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PREFACE

The purposes of this study could not well be explained

without reference to its historical context. The name hardware

description language (HDL) itself has undergone changes in

connotation which might well perplex readers of this document,

even those who contributed to the early development of HDLs.

As a matter of fact, in the context of the VHSIC (Very High Speed

Integrated Circuit) program, the scope and purpose of the

hardware description language has been enlarged to such an

extent that the HDL (in its original meaning) can be properly

seen as only one thread in the history of the technology

encompassed by the (as yet unimplemented) language

contemplated by this study. It is for this reason that we

introduce the acronym VHDL (for VHSIC HDL).

This new language (VHDL) also draws its concepts from:

(1) modern higher-order programming languages,

Ada in particular (which is structured,

modular, provides for user-defined data

objects, etc.)

(2) the discipline and procedures of very-large-

scale integrated circuit (VLSI) design (again,

structured and modular)

(3) languages for system performance specifications,

testing, and simulation

(4) the techniques of axiomatic system description

and design verification and validation.

This effort falls squarely wiLhin the tradition of

rationalized techniques for managing complex human endeavors,

perhaps the most significant outcome of the computer revolution,
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which was virtually unforeseen by its pioneers In this

case, these techniques are being brought to bear upon one of

the more intricate processes ever undertaken--the design of

microelectronic circuits consisting of hundreds of thousands

of active elements.

But the HDL, even for its original narrower purpose, would

require considerable restructuring at this time because of

another outgrowth of integrated circuit technology, namely

hardware functionality (the use of dedicated blocks of circuitry

for special complex purposes, the hardware macro). This

development contains the seeds of an eventual reconciliation

between the hardware and software thinker and an end to the

tedium of microcode.

The evolution of HDL reflects a slow and painful adaption

to the necessity for expressing intent rigorously, in modular

form, and, above all, hierarchically. Perhaps the original

purpose of hierarchical description was to "divide and conquer"

by describing designs in a sufficiently compact, abstract way as

to be comprehensible--in their entirety; then, at successively

lower levels of abstraction, to introduce detail (algorithmic

on the behavioral side, implementational on the structural);

terminating finally in details of the most primitive elements.

At each successive level conformity to the higher level can be

verified and validated; ultimately through detailed simulation

from the primitive level upward. VHDL encompasses hierarchical

hardware description (behavioral and functional) from the VHSIC

brassboard level to the hardware primitive.

As it turns out, the hierarchical language provides another

equally important capability--namely adaptability to progress

in technology. The ongoing revolution in integrated circuit

technology has, of necessity, created a community with a high

level of tolerance to "future shock"--a community which seems

to stand with one foot in this century and one in the next.

Part of this expertise addresses the cost of progress, e.g.,
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rapid product obsolescence, hence high research and development

budgets relative to sales and product expansion limited by

human resources in the form of design teams. Nowhere is the

cost of progress more extreme than in military systems.

Hierarchical HDL helps mitigate this high cost of progress

by permitting insertion of new technology (algorithmic or

structural) without disturbing the description above the

level of the insertion. In other words, the hierarchical

language is structured to adapt to evolution.

It was Irving Reed who (in 1952) introduced the term

Register Transfer Language (RTL) in connection with computer

design. This concept fell somewhere between a structural and

behavioral description of computer design. Seymour Cray also

developed some ideas on computer descriptions in the 1950s

based upon Boolean equations. The direct lineal descendants of

these languages are Computer Hardware Description Languages

(CHDLs) (e.g., AHPL, ISPS, CDL, DDL), pursued principally in

universities. These CHDLs primarily addressed the machine

(rather than chip) level of design.

With the advent of VLSI in the 1970s, computer-aided design

(CAD) became a necessity instead of a laboratory curiosity and,

in industry, design languages sprang up to assist the designer

at each level of design in communicating with the various CAD

tools. The Departn-nt of Defense (DoD) perceived the need

to make this kind of communication available as a standard way

for various contractors to share design data and design efforts.

However, contractors were (and are) reluctant to share freely

design tools that were developed at considerable company

expense. Proprietary design tools were an impediment to DoD

accomplishment of its own goals. The design languages of each

of these companies were and are closely tied to their data bases

and design tools.

In order to circumvent these problems, the suggestion was

made that a broad-based standard HDL be created which would
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allow transfer of design descriptions and design data independent

of any given design data base or design tool, yet be machine-

readable--a data-transfer language and a standard machine-

readable documentation language.

As a first step in the development of such an HDL,

the Institute for Defense Analyses (IDA) organized a meeting in

June 1980 to bring together the nine VHSIC contractors, some

university researchers in CHDLs, and DoD representatives. The

recommendations that sprang from this meeting led to the creation

of a tri-Service/industry committee to develop the standard

DoD HDL. One committee meeting was held (October 1980) to plan

meaningful development activities for HDL goals. These plans

were not fulfilled; first, because of contention for the time of

the committee members at their home bases (VHSIC proposal

efforts), and, second, by the length of the procurement process

itself.

In the spring of 1981 IDA organized this study.

vi



f

ACKNOWLEDGMENTS

The author of this document is, quite literally, a group--

an ad hoc assembly which, for two weeks, functioned at a level

of dedication, enthusiasm, and selflessness that could not

easily be imagined if not seen. It in no way qualifies that

acknowledgment to single out Ron Waxman and Dan Nash for their

untiring leadership, and Anthea DeVaughan for her superb staff

support.

vii..I I



EXECUTIVE SUMMARY

The Institute for Defense Analyses was requested by

OUSDR&E, in the fall of 1980, to undertake a study, the objec-

tive of which was "to contribute to the development of a

standard hardware description language (HDL) for the Very High

Speed Integrated Circuit (VHSIC) program." In partial fulfill-

ment of this objective, a summer study was organized at the

National Academy of Sciences Study Center, Woods Hole, Massa-

chusetts, from June 1 through June 12, 1981, to develop speci-

fications for a new hardware description language for VHSIC.

T -ty-four specialists from fifteen corporations (engaged in

the development and manufacture of computers, integrated cir-

cuits, military systems, aerospace systems, etc.), five univer-

sities, four Federal Contract Research Centers, and one non-

profit research institute participated. This approach brought

to bear upon the problems (of developing such a language) the

talents of a considerable representation of the world's foremost

experts in this field, and also advanced the establishment of

a consensus which would be essential if the proposed standards

were to be accepted.

The report of the group's accomplishment was subsequently

refined through individual efforts (notably members of the

WHDL Committee--Appendix E) and at a final meeting of the

committee (attended by over half the participants in the Summer

Study) at IDA on Tuesday, September 22, 1981, to review the

final draft.

The new language (designated VHDL for VHSIC HDL) addresses

a group of critical issues relating to military applications

ix
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of VHSIC technology. In a narrow sense, the purposes of VHDL

relate to:

e reducing the cost and schedule for integrated

circuit design

* the documentation of integrated circuit designs

for systems designers and other users

e the transfer of design data for purposes of

subcontracting, second sourcing, etc.

e technology upgrading (semiconductor or algorithmic).

The more general purposes of VHDL relate to:

" specification of military systems design and

performance

* insertion of VHSIC chips into military equipment

" maintaining operational readiness through a

reduction in out-year logistics failure

" future upgrades in system performance through

new technoloqy insertion.

The Summer Study developed a list of recommended specifica-

tions pertaining to the hierarchical nature and the behavioral

and structural features of VHDL. In addition, an existing HDL

(the Texas Instruments HDL) was examined and a detailed set of

modifications and extensions were recommended which would meet

most of the VHDL specifications. This (possibly interim)

language was designated WHDL. Finally, a determination was

made of those features of Ada which would be applicable to an

entirely new language based on the VHDL specifications and of

additional features and constructs outside of Ada which would

have to be introduced.

The main body of the report details the VHDL specifications.

Appendix A describes, in some detail, an alternative language,

WHDL, which is derived from the Texas Instruments HDL and

incorporates most of the features of VHDL (the addendum on

behavioral concurrency is noteworthy). Appendix B discusses

the applicability of Ada concepts to VHDL.
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All participants were invited to write their personal

comments on the work of the Summer Study. These are contained

in Appendix C in their entirety and comprise an important body

of commentary.
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ABSTRACT

The Institute for Defense Analyses' Summer Study on

Hardware Description Language met from June 1 through June 12,

1981, for the purpose of determining the goals and require-

ments for a VHSIC-level hardware description language (VHDL).

Three major results were accomplished. First, the

behavioral, structural, hierarchical, and other requirements

that such a language would need to fulfill to meet DoD VHSIC

were detailed. Second, the existing Texas Instruments HDL was

examined and a group of changes and additions were recommended

(resulting in "WHDL") which meets many of the requirements of

VHDL. Third, determination was made of those features of Ada

which would be needed for VHDL and additional constructs

(outside of Ada) which would be required.
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1.0 INTRODUCTION

This report documents the work of the Institute for Defense

Analyses' Summer Study on Hardware Description Language (HDL)

held June 1-12, 1981, at the National Academy of Sciences' Study

Center, Woods Hole, Massachusetts. The study was organized by

IDA under OUSDRE sponsorship in cooperation with the Vecy High

Speed Integrated Circuit (VHSIC) Tri-Service HDL Committee,

which will formally review its recommendations. There were

thirty-four participants representing fifteen companies (IC

manufacturers, systems suppliers, computer manufacturers), four

Federal Contract Research Centers, one non-profit organization,

five universities, and the Air Force (see Appendix E).

The purpose of the study was to establish consensus

specifications for a DoD standard HDL, particularly for use in

the ongoinq VHSIC program. Because the required language is to

provide capabilities that go far beyond earlier HDLs, the

acronym VHDL (for VHSIC HDL) is introduced. In preparation for

this task, the group reviewed the Sperry-Univac "VHSIC 14DL:

Requirements Report" and the Texas Instruments' HDL (which

was graciously contributed by that corporation as a STRAWMAN

HDL) and heard 13 technical presentations, many of which dealt

with new and innovative work (Appendix D).

The main body of this report documents the recommendations

of the entire group for facilities and features of VHDL.

A subcommittee prepared a subset of VHDL (WHDL), described

in Appendix A, which incorporates many VHDL features into the

STRAWMAN. A second subcommittee evaluated the use of Ada,

listing unneeded features within Ada and necessary extensions

for the VHDL (Appendix B).
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1.1 PURPOSES OF VHDL

This section defines the purposes for which the VHDL will

be used. It is intended that the design of the language be

oriented to fulfill the end purposes illustrated in Table 1-1.

The VHDL would provide the means to efficiently describe

VHSIC integrated circuits and the digital logic portions of

the system in which the chips are interconnected, at least to

the VHSIC "brassboard" level. The VHSIC chips consist of

about 30,000-100,000 equivalent gates. The systems in which

they will be included may be networks of up to several million

equivalent gates.

In toto, VHDL must eventually serve the purposes of:

* systems specification

* circuit design

* system development

* system upgrades

* logistics support

* technology upgrades.

At the system level, designs of unprecedented complexity

must perform their intended functions, in some cases, with no

acceptable margin for undetected error. Even extremely rare

potential pathological modes of operation must be prevented.

This demands hardware description of the highest possible degree

cf rigor and completeness. On the other hand, within these

constraints, competition and technology innovation must be

allowed the greatest freedom. However, only a limited subset

of these purposes was directly addressed by the study group.

1.2 DOCUMENTATION

The VHDL should include as a minimum all of the attributes

listed in Table 1-2 as they are required for complete documen-

tation. The VHDL subset being addressed in this document is

limited to the I/O Interface, Function (Behavior), Structure,
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TABLE 1-1. VHDL USE FOR TWO-WAY DESIGN
DOCUMENTATION AND TRANSFER

VHOL SUBSET CONSIDERED

ORIGINAL REQUIREMENT

CONTRACTOR-
EXPANDED

FROM GOVERNMENT BEHAVORIAL AND STRUCTURAL
(ORIGINAL DESCRIPTION

SPECIFICATION) INFORMATION

______________DELIVERABLE

DOCUMENTATION

ARTWORK DESCRIPTION TOTAL
LANGUAGE HOL

(AOL)

FROM CONTRACTOR CONTRACTOR-
(ADDED DESIGN __TO.

DESCRIPTION) TEST DESCRIPTION CONTRACTOR

LANGUAGEEXCHANGE
(TDL)

(OTHER)
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TABLE 1-2

HDL ATTRIBUTE CHARACTERISTICS AND CONTENT

Function Description (e.g., 32-bit multiply,
(Behavior) characteristic/mantissa, result)

Behavior (I/O transform)
Information flow (algorithm)
Specification of timing constraints

and dependencies
Functional test information

Structure Hierarchical description of primitives
and their interconnection

Physical Boundary Package shape
Pin placement
Layout and boundary description

I/O Interface Connector/package type
Pin/signal list

Electrical Boundary Signals
Characteristics Voltages

Drive
Load

Timing Timing constraints on I/O (internal
timings are carried with the
behavioral blocks)

Physical environment Temperature
Vibration
Humidity
Radiation
Power

Test Test language description of test vector
set for the given entity (e.g., chip
macro, etc.)

Artwork Required at chip level, board level, etc.

Configuration Revision history
Control Block Version history

Configuration management

Design constraints Reliability
Maintainability
Testability
Diagnostic isolation
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and Timing attributes. Within this subset, documentation

features that may be included are listed below. Actual content

is dependent upon each specific design.

The VHDL subset may include all of the documentation

features listed below:

I/O interface

I/O behavior of the design at the primary inputs

and outputs--regardless of internal construction

and regardless of timing

e I/O behavior of the design at the primary inputs

and outputs--with respect to time and time-related

constraints and parameters

* behavioral description at each level of the design

* structural decomposition of the design into logical

and/or physical entities

e all necessary information to fulfill textual

requirements of MIL-M-38510

* memory contents necessary to implement machine

behavior

* functional test description.

The actual contents will be dependent upon agreement among

contractors and/or government on a per-design basis.

The VHDL shall be deliverable in both machine-readable

ASCII character set form (with upper and lower cases considered

equivalent) and in textual form.

1.3 HIGH-LEVEL DESIGN

The VHDL shall be usable both as a user-oriented design

language and a deliverable documentation standard. The specific

recommendations made in succeeding chapters will be oriented

toward producing a design language as a part of VHDL.

To convert existing simulation or other CAD tools to

operate from VHDL, operation of existing design tools could

continue with generation of user translators to permit conversion

of the design data to or from the VHDL.
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1.4 USE BY DESIGN AUTOMATION TOOLS

Nothing shall be done in the VHDL in the light of existing

knowledge to preclude the future extension of the language to

express new concepts necessary to support future design

automation tools.

1.4.1 Use By Simulation Tools

The VHDL code should provide sufficient information to

allow verification of the design by simulation or equivalent

tools. Specific levels of simulation to be supported are

functional, register-transfer, and gate level. It is recognized

that such levels are arbitrarily defined and may not be used

by all contractors.

1.4.2 Use by Synthesis Tools

The VHDL should be designed with a view toward automatic

synthesis.

1.4.3 Use By Software Tool Generation Programs

The utility of VHSIC hardware will depend on the ability

to produce software to execute on the hardware systems. It

will be necessary to have a collection of support software

programs to aid in the programming of the VHSIC hardware such

as compilers, assemblers, and instruction-level simulators

(see Fig. 1-1). VHDL should be rich enough to be used as input

to a table-building program which supports table-driven code

generation for compilers. For assemblers, one possibility is

the use of the enumeration type, with the enumeration type

representation specification of Ada to map an assembly language

specification to the required machine language.

1.4.4 Use by Testing Tools

The VHDL code should provide sufficient information to

support the development of hardware tests. As a minimum,

hardware test development shall be defined as the development

of a set of vectors to detect single stuck-at-one and single

stuck-at-zero faults at a user-definable circuit node.
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COD FOR HOL MACHIE

H~t.

OESCRFTNIN ~A
APPLICATION CODE

IN A
PROGRAMMNG LANGUAGE

INSTRUCTION-LEVEL INSTRUCTION-LEVELSIMULATOR -- --- SIMULATOR
BUILDER

7-23-a1-s

FIGURE 1-1. Application code in a programming language

1.4.5 Use by Physical Design Tools

The VHDL code should provide sufficient information to

support the physical design of a VHSIC system. Minimum

information would include a list of physical components and a

description of the interconnection of such components. The

VHDL should provide a format that allows topological place-

ment and/or geometric information at a level of detail

sufficient to facilitate designer-influenced physical design.

1.5 TRANSLATION TO OTHER HDLs

No legal restrictions on the VHDL should preclude its

translation into another HDL.

Variations in users' CAD systems, styles, and indigenous HDLs

shall be the responsibility of the individual users, and

accommodated by locally applied translators and/or application

disciplines.
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1.6 PORTABILITY

Since VHDL is to be used as a means of transmitting design

data between contractors, it is required that the language be

portable. Portability requires that VHDL data be deliverable

in both machine-readable ASCII character set form (with upper

and lower case considered equivalent) and in textual form. The

user may have the option of how to use the data in the design

process.

It is envisioned that a major use of the VHDL (for

contractors with design systems) will be to drive design tools.

Thus, the VHDL may be compilable to object languages that execute

on various data-processing machines. The object language will,

of course, be machine-dependent. At some point, standard

compilers may he created which 7ompile the'VHDL into object

code that can drive public-domain design tools. Individual

contractors may also have their own internal HDLs in source or

object form. 7iL..-%tion from (to) the VHDL to (from) a

contractor's internal design language is the responsibility of

that contractor and may be performed, at the contractor's

option, on the source HDL or on the internal object code.

1.7 APPLICATION

The VHDL specification document should replace the

configuration item specification and associated technical

description documents, i.e., it should substitute for, rather

than add to, current deliverable documentation.
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2.0 HIERARCHY CONSIDERATIONS

The VHDL must support the description of a hierarchical

representation of the hardware.* Each level of VHDL design

model contains design data, including I/O interface, structure,

behavior, and environmental constraints (including test cases

and expected results). The model consists of a hierarchy of

design entities, each of which may be further decomposed into

its own constituent components. These components may be defined

as design entities for further decomposition. More than one

description or decomposition may be used to describe a given

design entity. The behavior of a design entity is considered

to be one of these alternative descriptions, with the stipulation

that its internal organization need not correspond to the actual

hardware decomposition. One may refer to such a behavior as a

logical (or functional) description of the design entity. A

behavior at any given level could be constructed by combining

lower-level behaviors. A decomposition may lead to a purely

physical package of a design. All alternative decompositions

must be I/O equivalent, i.e., they are functionally interchangeable.

An illustration of the hierarchical model is shown in Fig. 2-1.

Figure 2-2 illustrates one breakdown of the different

levels of abstraction involved in the design process. The

mathematical algorithm plus a choice of design style (e.g.,

serial vs. parallel, register transfer vs. data flow, clocked

vs. self-timed) results in a machine architecture. From there,

a choice of an implementation technique (e.g., a structured logic

layout technique vs. random logic) leads to a design description

*see Appendix C, p. C-29
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FIGURE 2-1. Design entities, decomposition,
anid alternative descriptions
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MATHEMATICAL
ALGORITHM CHOICE OF

DESIGN STYLE
*PARALLEL
*SERIAL

MACHINE
ARCHITECTURE CHOICE OF

IMPLEMENTATION
STRUCTURE

FESIGNDESCRIPTIONCHIEO

N TECHNOLOGY

DETAILED DESIGN
DESCRIPTION

-2 3-81-6

FIGURE 2-2. Levels of abstraction

(e.g., PLA truth tables, SLA programs, etc.). A choice of

technology then leads to a detailed design description.

Specific characteristics of the design model are:

" I/O signals should be specified at each level of

description.

" All design entities except primitive components

are described as a structure of lower level design

entities that includes a description of their
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interaction, including the accommodation of

parameter passing.

" The logical interaction of components is described

as an exchange of signals, including the timing

of the occurrence of changes in signal levels.

" The behavior of all lowest-level components

must be completely described in VHDL.

" Timing data should be specifiable at each level of

description, allowing for form and accuracy which

are appropriate to the specific design entity.

* Each level of hierarchical decomposition may be

composed of I/O equivalent alternative sets of

behaviors and/or further decompositions.

An example of a four-level hierarchical decomposition of a

microprocessor is shown in Figure 2-3. In this example, "A"

is a primitive because it has no structural decomposition.

PROC ALU ADDER A (PRIMITIVE)

00 0
BEHAVIOR 01 0

-- -_10 0
1-01 1

RESISTER MEMORY REGISTER REGISTER A

STRUCTURE AL - ADDER

FIGURE 2-3. Hierarchical decomposition of a microprocessor
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The language should contain some construct to permit

definition of new design entities (as part of the design entity

being defined) or include definitions from a library. With

such a mechanism, basic design entities (e.g., for gates or

loops) can be defined and stored in a library. Each designer

can then use whichever design entity is most appropriate, or

define his or her own. With this approach there is no need

for the language to have built-in design entities.

For any design, there is a lowest level of component

that is used. Components at this level are called primitive

components. To fully document or transport a design, each

primitive component must have at least an interface specifica-

tion and a behavioral description in HDL.

At each level of the hierarchical description, i.e., for

each design entity, there should be a description of the design

entity composed of:

I/O interface specification

* a behavioral desription: transfer functions

between I/O ports

0 a logical or physical structural description

expressing the interconnection of components

to achieve the described behavior

* a list of required performance parameters:

timing characteristics, precision, repetition

rate, etc. (optional below the system level).

2.1 REFERENCE OF OBJECTS

Means should be provided to clearly identify every instance

of a generic design entity. Identification is to be automatically

related to where the instance appears within the hierarchy as

well as within a level (first instancc...last instance), for

instances that are generated as the result of a variable index.

Examples of this and other naming problems are:

0 Design entities that come from generic design-

entity instantiation
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e Components that come from desion-entity
instantiation

* Fields of a record

e Elements of an array

e Attributes of a design entity

* Terminals of a design entity

e Networks of a design entity.

All the above potential naming problems should be

resolved so that in documentation, simulation, or test vector

qeneration Rach of these objects will be uniquely identified.

2.2 COLLECTIONS OF PELATED OBJECTS

Lanauaqe constructs are needed in HDL to enable the

collection, organization, and naming of HDL descriptions and to

define the relationships between these descriptions. In a

hierarchical description, a means must be provided to indicate

that a node is decomposed into other nodes. Thus, in the

example below, if node A is decomposed into X, Y, and 7, then a

means must exist in the lanouage to describe the relationships

amona'A, X, Y, and Z.

A

PDL descriptions may be applicable to more than one desin,

or may be multiply used within a given desian. Naming conventions

must allow for these situations.

The ability to decompose an HiL description into lower-level

PIL descriptions requires the existence of organization and

relational constructs.
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The need to collect various HDL descriptions to fulfill

the function of a higher-level HDL description requires collec-

tion constructs in addition to naming, organization, and

relational constructs.

2.3 MODULARITY

The division of structure and behavior into sections is an

important aspect of system specification and design. The HDL

should have syntax that permits effective description of logical

and/or physical modularity and interconnection of components.

Modularity should be consistent and traceable in hierarchical

descriptions.

2.4 LIBRARIES

The lanquaae must permit libraries at all levels as lona

as the items in the libraries are described in the standard -DL

syntax. The levels may extend down to the cell level to permit

complete structural description in the HDL. For example, cell

instantiation should be retained in the T4TL to permit the use of

hierarchical aids durinq processing steps (E-beam exposure, etc.).

2.5 COMPLETENESS

The V4SIC HD[, should allow for the complete description of

hardware. To properly document (and potentially transfer) a

aiven design, each of its design entities must be representef

by its complete I/O initerface and one of its alternative

descriptions. If any reference is made to a library description,

such description is considered part of the desian.

Another aspect of completeness relates to the assumption

that all alternative descriptions of a design entity are I/O

equivalent (in a functional sense). The problems associated

with establishina this are the same as those faced by software

verification generally.
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2.6 RECURSION

Some problems are more suited to recursive description

than others. Mechanisms for recursive behavior and structure

descriptions should be provided for this reason. Care should

be exercised in designing the language constructs for expressing

behavior and structure descriptions to ensure that infinite

recursion is avoided or detected. Recursion need not be

supported in the first release of the VHDL compiler.
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3.0 BEHAVIOR

The behavior section of a design entity must be either

totally procedural (sequentially executed programming language)

or totally non-procedural as in a Register Transfer Language.

The behavior section should contain data declarations,

program control statements, and expressions detailing the

transformations expected in the system described. The data

declarations identify the various signals and memory variables

useful in determining the course of events described by the

behavior. Iteration, selection, and branching options should

allow the user to control the path of execution taken by the

program. Operations on operands are combined in various

sequences to produce the values determined from expression

evaluation and replacement. Output values are then evaluated

and transferred to other parts of the described system.

3.1 BEHAVIORAL DESCRIPTIONS

Procedurally-oriented behavioral descriptions should be

similar to concepts found in programming languages--the sub-

routine from FORTRAN or the procedure in Pascal. They may

receive inputs from other parts of the system, store previous

signal values, pass data items among themselves, and influence

signals that are propagated to the rest of the system as outputs.

The behavioral descriptions may be executed in sequence, in

parallel, or in some combination of paths.

Behavioral descriptions should be composed of two parts--

the declaration section and the execution section. The

declaration section identifies the local variables of interest

to the procedural description. The signals used to communicate
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to the other parts of the system are identified and defined in

the I/O interface specification. The execution section is

composed of program control statements and expressions detailing

the data transformations expected in the system described.

The behavioral description may be hierarchical, reflecting

levels of control and data abstraction.

3.2 DATA TYPES

The user should have the ability to define data objects

that can be used to represent a wide variety of possible

meanings. The built-in data types should be patterned after

Ada and should include:

* enumeration types

* integer types

9 REAL type.

Options should exist for identifying the range of values

that are permissible. Larger groupings or associations of

multiple objects should be able to be declared to handle

the possibilities of records and records with field variants.

The user should be able to specify the precision of data

objects at all levels. Type checking should be accommodated

with the provision for controlled override. Constructs should

be provided for accessing compiler-defined constants for data

storage attributes (as in Ada).

3.2.1 Data Abstraction

Data abstraction includes both the concepts of grouping

"fields" into "records" and of defining higher-level operations

on the specified data types. Data abstraction should be

included in the VHSIC HDL because it supports a design process

style known as stepwise refinement. For example, a "stack"

can be defined as a special data type with two operations,

"push" and "pop", that the user sees. Any lower-level

implementation details (e.g., that the stack is "really"

implemented as a finite-sized FORTRAN array) is hidden from
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the user of the abstract data type stack. Such information

hiding is valuable because of the limited availability of

circuit designers to handle complex, low-level details.

3.2.2 Enumeration

The user should be able to enumerate the permissible values

on symbolic data objects. This may be by enumeration as part

of a set of values, as:

TYPE Pseudo-Boolean IS (one, zero, unknown).

3.2.3 Range

The user may also declare a range of values to be permitted,

as:

TYPE Normal-Integer RANGE 0..65535.

Limits checking on the result of expressions can be used to

enforce the bounds of data representation in assignment

operations.

3.2.4 Precision

The user should be able to declare the precision of a real

(floating point or fixed point) variable. The precision of a

floating point variable is in terms of the number of decimal

digits represented. As an example:

TYPE Normal-Floating-Point DIGITS 10.

The precision of a fixed point variable is in terms of a delta

(resolution) value. As an example:

TYPE fixed-point IS DELTA-1/1024 RANGE (-2.0..2.0).

This would yield a fixed point number that is twelve bits long

(sign plus one bit of integer value plus ten bits of fractional

value).

3.2.5 User-defined Data Types

The user should be able to describe collections of data

items grouped in several ways. The simplest is of homogenous

nature as a one- or two-dimensional array, as:

TYPE Special Memory IS ARRAY (0...128, 0...32) of Boolean;

other associations may be quite useful where more than one type

is grouped for the non-homogenous case, as:
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TYPE System-Buss IS RECORD data, control END RECORD

TYPE data IS array (0...15) of INTEGER

TYPE control IS (READ, WRITE).

Character and bit strings may be built up as an array of

enumerated data objects, as:

TYPE Stringl IS ARRAY (1..80) OF Boolean

TYPE String2 IS ARRAY (1..132) OF Character

TYPE Character IS RANGE ('A'..'Z').

Arrays may be dimensioned to as many dimensions as the

user desires.

The built-in VHDL data types should be held to an appropriate

number of primitive types. These data types should be extensible

by the user in a well-controlled manner. The built-in data

types should include:

* Enumeration types--useful for Boolean and logic status

* Integer types

* Real type.

As with Ada, not only should precision be user-definable, but the

underlying structure of a data type should be definable in detail

so that an exact representation in the hardware can be made.

Note that, unlike Ada, this exact underlying representation,

if simulated, only needs to occur at the user-visible interfaces.

That is, more efficient representation can be used within a

simulation as long as these alternative representations do not

affect the results of any operation.

In addition to the user being able to specify the exact

representation of primitive data types, the user must be able

to define new data types in terms of a collection (records as

in Ada) of these primitive types.

Although generalized software pointers may be useful for

describing software algorithms at high levels, only explicit

hardware addresses are meaningful at the hardware level. These

hardware addresses should be subtypes of integers rather than

being of Ada-type "access".
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However, given the complexity of VHSIC subsystems and the

possibility of embedding traditional software concepts in

hardware and/or firmware, the full generality of pointers

should be included in VHDL to provide for an abstract descrip-

tion.

3.2.6 Deferred Definition

In order to serve as a design tool for a top-down methodology,

the HDL should allow the designer to deal with elements of the

design at a very abstract level at the high levels of system

description. He should be able to "defer" decisions on

implementation to later design stages. One style of deferral

is to allow the specific number of components, of signals, of

array elements, etc., to be represented symbolically, rather

than by literal numbers. This is facilitated by allowing the

designer to define a symbolic constant--an identifier declared

to have a specific constant value. The identifier is used in

the behavior or structural description for such things as

array bounds. While the value of the identifier must be assigned

specifically to be able to use the HDL description, it may be

easily changed in one place, rather than in multiple places if

a numeric literal value has been used.

Another aspect of deferred definition of objects is

analogous to the progressive decomposition of design entities,

but applied to signals interconnecting components. Signals

should be allowed to have all the data types that behavior

variables can have, including user-defined types. For example,

this allows the designer to designate a signal as being an

integer without specifying its explicit encoding in terms of a

specific binary representation.

Note that if different components have different levels

of abstraction applied to the signals joining them, then

in order to run a simulation, in fact in order to check the

interconnections, a transformation is required to connect the

two types of signals. The transformation may be generated
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automatically by processing software, or may have to be generated

by the designer. If the transformation is allowed to be generated

automatically, the language definition should provide specific

rules for this process. Coercion may be used to meet this need.

3.2.7 Strong Type Checking

One capability important for verification of design

consistency is a compiler check for compatibility between

declarations of variables and their use in expressions and

function parameters.

Type checking ensures that the user is consistent in his

interpretation of the various signals in the design.

The HDL should have strong type checking between operators,

operands, and the corresponding results. Strong type checking

allows "compilers" and simulators to ensure that operations

on variables are compatible with the intended properties of the

result types.

Type checking override facilities should be provided. Type

checking may be done at run time and/or compile time.

3.2.8 Coercion

Coercion is a function which resolves type conflicts

resulting from operations on differing data types. This includes

converting one data type to arother, as well as referencing one

data type as an alternative data type. An example of an implicit

coercion is the FORTRAN statement:

Rl = I * R2

where the integer variable I will be transformed into a real

before multiplication with the real variable R2. In addition,

at the hardware level it is important to be able to view vari-

ables as bit strings, as well as abstract definitions (integer,

real, etc.) and vice versa. Thus arithmetic can be performed

on a variable based on its abstract data type at one point in

the behavior, and specific bits of the variable can be manipu-

lated at another point in the behavior. The VHSIC HDL should

provide a reasonable set of built-in coercions for the built-in
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data types as well as a mechanism for user-defined coercions

between both built-in and user-defined data types. For the

user to define a coercion, (1) a coercion function or procedure

must be defined which, when the initial data type is passed to

that function or procedure, the function or procedure will

return the target data type, and (2) the compiler must be

notified that this function is to be called implicitly when

specified operations are applied to specified data types. It

is hoped that coercion can be used to span multiple levels of

design abstraction hierarchy, e.g., coercing from a group of

Boolean variables or signals into an integer.

3.2.9 Reference to Attributes

An attribute is a predefined characteristic of a design

entity and/or data object. For example, an attribute of a buss

is its width.

In declaring data types the compiler maintains constants

relating to the range of values expected, the subscripts

permitted on arrays, and related properties of the data. These

constants should be available to the Behavior section for

constructing declarations of related data types. The mechanism

as implemented in Ada is the Attribute capability as:

(memc~y'last)--relates to largest index into declared array.

3.2.10 Scope and Visibility

Scope is the parts of the VHDL description over which

declaration of a data object has effect. A named object is

visible (can be legitimately referred to) if the reference is

within the scope of the data object.

Scope for the I/O interface signals should be local to the

design entity being described.

Scope for names of design entities and their termirnals

should be extendible to include components in libraries.

Name-qualification constructs shotuld be included to resolve

references to two data objects with 4 same name that are both

visible.
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The scope of a declared data object should be local to

the design entity in which it is declared. This declared data

object should not be known to any other design entity,

even if another design entity is lexically within the definition

of the design entity that declares the data object, unless it

is explicitly defined as global in the design entity and

enumerated within each of its component entities. With this
"scoping" mechanism, data object visibility is defined by the

contents of an argument list, and through explicit declarations

and enumerations of global variables.

3.3 OPERATORS AND EXPRESSIONS

The HDL user should be able to manipulate the data objects

by using a sequence of operators grouped for logical and order-

of-evaluation reasons into expressions. The user s, ould also be

able to define additional operators and functions which will

be treated by the system as its own set of primitive operators.

Mechanisms should be provided to transfer control to routines

that modify representation and format as needed for proper

evaluation. Detection of fault or exception conditions should

be allowed for user handling of unexpected arguments or invalid

results.

3.3.1 Basic Operators

To adequately express behavior, the VHSIC HDL should have a

rich set of operators.

The following operators are recommended:

logical operators - AND / OR / exclusive OR
relational operators - equal / not equal / less than /

less than or equal / greater than /
greater than or equal

adding operators - plus / minus / concatenation

unary operators - plus / minus / not

multiplying operators - multiply / divide / modulus /

remainder

exponentiating operator - exponentiation.
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3.3.2 Compare under MASK

MASK is an operator that allows the HDL to select important

data bits or strings from "don't cares" or unimportant items.

A hardware analog is the content-addressable memory which allows

READ UNDER MASK and WRITE UNDER MASK operations. Search

proceeds by examining the important areas of a string rather

than by a pointing technique such as an address. MASK can be

used, for example, in instruction sets to identify and use

portions of each instruction, e.g., the operation code, the

register field, the modifier field, etc.

This operator should be either user-defined or built into

the VHSIC HDL.

3.3.3 User-Defined Operators

The user of the language should be able to represent

functions that manipulate data items as operators. Capabilities

should be provided to allow user-defined notations like:

C = A*B.

Arguments should be tested for stated type, required range of

values, or elements of data sets as specified by the user. Its

function should be transparent to the user whether an operator

that he or she uses is built into the VHDL or is user-defined.

3.4 CONTROL FLOW

In writing procedural descriptions, the VHDL user will need

to be able to define the selective and successive execution of

procedures with respect to time. Repetition, selection,

alternation, and directed branch options should be included as

a minimum. Behavior descriptions may also need the capability

to provide the user with the option to express parallel/

concurrent execution of blocks of the code. Segments executing

may need to exchange data or flags and also to prohibit other

actions from occurring (mutual exclusion).
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3.4.1 Control Constructs

A complete set of control flow statements should be included

in the VHDL for algorithmic expressions. The IF, CASE, LOOP

and EXIT, BLOCK, RETURN, and GO TO statements as defined in Ada

include all necessary required statement types, and these types

of expressions are well accepted in the industry.

3.4.2 Control Abstraction

Control abstraction is analogous to data abstraction

(3.2.1) in its properties and usefulness, but it applies in the

behavioral domain. For example, a machine could have a state

known as "compute" that occurs after some preliminary initiali-

zations and before some final clean-ups and output. This

compute state is a control abstraction for a number of substates,

which might include multiple loops and subloops. The VHSIC HDL

should support control abstraction.

3.5 TIMING

The VHDL shall provide the ability to describe the time at

which output signals change value, in terms of delays after the

times at which other "signals" change value. The "signals" may

be either external signals, or purely internal to a design

entity. (In a behavioral description of a design entity, an

"internal signal" may be an artifice to aid in simplifying the

behavior description. It may have no relation to a real signal,

but it may strongly imply a particular implementation.)

The VHDL shall provide the capability to control at what

time each statement in the description is executed. Sequences

of statements will normally execute in zero time, but the

capability will be provided to delay and resume execution at a

later time, specified either as delay relative to the current

time, or as a function of the time at which one or more signals

change.
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3.5.1 Synchronous and Asynchronous Time

The language should support synchronous, asynchronous and

combined synchronous/asynchronous design.

An option would be to provide special explicit constructs

for handling clock mode synchronous designs.

Examples of asynchronous events that are everyday

occurrences include:

* interrupts

* input/output

* pipelining

* groupings of finite state machine

0 peripheral interface busses.

Thus, one does not need to go to more advanced self-timed

systems to find asynchronous events that are of crucial importance

in common digital systems. It is essential that the VHDL

describe parallelism and concurrency in a structured and

relatively high-level manner.

3.5.2 Simulation Option Interfaces

The language should permit a variety of approaches to

simulation:

* event driven

* clocked synchronous

* path tracing

* packet communication.

Each one of these simulation approaches has its advantages,

depending on the desired

(a) simulation level

(b) simulation speed, and

(c) target hardware performance.

3.5.3 Timing Constraints

A method should be provided in the VHDL to specify timing

constraints. Some of these timing constraints are illustrated

below:
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SET UP Time The amount of time signal "A" must be in a stable

state before signal "B" changes state.

HOLD Time The amount of time signal "B" must be in a stable

state before signal "A" may change state.

PULSE WIDTH The minimum and/or maximum time a signal must

remain in a stable state.

Timing constraints may be applied to input signals, output

signals, or signals within a design entity. Timing constraints

should be provided for at any level in the hierarchy. That is,

timing constraints should be valid in the high-level behavior

description as well as at the lower level of primitive component

interconnects.

A facility should be provided at any level to make timing

assertions to accommodate timing validation between levels in

the hierarchy. For example, in the following high-level design

entity the user may want to stipulate that the total delay

between points A and B is no greater than 50 time units:

A FNCTION FUNCTION FU NCTION B

7132 3

7-23.81-9

FIGURE 3-1.

where FUNCTION-l, FUNCTION-2, and FUNCTION-3 are high-level

descriptions of operations performed by the design entity. As

these functions are progressively more accurately defined at

lower levels of the design hierarchy, it should be possible to

compare the total delay to the original assertion made at the

higher level.

3.5.4 Parallel Element Models

Synchronization should be supported in parallel operations.

Synchronization may need to occur within a behavioral block or
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between behavioral blocks. Within a behavioral description

the ability should be present to cause a given process to

remain at its current state until a parallel process has

indicated to the first procens that it may continue. Synchroni-

zation between behavioral descriptions can be supported by

passing parameters between descriptions.

3.5.5 Rise and Fall Times

Capability should be provided in VHDL for declaring and

describing edge characteristics of signals. These should include

but not be limited to rise and fall t'mes, periodicity, leading

and trailing durations, etc.

A method should be provided, at the logical interconnection

of components, to associate timing information with each signal

in the design entity. The user should have the ability to specify

transition times between states in the simulation. For exarple,

in the case of a four-state logic (HI, LOW, HIZ, UNK) there

are 12 delays possible:

HI to LOW, LOW to HI, HI to HIZ, HIZ to LOW, etc.

In addition to specifying the normal delay between states,

the user should be able to specify a range of delays. That is,

three delays are allowed for each state change: NOMINAL,

MINIMUM, and MAXIMUM.

3.5.6 Clock Definitions

It should be possible to declare the existence of one or

more global clocks. If a single clock exists, the user should

have the option of omitting reference to that clock in individual

statements. It should also be possible to apply the language

in contexts where explicit reference to a clock is required in

individual statements.

3.5.7 Time Control Concepts

VHDL should be capable of unambiguous temporal descriptions.

Provision should be made to allow formation of two types of

systems with distinctly different time behaviors. One has

data clocked through the system by means of a master clock or
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a locally-generated clock that controls a substructure. These

systems are called synchronous in that data is gated through

control points only at times determined by the clock. In the

second type of system, data is permitted to propagate through

the system at a rate limited only by the speed constraints of

the logic structure itself. The second case is called asyn-

chronous or self-timed in that clocks are not used to regulate

the flow of data through the system.

Both systems can exhibit concurrency. In the clocked

system, data may be clocked along two or more parallel paths

during the same clock period. The problem arises when two or

more parallel structures interact during the clock period.

Path delays should be a part of the description and/or provision

must be made to flag critical races. For the asynchronous system,

the same signal may drive two or more parallel structures that

interact, or two or more signals arrive at the same structure

at the same time. In both cases, some method should be made to

allow the user to specify which signal will proceed first.

3.5.8 Termination of Currently Executing Procedures

The VHDL should allow a procedure to have other procedures

defined locally within its textual scope. These local procedures

may be considered to be concurrently executing procedures.

Assume that Procedure A below has concurrent Procedures X

and Y defined within its scope. X and Y are initiated and

proceed to exchange data with A. At some point in time,

Procedure A is terminated by its calling "parent". The user of

the VHDL should define a semantic interpretation which states

what happens to X and Y when their parent no longer is in

existence. The dynamic activation of procedures implies that

X and Y terminate when A is terminated.
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PROCEDURE A

PROCEDURE X
SBEGIN

END
PROCEDURE Y

B EGI

ENO

BEGIN
INITIATE X, Y;

BEGIN E
INMATE A;

TERMINATE A;
END • WHAT HAPPENS TO X AND Y?
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4.0 STRUCTURE

The structure of a design entity is its decomposition

into interconnected components. The structure section should

include declarations of the component types, instantiation of

particular components, and listing of the interconnections.

The VHDL should have constructs to handle iteration of

component instances as well as interconnections. Generic

instantiation of design entities should be provided to allow

the user to specify default parameters.

4.1 CONNECTIONS

A structure description should consist of the specification

of the components utilized in the design, the nets which

interconnect their terminals, and the terminals of the design

entity under consideration.

There are three different perspectives: (1) from the point

of view of a terminal, connections refer to the net they are part

of; (2) from the point of view of a net, connections are the list

of terminals to be connected to form the net; and (3) from the

point of view of the components, each of its terminals is

connected to a net.

Each of these perspectives implies a different type of

language construct. Their relative merits need to be evaluated

and a decision made on which one(s) are to be incorporated.

4.2 GENERIC MODELS

4.2.1 Purpose

The purpose of a generic model is to make available, at

any level of the structure description, multiple instances of a
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design entity, with the capability of variations upon a basic

concept of that entity. For example, a generic model ADDER

might be defined which makes available a family of adders with

different numbers of bits in the arguments and different speeds

of its interior components. The generic model is conceptually

the hardware structure equivalent of the software subroutine or

macro which uses arguments to modify its transfer function.

4.2.2 Parts

A generic model definition should include:

e the model name

* an ordered list of input and output signals,

which form the functional connection with the rest

of the structure

o an ordered list of parameters, which define the

particular characteristics of a particular

elaboration of the model

e declarations defining the variables used within the

model definition

e one or more behavioral descriptions of the

relationship between the inputs and outputs in its

I/O list

* an optional structural description of the means by

which the behavior is achieved in terms of inter-

connected instances of other design entities.

Sample syntax:

GENERIC Emodelname] (I/O list, parameter list)

DECLARATIONS:

BEHAVIOR:

STRUCTURE:

ENDGENERIC modelname.

4.2.3 Communication

The functional communication between an instance of a

generic model and the rest of the structure occurs only through

its I/O list; all variables used within a model are local in
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scope and are independent of name assignments external to the

model. However, for convenience and consistency, TYPEs defined

outside the generic model may be allowable in defining these

local variables.

4.2.4 Parameters

The parameter list may be defined as null if parameters

are not required for a particular generic model. When a

parameter list exists, the generic model definition should

include for each parameter either:

a. a default value which is to be used if a

particular application of the model gives

a null value for the parameter, and optional

limits on the value that may be assigned to

the parameter, or

b. a specification that a null input value is

not permitted.

4.2.5 Declaration Scope

The declarations associated with the generic model

definition should have no effect outside the model definition.

4.2.6 Behavior

The behavioral description of a generic model should

allow any feature and be governed by all constraints defined

for behavioral descriptions elsewhere in this document. The

behavioral expression will, in general, be a function of the

parameter list.

4.2.7 Structure

The structural description of a generic module may

contain all features defined for structural descriptions

elsewhere in this document, with the following additions and

restrictions:

1. Local block definitions of structure, and

instances of other generic models may be used,

and these may be embedded in conditional or

iterative structures controlled by parameter
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values or constants, but not by members of the

I/O list.

2. Recursive reference to this generic model either

directly or by reference to another generic model

which refers to this generic module should be

permitted only if:

a. Adequate recursion control is provided in

terms of parameter values or constants.

b. Comments are included which provide a

clear explanation of the physical inter-

pretation in hardware of the results of the

recursion.

4.2.8 Instance Names

The semantics of the language should provide for each

instance of a generic model to be uniquely named. Such names

are a function of an identification of the reference point, any

applicable iteration indices, and the model name.

4.3 PERMUTABILITY

VHDL should allow the designer to describe "permutability"

or "equivalence relationships" existing among the external

connections of each design entity. One of the reasons is to

allow the physical routing of interconnections to be optimized

by taking advantage of equivalence relationships.

There are two types of equivalence: physical and logical.

Two or more connections to a design entity are physically equiv-

alent if they are connected to each other internally. Terminals

are logically equivalent if they can be connected to any permu-

tation of the signal net connections to them without affecting

the output behavior of the design entity. An example is the

inputs of a NAND gate, which are all logically equivalent.

Logical equivalence can also exist between groups of connections,

groups of groups, etc., to any depth of nesting.

4-4



4.4 GENERIC INSTANTIATION

A section of code should be able to be written with generic

parameters. The values of these generic parameters can be

deferred to compile time. At compile time this code is generi-

cally instantiated and expanded, based on the values given for

the generic parameters. This is generally called "macro

expansion". For example, a macro expansion is an instance of

code that is a specific generic instantiation of a macro, or a

variable is an instance of some type.

4.5 ITERATION IN STRUCTURE DESCRIPTION

VHDL will be of limited use if the designer must explicitly

enumerate each occurrence of each component and signal net.

VHDL should have powerful and easily used ways to express multiple

instances of generic components and their connections, using

constructs similar to iteration, conditional selection, and

recursion as seen in programming languages.

As a minimum, regular, repeated arrays of components should

be specifiable. Structural iteration may be implied using a

subscript-like notation, where the subscript expresses a range

of values, each of which corresponds to one instance of a

generic component. For example, four instances of a generic

component LATCH might be expressed by:

LBIT (0 to 3) : LATCH ... ; (TI HDL)

or:

LBIT : array (0..3) of LATCH (pseudo-Ada).

Iteration might also be expressed by an explicit iterative

construct, like the Ada loop statement. An example of this

style of syntax, in pseudo-Ada, is

for I in 0..3 loop

LBIT(I) : LATCH

end loop.

Arrays of higher dimension than one are handled by multiple

subscripts in the implicit method, and nested loops in the

explicit method.
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It may occur that an array of components is "almost

regular", differing from "perfectly regular" only in that the

first and last components differ from the middle components.

It may be desirable to have an iterative construct that

allows explicit definition of "first", "middle", and "last"

components.

Conditional selection is analogous to "if-then-else" and
"case" statements in programming languages. Predicates for

conditional selection might be generic parameters or Boolean-

valued functions on them.

While conditional selection by itself is not a powerful

concept for replication, it enables structures to be defined

recursively. Recursion is a technique that can easily generate

multiple copies of a component. It is not clear whether

recursion will be useful in many circumstances, but it is useful

in the "N by N router problem" shown in Fig. 4-1. The problem

0

• NI2 BY N/2 NETWORK

[ _ _,_ _,,-(N/2)-1

NI2

S N/2 BY N/2 NETWORK

(N/2)-1 N-1

7,23-.1 11

FIGURE 4-1. Recursive decomposition of an N by N network

4-6



is to decompose an N-input, N-output router into a structure

of 2-input, 2-output routers, where N is a power of 2. The

problem is solved by decomposing the N by N router into a

structure of 2 by 2 routers and N/2 by N/2 routers. To correctly

use recursion, the conditional selection construct is needed

so that the recursion is not infinite. In addition, at least

one generic parameter is required to pass the "current stage"

of the recursion. The structural decomposition is shown

graphically in Table 4-1. A description of the structure is

given is HISDL, although a similar description should be possible

in the VHSIC HDL.

TABLE 4-1.

% RECURSIVE DEFINITION OF AN N BY N ROUTING NETWORK

STRUCTURE ROUTING-NETWORK (N; IN INPUTIO:N-11, OUT OUTPUT|O:N-1)
COMPONENTS COLUMN[O:N12-11: ROUTER

BEGIN
IF (N = 2) THEN

% SINGLE 2 BY 2 ROUTER
COLUMN(OI(INPUT[OI, INPUT[1I, OUTPUT[O3, OUTPUT|11)
ELSE
% DECOMPOSE ROUTING NETWORK INTO A COLUMN OF
% 2 BY 2 ROUrERS AND TWO HALF-SIZE SUB-NETWORKS

COMPONENTS SUBNETWORK(O:11: ROUTING-NETWORK(N/2)
FOP I= 0 TO N/2-1

COLUMNII(INPUT[2"II, INPUT(2*1 + 11, SUILNETWORKI . INPUT(Ij.
SUBNETWORK|11. INPUT[I|

/OUTPUT[Ij, SUB-NETWORK[OI. OUTPUT(I|/
OUTPUT[I+ (N/2)I, SURNETWORK[l1. OUTPUT[I/

ENDFOR
ENDIF

END
ENDSTRUCT

% 2 BY 2 ROUTER

CELL ROUTER (IN INPORT 0, INPORT 1, OUT OUTPORT 0, OUTPORT 1)
ENOCELL

9-2-81,2
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Structural recursion need not be supported in the first

release of the VHDL compiler.

4.6 PROCEDURAL MODELING

A procedural model of a structural description is a

procedure that upon execution returns a structural description

as specified by global variables and parameters passed to the

procedure. Thus, it is a technique that could be used to

implement the requirements of structural iteration and generic

components.

4.7 EXTENSIBLE NUMBER OF PRIMITIVE COMPONENTS

The user should be permitted to define new primitives using

VHDL syntax. This capability will minimize the need for actual

language additions over time.
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5.0 GUIDELINES

5.1 KERNEL PLUS EXTENSIONS EQUALS LANGUAGE

Figure 5-1 illustrates an implementation methodology for

user-extensible language syste ms*. VHDL should include both a

kernel of essential features And some mechanisms that allow

the user to extend both the syntax and semantics of the language

system in a controlled way. Extensions may be grouped together

by a common purpose, much like the CALENDAR package of Ada

defines a new primitive function CLOCK, and the abstract data

types TIME and DURATION, including operations for their addition

and subtraction. Such a grouping is represented by an arm of

the starfish. Arms of the VHDL may well develop to support

various application areas (e.g., signal processing), design

styles (e.g., asynchronous or self-timed systems), or structured

implementation techniques (e.g., gate arrays, PLAs, SLAs, etc.).

In those cases where a language feature is expected to be

widely used (e.g., operations on the natural numbers) the kernel

should be relatively rich and high level (e.g., including

exponentiation). In cases where the proposed feature is

relatively specialized (e.g., self-timed control primitives),

the kernel should contain a limited number of low-level features.

However, these features should be complete enough and flexible

enough that the user can extend the language system without

undue difficulty.

...which has been dubbed the Cape Cod Starfish in honor of
the site of the IDA Summer Study on HDLs)
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EXTENSIONS FOR
IMPLEMENTATION

TECHNIQUE B

KERNEL* OF
ESSENTIAL
LOW-LEVEL

FEATURES

*Sufficient to support specialized higher-levul features.

FIGURE 5-1. Starfish philosophy of extensible
language systems
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5.2 HIGH-LEVEL PARALLELISM

Descriptions of VHSIC chips may be done at a high level

of abstraction. This high level may include the behavioral

description of concurrently executing components which exchange

data and control signals with each other.

For ease of description of these type designs, VHDL should

provide a built-in mechanism for handling components operating

in parallel and cooperating with each other.

Such mechanisms allow the description of behavior at a

level well above that of physical hardware. Therefore, means

must exist to verify that high-level mechanisms are correctly

implemented by the lower-level structural descriptions.

5.3 VERIFIABILITY

VHDL should be verifiable. Any VHDL code should be

executable so that someone other than the original author can

verify that all information necessary for the complete imple-

mentation of the design is in fact contained in the code. By

executable is meant the ability of the code to drive a suitable

analytical tool. Such a feature is essential if someone other

than the original designer is to be able to fully understand

every single aspect of a given design. Too often the hardware

description appears to be incomplete, is accepted by a second

party and, months or years later, is found to be lacking some

crucial piece of information without which the design cannot

be completed.

Note that simulation is not the only method for achieving

verification. A wide variety of analytical tools already

exist for accomplishing the same objective (e.g., Boolean

comparison, timing verification, etc.) and more are under

development.
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5.4 ONE LANGUAGE

VHDL should be a single language used to implement behavioral

and structural descriptions at all levels. Inserts written in

other languages (e.g., FORTRAN, Pascal, COBOL) shall not be

permitted. In the determination of the details of the language,

the following principles should be observed:

a. Economy in the number of statement types should

be emphasized; a short list of powerful statements

is preferred to a long list of diffuse and

specialized statement types. When so used, all

VHDL descriptions will be self-contained, given

the standard list of primitives within the HDL.

b. Friendliness to the user should, in general, take

precedence over compiler economics within the

limitations of d.

c. Extensibility of the language should be achieved

within the capabilities of the generic data

statement, generic component, and user-defined

functions and operators.

d. Terseness should be secondary to clarity and

visibiity.

e. Statement syntax, where it derives from Ada, should

not be "similar" to Ada, but should be adopted

exactly as defined in Ada.

5.5 TECHNOLOGY INDEPENDENCE

Insofar as possible, features of the language should not

imply any particular implementation technology in the hardware

being described.

5.6 MEANINGFUL KEY WORDS

Key words and operators should be reasonably meaningful,

and should not present new meanings to words or symbols commonly

understood differently in other related environments.

5-4



5.7 COMMENTS

A comment starts with a unique delimiter and is terminated

by the end of the line. It may only appear following a lexical

unit or at the beginning or end of a program unit. Comments

have no effect on the meaning of a program; their sole purpose

is the enlightenment of the human reader.

5.8 COMPILER DIRECTIVES

A standard construct should be provided for conveying

instructions to software that processes the VHDL code. Such

instructions may be either implementation-defined or language-

defined. Language-defined instructions are those for which the

language specification prescribes a meaning, and all processing

software must interpret that meaning as specified. Implementa-

tions may allow additional instructions as desired. Processing

software should be able to interpret or ignore implementation-

defined instructions without changing the meaning of the VHDL

code.

5.9 EXPRESSION OF INVARIANCE

In the behavior description of VHDL, provision should be

made to construct expressions that are invariant, i.e., are

always true. The invariant expression may be global or local

to some part of the behavior description.

One class of invariant expression is that which is user-

defined as an expression of the particular hardware system under

design. Another class may be timing constraints between design

entities imposed by the system requirements.

5.10 LR(l) GRAMMAR

The VHDL specification shall use a formal grammar to

specify the language syntax. The specification should use BNF

notation, or a close analog. The grammar should conform to the

class of grammars called LR(l). The reason for this requirement
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is that it allows the employment of existing parser-generator

("compiler-compiler") tools to generate software to process VHDL

code.

Note that the requirement does make it more difficult to

specify the grammar and does impose some constraints on the

language. These constraints are probably not objectionable.

5.11 EXECUTION CONFLICTS

VHDL descriptions should have specific unambiguous semantics.

Descriptions that are self-contradictory or do not allow for an

unambiguous interpretation are in error. Wherever possible,

descriptions in error should be identified by processing software.

It is not acceptable to have processing software take simulator-

dependent or technology-dependent actions in any circumstances

that are not specifically called out by the language specification.

To do otherwise conflicts with the important goal of portability.

The semantics even of an unambiguous HDL are open to

technology-dependent ambiguities. For example, assume in the

the example below that A is a bus and X is a value imparted to

the local environment:

A:=1 AFTER 2 nsec;

A:=O AFTER X+l nsec.

If X has the value 1, then a technology-dependent ambiguity

arises. If the system is implemented in TTL, then the above

condition may cause the bus to overload and burn out. However,

in MOS technology the bus may simply become undefined.

Such conditions may not be detectable at compile time (any

more than array overindexing is detectable at compile time).

The VHDL user shall have the responsibiity for indicating,

via a compiler directive, the semantic interpretation or

exception-handling procedure is to be invoked when this occurs.
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5.12 MULTI-VALUED LOGIC

The language should not restrict the number of logic

states. The user of the language should be able to enumerate

the number of logic states at any level of abstraction. Multiple

logic states implies multi-valued arithmetic. Care should be

taken in defining the meaning of operator and coercion so as not

to exclude multi-valued arithmetic.

5.13 INCREMENTAL COMPILATION

It is recognized that the implementation techniques of

incremental compilation (statement by statement) and piecewise

compilation (section by section) provide the VHSIC designer

with a valuable degree of interactiveness. Therefore, nothing

in VHDL should preclude or place undue hardship on such

implementations.

5.14 EXCEPTION HANDLING

An exception is a run-time occurrence (e.g., type mismatch,

divide by zero) that does not allow processing to proceed in a
"normal" manner. From the point of view of the user, exceptions

should be handled automatically and/or error messages should be

meaningful. From the point of view of a program, a mechanism

should be provided to trap exceptions (i.e., to transfer control

to a specified point when an exception occurs).
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WHDL

This report has been written to describe some proposed

changes to the TI-HDL to conform to the recommendations of

the IDA Summer Study which collectively specify a new language,

VHDL. Since some, but not all, of the VHDL features are incor-

porated it will be referred to as WHDL*. The reasons behind

this (omitting some VHDL features) were in trying to preserve

the conceptual integrity of the TI language as it now stands.

Many of the Summer Study suggestions would have torn this

conceptual fabric. The subcommittee felt that WHDL should be

able to serve the immediate (Phase II) needs of the VHSIC

program. This document is not meant to design a new language;

rather its intent is to point out where the TI-HDL falls short

of the requirements document and suggests some changes that

would try and bring the TI-HDL up to the current requirements.

The section numbering of this report, starting at Section

3.0, corresponds to the numbering of the TI-HDL manual. Com-

parisons between the manual and report should be easier. No

final syntax is implied in this report.

The members of the committee which prepared this section

were:

David Ackley Scott Perkins
Manuel d'Abreu Richard Sanders
Ernest Codier Myke Smith
Clement Leung Bill Stewart.

*For Woods Hole HDL.
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WHDL

1.0 VHSIC-HDL BLOCK STRUCTURE

1.1 The VHSIC-HDL is a block-structured language which permits the

description of hierarchical designs. An outline of the VHSIC-HDL blocks is

given in Figure 1. There are several types of blocks, namely:

DESIGN blocks describe the topmost block in the design hierarchy, this

is the root of the design tree. A DESIGN block may only be

instantiated once.

MODULE blocks describe design entities which are blocks at other than

the top level. They can be multiply instantiated.

These blocks (DESIGN, MODULE) describe designs with a variable

behavior and/or structure which are fixed by elaboration at the "time"

they are instantiated. These blocks may also exhibit a fixed behavior

and/or structure.

PROCEDURES which are used to enhance the readability and coding ease

of behaviors and are analogous to procedures in PASCAL or subroutines

in FORTRAN.

FUNCTIONS which are commonly used logical or arithmetic entities which

return only a single type. All function arguments are input values

that are "evaluated" upon function invocation. Since global variables

are outlawed, functions will have no side effects. There are several

"built-in" functions in WHDL.

1.2 DESIGN and MODULE blocks consist of seven sections of which all

but two are optional. These are:

GLOBAL DECLARATIONS (optional)

ENVIRONMENT (optional)

BEHAVIOR

STRUCTURAL

TIMING (optional)

TEST (optional)

PERSONALIZATION (optional)

Either BEHAVIOR or STRUCTURE must be provided.
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1.3 The structure herein defined is intended as a description wherein

each block may be compiled separately. Global declarations, see 1.6, may

appear in each block by virtue of an INSERT (or equivalent) verb which

includes the globals defined in the DESIGN with the MODULE block. Binding

of these structures for simulation may be achieved via a loader. Globals

defined in one DESIGN may not be referenced by another DESIGN even though

they are loaded together. Thus, the DESIGN (and all its subordinates)

forms a scope of access for all of its globals. Communications between

designs are established exclusively through the I/0 lists.

1.4 A DESIGN or MODULE block will include behavioral descriptions

which, along with its referenced procedures and functions, are

self-contained, i.e., they form a complete behavior for that level of

design. As that block is decomposed, the behavior of each subordinate is

prepared and the structural section of the block is coded. The structural

description of the block and the behavioral descriptions of the

subordinates together provide a description which is functionally

equivalent to the behavioral description of the block.

An important point to note is that the sections in a DESIGN block

override the sections in the MODULEs that make up a design. For instance,

the ENVIRONMENT section for a MODULE must be equal to or some "subset" of

the DESIGN block's ENVIRONMENT. Another example is using the DESIGN

block's PERSONALIZATION section to change the contents of some memory that

may have been previously initialized by a MODULE's PERSONALIZATION section.

In this way a MODULE could represent a micro-coded element and the DESIGN

block changes its micro-code.

1.5 Global declarations include user-defined data types, constants

and universal names. The user-defined data types define data abstractions

which characterize signals, constants and variables for that design.

Global constants provide a means of deferring design decisions by encoding

the behavior in terms of named constants which may be easily changed.

Universal names define signal names, buss names, voltage names, etc. which

are used throughout and therefore are common through all levels of the

design. Their purpose is soley for documentation purposes and to insure

that the same name is always used in argument lists. For example, Vcc is
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not called power in different routines or modules. The existence of a

universal name in the global declarations does not negate the requirement

for that universal name to appear in an I/O list. Procedure, function,

module and macro names may also be global names depending upon how

instantiation and elaboration syntax is developed.

There are no global variables. All items must go through a signal

list with an attribute that says whether it is NODE, IN, OUT, INOUT. This

is for clarity and debugging. See Legard 77 and Wulf 73.

1.6 Macros are elaborated to produce specialized behavioral or

structural VHSIC-HDL code. This may be viewed as a mechanism for

"tailorinq" the user's code during a "pre-compilation" process.

1.7 The EN'IARONMENT Section is intended as a mechanism via which

general desuGn requirements and characteristics may be expressed. Such

things as pow, ipply voltages, power consumption, space, thruput, etc.,

may be expressel. Technology selection may be specified. For cases where

design 1'0 signal levels are specified, attributes used in the signal I/O

list may be herein defined. This section is intended for use within design

blocks only. Checks should be made on the consistency of the ENVIRONMENTs

for each block.

1.8 The BEHAVIOR Section contains a procedural (algorithmic)

description of the behavior of the block. It consists of sub-sections

containing (local) declarations and statements. The declarations define

data types, constants, variables, registers, terminals, clocks and external

procedure or function names which are peculiar to that behavior. This is

followed by a series of sequential and/or concurrent statements. A wide

variety of such statements is provided in order to satisfy descriptive

needs ranging from tne design concept to a behavior which is directly

mappable into hardware.

1.9 The STRUCTURE Section is an expression of the design block in

terms of lower level modules.

1.10 The TIME Section contains assertions relating to the timing

relationships of the input and output signals. As a means of increasing

the utility of this section, we suggest the inclusion of labeled

statements. These statements are either expressions or triplets of
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numbers. These labels are used in the BEHAVIOR section to point to an

expression that is to be evaluated for the incremental time calculations.

Examples are (MIN, NORMAL, MAX), a distribution function, etc.

An abstract I/0 timing model for a block can be defined.

1.11 The TEST Section contains stimuli and results required for

functional and perhaps fault tests. The form and existence of these

statements are negotiable (between contractors). Functional tests may also

include assertions upon the timing relationships of stimuli and results.

1.12 A PERSONALIZATION section is required to describe the contents

of RAM, ROM, PLA, etc. It is conceivable that a designer may wish to

describe microcode behaviorally as existing in a composite memory. It will

be necessary, therefore, to express the partitioning of that code into

parts in the physical structure. A specific syntax is not suggested.

1.13 It is important that a data abstraction capability (ala Ada) be

provided. This capability allows the user to define his own daa types and

the (allowable) operations upon those types. With this capability it is

possible to relegate LOGIC and VALUE (TI-HDL data types) constants to

user-defined types. A mechanism for defining the operations upon

user-defined types is suggested in Ada. It should be noted that not all

ti.e features of software-oriented data abstraction are necessary for an

HDL. For instance, finalization routines and types as parameters.
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2.0 SUGGESTED SYNTAX CHANGES

2.1 Instantiation

In order to make the code more readable at the block level we would

suggest the following (approximate) syntax:

[DESIGN BLOCK] name (signal _list)

NODE (node-signal-list)

IN (in_signal_list);

OUT (outsignal list);

INOUT (inout_signallist);

The signals in signallist are in the same order as signals in the

STRUCTURE section. The signal names in signal _list are the same names used

in the NODE/IN/OUT/INOUT_signal_list. The signals in the NODE, IN, OUT,

INOUT lists can have a general attribute list as discussed in Section 2.3.

The entire NODE,IN,OUT,INOUT list can have an attribute list which is

common to all the listed signals. (NODE implies no directions for signals,

this should only be used for circuit-level descriptions and lower).

2.2 Generic Modules

Elaboration is a technique by which code can be conditionally tailored

based on a set of parameters. A common implementation of this technique is

called "conditional macro expansion." For our purposes a fairly powerful

syntax, beyond simple text substitution, is required. Two examples are the

IBM MACRO Assembly Language and DEC's MACRO Assembler. A token type of

processor appears to be of sufficient power rather than a more powerful

character string processor.

There should be two types of elaborations, ona which generates in-line

(behavioral or structural) code (see 1.6) and one which generates entire

blocks for subsequent compilation. It is conceivable that both aspects

could be included within the same elaboration, perhaps using a LOCAL and

REMOTE attribute on the code blocks. The syntax should be identical for

both types. An example of a block that is elaborated for subsequent

compilation is the MODULE block.

MODULE modulename (signallist; elaboration-parameters)
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An example of inline code could be:

MACRO shifter (A,B,C)

ENDMACRO

Where A, B, and C are the elaboration parameters.

2.3 Literals should be any-base and could use the following syntax:

16#DF9E#; hex, 2#101#; binary, 8#7034#; octal, 2E6 implied decimal integer,

3.14159 implied decimal real, .271828E1 etc.

In addition, a general syntax for user-defined data types should be

developed. Assuming user-defined types 'point' and 'value', their literals

may be

(X,Y):point

(15.7, UF):value

2.4 Attribute lists should be general and free-form in the nature of

TI's TEXT attribute, for all attribute lists, rather than be particularized

for each use. It would be the job of the application programs to scan an

attribute list at any particular level to determine if any pertinent

attributes are defined.

@ (attribute-list)

@ (TTL, ICSB=NOMMINMAX,FANOUT=6)

NODE, IN, OUT and INOUT should not be elements in an attribute list. They

should be pulled out to clarify exactly what the signal is to do, rather

than being tucked away in a long list of attributes.

BEHAVIOR levels should be able to have an attribute list. This list

could, for example, specify the level of simulation for this specific

block.

2.5 Implicit data types are:

INTEGER (MININT..MAXINT)

REAL (MINREAL..MAXREAL)

DOUBLE PRECISION (MINDREAL..MAXDREAL)

BOOLEAN

CHARACTER

RECORD
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- A mechanism may also be needed to allow variant forms of records.

- Coercions between different implicit data types need to be defined.

- Coercions between different user defined data types are probably best

handled in the data abstraction mechanism.

Character is not meant for I/0 rather it is a mechanism for extending

binary representation.

2.6 Parameters

Parameters in the TI-HDL are a means of defining a value and an

associated unit of measure. There will need to be a way of representing

this in a natural fashion. Using a RECORD (like PASCAL) we would define a

capacitor having a lOpF value as (1O,pF). This is not very pleasing. We

need to be able to write and parse (lOpF).
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3.0 VHSIC-HDL SECTIONS

3.1 STRUCTURE Section

A component should be one of the following forms:

component name: modulename (signal_list)

where each signal is explicitly defined and typed, with its own attribute

list, as defined in Section 2.3.

OR

component name: module name (signal_list; elaborationparameterlist)

Elaborationparameter list is used to elaborate this specific instance of

generic-name. Signal_list has the same ordering as the signal-list in the

block definition. The specific NODE, IN, OUT, INOUT signallist with

attributes should appear on any listing for visual verification and future

reference. This can de derived from the instantiated block by a cross

reference lister.

The componentname need not be supplied. A translator generated name

will be supplied.

The iterative structuring capabilities needs improving to explicate

subscript iteration. The "first", "middle", and "last" elements in an

iteration should be able to be handled separately.

3.2 BEHAVIOR Section

The following section describes suggested changes to the current

TI-HDL.

3.2.1 Standard Models

The standard models should not be explicitly stated in the language;

this is more appropriately a "library" and binding problem.

3.2.1.1 Program Header

"FUNCTION" and "LOGICAL" should be deleted because they indicate a

specific type of simulation.
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3.2.1.2 Behavior Declarations

VARIABLE var name OF TYPE-name initial value

CONSTANTS const name OF TYPE name : = structured-constant

REGISTER regname of 'YPEname initialvalue

TERMINAL term name of TYPE-name

MEMORY mem name of TYPE-name : initial values

CLOCK clk .ame [duty-cycle, number phases]

TYPE typename=type definition

EXTERNAL externally_definedprocedurename (args) : typename

LABEL identifier

-REGISTER defines what are registers for register transfer

simulation. Objects of type REGISTER can only be assigned with the

transfer operator.

-TERMINAL defines what are terminals for register transfer simulation.

-MEMORY is for purposes of memory management at simulation time, and

it aids the hardware synthesis application program.

-CONSTANT allows defining structured constants.

-TYPE is used to define new types. All types must be defined. No

anonymous types. A type can be enumerated, a ordered set of values.

(Problems with enumerated types and solutions in Moffat 81 and Enum 81).

Types should be parameterized, but types as parameters are an open

question.

-CLOCK will be used for defining specific clocks.

- LABEL defines identifiers that are used as labels in both the

BEHAVIOR (GO TO and DO) and TIME sections.

-EXTERNAL defincs externally-compiled procedures or functions. This

is not a declaration.

-We propose that data abstraction capabilities similar to Ada's

package be implemented.

-Use of predefined characteristics of a data object, such as its size,

by using symbolic names. This is the Ada "attribute."
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3.2.1.3 Program Statements

-Propose that a symbol be used to denote sequentially ";" and a

symbol, "I" upright bar, or exclamation mark, "!", be used to denote

concurrency. This is much clearer than a comma. (The upright bar or the

exclamation mark will be chosen depending on the type of terminal used.)

-Case Statements

o Case Label: The "by integer" option is valid for integers

only.

o The case "expression" and "case-label" should be expanded to

handle integer, boolean, enumerated types, etc.

o Case Labels should allow enumeration of elements in the label,

for example:

(5,8,9,10,11): statement list

Guarded Commands

The notion of guarded commands (Hoare 78) may be used to extend the TI/HDL

in describing how a behavior block synchronizes with input signal changes

and foresees new input values. A guard is a boolean condition. Some

examples of guard conditions are:

-a ready line (used to implement a hand-shake protocol)

undergoes a 0 ---) 1 (or 1 --->0) transition

-a clock signal undergoes a I ---> 0 or 0 ---> 1 transition.

-a state variable has a certain value

-AND/OR of guard conditions

A behavior block expressed using guarded commands is organized as

follows:

BLOCK...

<declaration of variables and their initialization>

[[guard 1]]: BEGIN <body1> END;

[[guardn]]: BEGIN <bodyn> END;

END block;

When this behavior block is first entered, its variable are instantiated

and initialized. Thereafter, it repeatedly evaluates guards, picks one
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that is satisfied, and executes the corresponding body.

1) Mutual Exclusion

If more than one guard is satisfied due to a new input signal change

or a new state variable update, one of them is selected by arbitrary choice

and its associated body executed.

2) Except for issues of fair arbitration (every active guard will have its

associated body executed at some time, and cannot be locked out forever),

the guard commands are equivalent to:

IF [[guardl]] THEN BEGIN <bodyl> END

ELSEIF [[guard 2]] THEN BEGIN (body2> END

ELSEIF [[guardn]] THEN BEGIN <bodyn> END

3) Self-Timed Implementation of Packet Systems (Petri Nets too)

Example

BLOCK...

(declaration and initialization>

[[arrived (packet-port-i) ... arrived (packet-port-n)]]

BEGIN (process> END;

[[acknowledged (output-port-i) ... acknowledged (output-

port-m)]] BEGIN <send output> END;

END block;

4) Finite State Machines

Example

BLOCK

s:integer ::0;

[[s=O]] BEGIN initial state END;

[[s=l <some input condition> ]]
BEGIN ..... S:=a; END;

END
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5) Clocking

Example

BLOCK

<declaration and initialization>

[[clock-phase I state=O]] BEGIN.. .END;

[[down transition (phase 2-clock) state=extend-cycle ]
BEGIN...END;

END

-Incremental Time

Sequential statements can have delays assigned to their execution.

Delay times can be accumulated to depict the total delay due to the

execution of a block of sequential statements. The accumulated delay can

be used to schedule value change to output signals. The following

illustrates the use of the incremental time.

BLOCK ALU

IN: (A,B,C,D,CONTROL),

OUT: (E);

IF (CONTROL) THEN BEGIN

Z=A+B <5>;

Y=Z.AND.C <2>;

E=.NOT.Y <1>;

END

ELSE BEGIN

Z=A-B <3>;

Y=Z.XOR.C <2>;

X=Y+D <5>;

END=.NOT.X <1>;

END

END(ALU);

The values enclosed in < > denote the delay due to the execution of the

statement. If a label is found within < >, then the labeled expression is

in the TIME Section. This expression can be an arithmetic function or a

set of values.
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-WAIT statement

This statement will interrupt execution of a particular "block" and

schedule its resumption after the specified time. When the time specified

by the WAIT statement is elapsed, the "block" will resume execution at the

statement where its execution was interrupted.

When a "block" is in WAIT, any input changes will not resume its

execution; however, when the "block" comes out of WAIT, execution will

resume with the new input changes, if any.

The following example illustrates the use of the WAIT statement.

BLOCK JUNK

IN: (A,B,C,D,E,);

OUT: (SUM,COUT);

IF (CONTROL) THEN BEGIN

Z = A+B+C <5>;

WAIT <3>;

SUM=Z.OR.E<1O>;

END

ELSE BEGIN

Z=A-B <2>;

WAIT <4>;

COUT=Z.AND.E <10>;

END

END;

The WAIT statement in the "THEN" clause wi, IL cction for three

time units. The internal variable Z will be scheduled before the WAIT is

executed. After the WAIT time elapses, execution will resume with the

statement following the WAIT.

-SCHEDULE statement

We propose that this be replaced by the OUTPUT statement. The

semantics of OUTPUT will be defined. The OUTPUT statement does not imply

the existence of a simulator like the SCHEDULE statement does.
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The OUTPUT statement specifies a future change of value for an output

signal. The following illustrates its use:

SUM = A+B <5>

OUTPUT SUM AT <8>

CARRY = A.XOR.B 3>

OUTPUT CARRY

In the first instance of OUTPUT, SUM will have its new value at (5+8) time

units. In the second instance of OUTPUT will make CARRY get its new value

at (5+8+3) time units in the future. Note that in the case of sequential

statements the delay is accumulated. The default delay for OUTPUT is one

time unit. If the delay for the OUTPUT statement is a label, then the

delay will be retrieved from the TIME Section. The delay for the OUTPUT

statement can also be an arithmetic function.

-Special statements

The special statements should be deleted. TESTPATTERN in the TI-HDL

can be done in the VHSIC-HDL TEST Section. BREAKPOINT, the TI-HDL

constructs should be done at simulation time and not be a part of a

BEHAVIOR section.

3.2.1.4 Expressions

-VCHANGE is a boolean function. We find it necessary to have a RISE

and FALL function to indicate whether a signal is rising or falling.

-A transfer operator (<---) is required for assigning data to objects

of type REGISTER. The right hand side of the transfer expression should be

able to include a condition(s) IF-THEN-ELSE or a CASE.

-Define a reduction operator that works in conjunction with the

logical operators (AND,OR,XOR,EQU,NAND,NOR) and that work over a boolean

vector, e.g., AND/vector.

-Operators should include exponentiation. The NOT operator in Table 8

is not a binary operator.

-Operator Precedence - expand this to include reduction and

exponentiation operators. Exponentiation should have precedence between

that of unary operators and multiplication. Reduction should have the same

precedence as a unary operator.
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-Arithmetic functions such as the tri-rometric and logarithmic

functions should be included.

-For enumerated types and characters, several component selectors are

required, for instance, finding the value succeeding X in the enumeration

or character set. There are several different approaches, that of PASCAL

(PASCAL 75), Ada (Ada 80) and Euclid (EUCLID 77).

-Delete the PARITY operator since the reduction XOR accomplishes

this.

-Add a COMPARE UNDER MASK function that would take a mask of 0,1, and

? (don't care) and compare it to a boolean vector; if the comparison is

correct return a true.

3.2.1.5 Concurrency

The TI approach to describing concurrency is to push it out of the

BEHAVIOR into the STRUCTURE. The mechanisms for describing concurrency in

the BEHAVIOR section are therefore not very powerful. The concurrency

capability could be expanded to permit the description of very complex

control threads in the BEHAVIOR section, mechanisms for this are described

in the addendum. This, we believe, would add to the complexity and burden

of the simulator. (It should be strongly noted that structural

decomposition does not necessarily mean a physical decomposition but that

it can as easily be used to describe logical decomposition.)

Sequence concurrency in the TI-HDL is accomplished by executing blocks

in parallel. The execution of sequence is done in a 'step-lock' mode (TI

terminology). The following example, demonstrating sequence concurrency

with the DO statement, comes from the TI manual.

E.G., 'DI ;

DO A, DO B, DO C;

'D2l;

'D311

A: BEGIN

'Al'; 'A2'; 'A3'; 'A4';

END
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B: BEGIN
'B1I1;

END;

C: BEGIN

'CI'; 'C2'; 'C3';

END;

The statement execution sequence is:

STEP STATEMENTS IN PARALLEL

I D1

2 Al, BI, Cl

3 A2, C2

-4 A3, C3

5 A4

6 D2

7 D3

The execution of statements in a sequence (0l, 02, 03) is suspended

when a DO is encountered until the sequence within the block is complete.

In concurrent blocks, the longest sequence must complete before continuing

the original sequence. If within a block there exists another BEGIN-END

pair this is treated as a single statement in terms of sequence

concurrency. For instance, if in the above example statement 'Al' is a

BEGIN-END pair then statements 'BI' and 'Cl' would be executed in step-lock
with the first sequential statements of 'Al' and then the rest of 'Al'
would be executed before going on to step 3.

A question was raised as to what happens if the following example is

executed:
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E.G., DO A, DO B;

A: BEGIN B: BEGIN

D C

DO C;
DOGC;

END END;

C: BEGIN

END;

Since A and B can be of arbitrary complexity in terms of control

statements, one cannot predict without a great deal of analysis, whether C

will be invoked simultaneously by both A and B or whether C will be invoked

while currently executing A or B. TI says that the statements are lined

up, for the step-lock mode execution, dynamically. In other words the

"lining" up of the statements is not done in a static fashion at the time

the source code is translated rather it is done dynamically by the

simulator at execution time. The user must be aware that if the set of

sinks and the set of sources for assignment statements, executed in

sequence concurrency, is not disjoint s/he is inviting problems when a

physical implementation is realised. The simulation will always be

deterministic, but if the realization is with asynchronous hardware, the

hardware's response may not be deterministic.

To insure determinacy of the hardware in the above example, only one

invocation of block C at any one time can be permitted. This is mutual

exLlu ion. An optioial attribute of CRITICAL for a block of code can be

implemented. A CRITICAL attribute will inform the simulator that only one

invocation of this block of code at a time is permitted and any other

requests for the code are to be queued up until the block is idle. Using

the attribute for mutual exclusion allows the use of the concept and does
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not require a description of a mutual exclusion implementation. This can

be deferred until much later in the design process.

There is an unpublished and yet unimplemented feature of the TI-HOL

for synchronizing sequence concurrency. The syntax is:

identifieri: SYNC identifier 2, identifier 3,

Identifier I is optional on all but one of the SYNC statements. The

identifiers are not labels, in other words the identifiers cannot be

objects of a 'goto'. The semantics of this statement are as follows. Any

two blocks, executing in parallel, can be synchronized by saying

identifier: SYNC identifier

in each block. The identifiers in each of the two SYNC statements are the

same. When a control thread reachs a SYNC statement, it waits until

another SYNC statement is executed with the same identifier. Then both

control threads proceed on executing. If multiple identifiers are listed

as the object of the SYNC statement then if any one of the identified SYNC

statements is also executed the two control threads proceed on executing.

The list of identifiers is an 'or' condition. Thus, only two SYNC

statements can be synchronized at a time. This ought to be modified to

allow the synchronizing of an arbitrary number of control threads. This

could be done by separating the identifiers with the 'or' or 'and'

operators.

Step-lock mode execution cannot be carried out if incremental time is

used. Using the first example, add an arbitrary time to the execution of

the sequential statements. Now, map this into the statement execution

sequence. ake step 2, for instance, the statements 'Al', 'BI', and 'Cl'

are to be , -cuted in parallel. If we give arbitrary times 5, 3, and 7 as

execution times to 'Al', 'Bi', and 'Cl', respectively, then what does this

mean in a step-lock mode of execution? -1 new set of semantics needs to be

developed to describe the simulation of statements which have an arbitrary

execution time. An approach to handling this problem would be to disallow

time within a block, which is the obejct of a DO or is to be executed

concurrently with another block, or allow a time specification for the

entire block. For instance,
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DO A <8>;

None of the statements in block A could have a time specification. But

block A is specified as taking 8 time units.

More investigation is needed into the defining the proper constructs

for concurrency. TI's sync is insufficient. The constructs should define

concepts and not imply implementations.

3.5 Time Section

-Specify timing constraints that are to be checked for, e.g., set-up

and hold time.

-Specify details of timing "variables" used in the BEHAVIOR section,

e.g., (min, Nom, Max) or a distribution function.

-Abstract I/O tim'nq mode! for a block. This model is used for

resource analysls v* p ,mu'aton where only I/0 timing is of interest and

no 1/0 data trans:,f : I " Ir- required, e.g., constant Gaussian with mean

and standard deviat':n

3.5.1 Delays

-We find it necessary to be able to specify delays in terms of a

nominal value, standard deviation and statistical distribution. The

distribution can be specified as normal, Gaussian, etc.

-Delays should also be specified as a function of loading. Also, we

find the necessity to be able to specify media delays (i.e., delays due to

layout, etc.) as a lumped delay associated with an output signal.
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Addendum

A method of nandling behavioral concurrency

Currently, the TI-HDL cannot support the description of arbitrary

-concurrency in a behavioral description. Sequence concurrency can be

initiated by DO A ! DO B; This has an implied forking of A and B and an

implied join after the completion of A and B. The main control thread does

not advance until after all "forked blocks" are terminated. This is a

limited means of expressing control threads. We propose the following

attributes for a block.

PROCESS - the block is to be executed as an asynchronous control

environment. An activation of a PROCESS block starts the

block executing concurrently with the caller.

CRITICAL - the block contains an artibration mechanism so that one and

only one activation of the block can be in progress at the

same time. Activations are queued if the block is already

active.

PROCESS and CRITICAL are independent attributes. The former controls the

continuation of the callers, the latter controls concurrent callers. When

both attributes are present, CRITICAL takes precedence. That is, the

caller of a CRITICAL PROCESS block is delayed until the block is free or

idle before it continues executing in parallel. Attempting to activate an

already active non-critical block is an error and it yields unpredictable

results. These attributes do not imply any implementation but represent

concepts in a clear and unambiguous manner.

The "DO" statement then operates as a fork operation on PROCESS

blocks. These spawned control threads can be reunited to the main or

spawning control thread by JOIN (Labeled block1, Labeled block2, ...).

They can also be arbitrarily terminated by any other control thread by

issuing TERMINATE (Labeled processblock). The processulock can terminate
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itself by reaching its "END" statement. The JOIN operator forces the main

control thread to wait until all listed process blocks are through. The

"END" without an associated JOIN implies the control thread is simply

stopped, a dead end. It has done its duty but the main control thread

doesn't need to wait on it. It may be useful to check if a process block

is currently active ISRUNNING (Labeledprocess block). An expansion on

the use of CRITICAL is the idea of priority requests. A labeled process

is currently active ISRUNNING (Labeled-processblock). An expansion on

the use of CRITICAL is the idea of priority requests. A labeled process

block can be forked with a priority by saying DO A with PRIORITY:variable.

Any CRITICAL blocks could arbitrate queued requests by levels of priority.

An example of this mutual exclusion, based on priorities, is modeling a

disk driver, which has levels of urgency depending on its data latency,

requesting the UNIBUS, which is an asynchronous system.

To coordinate two or more separate control threads one could use some

form of semaphore by setting and clearing a particular flag that is common

to the control threads. Another mechanism that does not imply any

implementation but clearly states what is desired is the SIGNAL(Labeled_

Process block,s) and RECEIVE(LabeledProcess block,s). SIGNAL signals

LabeledProcess block with 's' and the control thread in the signaling

block does not continue until the signal is RECEIVED. By using Labeled

process blocks in both SIGNAL and RECEIVE we can explicitly choose who is

communicating with whom.
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Block name [DESIGN]

I/O List

Global declarations; (Design only)

Data Type definition

Constants

Universal Names

Procedures and Functions

MODULE definition

Macro definition

ENVIRONMENT Section; (Design only)

Power Consumption

Space Requirements

Thruput/Performance

Radiation Hardening

Reliability, Availability, Serviceability

Technology Selection(s)

Attribute Elaborations

BEHAVIOR Section;

Declarations

Data Types

Constants

Variables

Registers

Terminals

Clocks

Labels

External

Behavior Body

Assignments

Conditionals

Control

Figure 1

A-25



Procedure Invocations

Function Invocations

Iterations

Macro Elaborations

Timing Constructs

Sequence/Concurrence Constructs

Procedure Content

Procedure name (argument list);

Declarations

Data Types

Constants

Variables

Procedures and Functions

Procedure Body

Assignments

Conditions

Controls

Procedure Invocations

Function Invocations

Iterations

Transfers

Function Content

Function name (argument list):type_name;

Argument list has only input arguments:

Declarations (same as procedure)

Function Body (same as procedure)

Figure 1 (cont.)
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Macro Content

Macro name (argument list);

need a "procedural" macro expansion language, not limited to

text insertion. Basically generates in-line (local) and

appended (remote) code but may use full power of procedures in

doing so.

Structure Section

Statements

Module Instantiations

MODULE Elaborations

TIME Section

Assertions (on signal timing relationships)

Label: expression

Label: (MIN, NORMAL, MAX)

Abstract I/O timing model

TEST Section (design only)

Functional tests

PERSONALIZATION Section

RAM, ROM, PLA content

Figure 1 (cont.)
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APPENDIX B

APPLICABILITY OF Ada CONCEPTS TO HDL

An assumption of the group is that a new language, HDL,

is being developed. Our charter was to evaluate concepts from

Ada for applicability to HDL.

A common feeling among group members is that another

fundamentally different approach should be evaluated by the HDL

committee. That approach is to extend Ada for hardware

design/specification by including one or more DoD supplied

packages tailored to facilitate this. These packages would

define design entities, components of them, terminals, signals

of various kinds, clocks, other-timing features, etc., and

define functions pertinent to them.

The result of the group consists of the attached two tables,

cross referencing each other. One is a list of concepts from the

Workshop Report and the other is a list of concepts from the

Ada Reference Manual.

The members of the Committee which prepared this Appendix

were:

John Esch

Andrew Griffith

Keith Russell

Nick Mykris.

B- 3/8



- LIST OF CONCEPTS -

Applicable Applicable
Ada Code*

Concepts

1.1 Documentation

1.1.1 I/O Interface P3 E

1.1.2 I/O Behavior P8,Sll,Pl,Tl X

1.1.3 Behavior Decomposition Sll,PI,Tl,P7, X
F3

1.1.4 Structural Decomposition P4 E

1.1.5 Memory Content T2,A4,I4 S

1.1.6 ASCII Character Set A5 S

1.2 Design Oriented S3,Pl,L3 E

1.3 Use by Simulation C6 N

(executable by a simulator)

1.4 Use by Synthesis Tools C6 N

1.4.1 Enumeration Type E4 S
Representation

1.5 Use by Testing Tools N

1.6 Use by Physical Design Tools N

1.7 Translation to Other HDL's C6 N

1.8 Portability A5 S

1.9 Application to Other Deliverable ?
Items

* X a Ada's is excessive, S E Ada's is sufficient

E S Ada's needs extension, N E Ada does not have an applic-
able concept.
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(Continued)

- LIST OF CONCEPTS Applicable Applicable

Ada Code

Concepts

2.0 Hierarchy Considerations P8,Sll,Pl,Tl, X, E

Characteristics of design P7,F3
models " X, E
Composite system consider-
ations " X, E

Terminals/Ports P3 E
2.0.1 Entity Typing P7 E

2.1 Reference of Objects C2,Nl,CI S

2.1.0 Naming of Physical Q1 S
Entities

2.1.1 Parameter Pairing P3,B5 S

2.1.2 Terminals or Ports P3 E

2.1.3 Records R3 S

2.1.4 Arrays A4 S

2.1.5 Attributes A7 S

2.1.6 Networks of Modules P7 S,E

2.2 Collections of Related Entities P1 X

2.3 Modularity C6,S3,Gl E

2.3.1 Interconnection of P3,P7,A6 E
Entities

2.4 Libraries L3 S

2.4.1 Iteration Cl,L7 E

2.5 Completeness C6,S3 E

2.6 Recursion R4 S C?)

3.0 Behavior Seel.I.3,D2,B3 X,E

3.0.1 Data Declarations D2 X,E

3.0.2 Program Control
Statements S4 X
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(Continued)

- LIST OF CONCEPTS - Applicable Applicable

Ada Code

Concepts

3.0.2.1 Repetition L7 S

3 0.2.2 Selected Cl S

3.0.2.3 Alternating 12 S

3.0.2.4 Directed G3 S

3.0.3 Transformations Pl,P7 X,E

(Data Out is a function
of Data In)

3.1 Behavior Description P7 S

3.1.1 Abstract Data Types P1 X,E

3.2 Data Types T2 X,E
3.2.0.1 Define Data

Types T2,D2 S

3.2.0.2 Built-in
Data Types T2 E

3.2.0.2.1 Enumeration
Types E4 S

3.2.0.2.2 Integer Types ±5 S

3.2.0.2.3 Real Types R2 S

3.2.0.2.4 Pointer Types Al S

3.2.0.3 Variable Range R! S

3.2.0.4 Grouping and
Association
of Objects C8 S

3.2.0.5 Records R3 S

3.2.0.6 Records with
variant fields V2 S

3.2.0.7 Data Precision P5,A2 S
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(Continued)

- LIST OF CONCEPTS - Applicable Applicable

Ada Code

Concepts

3.2.0.8 Type Checking T2 S

3.2.0.8.1 Overrideable C7 S

3.2.0.9 Compiler defined
constants for 15, P1 S
data storage
attributes (Max int)

3.2.1 Data Abstraction P1 X,E

3.2.2 Enumeration E4 S

3.2.3 Range Rl S

3.2.4 Precision P5,A2 S

3.2.5 User-defined Data Types T2 E

3.2.5.1 Character Strings C3 S

3.2.5.2 Bit Strings B4,A4 S

3.2.5.3 Define New Data
Types (records) T2,S12 S

3.2.5.4 Pointers (Access
variables) Al S

3.2 .5.5 Composite Data Types (records) R3 S

3.2.6 Deferred Definition 12,B5 S,E(?)

3.2.6.1 Translation to
different levels of
abstraction P1 S

3.2.7 Stronq Type Checking T2 S
3.2.8 Coercions
3.2.9 Reterence to Attributes A7 S

3.2.10 Scope and Visibility S2,V3 X
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(Continued)

- LIST OF CONCEPTS - Applicable Applicable

Ada Code

Concepts

3.3 Operators and Expressions A3,L6,E7,RB7 S

3.3.0 User definable operators and functions 02 S(?)

3.3.1 Basic Operators E7,C2,Bl S

3.3.2 Compare under mask F3,02 S

3.3.3 User-defined Operators 02 S(?)

3.4 Control Flow S4 E

3.4.0.1 Stepwise Refinement PISI1 S

3.4.0.2 Control Abstraction T2,Pl E(?)

3.4.0.3 Parallel (concurrent execution) Tl,R7 E

3.4.0.4 Mutual Exclusion Tl,R7 E

3.4.1 Control Construction S4 S

3.4.1.1 IF 12 S

3.4.1.2 CASE Cl S

3.4.1.3 LOOP L7 S

3.4.1.4 EXIT E6 S

3.4.1.5 BLOCK B2 S

3.4.1.6 RETURN R10 S

3.4.1.7 GO TO G3 S

3.4.2 Control Abstraction T2,Pl E(?)

3.5 Timing N

3.5.0 Timing Delays (Nominal, Min,Max) T2 S

3.5.1 Synchronous vs. Asynchronous N

3.5.1.1 Interrupts 16 ?

3.5.1.2 Pipelining T2,Pl E(?)

3.5.1.3 Finite State Machine T2,PI E(?)
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(Continued)

- LIST OF CONCEPTS - Applicable Applicable
Ada Code

Concepts

3.5.1.4 Concurrency Tl,R7 E

3.5.2 Simulation Option Interface P1 S

3.5.2.1 Event Driven

3.5.2.2 Clock Synchronous

3.5.2.3 Path Tracing

3.5.2.4 Packet Communication

3.5.3 Timing Constraints E7 E

3.5.3.1 Set-up Time, Hold Time, T2,Pl S
Pulse Width

3.5.4 Parallel Element Models TI,R7 E
(Synchronization-Rondezvous)

3.5.5 Rise and fall Times T2,Pl S

3.5.5.1 Periodicity T2,Pl S

3.5.5.2 Leading and Trailing T2,PI S
Durations

3.5.5.3 Multistate Logic T2,Pl S
(HI, LOW, HIS, UND)

3.5.5.4 Delays (NOMINAL, MINIMUM, T2,PI S
MAXIMUM)

3.5.6 Clock Definitions C4 E

3.5.7 Time Control Concepts TI,R7 E

3.5.7.1 Concurrency TI,R7 E

3.5.7.2 Path Delay Tl,R7 E

3.5.7.3 Race Condition Tl,R7 E

3.5.7.4 Arbitration Tl,R7 E

3.5.8 Termination of Currently N
Executing Procedures



(Continued)

- LIST OF CONCEPTS - Applicable Applicable
Ada Code

Concepts

4.0 Structure P7 E

4.0.1 Instantiation N

4.0.2 Elaboration El E

4.0.3 Default Parameters V3 S

4.1 Connections N

4.2 Generic Models Gl S

4.3 Permutability G1 S

4.4 Interaction in Structure N
Descriptions

4.5 Iteration in Structure
Descriptions N

4.6 Procedure Modeling P7 E

4.7 Extensible Number of Hardware L3,S3 S
Primitives
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(Continued)

- LIST OF CONCEPTS - Applicable Applicable
Ada Code

Concepts

4.8.1 Sets as a way to N
Model Networks

5.0 Guidelines
5.1 Kernel Plus Extensions

Equals Language ?
5.2 High Level Parallelism
5.3 Verifiability S

5.4 One Language E

5.4.1 Economy in number of X
statement types

5.4.2 Friendly to the User X

5.4.3 Extensibility through the Gl S
use of generic
components and oper-
ators

5.4.4 Clarity and Visibility S
terseness

5.5 Technology Independence S

5.6 Meaningful Key Words S

5.7 Comments C5 S

5.8 Compiler Directives C7 S

5.9 Expression of Invariance E7 E

5.10 LR(l) Grammar S

5.10.1 BNF specification S

5.11 Execution Conflicts S

5.12 Multi-valued Logic T2,Pl S

5.13 Incremental Compilation N
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- LIST OF CONCEPTS - Reference Applicable
(From Ada) Manual Workshop Report

Section Concepts
(By Section)

Al Access Type/Pointers 3.3 3.2.0.2.4,
3.2.5.4

A Accuracy constraint :.3, 3.5.6 3.2.0.7,
3.2.4

A3 Arithmetic Operators 4.4, 4.5 3.3
A4a Aggregates & their 3.6.3 1.1.5

assignments
A45 Arrays 2. .1.4, 3.2.5.2'

A5 ASCII Character Set 3.5.2 1.1.6, 1.8
A6 Assignment 5.1 2.3.1
A7 Attributes 3.3 2.1.5, 3.2.9
Bl Base of Numbers 2.4.1 3.3
B2 Block 5.1 3.4.1.5
B3 Body 3.9 3.0
B4 Boolean Types 3.5.3 3.2.5.2
B5 Box 3.6 3.2.6, 2.1.1
Cl Case Statement 5.1 3.0.2.2, 2.4.1,

3.4.1.2
C2 Concatenation 2.6 3.3.1
C3 Character Type 3.5 3.2.5.1
C4 Clock (current time of day) 9.6 3.5.2
C5 Comment 2.7 5.7
C6 Compilation 10.1 1.3, 1.4, 1.7,

2.3, 2.5
C7 Compiler Commands 10.4 3.2.0.8.1, 5.8
C8 Composit Objects 3.6 3.2.0.4
C9 Constant 3.2
C10 Context Specification 10.1
Dl Decimal Numbers 2.4
D2 Declaration 3.1 3.0, 3.0.1, 5.2.0.1
D3 Defaults 3.7 4.0.3
D4 Delay Statement 5.1
D5 Delta of Reals 3.5.9
D6 Discreet Types 3.5
El Elaboration 3.1 4.0.2, 4.6
E2 END explicit 14.1
E3 Entity 3.1
E4 Enumerations 3.5.1 1.4.1, 3.2.0.2.1,

3.2.2
E5 Exceptions 11 5.14
E6 Exit Statement 5.1 3.4.1.4
E7 Expressions 4.5 3.3, 3.3.1, 3.3.5,

3.5.3, 5.9
Fl Fixed Point Numbers 3.5.9
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(Continued)

- LIST OF CONCEPTS Reference Applicable

Ada) Manual Workshop Report
(From Section Concepts

(By Section)

F2 Floating Point Numbers 3.5.7
F3 Functions 6 1.1.3, 2.0, 3.3.2
Gl Generics 12 2.3, 2.4.1, 4.2,

____ ___ ___ ___ ___ ____ ___ __ ___ ___ ___ 5.4.3
G2 Global Variable 

8.3

G3 GO TO Statement 5.1 3.0.2.4, 3.4.1.7
Ii Identifiers 2.3
12 IF Statement 5.1 3.0.2.3, 3.4.1.1
13 Incomplete Type Del 3.8 3.2.6
14 Initialization 3.2 1.1.5
15 Integers 3.5.4 3.2.0.2.2,

3.2.0.9
16 Interrupts 13.5.1 3.5.1.1
Li Lagels 5.1
L2 Lexical Unit 2.2
L3 Library Units 10.1 1.2, 2.4,

4.6
L4 Lines 14.3.2
L5 Literals 2.4
L6 Logical Operators 4.5 3.3
L7 Loops 5.5 3.0.2.1, 2.4.1,

3.4.1.3
M1 Modes (IN/OUT/INOUT) 6.1
Ni Names 3.1 2.1
N2 Null 4.2
01 Objects 3.2
02 Operators/Overload Del 6.7 3.3.0, 3.3.2,
03 Own Variables 7.3 3.3.3
P1 Packages 7 1.1.2, 1.1.3, 1.2,

2.0, 2.2, 3.0.3,
3.1.1, 3.2.0.9,
3.2.1, 3.5.1.3,
3.5.1.2, 3.5.3.1,
3.2.6.1, 3.4.0.1,
3.4.3.2, 3.4.2,
3.5.5, 3.5.5.1,
3.5.5.2, 3.5.5.3,
3.5.5.4, 3.5.6,

_ _ _ _ _ __ _ _ .12

P2 Paragraphing (Pretty 1.4
Printing)

P3 Parameters 6.1 1.1.1, 2.0, 2.1.1,
2.3.1

P4 Precedence 4.5
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(Continued)

- LIST OF CONCEPTS Reference Applicable

Ada) Manual Workshop Report
(From Section Concepts

(By Section)

P5 Precision 3.5.6 3.2.0.7, 3.2.4
P 6 P r i m i t i v e T y p e 7 .2 _ _ _ _2 .0,_2 .0_ _ 1 0,
P7 Procedures 1.1.3, 2.0, 2.0.1,

2.3.1, 2.4.1,
3.0.3, 3.1, 4.0,
4.6

P8 Programs 10 1.1.2, 2.0, 2.1.6
Q1 Qualification 3.5.1 2.1, 2.1.0
R1 Range Constraint 3.3 3.2.0.3, 3.2.3
R2 Real Types 3.5 3.2.0.2.3
R3 Records 3.7 2.1.3, 3.2.0.5,

3.2.5
R4 Recursion 3.3 2.6
R5 Relational Operators 4.5.2 3.3
R6 Renaming (Aliases) 8.5
R7 Rendezvous 9.5 3.4.0.3, 3.4.0.4,

3.5.1.4, 3.5.4,
3.5.7

R8 Representation Spec. 3.9
R9 Reserved Words 2.9
R10 RETURN Statement 5.1 3.4.1.6
Sl Scalar Type 3.5
S2 Scope 8.2 2.1, 3.2.10
53 Separate Compilation LU.1 J.., 2.3, 2.5,

4.6
S4 Sequence of Statements 5.1 3.0.2, 3.4, 3.4.1
S5 Shared Variables .11
S6 Simple Statements 5.1
S7 Slice (of arrays) 4.1
S8 Spacing 2.1
S9 Statements 5
S10 Strings 2.6
Sll Subprogram 6 1.1.2, 1.1.3,

2.0, 3.4.0.1
S12 Subtypes 3.3 3.2.5.3
S13 Synchronization 9.5
Ti TasKing 9 1.1.2, 1.1.3,

2.0, 3.4.0.3,
3.4.0.4,
3.5.1.4, 3.5.4,

__ 3.5.7
T2 Types 3.1 1.1.5, 3.2,

3.2.0.1, 3.2.0.2,
3.2.0.8, 3.2.0.2,
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(Continued)

- LIST OF CONCEPTS - Reference Applicable
Manual Workshop Report

(From Ada) Section Concepts

(By Section)

3.2.5.3, 3.2.8,
3.4.0.2, 3.4.2,
3.5.0, 3.5.1.3,
3.5.1.2,
3.5.3.1, 3.5.5,
3.5.5.1, 3.5.5.2,
3.5.5.3,

5.12
Vl Variables 3-2
V2 Variant Records 3.7 3.2.0.6
V3 Visibility Rules 8.1 3.2.10
Wl WAIT statement 9.7.1
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INDIVIDUAL COMMENTS



COMMENTS OF:

General Electric on the VHDL Description as contained

in this Draft Report

Previous drafts of ths report have each contained a number

of controversial areas in which two or more "options" were

enumerated, and General Electric has commented and expressed

argument in favor of particular statements in each case. We

have participated in the evolution of the report into its

present state, wherein all of these "options" have been resolved

into a consensus, with many of our suggestions incorporated.

General Electric congratulates the Woods Hole Committee on an

excellent result, and endorses this report as a constructive

step which will position the Tri-Service HDL Committee favorably

towards its objectives.

L~ ~~ ~~C 3/4z.........



COMMENTS OF:

R. Plesset--Rockwell International

In what follows I would like to state some of my thoughts

on the important issues and as to why the goal of realizing an

effective VHDL is a difficult one. A few recommendations will

be made concerning attainment of this goal.

First, one has to come to grips with what is VHDL going

to describe. "Hardware" has different connotations to different

people as was evidenced to me at the workshop. Having been

involved with the design of digital hardware systems and

integrated circuits for a good many years I feel that hardware

connotes boxes, cards, modules, ICs, resistors, etc., and

relates to such considerations as physical, electrical,

functional, environmental specifications, etc., especially as

pertains to the military context. Software should be considered

separately by reference to other language standards. The

difficulty arises when the attempt is made to scope the range

of behavioral description. The low end is more straightforward,

e.g., circuit description where descriptive models have been

around for a long time and selecting a standard descriptive

vehicle seems relatively painless. However, if it is desired

to impose syntax common to all levels of description, the

selection or synthesis task becomes more complex. On the upper

end is the boundary with system variables where descriptive

level is abstract and hence not directly related to hardware.

At this level important considerations are accuracies, cost

effectiveness, reliability, maintainability, etc. Behavioral

description is often mathematical and not concerned with

implementation or "hardware". Again, imposing a common syntax

between this level and other levels becomes difficult to

accomplish, in addition to deciding where the translation to

hardware should be. This leads to the question of what will
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VHDL be used for. As I see it, the most meaningful applications

would be (1) specification of hardware, (2) documentation of

hardware database, (3) training and maintenance of hardware.

Here specification is used to refer primarily in the procurement

of new equipment. The problem here is to describe the desired

equipment unambiguously without bias as to implementation and to

convey enough detail to allow the reader to design or propose

to design the equipment. Database documentation could be used

in multiple sourcing or in using already developed hardware in

alternate applications. Uses in training and maintenance are

fairly obvious. A conflict arises where on one hand an HDL

should be highly "readable" for uses involving people, but

syntactically and semantically concise and precise for computer

information systems on the other. A trade-off is required to

be made to determine the optimum or practical mix. The use of

the TI HDL as straw man provides an excellent reference for

this trade-off. It is my belief that this HDL is the only one

presently available that permits a "reasonably" complete coverage

of hardware systems. I do feel, however, that its capability

for describing behavior is somewhat limited. As I understand

it, the intent by TI was to make this aspect of the language

as general as possible in order to avoid a specification from

implying or imposing implementation. I feel that this is

desirable, but functional behavior should be permitted at lower

levels. This could be accomplished by the use of user-generated

ratio functions which could be called by the behavioral program.

In general, more flexibility should be given in relating

structure and function where desired.

In conclusion, although I believe that a military standard

VHDL is vital, "the language" will be slow in arriving. However,

I recommend that the TI with some modifications be used in the

interim. Further, I think that an HDL language as in natural

languages is open-ended and, hence, must be evolutionary. To

this extent, the TI HDL would improve with revisions. In
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addition, care should be given to restrict the scope of the

language reference to "hardware", and leave system level

description to those languages appropriate at that level. One

possibility would be to modify the TI behavioral syntax to be

comparable with Ada. This would promote better communication

at least with people using Ada, which ultimately could be

appreciable. The use of Ada syntax in VHDL should be

limited to those semantics applicable to hardware.

With regard to simulation, I believe that a simulator

should be built that will work with VHDL. The simulator should

cover those aspects of behavior that can be described by VHDL.

The problem of relating VHDL to other simulators has to be

involved with translating it into specific industry design and

development CAD systems.

With regard to the use of VHDL in design, I feel that

whether it is useful in one or more aspects of design will

depend on the individual user. But the emphasis should be on

use of VHDL for description and specification.
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COMMENTS OF:

Steve Piatz--Sperry-Univac

An important paragraph was deleted from draft 3 of the

Report. "These recommendations do not reflect current DoD

policy in general, nor of the VHSIC Program Office in

particular, nor do they reflect the recommendations of the

parent organizations of the participants of the summer study.

The term VHSIC HDL should be read in that sense."

General Comments on Appendix A

1. The sample syntax used to describe concepts should not be

taken as a binding on a VHDL.

2. The ability to describe designs with several alternate

descriptions as shown in Fig. 2-1 on page 2-2 is not

provided. The REDEFINES concept in TI-HDL is not adequate

for this purpose.

3. The data abstraction concepts discussed have not been

integrated into the language.

4. The Timing and Sequencinq concepts discussed are not

adequate for all design styles. This is perhaps due to

the fact that our requirements are not well defined.

5. The TI-HDL allows multiple assignments in a single state-

ment, for example:

A:= B:= C;

as well as concatenation on the left side of the assignment

operator, for example:

A:: B :=C,

This syntax is error prone.
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6. The TI-HDL allows identifiers (Names) that are enclosed in

apostrophes to contain special characters, for example:

'123' : 100;

ABC '112';

In this example it is not clear if ABC is assigned the

value 100 or the value 123. This becomes even more

confusing as the needed abstract data types are added to

the language.

Detailed Comments on Appendix A

1. Section A-1.2

There appears to be no provision for alternate behaviors

or structures as called for in Section 2 of the main

report.

2. Section A-1.3

The requirement that the top (or root) of the hierarchy

be treated special (DESIGN VS MODULE) seems artificial.

Since one person's system (DESIGN) is another person's

component (MODULE), making a distinction between design

and module seems unnecessary.

3. Section A-1.5

It appears that this section should be separated into two

sections--one dealing with globals in the behavior, and

a second dealing with globals in the structure. This

section should agree ' ith the changes made to Section

3.2.10 of the main report. These changes require the

explicit use of IMPORT and EXPORT constructs for globals

in the VHDL.
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4. Section A-1.7 and Section A-2.0

Having the terminals described within the BEHAVIOR section

is only workable if there is only one BEHAVIOR section.

The requirement is that there may be possibly many. There-

fore, it is logical to place the terminal descriptions in

the I/O interface section which is common to all the

behaviors and structures. If this is not done, the VHDL

user would have to enter a significant amount of data

redundantly. The I/O Interface Section is implied in

Section 2.0 of the main report.

5. Secti( * 3.2.1.3 Guarded Commands

Since a behavior description prepared using guarded

commands is allowed to be nondeterministic it seems that

it may be desirable to provide an error detection mechanism.

This mechanism could be analogous to the OTHERS clause in

Ada, it would indicate the action to be taken if more than

one guard is active simultaneously.

6. Section 3.2.1.3 Incremental Time & Schedule Statement

While the concepts expressed are not necessarily bad, they

do not address all the design styles that were considered

at Woods Hole. To be usable by a large variety of users,

the concepts for time must be expanded to consider parallel

or concurrent execution where different paths have different

cumulative delays.

In addition, it should be indicated that, in the example

syntax, the delay within the <> brackets can be a constant or

an expression.
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COMMENTS OF:

Prof. Fredrick J. Hill--University of Arizona

I read the report with interest particularly Sections 3,

4, and 5 even though I was not on hand during the second week

of the Woods Hole Conference when this report was generated.

These sections seem to form a sound specification for a language.

It is interesting how similar the projected features of this

language are to those of CONLAN. It seems a shame to repeat

the agonizing process that went into the development of CONLAN.

With respect to the options cited in Sections 3, 4, and 5,

I prefer the following:

Option 2 in 3.2.5
Option 2 in 3.2.10

Option 2 in 4.5

Option 1 in 5.7

In Section 5.I1 an Option 3 which allows user (or toolmaker as

in CONLAN) to define := and incorporate in his definition the

appropriate result in the event of execution conflict would

seem to be preferable to the listed options 1 and 2.

I do not think that the Starfish model for language

extension is adequate. It is necessary to be able to exclude

features from a user-level language as well as add to a kernel

of low-level features. Certain types of operations necessary

in the Kernel may not admit to a hardware interpretation at,

for example, the RTL level. It will be necessary to provide

for a formal exclusion mechanism if a user is to be provided

with a language satisfying:

"If a feature is in the language it can be realized

by hardware, and anything realizable in a particular

hardware framework can be expressed in the language."

Apparently the critical decision to be made is whether to

modify the TI language along the lines of WHDL or develop a new

Ada-based VHDL. I agree that most of the important features of
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VHDL have been accepted for inclusion in WHDL. Actually adding

them to the TI language would be another matter. I fear that

the result would be a patchwork which would satisfy no one.

While it will obviously take longer, I recommend the formation

of a paid working group to develop the ADA-based language

consistent with Sections 3, 4, and 5. This working group should

consist of qualified individuals from more than one organization.

The complete CONLAN report will no doubt be available, when

this group begins its work. I am certain that the CONLAN report

will prove helpful, since the CONLAN objectives very nearly

coincide with those set forth in the Woods Hole draft report.
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COMMENTS OF:

Gary B. Goates--Boeing Aerospace Company

The TI HDL, with more or less modifications and extensions,

appears to meet enough of the requirements defined in this

document to be of considerable value to Phase I of the VHSIC

program. Nevertheless, an optimal VHDL will require a fresh

start. If such a new language development effort is pursued,

how can it best be structured--taking into account what we know

and don't know) about the craft of language design and

implementation?

In my view, a new VHDL should not be "defined" by a "working

group" of "experienced language designers", unless this group

also has responsibility for implementing what they propose.

This is because:

(a) A design committee without implementation

responsibility will tend to compromise among

participants' viewpoints by including

additional constructs in the language. In

contrast, a group that must both define and

implement a language system will tend to

select a small set of constructs that is

sufficient to meet requirements, thus leading

to a more elegant and more portable language.

(b) A language specification that exists only as

text is a poor basis on which to evaluate the

proposed language, just as a text'description

of a VHSIC component is much less useful than

one that can drive a simulator.

(c) The prncess of implementing a language and vali-

dating it by processing nontrivial examples

alters the language definition. In my experi-

ence, implementation reveals new language

constructs and features that are useful and
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easily available. Validation reveals some

missing features that were not recognized

earlier as requirements.

I suggest that developing a new VHDL be divided into the

following phases:

Phase I - Requirements Definition

I(a) Expressing, at least tentatively, what the

VHSIC program requires of an HDL--i.e.,

this report.

I(b) Developing a consensus within the VHSIC

community that this report is an adequate

requirements definition, or identifying

where it is lacking. What needs does the

VHSIC program have that are not adequately

covered here?

Phase II - Alternatives Analysis

II(a) Identifying several alternative languages,

or approaches to designing and implementing

a language, that meet the requirements

identified.

II(b) Selecting two to four of these alternatives

as "candidate" VHDLs.

II(c) Developing a prototype implementation and

full specification of the candidate VHDLS

including developing and processing the VHDL

description of a DoD-specified test-vehicle

circuit--with such implementation performed

by the group that originally proposed the

approach in Phase II(a).

II(d) Evaluating the candidate VHSIC HDLs and selecting

one for production-quality implementation.
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Phase III- Full-Scale Implementation

Phase IV - Transporting VHDL Support Software to the VHSIC

Community

Phase V - Maintenance

This task breakdown is based on the precedent set by DoD

in developing several experimental versions of the Ada language.

It also follows the standard software engineering practice of

conducting requirements definition and alternatives analysis

phases before proceeding with full-scale implementation.
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COMMENTS OF:

Gerry Marino--Raytheon Company

Two options were widely discussed for interpreting delay

in a behavioral entity. These options are as follows:

Option 1

The language should provide the ability to associate

delays with all data transfers within a design entity.

The value to be assigned is computed immediately but

the actual assignment is not made until the delay has

elapsed.

Option 2

All design entities should execute in zero time. When

a delay is encountered in a signal path within a design

entity that delay is added to the total propagation

delay along that path. The total delay is reflected in

the time delay associated with a signal change at the

output of the design entity.

Option 2 describes the view of timing presently employed

in the TI HDL. This view of timing in a behavioral design

entity holds that each time the entity is evaluated, all data

transfers are made immediately. Delays may be accumulated

as evaluation proceeds through the various control sequences,

but these delays actually take effect only at the output

terminals. In my opinion this makes the concept of time for

a behavioral model of a design meaningless. The following

diagram represents a design entity at some level of the design

hierarchy:
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BEHAVIORAL
INPUTS DESCRIPTION OF OUTPUTS

DESIGN ENTITY

In working with this description, the user may only look

at timing of signals from input to output. If, for example,

there are two data items A and B in the entity, the user is

unable to examine the timing of signals between the inputs and

these internal items. The timing relationship between signals

arriving at A and B may also not be examined. In other words,

the user cannot work with a pure behavioral description, at any

level of the design hierarchy, to examing timing relationships.

To add real timing, the user must create a structure

composed of blocks. Each block may itself be a behavioral

description. The point is that structure must be added to work

with timing. The following figure shows a structural description

of a design entity composed of several behavioral descriptions:

SIGNALS WHICH CROSS BOUNOARIES

A B C 0

INPUTS OUTPUTS

E F G H

--23-21-20
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Timing may only be examined on signals which cross the boundaries

of the behavioral blocks. The user cannot "open" a behavioral

block and look inside to see internal timing. Also, when

signals at block inputs change before previous signal changes

have been reflected at the block outputs, the block may not

react the way real hardware would. This is because the original

signal results have already been transmitted to the outputs,

regardless of internal delays, and are scheduled for transition

on output terminals.

I feel that three categories of questions must be answered

before the option 2 concept of timing may be used in a behavioral

HDL.

(1) Is the concept of wall clock time (i.e., delay)

not 2seful in a purely behavioral model for a

process? In other words: do we want to enforce

structure before a designer is allowed to consider

delay time? If we enforce structure, will that

impede the designer abstract thought process?

(2) When a structure is composed at behavioral block,

is it adequate to examine timing only at the

boundaries of the blocks, or will the user wish

to "probe" timing within the behavioral blocks

themselves?

(3) Given a structure composed of behavioral blocks,

is the "instant" evaluation of a behavioral block

adequate to model complex timing of signals

arriving at random times at the block inputs?

It must be noted that an HDL should be able to

characterize the operation of a circuit under a

wide range of conditions, including the application

of unexpected sequences of input stimulus.

I feel that the concept of time presented in option 1 is

more general and much more flexible. This allows delays to

take place internally to behavioral models. Also note that
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option 2 is a subset of option 1. That is, if option 1 is

accepted, the user may still lump his delay at the output

terminals of his behavioral block.

The final judgment of which version of timing is to be

used must lie with the end users of this language. For this

reascn, I feel strongly that various applications should be

examined in the upcoming months.
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COMMENTS OF:

N. Mykris--Rockwell

The scope of the purpose of a hardware description language

has not been clearly defined. It is apparent that the workshop

has tentatively decided upon the behavioral and structural

aspects of hardware descriptions. However, the behavioral and

structural organization aspects have been aimed at system level

descriptions. No attempt has been made to concentrate on the

HARDWARE related constructs of any HDL.

Although it is important to be able to describe a system

abstractly without implications to hardware implementation, the

development of systems through the various design methodologies

is usually an iterative process of implementation strategies

which reflect definite hardware structural components. There

is an obvious transition from the system description to the

hardware implementation; hence, the description of system

designs should be decomposed into a behavioral description

language and a hardware implementation language. This division

is logical since the system designers are concerned with

behavioral requirements and organization where the hardware

designers are involved with implementation strategies. The

relationships between the languages must be harmonious and

isomorphic for complete information exchange and verification.

Ada, GPSS and other high-level languages are appropriate

for the behavioral descriptions of systems. A hardware design

language should reflect the structural implementation of the

hardware realization. The hardware language should allow

natural constructs for the various design methodologies. A

hardware design language is useful only if the natural constructs

are attractive from the hardware designer's viewpoint.

In conclusion, the scope of the hardware design language

should be limited to the structural description of the hardware
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realizable constructs. No universal language is appropriate

to cover the entire range of hardware description. The VHDL

language should serve the purposes of design implementation

description (hardware realization), hardware documentation,

and hardware verification to the original behavioral specifi-

cation.
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COMMENTS OF:

Dr. Manuel d'Abreu--Honeywell

Myke Smith--Research Triangle Institute

We do not believe that the Ada approach is the best approach

if we are to have an HDL for VHSIC Phase I. Ada was not intended

to be an HDL nor has it ever been used as an HDL, and its body

of experience is small and limited to use in the systems

programming area. Ada is a more powerful language than the TI-HDL

in the sense that it has more data types, more constructs, and

incorporates some very high-level concepts. The question to ask

is, are these all useful in a hardware description language?

Many of these capabilities could be used in a "blue-box"

description but are inappropriate at lower levels of description,

for example, tasking and exception handlers. Looking at Ada

from the hardware point of view, we see that Ada has no concept

of concurrent statement execution, no concept of hardware

delays, difficulty in expressing multiple instances of identical

objects, and that the rendezvous concept is far removed from

the hardware details. These are major shortcomings. Major

reasons for using Ada are the big design effort, the DoD

support, and the large software base. But, with the modifications

to overcome the Ada shortcomings we will not have Ada! We will

not have a DoD-supported Ada nor will we be able to use this

software base. And, very importantly, the validation effort

for Ada will be mostly for naught, given the modifications to

Ada. We are then back to square one, and the alleged advantages

of Ada are lost or at least considerably diminished.

We believe that the Woods Hole HDL is the best means for

accomplishing a workable HDL within the VHSIC Phase I time

frame. There are several reasons why we believe this is the

better of the two approaches. The TI-HDL has been used for

many years in a profit-making environment as an HDL and it has
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survived and flourished. Thus, the base language for the WHDL

has a history of use as an HDL and a large body of experience.

The suggested changes to the behavioral section are, in general,

with the exception of guarded commands, well-known and well-

understood programming language features.

The following is a series of tasks that we feel ought to

be done to achieve an HDL based on the TI-HDL.

(1) The syntax and semantics of WHDL must be defined by a

small team of experienced language designers. The WHDL should

be based on the TI-HDL, a prioritized list of "desired attributes",

and the stated intention that this language must be able to be

simulated. There should also be a well-thought-out document

that completely describes what the language is intended to do

and what the language is not intended to do. The language

designers should be given free rein to do the design. They

should produce a syntax and semantics of an HDL. They should also

produce a document specifying why any of the "desired attributes"
were left out of the language. They should also show that they

can describe the "desired attributes" with the language they

present, in other words the language can do what we want in a

clear and concise manner.

(2) A group of people familiar with HDLs shoull take this

language and describe a highly parallel digital system, a highly

pipelined digital system, a data flow based system, an object

based system, and an I/O system such as the UNIBUS. These

examples should be able to point out the shortcomings and weak-

nesses of the language. These problems can then be rectified

if they are considered major problems.

(3) A validation effort for the language should be started

in parallel with Tasks 1 and 2. This effort should be to

produce a suite of descriptions that fully test the language's

translator and provide a set of "test" descriptions with results

to clarify any semantic problems. This document can then be used
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as an implementor's guide for other versions of the translator

and simulator. This would lessen the risk of HDL dialects.

Task 1 should take approximately 9-12 months and require

about 3 man-years. This time will be heavily dependent on how

much outside interference the designers have to suffer through.

Task 2 should take about 3 to 4 man-months per project, assuming

the projects were well-defined before they are started. We do

not have enough experience in the validation area to hazard a

guess for Task 3.
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COMMENTS OF:

Committee to Clarify Hierarchical Terminology:

Chairman: Gary Goates--Boeing

Ernie Codier--GE

Steve Piatz--Sperry-Univac

Dick Plesset--Rockwell

Joel Seidman--Hughes

In discussing glossary entries, it became apparent that

there was an intolerable variation in the use of the words

"entity", "module", "block", and "component". A committee was

formed to resolve the issue. The report was scanned for

instances of words that attempted to refer to hierarchy. A

quick survey of hierarchy in TI's HDL and in Ada was performed.

A consensus emerged that two special terms (i.e., terms precisely

defined and restricted in meaning) were required: one to refer

to a node of a hierarchy per se and one to refer to a reference

from a node to a lower node set that is included in its

decomposition. A third perspective was used in some sections

of the report--the perspective of a node looking toward its parent

node (the larger system)--but it was decided that it was

unnecessary to define a special term for this. The term "design

entity" was tentatively adopted to refer to a node in and of

itself. The term "components" was tentatively adopted to refer

to the inclusion of a set of smaller design entities in a larger,

or higher-level, design entity.

It is left to the reader to define any of the following

terms that he or she may wish to use: assembly, block,

conglomeration, design, element, field, intrinsic, instance,

item, model, module, node, object, project, terminal, type,

system, subsystem, and submodule.
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COMMENTS OF:

Andrew D. Griffith--

Westinghouse Electric Corporation

The study has made it clear to me that what is needed in

the long-range future is the growth to a true system description

language that not only spans possible hardware designs but also

spans hardware vs. software breakdowns. This language would

allow a family of implementations from a flexible software

implementation to a fixed hardware implementation.
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COMMENTS BY:

Richard Rath--Hughes Aircraft Company

1.9 Translation to other HDLs

Automatic translation of high level languages is seen as

a difficult theoretical problem. This is going to be one of

the biggest obstacles to use of the VHDL as an information

interchange standard. There is not going to be much value to

documenting a VHSIC chip in computer-readable form if the

computer at the receiving end cannot use it.

1.10 Portability

If the definition of portability given were applied to

programming languages, they would all be portable. The second

paragraph is not stated as a requirement of the language. In

order that VHDL be portable it must be the case that many

different CAD systems can generate and process it.

3.5.3 Timing Constraints

The concept of "level" applied to hierarchy is different

than when used to distinguish between behavior description

and component interconnects. This is a source of confusion.

5.1 Kernel Plus Extensions Equals Language

It is not appropriate to correlate the "level" of con-

structs provided with how widely those constructs are used or

expected to be used.

5.3 Verifiability

This section appears to be addressing the problem of the

completeness of a hardware description in VHDL. Verifiability

should refer to the ability to evaluate the consistency between

two distinct descriptions of the same system. Instead of
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requiring that a description be "executable" by a "simulator",

the requirement should be that the semantics of the language

be formally and unambiguously defined using a formal system

for the expression of semantics. Phrasing the requirement

this way leaves the way open for non-simulator-based verifi-

cation techniques.
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COMMENTS OF:

Dr. Sajjan G. Shiva, University of Alabama

Although I do not believe that the Ada Subset/Superset

approach would be the way to VHSIC-HDL, it might be worthwhile

to pursue that option along with the extensions to TI-HDL

approach. This report can be a starting document for a small

group of language designers. But it will be better if they

have the inputs from the future language users. These inputs

can be generated by the current VHSIC contractors through

their efforts to describe some example systems in both of the

above options.

Although a generalized (abstract) languaqe approach is more

elegant I feel it makes the language less usable (a common

comrlaint on CONLAN).
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The following group of comments pertains to a hypothetical

patient monitor system:

PATIENT MONITOR FUNCTIONAL DESCRIPTION

This system is designed to utilize the data supplied from

up to eight patient-monitoring instruments (blood pressure,

heart beat rate, etc.), analyze the data, and report on the

overall condition of the patient.

You may consider the system to have any architecture. For

example, the instruments may be on one bus, or each instrument

may have a separate serial or parallel line into the system, or

the instruments may be "smart" and be part of the system itself.

The outputs of the instruments may be analog or digital signals.

They may be sampled or polled on demand.

The monitoring system is programmable. For example, a

combination of results from several instruments may be combined

arithmetically and a warning condition raised based on the

result.

One of four conditions is output from the system: normal,

warning, emergency, or instrument failure. In the case of

failure, the system can be programmed to degrade "gracefully."

You should establish the overall design style, architecture,

data rates, and instruction set, and attempt to model it on the

TI HDL. Note any deficiencies in the language and recommen-

dations based on the guidelines.
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COMMENTS OF:

Menchini--INTEL; Piatz--Sperry-Univac;

Esch--Sperry-Univac; Franta--CDC;

Seidman--Hughes Aircraft;

Russell--National Semiconductor

PATIENT MONITORING SYSTEM

(8 units M O - M 7

each reports OK or FAIL)

S =P COND = (OK, WARN, EMERG, FAIL);

P STAT = RECORD

ECond: (OK, FAIL)

CWVAL: VALUE

INSTRUMENT: STRING

END;

M= ARRAY [ ..7) of E STAT

P(M) [0...7]) PCOND

"P IS ONLY SPECIFIED TO ITS INPUTS AND OUTPUTS"

PAIN NSRCIN SYSTEM OUTUT

COGRAM
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BLOCK S DESIGN; (No type declarations)

M (0 to 7) @ INPUT

P @ INPUT are not Boolean

0 ( to 3) @ INPUT

ENVIRONMENT

TEMPERATURE OPERATION = 0 to 150

VOLTAGES = 115/220 VAC @ 60/50 Hz 1 phase/3 phase

(most not int TI HDL)

BEHAVIOR FUNCTIONAL PROGRAM Not able to describe necessary

variables:

Need PASCAL description.

Must have implementation first.

CONST

max-value = ?;

min-value = ?;

max-inst = 8;

TYPE

ESTAT = RECORD

NAME: STRING:

STATUS: (OK, DEAD)

CURRENT VALUE: min-value.. .max-value

END

PROGRAM = RECORD

UNKNOWN: ?

END;

PATIENTSTAT = (OK, WARN, EMERG, FAIL);

EQUIP = ARRAY [O...MAX-INST] of E STAT
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BLOCK MONITOR DESIGN:

M: EQUIP @ INPUT

P: PROGRAM @ INPUT

C: PATIENT STAT @ OUTPUT

ENVIRONMENT

VOLTAGE 115 VAC @ 60 Hz or 220 VAC @ 50 Hz, 3PH

LEAKAGE 0.001 A MAX AT X VOLTS

TEMPERATURE 15 C to 30 C OPERATING AT 20 to 90 RHNC

0 C to 150 C STORAGE AT 0 to 95 RHNC

S STATUS - comparison of machine value (M) to limits (LV or HV)

CC = Patient Condition (normal, warn, emergency, fail)

Read (Limits: HV (0,7), LV (0,7))

1 DO 20 from x=0 to x=7

If M(x)<LV(X) go to 5 else

If M(x) >HV(X) go to 10 else

S(X) = 0

Go to 20

5 S(X) = 01

ro to 20

10 s(X) = 10

20 end

Read (Patient Subroutine, S,(0,7))

"Different for each patient"

Programmed by Doctor--Interactive

I/O set into EPROM.
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COMMENTS OF:

C. Leung--MIT

A PACKET SYSTEM DESIGN FOR THE PATIENT MONITOR PROBLEM

Design to be refined: written in ADL

patient monitor: module (param: n-of-instruments)

inlet p: new-patient-data, /* information

about a new patient */

d: instrument-readings (n-of-instruments) /*

instantiation of type instrument-readings

with parameter n-of-instruments */

outlet o: monitor-patient-c3ndition /*

instrument failure, critica , etc. */

behavior

state s: pm-state: = initial-pm-state; /* pm-state

determines which instrument reading to ignore,

data about individual patients, his blood

pressure, pulse rate, etc. */

m: monitor shares s /* provides an orderly way to enter

data about new patient, new status

about various instruments attached

to the patient currently under

monitoring, etc. */

new patient procedure (x: new-patient data);

update: s: = x;

end new patient;
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new-instrument-status-procedure (y: instrument readings

(n-of-instruments));

update s: = new-instrument-stat (s,y);

end new-instrument-status;

end m;

m. new-patient (p); /* enter data for a new patient */

m. new-instrument-status (d); /* new set of instrument

readings */

0 outfunc (d,s); /* determine output signal from current

state and new readings*,

end; patient monitor

C-44



It d e

PROCEDURES TOMERGE UPDATE a
(NOT A DATA FLOWAPR RITL

GRAPH!!)

0PATIENT MONITOR

DATA ABSTRACTIONS TO BE REFINED:

(Data representation., operations for manipulating these representations)
- new-patlent-dato

- instrument-readings with parameter n-of-instruments

- monitor-patient-conditlon
-pm-state

PROCEDURAL ABSTRACTIONS TO BE REFINED:

(Procedures in terms of control structures such as conditions and looks, other data abstractions and
operations defined for data abstractions)

- new-instrument-stat, pm-state K instrument readings - pm-state
- outtunc: instrument-readings x pm-state - monitor-pationt-condition

OTHER ISSUES

- ho5w to transform physical signals info packets

- can be done in TIIHOL by giving implementation for handshake protocol and using the structure
faciies extensively

7-23-81-3
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COMMENTS OF:

Lionel Bening--Control Data Corp.

BLOCK PATIENTMONITOR

DIN(l TO 8) @INPUT

DIW(I TO 8) @INPJT

DIE(1 TO 8) @INPUT

DIF(I TO 8) @INPUT

DON(l) @OUTPUT

DOW(1) ROUTPUT

DOE(l) @OUTPUT

DOF(l) @OUTPUT

BEHAVIOR FUNCTIONAL PROGRAM

IF(DIF(l TO 8) B'00000000') THEN

DOF(i) = B'l'

SCHEDULE DOF (i)

ELSE

DOF(1) = 8'0'

SCHEDULE DOF (1)

ENDIF

IF (DIE(I TO 8) B'00000000') THEN

DOE(l) = B'1'

DOW(l) = B'0'

DON(l) = B'O'

ELSE

IF(DIW(I TO 8) B'00000000') THEN

DOE(1) = B'0'

DOW(1) = B'))

DON(1) = B'O'
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ELSE

DOE(1) = B'O'

DOW1) = B'O'

DON(1) = B'l'

ENDI F

ENDI F

SCHEDULE DOE(l)

SCHEDULE DOW(l)

SCHEDULE DON( 1)

EXIT

END PATIENT-MONITOR
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COMMENTS OF:

R. Waxman--IBM/FSD

DECISION TABLEI NORMAL RANGE X X X X X X X x

WARNING x X X X X X x X

EMERGENCY X X X X x X X X

INSTRUMENT FAILURE XX X X X X X X

NORMAL LIGHT X X

WARNING LItiHT X X X X
OUTPUT
INDICATOR EMERGENCY LIGHT X X X X X X x X

1 INSTRUIE TFAILURE LIGHT X X X X X X X X

7.23-4-122
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COMMENTS OF:

Scott E. Perkins--Fairchild

APPENDIX

Outline:

1. The "Strawman" versus the MPPMS

2. Scoping

3. Axiomatic Systems Design

4. Alternative Architectural Styles

5. System Architecture for the MPPMS

6. The MPPMS Described in TI-HDL

C-51



1. THE "STRAWMAN" VERSUS THE MPPMS

I had an opportunity to put the TI-HDL "Strawman" to the

test. I designed an MPPMS--a Multi-Processor Patient Monitoring

System--and then coded up the design in the TI language (at the

end of this comment you will find an MPPMS system diagram and

a copy of the TI-HDL description of the system). The TI-HDL

showed itself to be better, from a programming standpoint, than

the RTL (Register Transfer Language); however, the exercise

also suggested areas where the TI-HDL could be improved. The

coding was made unnecessarily less structured, less modular, and

more time-consuming because the TI-HDL does not have Procedure

Declarations, or User-Defined Data Types. My experience suggested

the following principle:

"A modern HDL should be constructed as a superset of a

structured, high-level programming language."

An application of this principle to the TI-HDL suggests to

me that the language could greatly benefit from the work done

at Stanford on an HDL compiler, called ADLIB. ADLIB adheres

strictly to a Pascal syntax. I believe the TI-HDL could and

should be modified so as to include Pascal or Algol-68 as a

subset.

2. SCOPING

My experience in using the TI-HDL also brought to my

attention the problem of scoping of variables, user-defined

constants, user-defined types and procedures. For example:

should there exist global variables, or should variables be

passed only as arguments of functions and procedures? And

since many languages handle these constructs in the same way,

how should VHDL handle these constructs? It seems to me that,

as we design a VHDL compiler, we should be at least as con-

sistent in these matters as the designers of Pascal.

3. I found Allen Razdow's presentation, "Introduction to

Applications of HOS to Hardware Design," to be one of the most

C-52



innovative of the HDL concepts presented at this conference.

To put it simply, Allen's concept is to use a very high-level

language called AXES to describe the functionality of a hardware

system in an axiomatic way. The goal is to be able to describe

a system in such a way as to not force the designer into one

particular architectural style or another. I personally feel

that the HOS concept represents the only legitimate proposal

made so far for dealing with complex systems involving networks

of processors.

4. ALTERNATIVE ARCHITECTURAL STYLES

Dr. Clement Leung, from MIT, and Dr. Suhas Patil presented

excellent reports on why the traditional RT (Register Transfer)

will soon be yielding to alternative architectures, such as:

(a) SLAs (Storage Logic Arrays)

(b) Data Flow Architectures.

Hardware Design Languages must be flexible enough to allow

people to design using different architectural styles.

5. THE SYSTEM ARCHITECTURE OF THE MPPMS

TO
PATIENT

CONTROLLER 11 12 a * * *
MEMORY

EI 16 SIT RUSS 1

F1 F2 F3 F4

MEMY MEMORY MEMORY MEMORY

7-23-al-25
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Block MPPMS Design (*By Scott E. Perkins*)
(*A Multi-Processor Patient Monitoring System*)

(*Described using the Texas Instruments Hardware Description

Language*)

Buss (0 to 15) Output;

Structure
(*Buss Controller Micro-Processor*)

BC: Buss Controller Buss (0 to 15);
(*Instruments*)

Ii: Instrument Buss (0 to 15);

12: Instrument Buss (0 to 15);

13: Instrument Buss (0 to 15);

14: Instrument Buss (0 to 15);

I5: Instrument Buss (0 to 15);

16: Instrument Buss (0 to 15);

17: Instrument Buss (0 to 15);

18: Instrument Buss (0 to 15);

(*Function Processors*)

Fl: Function Buss (0 to 15);

F2: Function Buss (0 to 15);

F3: Function Buss (0 to 15);

F4: Function Buss (0 to 15);

(*end structure*)

(*Notes on MPPMS Buss Structure*)

DB: bits 0-7 (Data Bus)

AB: bits 8-11 (Address Bus)

IOF: bits 12 (Instrument Output Flag)

FIF: bit 13 (Function Input Flag)

FOF: bit 14 (Function Output Flag)

FBF: bit 15 (Function Begin Flag)
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(*Begin Functional Program*)

Behavior Functional Prog-':m;
(*Initialize Buss*)

Integer I, J, K, L, M, Time;

I: = 0; J: = 0; K: = 0; L: = 0; M: 0; Time: = 0;

for I: = 1 to 15 do Buss (I): = 0;

(*Address sequentially the eight different instrument processors.

Then, for each instrument, put the data for instrument j and

put it onto the data buss. Then using the address buss, address

the four function processors sequentially, instructing them to

stack the information from the data buss into RAM inside each

of the function processors. To do this we will use a nested FOR

loop structure where the outer loop is indexed with a J indicating

the Jth instrument and the inner FOR loop is indexed with a K,

indicating the Kth function processor*)
(*The case statement is used to generate the address of the

instrument processors*)

FOR j: = 1 to 8 DO

Begin FOR L: 8 to 11 Do Buss (L:): = 0;

Case j of

1: Buss (8): = 0;

2: Buss (0): = 1;

3: Begin Buss (8): = 0; Buss (9): = 1 end;

4: Begin Buss (8): = 1; Buss (9): = 1 end;

5: Begin Buss (8): = 0; Buss (9): = 0; Buss (10): = 1 end;

6: Begin Buss (8): = 1; Buss (9): = 0; Buss (10); = 1 end;

7: Begin Buss (8): = 0; Buss (9): = 1; Buss (10): = I end;

8: Begin Buss (8): = 1; Buss (9): = 1; Buss (10): = 1 end;

END case;

(*For each generation of an Instrument Address

increment time by 100*)

Time: = time + 100;

(*Put address on Address Buss*)

Schedule Buss ac time;

C-55



(*Set IOf: = 1, IOF is bit 12*)

Buss (12): = 1;

Schedule buss at (time + 20);

(*Reset Instrument Output Flag to 0*)

Buss (12): = 0;

Schedule Buss at (time + 40);

(*By (time + 60) we should have the data from the Jth instrument

out onto the data buss so let us try to now read it into the four

function processors. We will first set up the addressing code

for the function processors.

Let us reset the address buss to 0*)

FOR K: = 1 to 4 DO

Begin for M: = 9 to 11 DO Buss (M) : = 0

Case K of

1: Buss (11): = 1; (*0001*)

2: Begin Buss (8): = 1; Buss (11): 1 end;

(*1001*)

3: Begin Buss (8): = 0; Buss (9): = 1; Buss (11): = 1

end; (*0101*)

4: Begin Buss (8): = 1; Buss (9): = 1; Buss (11): = 1

end; (1101*)

End Case;

(*Now we hi'e a function address on the address buss. Let us

put up the function input flag at time +60+ (K@*4), so that the

buss is scheduled at time +60 +4, 8, 12, 16.*)

Buss(13): = 1;

Schedule Buss at (time +60+ (K@*4));

(*After two units of time we can go ahead and shut off the

function input flag*)

Buss (13): = 0;

Schedule Buss at (time +60+ (K@*4) + 2);

END (*Function Loop Compound Statement*)

END; (*Instrument Loop Compound Statement*)
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(*At time: = 900 units we should have all the instrument readings

stored in RAM inside the function processors. It is now time

to begin processin the information in the function processors.

Let's start by setting time: = 900 and doing the addressing*)

time: = time + 900;

FOR K: 1 to 4 DO

Begin

FOR M: = 8 to 11 Do Buss (M): = 0;

Case K of

1. Buss (11): = 1; (*0001*)

2. Begin Buss (8): = 1; Buss (11): 1 end; (*1001*)

3. Begin Buss (8): = 0; Buss (9): = 1; Buss (11): = 1

end; (*0101*)

4. Begin Buss (8): = 1; Buss (9): = 1; Buss (11): = 1

end; (*1101*)

end case;

(*Let's now start processing function Y*)
(*Set Function Begin Flag to 1*)

Buss (15): = 1;

Schedule Buss at (time + K@*20);

(*This means that the functions will begin executing every 20

units*)

(*Then we now shut off the FBF*)

Buss (15): = 0;

Schedule Buss at (time + (K@*20) + 5;

end (*Compound Statement of Function Begin loop*)

(*Let's assume that at 2000 units the function processors have

finished analyzing the data from the Instruments. Now we must

interrogate the function processors. So let's go through the

addressing business again*)

Time: = time + 2000;

FOR K: = 1 to 4 Do
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Begin

FOR M: = 8 to 11 Do Buss M: 0;

Case K of

1: Buss (11): = 1; (*0001*)

2: Begin Buss (8): = 1; Buss (11): = 1 end;

(*1001*)

3: Begin Buss (8): = 0; Buss (9): = 1;

Buss (11): = 1 end;

(*0101*)

4: Begin Buss (8): =  1; Buss (9): = 1;

Buss (11): = 1 end; (*1101*)

(*Set Function Output Flag to 1*

Buss (14): = 1;

Schedule Buss at (time +1@*20);

(*Then shut off FOB five units later*)

Buss (14): = 0;

Schedule Buss at (time +(K@*20)+5);

end; (*end Function Output Compound Statement loop*)

(*At time = 3000 units the Buss controller microprocessor has

had time to look at the outputs of the function processors and

schedules output on the data buss which tells the physician if

the patient is healthy.*)
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APPENDIX D

SPEAKERS AND PRESENTATIONS

1. Dave Ackley -- "TI HDL"

2. Lionel Bening -- "CDC Automated Integrated Design System

(AIDS)"

3. John Esch and Steve Piatz -- "Sperry-Univac HDL Spec."

4. Gary Goates -- (a) "Storage/Logic Arrays"

(b) "ABLE: A Layout Modeling Language"

5. Fred Hill -- "A Hardware Programming Language"

6. Clement Leung -- "Data Flow/Architecture Description

Language"

7. Willie Lim -- "Hierarchical and Iterative Structure

Description Language"

8. Leon Maissel -- "Interactive Design Language"

9. Paul Menchini -- "The LCM Chip Design Methodology"

10. Hillel Ofek -- "Language for Computer Design"

11. Suhas Patil -- "The Element of Style in Digital System
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12. Allen Razdow-- "High Order System for Hardware Design"
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GLOSSARY

Abstraction

An abstraction is an alternative way of looking at a

complex system or process that is in some way simpler and

easier to deal with. It is characterized by the fact that

it avoids the details of the complex system, modeling them

as simpler concepts. The value of an abstraction is that

it allows the complex system to be manipulated and its

internal and external interactions to be understood without

the burden of considering all the details of the system or

systems. A simple example of an abstraction is the notion

of a hardware register as an abstraction of an assemblage

of flip-flops. One can then speak of storing an integer

number in a register, without worrying about binary

representations. Because an abstraction hides complexity,

it may be an imperfect model of the detailed system. This

means that conclusions based on abstractions may be invalid

when compared with a detailed view of the system.

ADL

Artwork Description Language (elsewhere the acronym signifies

Architecture Description Language).

Behavior

Specifies a design entity in terms of the functional and

timing relationships between the input and output ports of

the network. Behavior describes the function of a design

entity as opposed to its composition. It tells what a

network does rather than how it is built.
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Cell

A chip structural entity describing physical implementation

and related functional attributes.

Coercion

A mechanism for mapping information between two dissimilar

information types.

Component

An element in the decomposition of a design entity. A

component may itself be subject to further decomposition if

it is subsequently viewed as a design entity. If it is not

subject to further decomposition, it is a primitive component

(q.v.).

Concurrency

Two or more simultaneously occurring sequences of events

proceeding independently.

Control Abstraction

A concept that groups a sequence of substates into a single

state, or considers a complex series of operations as a

single operation, for the purpose of raising the level of

abstraction of the design description.

Data Abstraction

A concept (taken from software engineering) that includes

both grouping data objects (e.g., fields) into higher-level

data objects (e.g., records) and defining specialized higher-

level operations on data objects.

Data Object

A unit of data which can be used as an operand in behavioral

descriptions.
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Declaration Section

That part of the behavior description containing identi-

fication of the local variables of interest and the

signals used to communicate to the other parts of the

system.

Design Entity

In a graphical representation of a design hierarchy, each

vertex denotes a design entity. Less formally, a design

entity is a unit in the structural hierarchy; it is well

defined in terms of its input/output ports and its behavior.

A design entity is by definition decomposable into components.

A design entity may also be viewed (looking downward in the

hierarchy) as a component in a higher-order design entity.

Entity

Any named object. This is the broad application of the

term as found in Ada. In this document, the term design

entity (q.v.) is used in a narrower sense.

Execution Section

That part of the behavior description containing program

control statements and expressions detailing the data

transformations expected in the system described.

Generic Instantiation (Elaboration)

The process of defining a design entity from a generic

object by specifying user-supplied parameters for the

generic object. These parameters can be used to set up

default conditions for a subsequent component instanti-

ation process.

HDL

A Hardware Description Language (see Preface).
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Incremental Compilation

An attribute of a particular implementation of a language

system that allows language statements to be acted upon

(either compiled or interpreted) statement by statement.

Instantiation

The process of specifying the remaining object parameters,

supplying terminal interconnections, and a particular

name for an occurrence of an object type.

Library

A collection of related software or hardware entities

grouped together for easy access by computer processes.

In this document, libraries are mandated to be coded in

VHDL syntax.

Parallelism

Two or more simultaneously-occurring sequences of events

interacting at various times through interdependent data

exchange or handshaking, resulting in interdependent

processing.

PLA

A Programmable Logic Array. A rectangular array of AND and

OR gates for generating a group of functions in sum-of

products form.

Primitive

A design entity in the lowest hierarchical level, which

is not decomposed further, but is completely characterized

by a behavioral description in the VHDL.

Primitive Component

A component which is not subject to decomposition, and is

described only by a behavioral description.
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Procedural Model

A procedural model of a structural description is a procedure

that upon execution returns a structural description.

Thus, the structural description can be dependent on

parameters passed to the model as well as on global variables.

Self-timed

A hardware system is self-timed if operations of its modules

are synchronized by using ready/acknowledge handshake

protocols locally, and not by referencing a global timing

signal.

SLA (Storage/Logic Array) Program

A two-dimensional array of symbols (taken from an SLA cell

alphabet) that encodes both the functionality and the

topology of a circuit design.

Structure

Specifies a design entity in terms of modules and their

interconnections. Structure tells how it is built rather

than what it does.

TDL

A Test Description Language.

Terminal

An external connection point for a signal.

Type Checking

A mechanism for insuring consistent usage and inter-

pretation of data objects between various parts of a

behavior or structure.
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Windowing

An attribute of a particular implementation of a design

system that allows the user to control the level of detail

shown at a particular time of hierarchical aspects of

design entities (e.g., depth of structural decomposition

into components, level of data or control abstraction, etc.).
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