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FOREWORD

This technical report is submitted to the Georgia Institute of

Technology to comply with the report requirements of contract I-A-2550,

which is a subcontract under United States Navy contract N-00039-80-C-

0032. This report is published in two volumes, and each volume consists

of two parts.
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REPORT SUMMARY

r Auburn University, under contracts N66314-73-C-0565, N66314-74-C-1352,

N66314-74-C-1634, N00228-75-C-2080, N00228-76-C-2069, and N00228-78-C-2233

with the United States Navy, and has investigated various spects of the

(,a-rine Air Traffic Control and Landing System (MATCALS. This report

contains the results of the continuation of t4hse nvestigationsunder

contract I-A-2550 with the Georgia Institute of Technology.Thereport

is organized into three main sections, namely Part Two, Part Three, and
/

Part Four. Part Two presents a method of estimating the centroid

location of a target utilizing a scan return amplitude versus angle

information, Part Three contains the results of an investigation into

replacing the<;-filter in the MATCAL digital controller with an observer,

in order to reduce the effects of radar noise. Part Four presents the

results of an investigation into replacing the same e-o filter with a

tri-state adaptive filter, in order to reduce the effects of radar noise.

Centroid Estimation

Essential to the performance of any tracking radar is an effective

target centroid estimator. The purpose of the work reported in Part Two

is to examine the accuracy of several target centroid estimators in a

comparative fashion, and to introduce a non-thresholding algorithm

developed as part of this research. This analysis was conducted using a

software simulation of a landing system radar tracking a passive target.

The algorithm developed in Part Two is a method of estimating the centroid
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location of a target utilizing scan return amplitude versus angle infor-

mation. The method is compared to three thresholding estimators and a

first moment estimator in a computer-simulated automatic landing system.

It was found that the method introduced was the most robust and ac-

curate of the estimators in noise, due to its unique scan rejection capa-

bility. In periods of high signal-to-noise ratio the method had less

error than the thresholding methods, and was similar in ability to the

first moment estimator. Further, the pulse transmissions required to

obtain a desired level of performance is much reduced from the thresholding

methods employed in this simulation.

Observer Design

Presently a problem exists in the closed-loop control of the MATCALS

system due to the noise generated in AN/TPN 22 radar. An a-0 filter in

the flight dynamic and control module is employed to reduce the noise

effects while estimating the position and the velocity of the aircraft.

An observer may also be used to estimate the status of the aircraft. Part

Three of this report presents the results of an investigation of the

replacement of the a-s filter with an observer.

The F4J aircraft lateral control system is employed as an example

in this investigation. Several different controllers are utilized to

determine which yield the best radar-noise response and which yield the

best wind response.

The proposed MATCALS system contain an a-a filter in the controller.

Alternative controllers are constructed by replacing the a-a filter with an

observer.F
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In general the observer control systems exhibit significantly less

radar-noise response than do the a- systems, but exhibit somewhat more

wind response. Theze studies indicate that the observer controllers im-

prove the MATCALS system's operation when compared to the a-B controllers,

and that the observer systems should be considered further.

Tri-State Adpative Filters

A tri-state adaptive tracking filter was designed for use in the

F4J aircraft lateral control system in an automatic landing configuration.

The system presently uses an a-0 tracking filter to estimate the aircraft's

lateral position and velocity. The tri-state adaptive filter is designed

to replace the a-a filter.

Three digital tracking filters, each based upon a different air-

craft dynamic model, were combined to form the tri-state adaptive tracking

filter. The selection of the appropriate filter output was determined by

the variance of the filters' smoothed position estimates. The tri-state

adaptive filter was implemented in the simulation of the F4J lateral

control system. The results given in Part Four suggest that the performance

of the F4J lateral control system may be improved through the use of a

tri-state adaptive tracking filter. Since the F4J longitudinal control

system is structurally identical to the lateral control system, the tri-

state adpative filter may, in a similar manner, provide an improvement in

the performance of the longitudinal control system.

The overall performance of the tri-state adaptive tracking filter

may be enhanced by selecting the parameters of each of the three compo-

nent filters in such a manner as to achieve a more complementary filter
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response. Another modification which might improve the performance of

the tri-state adaptive filter is the adjustment of the variance thresh-

Iolds of the alpha and alpha-beta filters. As was shown by the results

of the F4J lateral control system simulation, the frequency response of

the tri-state adaptive filter may be altered by the selection of the ap-

* propriate variance thresholds.
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A CENTROID ALGORITHM BASED UPON RETURN AMPLITUDE-

VERSUS-ANGLE SIGNATURE

R. J. Machuzak, E. R. Graf, C. L. Phillips and S. A. Starks

ABSTRACT

A method of estimating the centroid location of a target utilizing

scan return amplitude versus angle information is introduced. The method

is compared to three thresholding estimators and a first moment estimator

in a computer-simulated automatic landing system.

It was found that the method introduced was the most robust and ac-

curate of the estimators in noise, due to its unique scan rejection capa-

bility. In periods of high signal-to-noise ratio the method had less

error than the thresholding methods, and was similar in ability to the

first moment estimator. Further, the pulse transmissions required to ob- -
tain a desired level of performance is much reduced from the thresholding

methods employed in this simulation.
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I. INTRODUCTION

Essential to the performance of any tracking radar is an effective

target centroid estimator. The rurnose of this work is to examine the ac-

curacy of several target centroid estimators in a comparative fashion,

and to introduce a non-thresholding algorithm developed as part of this

research. This analysis was conducted using a software simulation of a

landing system radar tracking a passive target. Gaiccari and Nucci [l],

Shradar [2], Mueke [3], and Gilbert [4], provide an excellant discussion

of air traffic control radars. The results of this work are most appli-

cable to sequential-lobing tracking radars.

I
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II. OVERVIEW OF THE SIMULATION

The computer simulation used in this work describes a large jet

fighter aircraft in a normal ground controlled approach (GCA) with the

radar antenna located 500 meters from the runway touchdown point, as

shown in Figure 2-1. The simulation initiates the flight with the tar-

get 3.72 nmi downrange from the runway touchdown point, or 4.0 nmi down-

range from the radar antenna. The target model is allowed to approach

the runway at a constant 148.6 mph on a 3.5 degree glideslope, which is

a typical approach for the jet fighter being modelled [5]. The radar is

a phased-array 3-0 pencil beam radar utilizing a null-to-mull cross-type

scan, which scans the target as it moves. Since the tracking mode of an

operating radar attempts to find the target within a small area of space

designated by the search mode, this simul;,'ion varies the location of

the target in the scanning window by use of a uniform random number gen-

erator before the start of each scan. The scanning window is always

wide enough to fully scan the target.

The simulation executes a single scan on the moving target and then

increments time to allow the modelled radar to perform its other search

and track duties, and to move the target down the glidepath. The simula-

tion aborts when the target is within 90 meters of the runway touchdown

point.

The target model used is an ensemble of three anisotropic scatter-

ing complexes representing the left wing, right wing, and fuselage,

2
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slightly modified from the model of Loomis and Graf [6]. The location of

the scattering complexes in the target coordinate system is shown in Fig-

ure 2-2(a), and the arrangement of the scattering points in a scattering

complex are shown in Figure 2-2(b). The equations describing the scatter-

ing complexes is given in Table 2-I. In this work, the angles and e

are not the typical spherical phi and theta, but rather relative angles

measured from the nose axis of the target coordinate system. Phi de-

scribes the angle in azimuth, and theta describes the angle in elevation.

Figures 2-3, 2-4, and 2-5 are plots of the rade- cross section (RCS) in

azimuth of the fuselage, right wing, and left wing, respectively. The

composite cross sections of the target model in azimuth, Figure 2-6, and

in elevation, Figure 2-7, are not used by the simulation, and are pre-

sented here for completeness. The radar cross sections in polar form of

the fuselage, right wing, and left wing, are shown in Figures 2-8, 2-9,

and 2-10, respectively. The built-in shadowing effect of the fuselage

on the wings is especially evident in Figures 2-9 and 2-10. The compos-

ite cross sections in azimuth, Figure 2-11, and elevation, Figure 2-12,

are again shown for completeness. All figures are for a wavelength of

3.3 cm.

The individual returns from each of the scattering complexes are

weighted by the antenna pattern before being summed on a power basis.

This process is repeated for every simulated transmission of a pulse from

the radar. Although only one pulse is transmitted at each beam pointing

location, time is incremented as though t!;:e pulses are transmitted.

When the simulation noise option is enabled, random gaussian noise is
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Table 2-1. Radar cross section equations for the
target model scattering complexes

RCS equation for all points:

a(e, ) A(e, ) Ax() + A y(8) + A z( ) (M2 )

where:

kd
Ax ( o) os Cos a)

kd a, 6, B are assumed
Ay(6) : cos (-y cos 6) the same for each scatterer

and are defined in Figure 2-2.kdz

Az(() : cos (-T-cos B)

Fuselage (FlJS) RH Wing (RW) LH Wing (LW)

dx = 1m dx = 6m dx = 6m

d = 2m d =4m dy = 4m

dz = ^M dz = 2m dz = 2m

Amplitude Envelopes

(10(e-r/2)2 + M +2) + 8) <0 <_

AFUS(a, ) =

2 75 2(lO(e-,/2) + I)( / 2)  (,r-;) + 8) 2 < -

ARW(ep) = (100( -r/2) 2 +I)(l -s )

A LW(e, ) I00(9--r/2) +I)(1 + sin(,))
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Figure 2-8. Radar cross section of fuselage scattering complex in azimuth,
with the azimuth angle measured from the nose axis of the
coordinate system. Amplitudes are in dB down from maximum.
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Figure 2-9. Radar cross section of right wing scattering complex I
in azimuth, with the azimuth angle measured from the
nose axis of the coordinate system. Amplitudes are
in dB down from maximum.
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Figure 2-10. Radar cross section of left wing scattering complex in
azimuth, with the azimuth angle measured from the nose
axis of the coordinate. Amplitudes are in dB down from
maximum.
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angle measured from the nose axis of the coordinate sys-
tem. Amplitudes are in dB down from maximum.
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added to the resultant return on a power basis. The magnitude of the

noise power is such that the variance of the noise is 15 dB down from a

relative maximum scan (without noise) at far range.

To simulate turbulence, the target coordinate system is allowed

roll, pitch, and yaw, with the origin of the target coordinate system

locked on the 3.5 degree glideslope. To simulate calm air, the target

model maintains a "wings level" attitude for the duration of the flight.

The target returns are calculated with the simplified form of the

radr euatonr7], and are output to the centroid estimators. The basicradar equation L7'adaeotu otecnri siaos h ai

system parameters are listed in Table 2-2.
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Table 2-2. Parameters for landing system simulation.

Frequency 9.1 GHz
Pulse repetition frequency 6 KHz
Target initial elevation 56.6 mrad
Target model initial range

from touchdown 6890 meters
Target model speed 148.6 mph
Turbulence rates 10 deg/s roll

5 deg/s pitch
5 deg/s yaw

Signal-to-noise ratio at a
far range 15 dB

Antenna beamwidth (null-to-null)
Azimuth 1.83 °

Elevation 1 .770
Simulation duration 103 scans



III. SIGNAL PROCESSING

The computer simulation just described creates a sequence of scan

returns from the target. In order to neglect the effects of multipath,

this work will address itself solely to that data generated by the scan

in azimuth. The target centroid is calculated from the returns as fol-

lows. A threshold determined from the scan returns is applied to the

scan. Moving in from the edges of the scan, the first occurrence of two

consecutive return voltages exceeding the threshold is located. The out-

ermost of those return voltages are tagged as the edge-points of the tar-

get. Since the angle to the returns are known, the centroid of the tar-

get is judged to be midway between the edge-points.

Three methods of setting the threshold are used in this work. Two

are the mean, and median, post-determined thresholds. That is, the tar-

get is scanned and the returns are recorded. The mean of the scan returns

is calculated, and a threshold is set at that level. Likewise, the medi-

an scan return is found and a threshold is set at that level.

A third method is a pre-determined thresholding method. The an-

tenna beam is placed in the center of the scanning window to measure the

anticipated maximum return from that scan. The threshold is set 12 dB

down from that return level, which was empirically determined as optimal

with regard to certain system model parameters. When two consecutive re-

turns are above the 12 dB threshold, the edge is marked and the scanning

translates to the other side to determine the other edge-point. The

19
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requirement that the target be fully scanned no longer exists for this

method, so that fewer pulses are needed to locate the target with little

or no increase in estimating error.

A fourth method used is a non-thresholding technique called the

radar centroid (RADARCG), similar to that used by Gordon and Casowitz

[8]. This estimator weights each antenna pointing angle in the scanning

window by the return from that angle, and divides the sum of the weighted

angles by the sum of the weights (returns). The result is the angle to

the center of gravity of the body of the return. Since it requires that

the window be fully scanned, all available pulses are used.

The above methods form the basis for comparison with the centroid

algorithm based upon return amplitude-versus-angle signature introduced

next.



IV. THE TARGET CENTROID ESTIMATING ALGORITHM

Introduction

Since all target centroid estimators are based on scan returns, it

is instructive to examine the flight scan-return history of a target.

Figure 4-1 is the scan return history of the model in still air without

noise added, which shall now be referred to as a baseline flight. This

plot was made with the target in the center of the scanning window. The

first and last beam pointing locations have negligible return amplitudes

since a null-to-null cross track is employed; the first null in the an-

tenna pattern is placed on the target at those beam locations. As is to

be expected, the maximum return occurs in the center of the scan. It is

readily seen that the scan returns over the flight are modulated, spec-

ifically by the scintillation of the target model radar cross section.

In particular, note scan number 90. At this scan, the antenna is clearly

in a null of the target RCS. We can also pick out scans 78, and with

greater difficulty, scan 58, as being in nulls of the target model cross

section. It is in these scans, with poor target returns, that we would

expect the target location error of the estimators to increase.

A flight with noise is shown in Figure 4-2. The two large bodies

of return between scans 58 and 90 are still clearly seen, but the effect

of noise is pronounced on the rest of the flight. Beam pointing loca-

tions 1 and 49 are no longer at zero amplitude, but vary with noise. It

is clearly seen from observation of scans 90, 78, and 58 that an accurate j
21 I
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determination of the presence of a target at those scans would be very

difficult and prone to error, whereas the detection of the target with

a good signal return, even in the presence of noise, is less prone to

error.

Figure 4-3 is of a baseline flight with turbulence. The many nulls

in this plot are the result of the modulation of the target model radar

cross section on the target returns as the model rotates on its axis in

simulation of turbulent wind conditions. Again, beam locations 1 and 49

exhibit negligible returns as the null in the antenna pattern is on the

target.

Addition of noise to the flight with turbulence is shown in Figure

4-4. The many returns that were of low signal level are now filled in

with noise. Only those scans whose signal level rises above the noise

are suitable for target detection.

It is in this light that the work to develop a new centroid algo-

rithm was conducted. The goal was to produce an algorithm which would be

able to determine which scans are suitable for target detection and loca-

tion - and to discard all others.

Before proceeding, a determination of the expected scan signal-to-

noise ratios in a typical flight is in order. Three baseline flights

with noise were made with the target at the initial point 3.72 nmi from

touchdown to the release point. Figure 4-5 is the flight with a granu-

larity of 9 beam pointing locations in the scanning window, Figure 4-6

has a granularity of 29, and Figure 4-7 has a granularity of 49 beam

pointing locations. It is seen that the SNR amplitude over the flights

have the same envelope for all granularities. That is, all are around 14
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dB until the vicinity of the fiftieth scan where the SNR drops a bit, due

to a relative null in the RCS of the target. From there the SNRs general-

ly increase significantly as the target draws nearer to the release point.

Note that in all three plots there are nulls at scan numbers 58, 78, and

90, which verify the observations made earlier on Figures 4-1 and 4-2.

There are also nulls at scans 94, 101, and 103 on the plots. The fact

that the nulls appears on all three plots, that is, independent of granu-

larity, at those scans is due to a peculiarity of this simulation. In

order to reduce computer execution time, the target is not scanned 10

times a second as in the actual system, but rather the entire flight is

broken into equal time units of such a length as to provide a large num-

ber of scans for a statistical analysis while keeping the execution time

down. This was done by scanning the target, moving it down the glide-

path, scanning it again, etc., until the release point was reached,

yielding a large dead time between scans. In order to provide an equal

number of statistical data points for all flights regardless of granular-

ity (and therefore independent of the number of pulses transmitted), the

dead time between scans is variable. It is the greatest when the gran-

ularity is 9, and the least when there are 49 pulses to be transmitted.

Each scan begins at the same range from touchdown. Therefore, range and

scan number are related, and will be used synonymously in this work. So

the fact that nulls occur at scans 58, 78, 90, 94, 101, and 103, regard-

less of granularity, is because the target is at the same point in space

at the beginning of the scan. The target position at the end of the scan

will vary according to the number of pulses that need to be transmitted

in the scanning window.
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Returning to Figures 4-5, 4-6, and 4-7, it is seen that all the

target centroid estimators must work with scan signal-to-noise ratios of

around 14 dB for at least half of the flight.

Figures 4-8, 4-9, and 4-10 are of a typical flight with noise and

turbulence for granularities of 9, 29, and 49 beam pointing locations,

respectively. All plots show a general degradation in the SNR due to

the fluctuating target model RCS in turbulence. Half the flight is now

down to between 10 and 12 dB, a loss in signal strength of half from the

flights without turbulence.

The Scan Return Amplitude-Versus-

Angle Signature Algorithm

It is observed in Figure 4-1, which graphically depicts the scan

history of a baseline flight, that all scan envelopes have a high degree

of symmetry. That is, as the antenna beam illuminates the target first

with the pattern null, then increasing the illumination as the main lobe

moves onto the target, reaching the maximum when the beam is centered on

the target, then diminishing as the target is placed in the pattern null,

the overall scan envelope takes on a bell shape due to the modulation of

the antenna beam. Since the return envelopes are of this shape, each

side of the bell shape has a unique point, the point of maximum slope.

Returning to Figure 4-2 it is observed that the maximum slope of a scan

with a low SNR (such as scans 58, 78, and 90) is relatively small, and

those scans with large SNR's have a relatively large maximum slope.

This, then, is the chosen criteria:

Find the point of maximum slope;

mI
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Compare the slope at that point to a minimum acceptable

value based on the characteristics of the receiver;

Accept or reject the scan;

Determine target location if the scan was accepted.

The method used to find the point of maximum slope is based on the

scan shape. Referring to Figure 4-11, let us assume that we are using a

cross track with a granularity of 7 beam pointing locations. The rela-

tive amplitudes of the expected returns are marked by the lettered X's

on the drawing. Moving from left to right, the first three returns have

a positive second derivative, since the slope BC is greater than slope

AB. Points B, C, and D have a negative second derivative, since slope

CD is less than slope BC. Since the point of maximum slope is where the

second derivative is zero, that is, where the second derivative changes

sign, the maximum slope must have occurred between points B and C.

Having found the maximum slope, we check to ensure that its magnitude is

greater than the minimum acceptable slope. If it is, the target edge is

marked as being midway between points B and C, and scanning translates to

the other side of the scan. The process is then repeated for returns G,

F, E, and D. When the two target edges are found, the centroid is placed

midway between the edge points. Since the target is located by calculat-

ing second derivatives, this method shall be referred to in this work as

the second derivative method or SDRV.

A method used to integrate the scan returns with the second deri-

vative method is as follows. The first half of the scan is broken into

four equal parts, or windows, as shown in Figure 4-12. For the remainder
oof this work, scanning window is an area identified by the search mode

1
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TARGET CENTROID LOCATION

Maximum Slopes
On Return
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Uj Second Derivative

0

Positive
Second Second

Derivative IDerivative

A TG

Ta-get Cen er Target
Edge Edge

BEAM POINTING LOCATIONS

Figure 4-11. Illustration of the method employed to determine the tar-
get centroid location based on the shape of the scan
envelope. The signal returns are marked by X.
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Figure 4-12. Illustration of the pulse integration technique employed J
with the second derivative algorithm.
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of the radar which contains a target. A section of the scanning window

segmented by SDRV shall be referred to as a window in this work. The

number of pulses in each window is determined by the granularity and is

easily calculated. The returns from the beam pointing oositions inside

the windows are averaged together, and the location of the averaged re-

turn is placed in the center of the window. That is, the average of the

five returns in window 1 is placed in the center of the window (in this

case, it has the same angular location as the third return) as shown by

the average return labelled A. The amplitude of A is not necessarily

equal to the center return in the window. When the four average re-

turns A, B, C, and D, are calculated, the determination of a target edge

proceeds as has been previously described in Figure 4-11. Since the

noise is gaussian with zero mean, the effect of noise will decrease as

more returns are placed in the window and averaged together. In the

event that the averaged returns A, B, C, and D, do not satisfy the cri-

terion, the windows are shifted one beam location to the right, and A,

B, C, and D, recalculated. This process is continued until a target

edge is found, whereby the scanning then translates to the other side of

the target. Otherwise the scanning continues until the fourth window

has shifted to within two window widths of the right side of the scanning

window, in which case the scan is rejected and further pulse transmis-

sions are aborted. In the event that a target edge was found, scanning

will proceed from right to left until the last beam location in the

fourth window reaches the position calculated as the first target edge.

If this occurs, the scan is rejected and further transmissions aborted,
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but the area of the last two windows in the first target edge was re-

scanned, both using more pulses and being doubly sure that no target was

present. No centroid location decision is determined from a rejected

scan.

In this simulation, the minimum acceptable rise of the maximum

slope in the scan is related to the amount of noise introduced into the

flight by 1.5 times the standard deviation of the noise. This value was

chosen after making many runs of the simulation and observing the effect

of the minimum slope on both the number of rejected scans and on the ac-

curacy of the estimator. The accuracy of an accepted scan is affected

since, with scans of poor SNR, there may be more than one set of returns

for which the criteria are satisfied, due to the effect of noise.

A third and final criterion is implemented in the algorithm. With

no or little signal present, it is possible for return B to be below both j
returns A and C, because the probability of obtaining a negative value at

any time from a zero mean gaussian process is one half. If B is a nega-

tive quantity, subtracting B from C is a large number, sometimes greater

than the minimum slope criterion. To this end, return B is first com-

pared to a voltage reference. If it is below the reference, the windows

are shifted and B recalculated. The voltage reference is initially set

to zero at the beginning of the flight, and is then modified as follows.

Each time a set of returns is rejected, a beam pointing location drops

out of window 1 in Figure 4-12 as the windows shift to the right. The

return from that beam location is averaged into the existing value of

the voltage reference. That is, the return is added to a register which

contains the sum of all past returns dropped out of the first window. A

I
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second register is incremented by one to record the number of returns in

the sum. The average is recalculated for every shift of the windows, for

the duration of the flight. A voltage reference such as just described

can be set at a constant level according to Ward [9] for a practical

radar receiver.

In summary, the second derivative algorithm uses three criteria.

In the order the criteria are implemented, they are

1) (Averaged) return B must be greater than a specified

voltage reference,

2) (Averaged) returns A, B, and C must have a positive

second derivative and (averaged) returns B, C, and 0

must have a negative second derivative, and

3) the maximum slope BC must be greater than the minimum

acceptable slope.

If the scan returns satisfy the criteria, a target edge is assigned to

be midway between B and C, and scanning translates to find the second

target edge.

The first responsibility of the algorithm is to reject scans for

which an estimate of the target position is subject to severe error.

Figure 4-13 is a plot which illustrates this capability. A flight with

noise was flown with a granularity of 9 beam locations in the scanning

window, and with the antenna on the runway centerline. The antenna was

then moved to 25 meters from the runway centerline and the target reflown.

The antenna position was moved again by 25 meters, and so on, ending with

the antenna located 250 meters from the runway centerline for a total of

11 flights. In all flights, and for all data in the remainder of this
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work, the target location in each scanning window was varied randomly.

Figure 4-13 is the result of those 11 flights. It clearly shows that the

average number of rejected scans closely follows the total number of

scans for low scan SNRs, and decreases as the SNR increases. There the

number of accepted scans increases and matches the total number of scans.

The crossover point is between 12 and 15 dB.

Flights with noise and turbulence were flown as before and results

plotted in Figure 4-14. There is a higher average number of scans with

both low and high SNRs due to the effects of turbulence. These plots

are truncated; no scan SNR less than -9 dB or greater than 50 dB were

taken into account. Figure 4-14 is flatter than Figure 4-13, and the

crossover point between the number of accepted and rejected scans is

still about 12-15 dB.

The cumulative number of accepted and rejected scans for the flight

with noise is shown in Figure 4-15. The rejected scans closely follow

the total number of scans until around 10 dB, when it begins to level

off and the number of accepted scans increases. On the average, 59 scans

are accepted and about 44 scans rejected out of a total of 103 scans,

which verify our observations of Figure 4-5 that about half the scans

were in low SNR.

Figure 4-16 depicts an average flight with noise and turbulence.

Here there are fewer than sixty scans accepted with 100 scans evaluated

(three of the scans were below -9 dB or greater than 50 dB, and do not

appear in the plot). It is again evident that there are more poor scans

with turbulence than without turbulence, as was observed in Figure 4-8.
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For a granularity of 9 beam pointing locations in a scanning win-

dow where the location of the target is varied randomly, there is only

one beam location in each window. For a granularity of 29 beam pointing

locations, there are two beam locations in each window and integration

can occur.

Figure 4-17 was generated in a similar manner as was Figure 4-13,

but with 29 beam locations. The effect of pulse integration, even for

only two pulses, is already apparent by noticing that the crossover

point is moved further down, to 8 or 9 dB. Also, the average number of

rejected and accepted scans follow the total number of scans exactly

below 2 dB and above 17 dB, respectively. The flight with noise and

turbulence, Figure 4-18, has more scans at low SNR's es does the flight

with noise only, but the crossover remains at 8-9 dB. The advantage of

the integration is clearly seen in the cumulative number of scans ac-

cepted and rejected, Figures 4-19 and 4-20. By comparing these figures

with Figures 4-16 and 4-17 the increase in the number of accepted scans,

and aecrease in the number of rejected scans, is readily apparent. But

reference to Figures 4-6 and 4-9 shows no real increase in the number of

scans with a high SNR. Therefore, the increase in the number of accepted

scans was due solely to the integration process.

A granularity of 49 beam locations places 4 beam pointing posi-

tions in each window, permitting 4 returns to be averaged. Figure 4-21,

an average of flights with noise, shows the crossover point moved back

to 6 dB. Virtually every scan above 12 dB is accepted, which was the

crossover point for the single return integration of Figure 4-13. Also

note that tre crossover region becomes narrower. In Figure 4-13, a gap
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of 27 dB occurs between the points where all scans are either accepted

or rejected, centered at 13 dB. In Figure 4-17, with two returns aver-

aged in a window, this gap is reduced to 12 dB, centered at 8 dB. With

four returns integrated in each window, the gap is down to 11 dB centered

on 6-7 dB. In Figure 4-22, the average of flights with turbulence, the

same observations can be made. The crossover is lower than the other

granularities, now at 6 dB, and virtually all scans above 12 dB are ac-

cepted. As is to be expected, the average cumulative number of accepted

scans for flights with noise, Figure 4-23, has increased, again due to

the integration of pulses in windows. The number of rejected scans also

is reduced. For flights with noise and turbulence, Figure 4-24, the

same is true. The number of accepted scans has increased by over 20 on

the average, and the number of rejected scans dropped by a like amount

in comparison to the implementation of the second derivative algorithm

without pulse integration.

The algorithm having been introduced and its rejection ability

verified, the comparison of the centroid estimation accuracy of the

second derivative method to the other estimators may now proceed.

f
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V. COMPARISON OF THE TECHNIQUES

Each of the five centroid estimators operate on the same returns

in a different fashion. It would be appropriate to examine the action

of each on scans of different signal-to-noise ratios by way of introduc-

tion to a statistical analysis of the estimating error.

A plot of the scan returns for a scan with a SNR of 21 dB is shown

in Figure 5-1 with the antenna located 125 m from the runway centerline.

The mean algorithm set the highest threshold, followed by the 12 dB and

median thresholds, all set low on the curve. The average returns inside

the windows of SDRV cause the windows to closely follow the shape of the

curve. The set of windows shown by the triangles which calculated the

first edge, shown by the small left-most arrow, are well up on the body

of the return where the least error should occur. The second target

edge calculated by SDRV occurred when the windows shifted to the posi-

tions and amplitudes shown by the diamonds. The actual target location

was calculated during the transmission from the 22nd beam location, and

is denoted by the large arrow. The target location calculated by the

radar center of gravity (RADARCG) method is shown by the large X. In

this scan, the mean, median, and RADARCG methods used all 41 pulses, 12

dB used 28, and SDRV used 38. The error ror this scan for all five es-

timators is shown on the plot.

The second derivative method used one fourth more of the scan than

did the 12 dB estimator to be sure that it was on an actual target
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return. Since the thresholds are all set relative.ly low on the scan, it

would be easy for the thresholds to be prematurely tripped by noise.

Comparison of Figures 5-2 with 5-3 show this to be the case. Both the

median and 12 dB estimators were satisfied by the noise outliers on the

left part of the scan in Figure 5-2. These were rejected by SDRV which

shifted the windows until it moved onto the mair body of the return. Due

to the uniformity of the noise in Figure 5-3, the 12 dB estimator proper-

ly set the edges for the most accurate estimate of the target location.

SDRV did move well onto the return, but misjudged the location of the

target by 0.6 mrad to the left. The mean and median estimators made the

same estimate as SDRV, and the radar center of gravity estimator posi-

tioned the target as shown by the X due to the noise of the right part

of the scan.

A scan of low SNR is shown in Figure 5-4. Note the signal return

magnitudes on this plot in comparison to Figures 5-1, 5-2, and 5-3. The

thresholding methods all set the thresholds low on the scan, in the noise,

and came out well due to the uniformity in the noise. Although a main

body of return appears obvious in this plot, it is of such low amplitude

that it was dismissed as noise by SDRV and the scan rejected.

The comparison of the techniques is in two basic parts. In the

first part, the output of the estimators is plotted as a function of an-

tenna offset for three different scanning granularities. In the second

part, the output of the estimators is plotted as a function of granular-

ity for a given antenna offset. Both parts are composed of the results

of a baseline flight, flight with noise, flight with turbulence, and

flight with noise and turbulence, for each data point, in that order.
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The output of the estimators requires eight plots for each set of flights,

one plot each for the mean error, mean square error, standard deviation

of the error, and the variance of the error, in milliradians and meters.

Each data point on each plot is the result of 103 scans (one flight) on

the target. The equations used are:

X = (Estimated value - Actual value)

Mean Error = Z XN

Mean Square Error = Z X2

N

Standard Deviation- (X _ I (rX) 2 )
N1 ( z _ Tx2

Variance = (ZX2 _ I (ZX)
2

where N = Number of samples

The data input to the estimators in the baseline flights and flights

with noise are somewhat correlated. After the estimators used the scan

returns of the baseline flight, zero mean random gaussian noise was ad-

ded to each scan return, and the estimators were called again. That

data is plotted as the flight with noise. In the same way, the data in-

put to the estimators for the flights with turbulence and noise were

made from the scan returns of the flights with turbulence.

In the next thirty two plots, all scans were used in the error

analysis irregardless of the scan SNR. A scanning granularity of 9 beam

pointing locations was employed. The plots of the baseline flights ver-

sus antenna location, Figures 5-5 through 5-12, all show the RADARCG

estimator to have the least error, with the SDRV estimator almost as

I.
'II
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accurate. The three thresholding methods are very nearly equal, but com-

parison of the plots will show that the 12 dB estimator has the least

error, then the mean estimator, and finally the median estimator. Under

these no-noise, non-turbulent conditions, there does not appear to be

any appreciable error introduced by siting the antenna 250 meters from

the runway centerline as compared to being on the runway itself.

The flights with noise, Figures 5-13 through 5-20, begin to show

the relative merits of the estimators. Here the second derivative algo-

rithm clearly has the least error in noise alone, less than 1.5 mrad or

arouild.4 meters on the average according to Figures 5-13 and 5-17. It

is also the most stable, as shown by Figures 5-15, 5-16, 5-19, and 5-20.

Whereas RADARCG was excellent without noise, the figures indicate that

it is significantly degraded in noise. The thresholding estimators are

still very close to each other, with the same approximate order of error

as in the baseline flights. While all estimators were degraded with the

introduction of noise, there is still no apparent effect due to antenna

offset.

The flights with turbulence only, Figures 5-21 through 5-28, show

little error difference in comparison to the corresponding plots of the

baseline flights, Figures 5-5 through 5-12. This illustrates that for a

low order granularity, the effect of turbulence on the estimators is

small.

The flights with noise and turbulence, Figures 5-29 through 5-36,

again show the second derivative method to be the most accurate and most

robust estimator for a scan with nine beam locations in noise and turbu-

lence. The thresholding methods still appear to be about equal in
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quality, with a slight preference to 12 dB. RADARCG has now deteriorated

to the least accurate and least robust estimator, due to the low data

rate which does not allow the algorithm to properly decouple the noise.

While the above graphs included all scans, it would be worthwile

to examine the performance of the estimators with signal-to-noise ratios

of 13 dB or greater. Only those scans were selected from the data and

plotted in the next series of figures.

The flights with noise, all scans above 13 dB, Figures 5-37 through

5-44, indicate that SDRV and RADARCG are both approximately equal in per-

formance. SDRV is slightly favored since it appears to be more robust

at the various antenna offsets. The thresholding estimators are of equal

quality.

With turbulence, Figures 5-45 through 5-52, the same is true.

While it would appear that SDRV is slightly less accurate than RADARCG

by viewing the plots with the error in milliradians, Figures 5-45 through

5-48, SDRV was more accurate in the actual meter error from the target,

Figures 5-48 through 5-52. This error occurred when the target was at

close range, when a large error in milliradians is a small error in

meters. The thresholding techniques are comparable to each other and

are not as accurate as SDRV or RADARCG.

Scans which had signal-to-noise ratios of 10 dB or less reflect

the ability of the estimators to find the target in noise. The flights

with noise, Figures 5-53 through 5-60, show the second derivative method

to be the most accurate with the least deviation or variance in noise.

RADARCG has the greatest error of the estimators. The thresholding

methods are, again, of similar quality.
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The flights with turbulence and noise, Figures 5-61 through 5-68,

reflect the same observations made earlier. It is interesting to note

that with turbulence and noise, Figure 5-61, the second derivative esti-

mator is as accurate as the thresholding methods were with an infinite

SNR and no turbulence, Figure 5-5. This clearly shows the increased

ability of SDRV to track targets over the thresholding methods.

A granularity of 9 beam pointing locations forced the second deriv-

ative method to have only one beam location in each window. No pulse

integration was possible. With 29 beam locations in the scanning window,

each window contains two beam locations, and some noise rejection action

will occur due to the averaging of the returns in each window.

The results of a baseline flight versus antenna offset for a scan-

ning window with 29 beam locations are shown in Figures 5-69 through

5-76. The second derivative method has the least error, followed closely

by RADARCG, followed by the thresholding estimators. Of the thresholding

methods, the 12 dB method has the least deviation and variance, shown in

Figures 5-71, 5-72, 5-75, and 5-76, and thus distinguishes itself from

the mean and median methods. Comparison of these plots with the base-

line flight plot of 9 beam pointing locations, specifically comparing

Figures 5-69 and 5-73 with Figures 5-5 and 5-9, shows that whereas the

thresholding methods and RADARCG have no real change in their estimating

ability due to the increased amount of data, the error of the SDRV algo-

rithm was cut by approximately two-thirds.

The flights with noise, Figures 5-77 through 5-84, show the SDRV

method to be the most accurate as well as the most robust estimator.

RADARCG improved significantly with the increased rate, and the thresh-

olding algorithms are still comparable, with the 12 dB estimator leading.
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The results of the flights with turbulence, Figures 5-85 through

5-92, show results similar to the baseline flights, just as the flights

with turbulence were similar to the baseline flights with a scanning

granularity of 9 beam locations. This is due to the lack of noise in

the scan returns.

The flights with noise and turbulence for all scans, shown in Fig-

ures 5-93 through 5-100, indicates a slight degradation of estimating

quality in the thresholding methods from the baseline flights. The sec-

ond derivative method was degraded, but clearly remains the most accu-

rate of the estimators. The mean error in milliradians of the radar

centroid algorithm indicates that the mean error is less than that of

the thresholding methods, but the mean square error in milliradians and

meters, Figures 5-94 and 5-98, and the mean error in meters, Figure 5-97,

are in excess of the thresholding methods.

Selecting only those scans which are equal to, or greater than 13

dB, the estimating ability of the methods was examined. Figures 5-101

through 5-108 are the results of the flights with noise, scans 13 dB

and greater only. As was to be expected, RADARCG is the best estimator

in periods of high SNR, and the thresholding estimators are of equal

quality. With turbulence effects, Figures 5-109 through 5-116, all esti-

mators are degraded modcrately. As in the flights with noise, RADARCG

is the most accurate estimator, followed by SDRV, with the thresholding

techniques of lower quality.

The accuracy of the estimators using scans with SNRs of 10 dB or

less in flights with noise are depicted in Figures 5-117 through 124.

The second derivative appears to be the best of the estimators in noise, J

!
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due to the method of rejecting scans which do not satisfy the criteria.

RADARCG has a lower mean and mean square error than the thresholding

methods, but it is not robust in noise. Comparison to Figures 5-53

through 5-60 discloses a general improvement in all estimators, due to

the increased data provided by a scan of finer granularity.

The error due to scans with signal-to-noise ratios of 10 dB or low-

er in the flights with turbulence and noise, Figures 5-125 to 5-132, is

on the order of the flights without turbulence. The thresholding esti-

mators show no additional degradation due to turbulence. However, both

RAOARCG and SORV experience an increase in error, particularly with the

antenna at a large distance from the runway. SDRV is still the most ac-

curate of the estimators, but RADARCG is greatly affected by the noise

and produces estimates of the target location with greater error than

the thresholding methods.

Having discussed the error produced by the estimators with scanning

granularities which permit the averaging of 1 and 2 beam location returns

in its windows, the discussion of a still finer scanning granularity is

in order. With 49 beam locations in the scanning window, the returns _

from four beam pointing locations are averaged in each window of the sec-

ond derivative algorithms.

The baseline flights, Figures 5-133 through 5-140, show little im-

provement in the mean or mean square error for the thresholding methods

or RADARCG. The standard deviation and variance of the thresholding

methods did improve, causing their plots to closely coincide. The sec- ]
ond derivative method displays an improvement in estimating capability, 1*

~J.
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and is the most robust of the estimators with regard to antenna offset

location versus actual meter error.

The flights with noise, Figures 5-141 through 5-148, show an im-

provement in all estimators over the 29 beam location scans, RADARCG in

particular. The standard deviation and variance of the errors are more

stable than in the coarser granularities, due to the increase in data

points upon which a location decision can be made.

The baseline flights with turbulence, Figures 5-149 through 5-156,

show little change over those baseline flights without turbulence (Fig-

ures 5-133 to 5-140). There is a curious jump in the standard deviation

and variance of the SDRV milliradian error at antenna locations of 225

and 250 meters from the runway, Figures 5-151 and 5-152, but there is

only the slightest deviation from a straight line at those antenna loca-

tions in the plots of the standard deviation and variance of the error

in meters, Figures 5-155 and 5-156. The error probably occurred at close

range.

The flights with turbulence and noise, Figures 5-157 through 5-164,

indicate that SORV is again the estimator with the least error in turbu-

lence and noise. There is an improvement in all estimators over the

coarser granularities, particularly in the case of RADARCG. The estima-

tor is much more stable .in the higher data rates, but the standard devia-

tion and variance are still in excess of those of the thresholding meth- -
ods.

As before, it would be advantageous to examine the performance of

the estimators at the increased data rate in both high and low scan I
SNR's. I
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Figures 5-165 through 5-172 are the results of the calculation of

the mean error, mean square error, and the standard deviation and vari-

ance of the error in milliradians and meters using only the data from

those scans of a flight with a SNR of at least 13 dB. The figures show

the RADARCG estimator to be the most accurate, in contrast the SDRV was

most accurate when the scan SNR was infinite (baseline flights). The

three thresholding methods are all comparable, with a slight edge given

to the mean estimator.

The addition of turbulence, Figures 5-173 through 5-180, shows lit-

tle change from the flights without turbulence. This again indicates

that little decorrelation occurs from pulse to pulse due to turbulence

for this simulation.

The scans less than or equal to a SNR of 10 dB for a flight with

noise were selected and the data plotted in Figures 5-181 through 5-188.

Most noticeable is the improvement in RADARCG. The algorithm, now having

more data points to assimilate, is working well in reducing the effects

of noise. The most accurate and robust estimator is still SDRV, although

the choise is not as obvious as it was in the coarser granularities. It

is interesting to note, by comparing Figure 5-53 with Figure 5-181 for

example, that the mean error in milliradians of SDRV for nine beam loca-

tions, scans less than 10 dB, is at least as accurate as are the thresh-

olding estimators under those same conditions, but using 49 beam loca-

tions.

The flights with turbulence and noise, scans at or below 10 dB, are

plotted in Figures 5-189 through 5-196. All estimators are improved over

similar conditions with the coarser granularities. Note that the second

i
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derivative estimator, using only those scans at or below 10 dB, is still

more accurate than the thresholding methods in baseline flights, Figures

5-133 through 5-140.

Since there was little or no effect of antenna location on the er-

ror of the estimators, we shall consider the effect of scan granularity

on error for only one antenna location which shall be 125 meters from

the runway centerline. For the next 32 figures, all scans will be in-

cluded in the analysis regardless of scan SNR.

The errors plotted as a function of granularity for baseline flights

are shown in Figures 5-197 through 5-204. The most surprising aspect of

these plots is that there is no decrease in error with the increase in

scanning granularity, except for SDRV which generally improves with the

finer granularities. It would then appear that, on the average, the lim-

it of accuracy for the thresholding methods, RADARCG, and SDRV is 3 mr,

0.4 mrad, and 0 mrad, respectively, as shown by Figure 5-197. The stan-

dard deviation and variance also show little change with the exception

of SDRV, which decreases.

Figures 5-205 through 5-212 are the results of the baseline flights

with noise. The thresholding estimators do not increase in accuracy with

an increase in granularity, but rather converge on a value of error. Both

the second derivative and RADARCG improve with finer granularities. The

second derivative has an increase in error between the granularities of

9 and 23, when there is only one beam location in each window. Two beam

locations are in each window with granularities of 23 through 29, three

beam locations are used from 31 to 45, and granularities of 47 and 49 use

four beam locations in each window. Note that the error is a relative I
I
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minimum at granularities of 9, 23, 2iP, and 47. This implies that the

coarsest granularity for the windows to hold a desired number of beam

locations should be used to minimize error. This result is to be expect-

ed. The second derivative method is scan shape oriented, and works best

when the four windows just fit into half of the scan return. Shrinking

the size of the windows in angle makes it more difficult for the algo-

rithm to detect the maximum slope, and easier to trigger on noise.

Spreading out the windows forces any major change in signal strength to

the target related, not noise related. Therefore, the coarser the gran-

ularity the better the algorithm works for a given number of beam loca-

tions in each window. The most favorable granularity is the antenna

null-to-null beamwidth divided by the number of beam pointing locations

minus one.

The flights with turbulence, Figures 5-213 through 5-220, again

show little change from the baseline flights.

The flights with turbulence and noise, Figures 5-221 through 5-228,

again show the second derivative to be the best estimator, especially

with the finer granularities. The thresholding methods are still close

to each other, but the 12 dB method appears best, followed by the mean.

RADARCG is a bit unusual, as the mean error in both milliradians and

meters, Figures 5-221 and 5-225, show it to be quite good, yet the devia-

tion and variance of the estimator is quite poor, especially in actual

,aeter error, Figures 5-227 and 5-228. The difference between the mean

error in meters, Figure 5-225, and the mean-square error, Figure 5-226,

is quite large, indicating that when RADARCG missed the target, it missed

by a sizeable amount.
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Proceeding to the scans with a SNR of at least 13 dB, Figures 5-229

through 5-236, the flight with noise only shows the RADARCG estimator to

be the most accurate and reliable with respect to granularity. The sec-

ond derivative is generally better than the thresholding methods, deci-

sively so in the finer granularities. The thresholding methods are of

equal quality in high SNRs.

The flights with turbulence and noise, Figures 5-237 through 5-224,

again show RADARCG to be the best estimator in periods of high signal

strength. The second derivative is the next best method, degrading to

the level of the thresholding estimators for the granularities between

15 and 21 beam locations in the scan. The mean estimator appears the

best in accuracy of the thresholding methods, followed by 12 dB and the

median estimators, in that order.

The scans with SNR's of 10 dB or less for the flights with noise

are plotted in Figures 5-245 through 5-252. The degradation of all esti-

mators is evident. RADARCG and SDRV are the two best estimators particu-

larly in the higher granularities. The 12 dB thresholding method again

distinguishes itself as the best of the thresholding methods in noise,

although the mean and median methods are similar in ability.

The flights with turbulence and noise, Figures 5-253 through 5-260,

now show SDRV to be the most accurate, and RADARCG to be the least accu-

rate. The thresholding methods do not appear to be affected by the tur-

bulence. It is shown that there is no general improvement in the ac-

curacy of the thresholding estimators with an increasing number of beam

pointing locations in the scan. If the target returns are below the

noise floor, then no amount of data will display the target without some
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g sort of filtering action. The thresholding methods have none, so their

accuracy is limited by the amount of signal rising out of the noise

floor. With enough beam locations in each window, SDRV can, in theory,

be able to average out the noise in the target. When averaging is not

done, as in the granularities at and below 21 beam locations, SDRV is

only marginally better than the thresholding methods,as shown by the

standard deviation and variance in milliradians, Figures 5-255 and 5-256.

When averaging occurs in the higher granularities, the method stands by

itself.
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VI, SUMMARY

The subject of this work was to introduce a new non-thresholding

algorithm, and to determine the estimating ability of it with a second

non-thresholding algorithm (radar center of gravity) and three thresh-

olding techniques, two post-determined (mean and median) and one pre-

determined (12 dB). It was observed that during periods of high signal-

to-noise ratio the radar center of gravity was superior to the other

methods, with the second derivative method a very close second. With the

same signal-to-noise ratios, the thresholding methods were of equal es-

timating ability, with a slight favoring of the 12 dB threshold. The

addition of turbulence alone into the simulation did not appreciably af-

fect the error produced by the estimators since there was no noise floor

present in the computer simulation. Therefore, the signal-to-noise ra-

tio was infinite, regardless of the actual return amplitude of the scan,

and the flights with only turbulence were really just baseline flights

revisited.

When 15 dB of zero-mean random gaussian noise was added to the

baseline flight or flight with turbulence scan returns, the second deri-

vative method emerged as the most accurate estimator, especially in pe-

riods of low signal-to-noise ratio. The radar center of gravity is de-

graded because it always makes a location estimate, regardless of whether

or not a target is present. With enough beam locations, the noise will

330
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average out, and the estimator will improve as shown by the plots of

error versus granularity. The thresholding methods also make an estimate

of target location regardless of the presence or absence of a target,

except in the rare instance when no two consecutive returns are above

the scan threshold. In this simulation, if there is no target, but

only noise, the mean estimator will calculate a threshold close to zero.

Since gaussian noise is randomly positive arc negative, the probability

that all returns in the scan be alternately positive and negative is low.

Therefore, the probability that the there is at least one instance where

two ;onsecutive returns are positive is high, and a "target" is found,

since two positive returns are above the threshold. Again in the noise

only case, the median estimator will set the threshold at the median

return amplitude, which will be approximately zero, and the above argu-

ment holds for this estimator also. In the case of the 12 dB estimator,

12 dB down from a noise voltage places the threshold in noise, and the

above argument can be reapplied. Therefore, none of the above estimators

are truely capable of target detection, since the estimators will do

their best to find a "target" regardless of whether or not one is present.

Only the second derivative method is able to make a decision as to the

absence or presence of a target by operating on the shape of the scan

return. If no target is present, the shape of the return is flat with

zero slope and a constant second derivative. If a target is present,

the slope will change and the second derivatives of each set of estimator

windows will change sign, locating the point of maximum slope and there-

fore a target edge. The plots of scan SNR versus average number 'f scans,

I
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Figures 4-13, 14, 17, 18, 21, and 22, show the second derivative method

to reject those scans of low SNR. The plots of error for low SNR, in

pa-ticular Figures 5-253 through 5-260, show that when a scan is accepted

and a decision of target location is made, that the decision is accurate,

because even in noise the basic scan shape was suitable enough to detect

and locate a target.

The figures of error versus antenna offset show no apparent in-

crease in error due to antenna offset. This is primarily due to the

high PRF which "stops" the target in the flight path during the scan.

Even with a large granularity, the target will move only on the order of

its own length during the scan. So the effect due to translation is small.

Since the target movement is small, in translation as well as in rotation

due to turbulence, the modulation of the radar cross section of the tar-

get is small, and that effect is also negligible. Therefore, the results

of this computer simulation is accurate in those regards. Yet, in actual

practice, error is expected when the antenna is delocated from the runway.

This error is introduced by the ranging accuracy of the radar. If the

antenna is a distance to the left of the runway, and the range estimate

is short of the actual target location, then the estimate of position

will place the target to the left of the runway independent of the error

to the target centroid in milliradians.

The plots of error versus granularity display little decrease in

error with an increase in granularity for the thresholding methods, but

does show an increase in robustness with granularity. Both non-thresh-

olding methods improve in both average error and robustness with granula-

rity.



i 333

t Overall, The second derivative algorithm is clearly the estimator

least prone to error and most robust in estimating ability for virtually

all granularities in the presence of noise. The radar center of gravity

estimator is most accurate in periods of high SNR and with fine granular-

ities. It suffers degradation in noise, and in large noise becomes unus-

able as an estimator due to noise outliers in the scan returns. The

th.-esholding methods are rather robust but less accurate than the second

derivative method and RADARCG with high SNRs.

Pulse economy is of great importance. That estimator which uses

the fewest pulse transmissions without an increase in target location will

in general be the estimator employed in practice. The 12 dB thresholding

method is especially suited to pulse economy. When a target edge is found,

scanning translates to the other side of the scanning window, savino oulse

transmissions by removing the requirement to fully scan the target. The

second derivative method does require that the target be scanned more

fully than the 12 dB method, as shown in Figures 5-1 to 5-4. While this

reduces the probability of false alarm, it requires the expenditure of

additional se transmissions in the scanning window. However, virtually

every data point on the 256 figures in the previous chapter have shown the

mean error, mean square error, and standard deviation and variance of the

error of SDRV to be less than the 12 dB estimator. How do these methods

compare in terms of target location accuracy versus pulse budget?

A plot of average pulses used per scan v.rsus granularity is shown

in Figure 6-1. It should be pointed out that in this simulation, time was

incremented as though 3 pulses were transmitted at each beam location,

but only one pulse was used. Since there is a one to one correspondence

I
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between pulses per scan and the number of beam pointing locations in the

scan, the mean, median and RADARCG estimators use a number of pulses

equal to the scanning granularity. The 12 dB method transmits one pulse

in the direction of the target to set the threshold, and thus uses one

pulse before the start of the scan. The second derivative estimator has

the capability of rescanning part of the target twice due to the nature

of the algorithm. As such, it can use more pulses than the magnitude of

the scanning granularity. Referring tc Figure 6-1, the 12 dB estimator

is shown to use about half of the pulses budgeted for the scan. The

second derivative stays very close to the pulse budget, sometimes re-

scanning the target more frequently at certain granularities. Those are

the granularities where the number of beam locations in each window of

the estimator increases by one. The highest granularities that do not

increase the number of beam locations in the windows, namely the gran-

ularities 21, 29, and 45, have the least pulse usage but the highest

error.

In periods of high SNR, what should be expected with regards to

pulse usage? Figure 6-2 is a plot of the average number of pulses used

per scan, only those scans of at least 13 dB selected. There is almost

no change in the number of pulses used by SDRV. The 12 dB method used

more pulses, because it had set the threshold higher due to the increase

in return amplitude.

In periods of low SNR, as shown by Figure 6-3, the 12 dB method

used fewer pulses, because :t was able to trigger on noise at the ends of

the scanning window, rather than triggering on the target itself. Also

as expected, there was a slight increase in the number of pulsed used by

• | I i iomens
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SDRV as it was forced to search further in the scan to locate a target,

the noise alone being unable to satisfy the algorithm.

But we have not yet addressed the posed question - what is the re-

lationship between pulses used and error induced? Returning to Figure

5-221, let us choose the granularity where the 12 dB estimator is the most

accurate. This would be a granularity of 45 beam locations in the scan-

ning window. From Figure 6-1, the 12 dB method used approximately 25

pulses per scan, on the average, at that granularity. Moving directly

across the figure to the left, it is observed that the second derivative

method used about 25 pulses per scan with a granularity of 27 beam loca-

tions in the scanning window. Returning to Figure 5-221, the mean error

of the second derivative algorithm at a granularity of 27 beam locations

is approximately 1 mrad. From the same figure, using 27 pulses per scan

(granularity of 45), the 12 dB estimator had a mean error of about 2.7

mrad. Further, comparison of the results of SDRV at a granularity of 27,

Figures 5-197 through 5-260, with the results of the 12 dB estimator at a

granularity of 47, shows the second derivative algorithm to be clearly

superior. Since the mean, median, and RADARCG estimators all use more

pulses than the 12 dB threshold, SDRV is also more efficient per pulse than

those methods.

It is instructive to examine the error of the estimators as a func-

tion of range. Since the 12 dB estimator is representative of the thresh-

olding estimators, only the data for it was plotted against the output of

the RADARCG and SDRV methods in the accompanying figures. The data was

obtained by using the results of the eleven flights with noise and turbu-

lence representing each antenna offset location at all 21 scanning granu-

I
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larities, regardless of scan SNR. The data is plotted in Figures 6-4 to

g 6-11, error as a function of scan number. The first scan occurred with

the target 4.0 nmi from the antenna, and the 103rd scan occurred with the

target over the release point. Clearly shown is the consistency of the

12 dB thresholding method and the SDRV method with about half the error.

Also clearly shown is the marked lack of robustness of RADARCG. This is

most pronounced at far range, and decreases to the level of SDRV at close

range. Note that RADARCG appears to be more accurate but less robust than

SDRV at close range from the plots in milliradians, Figures 6-4 to 6-7,

but was actually approaching the quality of SDRV as seen in the plots with

error in meters, Figures 6-8 to 6-11. Finally, the plots show the error

to reduce as the target approaches, an expected result.

It is appropriate to conclude this work with a comparison of the

estimators on a pulse-by-pulse basis. Since a typical radar system has a

limited pulse budget, it is prudent to employ the centroid estimator which

uses the pulses expended most efficiently. The following figures are

plots of the average (mean) error of an estimator per pulse as a function

of the average number of pulses used in the scan. Each data point is the

result of 11 flights of which the total error was divided by the total

number of pulses used to obtain a single data point. Figures 6-12 and

6-13, the error-pulse ratio in milliradians and meters, respectively, used

all scans regardless of SNR. The second derivative estimator is clearly

shown to use the available pulse budget most efficiently by having the

least error per pulse for any amount of pulses budgetted in that scan.

JNote that the SDRV method is most efficient with pulse integration, and

!
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that the other estimators approach the quality of SORV at low pulse usage

only with finer granularities.

For comparison, in periods of high SNR, RADARCG is of the same

quality as SDRV with pulse integration, as shown in Figures 6-14 and 6-15. I

The thresholding methods are of equal quality. As is to be expected, SDRV

is the most efficient estimator in low SNR, Figures 6-16 and 6-17, with

RADARCG least efficient. Here the effect of pulse integration in the SDRV -

algorithm is most dramatic.

In conclusion, the second derivative algorithm is shown to have the

least error per pulse used in comparison to the other estimators employed

in this simulation. It is the most robust of those compared due to the

unique scan rejection capability inherent in the architecture of the algo-

rithm.
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This appendix contains a complete listing of the FORTRAN program

used to compute the flight of the target and the output of the centroid

estimators. The program is extensively documented and a reading of the

comment cards reveals much about the computations that are performed.

The program requires 15 minutes to compile and execute one flight

with a granularity of 29 beam pointing locations on an IBM 3031 computer.

The plots presented in the text are special purpose programs devel-

oped to be compatible with the plotting facilities at Auburn University.
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C TO !NLH AS THR2SHOLD.
C RTI-IOVlNG TAaGE7T INDICATION.
C tit. ROLL ANGLE.

C NLC-NMBE OFT31NSSISSIONS :Y ZICH SCINNING INDOV.
C NU5= NUnBEF Of SCITTER!SS IN EACH TARGET COSPLZX.

OKGSRDA 0

C OZGARADA. FRZQU3NCY OF TN! TARGET MO:IONS, IN AD/SE-COND.

C PANGLZ- PRESENT ANGLE TO CROSS-?RACK CENTER AS SEEN F203 !UNAY.
C PCA= PHI :O TARGET CENTROID IN AZIMUTH. DETERMINED BY 7HRRESHCLOEN3
C PROCEDURES AND PASSED To ERROR SUBROUTINE FOR COSPARISON
C AGAINST ACTUAL TARGET LOCATION4.
C PZRIODPERIOD OF THE SELECTED TARGEZT MOTION, 7N SECONDS.
C PSI-SP9ERICAL CO0aDrNAT!. (TARGET)
c PSakTE=prTcH SATZ OF THE TARGE- 30:D:L, IN DEGREES/SECON.13
C PVRTwPEAK TP.ANSAZT PONER.
C
C Q
C
c ft
C RCGAZu RADAR CENVTZR OF 3SAVTY IN AZ:3GTH IS SEEN BY
C RUNVAY AND DETERMSINED BY IADARC.
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I

C PCGELs RADAR CENTER OF GRAVITY IN ELEVATION AS SEE7 S

C RUNWAT ASO DETERMINED B RaDASC.
C RETVOLmINPUT OPTION TO DISPLAY SCAN RETURN VOLTAGES.
C RNGw RANGE TO EACH SCATTERER IN THE TARGET CCAPLEX.
C R? GTTuRAKGE TO THE TARGET, IN NAUTICAL MILES.
C RRATEwROIL RATE OF THE TARGET 30DEL, IN DEGREES/SECOND.

C
C S
C SCIAT AN AiRAY DIMENSIONED (#SCAT,4). CONTAINS COORDINaTES OF
C EACH SCATTERER IN TARGET COORDINATES AND THE RCS OF EACH.
C SIGNLASIGNLE- THE SIGNAL AMPLITUDE WHEN THE 3EAM IS CENTERED ON
C TARGET IN AZIMUTH AND ELEVATION, USED TO DETERSINE
C THE SNR FOR THAT SCAN.
C SNRAZ,$N3ELs THE SIGNAL TO NOISE (POVER) RATIO DETERNINED BY
C (SIGNAL IMPLITUDE/RMS NOISE VOLTAGE)&SQRT(2SSVR)
C SPEEDs TARGET SPEED IN MPH.
C SUNWw ARGUMENT USED TO SON VOLTAGES TOGETHER IN RADARC.
C SUNITHx ARGUMENT USED TO SUN VOLTAGE RETURN TIMES THE ANGLE
C TO THAT RETURN AS SEEN FROO THE ANTENNA.
C
C T
C TC_ THETA TO TARGET CENTROID IN ELEVATION, DETERMINED BY
C THRESHOLDING PROCEDURES AND PASSED TO ERROR SUBROUTINE
C FOR COMPARISON AGAINST ACTUAL TARGET LOCATION AS SEEN
C BY THE ANTENNA.
C TRETA.SPHERICAL COORDINATE.(TARGET)
C ?REsH THRESHOLD USED IN 7BLH (FIRST HIT LAST HIT) SU3ROUTINE
C TIME= TIE VARIABLE USED FOR DEAD TIME BETWEEN SCANS.
C TIAERs INITIAL TIME OF SCENARIO AND TIME VARIABLE.
C TINEPw PULSE TIE
C TPHSFTu PHASE SHIFTER RESPONSE TIE.
C
C U
C UCERTAUCERTEm THE AMOUNT OF BEAR POINTING ERROR INTRODUCED IrNT3
C THE PLACESENT OF THE ANTENNA BEAN, CONSTANT THROUGH-
C OUT I SCAN, BUT RANDOMLY CHANGING FROM SCAN TO SCAN.
C
C V
C VDIRCT- DIRECT VOLTAGE RETURN.
C VLT& VOLTAGE MATRIX DIENSTONED (JSCAN,II). JSCAN-1 ARE ATISOT9
C VOLTAGES. JSClNn2 ARE ELEVATION VOLTAGES, IImSCA9 SIZE.
C VNRMSs THE RMS NOISE VOLTAGE FOR THAT SCAN COMPOTED BY SQUARING
C EACH NOISE VOLTAGE, SUNING THEN, AND THE TAKING THE SQUARE
C ROOT OF THE AVERAGE NOISE VOLTAGE SQUARED.
C
C
C
C
C A.AREIGRT* INITIAL COOUDINATES OF THE RADAR ANTENNA.
c ZDeTDZD DOUBLE PRECISION RADAR COORDINATES Or TARGET LOCAT:ON.
C XDIF,TDI?,ZDIF= RADAR COORDINATES OF THE SCATTERERS fITS RESPECT
C TO THE LOCATION OF THE ANTENNA.
C lOOZOu TARGET POSTION ALONG TRAJECTORY, IN RADAR COORDINATES.
C
C Y
C YFL= REAL RANDOM NUBER BETWEEN 0 AND 1 71O OUTPOT OF THEIC OUTPUT OF THE RIYDU SUBROUTINE.

II
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C TRITuY~hi RATE Of THE TARGET AODEL, I% oE,.az!s/sE:oND.
C
C Z
C
C

OISE SS104 VLT (2,09) SCA? (3,%~) TODA T(9) AZD(%~) VOISE(2,4a9)
D09BLE PRECISION ELV(49),AZI(S9J
I4TEGER OPTION (5) ,!LSCAN .?XA ,RETVOLCOONTA,COUNTEP,PSF
DOUBLE PRECISION XDIF,!IY,ZDIP,XD,TD,ZD
DEAL 30.,LAlDDASULV,LS,aIIS(2,49),K
INIZGER AZDI. ELDINIl.AGILE,3D17,ADIV,PLISIE.PLS 12,PLS!'D.PLSSD
C04NRTBAEPAITIEOrGP2,LLNT4

-AZ.G3NG
COaEON/aTA/'UGInAC4fI. IO,ZO
COMNON/SCATS/SCAT.NOB
COMMON/VAE/K., D PS2
CONNOR /ALLE-LV,AZI,BANG!.OPTIOU.LABEL.ELDIB.AZDI!.E-LSCAN,DELL
COMMON /EAD2/PEL,PAZ,CLCCE,CBLOCI,GRANE,rgDANA,AZSwjL3g 9 LOCK
COMMlON /?ILEIT/XBEAN, INZD*XUADRC,X12D8 .ISDRVISNRAZ.PLS12,

*PLSD,PLSSD, D.IEAN, DRED, DRAORC, O12DDPDSDR7
COMON/FOURI/COaNT.COUNTA,aODEE,sIOaEA, BSTR,SDIEL,100112,50DA12

C
DATA Pt,T Z.IaADOZG,D!GDAD.SQP2,C/3.I'&l512,1.572796,

06.233135,57.29578,.0174a533,12.56637,3.01+08/
DATA ITADLE,JUSTI/1,3/ 

-
C
C D A TA IN3PU0T PODIA8?1
C
C COL. TADIABLE NAME OPtIONS
C
C I rCODZ I - JETSOD $1 AS rARGET NOD!LI
C 2 - ONE POINT ISOTROPIC SCATTIRE2
C
C 2 $OISE 0 - NO GAUSSIAN NOISE
CC I - ADD GAUSSIAN NOISE TO RETUPY

C 3 laPy 0 - 1O ROLL.PITCH. OR YAW
C I - ROLL, PITCH AND TAN IRE INCLUDED
C
C 4LOCK 0 - ADD UNCESTAlsry OF TARGV* LOCA-
C TION INTO &NTENNA SCANNING.
C I - LOCK ANTE3NA ON TARGET
C

C5-7 hIA INITIAL INTEGER STARTING LOCIT:ON 3P i
C ANTZNNA I COORDINATE, SZTESS.
C
C 3-10 Pik FINAL INTEGER ANTENNA LOCAT:ON, SEMES
C
C 11-13 INCil TME& BT UBICS IA IS INC22AMNED
C PION ZIA TO PEA. If RUN USES ONLr
C OUR ANTENNA LOCATION. SET rIAmPIA. '
C ZICIA=ANY VON-ZERO POSITIVE :NTEGER.
C
C 1'4 IP1.ES 0 - NO OUTPUT TO DATA PILES
C I - OUTPUT TO DATA PILES
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C U NOTE: PROPER JCL MUST HE INSERTED
C
C 15 IPRIST 0 -NO DETAILED OUTPUT OF SOLUTION
cI - DETAILED OUTPUT OF SOLUTION
CIC 16 ELSCIN 1 - ELEVAr:ON S=14 NOT USED.
C 2 - ELEVATION SCAN USED.
c
C 17 RETYOL 0 'Orr

c 1I DISPLAY SCAN 7OL7A3ES, EL!7AT:3N
c AND THEN AZINUCH
C
C 18-19 AZDozA ODD INTEGERS BETWEErN 6 AND 50
C 2C0-21 ZLDrl ODD INTEGEaS 32TWEEN 6 AND 50
C 22-2~4 FLTIME
C
C
C
C ON THIE NEXT LIM!, ENTER 0 03 1 FOR THRESHOLDING METHOD:
C
C 1 MEAN 0 - OFF
C I - CALCULATE 32&N
C
C 2 MEDIAN 0 - or?
C I - CALCULiTE RED111
C
C 3 RADARCG 0 - or?1.C I - CALCULATE WEIGHTED ANGLES

C 4TWELVE 09 0 - OFF
C 1 - ON
C
C 5 SECOND 0 - 0?
C DERIVATIVE I - ON
C

C

CALL DATZ(TODAY)
WNITE (6,1) (TODAf(I) 101.91

I FORMAT(l1 I,SA4)f READ (5,100) ICODE,MOIsE,INPY,LOCK,IXA,?XA.IWCXA,IFI:LES,IP!Zrr,
-ELSCAN,RETOL, AZDIN.ELDIU.?LTINE

READ (5, 2) (OPTION (1) In 1,5S)
2 F03NAT(611)

I WIT !(6, 11)
FORM&T(@ THE FOLLOWIVQ ZNOEBATION iAS READ IN@)
IRITZ(fi,5) ICODE, NOISE, IIPY,LOCK

SoasT5L(o icoDES 6,rio NOISE81,11,' a1 'z, LOCK=',11)
UNITE (6,6) IIA,FliA.NCZA,IlLZS,IP!ZNT,tL3CAN, NETTOLI 6 FOSMAZ (I IIA-1,13,2X,1FIAml,I3,1 INCXL=',13,1 IPILESa',Z1,

0' IPRIXT.*O,1,1 ZLSCAN-',12,6 RETOLwf,Z1)
WIITZ(6,7) AZDIB.LDIfi

7 FORMAT V' AZ30I=1,12,2,1LD0fl=,I2)[ WRITE (6,91 PLTIRE
8 ORAT (21, 1 PLT IRR=4,I)
ft IT ?(6, 10) (OP TIO N (1) ,In1, 3)

10 F02.44(' 3ZAN= 1,11,0 MEDIAN& '.1, AD&AC* ',11)
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WE IT! (6, 11) (OPTION (1) 19 -4,5)
11 FOU!AT(l TWELVE 03z ',11,1 SECOND DIRIVATI7!a',11)

VRIT? (6, 103)
C THE FOLLOWING LIST OF VIRZABLES CAN 3! CHIANGED TO

C 3SBSERV THE :MFLaENCZ OF ?ARZTCULAR ?ACTORS OV M3CKING
C PEIFORKANCE.
C
C RAMDO GMI!ATOR SZED
C

C
C ANTINNA:
C

AZBW. 916
BFaw-. 336
TA-- 500.0
HE1GRTm3. 0
C- 3. 02#09
Fs!Qu9. 1!*09
PIT1iO.01*05
LA3DDA3. 0Z*0$/F3!,
9=2. 0*PI/AXBDA
AZSPCU 1.0
ZLSCB..

C XmT!IWA 91CEZTAINTY FACTOR -GIVES +/-14 8 !RROR AT PXNGT1620 3

DZLAAlTANZ ('..620.)
IF (LOCX.2Q. 1) DELTA-C.
GRIN&* (kZB9*DEG3AD#DlLTA) '2. 0/ (FLOAT (A ZDIS) - 1.)
GIANE-(ELDW9DZQBAD+DILTA)-2.0/(LOAT (ELOIn)-?.)

C
C TIGT?

C !D3P 3.470991
GLSLP3.5
RNGTGT3.72 i
133100-3.0
PRAU'*5.O
TRAT!. 5. 0
RRAT~u 10.0

C SCARVING TIME

C
?INU.00. 0

?132P1(I.0/P2?)GFL0A? (ETI)
TPNSFTsI 3-06
?Zhl- 1. 0- (TZSZP* (ELDIS* ( EDIS- 1) /2) (IZDIN (&ZDt.1- 1) /2) STPRSFT.)

C

EAST U9. 11.09
G(SLPuGLSLPD1G2ID
lIGrQTmENGG7 853. 2268



PATr! R A,*! 'DEGF AD
TRATS=RRAT EODE3RAD

S NR!. 1175

C

C SAIN LOOP: THIS LOOP CONSTRUCTION CAUSES THE AZrSUTS (A) AID 7HE
C ?LEVTIOX (1) TO CHANGE, SCANNIING THE ANTENNA. NOTE IA7 7Hr
C SINULA:TON SCANS FIRST IN AZIMUTH VITH !uO (BrAN 3ON TAP.GET Is
C ELEVTION),* AND THEN SCAR1S IN !LE7ATION 4115f A=O (SEAM ON4
C TARGET IN AZINTUTH).
C

DO S2 JXA-IXA,FXAZNCXA
112-?LOA? (3!A-1)
NSCA NSAO
SN3EL=999. 99
SNRAZ0999. 99
HSCAq!S0o
TINEI'O.0
JUST 1.0
DO 13 JKXI,AZ3IS
VLT (1.3K) '0.30

13 VRfIS(1,JJC)zO.0
DO 146 J11I,ZLDZN
VLr (2,JK) a 0. 0

14 TINSS (2, J ) =0. 0
111ITLP(6, 15) 1A, TA, HEIGHT

1S VORNAT(11,' ANTE.NNA POSITION WITH RESPECT TO END OF RUNNAT:1,
#1 Ika 1&*03' A ',?1.3,1 HEIGHT- ',710.3)
DO 50 lFLTwl,PLTIXE
IF (MLT.!Q.1) GO TO 16
TI3ZI=TIAZI#TI3E

16 CONTINUE
C
C INCR23ENT TIME IF ELEVATION SCAN IS NOT CALC3LATED.
C

I? CELSCA N. NI.23ELSCAN'1
IF( (3?LGT. 1) .AND.ZLSCAN. EQ. 1)TIMZIw'TNEI~rIMZP*

00 31 JSCANn1,ZLSCAN
C
C GET A 31)6005 XU33Zt FOI ANTENNA POINTING DUCE^RTAIVTY. IF LOCKLD)
C ON, CALLING RANDU NOV WILL mAINTAIN THE SIMI SET OF SCAN 4OISE.I C CALL kANDO(IX,IY,!fL)

IF (JSCAN. EQ. 1) A'- (AZ DII- 1) /2
C IF(JSCAN.2C.2.Oa.LOCK.IQ.I) GO TO 17

C T3! CENTER 31A1 POINTING LOCATION IS GIVEN 11 gg:!RTAITI OF #/-4
C BITERS AT TOE ZZLIASE POINT BY MOVING TIE STA17ING LOCATION 0?rC THE NULL-TO-NOLL SCAN RANDOMLY.
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C
t3C!!TAu2.* (YL-O.5) *D!LTA/GSANVA
A&'DCZRTA

17 IF (JSCA4. EQ.1) E-0
t?(JSCAN.10. 1) DCE!TE-O.
IF (JSCAN. EQ. 2) ASO
IF (JSCAN.2Q.2) tCZRTA=O.
IF IJSCAN. IQ. 2) Zm- (ELD la- 1 /2
I?(JSCAN.ZQ.1.O3.LOCK.ZQ.1)GO TO 19
UCEPTEZ=. *(TFL-O.5) SDELTA/G1 AN
!a!.tICEPT1

19 IF (JSCAN EQ. 1) all-azDIN

I? (JSCAN.2Q.2)3lINwELDIS
IF (JSCAN. EQ. 1. AND. 11. GT. 1) ?I8!IuTI3ZITP4S?T
IF (JSCAS.ZQ.2. AND.Il. G?.1) TIE~sTI MEI.TISEP
IF (JSCAN. EQ.1) AZRADI (II) WGANA*A

19 CONTINaE

C
C SOBOUTIM! T!AJ: THIS SOBDOUTIME GENERATES THE C3RR!M7 LOCATION
C OF TN! TAR37 ON A GIVEN TRAJECTORY. ALSO 3ENERATED ARE -

C PERIODIC 7ALUZS Or BOLL, PITCH, AND YAW, CORRESPONDING
C TO LOCAL !OBBOLZNCZ AND WINED SMAR.
C

CALL TRAJ(?LM1I.RPr)
rF(YO.LE.90-0) GO TO 201
GO TO 21

20 VITS(6,130) TZS3EI,NSCANS
GO TO 51

21 CONTINGE

C FIND TO? ANTUNA LOCATION IN THE TARGET COORDINATE SYSTES.
C TUAS2 ARE NOT SPHERICAL PHI AND MUET, 30T RELA-lIVE ANGLES

C 301 TARGET TO ANTENNA. THE CENTER O? THE ENTIRE COORDINATE
C SrSTEN IS THE RUNWAT TOUCHDOWN POINT, NO? THE ANTENNA LOCAI3.

CALL ROTAT2(Zl*A,AEIGHT,X1,r1,Z 1)
PUI*-ATAWZ (Xl,! I) PI/2.0
TH ZTAmATA#2 (SQlT (I100.2+fY102) t.11)

C
C ?92 SACISCITTER CROSS SECTION OF EACH SCATTERER IN TRI
C TARGET C-I5PLEX IS NO1 DE?!RSZN!D FOR A GIVEN ANTENNA
C POSITION ZM TARGET COORDINATES.
C

CALL UCS (TUZT,PErICODE)
IF (17RINT.EQ.0) GO TO 22
WHITE (6, 132)
WEIT?(6. 121) T:SET
V IZ(6, 122) A,!
WITE? (6, 104)
WIT (6, i2fh) 10,IQ,ZO
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PCiIuCRI7'HADDEG
MRIT (6,125) PMU,PGA3MA,PCHI

WRITE (6, lOU)
PPuPRIRIDDEG

TT U ET B AD DiG

I RIT!(6.1 15)VRITE(6,116J PP,TT
WRITE (6, 1 OU)

SClTRI-10.O.ALOGD(SCT2#4al
SCATLV3. 0 ALOG 10(SCAT (3,4))
WRITE (6,1 112)
WRIT! (6,113) SCATP,SCATRW,SCATLV

22 CONTI13?

C
C FIND TARGET ORIGINI .N RADAR COORDINATES
C

IDIFuOBL! (XO) -DBL3(XA)
TOIPmDILE (YO) -DaLE( TA)
ZOIF-D3L! (ZO) -DBLE (fEIGHT)
GR3#GuSQlT (SNGL (XDIF) **21.SNGL (!0I?) 6*2)
GNDRYGaGRNG
PANGEUSQri?(SNGL (101?) **2+SNGL (TDI?)'*24.SGL(ZDIF) *2)
RTuSIGL (ZOIF)
AZO=ATAN2 (SNGL (10?) ,SNGL(TDIF))
XLOmATAN2 (SXGL (ZOIF) *GRNG)

V IF (II.NZ. ( (DIM+1) /2) GO TO 90
PAZ. AZO

C3LOCA- AZO*GRANA*UCZRTA
CBLOC!-ELOGRANAOCERTE

I C CONlPVfl ELETION AND AZI3UTH ANGLES TO :HE SEAS POINTING
C POSITIO3 WITHIN THE SCANZG WISDOV.
C

(30 lhZ+ANk
IF (IpaiNT.EQ.0) GO TO 23
WRIT! (6, 117)
PLj~~~aZL RADDEG

C SCTERERS IN EETPAORIGEcUiI

WRTI6,14
23CNIU

IORTU.
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DO 25 tu1,4U.1

C
C FIND0 SCAT?!RER 14 RADAR COORDINA!ZS
C

CALL ROTT (SCAT (,1) SCAT tI, 2) ,SCAT (1, 3) X0,YD,ZD)
XDI?=ID-Ka
YDIF.Ttl-YA
ZDIF-ZD-HRIGHT

RG =SQRT (SNGL (1017) 6*2.$NGL (101?) **2*S) G 131)02

C
C COMPUTE IZ139TH AND EloEYATION ANGLES TO SCA7TERZ3 IN RADAR
C COORDZNAT!S.
C

AZ=ATAN12(SNGL(XDIF) ,SNGL(YOIF))
IL-ATAN2 (SNGL(ZDIF) ,GENG)
IF (IPRIYZ..EQ.0) GO TO 23
WRIT! (6,119)
PEL= ZLORAD ORG
P A ZSAZ*R AD ORG
WRIT!(6,12O) I.PRL,PAZ,RNG
WEITZ (6, 104I)

24 CONTINUE
AZD-AZ 1-AZ
EB EL1- EL
CALL ANTZNA(AZD.ZLDDGI4)

C~a.essssa*~ee*.Eaesessaea*~~e~auas.s
C ISC? IS THE COMPLEX 9-FIELD FOR THE SCArTERER OF INTREST

C IN THIS PARTICULAR SCAN. NOTE THAT THIS FIELD IS RIGHT
C 03 LEFT CIRCULARLY POLARIZZD DALCKSCATTERIAND BECAUSE OF
C ANTENNA, POLARIZATION SENSITIVITY, &PP2OXI~hTELY HALF THE
C BACRSCkTT!g POWER 1S AVAILABLE FCR PROCESSING.

RGTa RNG*20II.O*PI
RBSCTULAEBDASSQRT((SCAT(I.U) 'P1RTe377. )/RtGT)
VDIRCTuVDIRCT.+DGkIu (ZBSCT**2) -

25 CONTINER

C
C V38S IS THE SUA OF THE COMPLEX BICKSCITT28 TOLTAGES
C INDUCiD 31 EACH OF THE TARGET COSFLZX SCATTERSRS.
C

IF (IPRINT.RQ.O) GO TO 26
PDS(ABS(TDIRCT) '*2)*10l+O5
PGNw1O.0*IL0GIO (OGAIl)
IPRITE(6,127) TDIRCT,PD
PIL~sEL1 SUADDZG
PAZ 1aAZ1*9AD0EG
IRIT!(6,126) PGN.PZL1,PAZI
WRITZ(6, 106)
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I
26 CONTINUE

VLT(JSCIAI) =vDIECT
IF(JSCAN.EQ.I.AND.II.E0.((&ZDIS.I)/2))SIGNLATDICT
IF(JSCAN.EQ.2.AND.I:.EQ. ((ELDI3.I)/2))SIGNLE-VDZRCT
IP(NOISE.Q.0)GO TO 28

C
C ADD GAUSSIA.( NOISE USING "RANDU" AND "GAUSS"
C
C 15 D OF NOISE IS ADDED AS FOLLOVS:
C IF (SIGNAL A3PLITUDE/RMS NOISf VOLTAGE)-SQRr(2-SNR ) TEEM WITH
C SIGNAL ASPLI'UDEt3. I (AT A RELATIVE NAXISUI AT RANGE),
C 33S NOISE 7OLTAGE=S=O.3999
C

S-0. 3898
ASO. 0

C
C GAUSS
C COMPUTES A NORMALLY DISTRIBUTED RANDCH NUMBER %ITS A GIEN
C MEAN AND STANDARD DEVIATION.
C.
C DESCRIPTION OP PARA.ETERS
C Ix -Ix BUST CONTAIN AN ODD INTEGER NUMBER VZTH MINE OR
C LESS DIGITS ON THE FIRST ENTRY TO GAUSS. T8ER!ATER
C IT WILL CONTAIN A UNIFORMLY DISTRIBUTED INTEGER EA.DOM
C NOSHER GENERATED BT THE SUBROUTINE FOR USE ON THE NEXT
C ENTRY TO THE SOROUTINE.
C S -THE DESIRED STANDARD DEVIATION OF THE NORSLL
C DISTRIBUTION.
C AS -THE DESIRED SEAS OF THE NORMAL DISTRISUTION.
C V -THE VALUE OF THE COMPOTED NORaAL RANDON VARIABLE.

C RE ARKS

C THIS ROUTINE USES ANDO WHICH IS SYSTES/360 SPECIFIC.
C
C SUBROUTINES REQUIRED

C NANDU
C
C .ETHOD
C USFS 12 UNIFORM RANDOM NUMBERS TO COMPUTE NORMAL RANDOM
C NUNBERS BR CENTRAL LISZT THEOREM. THE RESULT IS THEN
C ADJUSTED TO 4ATCH THE GIVEN SEAN AND STANDARD DEVIATION.
C THE UNIFORa BANDON NUMBERS COMPUTED WITHI, THE SUBROUTINE
C ARE FOUND BY THE POWER RESIDUE METHOD.
C

Al-O. 0
DO 27 1t-1,12
CALL RAlDU(IXIrPL)

27 Aiiki+t F
To (A R-6. 0) *S+ AN
VNOISE (JSCANIII) =I

CI
C O D OS OVLAERTR

[



370

C
TLT"(JSCANI:)sVL.(JSCId,:I) .V
IF XN.R.) IIT! (6,101) VLT (JSC&4, :1)

IF (NOISE. !Q.1) GO TO 29
C
C CYCLE RANDO IF NOISE IS 0FF TO 8AINdrAIN SA.ME ASTENNA ONCZRT&INTY
c FOR ILL FLIGHTS.
C

Do 2S 114s1,12
CALL RANVU(IX,IY,rFL)

29 IX-I1
29 1? (JSC&4. EQ. 1) A-AAZSPC

IFP(SCA4.ZQ.2) E-Z#ELSPC
C
C IF ELEVATION SCAN IS OS!D, ADVANCE TIME T0 IOVE BEI.
C

*TIRE Ps( (LDl- 1) /2)+TPSFT* ((A Z:) I m1)/2)
30 CONTINUE
31 CONTINUE

vsckmSNmSCAms*
IP(MOISE.EQ.O)GO TO 35

C
C CALCULATE SIGNAL TO NOISE RATIO
C
C AZIMU TH
C

DO 33 333=1,AZDBR
VNOISE(1,JJJ) =TNGISZ(1.333)**2

33 YSQaVSQVOIS(,JJJ)
VMU.SoSQDT (VNSQ/AZDINI 1
S%%AZwO. 5s(SIG3Lk/VNI1IS) *'2
SXRAZx1O..0~LLOG1O (SNRAZ)
IF (ELSC&N. EQ.i) GO TO 351

C ELEVATION
C

TRSOMO.0
00 34 JJJ=I,ZLDZB
INCISE (2,333) =VSOIS(2JJ)'a2

34 VNSQVNSQVNOISE(ZJJJ)
VNRtIS-SQST fVNSQ/ELDIX)
Sm3ELx0.5*(SIGVL/V4RES; se
S3!L-10.OL0i0 (SN3ZL)

35 I?((OPTION(l).EQ.1.0l.OPTTON(Z).!0.1.03.OPTIONq(3 .EQ.1.o3.
*OPTIOUp4) .EQ. .OS.OPTIOI (5). EQ. 1.)
O.AN0.JUIST1.IQ. t.AND.1P311T.EQ.0)WUIZE(6, 135)

DO 36 Im1,AZDIA
36 AZI (1) =DBL(VLT (1,:)

DO 37 Iml,EiDIN
37 ELV(I)uOSL!(VLT(24))

YF(UETVOL.EQ.l)M3ITE(6,133) (L(I)I~lED~i
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*CPION(4).EQ..AN4D.OPTION(5).EO)GO TO U5
IF (JUST1. 20. 1. A D. IPR INT. EQ. 1) GO TO 39
I?(JUST1.EQ.1) GO TO 4'4

JUST lu18 ;a!,!! (6,33)
3 ORHAT(//.5&!,l CENTROID MEASURE43NTS1,// ,
OfNOTE: I 31N)JS SIGN ON AZIMUJTH ERROR MEANS THE L,

*'CALCULAT!!D TARGET POSITION IS -.9 THE LEFT OF rH! ACTUAL',
*'LOCATION4.I,/,

*6 A MINUS SIGN ON ELE71TION TRROi MEANS TH! 1,
* 'CALCULATD 713GET POSITION IS 3ELOW THE ACTUAL LOCATION.,
*/,I THE FOLLOWING APPLIES TO 123B AND SDa:',/,
*6X,'THE TWO NUMBERS PRECEDING THE METHOD NAME AaE THE !ODE '

*'FLAGS IN ELEVATION AND AZIMUTH, RESP!CTIVELT.f,/,SX,
*'?OR 120B, SODEwO MEANS ALL RETURNS IN THAT SCAN ;EaL A58077! THE 1
0112D3 THRESHOLD. S00E-1 MEANS IT LEAST ONE RETURN WAS ABOE THE' ,
*/,61,TRESHOLD. FOR SDPV, SODE=O MEANS THE SCAN VA3 zz"ECTED 1
O'DU1 TO NOISE OR SHAPE CRITERION. 30DE-2 MEANS TH!'e* 6X.
*'CENTROID WAS CALCULATED BY FINDING THE MAXIMUM SLOPES CN '

-§THE RErRN.,/,
06X.'THE TWO TWO-DIGIT NUMBERS FOLLOWZNG THE METHOD NAME ARE THE',
06 NUMBER OF PULSES USED IN THE ELEVATION AND AZIMUTH SCA:IS,',/,
*6!,' RESPCT17 EL!.')

VRITE (6, '&1)
l41 ?ORnkAT('+',211,'ACTUAL',2OI,'I'.t2X,'CALCUILArED'.

*111,011,22X,'ERROW',/,'48X,#1',331,'I ')
tEIT! (6,42)

'42 ?01fAT('+,130('Q1),,1,'RANGE IN 113TERS SNI. IN US 3LEVl:3Nl,
01I,NAZISYYTH 11,4t,'ETBOD ELEVATION AZIMUTH IX'EV:O'
07!.I ',9X,AZISUTU' ,/,I,ATENNA ?.UNWA',5X,'ELl,&X,

Ol&Z DEGREES DEGREES I',15XIDEGREES DEGREES ILLIBADIINS '

O' METERS I NILLIRADIANS SETERS')

WE!?! (6,'I3)
13 FORMAT ('4',130('1))

614 IF (OPTION().Z9.1) CAL.L MEAN
IT (OPTION (2) .?Q. 1) CALL MEDIAN
IF (OPTIONI3).EQ.1) CALL PADARC
:P (OPTION (4).30.l1) CALL TiODa1 I? (OPTION(5).EQ.1) CALL SDRV(INIT,NOIS!)

I? (IPRIN?. EQ. 1)VRITE(6, 10?)
C

C WRITE TO DAT&SETS

45 IF (IILES. EQ.O) GO TO 50
flZIT!(10,1O6)A,RAE;,KBAN,XD,3ARC12DS,XSDR,NR&Z,

-PLSI 2.PLSFD, PLSSD
VUIT2(11,106)XA,RANGE*DNEAN,DN!D,DRAD-RC,012D5,DSDRI.SiPA.,

OPLSI2, PLSFD. ?LSSD
53 CONTINUE
51 CONTINUE
52 CONTIRUE

STOP

130 FORMAT (411,313,'1,212, 113,15.2,73.1)
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11 ORMA:(5X,l RZTURA VOLTAGZ VTM,' NOISE= ',!15. )
122 ?Oa-la:(' I I)
123 FO2RM'A(-0)
12'4 FO9,qAT V o I
105 FOS.UAT('t'X,j ',33X,'j '.2LX,11',/,&SX,.',33X,' j ,2'4X,' ')
126 ?0RMA7(92E16.3,372)
112 ?F3MAZ('0',1QXIRCS OF POSETLAGZ,82I.HT W:If,AND LZ?7 d44 (DBSn)')
113 1ORIAT (101 , ' S-LAGEa I ?10. -1 ?4d:N4=,PI3.lJ. 4 L47:s., ?l "4)

115 F03!AT(' l0' ,1Q,ATEM5A ASPECT AI(GLES,WI ?!SPE-CT -0 -:HE

116 P0BR.AT(' ,5,PI- P2.,X'lT~.1.
117 FORMAT($34,13r,'AaRGET CENTER LOCIT:ON 14 FA)IR COORDIN4ATE-S-)
119 FO3R!AT (@ ',15X, '!LEVATION-',FIO.6, 1,'AZNOUH-' ,?10.b, lX,

*'RANGZ' ,P1J.4)
113 PORflAT('0',10X,'SClTT!3 LOCATION 14 RADAR :OORDI4NATZs')
120 FOSiIAT(f' ,13X.'SCA'I#',12,lX.'ELEVATION-',FIO.6, 1,

121 FORMAT('O'.10X,'SCANNTN4G TINE'',P12.6,' 2ILLISECCNDS')
122 FORMAT (1'0110%,'1&Z & EL BEAS CO3RCTI'ON SUSBERS ?RCI 0 EORSI0.K!:

* 'A'1 F5. 2,'1 E' I,F5. 2)
124 P0211'AT('0',SZ'-CU92EUT LOCATION OF TARGST C3NS , =',?12.7,IX,

* 'Y=f,P12. 7,iX,' Z-', 12. 7)
125 FOR5AT('0#,5X,vCURREVT '(AL94S F03 TARGZT ANGOLAR BOTION(DES.REES):'

0POLL-',?6.3,]X,'FTa'P3,xTI'p.)
126 ORA('.1'AN'1.8'sAT EL.,F10.6," £ AZ=',Pl13.6,

*2X,' (DEGREES)l)
127 FOR3AT('0',SX.'RET3RM VOLTAGE=',Fl6.13,21,'OIBECT POWER-'.

*E16. 3, X,'HfICROWATTS')
130 7OaRAT('O','PREEZZ CCSMA4D POINT; SIMULATION ENDS. ELAPSZD TllE'

*I- ',?12.8,)X,'SECONDS, #SCANS.',I10)

132 FORMAT('00, 100 (1*1)
133 FO!IIAT(7?16.9)I
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BLOCS DATA
COO. /ALL/-LV, AZ, aAG,0TO AEED.,XD1 CN Z

PEAL'g ELV(49)/49e)..OD3/.AZt(1s9)/u90.OD/
I'IT!G?3 OPTZON(5),Z~lAZDrMLSCAlI
IND
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SUBROTINE RANDU (I X,l I YFL)
CStsseststsssssswtssssswsessatsotsssasss.*.stsslesesastsessstasptsss.@..

C
C PURPSE
C COMPOTES ONIFORMLY DISTRIBUTED RANDCA REAL NUABERS BETlEEN 0
11 4AND 1.0 AND RANDOM INTEGERS BETWEEN ZERC LSD 20*31. EACH ENTRY
C USES AS INPUT AN INTEGER RANDOM NUMBE3 AND PRODUCES A N!*
C INTEGER AND REAL RASDCM N=332R.
C

c DESCRIPTION OF PARAMETERS
C rX -FOR THE FIRST ENTRY THIS 2UST CONTAIN ANT ODD INTEGER
C NUMBER WIH NINE CR LESS DIGITS. AFTER THE F:RST ENTRY,
C IT SHOULD BE THE PREVIOUS VALUE OF IX COMPUTED BY THIS
C SUBROUTINE.
C I? -A RESULTANT INTEGER RANDOM NUMBER REQUIRED FOR THE NEXT
C ENTRY TO THE ROUTINE. THE RANGE OF THIS NUMBER IS BETWEEN
C ZERO AND 2**31.
C TEL-rHE RESULTANT UNIFORMLY DISTRIBUTED, ?LOATING PCINT,
C RANDOM NUMBER IN THE RANGE 0 TO 1.0.
C
C REMASKS
C THIS ROUTINE IS SPECIFIC TO SYSTEM/360 AND WILL PRODUCE
C 2*-29 TERMS BEFORE REPEATING. THE REFERENCE BELOW DISCUSSES
C SEEDS (65539 HERE), RON PROBLEMS, AND PROBLEMS CONCERNING
C RANDOM DIGITS USING THIS GENERAT:ON SCHEAE. !ACLAREN AND
C 3ARSA3LIA, JACM 12, PP.93-39, DISCUSS CONGRUENTED GENERATION
C METHODS AND TESTS. THE USE OF TWO GENERATORS OF THE RANDU
C TYPE, ONE FILLING A TABLE AND ONE PICKING FROM THE TABLE,
C IS OF BENEFIT IN SOME CASES. 65549 HAS 3EEN SU55ESTZD AS A
C SEED WHICH HAS BETTER STATISTICAL PROPERtIES FOR HIGH ORDER
C SITS OF GENERATED DEVIATE. SEEDS SHOULD BE CHOSEN 1N ACCOR-
C DANCE TITH THE DISCUSSION GIVEN IN THE REFERENCE BELOi.
C ALSO, IT SHOULD BE NOTED THAT IF FLOATIN7 POINT RANDOM NUABERS

C ARE DESIRED, AS ARE AVAILABLE FROM RANDU, THE RANDOM CHIRAC-
C TRISTICS OF THE FLOATING POINT DEVIATES HAVE H: H PROBABILITY
C OF HAVING A TRAILING LOW ORDER ZERO BIT IN THEIR FRACTICNAL

C
C METHOD
C POWER RESIDUE SETHOD DISCUSSED IN :BM MANUAL 320-9011,
C RANDOM NUMBER GENERATION AND TESTING.
C

IY=IX*65539
IF(IT) 5,6,6

5 ITYIY.21497836;47+1
6 TLfIT

TFL.,YFL-.4656613E-4
RETURN
END
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sasRouT~n ROTA? (XSCATYSCAT ,ZSCATXD, ID, ZD)

C
c THIS SUBROUTINE COMPUTES THE ADAR COORDINATES OF -,H?
C PO13T (XSCAT,fSCA?:,ZSCAT) GIVEN IN TARGET COORD14ATI-S
C
C
C 1!),YD,ZD ARE RADAR COORDINATES OF POINT.
C %SCLrTSCkTZSCAT IRE TARGET COORDINT2S Or POINT.
C 1O,YO,ZO 492 TRANSLATION COORDINATES.
C ZHI IS YAW ANGLE - POSITIV! ROTATION ABOUT THE Z-AXIS.
C 3A39A IS PITCH ANGLE - POSITIVE ROTATION ABOUT THE I-AXIS.
C NO 1S ROLL ANGLE - POSITIVE ROTATION ABOUT THE X-AXIS.
C THE ROTATIONS ARE ALWAYS PERFORMED lN "HE ORDER -TASf-PITCH-ROLL.

C

REAL SO
DOUBLE PRECISION XD,YDoZD,DSLZ
COMINON/RTA/NO,GAflNIACHI, XOoYO,ZO

I CGsCOS(GAR3.A)
CCvCOS (CHI)
CS5COS (911)
SG-SIN (GASMA)
SC-SIN (CR1)
SSIN (m U)

SRSG-S.ISG
C RSG aC.*S G
XD=DBL! (CGsCC*XSCATe (SSSG5CC-CH

5
OSC)'TSCLT+

+ (CMSG *CCaS S0C)*Z SCAT) *DELE(XO)
YD.OBLE (C:;OSCeXSCATa (SNSGWSCaCR5*C) sISCAT.

' (CRSG*SC-SaSCC) *ZSCAT) .DULE(YO)
ZD=OBLZ(-SG*XSCAT.SRSCG*YSCIT.CH5OCG*ZSCAT) .DBLE(ZO)
RETURN
END
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SURO?'!3OTAT2 (X A,YTA, HE :-GH XI,T I,Z 1)

C
C THIS S UPO'ITZME COM~PUTES THE TARGET COCPDZ!.lA'rES OF THE
c POINT (I~lS:M)DESCRIBED -- RADAR COCRDISAT!S

C
C 1l,Yl,Z1 A?! TliGZT, COORDINATES Or POINT.
C X&,YA,HEIGST AR~E RADAR COOHDIWATES 0? PCINT.
C XO,TO,Z3 AR! TRANSLATION COC&DINATES.
C CHI 1S Tki ANGLE - POSITIVE ROTATION A30UT THE z-AxIs.
C ;AIMA IS PITCH ANGLE - POSITIVS ROTATION ABOUT TH3 Y-AX' S.
C 10 IS ROLL ANGLE - POSITIVE ROTATION ABOUT T!Z 1-AIS.
C ZEE aOTATIONS ARE ALWAYS P32PORAED IN THE 02033 - AW-?ITCH-90LL.
C

PEAL MU
CONHON/RTA/N0,GASSA,CHI, 10 ,tO, ZO
12=XI-X
Y2wYA-TO

COOCOS (GAIA)
CC&COS (CqI)
CH.-COS (MU)
SGASTN (=13HA)
SCMS iS (C3iI)

SGSC-SG*SC
CGZ~vCGOZ2
I 1-CG#CC OI24CG*SC'i2-SG*Z2
Ti. (SNOSGCC-CNSsC) 12, (sIIosGsccEScc) Y2'S5'CO.z2
Z1-(C36SGCC.S6SC)*2(COSGSC-S3*CC)OY2,CH6CGz2
R ETURIN

END
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FEAL AIu
CO OOf/R PY/R3AT ,P&T-- YFPI OM!:GA. SP!-E0. LSL 3.,

COSflOM/ 3?A/ U, GA.Ui, C.1,.X0,T0, Z3

YO-COS (;LSLP) *(.q-SPEZLtT:!)
ZO* T0*TANUGLSLP)
IF (TRPT.SQ.3) GO TO 20
T!RflvSZN (0NZGA*',jE)
3a (RSATE/C3E^GA) *!R3
G&MMA-(PR&?R/O3EGA) *TR4~
CHI' (lilT /OSZGA) S!ERS
RZTURN

23 M-0O.O0
CUZ=O. 0
GASIlA-0. 0

END
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sutoSH~ims RCS (T3ETA, PHil,IC30E)
DZMUSIOE SCAT(3,45)
COIIION/RAVZ/K,3OR,ZPSa
CORSON/SCATI/scAI. san4
REAL K
DATA PZ,P12S,212/3.141593,2.1667101,1.57079S/

CI
C 2CS CORPLEE CODE
C 1: Jt!FrtCDSI
C
C 2: 1 POINIT SCA-?!!R flOCEL

DO 2 1.1.3
2 SCAT(I.'4)olE-10

GO TO (100,200),ICODE

C
C JITNOD81 RCS :ARGET 3lO02L
C

103 Nonni
ALPHA-=ARCOS (ShE (THETA) 'COS (PHI))
DRLTAsARCOS (SU (THETA) 'SIN (pH))
SCAT (I ,1) =0. 0
SCA?(1,2) s-3.0
SCAT (1,3) -0.0
SCAT (2. 1) -9. 0
SCAT (2,2) =0.0
SCAT (2,3)= ..
SCAT (3, 1) a#$. 0
SCAT (3.2)a .0
SCAT (3.,3) -0. 0
DXUS2. 0I
DypoSaI 0.0
DZ7VS.3. 0
DXLl rse. 0DLNP.01
DTLVNG2. 0

DI~SS.0
DT111G6. 3
DliNUGA2. 0
RUSInCOS ( (g'DFOIS/2.0) SCOS (ALPHA))
FOSTuCOS ((RSDtFS/2.0) SCOS (DELTA))
PFUEZaCOS ((KOZFUS/2.0) 'COS (TRT)) -

VVGU~aCOS ((K*0ZlUNG/2.0) *COS (ALPHIA))
INGRIwCOS ((ROT 33 0/2.01 *COS (DELTA) )
VUGIlTCOS ((K*DRUUNG/2.0) SCOS (THEA))
IUGLZ*COS ((K*DZLUIG/2.O) 'COS (ALPHA))
WVULT*COS 4(KS0ILUUG/2.0) 'COS (DELT:A))
IUGLZuCOS ((K'DZLENG/2. 0) 'COS (THETA))
AFUSLI0.0s(THETA-PI/2.3) 002#1.0
AVNGELaIOO0.00(TIETA-Pt/2.0)0 *..0
rVp(A~s(PHI).LE.PZ/2.0) G0 TO 10
A7OSAZs(75.0/PZS) *(ADS (Pril-PI)O"2.63.0
GO TO 1S
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IC

C
C COSPUTZ ?3ZWINGE RCS
C

SCAT(2,4)sA?0S!L*AatJSAZ.A3S(?4iSXPUNGRTl.?! Z)
C

C COAPUTE LH 111iG ICS
C

SCAT (3, .) .AiIGEL' A3WGAZ*ABS (VIGLZ +VNGLY+ dYGLZ)

cs.s.u.. Z ssaesgsaessgge1 R 4~gs...asa.sa.

C
C CO5PUT&TI0N OF I POZIT SCATTZIRl RCS
C

200 90.4-1
SCAT (1.1) =.0
SCAT 01.2) a0. 0
SCAT 11 3) m0. 0
SCAT(1,4)-t.)
PETUBI

END

77-7
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SUBROUTINE ASdTEIA (AZ, E-LGAI4)
REAL K
!MTEGEB ELA,ELA2,ELB.1LB2
C0MMCN/VATE/K,MU3.PS3
DArA PZ/3.141~593/
DATA 2LA.ELE/35,35/
DATA D1,D2,SC.L!./0.03,0.029, 10.0E#,05/
PHI-PI/2.-AZ
THETku PI/2. 0-Ei
B taCOS (TRBT&) *D1SK
B2-S!IV(THTA) *COS (PHI)*D2*K

DO 100 I-1.ELI
100 R1=R1+COS(31sPLOAT(I))

ftia2. 631. .
32u.
DO 200 1.1 .ELS

200 32=32.COS(2*?zo&T(rI I
R2u 2. *R2+ 1. 0
N 132m11*32
G&I&R1E2*Rl R2/SCL.LE
RZTUO4
END
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I SUBOUTINE MEANAN 0

1 C
C T41S SUBROUTINIE CALCULATES THE 33A14 RETU24 VOLTAGE IN
C AZ13UTHI AND ELEVATION (SEPARATELY) VHICH IS T334I USED
C AS THE THRESdOLD IN PNLI TO LOCATE THE TkAGET CE!ETROID.
C

P!AL~g rL(u91 ,AZ(JP) ,SUMSEANZNA
CORSON /ALL/ EL,AZ,RANGEOPTION,LABEL,!LDI.'IAZDA-,ELSC.,4,DELTA
INTEGER OPTION (5),ELDia,&ZDIdZLSCANd
IIIELSCAM.EQ.1)GO TO 'I

HANEUO. 3
DO 2 IulELDIS

2 SU~wSU3.EL(I)
MZAN!=SUM!/lLOAT (TLDIS)

4 StJn-.0
DO 5 I=I,AZDIS

5 S 1N S U . A z (I)
MZANA*SaA/FLOAT (AZD:M)
LABEL-1
CALL FL(fAEIAA
RETU 3 4IEND
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SU3?OUTI!4! S:31AN

C
C TRZs s5p.oaTinE D3 .z~riNs THE MIDZANI V&h:3E Of 'qZTJR*.i
C VOL7AGE-:, AND PASSZS THIS VALUE IS THE!SSOLD TO ?RLH.C1

COSSON /ILL/ ELAZ,3AZGE.OP'rION4,LA8EL, EL:,AzDI9,EL SCAN, DELTA
COMMOM /PADR/ P!L,PAZ-,CLOC,CBLOCA,GANZ,GBAKAAZ8N.,ELBV,LOCX
R!AL09 EL (49) * Z ('49) ,SEDE,'IEDA.'OLT (2, 49)/98'*O.ODO/
INTEGER OPTION (5),*ELDZS,AZOIN.,CSANGE,LI.'ZT (2) ,zLSCANY
LS 2

DO '4 Ksi,AZD;N
'I VOLT(0. K) sAZ(M

30 5 Kz1,ELDT5
5 VOL-,(2, K) sEL(K)

LIRI1 (2) w AZDIA-I
I CHARG~nO
00 2 1-1,L

00 3 J-1,LL
If (VOL (1,J)LT.VOLT(L,J *)III TO 3
VROLDsVOLT (1,J)
VOLT (1,J) =VOLT (1,J*I)
VOLT( (,J#1) .VHOLD
CIAlG-C3AXGE* I

2 CONTIUE3
Z?(CINGL.NE.G)GO TO I

4jDA2 (AZDIN.)/2

XZDAnV0LT (1,1NI Z)
N1EmZ'OL? (2, !IDZL)
LAB2L-?
CALL FHfLl(3E01,3ZDA)
UE~u It3
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C
C TSIS S9BROUT:NE C0APOTES A T92ESifOLD t2DB DMV FSOM THE COMPUT!D
C RETURN VOLTAGI idEN THE AINT!41A 321M IS ON THE TARGET. NOTE T4A7
C I? -12u20*LG(VT.HR!S/VC:NTER) , THEN VTHiP-Su.251 18,6--SVCENE3.
C

CO MON/ALL/EL,AZ,3ANIGE,0PTION, LABELELDIS, AZOIN.,ELSCAN, DELTA
COMBOS /?kDR/ PEL,PkZ.CBLOC!,CBLOCA,GRANE,C;3ANA.AZBi,ELBi,LCCK
COSMCN/POU ?IV/COUNT!, COUNT A, NO DEE, MODEA, SS0 DRY SNPEL. . 00E I2, NODA 12
INTEGER OPTION (5),ELDZ13,AZDI3,,FHA,LHA, FR!,. LE, AZS,ELSCODNT!,

-COUN?A4ELSC&M
DOUBLE PPZCISIOW EL(49) .AZ('39) ,VC!NTR,ELTR.S,AZTHRS
MODE 12-1
MOD1 12=1
MIDDLE= (AZDI3I# 1)/2
VCENTRuAZ (HIDDLE)
AZTHBS*0.251 189614*VCENTR
DO I I-1,AZDI3
TF(IZTNRRS.GL-AZ(I))GO TO 2

1 CONTINUE
aODA12-0

2 3IDDLm(ZLDI3.i)/2
TCZNTR-EL (MIDDLE)
ELTHRS-0. 251 156'4*VC3NTP
I? (ZLSCAN.XQ. 1) LTlUNS*O.O
DO 3 Im1.ELD13

1 t?(ELTHRS.GZ.EL(I))3GO TO '4
3 CONTINUE

MODE 12.0
4 LABELU

CAL L ?NLH (1LT3DS,A)ZTHBS)I RETURS

END
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SU3RCJINE PLfl(ZL-HRS,AZTHES)

C
C THIS SUBROUTINE USES THE THRESHOLDS CALCULATED BY MEAN

C ND/OR MEDIAN TO DETERSINE THE 7ARGET C!STBO::D. AN EDGEi
C OF THE TARGET IS DEFINID WHEN TWO CONSECUTIVE 7OLTAaZ
C RZTrIRNS EXCEED THE CALCULATED THR!S3OLD. THE CENTROID IS
C THEN MIDWAY BETWEEN THE EDGES.' A HIT IS A 7OLTIGGE 7:CCIEDtNG
C THE THRESHOLD.

COMN/RAD3/ PEL,PAZCBLOCE.C3LOCA,GRANE,G3ANA,AZ3V,E.SU,LCCK
CO!!O/FOUIV/COUNTE,CONTAODE,ODE,.SDSV,SNREL.1OD1,MCDA12
INTEGER OPTI.ON(5) .ELDIPN.,AZDIH,FHA,LaiA,FHE,LH!,AZS,!LS,COD~n-,P

*COON-A,ELSCAN
C ODN TAs1

,400!As 3
NODE Em3
TCZ=O. 0

C
C CALCUILATE! FIRST HIT IN AZIMUTH
C

DO 1 AZS-1,AZDIA
rF((Az(AZS).GE.AZTH3RS).AND.(AZ(AZS.1).ZE.AZT.HRS))D;O TO 2

1 CONTINUE
PCA-835E
MODEA=O
GO TO 5

2 FH~u&ZSi
COUNTAoCOONTLA ASO

C
C CALCULATE LAST HIT 13 AZIflUU

DO 3 &ZS-IAZDIR
I? ((AZ (AZDI3-AZSO 1) .GE.AZTHRS) IAND. (AZ (AZDIA-AZS) .GE. AZTHNS))

*GO TO 4
3 COST:NO.IE

WAIT! (6,12)
'4LHAhZDIrl-AZS.1

PCAu (FLOAT (LHA#FHAI /2.-YLO&T ( (AZDImN1) /) Rill #CBLZCA -

COUNT XsCOUNT k* &ZSsI
C
C CALCULATE FIRST HIT IN ZLEVATION
C

5 I?(ELSCAN.!Q.1)aO TO 10
00 6 ELS*1,ZL:)Ia
I7((EL(!LS) .GZV.ELflHaS) .AND. (EL (LS. 1). GZ.EL IqS)) GO :O 7

6 CO4TI4Uf

GO TO 10
7 ?HZELS

CO0§T!UCOON'TZ*ELS, 1
C
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C CILCILA! LIST df: 14 SLE7ATION
C

D0 3 3LS-I.!L0I3
I? ((!L(ELZ)I3-ZLS+ 1) .GE.ELTSS) .AND. GZ(L:-L).Z.-7LTHRS)

*GO TO 9
3 CONITINUE

3LHEsELD14-ELS+1
COUt4T~mCOUNT!+ELS~ I

C
C CALCULATE AZ AND IL C14TROID ESTIflATIONS
C

TCgu(PLOA?(LX4E.?lH)/2.-LOA((LI5#)/2))^3AX!:C3LOC!
10 CALL EP.303(TCZ.PCA)

12 ?ORMA?(' 3P!0ft OCCUEBD IN LOOP 3, FHLH')
III FORMAT(' E3i03 OCCIRRID IN L30? 13, rHLH')

ETRN

EN
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CS~ess~ss~sas~ss.....sa~a~ss*s~s*s~...s..sss~ss..........

c THIS SU80OMTNJZ CALCUJLATES THE A!IPL OEJD-iE52TD PADAR
c RETURN T0 DETER.'IIN? rTHE RADA3 CENTER OF iRAVI7Y (RIAAC)
C ?ORMULI rISED :S (SUM GE VOLTAGES :.IES A45LT AT THAT
c TO'.TAGE) JIV::lZD BY (SUM OF THE VOLTAGES).

COMION /ALL/ EL. LZ, RANG3,OPTION, LABEL L:)I.,AZ:I!!ELCA, DLTA
COMION /RADR/ PEL,?AZ,C3LOC!,CSLDCA,GaANE, RAA.4,AZn4, ELB'*,L2C-(
ZOIUL! Pa!CZSION EL('49),AZ(49).OLT(43)
-VEG-ER ELDr, AZDIS,OPTION(5) DI,LSCAN

PCGEL=0. 0
IF (ZLSC14. EQ. 1) GO TO 3

J= I
DIlz'ELDI15

GRAN-GRINZ
PINGLE-CBLOCZ
DO 2 1=1,DIS

2 VOL (1)-!L (1)
I DO 10 1=1,011

SU0T=SUS'VT.7OLT(s)((-C74)SG*Rs+ANIGLZ7)
10 SU 4W-SrN.S4NL (VOLT (1)

IF (J.Z0.2)GO TO 20

RCGEL-SLMVTH/SUn'd

J= 2

DIS-AZDI3
CENTIB(Dll1)/2.

GaAM-GRAINA
PANGLZ-C3LOCA

GO TO 1
20 9CGAZmS0UV.'/SO2II

LABIL. 3
CALL E3ROE(3CG:L,3CGAZ)
RST~ftN



387

S93ROUTIN! E3RTZPA

C
C -HIS S'J3'4o::!4E CILCULA-7S THE ?!ROR BZ74 -T :F-- LCCA-IO4i
C 0F TX! 'ARG7T CENTROID 0STEIY.INED BY :.4 ES' IATOP SOBROTtS!Ss
C TO 74? ACTUAL LOCATION 0? TX! TARGET IS S!TN BY 7H FADAR.
C

COMMON /ALL/
C03MO4 /RADR/ P-L,?AZ,C3L0CE,C3LOCA,5RAN, .?AA,AZ3' ,7Ld, C
C0OMO /?:L717/ XISAN,1X4!DX3AO.RC.X12DB,XSDRVSNRAZ, ?LS12,

-PLSD,PLSSC,fl1!EAN,DM!D,DRAOBRC,D12DB,:)SDRV
C0V 0H40OURIV/COUNTE,CUNTAMOD--!.M0D!A, 1iSDV,S4FEL,:IODE12,iO:A12
COCM4 /RTPh/ 30,Zk55&,CiI,X'0,YO,ZO
DOUBLE PRECISION EL (49) AZ 09)
IN4TEGER OPTI0I(5),F-I,AZ:,CUNX.O-f!,LSCNPLS12,PLSFD,
*LSSD
RADOSG= 57. 29578

C ERROR CALCULATION
C

EPRZL=TCE-PEL
ER.IAZ-PC.-PIZ
ELM-RA1GZ*SI4G(Z53!L(
PkZ5EA4GZ-SIN (ESAZ)

PCAO. PCA*RAODEG
PE LDPZL ' ADDG
PA ZD-PAZ* ADDE
IF (MCDEA. SQ. 0) FRI AZ- 1 ?71

C
C CON7!PTZI4G TO PLL:3kDIINS
C

2B! -!2RZ Lol Z3
?R BAZ-1RRAZ .1E3

C

IF (LABEL. EQ. 2) l5ZAN=!BBZ

IF (LIBEL. EQ. 3) IRADBC-ERBAZ
IF (LABEL. ZQ. 4) 112DB-ERRAZ
IF (UABEL.EQ.5) XSDBV-EBBAZ
I,?(LA3EL.1Q.4) PLS12-COUNKTA
I? (LABi.EQ.5) PLSSD-COD3IT&
IF (LABEL. EQ. 1) D3EAN*AZ3
I? (LABEL.!Q.2) DIIEDinA23
I? (LABZL.!Q. 3) DaIDRC-A:1'
IF (LABEL. EC.4) D12 ZB.&ZA
IF (LABEL.?Q.5) 0 SD a 7CA Z.1

C OUTPUT ERROR DATA
C

I? (LIBTL.Z .3) iOOR!-8
I?(L&B3L. EQ. 3) AODZA=8
WRZEI(6.l)lAdG,TO,SNREL,S'RAZ,?!LD;,?AZD

1IF (LA 3EL. E Q. 2) d RhITE (6, 3)
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I? (LA3E.L. EC. 4) [l,(6, 6) SODE 12,SOD& 12,COUONT!,: 'UNTA
r7(LASEL.ZQ.5) WiZTE (6,5) IOD!E,NO0DEA.COONTE,CCUNTAk
IF (!LSCAN. EQ. 1) GO TO I I
rIF(IOOZ!. E.O3iaTE (6,1' CED,ERSEL,ELU
I? (MOOEE.E0. J) WRITE (6, )

11 rF,0 E. ! O W Z ''6 S PA ,-B Z A f

2 FORdk?(.'1,49%,* E',LXi,24'JI
3 FORMAT(1.',.JIX,t SEDIANd',23X,'I *,2t4X~fjm

5 ?ORnAT(.1,49X,2TI, IX,'SDI,1X,22,20L,'I '214,')')
6 FO2.4AT('.',49X,211,11,'12DB',1X,2:2,2X,j',21,'l)
7 FORI1AT('.'1,63X,p6.2,ISX.GIO.3,1!.p7.2)

9 FOa.AT('.',731,F6.2,29X,GIO.3,21,?7. 2)
9 FORMALT (.' ,9S,'vaEJECEC*' ,2X,'*R1E3ECTO')

PETIRM
END
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SUSRCUTIN3 SORV(:N1-r, NOIE)
COMMON /ALL/E'L,AZ,3AN4GE,OPT:ON,LAB L,!LD:3,AZD:N, ELSCAN, D!L:A
COMC/AD/PLPAZ,CBLOCE,CBLOCA,GRANE,GRANA,AZB,ELBW,LOCK
COMION/OEI/COUNE,CCUNTA,'IODE,ODEA.ISDV,SPLN'OD12,ODA12
PEAL*9 EL(49) ,AZ (4), VREP,VLT (4)/1420.DDO/, VOLT (2,149) /9i*O.OD0/,

'VEND ,Suf
INTEG3ER !LDI5,A~iOIM,OPTIOI(5) ,A,3,C,DDIM,ELSCAN,PULSES,Q,

OCOUNT!,CDOHTA, COUNTMODEE,HODEA
REAL NOSLIM,N

C
C THIS SUBROUTINE CALCULATES AN ESTIMATE 0F THE TARGET CZ-NTRSOD
C POSI7ION BASED CH THE SHAPE OF THE RETURN.
C TH3 CENTROID ZS CALC:ULATZD AS FOLLOWS:
C HAL? THE SCAN IS BROKEN INTO FOUR IVINDOWS'. THE RETURNS FRO3 :TE
C SEAS POINTING LOCATIONS INSIDE THE 1INDO4S ARE A7ERAGED TOGETHER?
C TO OBTAIN FOUR SEAN VALUES. THESE FOUR REIN VALUES ARE EXPtCTED O0
C TAKE ON ONE HALF OF I BELL SHAPE. AN EDGE IS PLACED AT THE ?CINT
C OF MAXIMUM SLOPE, OR WHERE THE SECOND DERIVATIVE- CHANGES SIGN. IF
C NO CHANGE :4 SIGN OCCURRED, OR IF THE MAX SLOPE 2AS BELOW THE
C NOISE CRITERION, THE WINOWS ARE SHIFTED AND THE PROCESS REPEATED.
C THE 4INDONS ARE ALLOWED TO SHIFT TWO WINDOW 1412155 ?RO1 T9HE EN: OF
C THE SCAN, OR TO THE FEDGE. A SCAN REJECTED DUE TO SNAP! OP NOISE
C IS TAGGED MODE-O. IF A CENTROID IS CALCULATED, T.HI SCAN -'S :.AGGZD
C MODE-2.
C

NOSLIA-0. 38980 t. 5
IF (INIT.Ec. 1) GO TO 30

N 110.

30 VENOSO.
IODE3:
MOD!A A0
COUN2-
COO NTA-O
TCE0. 0
PCA0. 0
DO I IzI,AZDIS

I YOLT(2,I).AZ(I)
IF(LPLSCkN.ZQ.1)GO TO 12
DO 2 Is1,ZLDIS

2 VOLT (1,1) EL (I)
DIN*ELDIS
G RANUG N E

Jai

INC' I
FIDGE-3. 0
SEDGEml. 0

C

C 32GIN MAIN LCCP
CIC FIND SIZE Of WINDOW AND DET!RSINE NECESSART PAlAS!7!vS
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C

C
C TO DE !RMINE THE PROPER S:ZE WINDO3, WE FIRST NEED TO CALCULArE
c THE OPTIMUM WINDOW SIZE WITH A "LOCKED O4" ANTENNA EANl, TREE

C CE4TP BEIM P0INT14G LOCATION 3!ETNO NORAL ON THE TIRGZET.
C IF AN UNLOCKED ANTENNA BEAM IS USED, THE OPTIMUM JISDOW SIZE IS

C THE SAS? AS IN THE LOCKED ON CASE. WE THEN '783NITH MAXIMU!!
C NUMBZH OF BEAM LOCATIONS WITH THE WIDER GRANULARITY TO MAINTAZIN
c THE oPT:1NUM WINDOW SIZE.cI

?IIDPT-(DIlt 1)/2
A4T9-?LOAT (IIDPT) /4.0
A4THMI-AINT (A4TH)
RE1AI4-(A4TH-A4THlI) "'4.0
PU LS ES-INT (%4 T H HI)
LIMIT=DIM-6SPULSES
CO0U T- 4 *PULS ES- I

IF (LOCK.!Q.1) GO TO 4
GRAOP2.sDWO.0174533/(FLOAT(D:N)-1.)
WIfHOPULSZS"GRAWOP
FACTOR-ZIDTHO/GRAN-AINT( WIUTHO/GRAN)
IF(FACTOR.GT.O.75)?ULS!SINT(wIDHO9/GEAN)t1
I? (FACTOR.LZ. 0.75) P LS!S=rIRT (WIDTHO/GRA I)
IF (PULSES. EQ. 0) POLSESs I
LIBIT-01M-6PULSES
COUNT.'4*PULSES- I

C
C BEGIN INNER LOCP
Cisggsaeesagesugasusaaugesssesaasesse

C
C CALCULATE VOLTAGE WINDOJS

CI
'IF(Q. M.LIIIT.OR. (INC. !Q.-1.ARD.I.LE. INT (FEDGE)))GO TO I I
COUNT-COONT.1

DO 5 33-1,4
5 7LT (JJ) *0. DO

DO 7 JJJ01,'4
KI. (PULSES*(JJJ-1) )
IF (JJJ.EQ. I.AND.INC.EQ. 1) TEND-VOLT (J,K)
Lsr.POLSES *JJJ-1
IF (JJJ.EQ.'4.ND.I NC. EQ.-I YE MD-VOLT (3. K)
IF (JJJ.EQ.2) IIITaFLOAT WL +0-5
DO 6 11-9,L

6 YLT (JJJ) wYLT (JJJ) #VOLT (J 11)
7 ILT (JJJ) .VLT (JJJ) /FLo&A.(PUrLsis)

IF(INC.EQ.-l) GO TO 9

9=2
C" 3
D-
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I
GO ?0 9

9 A:48- 3
C- 2

Ii mll ii~... Si maaa.amm ml llllllmma maama m Um 3*30*0 3* S S SOml~l S iS *lt Um S m *58S UU Bm S 5

C
C FIND DERIVATIVES
C

C
C THE FIRST DERIVATIVE OR SLOPE BETdEEN TWO ADJACENT wIVIDOi
C 7OLTAG-S IS THE INNER SINUS THE OOT33 70LTIGE, DIV:DED BY A 7N::
C ANGLE. THE SECOND DERIVATIVE OR RATE OF CHANGE OF SLOPE IS THE
C INNER HINUS THE OUTER FIRST DERIVATIVE. SINCE THE .X:NU.H SLOPE

C OCCURS WHEN THE SECOND DERIVATIVE IS ZERO, iE LOOK FOR THE CHANG-
C IN SIGN OF THE SECOND DERIVATIVE.
C
C IF THE CHANGE IN SIGN IS NOT FOUND, OR :? THE SAIIX3U SLOPE :S
C LESS THAN THE NOISE CRITERION, THE VINDOdS ARE ADVANCED OR THE
C SCAN REJECTED ACCORDINGLY.
C

C
C REJECT SCAN IF MEAN VOLTAGE 3 IS BELOW THE VOLTAGE aEFER"-NCE.
C

9 I?(VLT(B).LT.VREF) GO TO 10
FDAB-SNGL (VLT(B)-VLT(A))
FDBC-SNGL(VLT(C)-YLT(S))
SDB.FDBC-FDAS
IF(SDB.LT.O.O)GO TO 10
FDCD.SNGL (VLT (D) -VLT(C))
SDC=FDCD-FDBC
I?(SDC.GT.O)GO TO 10

IF(UOISE.EQ.I.AND.FDBC.LT.NOSLIS)GO TO 10
IF(PULSZS.N!.I.AND.FDCD.LT.0.O)GO TO 10
IF(INC.EQ.-I)GO TO 14
?EDGI-RIT

C
C SETUP FOR SECOND EDGE
C

TD:"-*PULSZS. I
Q0o

COUNT-COONT4*i"PULSES-1
GO TO 4

C
C ADVANC. TINDOdS
C

10 I,.INC
SO 3=SO N.,7! D

t lEF-,SUM/1
GO TO 4

I
I

" 1
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c4

? F HE PROG3AS REACHED THIS POINT, -SEIN MC SET OF

C RETURNS ?ASSED THE ClITI3ICM 7CR TH:S SCAl.
C

I1 I IF(J. !.2) GO TO 13

HlO!Z-0

C
C SETUP FOR AZ:lUTH

12 DIMt.AZDIS
GRA4-GRANA

J82
GO TO 3

13 MO321=O
COO NTA -COUNT
GO TO 16

cuesaeseca aa esee esassassuasseee.s..s

C FIND TARGET CINTIR

14 SEDGE-HIT
Z?(J.29.2) GO TO 15

TCE C (SEDGE.FEZDGE) /2. -FLCAT (fllI) *GRANZ.CBLOCE
NODE1=.
COUTZ-COIT
GO TO 12

15 PCA ((SIDGE.FEDGE)/2.-?LCAT (5ZDPT) ) GlAlA.C3LOCA

COUTAnCOUNT

16 LABZLm5
CALL 3NROl (TCZ,PCl)I
RETN

FwI



TI
I-


