for the scaled effort
need not be as extensive as that of a full-scale system. Again, consideration

of the expected life-cycle duration is paramount.

Maintainability is defined as the probability that, when maintenance
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action is initiated under stated conditions, a failed system will be restored

to operable condition within a specified time t.

Maintainability is a function of the capabilities included in the
system, the skill level of the personnel, and the support facilities
(Iocally available tools and diagnostic test equipment or aids, spare parts/
alternative program versions/back-up files). It is a measure of the cost
and time required to fix software errors in an operational system. Among
the maintenance modules which could be scaled are:
a. Process error handling
The scaling involved in minimizing the number of conditions to be
checked can be measured by the number of lines of code needed to implement the

error checking.

b. Restart/recovery procedures
The restart procedures can be eliminated as much as possible and
a set of values assigned as follows:
no restart procedures

minimal restart procedures
complete restart procedures

NS
o n

c. Data correction
Modules to correct and/or reject bad data can be eliminated with
the scaling being measured by the reduction in the number of lines of code.
d. Fault detection
Fault location/trap software can be eliminated, reduced, or
modified, again using the number of lines of code as the metric.
e. Monitors
Software to monitor system performance and gather statistics can
be eliminated and tre (estimated) number of lines of code needed t0 implement

these functions can be used as the metric.
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f. Backup
Backup procedures can be minimized.
g. Developiment aids
Development aids such as program tracers and interactive
debuggers would actually be added, to reduce the development effort of the full-

scale system.

h. Documentation
Documentation objectives are concerned with the quality and
quantity of user publications. Scaling the amount of documentation may be
risky as pointed out in 1.1, because the lack of documentation, recovery, and

reconfiguration programs may actually hamper rather than enhance the program.

6. Reliability

Reliable software is software that does not fail. The metric commonly
used for reliability is the frequency of failures occurring over a specific per-
iod of time. Obviously "building-in" high reliability is costly and is only

justified in applications demanding infallible software, such as man-rated ap-

plications (i.e. applications where lives are at stake). One software aspect
reflecting upon reliability is robustness. Robustness describes the software's
ability to adequately accommodate erroneous input values; values which, if un-

detected, could cause the software to produce inappropriate output, fail, or

"crash"™. The pitfall of error detection is the ability to anticipate all input
combinations which could cause the software to fail. This requires rigorous
requirements formulation and design; reliability cannot be "tested"™ into soft-
ware. As such, reliability is a worthy area for scaling and again the scaled
system approach presents the opportunity to validate and refine thé typically

heuristic systems formulated for error detection and correction.
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The concept of reliability is contrasted to that of maintainability in
that maintainability is concerned with readily fixing or enhancing the software

whereas the trust of reliability is to prevent failures from occurring in tne

first place. Accordingly, a certain amount of redundancy is built into systemsg
such that automatic diagnosis and recovery can be accomplished by the software
itself without operator attention or interver.cion. Such methodologies are a
principal component of data base management systems where the need for the abil-

ity to detect a degraded data structure and rebuild it are crucial to their re-

liable operation. This redundancy requires additional design, system storage,
programming, and effort; and as such reliability may be scaled with respect to

these aspects.

Reliability can be defined as probability of satisfactory performance for a
given time when used under stated conditions, the metric being defined as the
number of failures/time. A software error is present when the software does not

do what the user reasonably expects it to do. A software failure is an

occurrence of a software error.

a. Precision
The precision metric is defined as the number of decimal places or
bits, whichever is the most convenient unit to use for the particular appli-
cation,
Data error detection

Software geared to errors which would appear infrequently in practice

or not at all in the input to the scaled system can be eliminated.
The metric will be defined as the number of lines of code for error
detection,

c. Approximation Algorithms




Scaling can be accomplished througl. the use of fast, easy (not as
accurate as possible) agproximation functions and algorithms.
| The motivation for scaling approximation algorithms is to minimize

lines of code or complex operations which are prone to error.

The lines of code required to implement algorithms could e the
metric. The logical complexity of a program, a measure of the degree of
decision-making within a system, could also be used. The absolute logical
complexity measure is defined as the number of non-normal exits from a decision

statement (IF,ON,AT END, etc). The relative logical complexity is defined as:

Absolute Logical Complexity
Total number of Instructions

To minimize complexity, maximize the independence of each

component of a system.

d. Coding Standards
Relaxation in enforcement of coding standards would only be done in
cases where recoding would be necessary to implement the full system. 1If,
however, the scaled system will form the basic structure for the full system,

then strict coding standards should be maintained.

7. Programming Language

The important principles in language syntax and semantics are uniformity,
i.e. a language construct that appears in several contexts should have the same
syntax and semantics and simplicity, which implies clarity and integrity of

language concepts.

More often than not, the choice of a programming language is set or, at
i best, limited at any one development installation. Selection of an alternate

language can be prompted by a number of reasvas. These include non-existence

C-28




or limited support of the target machine or language and development complexity

of the target language.

Consider the case of "ADA", the proposed DoD standard programming lan-
guage which, at the time of this writing, has been specified but nat yet fully
implemented. A software development installation could still begin work on a
project targeted for ADA-language implementation through the use of an existing
high-level language, designing and coding it with the anticipation and intention
of future conversion to ADA. While it may be difficult to visualize the "scal-
ing™ in this example, it represents the use of software other than that targeted
so that a preliminary product can be readily assembled and evaluated for any de-
sign or operational deficiencies with the intent of minimizing the overall de-

velopment schedule, risk, and cost.

In contrast to no language, there may be no machine available for the de-
velopment of a software application. This case is not infrequent, as software
projects are often started in anticipation of the delivery of hardware (which is
invariably delivered late), or the production of hardware which is not yet mar-
keted but whose characteristics have been fully specified. 1In these cases, the
software project need not be delayed, as the tools of cross-assemblers, compil-
ers, hardware simulators and emulators can be utilized so that the scaled pro-

duction, evaluation, and design iteration can get underway.

The writing of software, much like any other creative process, is largely
an iterative process involving the refinement of working "drafts” toward the
goal of a product in final form. Some languages facilitate this type of proce s
more readily than others even though they may not be the best choice for the ul-
timate implementation. A perfect example of this is that of the language inter-
preter. Typically (and necessarily) slow and inefficient in terms of execution

speed and run-time hardware requirements, language interpreters are interactive
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and promote and facilitate quick implementation of anything from an application
program to an operating system through built-in type checking, syntax
analyzers, statement editors, and break-pointing.

"Structured” languages are also well suited to subsequent modification and
semantical re-working while languages resembling assembler dialects are more
difficult to read and comprehend and thus harder to use in iterating towards a
software solution. This is one of the underlying aspects of structured, high-
level languages and part of the reason they contribute to shorter development
schedules and increased programmer productivity. An assembly language-based ap-
plication can be scaled with respect to programming language through the choice
of a high-level language to work out the basic logic of the application in a
structured manner. After design validation, the chore of language conversion to
assembler for code optimization is relatively straightforward. This is
analogous to arguments presented in favor of simulation languages, which have
been used quite successfully in many different instances. Such a methodology
would be ideal for the development of software intended for embedded
applications and is, in fact, a common practice in the development of such
software as avionics and hand-held devices such as programmable calcualators and

language translators.

Report 1.1 cited other instances for scaling language selection and im-
plementation. Scaling language implementation is accomplished by successively
enhancing a base-line subset of the language being implemented - an iterative

enhancement technique which is similar to the scaled approach.

Even though scaling programming language is feasible, the factoring of
this aspect is difficult; much research, however, has been devoted to quanti-

fying the relative expressive powers of languages. Perhaps the best known work

C-30




of this type is that of Halstead's Software Science. Through the basic tools
of software science, Halstead was able to develop a methodology for factoring

the expressive power of languages on a scale. Further discussion of Balstead's

work here would be a digression, the point being that programming languages have

been analyzed and assigned ratings as to their relative "power”™. 1In the con-
text of scaled systems, such a rating could be used to imply a measured impact
on development effort of typical applications. Additional data is available

quantifying the expressive power of languages at the machine level, this being
the expansion ratio of machine instructions to high-level language statements.

Halstead, Knuth, and others have made contributions in this area.

8. Hardware Configuration

As in the case of data base, factoring hardware configuration is simpli-
fied by the nature of the entity itself, due to the numerically descriptive
nature of hardware. Hardware is basically described oy its capacity, transfer
rate, quantity, and cost, where the basic scale factor definition would be:

Scale factor (in %) = value (metric) for scaled version
value (metric) for full-scale version

Consider the following list of hardware elements possible for scaling and
their metrics:
a. Number of CPU'S
Scale from multiprocessing to a single processor
Processing scale factor =

number of CPU s in scaled version
nunber of CPU s in full-scale version

b. Number of Peripherals
Peripheral scale factor =

number of peripherals in scaled version
number of peripherals in full-scale version
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C. Instruction set of a CPU
Instruction set scale factor =

number of elements in scaled instruction set
number of elements in full-scale instruction set

It must be noted, however, that some devices serve to reduce system
complexity by their presence. Examples would include intelligent terminals and

peripheral controllers or 1/8 processors.

d. For some factors, simulation could be used to reduce complexity in tne
scaled system. For example, eliminate real-time interrupts by eliminating the
input devices (simulate the data instead).

e. Regarding communications between the processor and peripherals, the
number of communications nodes could be easily factored by the standard

definition.

Communication node scale factor =

number of communication nodes in scaled version
nunber of communications nodes 1n full-scale version

f. Complexity of communications network or hierarchy
The ocomplexity can be scaled by lowering the number of linkages
among nodes.

g. Level of service to peripherals

A scaled system could provide an equal level of service to each node
node rather than prioritizing service. The scaling would be based on the

complexity associated with prioritized service.
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Parameter Metric
1. Data Base
i a. Complexity of access method cost metric
| b. Complexity of data structure
‘ (1) relative links/node
R
for relational, R¥T, R=number of rows,
T=number of tables .
(2) absolute number of levels, number of nodes
5 c. Size elements number of files, length of files

(bytes), length of records, number of
fields, length of data fields,

(bytes)
f 2.,  Performance
a. Productivity/throughput
(1) System capacity total number of bytes in system
. (2) System power nunber of bytes/time
¥ (3) Hardware capacity T of capacities of individual
| ‘ components
' (4) Software capacity number of bytes in tables, etc;
number of error conditions to be
! checked in the system
i b. Interactive responsiveness number of responses/unit time
c. Utilization capacity used/capacity
available, time used/time
! available .
| d. 0.S./Organization
| (1) Processing mode nunber of modes of operation
: (2) Operating system cost and schedule changes
} 3. Functionality
a. Modularity absolute complexity = number of
modules
relative complexity = number of
{ module linkages
j b. Vertical subsystem scaling number of lines of code

c. Horizontal functional scaling LOC, staff estimates, number of pages
‘ of functional description

4, Security
a. File protection leve%s of file protection
{1-6
b. Dimensions of access matrix number of users with access

rescrictions/total number of users
number of procedures with access
restrictions/total number of pro-
cedures

C. Number of data sets
d. Classification level of 1OC for a classification.subsystem

users and/or terminals




Parameters

g. Granularity of data access
control

f. Codewords
g. Audit trail
h. Authentication
i. Encryption

Maintainability

a. Process-error handling
b. Restart/recovery

c. Data correction

d. Fault detection

e. Monitors

f. Backup

g. Development aids
h. Documentation

Reliability
a. Precision

b. Data error detection
c. Approximation algorithms

d. Coding standard enforcement
Programming Language
Hardware Configuration

a. Number and complexity
of hardware

b. Interrupts
c. Complexity of communications

d. Level of service to
peripherals

Metric

Minimize for each level of access

# = no code words

1 = codewords

8 = no audit trail, 1 = audit trail
1.oC

# = no encryption, 1 = encryption

number of conditions to be checked

8 BRE

number of pages

number of decimal places or bits
LOC for error detection

LOC required to implement
algorithms, absolute and
relative logical complexity

power"

number of CPU's, number of
peripherals,

number of elements in instruction
set

number of communications nodes
number of linkages among nodes
network

complexity of prioritized
service
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INTERRELATIONSHIPS AMONG SCALING FACTORS

The scale factors proposed in Report 1.2, System Scale Factor

Hegrics, influence and interrelate with each other in complex ways that
can be quite different for different operating regimes (e.g.,
disk~limited, CPU~limited) of the IDHS being modeled. In order to scale
a system, ways are needed of predicting changes in system characteristics
as the scaled parameters vary, even when the variations are large enough
to place the IDHS into a differeat operating region. For example, if the
small scale system has a factor of four fewer terminals than the
envisioned full-scale system, it 1is necessary for the system designer to
know how system throughput will degrade when the system is scaled up ana
terminals are added.

In wany engineering applications, the amount by which critical

parameters vary is in some sense "small", and it is possible to represent

the relationships as linearized expansions about some nominal operating
point . Unfortunately, the kind of scaling that 1s appropriate 1in the
present application is generally characterized by variations ranging from
a factor of 2 to 10. 1IDHS, when scaled by these magnitudes, will often
be operating in entirely different regimes, and no simple expressions
relating the performance characteristics in different regimes can
generally be constructed.

As an 1llustration, consider the functional relationship of system
throughput to a scaled parameter such as CPU power for an IDHS coperating

in a disk-limited or a CPU-limited operating regime.
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Consider Q, the ratio of the length of time the CPU is occupied to

the length of time the disk is occupied:

Q = CPU instructions * seconds
disk access CPU instruction

seconds CPU occupied
seconds seconds disk occupied

d1sk access

Where CPU instructions is the CPU power.
second

When Q is less than one, the system is disk-limited. Figure 1
demonstrates how such a disk-limited system might look with two jobs
running, with control of the CPU and disk alternating over time. The
jobs generally finish using the CPU quickly and must wait for the slower
disk.

When the system is disk-limited it tends to be rather insensitive to
CPU speed, but throughput varies greatly with changes in disk access time
and with those software changes, e.g., in data base organization, that
vary the CPU instructions executed per disk access. That 1is, the
behavior of a disk-limited system (most jobs are in the disk queue) is

sensit ive to:

o Disk hardware characteristics (e.g., speed, size)

o Data base organization affecting disk accesses
per search

o Security features that require disk accesses

o Available main memory where this 1nfluences

paging and/or swapping rates
The behavior is insensitive to:

o CPU power

] Software changes that affect the number of
comput at ional instructions
o Data base organization that doesn't affect

disk accesses (e.g., file size in a random
access configuration)
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TIME JOB 1 STATUS JOB 2 STATUS
Job 1 gets CPU Job 2 in CPU queue
Job 1 gets disk Job 2 gets CPU
Job 1 continues using disk Job 2 in disk queue
Job 1 gets CPU Job 2 gets disk
ﬁ Job 1 1in disk queue Job 2 continues using disk
Figure 1. Job Behavior in a Disk-limited System
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On the other hand, 1if the quantity Q is larger than one, as
illustrated in Figure 2, most jobs end up waiting for CPU services and
the system is more sensitive to changes in CPU power and those parameters
that affect the num*er of instructions.

The behavior of a CPU-limited system (most jobs are in the CPU
queue) 1S sensitive to:

o Changes in CPU power
o Software changes that affect the number of
comput at ional instructions.
The behavior is insensitive to:
o Speed, size of disk hardware
[ Overhead features such as security,
that require extra disk accesses to
perform specific functions
o Data base organization affecting disk accesses/search
o Available main memory

The behavior described in these examples of CPU-limited and
disk-limited systems 1is summarized in Figure 3, which 1illustrates the
throughput and CPU speed functional relationship. It shows, for example,
that doubling CPU power does not necessarily double throughput.

The relationsh ps between parameters are complex and non-linear. 1t
is not possible t- write down analytic expressions that will hold under
all conditions.

In order to provide the system designer with the tools that will
enable him to predict performance under the wide range of scaling
conditions that are encountered in practical situations, a concept has
bean evolved that uses a simulation model of a generalized intelligence

data handling system to predict performance and to predict changes in oue

variable from changes 1in another. In effect then, the simulation
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TIME JOB 1 STATUS

Job 1 gets CPU

Job 1 cont inues using CPU
Job 1 gets disk

Job 1 in CPU queue

Job 1 gets CPU

Y Job 1 continues using CPU

Job

Job

Job

Job

Job

Job

JOB 2 STATUS

2 in CPU queue

2 in CPU queue

2 gets CPy

2 continues using CPU
2 gets disk

2 in CPU queue

Figure 2. Job Behavior in a CPU-limited System




CPU - Timited

regime Disk - limited

region

—_— ——— —

Throughput

- —_

CPU speed

Figure 3. - Throughput - CPU speed functional relationship
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subst itutes for the nonexistence of precise analytic functional
relat ionships between various scaled paramecers.

It has been found that a fairly small number of parame’ers is
adequate to specify each particular IDHS to the simulation. Each of the
input parameters, in turn, can be expressed as a fairly simple analytic
function of the scaling parameter factors. A series of formulae are used
in steps to relate the simulator variables to scale factors. A diagram
of the technique is shown in Figure 4. An example of a simulator input
variable 1is CPU service time, i.e., time in CPU per CPU block, where a
block is a set of instructions until a disk access is encountered. The
following formulae are one set that can be used to relate CPU service
t ime to system scale factors.

CPU service time = instructions executed per block
power (1nstructions per time)

Total instructions executed = number of computational instructions
+ number of disk accesses *

security instructions other
+ overhead
access instruct ious

Number of disk accesses = number of data base accesses +
number of paging accesses

Number of paging accesses = Kl* number of instructions executed¥
virtual core per job
real core per job

Real core/job =

hardware core - operating system core - security core-maintenance core
number of terminals

The above step-by~step procedure to relate simulator variables to
scaling parameters, such as number of terminals and security and
maintenance core (as functions of the levels of protection and

maintainability required), is illustrated in Figure 5 for CPU and disk
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Intermediate
Factors

Master Variables

Basic Scalec
Variables

Simcle Formuizae

Simulation Variables

Figqure 4. Relating Scale Factors tQ Sirmlation Variarles
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service time.

Other parameters of which throughput is a function include disk
ser;w_lice time, job rate (number of jobs input per time), number CPU
requests per job, system power, and system capacity.

Several of the elements in these formulae, e.g., paging accesses,
can be measured by the system, and the constants such as Kl can be
derived through system measurements.

Unknown parameters, e.g., the number of computational instructions
for a typical job, must be evaluated in order to complete the formulae.
A way to approach the problem of evaluation might be to start with
“reasonable' est imates for these parameters. When the small scale system
is operational, they can be measured by monitoring system behavior,
Indeed, the purpose of building the small scale system is to measure the
parameters which will be used in the full-scale system so that
flexibility in the design of the full-scale system can be retained. The
small scale system together with the simulation will enable the designer
to see what will work in the full-scale system.

The simulation will be used by the system designer in an iterative
manner in the course of specifying the full-scale system. The scaling
factors will be specified and used as input to the simulation, the output
will be examined, and scaling will be respecified until the desired
outputs, i.e., full-scale system behavior are achieved. A typical
quest ion would be: How much can the datu. base size be scaled up with
present disk hardware without going below the minimum required
responsiveness (responses per unit time)? Will it be necessary to have

wore and/or faster disks in order to achieve the desired full-scale
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system responsiveness and incorporate the necessary data base size? 1f
access time is improved by so much, how much can the data base then be

scaled up? The system designer will look at the results of the

ot <wiiidomitig

simulation based on a set of values for the scaling parameters and
iteratively adjust these values. Such respecifications of scaling may
i well result in design changes for the full-scale system, e.g. by going to
more and/or more powerful hardware. Thus the tools to be used will be
the simulator and the set of input variables.

The remaining research on this task will involve further definition

of the method's details and insuring that the simulation has sufficient
realism for the case of IDHS. 1In addition, it must be verified that the
functional relationships between the scale factor parameters, as measured )
by the defined metrics, and the simulation input variables are valid

relations. If necessary, metrics will be redefined.

———e
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Simulator Variable - Scale Factor Equations

The report Interrelationships Among Scaling Factors described a

procedure to relate simulator variables to scaling parameters. The
definition and equations have been refined and will be described.
Consider the simulation parameter CMEAN, mean CPU service time.

It can be defined as follows:

instructions executed/block
instructions/time (power)

CMEAN =

Consider also the following definitions:

ND = number of disk accesses

= NDB (number of data base disk accesses) +

Nop (number of paging disk accesses)
I = number of instructions

= IC (number of computational instructions) +

IDB (number of data base instructions) +

IP (number of paging instructions)

Define the frequency of data base disk accesses per computational

instruction,
N
FDB IDB
c .
Then N, _ = I [NDB] = I F
DB C'— C'DB
I
c
C
= * * - -
Also, NDP XP IC E! s Whe KP is a system~dependent constant
R

cdlculated as the number of p: .ig acce:ses/computational instruction, Cv
is the virtual core for a particular job (the job size), and CR is the real

core for the job (the actual core available for the job).

Then




C
Np = IC[FDB + Kp %]

e 1
Ny Fppp&y
Cr

I

e is the number of instructions per block so,
D

Cyq~1
CMEAN = [Fpp + Kp C_V]
R

instructions/time

To find & value for Fpg, estimates and typical numbers will be sought.
The value will depend on the functiuva being performed and the probability
of having to make a disk access. There are several factors that affect
the probability that a pilece of information 1s in core vs. on disk, such as
the amount of the data base that is stored in core at any time, the organi-
zation of data on the disk (the data base struciure), and the data manipula-
tion algorithms. Also, since FDB was defined as EEE. it may be possible
to calculate Npg for a given function and data baﬁe organization, while

Ic would also be a function of scale factors, such as the function being

performed and the data base size and data base complexity. Thus Fpp could

be derived in this way.

To find Cy, for each job of type j, assume input values for simulation
parameters mean Cy(j), Cy(j). As the job begins, pick the actual Cy
according to a probability distribution functior.

For CR, the real available core for the job, the following system-
dependent values can be input:

Cr = total core for the machine

COS = operating system core

E-4




Then
G _ Cos - Cr - Cos

Nomber of jobs running Number of terminals

Cr

Now consider the simulation parameter, DMEAN, the disk service time.

DMEAN = geek time + disk read speed*average amount read.

The seek time is a function of hardware, a scale factor, and usually
dominates DMEAN. Whether the other element, disk read speed*average amount
read, 1is negligible or not depends on how the system is handled.

Another simulation parameter IMEAN, is defined as follows:

IMEAN = CPU/disk iteration count

= number of disk accesses
= Ny = Npg + Npp.

Then

IMEAN = I.(Fpg + Kp g%].

1t FDB is difficult to calculate, the following equation can be

used instead:

C
IMEAN = Npg + Ic*Kp E! .
R

In the equations that have been discussed, the simulator parameters
have been defined as functions of many of the scale factors, including
power (instructions/time), number of terminals, real core (system capacity), H
number of Instructions (related to data base complexity & structure), hard-
ware, functionality, and security core (involved in the calculation of Cg,
the real available core for a job). The use of the simulator with experi-~ {

mental values will then permit analysis of scale factor interrelationships.
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Simulator Description

The operating system performance simulator operates as follows: a
job enters the system at random intervals from one of n terminals.. The

job 1s assigned a job class (disk or CPU bound) and a CPU/disk iteration

count based on a probability distribution.

The lob 1s placed on the CPU or disk queue if the required facility
is busy; when it gains control of the CPU, it is assigned a CPU service
time based on a probability distribution function; similarly, a disk service
time is assigned when it gains control of the disk. When the job has been

completely serviced, the terminal that submitted the job waits a period

of time based on a user-submitted probability function until a new job is
submitted from that terminal.

Another method of describing the simulation is by enumeration of its
elements, i.e., its objects, terminals, jobs, CPU, and disk, as shown in
Figure 1, and its events as shown in Figure 2.

Events can be job creation, job start, CPU event, or disk event. The

description of each is shown in Figure 2.




' Objects:

n terminals

‘ Jobs
CPU
Disk
Characteristics of objects:
Terminal:

wait time

i number of terminals
active job
CPU:
queue
active job
service time slice
Disk:
! queue

active job

service time slice

Job:

status - CPU queue, CPU active, Disk queue,
Disk active, completed |

Class

CPU/Disk iteration count

Figure 1. Simulation Characterization of Objects




Job creation event

1. creates a job object
2. assigns a job class & iteration count randomly
i- 3. schedules next job creation event based on user creation rate

Job start event

1. activates job by placing it in CPU queue

2. schedules CPU event if CPU queue is empty
CPU event
1. If job has CPU, determine if it is finished. 1If finighed:
a. delete job object
b. remove job from terminal
c. schedule a job start event
If not finished:
a. add job to disk queue
b. 1if disk free, schedule disk event
2. Assign next job in CPU queue (if any) to CPU.
3. Determine time slice for this CPU slice.
4. Schedule CPU event for this time.
Disk event
1. If job has disk: (
a. add job to CPU queue ‘
b. 1f CPU free, schedule CPU event
2., Assign next job in disk queue to disk.
3. Determine disk time slice for this disk access.

4, Schedule disk event.

Figure 2. Description of Simulator Events
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The operating system performance simulator has been exercised with
various sets of test data for two purposes. First, to examine how scale
factors interrelate in a given environment, and second, to damonstrate
how the simulator would be used in an actual implementation situation.

As was pointed out in the report entitled "Interrelationships Amang
Scaling Factors", the relationships between system parameters, i.e.,
scale factors, are camplex and rnon-linear. It is not possible to derive
analytic expressions that will hold under all conditions. The simulation
model of a generalized intelligence data handling system can be used to
predict performance and to predict changes in one variable fram changes
in another. The simulation thus substitutes for the nonexistence of
precise analytic functional relationships between various scaled
parameters.

The test data set was designed to enable system performance to be
evaluated for different combinations of parameter values that permit
camparative analysis of system scale factor interrelationships. Same of
the issues addressed include how the number of terminals, the mix (the
combination of CPU-bound and disk-bound jobs) and average CPU service
time, affect disk waiting time, CPU and disk utilization, response time,
and other measures of system performance.

The simulator selects CPU and disk service times and terminal wait
times using Poisson distributions. This distribution models arrivals in
a very satisfactory fashion.

The value of examining different values for a parameter such as CPU
service time is that it is a way of simulating added overhead that

features such as security operations may require. Extra disk accesses
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may also be required to perform specific security functions, so
individual implementations of security systems will affect system
performance in varying ways, as a function of these application-dependent
system parameters (CPU time and disk accesses).

The test runs indicate that the number of terminals appears to be a
prime factor in system performance, while adding CPU overhead, such as
security features, does rnot change response time significantly. As shown
in Figure 1, plotting the number of terminals against the average disk
wait demonstrates that the job mix and number of CPU/disk iterations play
very little role in the'resultant average disk wait; regardless of
vwhether the system is CPU- or disk-bound, the average disk wait increases
almost proportionately with the number of t,gnm'.nals, e.g., the disk wait
with 16 terminals is approximately twice the disk wait with 8 terminals.

As shown in Table 1, in a syst m of 8 terminals, with 58% of the
jobs CPU-bound, the average disk wait is 235 time units. When 67% of the
jobs are CPU-bound, the average disk wait is 217 time units. Even vwhen
the system is made more heavily CPU-bound, with 67% of the jcbs in this
category, and an average CPU time slice approximately half of the disk
time slice, the average disk wait for 8 terminals is 207, campared with
236 for a 67% CPU-bound system with CPU time slices only 3.5% of the disk
time slice. No dramatic changes in disk wait time have taken place from
changing the job mix values. Similarly, doubling the average number of
CPU/disk iterations does not have much impact on the average disk wait,
as demonstrated in Table 2. However, the response time doubles as the
nurber of CPU/disk iterations doubles, a consideration for those overhead

operations requiring disk accesses.
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No. of| Average Average
Ter- [Disk Wait CPU Wait
minals

235 1.96

305 1.76 :]

477 2.22 ]

621 1.92 ;]

50% Job Mix
Table 1:

No. of| Average Average
Ter- Disk Wait CPU Wait
minals

8 217 1.65

10 279 1.71 4*1

16 458 2.17

20 618 1.85

67% Job Mix

Average Disk & CPU Waits




Double CPU/Disk Iterations

No. of} Average Average No. of | Average Average
Ter- Disk Wait Response Ter- Disk Wait Response
minals Time minals Time
o |
8 240 2323 8 223 1910
10 308 2763 10 297 2301
16 477 4009 16 447 3396
20 609 4930 20 623 4218
SOZ Job Mix 67% Job Mix
Base CPU/Disk
Interations
No. of | Average Average No. of| Average Average
Ter- Disk Wait Response Ter- Disk Wait Response
ninals Time minals Time
8 226 1128 8 223 1194
l 10 303 1457 10 250 1064
| 16 477 2040 16 468 1812
l20 632 2788 [20 2l YKy
502 Job Mix 672 Job Mix

Table 2: Average Digk Waits & Response Times
for Base & Doubled CPU/Disk
Interations

G-7

4




Disk utilization is consistently over 99% regardless of the
variations in the values for the parameters. This result is to be
expected due to the fact that most camputer systems will be limited by
» ‘the nature of the disk hardware, i.e., its speed.

CPRU utilization remains at about 2% to 3% when the average CPU time
slice is approximately 3.5% of the average disk time slice and increases
to 15-25% when the CPU time slice is increased to approximately half that
of the disk time slice. Thus, it is difficult to came anywhere near
loading the CPU.

- Figure 2 shows how the response time reacts to changes in the job
mix. As might be expected, response time is lowest when the largest
percentage of jobs is CPU~bound, i.e., the 67% curve. The rate of change
) in response time as the number of terminals increases can be seen to be
fairly consistent. The three upper curves plot the response time
resulting when the numbe;: of CPU/disk iterations is doubled.

It is valuable, too, to examine what happens when the terminal wait

i time or "think time" is approximately doubled. This factor relates to

job rate (the number of jobs input per time). Table 3 sumarizes the
! results of test runs which indicate that there is very little change in
the response time when the wait time is doubled; sametimes, it increases
a bit, sometimes it decreases, and sametimes it does not change. Thus,
it would appear that terminal wait time can be changed within reasonable
limits without significantly affecting response time.
It must be kept in mind that the parameter values used in the

simulator for these experiments are just one attempt at approximating a

real system and an example of how the simulator would be used under real
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—
No. of Response Time for Response Time for
Terminals 1 Vait Time Double Wait Time
8 911 856
1691 1934
10 1025 1067
2485 2112
16 ' 1728 1966
3559 3249
20 2327 2241
4784 4733
e 1
Comparison of Response Times When Wait Time
Doubles
Table 3
G-10
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circumstances. That is, conclusions have been reached based on tests
involving, for example, 20 vs. 1@ terminals. These conclusions might not
hold when one is considering scaling 120 terminals to 50 terminals.
Recent expansion of the simulator’'s capabilities has made possible
experiments with a larger number of terminals up to a maximm of 10¢C,
permitting the examination of interrelationships in that operating
region. The results of these tests will be described in a later report.

The value of the present results, however, is in pinpointing those

scale factor interrelationships that should receive attention when

scaling is required.
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